
Efficient Collision Attack Frameworks
for RIPEMD-160

Fukang Liu1,6, Christoph Dobraunig2,3, Florian Mendel4, Takanori Isobe5,6,
Gaoli Wang1(B), and Zhenfu Cao1(B)

1 Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

liufukangs@163.com, {glwang,zfcao}@sei.ecnu.edu.cn
2 Graz University of Technology, Graz, Austria

3 Radboud University, Nijmegen, The Netherlands
cdobraunig@cs.ru.nl

4 Infineon Technologies AG, Ludwigsburg, Germany
florian.mendel@gmail.com

5 National Institute of Information and Communications Technology, Tokyo, Japan
6 University of Hyogo, Kobe, Japan
takanori.isobe@ai.u-hyogo.ac.jp

Abstract. RIPEMD-160 is an ISO/IEC standard and has been applied
to generate the Bitcoin address with SHA-256. Due to the complex dual-
stream structure, the first collision attack on reduced RIPEMD-160 pre-
sented by Liu, Mendel and Wang at Asiacrypt 2017 only reaches 30 steps,
having a time complexity of 270. Apart from that, several semi-free-start
collision attacks have been published for reduced RIPEMD-160 with the
start-from-the-middle method. Inspired from such start-from-the middle
structures, we propose two novel efficient collision attack frameworks for
reduced RIPEMD-160 by making full use of the weakness of its message
expansion. Those two frameworks are called dense-left-and-sparse-right
(DLSR) framework and sparse-left-and-dense-right (SLDR) framework.
As it turns out, the DLSR framework is more efficient than SLDR frame-
work since one more step can be fully controlled, though with extra
232 memory complexity. To construct the best differential characteristics
for the DLSR framework, we carefully build the linearized part of the
characteristics and then solve the corresponding nonlinear part using a
guess-and-determine approach. Based on the newly discovered differen-
tial characteristics, we provide colliding messages pairs for the first prac-
tical collision attacks on 30 and 31 (out of 80) steps of RIPEMD-160
with time complexity 235.9 and 241.5 respectively. In addition, benefiting
from the partial calculation, we can attack 33 and 34 (out of 80) steps of
RIPEMD-160 with time complexity 267.1 and 274.3 respectively. When
applying the SLDR framework to the differential characteristic used in
the Asiacrypt 2017 paper, we significantly improve the time complex-
ity by a factor of 213. However, it still cannot compete with the results
obtained from the DLSR framework. To the best of our knowledge, these
are the best collision attacks on reduced RIPEMD-160 with respect to
the number of steps, including the first colliding message pairs for 30 and
31 steps of RIPEMD-160.

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11693, pp. 117–149, 2019.
https://doi.org/10.1007/978-3-030-26951-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26951-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-26951-7_5

118 F. Liu et al.

Keywords: Hash function · RIPEMD-160 · Start-from-the-middle ·
Collision attack · Collision

1 Introduction

A cryptographic hash function is a function which takes arbitrary long mes-
sages as input and output a fixed-length hash value. Traditionally, such a cryp-
tographic hash function has to fulfill the three basic requirements of collision
resistance, preimage resistance and second preimage resistance in order to be
considered secure. Most standardized hash functions, like SHA-1, SHA-2, HAS-
160, or RIPEMD-160 are based on the Merkle-Damg̊ard paradigm [3,22] which
iterates a compression function with fixed-size input to compress arbitrarily long
messages. Furthermore, the aforementioned hash functions have in common that
their compression function is built by utilization of additions, rotations, xor and
boolean functions in an unbalanced Feistel network. This way of designing hash
functions has been greatly threatened, starting with a series of results as well as
advanced message modification techniques by Wang et al. [28–31].

Before Wang et al. proposed a series of collision attacks on MD-SHA hash
family, there existed substantial efforts to analyze the security of MD-SHA hash
functions. Historically, the start-from-the-middle structure was first exploited
by den Boer et al. at Eurocrypt 1993 to break the compression function of
MD5 [6]. Later at FSE 1996, Dobbertin applied the start-from-the-middle app-
roach to break full MD4 [7]. Since the target is the hash function rather than
the compression function, the initial value must be consistent with its defini-
tion of the primitive, which is costly under the start-from-the-middle structure.
To overcome this obstacle, Dobbertin introduced a connecting phase to connect
the correct initial value with the starting point in the middle by exploiting the
property of the round boolean function and the freedom of message words [7].
As will be shown, our SLDR framework is almost the same with Dobbertin’s
structure to break MD4. Moreover, the neutral bits introduced by Biham and
Chen [1] at Crypto 2004 serve as an important tool to analyze MD-SHA hash
family as well till now. A message bit is neutral up to step n if flipping this
bit does not influence the differential characteristic conditions up to step n with
a high probability. Due to the low diffusion of SHA-0/SHA-1’s step functions,
there exist many neutral bits up to a few steps.

Soon after Wang et al. presented their exciting work on MD4/MD5/SHA-
0/SHA-1, where all the differential characteristics were hand-crafted, De
Cannière and Rechberger invented the first automatic search tool to solve the
nonlinear part of the differential characteristic of SHA-1 with the guess-and-
determine technique [5]. With such a guess-and-determine technique, Mendel
et al. designed a tool to find the differential characteristic of SHA-2 at Asi-
acrypt 2011 [18]. Later, tools to solve the nonlinear characteristics of SHA-2,
RIPEMD-128 and RIPEMD-160 progressed well and a series of results were
published [10,11,16,17,19–21]. After Wang et al. presented the differential char-
acteristic as well as the corresponding sufficient conditions used to break MD5

Efficient Collision Attack Frameworks for RIPEMD-160 119

in [30], cryptographers soon observed that the differential characteristic condi-
tions were not sufficient in [30]. Specifically, Stevens revealed that the differen-
tial rotations must hold if the differential characteristic hold [24]. Consequently,
Stevens further investigated the influence of the carry and added some extra
bit conditions to have the differential rotations hold with probability close to 1.
A highly-related work is the recently proposed method to theoretically calcu-
late the probability of the step function of RIPEMD-160 at Asiacrypt 2017 [16],
where the authors introduced the influence of the modular difference propaga-
tion and also presented how to add extra conditions for RIPEMD-160 to ensure
the modular difference propagates correctly.

The very first theoretical collision attack on full SHA-1 was achieved by Wang
et al. at Crypto 2005 [29], which required about 269 calls to SHA-1’s compression
function. However, practical collisions were still out-of-reach. After a decade’s
effort, Stevens et al. presented the first practical collision of full SHA-1 at Crypto
2017 [25]. In that work, Stevens et al. utilized the SHA-1 collision search GPU
framework [13] and the speed-up techniques such as neutral bits and boomerangs
and finally found the practical collision of SHA-1. Boomerangs were introduced
by Joux and Peyrin at Crypto 2007 [12] to speed up the collision search for
SHA-1. It consists in carefully selecting a few bits that are all flipped together
in a way that this effectively flips only one state bit in the first 16 steps, and
therefore the diffusion of uncontrollable changes is greatly slowed down.

The RIPEMD family can be considered as a subfamily of the MD-SHA-
family, since, for instance, RIPEMD [2] consists of two MD4-like functions com-
puted in parallel with totally 48 steps. The security of RIPEMD was first put
into question by Dobbertin [8] and a practical collision attack on it was proposed
by Wang et al. [28]. In order to reinforce the security of RIPEMD, Dobbertin,
Bosselaers and Preneel [9] proposed two strengthened versions of RIPEMD in
1996, which are RIPEMD-128 and RIPEMD-160 with 128/160 bits output and
64/80 steps, respectively. In order to make both computation branches more
distinct from each other, not only different constants, but also different rotation
values, message expansions and boolean functions are used for RIPEMD-128 and
RIPEMD-160 in both of their branches.

Due to the complicated structure of the dual-stream RIPEMD-128 and
RIPEMD-160, collision attacks on the two primitives progressed slowly. For
RIPEMD-128, a practical collision attack on 38 steps was achieved at FSE 2012
with a new structure [19]. Later, a practical collision attack on 40 steps was
achieved at CT-RSA 2014 [26]. A break-through was made at Eurocrypt 2013,
when Landelle and Peyrin employed the start-from-the-middle approach to break
the compression function of full RIPEMD-128 [14]. As for RIPEMD-160, no col-
lision attack was presented before Asiacrypt 2017 [16]. However, several results
of semi-free-start collision attacks on the compression function of RIPEMD-160
were obtained with the start-from-the-middle approach [17,21], only one of them
started from the first step and the remaining started from the middle, further
showing the difficulty to cryptanalyze the collision resistance of RIPEMD-160.
In the work of [21], a partial calculation to ensure that more uncontrolled bit
conditions hold was also introduced with a few statements. Later, a thorough
discussion was presented at ToSC 2017 [27].

