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Preface

The 39th International Cryptology Conference (Crypto 2019) was held at the
University of California, Santa Barbara, California, USA, during August 18–22, 2019.
It was sponsored by the International Association for Cryptologic Research (IACR). As
in the previous year, a number of workshops took place on the days (August 17 and
August 18, 2019) immediately before the conference. This year, the list of affiliated
events included a Workshop on Attacks in Cryptography organized by Juraj Somor-
ovsky (Ruhr University Bochum); a Blockchain Workshop organized by Rafael Pass
(Cornell Tech) and Elaine Shi (Cornell); a Workshop on Advanced Cryptography
Standardization organized by Daniel Benarroch (QEDIT) and Tancrède Lepoint
(Google); a workshop on New Roads to Cryptopia organized by Amit Sahai (UCLA);
a Privacy Preserving Machine Learning Workshop organized by Gilad Asharov
(JP Morgan AI Research), Rafail Ostrovsky (UCLA) and Antigoni Polychroniadou
(JP Morgan AI Research); and the Mathcrypt Workshop organized by Kristin Lauter
(Microsoft Research), Yongsoo Song (Microsoft Research) and Jung Hee Cheon
(Seoul National University).

Crypto continues to grow, year after year, and Crypto 2019 was no exception. The
conference set new records for both submissions and publications, with a whopping
378 papers submitted for consideration. It took a Program Committee (PC) of 51
cryptography experts working with 333 external reviewers for over two months to
select the 81 papers which were accepted for the conference.

As usual, papers were reviewed in the double-blind fashion, with each paper
assigned to three PC members. Initially, papers received independent reviews, without
any communication between PC members. After the initial review stage, authors were
given the opportunity to comment on all available preliminary reviews. Finally, the PC
discussed each submission, taking all reviews and author comments into account, and
selecting the list of papers to be included in the conference program. PC members were
limited to two submissions, and their submissions were held to higher standards. The
two Program Chairs were not allowed to submit papers.

The PC recognized three papers and their authors for standing out amongst the rest.
“Cryptanalysis of OCB2: Attacks on Authenticity and Confidentiality”, by Akiko
Inoue, Tetsu Iwata, Kazuhiko Minematsu and Bertram Poettering was voted Best Paper
of the conference. Additionally, the papers “Quantum cryptanalysis in the RAM model:
Claw-finding attacks on SIKE” by Samuel Jaques and John M. Schanck, and “Fully
Secure Attribute-Based Encryption for t-CNF from LWE” by Rotem Tsabary, were
voted Best Papers Authored Exclusively By Young Researchers.

Beside the technical presentations, Crypto 2019 featured a Rump session, and two
invited talks by Jonathan Katz from University of Maryland, and Helen Nissenbaum
from Cornell Tech.



We would like to express our sincere gratitude to all the reviewers for volunteering
their time and knowledge in order to select a great program for 2019. Additionally, we
are very appreciative of the following individuals and organizations for helping make
Crypto 2019 a success:

– Muthu Venkitasubramaniam (University of Rochester) - Crypto 2019 General Chair
– Carmit Hazay (Bar-Ilan University) - Workshop Chair
– Jonathan Katz (University of Maryland) - Invited Speaker
– Helen Nissenbaum (Cornell Tech) - Invited Speaker
– Shai Halevi - Author of the IACR Web Submission and Review System
– Anna Kramer and her colleagues at Springer
– Whitney Morris and UCSB Conference Services

We would also like to say thank you to our numerous sponsors, the workshop
organizers, everyone who submitted papers, the session chairs, and the presenters.
Lastly, a big thanks to everyone who attended the conference at UCSB.

August 2019 Alexandra Boldyreva
Daniele Micciancio
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The Communication Complexity
of Threshold Private Set Intersection

Satrajit Ghosh(B) and Mark Simkin(B)

Aarhus University, Aarhus, Denmark
{satrajit,simkin}@cs.au.dk

Abstract. Threshold private set intersection enables Alice and Bob who
hold sets SA and SB of size n to compute the intersection SA ∩ SB if
the sets do not differ by more than some threshold parameter t. In
this work, we investigate the communication complexity of this prob-
lem and we establish the first upper and lower bounds. We show that
any protocol has to have a communication complexity of Ω(t). We show
that an almost matching upper bound of Õ(t) can be obtained via fully
homomorphic encryption. We present a computationally more efficient
protocol based on weaker assumptions, namely additively homomorphic
encryption, with a communication complexity of Õ(t2). For applications
like biometric authentication, where a given fingerprint has to have a
large intersection with a fingerprint from a database, our protocols may
result in significant communication savings.

Prior to this work, all previous protocols had a communication com-
plexity of Ω(n). Our protocols are the first ones with communication
complexities that mainly depend on the threshold parameter t and only
logarithmically on the set size n.

1 Introduction

Private set intersection enables two mutually distrustful parties Alice and
Bob to compute the intersection SA ∩ SB of their respective sets SA and
SB without revealing any other information. Efficient protocols have numer-
ous applications ranging from botnet detection [NMH+10], through online
advertising [PSSZ15], to private contact discovery [Mar14]. The first solu-
tion to this problem was given by Meadows [Mea86] and since then, a
long line of work [FNP04,KS05,DT10,DCW13,PSZ14,PSSZ15,KKRT16,HV17,
KMP+17,RR17a,RR17b,CLR17,GN17,KLS+17,PSWW18] has considered the
problem in the two-party, the multi-party, and the server-aided setting with
both passive and active security. Beyond private set intersection, several
works [KS05,HW06,CGT12,DD15,EFG+15,PSWW18] have also considered

S. Ghosh and M. Simkin—Supported by the European Unions’s Horizon 2020 research
and innovation program under grant agreement No 669255 (MPCPRO) and under
grant agreement No 731583 (SODA) and the Independent Research Fund Denmark
project BETHE.

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11693, pp. 3–29, 2019.
https://doi.org/10.1007/978-3-030-26951-7_1
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protocols for privately computing the size of the set intersection, rather than
the intersection itself. Freedman et al. [FNP04] proved a lower bound of Ω(n)
on the communication complexity of any private set intersection protocol, where
n is the size of the smallest input set. This lower bound directly extends to the
case of protocols that only compute the intersection size and it constitutes a
fundamental barrier to the efficiency of these protocols.

In certain scenarios we do not require the full power of private set intersection.
For example, for the case of biometric authentication we may want to check
whether a given fingerprint reading matches a fingerprint from a database. In
this setting, we are neither interested in the concrete intersection nor in the exact
size of the intersection. All we care about is a binary answer telling us whether
the fingerprints have a large intersection or not. In the case of privacy-preserving
ridesharing [HOS17] two users only want to share a ride if large parts of their
trajectories on a map intersect. In this case, the users may be interested in the
concrete intersection of their routes, but only if the intersection is large. Yet
another example can be found in the online dating world, where two potential
love birds Alice and Bob are only interested in learning the intersection of their
dating preferences if the intersection thereof is sufficiently large. Speaking more
abstractly, this problem is known as threshold private set intersection, where
Alice and Bob hold sets of size n each and only want to learn the intersection
if their sets do not differ by more than t elements. Only a few works [FNP04,
HOS17,GN17,PSWW18,ZC18] have considered this problem and all of them
present solutions, whose communication complexity scales at least linearly in
the size of the smaller input set. This seems to be somewhat inherent to these
works, since all of them start from a private set intersection protocol and then
massage it until it becomes a threshold private set intersection protocol. In this
work we ask:

What is the communication complexity of threshold private set
intersection?

Answering this question is both theoretically and practically relevant. As
explained above, threshold and regular private set intersection protocols have
many applications. A better understanding of their communication complexities
and their qualitative differences provides us with a better understanding of this
research area. It enables us to pick the right tool for a given job and it allows us to
have a firm understanding of the communication complexities that we can expect.
From a practical perspective, overcoming the private set intersection lower bound
of Ω(n) may result in significant efficiency gains for applications that only require
threshold private set intersection. For example, in the biometric authentication
setting one usually only allows for a very small difference between a stored
and a given fingerprint. We show that using threshold private set intersection
protocols, the communication complexity can be almost completely independent
of the total size of the fingerprints and instead only depends on the maximum
allowed difference between the two fingerprints.
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1.1 Our Contribution

We initiate the study of sublinear (in the set size) threshold private set intersec-
tion and provide a first characterization of its communication complexity. We
prove a lower bound of Ω(t) on the communication complexity of any protocol
that computes the intersection of two sets that do not differ by more than t
elements. We present an almost matching upper bound of Õ(t) based on fully
homomorphic encryption. We show how to avoid the use of fully homomorphic
encryption by presenting a computationally more efficient protocol based on
weaker assumptions, namely additively homomorphic encryption, with commu-
nication complexity of Õ(t2). For applications, where the set intersection has to
be large and thus t is small, our protocols may result in significant improvements
over the state-of-the-art in terms of communication complexity.

Along the way we also present a communication efficient protocol for private
intersection cardinality testing, which privately computes whether two sets dif-
fer by more than a given threshold t or not. We believe that this protocol may
be of independent interest. From a conceptual perspective, our paper highlights
somewhat surprising connections between threshold private set intersection, set
reconciliation protocols [MTZ03] from distributed systems, and sparse polyno-
mial interpolation [BOT88], which have to the best of our knowledge not been
known before.

What This Paper Is Not About. Most existing works on private set intersection
aim to develop the most practically efficient protocols. At the same time, many
basic theoretical questions about private set intersection remain unanswered.
The goal of this work to provide first answers to one such question. We hope that
the research direction initiated in this work will eventually lead to asymptotically
optimal and practically efficient protocols. The results in this paper present
several novel techniques to provide the first non-trivial feasibility results for
sublinear threshold private set intersection, which we believe to be of theoretical
importance, but we do not claim them to be practically useful yet.

1.2 Technical Overview

Our main threshold private set intersection protocol can be split into two sub-
protocols. One for testing, whether two given sets are “similar enough” and one
for computing the set intersection of two such similar sets. Here we highlight
some of the main ideas underlying our protocols.

Private Intersection Cardinality Testing. The goal of private intersection
cardinality testing is to enable Alice and Bob, who hold sets SA and SB of
elements from a field Fp, to determine, whether their sets are similar or not.
More formally, we have some similarity threshold parameter t and we would
like to test whether | (SA \ SB) ∪ (SB \ SA) | ≤ 2t without revealing any other
information about the sets. Our solution to this problem is based on the idea of
encoding sets as polynomials over a field as has been done in numerous previous
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works [BK89,MTZ03,FNP04,KS05]. However, in contrast to previous works,
which encode the elements of a set into the roots of a polynomial, we encode
the elements into separate monomials of a polynomial. Our encoding procedure
encodes a set SA = {a1, . . . , an} as a polynomial pA(x) =

∑n
i=1 xai . The main

idea behind this encoding is that, given two encoded sets pA(x) and pB(x), the
number of monomials in the polynomial p(x) = pA(x) − pB(x) corresponds to
the size of the symmetric set difference between SA and SB. In particular, if
| (SA \ SB) ∪ (SB \ SA) | ≤ 2t, then p(x) has at most 2t monomials. Encoding
the sets in such a way, allows us to make use of the polynomial sparsity test
of Grigorescu et al. [GJR10], which itself is heavily based on the seminal work
of Ben-Or and Tiwari [BOT88]. A polynomial p(x) is called t-sparse if it has
at most t monomials. Grigorescu et al. present a randomized algorithm that
only requires 2t evaluations of p(x) to determine, whether the polynomial is t-
sparse or not. To obtain our private intersection cardinality test, we combine the
ideas above with additively homomorphic encryption and the privacy-preserving
linear algebra techniques of Kiltz et al. [KMWF07]. Our resulting protocol has
a communication complexity of Õ(t2).