120 F. Liu et al.

At Asiacrypt 2017, the authors proposed a strategy to mount collision attacks
on the dual-stream RIPEMD-160 [16]. Specifically, they inserted the difference
at the message word m15, which is used to update the last internal state of the
left branch in the first round. Then, they utilized the search tool [21] to find a
differential characteristic whose left branch was linear and sparse and the right
branch was as sparse as possible. At last, they applied single-step and multi-
step message modification only to the dense right branch to make as many bit
conditions as possible hold in a very traditional way, i.e. starting modification
from the first step. Typically, multi-step message modification requires a lot of
complicated hand-crafted work for different discovered differential characteristics
and therefore is very time-consuming. This motivates us to come up with two
efficient collision attack frameworks.

Since SHA-3 does not provide the 160-bit digest and the first collision of
full SHA-1 has been presented [25], as an ISO/IEC standard, RIPEMD-160
is often used as a drop-in replacement of SHA-1 and therefore worth analyzing.
For instance, RIPEMD-160 and SHA-256 have been used to generate the Bitcoin
address. For completeness, we list some related work of RIPEMD-160 in Table 1.

This paper is organized as follows. The preliminaries of this paper are intro-
duced in Sect. 2, including some notations, description of RIPEMD-160, start-
from-the-middle structure to find collisions, single-step message modification,
and how to estimate the probability of the uncontrolled part. In Sect. 3, the
details of the two efficient collision attack frameworks are explained. Then, we
will show how to construct suitable differential characteristics for the DLSR
framework and report the newly discovered 30/31/33/34-step differential char-
acteristics in Sect. 4. The application of the frameworks to the differential char-
acteristics is shown in Sect. 5. Finally, our paper is summarized in Sect. 6.

Table 1. Summary of preimage and collision attack on RIPEMD-160.

Target Attack Type Steps Time Memory Ref

comp. function preimage 31 2148 217 [23]

hash function preimage 31 2155 217 [23]

comp. function semi-free-start collision 36a low negligible [17]

semi-free-start collision 36 270.4 264 [21]

semi-free-start collision 36 255.1 232 [16]

semi-free-start collision 42a 275.5 264 [21]

semi-free-start collision 48a 276.4 264 [27]

hash function collision 30 270 negligible [16]

collision 30b 257 negligible Appendix A

collision 30 235.9 232 Sect. 5.1

collision 31 241.5 232 Sect. 5.2

collision 33 267.1 232 Sect. 5.3

collision 34 274.3 232 Sect. 5.4
a An attack starting at an intermediate step.
b Based on the differential characteristic in [16].

Efficient Collision Attack Frameworks for RIPEMD-160 121

Our Contributions. With the start-from-the-middle structure, we propose
two efficient collision attack frameworks for reduced RIPEMD-160. For the sake
of clearness, we differentiate the two frameworks by dense-left-and-sparse-right
(DLSR) framework and sparse-left-and-dense-right (SLDR) framework. The two
frameworks significantly simplify the procedure of finding collisions after a dif-
ferential characteristic is discovered and provide an efficient way to choose the
best differential characteristic from many candidates discovered by a search tool.
To the best of our knowledge, we obtained the best collision attacks on reduced
RIPEMD-160 with respect to the number of steps, including the first practical
attack. Specifically, the contribution of this paper can be summarized as follows.

• Two novel efficient collision attack frameworks for reduced RIPEMD-160 are
proposed. The DLSR framework is much more efficient than SLDR framework
since one more step can be fully controlled, though with extra 232 memory
complexity.

• With a guess-and-determine technique, new 30/31/33/34-step differential
characteristics of RIPEMD-160 are discovered, whose left branch is dense
and right branch is linear and sparse.

• By applying the DLSR framework to the newly discovered 30-step and 31-
step differential characteristics, practical collision attacks on 30 and 31 steps
of RIPEMD-160 are achieved. The instances of collision are provided as well.

• With the partial calculation technique that fully exploits the property of the
round boolean function of RIPEMD-160 and the differential characteristic
conditions, we introduce a clever way to dynamically choose the value of free
message words under the DLSR framework. Thus, based on the newly discov-
ered 33-step and 34-step differential characteristics, we can mount collision
attack on 33 and 34 steps of RIPEMD-160 with time complexity 267.1 and
274.3 respectively.

• Applying the SLDR framework to the discovered 30-step differential charac-
teristic of Liu, Mendel and Wang [16], we improve the collision attack on 30
steps of RIPEMD-160 by a factor of 213.

2 Preliminaries

In this section, several preliminaries of this paper will be introduced.

2.1 Notation

For a better understanding of this paper, we introduce the following notations.

1. �, ≪, ≫, ⊕, ∨, ∧ and ¬ represent respectively the logic operation: shift
right, rotate left, rotate right, exclusive or, or, and, negate.

2. � and � represent respectively the modular addition and modular substrac-
tion on 32 bits.

3. M = (m0, m1, ..., m15) and M ′ = (m′
0, m′

1, ..., m′
15) represent two 512-bit

message blocks.

122 F. Liu et al.

4. Kl
j and Kr

j represent the constant used at the left and right branch for round
j.

5. Φl
j and Φr

j represent respectively the 32-bit boolean function at the left and
right branch for round j.

6. sl
i and sr

i represent respectively the rotation constant used at the left and
right branch during step i.

7. π1(i) and π2(i) represent the index of the message word used at the left and
right branch during step i.

8. Xi, Yi represent respectively the 32-bit internal state of the left and right
branch updated during step i for compressing M .

9. V j represent the (j + 1)-th bit of V (V can be Xi, Yi, Qi, F...), where the
least significant bit is the 1st bit and the most significant bit is the 32nd bit.
For example, X0

i represents the least significant bit of Xi.
10. V p∼q(0 ≤ q < p ≤ 31) represents the (q + 1)-th bit to the (p + 1)-th bit of

the 32-bit word V (V can be Xi, Yi, Qi, F...). For example, X1∼0
i represents

the two bits X1
i and X0

i of Xi.

Moreover, we adopt the concept of generalized conditions in [5]. Some related
notations for differential characteristics are presented in Table 2.

Table 2. Notations for differential characteristics

(x, x∗) (0,0) (1,0) (0,1) (1,1) (x, x∗) (0,0) (1,0) (0,1) (1,1)

? � � � � 3 � � − −
− � − − � 5 � − � −
x − � � − 7 � � � −
0 � − − − A − � − �
u − � − − B � � − �
n − − � − C − − � �
1 − − − � D � − � �
� − − − − E − � � �

• x represents one bit of the first message and x∗ represents the
same bit of the second message.

2.2 Description of RIPEMD-160

RIPEMD-160 is a 160-bit hash function that uses the Merkle-Damg̊ard con-
struction as domain extension algorithm: the hash function is built by iterating
a 160-bit compression function H which takes as input a 512-bit message block
Mi and a 160-bit chaining variable CVi:

CVi+1 = H(CVi,Mi)

where a message to hash is padded beforehand to a multiple of 512 bits and
the first chaining variable is set to the predetermined initial value IV , that is
CV0 = IV . We refer to [9] for a detailed description of RIPEMD-160.

Efficient Collision Attack Frameworks for RIPEMD-160 123

The RIPEMD-160 compression function is a wider version of RIPEMD-128
and is based on MD5, but with the particularity that it consists of two different
and almost independent parallel instances of it. We differentiate the two com-
putation branches by left and right branch. The compression function consists
of 80 steps divided into 5 rounds of 16 steps each in both branches.

Initialization. The 160-bit input chaining variable CVi is divided into five
32-bit words hi (i = 0, 1, 2, 3, 4), initializing the left and right branch 160-bit
internal state in the following way:

X−4 = h≫10
0 , X−3 = h≫10

4 , X−2 = h≫10
3 , X−1 = h2, X0 = h1.

Y−4 = h≫10
0 , Y−3 = h≫10

4 , Y−2 = h≫10
3 , Y−1 = h2, Y0 = h1.

Particularly, CV0 corresponds to the following five 32-bit words:

X−4 = Y−4 = 0xc059d148, X−3 = Y−3 = 0x7c30f4b8, X−2 = Y−2 =
0x1d840c95, X−1 = Y−1 = 0x98badcfe, X0 = Y0 = 0xefcdab89.

Message Expansion. The 512-bit input message block is divided into 16 mes-
sage words mi of size 32 bits. Each message word mi will be used once in every
round in a permuted order π for both branches.

Step Function. At round j, the internal state is updated in the following way.

LQi = X≪10
i−5 � Φl

j(Xi−1,Xi−2,X
≪10
i−3) � mπ1(i) � Kl

j ,

Xi = X≪10
i−4 � (LQi)≪sl

i ,

RQi = Y ≪10
i−5 � Φr

j(Yi−1, Yi−2, Y
≪10
i−3) � mπ2(i) � Kr

j ,

Yi = Y ≪10
i−4 � (RQi)≪sr

i ,

where i = (1, 2, 3, ..., 80) and j = (0, 1, 2, 3, 4). The details of the boolean
functions and round constants for RIPEMD-160 are displayed in Table 3. The
other parameters can be found in the specification [9].

Table 3. Boolean Functions and Round Constants in RIPEMD-160

Round j φl
j φr

j Kl
j Kr

j Function Expression

0 XOR ONX 0x00000000 0x50a28be6 XOR(x,y,z) x⊕y⊕z

1 IFX IFZ 0x5a827999 0x5c4dd124 IFX(x,y,z) (x∧y)⊕(¬x∧z)

2 ONZ ONZ 0x6ed9eba1 0x6d703ef3 IFZ(x,y,z) (x∧z)⊕(y∧¬z)

3 IFZ IFX 0x8f1bbcdc 0x7a6d76e9 ONX(x,y,z) x⊕(y∨¬z)

4 ONX XOR 0xa953fd4e 0x00000000 ONZ(x,y,z) (x∨¬y)⊕ z

124 F. Liu et al.

Finalization. A finalization and a feed-forward is applied when all 80 steps
have been computed in both branches. The five 32-bit words h′

i composing the
output chaining variable are computed in the following way.

h′
0 = h1 � X79 � Y ≪10

78 ,

h′
1 = h2 � X≪10

78 � Y ≪10
77 ,

h′
2 = h3 � X≪10

77 � Y ≪10
76 ,

h′
3 = h4 � X≪10

76 � Y80,

h′
4 = h0 � X80 � Y79.

2.3 Start-from-the-Middle Structure

The start-from-the-middle structure was first used to break the compression
function of MD5 [6]. However, when applying such a structure to find collisions,
an extra phase is essential to match the correct initial value. Historically, Dob-
bertin was the first to use it to find real collisions [7]. In order to match the correct
initial value of MD4, Dobbertin introduced a connecting phase in the framework.
Exploting the property of the boolean function and the freedom degree of mes-
sage words, Dobbertin could achieve a connection with a very low cost. Due to
the high cost once there is no efficient approach to achieve a connection, the
start-from-the-middle structure is generally applied to find semi-free-start or
free-start collisions, which do not require the match with the predefined initial
value. Although such a structure has been used to find collisions in [10,15], the
situation is much simpler than Dobbertin’s work [7]. Specifically, since the length
of the middle part is short, only a few message words are fixed [10,15] and the
connection can be achieved trivially.

Formally, suppose there are r consecutive internal states s1, s2, ..., sr to
be connected, which are updated with the messages words mw1 ,mw2 , ...,mwr

respectively. In [7], one of mw1 ,mw2 , ...,mwr
is fixed so as to extend the length

of the middle part. Therefore, an efficient approach to solve it is non-trivial. For
the start-from-the-middle structure used in [10,15] to find real collisions, none
of mw1 ,mw2 , ...,mwr

are fixed in order to obtain a solution of the middle part.
In this situation, they could achieve connection trivially when computing from
the first step, i.e. obtain the value of mwi

according to the already computed
si, si−1, ..., si−r. However, the length of the middle part is greatly limited, thus
leaving more uncontrolled conditions in such a situation. Or else, the authors
made a tradeoff and finally determined not to consider the complex situation.

As will be shown in our two frameworks, we also use the start-from-the-
middle approach to find real collisions in a complex situation similar to Dob-
bertin’s work [7]. Our motivation is to ensure that as many conditions as possible
hold in the second round, which sometimes is almost impossible with multi-
step message modification or requires sophisticated and time-consuming manual
work. Therefore, in the SLDR framework, one of the message words used to
update the internal states to be connected will be fixed. In the DLSR frame-
work, we even fix two of the message words used to update the internal states

Efficient Collision Attack Frameworks for RIPEMD-160 125

to be connected, thus greatly extending the controllable part of the differential
characteristic and leaving fewer uncontrolled conditions. Fortunately, because of
the property of the round boolean function and the weakness of the message
expansion of RIPEMD-160, we can manage to achieve a connection with a low
cost for the two frameworks.

2.4 Single-Step Message Modification

Since only single-step message modification [28] will be used in this paper, we give
a brief description of it. Generally, single-step message modification can ensure
all the conditions in the first round for most MD-SHA-like hash functions. The
implied reason is that the message words are used for the first time in the first
round. Therefore, the attackers can randomly choose values for the internal states
while satisfying the conditions in the first round, i.e. randomly choose values for
the free bits of internal states. Then, the corresponding message words can be
computed according to the already fixed internal states in the first round. For
the sake of clearness, we take the step function of RIPEMD-160 as instance.

Suppose the following pattern represents the conditions on Xi.

Xi = -11- ---- ---- -1-- 1--- n-un -u-- --11.

Then, we can first choose a random value for Xi and then correct it in the
following way to ensure the conditions on it hold.

Xi ← Xi ∧ 0xfffff9ff,

Xi ← Xi ∨ 0x60048243.

If there are two-bit conditions on Xi, we then check them and correct them.
Suppose X4

i = X4
i−1 is one two-bit condition, we first check whether X4

i = X4
i−1

holds. If it does not hold, we simply flip X4
i . In this way, all conditions on Xi can

hold. Finally, we compute the corresponding message word to update Xi with
Xi,Xi−1, ...,Xi−5. The above description of single-step message modification is
different from the original one [28], but the implied idea is the same.

2.5 Propagation of Modular Difference

At Asiacrypt 2017, theoretical calculation of the probability of the step function
of RIPEMD-160 was described by introducing the influence of the propagation of
modular difference [16]. The complete description of the calculation procedure
is complex. Generally, the authors divided the problem into two parts. The
first part is to calculate the characteristics of Qi (LQi/RQi for the left/right
branch) which satisfies an equation like (Qi � c0)≪s = Q≪s

i � c1 (c0 and c1 are
constants) to ensure the correct propagation of modular difference. Then, they
calculate the probability that the bit conditions on the internal state (Xi/Yi

for left/right branch) hold under the condition that Qi satisfies the equation
(Qi � c0)≪s = Q≪s

i � c1. In other words, they considered the dependency

126 F. Liu et al.

between the bit conditions and the propagation of modular difference and this
obviously is a more accurate assumption.

In this paper, since the dense part of the differential characteristic will be first
fixed and the remaining part is very sparse and short, we can simply assume the
independency between the bit conditions and the propagation of modular dif-
ference. Thus, the product of the probability of correct propagation of modular
difference and the probability of bit conditions will represent the final probabil-
ity of the uncontrolled part. Specifically, supposing Qi (LQi/RQi for left/right
branch) satisfies the equation (Qi � c0)≪s = Q≪s

i � c1 with probability p and
there are q bit conditions on the corresponding internal state (Xi/Yi for left/right
branch), then the final probability is p×2−q. According to our experiments, such
an assumption is reasonable and almost consistent with the experiments.

Calculating the probability (Qi �c0)≪s = Q≪s
i �c1 can be found in Daum’s

Ph.D thesis [4], which was well illustrated in [16] with the help of a table. Due
to the space limitation, we refer the readers to Table 3 in [16].

3 Efficient Collision Attack Frameworks

In this section, we will present the details of the two efficient collision attack
frameworks. Both frameworks aim at ensuring as many conditions as possible in
an efficient way for specific strategies to construct differential characteristics. For
the SLDR framework, the differential characteristic is constructed by inserting
a difference at the message word m15, which is used to update the last internal
state in the first round on the left branch. Moreover, the differential characteristic
on the left branch should be linear and sparse. For the DLSR framework, the
differential characteristic is constructed by inserting difference at the message
word m12, which is used to update the last internal state in the first round on
the right branch. In addition, the differential characteristic on the right branch
should be linear and sparse. For both frameworks, the linear and sparse branch
remains fully probabilistic. The differential characteristic patterns for SLDR and
DLSR framework are depicted in Fig. 1.

Fig. 1. Illustration of the differential characteristic patterns for both frameworks

Efficient Collision Attack Frameworks for RIPEMD-160 127

3.1 SLDR Collision Attack Framework

Since m15 is firstly used to update Y11, for the strategy to build differential
characteristic by inserting difference only at m15 and making the left branch
sparse at Asiacrypt 2017 [16], the following two observations can be obtained.

Observation 1. There is no condition on Yi (1 ≤ i ≤ 8).
Observation 2. The first internal state with difference on the right branch
is Y11. When considering the difference propagating to Y12, we are actually
considering the difference propagation of Y11⊕(Y10∨¬Y ≪10

9) where only Y11

has differences. If all the bits(pi, pi+1, ..., pj) with difference in Y11 are flipped
by adding conditions Y pi

10 = 1, Y
pi+1
10 = 1, ..., Y

pj

10 = 1 when constructing the
differential characteristic, there will not be conditions on Y9 either.

The above two observations motivate us to consider the start-from-the-middle
structure to find collisions. Therefore, we carefully investigated the message
expansion on the right branch and finally found an efficient collision attack
framework for such a strategy to construct differential characteristics.

The overview of SLDR attack framework is illustrated in Fig. 2. Such a frame-
work contains 4 steps, as specified below and illustrated in Fig. 3.

Fig. 2. Overview of SLDR collision attack framework for RIPEMD-160

Fig. 3. Specification of SLDR collision attack framework for RIPEMD-160. Message
words in red at Step 1 and Step 3 represent their values will be fixed.