Threshold Private Set Intersection. For the problem of threshold private
set intersection, our starting point is the set reconciliation protocol by Minsky
et al. [MTZ03], where Alice and Bob hold sets SA and SB and would like to
compute the set union SA ∪ SB in a communication efficient manner. As shown
by Minsky et al., Alice and Bob can do this with communication complexity
proportional to the size of the symmetric set difference, that is, with communi-
cation complexity roughly Õ((|SA\B| + |SB\A|) log p) bits. This is asymptotically
close to optimal, since at the very least both parties need to exchange the data
elements that are not part of the intersection SA ∩ SB. The set reconciliation
protocol by Minsky et al. starts by encoding both sets as monic polynomials,
where the roots of the polynomial correspond to the elements of the set. For a
set SA = {a1, . . . , an}, the corresponding polynomial is pA(x) =

∏n
i=1 (x − ai).

The degree deg(pA) of the polynomial equals the set size n and since pA is monic,
it can be interpolated from n evaluation points. The main observation behind
Minsky et al.’s protocol is that

p(x) :=
pA(x)
pB(x)

=
pA\B(x)
pB\A(x)

If we divide the two polynomials representing the sets, then the common fac-
tors of pA(x) and pB(x) cancel out and what remains is a rational function1,
where the numerator represents the elements exclusively contained in SA and
the denominator represents the elements only contained in SB. It is straight-
forward to see that if SA and SB do not differ by more than 2t elements, that
is if |SA\B| + |SB\A| ≤ 2t, then deg(p) = deg

(
pA\B

)
+ deg

(
pB\A

) ≤ 2t and we
can interpolate p from 2t evaluation points via rational function interpolation2.
1 A rational function is the fraction of two polynomials. See Sect. 2.1 for details.
2 See [MTZ03] for details on rational function interpolation over a field.
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The second observation behind Minsky et al.’s protocol is that we can compute
evaluation points of p(x) from evaluation points of pA(x) and pB(x). To evaluate
p at location α, both Alice and Bob first separately evaluate pA(x) and pB(x) at
α and then jointly compute p(α) = pA(α)

pB(α) .
Based on these observations the set union protocol by Minsky et al. roughly

works as follows. Let us assume that we already know that the sets do not dif-
fer by more than 2t elements. First, both Alice and Bob encode their sets as
polynomials as described above. Both parties separately evaluate their poly-
nomials on some pre-agreed set of evaluation points {α1, . . . , α2t} to obtain
{pA(α1), . . . , pA(α2t)} and {pB(α1), . . . , pB(α2t)}. After exchanging their sets of
polynomial evaluations, both parties use rational interpolation to compute the
function p(x) = pA\B(x)

pB\A(x)
. Given p(x), for example Alice, learns the denominator

pB\A(x) and computes an encoding of the set union pA∪B(x) = pA(x) · pB\A(x).
Importantly for us we observe that apart from computing the set union, Alice
can also compute the set intersection by computing pA∩B(x) = pA(x)

pA\B(x)
. The key

observation here is that in order to compute the intersection, it is sufficient for
Alice to learn which elements are exclusive to her set. In case of a “large” inter-
section, this quantity is much smaller than the size of the sets or the size of the
intersection.

Given Minsky et al.’s protocol, one possible approach towards constructing
a sublinear private set intersection protocol (for similar sets) would be to com-
bine it with a generic protocol for secure two-party computation. Both parties
input evaluation points of their polynomials, using a secure computation pro-
tocol we interpolate p(x), and finally output pA\B(x) and pB\A(x) to Alice and
Bob respectively. Unfortunately, this does not seem to result in a practically or
asymptotically efficient protocol. In order to interpolate p(x), one would have
to perform a gaussian elimination inside the secure computation protocol. For a
system of linear equations with O(t) unknowns, this requires O(t3) operations.

We take a very different approach. We only make minimal use of generic
secure computation to obtain “noisy” evaluation points of p. Using these points,
Alice can then in plain interpolate a rational function pA\B(x)

U(x) , where U(x) is
a uniformly random polynomial. From this polynomial Alice can learn pA\B(x)
and therefore pA∩B(x), but nothing else beyond that.

2 Preliminaries

Notation. Let λ be the computational and κ the statistical security parameter.
For a set S, we write v ← S to denote that v is chosen uniformly at random from
S. For a possibly randomized algorithm A, we write v ← A(x) to denote a run
of A on input x that produces output v. For n ∈ N, we write [n] := {1, 2, . . . , n}.
We write |S| for the number of elements in S. We use Õ(·) as a variant of the
big-O notation that ignores polylog factors.
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Sets. Throughout most of the paper we will assume that the sets of Alice and
Bob are of equal size n. We show how to deal with sets of different sizes in
Sect. 6.4. We assume that the set elements come from a field Fp, where p is a
Θ(κ)-bit prime.

Size of the Intersection vs. Size of the Symmetric Set Difference. We
will measure the “similarity” of two sets SA and SB in terms of size of their
symmetric set difference. In some scenarios it may be more convenient to measure
the similarity of two sets in terms of intersection size. These two measures are
equivalent. A lower bound tmin on the intersection set size |SA∩SB|, corresponds
to a upper bound tmax = 2 (n − tmin) on the size of the symmetric set difference
| (SA \ SB) ∪ (SB \ SA) |.

2.1 Linear Algebra

We recall some terminology and definitions from linear algebra.

Matrices. Let F
k×k
p be the set of k-by-k square matrices with entries from Fp.

A matrix M ∈ F
k×k
p is said to be invertible, if there exists a matrix M−1, such

that M ·M−1 = I, where I is the identity matrix. A matrix that is not invertible
is called singular. A matrix M is singular if and only if it has determinant 0.

Polynomials. Let p(x) =
∑n

i=0 aix
i be a polynomial. We call {a0, . . . , anxn}

the monomials and {a0, . . . , an} the coefficients of the polynomial. The degree
deg(p) of a polynomial p(x) is the the largest i, such that the monomial aix

i �= 0.
A polynomial is said to be monic if for i = deg(p), we have ai = 1. We write
Fp[X] to denote the set of polynomials with coefficients from the field Fp. A
polynomial p(x) ∈ Fp[X] of degree d is uniquely defined and can be efficiently
interpolated form d + 1 evaluation points {(α1, p(α1)), . . . , (αd+1, p(αd+1))} via
Lagrange interpolation. If p(x) is monic, then d points suffice. A polynomial
h(x) = p(x)

q(x) , where p(x), q(x) are polynomials of degree n and m, is called a
rational polynomial or rational function. It can be interpolated, uniquely up to
constants, from n + m + 1 points [MTZ03]. If p(x) and q(x) are monic, then
n + m points suffice. A polynomial p(x) is said to be �-sparse if has at most �
monomials, i.e. if |{aix

i | ai �= 0}| ≤ �.
Our main construction in Sect. 6 will make use of an observation about poly-

nomials due to Kissner and Song [KS05]. For the sake of concreteness we restate
their lemma3 here in a slightly less general fashion, which is tailored to our needs.

Lemma 1 ([KS05]). Let p be a prime. Let p(x), q(x) ∈ Fp[X] be polynomials of
degree d ≤ t with gcd(p(x), q(x)) = 1. Let R1(x),R2(x) ∈ Fp[X] be two uniformly
random polynomials of degree t. Then U(x) = p(x) · R1(x) + q(x) · R2(x) is a
uniformly random polynomial of degree at most 2t.
3 The lemma we are referring to here is Lemma 2 in the paper of Kissner and Song.
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Another basic observation about polynomials that we will need, is captured in
Lemma 2. Simply speaking it states that for some given polynomial p(x) of degree
dp and some uniformly random polynomial R(x) of degree dR, the probability
that the polynomials share a common root negligible in the statistical security
parameter κ.

Lemma 2. Let p be a Θ(κ)-bit prime. Let p(x) ∈ Fp[X] be an arbitrary but fixed
non-zero polynomial of degree at most dp and let R(x) ∈ Fp[X] be a uniformly
random polynomial of degree at most dR. Then

Pr[gcd(p(x),R(x)) �= 1] ≤ negl(κ)

Proof (sketch). The gcd of p(x) and R(x) equals to one if and only if the two
polynomials share no common roots. A uniformly random polynomial R(x) of
degree dR has at most dR roots, which are distributed uniformly at random. The
probability of picking one random root that is not a root of p(x) is 1 − dp

p . It
follows that

Pr[gcd(p(x),R(x)) �= 1] = 1 − Pr[gcd(p(x),R(x)) = 1]

= 1 − (1 − dp

p
)dR

≤ negl(κ)

2.2 Secure Two-Party Computation

Our security definitions are given in the universal composability (UC) frame-
work of Canetti [Can01]. We provide a brief overview here and refer the reader
to [MQU07,CDN15] for a more complete summary of the security model.

We consider a two-party protocol Π that is supposed to implement some
ideal functionality F . Security is defined by comparing two processes. In the real
process the two parties execute the protocol Π . The protocol itself is allowed
to make use of an idealized functionality G. An environment Z chooses the
inputs of all parties, it models everything that is external to the protocol, and
it represents the adversary, who attacks the protocol. Z may corrupt a party
and get access to that party’s internal tapes. In the ideal process, two dummy
parties send their inputs to the ideal functionality F and get back the output
of the computation. In such an ideal process, a simulator S, also known as the
ideal world adversary, emulates Z’s view of a real protocol execution. S has full
control of the corrupted dummy party. S emulates Z’s view of that party as well
as its communication with G. At the end of both executions Z outputs a single
bit. Let REALλ[Z,Π ,G], respectively IDEALλ[Z, S,F ], be the random variable
denoting Z’s final output bit in the real, respectively ideal, process. We say Π
securely implements F , if no environment Z can distinguish whether it has been
part of a real or ideal process.



10 S. Ghosh and M. Simkin

Definition 1. Π securely implements functionality F with respect to a class of
environments Env in the G-hybrid model, if there exists a simulator S such that
for all Z ∈ Env we have

|Pr[REALλ[Z,Π ,G] = 1] − Pr[IDEALλ[Z, S,F ] = 1]| ≤ negl(λ)

In this paper, we focus on static passive adversaries. We consider environ-
ments Z that get full read-only access to a corrupted party’s internal tapes. The
corrupted party follows the protocol honestly.

2.3 Additively Homomorphic Encryption

We recall the definition of additively homomorphic encryption and the associated
IND-CPA security notion.

Definition 2 (Public Key Encryption Scheme). A public key encryption
scheme E = (KeyGen,Enc,Dec) consists of three algorithms:

KeyGen(1λ): The key generation algorithm takes as input the security parameter
1λ and outputs a key pair (sk, pk).

Enc(pk,m): The encryption algorithm takes as input the public key pk, a message
m ∈ M, and outputs a ciphertext c.

Dec(sk, c): The decryption algorithm takes as input the secret key sk, the cipher-
text c′ ∈ C, and outputs a plaintext m.

We say E is additively homomorphic if we can add encrypted values and
multiply them by plaintext constants. Concretely, if there exist operations �
and �, such that for any a, b ∈ M and any two ciphertexts c1 = Enc(pk,m1)
and c2 = Enc(pk,m2), it holds that (a � c1)�(b � c2) = Enc(pk, a·m1+b·m2). For
the sake of simplicity and readability we will use the same notation for algebraic
operations on the plaintext and algebraic operations on the ciphertext space.
We assume that it will be clear from the context which one is meant. Possible
instantiations of such a cryptosystem are the Paillier cryptosystem [Pai99] or
its generalization the Damg̊ard-Jurik cryptosystem [DJ01]. We will furthermore
assume that the message space of the encryption scheme is a field4.