128 F. Liu et al.

Step 1: Fix the internal states located in the middle part from Y10 to Y19, which
can be easily finished via single-step message modification since only m3

is used twice to update the internal states. Specifically, randomly choose
values for Yi (10 ≤ i ≤ 18) while keeping their conditions hold via single-
step message modification since (m3,m12,m6,m11) are used for the first
time. Then, we reuse m3 to compute Y19 and check its condition. If the
condition does not hold, choose another solution of Yi (10 ≤ i ≤ 18) and
repeat until we find a solution of Yi (10 ≤ i ≤ 19). We call a solution of
Yi (10 ≤ i ≤ 19) a starting point.

Step 2: Apply single-step message modification to ensure the conditions
on Yi (20 ≤ i ≤ 23) since their corresponding message words
(m7,m0,m13,m5) are used for the first time.

Step 3: Randomly choose values for the free message words m14 and m9. Com-
pute from the first step until Y5. Then achieve connection in Y10, whose
corresponding message word m6 has been fixed in the starting point.
The costly condition Y7 = 0 is used to ensure Y10 is irrelevant to Y8,
which can be satisfied by consuming the freedom degree of m2.

Y7 = 0.

Y6 = ((Y7 � Y ≪10
3)≫15 � (m11 � Kr

0)) ⊕ (Y5 ∨ Y ≪10
4).

m2 = (Y6 � Y ≪10
2)≫15 � (ONX(Y5, Y4, Y

≪10
3) � Y ≪10

1 � Kr
0).

Y9 = ((Y10 � Y ≪10
6)≫7 � (Y ≪10

5 � m6 � Kr
0)) ⊕ 0xffffffff.

Y8 = ((Y9 � Y ≪10
5)≫7 � (Y ≪10

4 � m13 � Kr
0)) ⊕ (Y7 ∨ Y ≪10

6),
m4 = (Y8 � Y ≪10

4)≫5 � (ONX(Y7, Y6, Y
≪10
5) � Y ≪10

3 � Kr
0).

Compute m15, m8, m1, m10 to achieve connection in Yi (11 ≤ i ≤ 14).
More specifically, m15 is computed by Yi (6 ≤ i ≤ 11), m8 is computed
by Yi (7 ≤ i ≤ 12), m1 is computed by Yi (8 ≤ i ≤ 13) and m10 is
computed by Yi (9 ≤ i ≤ 14).

Step 4: All message words have been fixed after connection. Then we verify the
probabilistic parts in both branches. If they do not hold, return Step 2
until we find colliding messages. The degree of freedom is provided by
m0, m5, m7, m9, m13 and m14.

Such a general framework can ensure all the bit conditions on Yi (10 ≤ i ≤ 23)
trivially, which is almost impossible via multi-step message modification once the
conditions are dense. However, more attention should be paid when applying it
to a specific differential characteristic. In this framework, Y7 is fixed to zero to
achieve an efficient connection in Y10, thus resulting in RQ11 = Y

≫sr
11

11 . If the
differential characteristic conditions on Y11 always make RQ11 fail to satisfy its
corresponding equation, this framework cannot be applied directly. Although we
can fix some bits of Y7 to one to solve it, this will influence the success probability
of connection. Therefore, when constructing the differential characteristic, such
a bad case should be considered and avoided.

Efficient Collision Attack Frameworks for RIPEMD-160 129

3.2 DLSR Collision Attack Framework

Now, we consider an opposite strategy to construct differential characteristics
by inserting difference only at m12 and making the right branch sparse. In this
way, X13 is the first internal state with difference. To propagate the difference
in X13 to X14, we are actually propagating the difference of X13 ⊕X12 ⊕X≪10

11 .
Since there is no difference in X11 or X12 and it is an XOR operation, there will
be always conditions on X11 and X12. However, there will not be conditions on
Xi (1 ≤ i ≤ 10). This also motivates us to consider the start-from-the-middle
approach.

The overview of DLSR framework is shown in Fig. 4. The attack procedure
can be divided into four steps as well, as illustrated in Fig. 5.

Step 1: Fix the internal states located in the middle part from X11 to X23, which
can be easily finished via single-step message modification since only
m15 is used twice to update the internal states. If there are too many bit
conditions on X23, we can firstly fix the internal states from X12 to X23

via single-step message modification since all the corresponding message
words (m7, m4, m13, m1, m10, m6 and m15) are used for the first time.
Then, we compute X11 by using Xi (12 ≤ i ≤ 16) and m15. At last, we
check the conditions on X11 and the modular difference of X15. If they
do not hold, choose another solution of Xi (12 ≤ i ≤ 23) via single-step
message modification and repeat until we can find a solution for the
starting point Xi (11 ≤ i ≤ 23). After a starting point is fixed, we have
to achieve connection in five consecutive internal states Xi (11 ≤ i ≤
15). However, m10 and m13 have been already fixed. Thus, an efficient
approach to achieve connection in X11 and X14 is quite important and
non-trivial.
To achieve connection in X14, we pre-compute a solution set S for
(X9,X10) according to the following equation by exhausting all pos-
sible values of X9. For each X9, compute the corresponding X10 and
store X9 in a two-dimensional array with X9 ⊕ X10 denoting the row
number. Both the time complexity and memory complexity of the pre-
computation are 232.

X14 = X10
≪10 � (XOR(X13, X12, X11

≪10) � X9
≪10 � m13 � Kl

0)
≪7.

Step 2: Apply single-step message modification to ensure the conditions on X24

since its corresponding message word m3 is not fixed in the starting point
and is used for the first time. We have to stress that we have considered
the influence of the propagation of modular difference and have added
extra bit conditions to control its correct propagation with probability 1.

Step 3: Randomly choose values for the free message words m0, m2 and m5.
Compute from the first step until X8 and then achieve connection in
X11 and X14 as follows. First, we calculate the value of var.

var = ((X11 � X≪10
7)≫14 � (X≪10

6 � m10 � Kl
0)) ⊕ X≪10

8 .

130 F. Liu et al.

Fig. 4. Overview of DLSR collision attack framework for RIPEMD-160

Fig. 5. Specification of DLSR collision attack framework for RIPEMD-160. Message
words in red at Step 1 and Step 3 represent their values will be fixed.

Second, find solutions of (X9,X10) from S which satisfy X9⊕X10 = var.
The corresponding solutions are stored in the row numbered var. In this
way, each solution of (X9,X10) will ensure the connection in X11 and
X14. At last, compute m8 and m9 as follows to ensure X9 and X10 can
be the computed value for connection. Since there are 232 valid pairs
of (X9,X10) in S and var is a random 32-bit variable, we expect one
solution of (X9,X10) for a random var on average.

m8 = (X9 � X≪10
5)≫11 � (XOR(X8, X7, X

≪10
6) � X≪10

4 � Kl
0).

m9 = (X10 � X≪10
6)≫13 � (XOR(X9, X8, X

≪10
7) � X≪10

5 � Kl
0).

Compute m11, m12 and m14 to achieve connection in X12, X13 and X15.
Specifically, m11 is computed by Xi (7 ≤ i ≤ 12), and m12 is computed
by Xi (8 ≤ i ≤ 13), and m14 is computed by Xi (10 ≤ i ≤ 15).

Step 4: All message words have been fixed after connection. Then we verify the
probabilistic part in both branches. If they do not hold, return Step 2
until we find colliding messages. The degree of freedom is provided by
m0, m2, m3 and m5.

However, observe that there will be difference in X13 and X14 when inserting
difference at m12. Therefore, LQ13 = (X13 � X≪10

9)≫6 and LQ14 = (X14 �
X≪10

10)≫7 have to satisfy their corresponding equations to ensure the correct
propagation of modular difference. Since X9 and X10 cannot be controlled, we
have to verify whether LQ13 and LQ14 satisfy their corresponding equations

Efficient Collision Attack Frameworks for RIPEMD-160 131

when obtaining a solution of (X9, X10). A way to reduce the verifying phase is
to filter the wrong pair of (X9, X10) in the pre-computing phase. However, we
cannot expect one solution of (X9, X10) for a random var anymore. In other
words, whatever the case is, the influence of the correct propagation of modular
difference of X13 and X14 must be taken into account when estimating the
success probability.

Therefore, under our DLSR framework, except the modular difference of X13

and X14, all the conditions on Xi (11 ≤ i ≤ 24) can hold trivially with an
efficient method, which sometimes is almost impossible with multi-step message
modification or at least very time-consuming and requires sophisticated manual
work, especially when the conditions are dense in the second round. For the
dense left branch, since there is no condition on Xi (1 ≤ i ≤ 10), we only need
focus on the the uncontrolled conditions on internal states Xi (i ≥ 25) and
the modular difference of X13 and X14. Thus, to construct the best differential
characteristic for this framework, there should be minimum active bits in Xi

(i ≥ 23) and the modular difference of X13 and X14 should hold with a high
probability. Moreover, to select the best differential characteristic from many
discovered candidates, we only need to analyze the probability of the conditions
on Xi (i ≥ 25), consisting of the number of bit conditions and the influence
of the modular difference propagation, as well as the probability of the correct
propagation of the modular difference of X13 and X14. Obviously, we significantly
simplify the procedure to construct and select differential characteristics as well
as find collisions with the DLSR framework.

3.3 Comparison

Under the SLDR framework, we can only control until Y23 by adding an extra
costly condition Y7 = 0 to achieve efficient connection. For the DLSR framework,
we can control until X24 by consuming extra 232 memory to achieve efficient
connection. Hence, the SLDR framework has the obvious advantage of having no
memory requirement. However, when there is sufficient memory available, there
is a great advantage to leverage the DLSR framework, since we can control the
internal state until the 24th step. In other words, one more step can be fully
controlled with the DLSR framework, thus having the potential to leave fewer
uncontrolled conditions. It should be noted that the number of steps that can
be controlled highly depends on the message expansion. Thus, we rely on the
specifics of RIPEMD-160’s message expansion and extend to more steps as well
as find an efficient approach to achieve connection in the complex situation.

A direct application of the SLDR framework to the 30-step differential char-
acteristic in [16] will improve the collision attack by a factor of 211. With a
partial calculation technique, two more uncontrolled bit conditions can be con-
trolled. Thus, the collision attack on 30 steps of RIPEMD-160 is improved to 257.
Actually, the 30-step differential characteristic in [16] is not perfect under our

132 F. Liu et al.

SLDR framework since there are three bit conditions on Y9. Although the three
bit conditions can be eliminated by generating a new differential characteristic
with Observation 2 taken into account, the time complexity is still too high.
As will be shown, we can attack 30 steps of RIPEMD-160 with time complexity
235.9 under the DLSR framework. Therefore, considering its improving factor,
we decided not to generate a new differential characteristic for the SLDR frame-
work and we refer the readers to Appendix A for the details of the improvement
for the collision attack at Asiacrypt 2017 [16]. The source code to verify the
correctness of the SLDR framework is available at https://github.com/Crypt-
CNS/Improved Collision Attack on Reduced RIPEMD-160.git.

Actually, not only the framework but also the characteristic of the fully
probabilistic branch has influences on the final effect of the collision attack.
Taking the two factors into consideration, we finally determined to utilize the
DLSR framework.

4 Differential Characteristics

As stated in the previous section, to construct the best differential characteristic
for the DLSR framework, the uncontrolled part should hold with a high proba-
bility. To achieve this, according to the boolean function IFX used in the second
round on the left branch, we have to control that there are a few active bits in Xi

(i ≥ 23) so that the number of bit conditions on Xi (i ≥ 25) is minimal. Suppose
we will analyze the collision resistance of t steps of RIPEMD-160. According to
the finalization phase of the compression function of RIPEMD-160, to achieve
a minimal number of active bits in Xi (i ≥ 23), it is better to let only one of
Yt−1, Yt−2, Yt−3, Yt−4 have differences and ΔYt = 0. In this way, only one of
Xt,Xt−1,Xt−2,Xt−3 has differences and ΔXt−4 = 0.

Based on such a strategy to construct differential characteristics, we
firstly determine the characteristics on the fully probabilistic right branch for
30/31/33/34 steps of RIPEMD-160, which can be found in Tables 11, 12, 13 and
14 respectively.

Then, we construct the sparse characteristics on the left branch starting from
X23 for 30/31/33/34 steps of RIPEMD-160, which are displayed in Table 4.

At last, we utilize a search tool [11,18–21] to solve the nonlinear character-
istic located at Xi (11 ≤ i ≤ 22) based on a guess-and-determine technique [5].
To choose the best nonlinear characteristic from many candidates, we only need
focus on the conditions on Xi (i ≥ 25), consisting of the number of bit condi-
tions and the probability of the correct propagation of the modular difference,
as well as the probability that LQ13 and LQ14 satisfy their corresponding equa-
tions. The best 30-step, 31-step, 33-step and 34-step differential characteristics
for RIPEMD-160 that we eventually determined are displayed in Tables 11, 12,
13 and 14 respectively. To save space, we only list the uncontrolled two-bit con-
ditions located at the fully probabilistic right branch and Xi (i ≥ 25), which

https://github.com/Crypt-CNS/Improved_Collision_Attack_on_Reduced_RIPEMD-160.git
https://github.com/Crypt-CNS/Improved_Collision_Attack_on_Reduced_RIPEMD-160.git

Efficient Collision Attack Frameworks for RIPEMD-160 133

Table 4. Sparse characteristics on the left branch

cannot be denoted by generalized conditions. The two-bit conditions located at
Xi (11 ≤ i ≤ 24) as well as the equations to ensure the correct propagation of
modular difference of Xi (15 ≤ i ≤ 24) are not listed in the four tables since
all these conditions can hold trivially under the DLSR framework. In addition,
from the differential characteristics and the corresponding starting points in next
section, it is not difficult to extract all these information.

If we construct characteristic for 32 steps of RIPEMD-160 in a similar way,
there will be many bit conditions in Xi (i ≥ 23), which is even greater than that
of 33 steps. This is because ΔX28 	= 0 and ΔX29 	= 0. Therefore, for the attack
with high time complexity, we only provide the results for more steps.

Thanks to the efficiency of our DLSR framework, once a differential char-
acteristic for collision attack is determined, the uncontrolled probability can be
calculated immediately. Therefore, for each characteristic in Tables 11, 12, 13
and 14, we also present the corresponding total uncontrolled probability in these
tables, consisting of the number of bit conditions on the right branch and Xi

(i ≥ 25), as well as the equations to ensure the correct propagation of modular
difference on the right branch and of X13, X14 and Xi (i ≥ 25). The proba-
bility estimated in these four tables represents the success probability to find
the collision when the DLSR framework is directly applied to the differential
characteristics.

For the best 34-step differential characteristic given in Table 14, a direct
application of the DLSR framework is infeasible since it is beyond the birthday
attack. However, by benefiting from the partial calculation, which fully exploits
the property of the round boolean function and the existing differential char-
acteristic conditions, we significantly improve this probability. Such a technique

134 F. Liu et al.

will be also used to improve the collision attack on 31 and 33 steps of RIPEMD-
160. The details will be explained in next section. It should be noted that the
effect of partial calculation highly depends on the existing differential character-
istic conditions. Therefore, when selecting differential characteristics from many
candidates, we actually have taken the effect of partial calculation into account
as well.

5 Application

5.1 Practical Collision Attack on 30 Steps of RIPEMD-160

By applying the DLSR framework to the discovered 30-step differential charac-
teristic in Table 11, we can mount collision attack on 30 steps of RIPEMD-160
with time complexity 235.9 and memory complexity 232. It should be noted that
there are sufficient free bits in m0, m2, m3 and m5 to generate a collision. The
collision is displayed in Table 5. For completeness, the starting point can be found
in Table 7.

5.2 Collision Attack on 31 Steps of RIPEMD-160

According to Table 12, the time complexity to mount collision attack on 31
steps is 242.5 if the DLSR framework is directly applied. However, we can make
it slightly better with partial calculation technique by using the property of the
boolean function IFX. This is based on the following observation.

Table 5. Collision for 30 steps of RIPEMD-160

Table 6. Collision for 31 steps of RIPEMD-160

Efficient Collision Attack Frameworks for RIPEMD-160 135

Table 7. Starting points for differential characteristics

Observation 3. Let F = X25X24 ⊕ X25X
≪10
23 , then

F i =

⎧
⎨

⎩

Xi
24 (Xi

24 = Xi−10
23)

Xi
24 (Xi

25 = 1)
Xi−10

23 (Xi
25 = 0).

Note that X26 is updated by the free message word m0 and Xi (21 ≤ i ≤ 24)
can be fully controlled. Although X25 cannot be controlled and unknown, we
can use partial calculation to ensure several bit conditions on X26 hold.

Specifically, consider the 31-step differential characteristic in Table 12. We
write X25, X24, X≪10

23 in binary as follows for a better understanding. Consider
the following calculation of F , we can know several bits of F if the conditions
on X25 hold, where a denotes that the bit value is possible to be determined
by carefully choosing values of X24 and X23, and b denotes that the bit value
cannot be determined with existing differential characteristic conditions.

136 F. Liu et al.

X25 = 10-- ---- ---- ---- ---- ---- ---- -10-.

X24 = 1u10 0011 1111 1--0 -1-0 1-01 0--- --u1.

X≪10
23 = n001 0001 1110 1-11 01-- ---0 ---- -n-1.

F = 10bb 00b1 111b 1aab a1aa aaab aaaa aaa1.

Consider the calculation of sum0 = X≪10
21 �Kl

1 after adding four bit conditions
on X21. In this way, the higher 12 bits of sum0 are constant.

X≪10
21 = 0110 1010 0110 010- 0--0 0-01 n1-n ---0.