Definition 3 (Indistinguishability under Chosen Plaintext Attacks).
Let E = (KeyGen,Enc,Dec) be a (homomorphic) encryption scheme and let A be
a PPT adversary. We say E is IND-CPA-secure if for all PPT adversaries A it
holds that

4 For the case of the Paillier cryptosystem this is strictly speaking not the case, since
not every element from the message space has an inverse. However, finding an element
that does not have an inverse is as hard as breaking the security of the cryptosystem.
Therefore, we can treat the message space as if it was an actual field.
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Pr

⎡

⎢
⎢
⎢
⎢
⎣

b = b′ :

(sk, pk) ← KeyGen(1λ)
(m0,m1) ← A(pk)

b ← {0, 1}
c ← Enc(pk,mb)

b′ ← A(c)

⎤

⎥
⎥
⎥
⎥
⎦

≤ 1
2

+ negl(x)

FOLE

The sender has input (a, b) ∈ F
2 and the receiver has input x ∈ F.

– Upon receiving a message (inputS, (a, b)) from the sender with a, b, store
a and b.

– Upon receiving a message (inputR, x) from the receiver with x, store x.
– Compute y = a · x + b and send (output, y) to the receiver.

Fig. 1. Oblivious linear function evaluation functionality.

2.4 Oblivious Linear Function Evaluation

Oblivious linear function evaluation allows a receiver to obliviously evaluate a
linear function that is only known to the sender.Concretely, the sender has two
input values a, b ∈ F that determine a linear function f(x) = a · x + b over
F and the receiver holds input x ∈ F. The receiver will learn only f(x), and
the sender learns nothing about the evaluation point x. The corresponding ideal
functionality FOLE is depicted in Fig. 1. Several efficient instantiations, both in
the passive and malicious settings, exist [NP99,IPS09,ADI+17,GNN17].

3 Lower and Upper Bounds

To provide a better understanding of what is possible and what is not, we present
upper and a lower bounds for the communication complexity of threshold private
set intersection protocols. We prove unconditionally that any threshold private
set intersection protocol has to have a communication complexity of Ω(t), where
t is an upper bound on the size of the symmetric set difference. We show how
to obtain an almost matching upper bound of Õ(t) using fully homomorphic
encryption [RAD78,Gen09,BGV12]. Due to its computational complexity, this
bound seems to be mainly of theoretical interest. We sketch a construction based
on simpler assumptions, namely garbled circuits [Yao86], with a communication
complexity of Õ(t3). In light of these results, our main protocol, which we will
describe in the following sections, places itself in between those bounds. It has
a communication complexity of Õ(t2) and is thus asymptotically more efficient
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than the garbled circuit solution. It is based on weaker assumptions, namely
additively homomorphic encryption, and is computationally more efficient than
the construction based on fully homomorphic encryption. A visual illustration
of these results can be found in Fig. 2.

Comm.
Complexity

FHE

Õ(t)

Main
Construction

Õ(t2)

Garbled
Circuits

Õ(t3)

Impossible

Fig. 2. An illustration what is possible and what is not in terms of communication
complexity of threshold private intersection protocols. t is the upper bound on the
symmetric set difference of the two sets.

Lower Bound for Threshold Private Set Intersection. To prove our lower
bound for threshold private set intersection, we will make use of a known lower
bound for the disjointness problem. In the disjointness problem, Alice and Bob
hold two n-bit vectors a and b, and would like to compute the function

Dis(a, b) =

{
0 if ∃i : ai = bi = 1
1 Otherwise

A series of results [BFS86,KS92,Raz90,BYJKS04] have established that the
communication complexity of this function is Θ(n). Freedman et al. [FNP04]
observed that these results directly yield a lower bound of Ω(n) on the commu-
nication complexity of any set intersection protocol for sets of size n. We sketch
how these results also provide a lower bound for threshold private set inter-
section. Assume towards contradiction that for sets of size n′, which have an
intersection of size at least n′ − t, there exists a protocol Π that computes their
intersection with communication complexity o(t). We can use such a protocol
to construct a private set intersection protocol for sets of size t with complexity
o(t) as follows. Assume Alice has input set SA and Bob has input set SB each
of size t. The private set intersection protocol simply fixes a set SD of n′ − t
distinct dummy elements as part of the protocol description. Alice and Bob exe-
cute the threshold private set intersection protocol Π, where Alice uses SA ∪ D
and Bob uses SB ∪D as the input to Π. Since both parties use the same dummy
elements, it is guaranteed that their inputs to Π have an intersection of size
at least n′ − t, which means that the protocol will always output the intersec-
tion (SA ∪ SD) ∩ (SB ∪ SD). From this output each party can locally compute
((SA ∪ SD) ∩ (SB ∪ SD)) \ SD = SA ∩ SB to learn the desired intersection, which
contradicts the lower bound of Ω(t) for computing the set intersection of SA and
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SB. The lower bound for the communication complexity of threshold private set
intersection follows.

Upper Bound from Fully Homomorphic Encryption. We sketch how
to combine the set reconciliation protocol of Minsky et al. [MTZ03] with fully
homomorphic encryption [RAD78,Gen09,BGV12] to obtain an almost match-
ing upper bound of Õ(t). We provide a high-level description of the construction
here and leave the details to the interested reader. Fully homomorphic encryption
allows anyone to evaluate arbitrary circuits over encrypted data without being
able to decrypt. Known instantiations are based on lattice based assumptions,
such as learning with errors [BV11a] or the ring learning with errors [BV11b].
Fully homomorphic encryption leads to a conceptually very simple and com-
munication efficient solution for general secure two party computation. Alice
encrypts her data and sends it to Bob. Bob encrypts his data and homomor-
phically evaluates the desired function on their joint encrypted data. He sends
back the result to Alice, who can decrypt the result of the computation. The
communication complexity only depends on the size of the inputs and the size
of the output, but importantly it does not depend on the size of the evaluated
circuit.

Using fully homomorphic encryption, we let Alice and Bob execute a variation
of Minsky et al.’s protocol. Alice encodes her set SA as a polynomial pA(x) =∏n

i=1 (x − ai) and sends Bob encrypted evaluations {pA(α1) , . . . , pA(α2t)} as
well as an additional encrypted evaluation pA(z) and the uniformly random z
itself in the clear. Bob evaluates his set as a polynomial on the same points and
then homomorphically interpolates the rational function pA(x)

pB(x)
= pA\B(x)

pB\A(x)
, where

the gcd of numerator and denominator is 1, using the first 2t encrypted points
to obtain a candidate polynomial p. Bob computes

(p(x), pA(z), pB(z), z) 	→
{

pA\B(x) if p(z) = pA(z)
pB(z)

⊥ Otherwise

on the encrypted data and sends back the result to Alice. The correctness of
this approach directly follows from the correctness of Minsky et al.’s protocol.
Security follows from the security of fully homomorphic encryption. The total
communication consists of Alice sending 2t + 1 ciphertexts to Bob and him
sending the coefficients of the polynomial in the numerator, i.e. t ciphertexts, to
Alice. Assuming the ciphertexts are larger than the corresponding plaintexts by
at most a multiplicative constant and assuming that the set elements are drawn
from Fp, we can conclude that the total communication complexity is O(t log p)
bits. Despite its nice communication complexity, this solution has two drawbacks.
From a theoretical perspective, it relies on fully homomorphic encryption and
thus can only be instantiated from lattice based assumptions. From a practical
perspective, it does not seem to be anywhere near practical due to the fact that
one has to homomorphically perform a rational polynomial interpolation on the
ciphertexts, which leads to a high computational complexity.
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Using Garbled Circuits. A simple, but asymptotically inefficient solution
based on one-way functions and oblivious transfer can be obtained by using
garbled circuits [Yao86] instead of fully homomorphic encryption. For garbled
circuits, the communication complexity corresponds to the size of the circuit that
is being evaluated. Following the same approach as above, the size of the circuit
is dominated by the rational interpolation logic. Using gaussian elimination this
step requires O(t3) operations, which leads to a total communication complexity
of at least Õ(t3) bits.

4 Intersection Cardinality Testing

An important building block for our threshold private set intersection protocol
in Sect. 6, is a intersection cardinality testing protocol, which enables two par-
ties to check whether their sets differ by more than a given threshold 2t with
communication complexity Õ(t). We present a non-private solution based on
polynomial sparsity testing here and show how to obtain a privacy-preserving
version thereof in Sect. 5. We believe that the non-private as well as the private
intersection cardinality test may be of independent interest.

From a conceptual perspective, our protocol is very simple. It is basi-
cally a direct application of the polynomial sparsity test of Grigorescu et al.
[GJR10] to an appropriate encoding of sets as polynomials. We encode a set
SA = {a1, . . . , an} as a polynomial pA(x) =

∑n
i=1 xai . The main idea behind

this encoding is that the sparsity of the polynomial pA(x) − pB(x) corresponds
to the size of the symmetric set difference of SA and SB. The protocol Π2t

ICT is
described in Fig. 3.

Theorem 1. Let SA and SB be subsets of Fp. Let q > (4t2 + 2t)(p − 1)2κ be a
prime power. Π2t

ICT has a communication overhead of 4t + 1 field elements from
Fq. If |SA\B| + |SB\A| ≤ 2t, then Pr[Π2t

ICT outputs similar] = 1 and if |SA\B| +
|SB\A| > 2t, then Pr[Π2t

ICT outputs similar] ≤ 1 − 2−κ.

Proof. The original algorithm of Grigorescu et al. [GJR10] takes an arbitrary
polynomial p as its input, computes the corresponding Hankel matrix H, and
then computes the determinant thereof. We essentially directly apply their algo-
rithm to the polynomial pC(x) = pA(x)− pB(x). We exploit the fact that we can
compute the Hankel matrix HC of pC(x) by first computing the Hankel matrices
HA and HB . The correctness and the parameters of the randomized polynomial
sparsity testing protocol directly follow from the test of Grigorescu et al.5

It remains to show that the sparsity of the computed polynomial does indeed
reflect the size of the symmetric set difference. If SA and SB have an intersection
of size k, then the polynomial pA(x)−pB(x) will have exactly 2(n−k) monomials.
Thus, if |SA\B| + |SB\A| < 2t, then k > n − t and therefore pA(x) − pB(x) will be
a 2t-sparse polynomial. �

5 See Theorem 3 in their work.
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Π
2t
ICT

Alice and Bob have as input set SA = {a1, . . . , an} ∈ F
n
p and SB =

{b1, . . . , bn} ∈ F
n
p respectively.

Protocol:

1. Alice and Bob encode their sets as polynomials pA(x) =
∑n

i=1 x
ai and

pB(x) =
∑n

i=1 x
bi in Fq[X].

2. Alice picks uniformly random u ← Fq.
3. Alice computes the Hankel matrix

HA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

pA(u
0) pA(u

1) . . . pA(u
2t)

pA(u
1) pA(u

2) . . . pA(u
2t+1)

...
...

. . .
...

pA(u
2t) pA(u

2t+1) . . . pA(u
4t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and sends it along with u to Bob.
4. Bob, using his own Hankel matrix HB, computes HC = HA − HB.
5. If det (HC) = 0, then Bob outputs similar, otherwise he outputs

different.

Fig. 3. Protocol for intersection cardinality testing based on the polynomial sparsity
testing protocol of Grigorescu et al. [GJR10].

Efficiency. To get a better idea of what this theorem means in terms of concrete
efficiency, it is worth looking at some common real world parameter settings. For
instance, for sets of 64-bit integers, a statistical security parameter κ = 40, and
a threshold t of size at most 220, we roughly require a 128-bit modulus q.

5 Private Intersection Cardinality Testing

We obtain a privacy-preserving version of the intersection cardinality test from
Sect. 4 via a combination of homomorphic encryption and the matrix singular-
ity test due to Kiltz et al. [KMWF07]. The singularity test enables Alice, who
holds a encrypted matrix over a finite field, and Bob, who holds the decryption
key, to test whether the matrix is singular or not. Recall, that a matrix being
singular and it having determinant 0 are equivalent statements. Let FINV be the
corresponding ideal functionality, which either returns singular or invertible.
Kiltz et al. show how to securely and efficiently implement such a functionality
using additively homomorphic encryption.

Theorem 2 ([KMWF07]). Let M ∈ F
k×k
q be the encrypted matrix. Assum-

ing IND-CPA-secure additively homomorphic encryption, the ideal functionality
FINV can be realized securely with communication complexity O(k2 log q log k) in
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O(log k) rounds with security against a passive adversary. The protocol is correct
with probability 1 − k+1

q , which for a q chosen as in Theorem1 is overwhelming
in κ.

For our choice of q (see Theorem 1) the protocol of Kiltz et al. fails with
negligible (in κ) probability. In the following, for the sake of simplicity, we will
assume that the corresponding ideal functionality FINV has perfect correctness.
All of our protocols and proofs trivially extend to the case, where the ideal
functionality errs with a negligible probability.

5.1 Ideal Functionality

The ideal functionality F2t
PICT for private intersection cardinality testing is

depicted in Fig. 4. Alice and Bob send their input sets SA and SB to the ideal
functionality, which checks whether the sets differ by more than 2t elements. It
outputs different if this is the case and it outputs similar otherwise. Note
that our ideal functionality is size hiding in the sense that the environment Z
does not learn the size of the input sets of Alice or Bob.

F2t
PICT

Alice and Bob have as input set SA and SB respectively.

– Upon receiving message (inputA, SA) from Alice, store SA.
– Upon receiving message (inputB, SB) from Bob, store SB.
– If | (SA \ SB) ∪ (SB \ SA) | ≤ 2t, then the functionality outputs similar,

otherwise different, to Alice and Bob.

Fig. 4. Ideal functionality for private intersection cardinality testing.

5.2 Protocol

Our private intersection cardinality test Π2t
PICT closely follows its non-private

counterpart Π2t
ICT from Sect. 4. The main difference is that we now encrypt the

Hankel matrix of Alice before sending it to Bob. Upon receiving Alice’s encrypted
matrix, Bob exploits the homomorphic properties of the encryption scheme to
compute the Hankel matrix that corresponds to the polynomial encoding of the
symmetric set difference. Using FINV, Bob learns whether the matrix is singular
or invertible and thus learns, whether the intersection of the two sets is large
enough. The protocol Π2t

PICT is depicted in Fig. 5.
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Π
2t
PICT

Alice and Bob have as input set SA = {a1, . . . , an} ∈ F
n
p and SB =

{b1, . . . , bn} ∈ F
n
p respectively.

Protocol:

1. Alice and Bob encode their sets as polynomials pA(x) =
∑n

i=1 x
ai and

pB(x) =
∑n

i=1 x
bi in Fq[X].

2. Alice picks uniformly random u ← Fq.
3. Alice samples an encryption key (sk, pk) ← KeyGen(1λ) and computes an

encrypted version of her Hankel matrix

HA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0 c1 . . . c2t

c1 c2 . . . c2t+1

...
...

. . .
...

c2t c2t+1 . . . c4t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where ci ← Enc(pk, pA(u
i)).

4. Alice sends HA, u, and pk to Bob.
5. Bob computes his own encrypted Hankel matrix HB and computes HC =

HA − HB.
6. Alice sends sk and Bob sends HC to the ideal functionality FINV.
7. If Bob gets back singular from FINV, then he sends similar to Alice

and outputs similar himself, otherwise he sends and outputs different.

Fig. 5. Protocol for private intersection cardinality testing.

5.3 Security

Theorem 3. Let q be as in Theorem1. Let E = (KeyGen,Enc,Dec) be
a IND-CPA secure additively homomorphic encryption scheme. Then Π2t

PICT

securely implements F2t
PICT in the FINV-hybrid model with security against a

passive adversary and overwhelming (in κ) correctness.

Proof. Either Alice or Bob can be corrupted. We consider the two cases sepa-
rately.

Alice Corrupt. In this case, security holds trivially. The environment corrupting
Alice learns nothing beyond the input and output of the computation.

Bob Corrupt. The simulator S sends Bob’s input to the ideal functionality and
obtains result ∈ {similar, different}. S picks a uniformly random u ← Fq and
samples an encryption key (sk, pk) ← KeyGen(1λ). It computes ci ← Enc(pk, 0)
for 0 ≤ i ≤ 4t.
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HA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0 c1 . . . c2t

c1 c2 . . . c2t+1

...
...

. . .
...

c2t c2t+1 . . . c4t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The simulator leaks u, pk, and HA to Z. At this point Bob would send some
matrix HC to the ideal functionality FINV, which is also simulated by S. If
result = similar, then the simulator leaks singular to Z. Otherwise the simulator
leaks invertible. The only difference between the environment’s view in a real
and a simulated protocol execution is the matrix HA. In a real execution it
contains encrypted evaluations of Alice’s polynomial. In the simulated execution
it contains encryptions of 0. Indistinguishability of the real and ideal process
follows directly from the IND-CPA security of the encryption scheme. �

Instantiating FINV in Π2t
PICT with the singularity test of Kiltz et al.

[KMWF07], results in a protocol with a communication complexity of Õ(t2)
in the plain model.

Lemma 3. The communication complexity of Π2t
PICT is Õ(t2) in the plain

model.

6 Threshold Private Set Intersection

In this section we present our threshold private set intersection protocol, which
proceeds as follows. First, Alice and Bob use F2t

PICT to determine whether their
sets differ by more than 2t elements. If the ideal functionality outputs different,
the parties output ⊥. If it outputs similar, the parties engage in a secure set
intersection protocol, which has a communication complexity of Õ(t) bits.

6.1 Ideal Functionality

The ideal functionality F2t
TPSI for threshold private set intersection is depicted in

Fig. 6. Alice and Bob send their input sets SA and SB to the ideal functionality,
which checks whether the sets differ by more than 2t elements. If this is the
case, the functionality returns ⊥ to both parties. If this is not the case, the
functionality returns the set intersection SA ∩ SB to both Alice and Bob.

6.2 Protocol

Our protocol loosely follows the approach of Minsky et al.’s [MTZ03] set recon-
ciliation protocol. Assume that the sets of Alice and Bob do not differ by more
than t elements. Both Alice and Bob encode their sets as polynomials over a
field, where the roots of the polynomials are the elements of the corresponding
set. Let pA(x) =

∏n
i=1(x − ai) and pB(x) =

∏n
i=1(x − bi) be those polynomials.
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F2t
TPSI

Alice and Bob have as input sets SA and SB respectively.

– Upon receiving message (inputA, SA) from Alice, store SA and leak
(inputA, |SA|) to the environment Z.

– Upon receiving message (inputB, SB) from Bob, store SB and leak
(inputB, |SB|) to the environment Z.

– If | (SA \ SB) ∪ (SB \ SA) | ≤ 2t, then the functionality outputs A ∩ B,
otherwise ⊥, to Alice and Bob.

Fig. 6. Threshold private set intersection functionality.

Ideally, we would like to directly apply Minsky et al.’s protocol to interpolate
p(x) = pB(x)

pA(x)
= pB\A(x)

pA\B(x)
from which both Alice and Bob could compute the inter-

section of their sets. For example, Alice could extract6 pA\B(x) from p(x) and
compute the intersection function as pA(x)

pA\B(x)
. Unfortunately, Alice would learn

more information than she should, since she could also simply extract pB\A(x)
and learn Bob’s entire set.

As discussed before, one possible solution is to use generic secure two-party
computation for interpolating p and separating the numerator and denominator.
Due to the complexity of the computational task, this does not seem to result in
a asymptotically or practically efficient solution. Our protocol takes a different
approach and only makes minimal use of generic secure two-party computation.
We only use it to transform evaluation points of p into a noisy versions thereof.
Using these noisy evaluation points, Alice and Bob can perform the interpolation
in plain to compute the set intersection without learning the other party’s input.

In our construction, we will make use of a noisy polynomial addition func-
tionality functionality F (3t+1, t)

NPA , which takes the polynomials pA(x) and pB(x)
of Alice and Bob as its input and outputs noisy evaluation points {V(α1), . . . ,
V(α3t+1)}, where V(x) = pA(x) · R1(x) + pB(x) · R2(x). The polynomials R1 and
R2 are uniformly random polynomials of degree t. We show how to efficiently
instantiate this functionality with communication complexity Õ(t) in Sect. 7.
Our protocol is presented in Fig. 7.

6.3 Security

Theorem 4. Protocol Π2t
TPSI securely implements F2t

TPSI in the (F2t
PICT,

F (3t+1, t)
NPA )-hybrid model with security against a passive adversary.

6 separating the numerator and denominator from a given rational function is easy
here, because we obtain the coefficients of both separately during the interpolation
step.
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Π
2t
TPSI

Alice and Bob have as input set SA = {a1, . . . , an} ∈ F
n
p and SB =

{b1, . . . , bn} ∈ F
n
p respectively.

The values α1, . . . , α3t+1 ∈ Fp are fixed and publicly known.

Protocol:

1. Alice and Bob send SA and SB to F2t
PICT.

2. If F2t
PICT returns different, both parties output ⊥.

3. Alice and Bob encode their sets as polynomials pA(x) =
∏n

i=1(x−ai) and
pB(x) =

∏n
i=1(x − bi).

4. Alice and Bob send pA(x) and pB(x) to F (3t+1, t)
NPA .

5. Both receive evaluation points (V(α1) , . . . ,V(α3t+1)), where V(αi) =
pA(αi) · R1(αi) + pB(αi) · R2(αi) and R1,R2 are uniformly random poly-
nomials of degree t.

6. Alice computes p(αi) = V(αi)

pA(αi)
= U(αi)

pA\B(αi)
for each i ∈ [3t + 1] and in-

terpolates p with gcd of numerator and denominator being 1 from these
points.

7. Alice performs the following steps (Bob works analogously):
(a) Alice sets SA∩B := SA.
(b) For each ai ∈ SA, if pA\B(ai) = 0, Alices removes ai from SA∩B.
(c) Alice outputs SA∩B.

Fig. 7. Protocol for securely computing the intersection of two sets that do not differ
by more than 2t points.

Proof. We first show that our protocol indeed produces the correct result and
we then go on to prove its security.

Correctness. If SA and SB differ by more than 2t elements, then both par-
ties output ⊥ and terminate in step 2 of the protocol. If on the other hand
| (SA \ SB)∪(SB \ SA) | ≤ 2t, then since |SA| = |SB|, it follows that | (SA \ SB) | ≤
t and | (SB \ SA) | ≤ t. Alice computes polynomial

p(αi) =
V(αi)
pA(αi)

=
pA(αi) · R1(αi) + pB(αi) · R2(αi)

pA(αi)

=
pA∩B(αi) · pA\B(αi) · R1(αi) + pA∩B(αi) · pB\A(αi) · R2(αi)

pA∩B(αi) · pA\B(αi)

=
pA\B(αi) · R1(αi) + pB\A(αi) · R2(αi)

pA\B(αi)

The numerator is a polynomial of degree at most 2t and the denominator is a
polynomial of degree at most t. It follows that she can interpolate p(x) from
3t+1 points. The polynomial in the denominator encodes the elements that are
only in Alice’s set and thus she can learn the intersection by removing those
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elements from her set SA. By Lemma 2 we are certain that, with overwhelming
probability, no root in the denominator pA\B will be cancelled out by accident
from the remaining random numerator.