Kl
1 = 0101 1010 1000 0010 0111 1001 1001 1001.

sum0 = 1100 0100 1110 bbbb bbbb bbbb bbbb bbb1.

Then, we consider the calculation of sum1 = sum0�m0 by pre-fixing the pattern
of m0 as follows.

sum0 = 1100 0100 1110 bbbb bbbb bbbb bbbb bbb1.

m0 = 0-11 110- ---- ---- ---- ---- ---- ----.

sum1 = 0b00 00bb bbbb bbbb bbbb bbbb bbbb bbbb.

Next, we consider the calculation of sum2 = sum1 � F as follows.

sum1 = 0b00 00bb bbbb bbbb bbbb bbbb bbbb bbbb.

F = 10bb 00b1 111b 1aab a1aa aaab aaaa aaa1.

sum2 = 1bbb 0bbb bbbb bbbb bbbb bbbb bbbb bbbb.

At last, consider the calculation of X26 after adding three extra bit conditions
on X22.

X26 = X≪10
22 � (F � X≪10

21 � Kl
1 � m0)≪12 = X≪10

22 � sum≪12
2 .

sum≪12
2 = bbbb bbbb bbbb bbbb bbbb 1bbb 0bbb bbbb.

X≪10
22 = 11un nnnn nnnn n0-u ---- 0000 01-1 10-1.

X26 = bbbb bbbb bbbb bbbb bbbb 1bbb bbbb bbbb.

Therefore, X11
26 = 1 can hold with probability 1. In the same procedure to per-

form the partial calculation, if we choose the following pattern of m0, X11
26 = 1

can always hold as well.

m0 = 0100 000- ---- ---- ---- ---- ---- ----.

It should be noted that m0 is randomly chosen at the third step when apply-
ing the DLSR framework. Therefore, with our partial calculation, we can choose
the value for m0 in a clever way to have the condition X11

26 = 1 always hold.
Therefore, the time complexity of a collision attack on 31 steps of RIPEMD-160
is improved to 241.5.

According to the above analysis, it is not difficult to observe that such an
approach to make only one bit condition hold is costly since at least 6 bits of

Efficient Collision Attack Frameworks for RIPEMD-160 137

m0 have to be fixed. In the case when there are sufficient free bits in the free
message words, such a method is feasible. However, when the success probability
is low, we have to carefully consume the degree of freedom. As will be shown
in the collision attack on 33/34 steps of RIPEMD-160, we dynamically choose
a value for m0 to save the degree of freedom. Moreover, partial calculation will
show its significant effect to decrease the time complexity when attacking 33 and
34 steps of RIPEMD-160.

Verification. Both the correctness of the framework and the partial calcu-
lation are fully verified. The collision for 31 steps of RIPEMD-160 is displayed
in Table 6 and the corresponding starting point is provided in Table 7.

5.3 Collision Attack on 33 Steps of RIPEMD-160

If we directly apply the DLSR framework to the discovered 33-step differential
characteristic in Table 13, the time complexity is 271.6 and the memory com-
plexity is 232. With the partial calculation, we can choose m0 in a clever way to
ensure more uncontrolled bit conditions hold.

Write X25, X24, X≪10
23 in binary according to Table 13 as follows for a better

understanding. Thus, several bits of F = X25X24 ⊕ X25X
≪10
23 can be known if

the conditions on X25 hold based on Observation 3.

X25 = -11- ---- ---- -1-- 1--- n--n ---- --11.

X24 = 11u0 10-- 0--1 1u01 0001 01-1 1110 0--u.

X≪10
23 = 1u10 --1- 0-01 0n00 100- 0100 1-01 1-u1.

F = 1110 aaaa 0aa1 b10b 000a 01a0 1abb baa1.

Consider the calculation of X26,

X26 = X≪10
22 � (F � X≪10

21 � Kl
1 � m0)≪12.

Observe that the higher 12 bits of F can be fully fixed by properly setting values
for X24 and X23. Moreover, X≪10

21 � Kl
1 and X≪10

22 are all constants after a
starting point is found. Therefore, it is feasible to have a clever choice of the
higher 12 bits of m0 rather than in a random way to ensure the conditions on
the lower 12 bits of X26. To explain more precisely, we firstly present the starting
point of the 33-step differential characteristic in Table 7.

From this starting point, the following information can be extracted.

F ∧ 0xfffc0000 = 1110 1011 0101 b100 0000 0000 0000 0000.

X≪10
21 � Kl

1 = 0100 1110 1100 0011 1001 0010 1111 1010.

Then, we add some extra conditions on m0 to ensure that there is always a carry
from the 20th bit to 21st bit when calculating F �X≪10

21 �Kl
1 �m0. The reason

why there is a carry is as follows. Suppose sum3 = X≪10
21 �Kl

1 �m0. When m0

138 F. Liu et al.

satisfies such a pattern, sum19∼18
3 = 112. Since F 18 = 1, there will be always

carry from the 20th bit when calculating F � sum3.

F ∧ 0xfffc0000 = 1110 1011 0101 b100 0000 0000 0000 0000.

X≪10
21 � Kl

1 = 0100 1110 1100 0011 1001 0010 1111 1010.

m0 = ---- ---- ---- 101- ---- ---- ---- ----.

Therefore,

(F ∧ 0xfff00000) � ((X≪10
21 � Kl

1) ∧ 0xfff00000) � 0x100000 = 0x3a200000.

Moreover, to ensure that the modular difference of X26 can hold with a
probability close to 1, we add an extra bit condition X9

26 = 1. The rea-
son can be found in the following calculation of LQ≪12

26 = X26 � X≪10
22 .

In this way, LQ31∼30
26 = 002 can hold with probability 1, thus resulting

(LQ26 � 0x407fff7e)≪12 = LQ≪12
26 � 0xfff7e408 holds with a probability

close to 1.

X26 = ---1 ---- ---- -u-- u--- 1010 1--- ----.

X≪10
22 = 1011 ---- 0--- -nun nnu0 un0- 0-un n010.

LQ≪12
26 = ---- ---- ---- ---- ---- 00-- ---- ----.

After the above preparation, we give a complete description of how to choose
m0 in a clever way to ensure the bit conditions on the lower 12 bits of X26. After
choosing values for X24 via single-step message modification and computing the
corresponding m3, we will determine the value of m0 according to the following
procedure.

step 1: Randomly choose values for the lower 12 bits of X26 while keeping the
conditions on this part hold.

step 2: Compute the lower 12 bits of X26 � X≪10
22 . Then, the higher 12 bits of

LQ26 are known.
step 3: Based on LQ26 = m0 � F � X≪10

21 � Kl
1, we can compute the higher 12

bits of m0 since the higher 12 bits of LQ26 and F � X≪10
21 � Kl

1 as well
as the carry from the 20-th bit are all known. The remaining free bits of
m0 are set to a random value.

In this way, we can ensure that 4 extra bit conditions on X26 and the modular
difference of it hold. Therefore, the time complexity of collision attack on 33
steps of RIPEMD-160 becomes 271.6−4.5 = 267.1. It should be noted that there
are sufficient free bits in m0, m2, m3 and m5 to generate a collision even though
m0 is not fully random anymore. Specifically, it is equivalent to fixing 8 bits of
m0.

Verification. Our program has verified the correctness of the above opti-
mizing strategy of partial calculation. Moreover, due to the low time complexity
of the left branch after applying such a strategy, we can find a group solution of
message words to ensure the dense left branch as shown in Table 8.

Efficient Collision Attack Frameworks for RIPEMD-160 139

Table 8. Solution of dense left branch

Solution for 33-step left branch

m0 0xdc0b0468 m1 0xf2470729 m2 0xee83478c m3 0x3c25962

m4 0xd19ebad5 m5 0x1aed1d2b m6 0x1f2c0d0e m7 0xc4f488a9

m8 0x586e5bed m9 0x1a444ebb m10 0x236883a m11 0xd38ea539

m12 0x61e4d55f m13 0x8425047b m14 0xe8649646 m15 0x6458c5e3

Solution for 34-step left branch

m0 0xc2056cdf m1 0x58a0be2 m2 0xe114b874 m3 0xb7f045ff

m4 0x8d38c100 m5 0x4e926b96 m6 0x7214c160 m7 0xea755943

m8 0x496a5788 m9 0x857f0518 m10 0xa6a0ee3e m11 0xcd1f88a9

m12 0x14a4951c m13 0xb9e9de76 m14 0x65df3f3a m15 0xb949ab42

5.4 Collision Attack on 34 Steps of RIPEMD-160

The best 34-step differential characteristic is displayed in Table 14. A direct
application of the DLSR framework to this differential characteristic is infeasible
since the uncontrolled part holds with probability 2−81.4. Fortunately, we can
exploit the partial calculation of X26 as above to ensure a lot of bit conditions on
X26 hold. Different from the 33-step differential characteristic where the lower
12 bits of X26 can be controlled with probability 1, only the higher 20 bits of
X26 can be controlled with probability 2−2 for the discovered 34-step differential
characteristic. However, there are a lot of conditions on the higher 20 bits of X26.
Therefore, there is a great advantage if exploiting such a strategy even though
it succeeds with probability 2−2. The details will be explained in the following,
which share many similarities with the procedure for the 33-step differential
characteristic.