Security. We assume that Alice is corrupt. The proof, where Bob is corrupt
is completely symmetrical. The simulator sends Alice’s input set to the ideal
functionality F2t

TPSI and either obtains result = ⊥ or the intersection result =
SA∩B. In the first step of the protocol, Alice would send her set SA to the ideal
functionality F2t

PICT, which is simulated by the simulator S. If result = ⊥, then S
returns different as the ideal functionality’s answer to Z. Otherwise, S answers
with similar. In case the protocol did not terminate, Alice would continue by
sending pA(x) to F (3t+1, t)

NPA . At this point, the simulator needs to construct a
polynomial V(x) for responding to Alice’s query. In a real protocol execution the
polynomial would be

V(x) = pA∩B(x)
(
pA\B(x) · R1(x) + pB\A(x) · R2(x)

)

︸ ︷︷ ︸
U(x):=

Since |SA| = |SB|, it follows that |SA\B| = |SB\A| and thus deg
(
pA\B

)
=

deg
(
pB\A

)
. Furthermore, we know that deg

(
pA\B(x)

)
= |SA|−|SA∩B|. From these

observations we can conclude that the degree of deg(U) = |SA| − |SA∩B| + t. The
simulator S picks a uniformly random polynomial U(x) of that degree and for
1 ≤ i ≤ 3t + 1, it computes the polynomial evaluations V(αi) = U(αi) · pA∩B(αi)
and leaks them to Z as the output of F (3t+1, t)

NPA . The environment’s view in a
real and in a simulated process only differs in the way we choose the polynomial
V(x). We know that deg

(
pA\B

)
= deg

(
pB\A

) ≤ t, that gcd
(
pA\B, pB\A

)
= 1, and

that deg(R1) = deg(R2) = t. Indistinguishability of the real and the simulated
process directly follows from Lemma 1. �

When instantiating the hybrids we use in Π2t
TPSI with the protocols from

Sects. 5 and 7, then we obtain a protocol with communication complexity Õ(t2).
To reduce the communication complexity of our Π2t

TPSI protocol to Õ(t), it suf-
fices to reduce the communication complexity of Π2t

PICT from Õ(t2) to Õ(t).
Thus, in this context, our work reduces the problem of communication efficient
threshold private set intersection to that of communication efficient private inter-
section cardinality testing.

Lemma 4. The communication complexity of Π2t
TPSI is Õ(t2) in the plain model.

6.4 Dealing with Sets of Different Sizes

Throughout the paper we have so far assumed that the sets of Alice and Bob are
of the same size. This was done for the sake of simplicity, but is not necessary
in general. Consider two sets SA and SB, where, without loss of generality, we
assume that |SB| > |SA|. Independently of their actual intersection size, the
symmetric set difference of the two sets will be at least tmin := |SB| − |SA|. This
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means that the threshold parameter t in our privacy-preserving protocols would
need to be at least tmin. Since the set sizes are known, we can simply pad SA

to the size of SB with dummy elements and adapt our difference threshold to
tnew := t + |SB| − |SA| ≤ 2t accordingly. The simple approach of padding the
smaller set to the size of the larger one would thus increase the communication
complexity of our protocols by at most a small constant factor. The relation
between the size of the symmetric set difference and total set sizes is illustrated
in Fig. 8.

|SB| − |SA|

≤ tA

|SA|

tB

|SB|

tA

Fig. 8. An illustration of how the size of the symmetric set difference behaves for sets
of different sizes. The set intersection between the sets SA and SB is indicated by the
shaded gray area. The size of the symmetric set difference (SA\B ∪ SB\A) is tA + tB.
The dotted rectangle on the right illustrates the amount of padding we would have to
perform to make the two sets be of the same size. Padding SA to the size of SB would
increase the symmetric set difference by at most tA.

7 Noisy Polynomial Addition

We show how to efficiently instantiate the noisy polynomial addition function-
ality F�, t

NPA from Sect. 6 using oblivious linear function evaluation.

7.1 Ideal Functionality

The ideal functionality F�, t
NPA, depicted in Fig. 9, for noisy polynomial addition

takes polynomials pA(x) and pB(x) of degree n from Alice and Bob as input, and
returns back � evaluation points of pA(x) ·R1(x)+pB(x) ·R2(x), where R1(x) and
R2(x) are uniformly random polynomials of degree t.

7.2 Protocol

Our starting point is a protocol by Ghosh and Nilges [GN17], which implements a
very similar functionality in the FOLE-hybrid model. In their protocol the sender
inputs a polynomial pA(x) and random polynomial R(x), the receiver inputs a
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F�, t
NPA

Alice and Bob have inputs pA(x) and pB(x) of degree n.
Let {α1, . . . , α�} be a set of publicly known distinct points in F.

– Upon receiving message (inputS, pA(x)) from Alice, where pA(x) ∈ F[X],
store the polynomial pA(x).

– Upon receiving message (inputR, pB(x)) from Bob, where pB(x) ∈ F[X],
store polynomial pB(x).

– Once both parties have submitted their polynomials, pick uniformly
random polynomials R1(x),R2(x) ∈ F[X] of degree t and set p(x) =
pA(x) · R1(x) + pB(x) · R2(x).

– Send � evaluation points {p(α1), · · · , p(α�)} to Alice and Bob.

Fig. 9. Noisy polynomial addition functionality.

polynomial pB(x) and gets back a noisy polynomial pA(x)+R(x) ·pB(x). We use
a modified version of their protocol to instantiate our F�, t

NPA functionality.
In our protocol, both Alice and Bob evaluate their input polynomials on the

evaluation points {α1, . . . , α�}. Alice picks two uniformly random polynomials
RA
1 (x),RA

2 (x) of degree t and a random polynomial UA(x) of degree �. Bob picks
two random polynomials RB

1 (x),RB
2 (x) of degree t and a random polynomial

UB(x) of degree �. Now Alice and Bob will invoke the FOLE ideal functionality
2� times, where Alice will act as the receiver in the first � and as the sender
in the last � invocations. In the first � instances, for each i ∈ [�], Alice inputs
evaluation points pA(αi), Bob inputs (RB

1 (αi),UB(αi)), and Alice receives back
sA(αi) = pA(αi) · RB

1 (αi) + UB(αi). In the next � instances, for each i ∈ [�], Bob
inputs pB(αi), Alice inputs (RA

2 (αi),UA(αi)), and Bob receives back sB(αi) =
pB · RA

2 (αi) + UA(αi). For each i ∈ [�], Alice sends s′
A(αi) = sA(αi) + pA(αi) ·

RA
1 (αi) − UA(αi) to Bob, who can then compute

pA(αi) · R1(αi) + pB · R2(αi) :=

sB(αi) + s′
A(αi) + pB(αi) · RB

2 (αi) − UB(αi) =

pA(αi) · (
RA
1 (αi) + RB

1 (αi)
)

+ pB · (
RA
2 (αi) + RB

2 (αi)
)

In a completely symmetrical fashion, Bob sends s′
B(αi) = sB(αi) + pB(αi) ·

RB
1 (αi) − UB(αi) to Alice, who can then compute the same evaluation points

of their noisy polynomial addition pA(αi) · R1(αi) + pB · R2(αi). Our protocol is
described formally in Fig. 10.

Theorem 5. Π�, t
NPA implements F�, t

NPA in the FOLE-hybrid model with security
against a passive adversary.
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Π
�, t
NPA

Let {α1, . . . , α�} be a set of publicly known distinct points in Fp. Alice and
Bob have inputs pA(x) ∈ Fp[X] and pB(x) ∈ Fp[X] of degree n each.

Protocol:

1. Alice picks RA
1 (x),R

A
2 (x) ∈ Fp[X] of degree t and UA(x) ∈ Fp[X] of degree

� uniformly at random.
2. Bob picks RB

1 (x),R
B
2 (x) ∈ Fp[X] of degree t and UB(x) ∈ F[X] of degree �

uniformly at random.
3. For each i ∈ [�]

– Alice sends (inputR, pA(αi)) to FOLE.
– Bob sends (inputS, (RB

1 (αi),UB(αi))) to FOLE.
– Alice receives back sA(αi) = pA(αi) · RB

1 (αi) + UB(αi).
4. For each i ∈ [�]

– Bob sends (inputR, pB(αi)) to FOLE.
– Alice sends (inputS, (RA

2 (αi),UA(αi))) to FOLE.
– Alice receives back sB(αi) = pB(αi) · RA

2 (αi) + UA(αi).
5. For each i ∈ [�], Alice sends to Bob

s′A(αi) = sA(αi) + pA(αi) · RA
1 (αi) − UA(αi)

6. For each i ∈ [�], Bob sends to Alice

s′B(αi) = sB(αi) + pB(αi) · RB
2 (αi) − UB(αi)

7. Alice outputs the evaluation points

p(αi) = sA(αi) + s′B(αi) + pA(αi) · RA
1 (αi) − UA(αi)

8. Bob outputs the evaluation points

p(αi) = sB(αi) + s′A(αi) + pB(αi) · RB
2 (αi) − UB(αi)

Fig. 10. Protocol for computing evaluation points of the noisy polynomial addition of
pA(x) and pB(x) in the FOLE-hybrid model.

Proof (Sketch). We assume that Alice is corrupt. The proof, where Bob is corrupt
is completely symmetrical. The simulator sends Alice’s input pA to the ideal
functionality F�, t

NPA and gets back {p(α1), · · · , p(α�)}. The simulator picks the
polynomials UB(x) and UA(x) of degree � uniformly at random. It then picks
pB(x) of degree n and RA

1 (x),RA
2 (x),RB

1 (x),RB
2 (x) of degree t uniformly at random

under the constraint that

p(αi) = pA(αi) · (
RA
1 (αi) + RB

1 (αi)
)

+ pB(αi) · (
RA
2 (αi) + RB

2 (αi)
)

Using these values the simulator computes sA(αi), sB(αi), s′
A(αi), s′

B(αi) as in the
protocol description.
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During the first � invocations of FOLE, Alice would send (inputR, pA(αi)) to
the ideal functionality FOLE. The simulator leaks sA(αi) to Z as the response
that Alice would receive from FOLE. During the next � invocations of FOLE

Alice would send (inputS, (RA
2 (αi),UA(αi))), but does not receive anything back,

hence we do not need to simulate anything here. Finally we leak s′
B(αi) to Z

as the message that she would receive in step 6. The only difference between a
real protocol execution and our simulation is the choice of pB(x), which in turn
influences the value of s′

B(αi). However, since

p(αi) = sA(αi) + s′
B(αi) + pA(αi) · RA

1 (αi) − UA(αi)

we have that

s′
B(αi) = p(αi) − pA(αi) · RA

1 (αi) − pA(αi) · RB
1 (αi) + UA(αi) − UB(αi)

At this point we observe that the values s′
B(αi) are distributed uniformly at

random, since we only learn � evaluation points and since UB(x) is a uniformly
random polynomial of degree �, which is not known to Alice. �

Efficiency. The communication complexity of Π�, t
NPA essentially depends on the

communication complexity of the FOLE functionality. Using a passively secure
instantiations of FOLE with constant communication overhead [NP99,IPS09,
ADI+17], we obtain a instantiation for F�, t

NPA with communication complexity
O(� log p).