Let F = X25X24⊕X25X
≪10
23 . We write X25, X24, X≪10

23 in binary according
to Table 14 as follows. Thus, many bits of F can be controlled by properly
choosing values for the free bits of X24 and X23.

X25 = ---1 ---- --n- -u0- ---- 00-1 1--- ----.

X24 = 100n 011- -111 111- -10- -u00 n10- -111.

X≪10
23 = 001u -01- 1-11 -101 011- u1-n -1-- ----.

F = b0b0 ab1a aa11 a10a a1ba 11a0 01aa aaaa.

Consider the calculation of X26,

X26 = X≪10
22 � (F � X≪10

21 � Kl
1 � m0)≪12.

Observe that there are only two possible values for the lower 20 bits of F depending
on X13

25 after setting values for X24 and X23 properly. Moreover, X≪10
21 � Kl

1 and
X≪10

22 are all constants after a starting point is found. Therefore, it is feasible to
have a clever choice of the lower 20 bits of m0 rather than in a random way to ensure
the conditions on the higher 20 bits of X26. To explain more precisely, we firstly
present the starting point of the 34-step differential characteristic in Table 7.

140 F. Liu et al.

From this starting point, the following information can be extracted.

F ∧ 0x000fffff = 0000 0000 0000 1101 01b1 1100 0101 0111.

X≪10
21 � Kl

1 = 0110 1100 1001 1101 1001 0100 1110 0100.

Therefore, (F � X≪10
21 � Kl

1) ∧ 0x000fffff can only take two possible values,
which are 0xaf13b and 0xb113b.

Moreover, it should be observed that the modular difference of X26 holds with a
very low probability of 2−3.1. Therefore, adding extra bit conditions to control the
modular difference is vital as well. We add four extra bit conditions X31

26 = 1, X30
26

= X20
22 , X29

26 = 0 and X27
26 = 0, all of which are located at the higher 20 bits of X26.

The reason can be found in the following calculation of LQ≪12
26 = X26 � X≪10

22 .
In this way, LQ19∼16

26 = 00002 can hold with probability 1, thus resulting (LQ26 �
0xe06be)≪12 = LQ≪12

26 � 0xe06be000 holds with probability 1.

X26 = 1-0u 0-n- --00 -11- ---- ---- -1-- ----.

X≪10
22 = 1-n0 uuu0 -uu0 uu01 1nu1 01-1 00-0 --0-.

LQ≪12
26 = 0000 ---- ---- ---- ---- ---- ---- ----.

Since we are trying to control the higher 20 bits of X26, the influence of the
carry from the 12th bit must be taken into account when calculating X≪10

22 �
LQ≪12

26 . The carry behaves randomly since m0 is random and the higher 12 bits
of F �X≪10

21 �Kl
1 are random. However, since X1∼0

22 = 012, there is a bias that
there is no carry from the 12th bit. Therefore, in the implementation, we always
assume there is no carry, which holds with probability slightly higher than 2−1.

After the above preparation, we give a complete description of how to choose
m0 in a clever way to ensure the 10 bit conditions on the higher 20 bits of
X26. After choosing values for X24 via single-step message modification and
computing the corresponding m3, we will determine the value of m0 in the
following procedure.

step 1: Randomly choose values of the higher 20 bits of X26 while keeping the
10 bit conditions on this part hold.

step 2: Compute the higher 20 bits of X26 � X≪10
22 by assuming there is no

carry from the 12th bit. Then, the lower 20 bits of LQ26 are known.
step 3: Based on LQ26 = m0 � F � X≪10

21 � Kl
1, we can compute the lower

20 bits of m0 since the lower 20 bits of LQ26 and F � X≪10
21 � Kl

1 are
known. Randomly choose one value of the 20 bits of F � X≪10

21 � Kl
1

from the two possible values and compute the corresponding lower 20
bits of m0. The remaining free bits of m0 are set to a random value.

In this way, we can ensure that 6 bit conditions on X26 and the modular
difference of it hold. Therefore, the time complexity of collision attack on 33
steps of RIPEMD-160 is improved to 281.4−9.1+2 = 274.3. It should be noted
that there are sufficient free bits in m0, m2, m3 and m5 to generate a collision
even though m0 is not fully random anymore. Specifically, it is equivalent to
fixing 10 bits of m0.

Efficient Collision Attack Frameworks for RIPEMD-160 141

Verification. The above partial calculation to ensure 10 bit conditions on
the higher 20 bits of X26 has been verified with the program, which is consistent
with our estimated success probability 2−1−1 = 2−2. In addition, we also found
a solution for the dense left branch as shown in Table 8.

Experiment Details. The verification is briefly described above. To make this
paper more complete, we give a relatively detailed description of our experiments.
For the efficiency of the search, we store the solutions for (X9,X10) in RAM.
However, due to the memory limit of our PC (Linux system) or Linux server,
we could only store 228 solutions for (X9,X10) in a two-dimensional dynamic
array in RAM for one program, thus resulting that the success probability of
connection becomes 2−4.

Therefore, for our DLSR framework, we count the total times T1 to start from
Step 2 (where we start choosing another random values for free message words)
and the total times T2 to start verifying the probabilistic part Xi (i ≥ 25) and
Yj (j ≥ 14) after the connection succeeds. It is found that T1/T2 = 17, which is
consistent with the success probability of connection. Obviously, it is expected
that the total number of attempts to find the collision is T2 when all the 232

solutions can be stored in RAM for one program.
To find the collision for 30 steps of RIPEMD-160 in this paper, T2 =

0x4c11e4a5 and T1/T2 = 17. To find the collision for 31 steps of RIPEMD-
160 in this paper, T2 = 0xfa3bab4a47 and T1/T2 = 17.

Note that the estimated probability to find the collision for 30/31 steps of
RIPEMD-160 is 2−35.9 and 2−41.5 when all the 232 solutions can be stored in
RAM. Therefore, according the value of T2, we believe that the estimated prob-
ability is reasonable. Similar experiments have been conducted for the collision
attack on 33 and 34 steps of RIPEMD-160. The source code can be found at
https://github.com/Crypt-CNS/DLSR Framework RIPEMD160.

6 Conclusion

Inspired from the start-from-the-middle approach, we discovered two efficient col-
lision frameworks for reduced RIPEMD-160 by making full use of the weakness
of message expansion. With the DLSR framework, we achieved the first practical
collision attack on 30 and 31 steps of RIPEMD-160. Benefiting from the partial
calculation techniques, the random message word can be chosen in a clever way
so as to ensure more uncontrolled bit conditions hold. In this way, with the newly
discovered 33-step and 34-step differential characteristics, collision attack on 33
and 34 steps of RIPEMD-160 can be achieved with time complexity 267.1 and 274.3

respectively. When applying the SLDR framework to the differential characteris-
tic at Asiacrypt 2017, the time complexity is significantly improved, though it still
cannot compete with the result obtained from the DLSR framework.

Acknowledgements. We thank the anonymous reviewers of CRYPTO 2019 for their
insightful comments and suggestions. Fukang Liu and Zhenfu Cao are supported by
National Natural Science Foundation of China (Grant No. 61632012, 61672239). In

https://github.com/Crypt-CNS/DLSR_Framework_RIPEMD160

142 F. Liu et al.

addition, Fukang Liu is also supported by Invitation Programs for Foreigner-based
Researchers of the National Institute of Information and Communications Technol-
ogy (NICT). Takanori Isobe is supported by Grant-in-Aid for Scientific Research (B)
(KAKENHI 19H02141) for Japan Society for the Promotion of Science. Gaoli Wang is
supported by the National Natural Science Foundation of China (No. 61572125) and
National Cryptography Development Fund (No. MMJJ20180201).

A Application of the SLDR Framework

A direct application of this framework to the 30-step differential characteristic
in [16] will improve the collision attack by a factor of 211. The constraints on
RQi and the starting point are displayed in Tables 9 and 10 respectively.

Observe that m14 is randomly chosen in the SLDR framework and used
to update Y25. When the starting point is extended to Y20, sum0 = Y ≪10

20 �
Kr

1 = 0xf45c8129 is constant. Let F = IFZ(Y24, Y23, Y
≪10
22) = (Y24

∧
Y ≪10
22)⊕

(Y23

∧
Y ≪10
22). Adding six extra bit conditions on Y23 (Y 26∼24

23 = 0002) and Y22

(Y 16∼14
22 = 0002) will make F 26∼24 = 0002. Then, adding four bit conditions on

m14 (m26∼23
14 = 10002) will make RQ26∼25

25 = 002 since RQ25 = F �sum0 �m14.
In this way, the condition Y 1∼0

25 = 012 can always hold. Since all the newly added
conditions can be fully controlled under this framework, two more probabilistic
bit conditions are controlled, thus improving the collision attack by a factor of 213

in total. A solution for the dense right branch is as follows: m0 = 0x284ca581,
m1 = 0x55fd6120, m2 = 0x694b052c, m3 = 0xd5f43d9f, m4 = 0xa064a7c8,
m5 = 0xb9f7b3cd, m6 = 0x1221b7bb, m7 = 0x42156657, m8 = 0x121ecfee,
m9 = 0xce7a7105, m10 = 0xf2d47e6f, m11 = 0xf567ac2e, m12 = 0x20d0d1cb,
m13 = 0x9d928b7d, m14 = 0x5c6ff19b, m15 = 0xc306e50f.