8 Conclusion and Open Problems

In this work we have initiated the study of sublinear threshold private set inter-
section. We have established a lower bound, showing that any protocol has to
have a communication complexity of at least Ω(t), where t is the maximum
allowed size of the symmetric set difference. We have shown an almost match-
ing upper bound of Õ(t) based on fully homomorphic encryption and we have
shown how to obtain a protocol with communication complexity Õ(t2) based on
additively homomorphic encryption. Our work poses several exciting open ques-
tions. From a theoretical perspective, it remains an open problem to construct
a protocol with communication complexity Õ(t) from weaker assumptions than
fully homomorphic encryption. Since our intersection protocol in Sect. 6 already
has the desired complexity, one “only” needs to find a protocol for private set
intersection cardinality testing with the same communication complexity. From
a practical perspective, it is an open question to develop protocols that are
practically, rather than just asymptotically, efficient.
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Abstract. A central challenge in the study of MPC is to bal-
ance between security guarantees, hardness assumptions, and resources
required for the protocol. In this work, we study the cost of tolerating
adaptive corruptions in MPC protocols under various corruption thresh-
olds. In the strongest setting, we consider adaptive corruptions of an
arbitrary number of parties (potentially all) and achieve the following
results:

– A two-round secure function evaluation (SFE) protocol in the CRS
model, assuming LWE and indistinguishability obfuscation (iO). The
communication, the CRS size, and the online-computation are sub-
linear in the size of the function. The iO assumption can be replaced
by secure erasures. Previous results required either the communica-
tion or the CRS size to be polynomial in the function size.

– Under the same assumptions, we construct a “Bob-optimized” 2PC
(where Alice talks first, Bob second, and Alice learns the output).
That is, the communication complexity and total computation of
Bob are sublinear in the function size and in Alice’s input size. We
prove impossibility of “Alice-optimized” protocols.

– Assuming LWE, we bootstrap adaptively secure NIZK arguments to
achieve proof size sublinear in the circuit size of the NP-relation.

On a technical level, our results are based on laconic function evaluation
(LFE) (Quach, Wee, and Wichs, FOCS’18) and shed light on an inter-
esting duality between LFE and FHE.

Next, we analyze adaptive corruptions of all-but-one of the parties
and show a two-round SFE protocol in the threshold PKI model (where
keys of a threshold FHE scheme are pre-shared among the parties) with
communication complexity sublinear in the circuit size, assuming LWE
and NIZK. Finally, we consider the honest-majority setting, and show
a two-round SFE protocol with guaranteed output delivery under the
same constraints.
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1 Introduction

After establishing feasibility in the 1980’s [8,28,52,76,79], the rich literature of
multi-party computation (MPC) has focused on several performance aspects of
the problem. These aspects include: (a) studying the resources required in terms
of communication rounds, total amount of communication, and total amount
of computation, (b) minimizing the required complexity assumptions under the
various notions, and most importantly, (c) enhancing the notion of security, start-
ing from the simplest notion of static corruptions with semi-honest adversaries
in a stand-alone model, to sequential, and concurrent composition, to adaptive
corruptions of parties by a malicious adversary.

Recent results have considered a few of these questions simultaneously.
Despite several decades of progress, many basic questions about feasibility and
asymptotic optimality of MPC protocols remain. The focus of this paper is to
study the price of adaptive security in light of recent round-optimal and low-
communication protocols for the static-security setting.

Recall that adaptive security [7,20] for an MPC protocol models the realis-
tic threat in which the adversary can corrupt a party during the execution of
a protocol—in particular, after seeing some of the transcript of a protocol. In
contrast, with static corruptions, the adversary must choose which parties to
corrupt before the protocol begins. In this simpler static case, the security argu-
ment relies on the fact that the inputs of the corrupted parties are known, and
thus the simulator can “work around” these parties to generate a reasonable,
and consistent transcript for the remaining parties. Indeed, adaptive security is
known to be strictly stronger than static security [20,22].

While the idea of allowing an adversary to corrupt parties at anytime dur-
ing protocol executions seems natural, its technical formulation is captured by
obliging the simulator in the security definition to support some specific tasks.
In particular, the technical difficulty in achieving adaptive security is that the
simulator must produce a transcript for the execution before knowing which par-
ties are corrupted. In an extreme case, the protocol can already be completed,
and the adversary can then begin to corrupt all of the parties, one by one.

Two main models are considered for adaptive corruptions. In the first and
simpler one, it is assumed that parties can securely erase certain parts (and
even all) of their random tapes.1 In this setting, when simulating a party who
gets corrupted, the simulator may not be required to provide random coins
explaining all the messages previously sent by that party. In the second, erasures-
free model, there are no assumptions about the ability to erase local information.
When a party is corrupted in this adaptive security notion, the adversary can
learn all of that party’s inputs and internal random coins. In this case, a secure

1 We note that in certain cases it is reasonable to erase the random coins, e.g., when
encrypting a message it is normally fine not to store the encryption randomness;
however, is some cases one cannot erase all of its random tape, e.g., when sending a
public encryption key it is normally essential to store the decryption key. We refer
the reader to [18,20] for further discussion on secure erasures.
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protocol requires a simulator that, after producing the transcript, can “explain”
the transcript by generating the coins and inputs for a given party after they
are corrupted. In particular, the simulator only learns the input of that party
after the corruption (e.g., after the entire execution), and then must “explain”
the transcript it produced beforehand in a way that is consistent with the given
input.

As a result of these difficulties, most of the literature shows that achieving
adaptive security is notoriously harder than achieving static security; in some
cases there are outright impossibility results such as the case of fully homo-
morphic encryption [68], public-key encryption which cannot exist for arbitrary
messages [72], constant-round MPC in the plain model (under black-box simu-
lation) [47], MPC protocols with non-expander communication graphs [17], and
composable broadcast protocols without an honest majority [62]. All of these
lower bounds, with the exception of [47], hold also for the weaker adaptive set-
ting with secure erasures.

1.1 Full Adaptivity: Adaptive Corruptions of All the Parties

We start by considering the strongest adversary that can adaptively corrupt,
and arbitrarily control, any subset of the participating parties. We will focus on
the resources required for securely evaluating a function, balancing between the
number of rounds, the communication complexity, and the online-computational
complexity (the work performed between the first and last messages).

The feasibility of adaptively secure MPC was established in the seminal CLOS
protocol [21] in a resoundingly strong manner in the UC framework [19]. This
paper established the notion of fully adaptive security as described above, in
the stronger, erasures-free setting, when the adversary can corrupt all protocol
parties after execution. They then achieved this notion with a brilliant, yet com-
plicated protocol that worked in the common random string model.2 However,
that protocol’s round complexity depended on the circuit depth, and its commu-
nication was polynomially larger than the size of the circuit being computed.
Roughly 15 years later, Canetti et al. [27] constructed a constant-round protocol
under standard assumptions, and recently Benhamouda et al. [10] constructed
a 2-round protocol assuming 2-round adaptively secure oblivious transfer (OT).
But again, both of these recent results require communication that is larger than
the circuit size, and thus come at a larger cost than recent protocols for static
corruptions that require two rounds and sublinear communication in the circuit
size [71].

Another line of recent work overcomes the communication bottleneck, but at
the cost of stronger assumptions and a large common reference string. Constant-
round [24,38] and 2-round [26,46] protocols for adaptively secure MPC are
known assuming indistinguishability obfuscation (iO) for circuits and one-way

2 In the common random string model, all parties receive a uniformly random string
generated in a trusted setup phase. In the common reference string model, the com-
mon string is sampled according to some pre-defined distribution.
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functions (OWF). These protocols have sublinear communication ([24,38] in the
semi-honest model, [26,46] in the malicious setting3), but require a large CRS
(at least linear in the circuit size). In particular, the approach of these results is
to place an obfuscated universal circuit into the common reference string which
can compute any function of a given size. Thus, these results are more aptly
described as bounded-circuit-size adaptively secure MPC. In contrast, we aim to
study a setup model in which the reference string is smaller (preferably inde-
pendent) of the size of the evaluated function.

Lastly, recent advances in the static setting [1,75] presented protocols with
online-computation that only depends on the function’s depth but not on its size.
In the adaptive setting, on the contrary, all known protocols require computing
the function during the online part of the computation.

We now present three results in the fully adaptive setting: a resource-efficient
MPC protocol; feasibility and infeasibility results regarding one-sided-optimized
two-party protocols; and NIZK protocols with a short proof.

Two-Round MPC with Low Communication and Online-
Computation. Thus, the first result of this paper is to present a 2-round
fully adaptively secure MPC that requires only sublinear communication (i.e.,
depends only on the inputs, outputs, and depth of the function), sublinear online-
computation, and that uses a sublinear common reference string. To achieve our
result, we combine the techniques from the recent work on Laconic Function
Evaluation (LFE) [75] (that can be instantiated under a natural variant of the
learning with errors assumption, called adaptive LWE (ALWE).4) and explain-
ability compilers [38]. In this sense, our answer to the main question regard-
ing the cost of adaptive security versus static security shows a minimal cost
to the communication complexity in the secure-erasures model, and the addi-
tion of complexity assumptions in the erasures-free setting: namely the need for
sub-exponentially secure iO in order to implement the explainability compiler.
Table 1 summarizes the performance characteristics of prior work in comparison
to our new result.

Theorem 1 (adaptively secure MPC with sublinear communication,
informal). Assuming ALWE and secure erasures (alternatively, sub-exponential
iO), every function can be securely computed by a 2-round protocol tolerating a
malicious adversary that can adaptively corrupt all of the parties, such that the
communication complexity, the online-computation complexity, and the size of
the common reference string are sublinear in the function size.
3 The protocols in [24,38] use the CLOS compiler [21] to get malicious security. Since

the communication of previously known adaptively secure ZK protocols depends on
the NP relation (see [44,58,70] and references therein), the communication of the
maliciously secure protocols depended on the CRS. Our short NIZK (Theorem 3)
can be used to reduce the communication of [24,38] in the malicious setting as well.

4 The basic construction in [75] holds under the standard LWE assumption; however,
for the purpose of (semi-)malicious MPC, in which the inputs to the protocol can
be chosen adaptively, after the CRS is published, we require the stronger variant.
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To explain the key bottleneck in achieving our result, note that almost all
known methods for succinct MPC in the static setting rely on fully homomor-
phic encryption [49].5 The general template is for parties to encrypt and broad-
cast their inputs, independently evaluate the function on said inputs, and then
jointly decrypt the output. The problem in the case of adaptive security is that
the simulator must produce a transcript for such a protocol, consisting of the
input ciphertexts and the output ciphertext, without knowing the inputs of any
parties; later after corruption, the simulator would need to provide a decryption
key that explains the ciphertexts for any given input and for the final output.
Unfortunately, Katz et al. [68] showed that this exact task is not possible for all
functions, even assuming secure erasures, since the existence of such a simulator
would imply a compact circuit that can be used to compute the function.

To get around the impossibility of adaptively secure FHE, the key insight of
our approach is to instead use a recent technique of laconic function evaluation
(LFE) [75], itself an extension of the idea of laconic OT [29]. At a high level,
LFE allows a party to publish a short digest of a function; later any party
can encrypt an input to that function such that the resulting ciphertext is still
small with respect to the size of the function. In particular, both the digest and
the ciphertext size are proportional to the depth of the function. Because the
computational cost of the decryption algorithm is proportional to evaluating the
function, LFE avoids the impossibility argument for adaptive security from [68],
while preserving the succinct communication pattern. LFE is in some sense a
dual notion to FHE. We extend on this duality in the discussion on the two-party
case below.

Our starting point follows the statically secure protocol from [75]. The idea
is for the parties to each locally compute a digest of the function f (this is done
deterministically, using a CRS for LFE parameters), and then use an MPC pro-
tocol (possibly not communication efficient) to jointly compute the encryption
of the inputs (x1, . . . , xn). The communication and online-computation required
are naturally proportional only to the encryption algorithm, which depends on
the depth of the original function but not on its size. Finally, each of the parties
can then locally decrypt the ciphertext with respect to the digest to recover the
output.

Nonetheless, for adaptive security, it is unclear how to simulate the output
ciphertext when possibly all n parties can be corrupted. To circumvent this bar-
rier, we first observe that the protocol from [75] achieves adaptive security in
the erasures model, without any additional assumptions, and then remove the
erasures using the explainability compiler technique from [38]. Loosely speaking,
an explainability compiler takes a randomized circuit C and compiles it to a cir-
cuit ˜C, computing the same function, along with an additional program Explain,
such that given any input/output pair (x, y) the program Explain can produce
coins r satisfying y = ˜C(x; r).

5 Another approach for compact MPC is using function secret sharing (FSS) [15,16].
This approach does not seem to support adaptive corruptions.
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Overall, this framework achieves all of the round, communication, and online-
computation complexity goals, but it still requires a common reference string
whose size is related to the depth of the function being computed, and further
in the erasures-free setting, it relies on iO. In contrast, in the static corruption
setting, only LWE is required.

Alice/Bob-Optimized Protocols. Consider a two-message protocol for two
parties, where Alice sends the first message, Bob replies with the second, and
only Alice learns the output. In this setting, it is possible for one party’s total
computation (and thus also total communication) to be proportional to the size
of their input and output, while the other party “does all of the work” of securely
evaluating the function. These protocol variants are designated as “optimized for
Alice” or “optimized for Bob,” depending on which party saves the work.

In the static-corruption setting, Alice-optimized protocols can be constructed
assuming FHE, where Alice encrypts her input, Bob homomorphically evaluates
the circuit and returns the encrypted result. Quach et al. [75] showed that Bob-
optimized protocols can be constructed from LFE, where Alice compresses the
function with her input hard-wired, sends the digest to Bob who replies with
the encryption of his input. Therefore, in the static setting, FHE and LFE are
dual notions with respect to the work-load of the computation. We next show
that in the adaptive setting this duality breaks. On the one hand, we extend
the impossibility result of FHE [68] to rule out adaptively secure 2-round Alice-
optimized protocols (even assuming secure erasures). On the other hand, we
construct an adaptively secure, semi-malicious,6 Bob-optimized protocol from
LFE and explainability compilers (alternatively, just from LFE assuming secure
erasures). We note that any 2-round Bob-optimized protocol can be converted
into a 3-round Alice-optimized protocol, which is the best one could hope for.
Table 2 summarizes our results vis a vis prior work.

Theorem 2 (Alice/Bob-optimized protocols, informal).

1. Assuming ALWE and secure erasures (alternatively, sub-exponential iO),
there exists an adaptively secure semi-malicious 2PC, where the total com-
munication and Bob’s computation are sublinear in the function size and in
Alice’s input size.

2. There exists 2-party functions such that in any adaptively secure, semi-honest,
2-round protocol realizing them, Bob’s message must grow linearly in his
input, even assuming secure erasures.

The key idea behind our Bob-optimized protocol is to use the same LFE
approach put forth in [75] for static security, and strengthen it to tolerate adap-
tive corruptions. To support an adaptive corruption of Alice, the simulator will
need to produce an equivocal first message, i.e., to simulate the digest without

6 In the semi-malicious setting, the adversary follows the protocol as in the semi-honest
case, but he can choose arbitrary random coins for corrupted parties.
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Table 2. Comparison of two-message semi-honest protocols for f : {0, 1}�A ×
{0, 1}�B → {0, 1}�out . Alice talks first, Bob the second, and only Alice learns the output.
For simplicity, multiplicative factors that are polynomial in the security parameter κ
or the circuit depth d are suppressed.

Approach Security CRS Communication Computation Assumptions

(erasures) Alice Bob Alice Bob

GC [79] static - �A |f | |f | |f | static OT

LOT [29] static O(1) O(1) |f | |f | |f | DDH, etc.

FHE [49] static - �A �out �A + �out |f | LWE

LFE [75] static O(1) O(1) �B + �out |f | �B + �out ALWE

equivocal GC [27] adaptive (no) - �A |f | |f | |f | adaptive OT

This work adaptive (yes) O(1) O(1) �B + �out |f | �B + �out ALWE

adaptive (no) �B + �out O(1) �B + �out |f | �B + �out ALWE and iO

adaptive (yes) |f | |f | �out + o(�B) |f | |f | impossible

knowing the input value of Alice, and upon a later corruption of Alice generate
appropriate random coins explaining the message. Our first technical contribu-
tion is to create an equivocal version of the LFE scheme of [75]. Similarly, to
support an adaptive corruption of Bob, the simulator should be able to generate
an equivocal second message, i.e., generate the ciphertext without knowing the
input of Bob, and upon a later corruption of Bob provide appropriate random
coins. This can be handled either assuming secure erasures, or using explainabil-
ity compilers.

Succinct Adaptively Secure NIZK. Next, we consider the problem of con-
structing an adaptively secure non-interactive zero-knowledge protocol (NIZK)
that is “succinct,” i.e., the size of the proof and of the common reference string
should be smaller than the size of the circuit relation. The best we can hope
for is for the proof to be the size of the witness (as otherwise, the lower-bound
of Gentry and Wichs [50] requires a non-standard complexity assumption). The
first adaptively secure NIZK was constructed by Groth et al. [56], however it
was not succinct. Gentry [49] and later Gentry et al. [51] combined FHE with a
standard NIZK system to construct such schemes that are secure against static
corruptions, and as observed in [51] also against adaptive corruptions in the
secure-erasures setting. However, these schemes are not secure against adaptive
corruptions in the erasure-free setting. In particular, they run into the FHE
bottleneck for adaptive security by Katz et al. [68] described above.

Our main technique to overcome this lower bound is to use homomorphic
trapdoor functions (HTDF) [53]. HTDF schemes are a primitive that conceptu-
ally unites homomorphic encryption and homomorphic signatures. In our usage,
HTDF can be thought of as fully homomorphic commitment schemes which are
equivocal (hence, statistically hiding), where a trapdoor can be used to open any
commitment to any desired value. Using HTDF, the prover can commit to the
witness (instead of encrypting it), evaluate the circuit over the commitments,
and use adaptive but non-succinct NIZK (e.g., from [56]) to prove knowledge of
the witness and that the result commits to 1. The verifier evaluates the circuits
over the committed witness, and verifies the NIZK to ensure that the result is a
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Table 3. NIZK arguments with security parameter κ, for circuit size |C|, depth d, and
witness size |w|.

Protocol Security

(erasures)

CRS size Proof size Assumptions

Groth [55] static |C| · poly(κ) |C| · poly(κ) TDP

Groth [55] static |C| · polylog(κ) + poly(κ) |C| · poly(κ) Naccache-Stern

GOS [56] adaptive (no) poly(κ) |C| · poly(κ) pairing based

Gentry [49] adaptive (yes) poly(κ) |w| · poly(κ, d) LWE, NIZK

GGIPSS [51] adaptive (yes) poly(κ) |w| + poly(κ, d) LWE, NIZK

This work adaptive (no) poly(κ) |w| · poly(κ, d) LWE, NIZK

commitment to 1. A summary of our results in comparison to prior work appears
in Table 3.

Theorem 3 (short NIZK, informal). Assuming LWE, if there exists adap-
tively secure NIZK arguments for NP, there exists adaptively secure NIZK argu-
ments for NP with proof size sublinear in the circuit size of the NP relation.

1.2 Adaptive Corruptions of a Strict Subset of the Parties

Recall that the notion of fully adaptive security allows the adversary to corrupt
all of the parties in the execution—in which case the protocol offers no privacy
of inputs. A criticism of this notion is that it may be too strong for certain
applications. In fact, the motivation behind this strong notion arises mainly
from its application to composition of protocols. Namely, in a larger protocol
that involves more parties, participants of a sub-protocol may eventually all
become corrupted, and thus security of the larger protocol will depend on the
fully adaptive security of the subprotocol.

It is equally justifiable, however, to consider other protocol-design tasks in
which the protocol needs only withstand a weaker adversary who can corrupt
either all-but-one of the participants, or—weaker still—only a minority of the
players. We next consider adaptive security in these two settings.

All-But-One Corruptions. When considering adaptive security for all-but-
one corruptions, Ishai et al. [63] constructed a constant-round, information-
theoretically secure protocol in the OT-hybrid model. Garg and Sahai [47]
showed an elegant way to instantiate the trusted setup required for [63] using
non-black-box techniques and thus constructed a constant-round MPC protocol
in the plain model, under standard cryptographic assumptions. The communi-
cation in both of these protocols is super-linear in the circuit size.

In contrast, for the weaker notion of static security, Asharov et al. [3] pre-
sented a 2-round protocol with sublinear communication, albeit in the threshold-
PKI model. The threshold-PKI model is a setup in which all the participants
of the protocol are privately given individualized key shares corresponding to
a public key. A single-round protocol for threshold PKI was also given in [3],
yielding a 3-round protocol in a standard CRS setup. Mukherjee and Wichs [71]
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removed the need for this extra round, thereby presented a 2-round MPC with
sublinear communication in the common random string model.

We can thus pose our main question regarding the cost of adaptive security
for communication-optimal protocols. Recently, Damg̊ard et al. [43] constructed
an adaptively secure 3-round MPC protocol with sublinear communication com-
plexity in the threshold-PKI model assuming LWE. Their main idea is to use
a special threshold FHE scheme that enables equivocating encryptions of 0 to
encryptions of 1. Initially, the parties broadcast encryptions of their inputs. Next,
each party locally evaluates the circuit, and the parties re-randomize the evalu-
ated ciphertext in the second round by broadcasting (special) encryptions of 0.
The third round is a single-round threshold decryption protocol.

To simulate this protocol, the simulator uses the equivocal mode of the public
key. This way, all ciphertexts in the first round are simulated as encryptions of 0.
After extracting corrupted parties’ inputs, and obtaining the output value, the
simulator uses the re-randomizing round to carefully add non-zero encryptions,
and force the joint ciphertext to be an encryption of the output. Finally, the
threshold decryption protocol is simulated. We note that using the approach of
[43] (which is based on [41]), the re-randomization round seems to be inherent,
and so it is unclear how to obtain optimal two rounds using this technique.

Our result in this setting is to construct an adaptively secure 2-round MPC
assuming non-committing encryption (NCE) and threshold equivocal FHE in
the threshold-PKI setup model. The setup assumption can be instantiated using
the recent 2-round protocol of [10], assuming 2-round adaptively secure OT,
resulting in a 4-round variant in the CRS model. All of the necessary primitives
can be instantiated from LWE in the semi-malicious setting, and security in the
malicious case follows using NIZK. Table 4 summarizes the prior work and our
contribution in this model.

Theorem 4 (all-but-one corruptions, informal). Assuming LWE and
adaptively secure NIZK, every function can be securely computed by a 2-round
protocol in the threshold-PKI model tolerating a malicious adversary that can
adaptively corrupt all-but-one of the parties such that the communication com-
plexity is sublinear in the function size.

Table 4. Comparison of maliciously secure MPC for f : ({0, 1}�in)n → {0, 1}�out repre-
sented by a circuit C of depth d, tolerating n − 1 corruptions. (∗) The results in [47]
only hold in the stand-alone model.