Table 9. Starting point for the differential characteristic presented at Asiacrypt’17

Y10 01110000001111110100000010001010 Y16 1111n1uu000n1n110001n1111nuuuuuu

Y11 101101110000110110010000000nuuuu Y17 1u10111un110111100u10unnn0nnn011

Y12 nuuuuuuuuuuuuuuuu0n0n00100001100 Y18 010010000n1011111n00001001000001

Y13 0unn1uu0111110100nuunn11011011un Y19 1u000101100100100101001000011101

Y14 010000111111111110nu101011nu1111 Y20 000000010110011000000nu110101100

Y15 000010111100u1u11010000u11010101

Table 10. Information of RQi

Equation: (RQi � in)≪shift = RQ≪shift
i � out

i shift in out Pr. i shift in out Pr.

11 8 0x1000000 0x1 1a 26 7 0x1000800 0x80040000 ≈ 2−1

12 11 0x15 0xa800 0.999 27 12 0x7ffc0000 0xbffff800 ≈ 2−1.4

13 14 0x6ffba800 0xea001bff ≈ 2−1 28 7 0x0 0x0 1

24 11 0xffffff00 0xfff80000 0.999 29 6 0xc0000000 0xfffffff0 ≈ 2−0.4

25 7 0x80000 0x4000000 ≈ 2−0.02 30 15 0x10 0x80000 0.999
a The condition Y7 = 0 makes it hold with probability 1.

Efficient Collision Attack Frameworks for RIPEMD-160 143

B Differential Characteristics

We present the differential characteristics used for collision attack in this section.

Table 11. 30-Step differential characteristic

144 F. Liu et al.

Table 12. 31-Step differential characteristic

Efficient Collision Attack Frameworks for RIPEMD-160 145

Table 13. 33-Step differential characteristic

146 F. Liu et al.

Table 14. 34-Step differential characteristic

Efficient Collision Attack Frameworks for RIPEMD-160 147

References

1. Biham, E., Chen, R.: Near-collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-28628-8 18

2. Bosselaers, A., Preneel, B. (eds.): Integrity Primitives for Secure Information Sys-
tems. LNCS, vol. 1007. Springer, Heidelberg (1995). https://doi.org/10.1007/3-
540-60640-8

3. Damg̊ard, I.B.: A design principle for hash functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 39

4. Daum, M.: Cryptanalysis of Hash functions of the MD4-family. Ph.D. thesis, Ruhr
University Bochum (2005)

5. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: general results
and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230 1

6. den Boer, B., Bosselaers, A.: Collisions for the compression function of MD5. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 26

7. Dobbertin, H.: Cryptanalysis of MD4. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 53–69. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
60865-6 43

8. Dobbertin, H.: RIPEMD with two-round compress function is not collision-free. J.
Cryptol. 10(1), 51–70 (1997)

9. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: a strengthened version of
RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-60865-6 44

10. Dobraunig, C., Eichlseder, M., Mendel, F.: Analysis of SHA-512/224 and SHA-
512/256. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp.
612–630. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3 25

11. Eichlseder, M., Mendel, F., Schläffer, M.: Branching heuristics in differential colli-
sion search with applications to SHA-512. In: Cid, C., Rechberger, C. (eds.) FSE
2014. LNCS, vol. 8540, pp. 473–488. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46706-0 24

12. Joux, A., Peyrin, T.: Hash functions and the (amplified) boomerang attack. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-74143-5 14

13. Karpman, P., Peyrin, T., Stevens, M.: Practical free-start collision attacks on 76-
step SHA-1. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 623–642. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 30

14. Landelle, F., Peyrin, T.: Cryptanalysis of full RIPEMD-128. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 228–244. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 14

https://doi.org/10.1007/978-3-540-28628-8_18
https://doi.org/10.1007/978-3-540-28628-8_18
https://doi.org/10.1007/3-540-60640-8
https://doi.org/10.1007/3-540-60640-8
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/11935230_1
https://doi.org/10.1007/3-540-48285-7_26
https://doi.org/10.1007/3-540-60865-6_43
https://doi.org/10.1007/3-540-60865-6_43
https://doi.org/10.1007/3-540-60865-6_44
https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.1007/978-3-662-46706-0_24
https://doi.org/10.1007/978-3-662-46706-0_24
https://doi.org/10.1007/978-3-540-74143-5_14
https://doi.org/10.1007/978-3-662-47989-6_30
https://doi.org/10.1007/978-3-662-47989-6_30
https://doi.org/10.1007/978-3-642-38348-9_14

148 F. Liu et al.

15. Leurent, G.: Message freedom in MD4 and MD5 collisions: application to APOP.
In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 309–328. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-74619-5 20

16. Liu, F., Mendel, F., Wang, G.: Collisions and semi-free-start collisions for round-
reduced RIPEMD-160. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS,
vol. 10624, pp. 158–186. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70694-8 6

17. Mendel, F., Nad, T., Scherz, S., Schläffer, M.: Differential attacks on reduced
RIPEMD-160. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012. LNCS, vol. 7483,
pp. 23–38. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33383-
5 2

18. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 characteristics: searching
through a minefield of contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25385-0 16

19. Mendel, F., Nad, T., Schläffer, M.: Collision attacks on the reduced dual-stream
hash function RIPEMD-128. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp.
226–243. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-
5 14

20. Mendel, F., Nad, T., Schläffer, M.: Improving local collisions: new attacks on
reduced SHA-256. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 262–278. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38348-9 16

21. Mendel, F., Peyrin, T., Schläffer, M., Wang, L., Wu, S.: Improved cryptanalysis of
reduced RIPEMD-160. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS,
vol. 8270, pp. 484–503. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-42045-0 25

22. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). https://doi.org/
10.1007/0-387-34805-0 40

23. Ohtahara, C., Sasaki, Y., Shimoyama, T.: Preimage attacks on the step-reduced
RIPEMD-128 and RIPEMD-160. IEICE Trans. 95-A(10), 1729–1739 (2012)

24. Stevens, M.: Fast collision attack on MD5. Cryptology ePrint Archive, Report
2006/104 (2006). https://eprint.iacr.org/2006/104

25. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first col-
lision for full SHA-1. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 570–596. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 19

26. Wang, G.: Practical collision attack on 40-Step RIPEMD-128. In: Benaloh, J. (ed.)
CT-RSA 2014. LNCS, vol. 8366, pp. 444–460. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-04852-9 23

27. Wang, G., Shen, Y., Liu, F.: Cryptanalysis of 48-step RIPEMD-160. IACR Trans.
Symmetric Cryptol. 2017(2), 177–202 (2017)

28. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions
MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 1

https://doi.org/10.1007/978-3-540-74619-5_20
https://doi.org/10.1007/978-3-319-70694-8_6
https://doi.org/10.1007/978-3-319-70694-8_6
https://doi.org/10.1007/978-3-642-33383-5_2
https://doi.org/10.1007/978-3-642-33383-5_2
https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-34047-5_14
https://doi.org/10.1007/978-3-642-34047-5_14
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.1007/978-3-642-42045-0_25
https://doi.org/10.1007/978-3-642-42045-0_25
https://doi.org/10.1007/0-387-34805-0_40
https://doi.org/10.1007/0-387-34805-0_40
https://eprint.iacr.org/2006/104
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-04852-9_23
https://doi.org/10.1007/978-3-319-04852-9_23
https://doi.org/10.1007/11426639_1

Efficient Collision Attack Frameworks for RIPEMD-160 149

29. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 2

30. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 2

31. Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on SHA-0. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 1

https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/11426639_2
https://doi.org/10.1007/11535218_1

	Efficient Collision Attack Frameworks for RIPEMD-160
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Description of RIPEMD-160
	2.3 Start-from-the-Middle Structure
	2.4 Single-Step Message Modification
	2.5 Propagation of Modular Difference

	3 Efficient Collision Attack Frameworks
	3.1 SLDR Collision Attack Framework
	3.2 DLSR Collision Attack Framework
	3.3 Comparison

	4 Differential Characteristics
	5 Application
	5.1 Practical Collision Attack on 30 Steps of RIPEMD-160
	5.2 Collision Attack on 31 Steps of RIPEMD-160
	5.3 Collision Attack on 33 Steps of RIPEMD-160
	5.4 Collision Attack on 34 Steps of RIPEMD-160

	6 Conclusion
	A Application of the SLDR Framework
	B Differential Characteristics
	References