Protocol Security Rounds Communication Assumptions Setup

AJLTVW [3] static 2
3

poly(�in, �out, d, κ, n) LWE, NIZK threshold PKI
CRS

MW [71] static 2 poly(�in, �out, d, κ, n) LWE, NIZK CRS

IPS [63] adaptive O(1) |C| + poly(d, log |C|, κ, n) OT-hybrid -

GS [47] adaptive O(1) |C| + poly(d, log |C|, κ, n) CRH, TDP, NCE
dense crypto

-

DPR [43] adaptive 3 poly(�in, �out, d, κ, n) LWE, NIZK threshold PKI

This work adaptive 2
4

poly(�in, �out, d, κ, n) LWE, NIZK threshold PKI
CRS
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Our protocol follows the template of [3], where every party encrypts his input
in the first round, locally evaluates the circuit over the ciphertexts, uses its key-
share to partially decrypt the result, and broadcasts the decrypted share (some
additional “smudging” noise is sometimes required to protect the decryption
share). The technical challenges are: (1) the ciphertexts in the first round must
be created in an equivocal way, and (2) the simulation strategy used for the
threshold decryption in [3] (and similarly in [71]) is inherently static, and does
not translate in a straightforward way to the adaptive setting.

We overcome the first challenge by constructing a novel threshold equivocal
FHE scheme. The scheme is equipped with an equivocal key-generation algo-
rithm. All ciphertexts encrypted in this mode are “meaningless” and carry no
information about the plaintext; a trapdoor can be used to equivocate any cipher-
text to any message. We instantiate this FHE scheme using the dual-mode HTDF
scheme of Gorbunov et al. [53] that can generate the homomorphic trapdoor
functions in an extractable mode, corresponding to the standard (meaningful)
mode of the FHE, and an equivocal mode, corresponding to the meaningless
mode.

We proceed to explain the second challenge. As observed in [3,71], the thresh-
old decryption protocol may leak some information about the shares of the secret
key, and the simulator for the decryption protocol can be used to protect exactly
one party. In the static setting, when the set of corrupted parties is known
ahead of time, the simulator can choose one of the honest parties Ph as a special
party for simulating the threshold decryption. This approach does not work in
the adaptive setting since the party Ph may get corrupted after simulating the
decryption protocol. The simulator cannot know in advance which party will be
the last to remain honest. For this reason, we use a different simulation strategy
which allows the simulator to “correct” his choice of the party that is simulated
as honest for the decryption protocol. Technically, this is done by having each
party send shares of zero to each other party over a secure channel (that can
be instantiated via NCE). These shares are used to hide the partial decryptions
without changing their values. Since shares exchanged between pairs of honest
parties remain hidden from the eyes of the adversary, the simulator has more
freedom to replace the special party Ph upon corruption, by another honest
party, even after simulating the decryption protocol.

Thus, as it stands, the cost of adaptive security with respect to the best
statically secure protocols is either the threshold-PKI setup assumption, or the
requirement of 2 additional rounds. Removing either of these costs remains an
interesting open question.

Honest-Majority Setting. In the honest-majority setting, it is possible to
guarantee output delivery to all honest parties. Damg̊ard and Ishai [39] demon-
strated the feasibility of constructing adaptively secure protocols that use a
constant number of rounds and only require one-way functions. However, the
communication of their protocol is super-linear in the circuit size.
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In the static-corruption setting, Asharov et al. [3] constructed the first proto-
col with sublinear communication using threshold FHE; their protocol requires 4
rounds in the threshold-PKI model and 5 rounds in the CRS model. Gordon et al.
[54] reduced the round complexity to 2 in the threshold-PKI model or 3 in the
CRS model. Recently, Ananth et al. [2] showed a 3-round protocol in the plain
model with communication polynomial in the circuit size, and Badrinarayanan
et al. [4] showed a similar result with sublinear communication. Moreover, this
round complexity is tight because it is known that 2-round fair protocols are
impossible in the CRS model [48,54,74].7

Our result in this setting is to construct an adaptively secure analogue of [3,4].
In particular, we construct a 2-round adaptively secure MPC with guaranteed
output delivery and the same communication complexity as in the static case,
assuming NCE and threshold equivocal FHE in the threshold-PKI model in the
semi-malicious setting (all assumptions can be based on LWE). Security in the
malicious case follows using NIZK. We can compile our 2-round protocol into a
constant-round protocol in the plain with the same communication complexity
by computing the threshold-PKI setup using the protocol of Damg̊ard and Ishai
[39].

Theorem 5 (honest majority, informal). Assuming LWE and adaptively
secure NIZK, every function can be securely computed with guaranteed output
delivery by a 2-round protocol in the threshold-PKI model tolerating a malicious
adversary that can adaptively corrupt a minority of the parties such that the
communication complexity is sublinear in the function size.

The 2-round protocol is based on the protocol from the all-but-one case,
described in Sect. 1.2. The challenge lies in overcoming aborting parties to guar-
antee output delivery. We combine techniques from the threshold FHE of [54]
that required n/2 decryption shares to reconstruct the output into our thresh-
old equivocal FHE. The main idea is to share the decryption key using Shamir’s
secret sharing instead of additive secret sharing. Both Shamir’s reconstruction
and the decryption algorithm consist of linear operations, which make them com-
patible with each other. As observed by Gordon et al. [54] (see also [14]), the
problem with a näıve use of this technique is that the “smudging noise” (used
to protect partial decryptions from leakage) is multiplied by the Lagrange coef-
ficients, which may cause an incorrect decryption. Following [54], we have each
party secret shares his smudging noise using Shamir’s scheme, in a way that is
compatible with the reconstruction procedure. We show that this technique can
support adaptive corruptions.

To conclude, in the threshold-PKI model, the price of adaptive security is
the same as of static security in terms of assumptions, number of rounds, and
communication complexity. In the plain model, the cost is an additional constant
number of rounds. Table 5 summarizes prior work and our results.

7 We emphasize that the lower bounds hold given a public-coin setup, where all parties
get the same information, and does not hold given a private-coin setup such as
threshold PKI.
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Table 5. Comparison of maliciously secure MPC for f : ({0, 1}�in)n → {0, 1}�out repre-
sented by a circuit C of depth d, in the honest-majority setting.

Protocol Security Rounds Communication Assumptions Setup

AJLTVW [3] static 4

5

poly(�in, �out, d, κ, n) LWE, NIZK threshold PKI

CRS

GLS [54] static 2

3

poly(�in, �out, d, κ, n) LWE, NIZK threshold PKI

CRS

ACGJ [2] static 3 |C| · poly(κ, n) PKE and zaps -

BJMS [4] static 2

3

poly(�in, �out, d, κ, n) LWE, zaps,

dense crypto

threshold PKI

-

DI [39] adaptive O(1) |C| · poly(κ, n) OWF -

This work adaptive 2

O(1)

poly(�in, �out, d, κ, n) LWE, NIZK threshold PKI

-

1.3 Additional Related Work

Adaptive security tolerating an arbitrary number of corruptions has been con-
sidered in various models, including protocols in the CRS model [10,21,27], the
sunspot model [23], the key-registration model [6], the temper-proof hardware
model [61], the super-polynomial simulation model [5,59], and more generally,
based on UC-puzzles [37,78]. All of these protocols require super-linear commu-
nication complexity.

Adaptive security in the secure-erasures model was considered in [7,9,42,
60,64,69,73], and in the erasures-free model tolerating all-but-one corruptions
in [43,57,63,66] as well as in the honest-majority setting [36,39,41]. With the
exception of [43], all of these protocols also require super-linear communication
complexity.

Garay et al. [45] considered information-theoretic MPC in the client-server
setting, where a constant number of clients uses n servers that assist with the
computation, and studied sublinear communication in the number of servers.
They gave a complete characterization for semi-honest security with static cor-
ruptions and adaptive corruptions with or without erasures.

In the static setting, MPC with sublinear communication complexity over
eventual-delivery asynchronous channels was constructed in [32]. We conjecture
that our techniques can also be applied in the asynchronous setting to obtain
adaptive security with low communication.

We note that since the protocol of Garg and Polychroniadou [46] has low
communication complexity, and its CRS size depends on the circuit size, it is
possible to use a more compact representation of the function, e.g., by a Turing
machine (TM) (or a RAM program as considered in [26]), and obfuscate it
using iO for Turing machines. Nonetheless, the solution provided in this paper
is different in several qualitative aspects. First, to make the CRS independent
of the computation at hand, it is preferred to obfuscate a universal TM, which
receives the description of the concrete TM on its input tape; while iO for TM
with bounded inputs exists under the same assumptions as iO for circuits [11,
12,25], iO for TM with unbounded inputs is only known under the stronger
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assumptions of public-coin differing-inputs obfuscation [65]. Second, it is not
clear how to replace the iO for TM assumption by secure erasures. Third, the
computation may require a large auxiliary information, e.g., access to a large
database, whose description is independent of the TM; this may result with
a large description of the function. In our solution, the obfuscated circuit is
sublinear in the computation size even when a large auxiliary information is
used.

1.4 Open Questions

Our main question is to study the price of adaptive security. Dramatic improve-
ments in the answer to this question have emerged over the past 15 years, and
this paper is able to establish almost zero cost in terms of round or communica-
tion. Our results, however, leave the following questions as future work.

– Reducing setup assumptions. Our results for fully adaptive, 2-round, pro-
tocols without erasures require a common reference string. Are there fully
adaptively secure protocols with sublinear communication complexity in the
common random string(even with super-constant number of rounds)?

– Reducing hardness assumptions. Are there fully adaptively secure pro-
tocols with sublinear communication without assuming secure erasures or
explainability compilers/iO?

– Improving setup assumptions/round complexity for all-but-one.
Our optimal-round protocol requires a pre-distribution of the FHE keys. We
show a 4-round protocol in the CRS model (equivalently, in the plain model
for semi-honest). Are there 2 or 3 round protocols with sublinear communi-
cation in the CRS model to match the results for static adversaries?

Paper Organization

In Sect. 3, we present our results on fully adaptive security, and in Sects. 4.1 and
4.2, we present our results on Bob- and Alice-optimized protocols. In Sect. 5, we
consider the all-but-one corruption case, and in Sect. 6, the honest-majority case.
We refer the reader to the full version of the paper [35] for formal definitions
and complete proofs.

2 Preliminaries

Basic Notations. For n ∈ N let [n] = {1, · · · , n}. We denote by κ the secu-
rity parameter. Let poly denote the set all positive polynomials and let PPT
denote a probabilistic algorithm that runs in strictly polynomial time. A func-
tion ν : N → R is negligible if ν(κ) < 1/p(κ) for every p ∈ poly and suf-
ficiently large κ. Two distribution ensembles X = {X(a, κ)}a∈{0,1}∗,κ∈N

and

Y = {Y (a, κ)}a∈{0,1}∗,κ∈N
are computationally indistinguishable (denoted X

c≡ Y )
if no ppt algorithm can tell the difference between them except with negligible
probability (in κ).
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Cryptographic Primitives. In this work, we consider secure protocols in various
security settings that require different cryptographic primitives. We present for-
mal definitions for all primitives in the full version [35]. An informal description
of every primitive is given before it is used in the main body.

Security Model. We present our results in the UC framework. We refer the reader
to [19] for a detailed description of the framework.

In our secure function evaluation protocols, we will consider two security
notions. In the honest-majority setting, we will consider security with guaranteed
output delivery [33], informally meaning that all honest parties will receive the
correct output from the computation. In general, when an honest majority is
not assumed this cannot be achieved [31], and the standard requirement is for
security with abort, informally meaning that the adversary has the capability to
first learn the output from the computation and later force all honest parties to
output ⊥.

Guaranteed output delivery and security with abort are not to be confused
with guaranteed termination, which means that the honest parties actually finish
the protocol. We emphasize that UC protocols cannot provide guaranteed ter-
mination since the adversary has full control over the communication channels,
and he can simply “hang” the computation. Therefore, following the conven-
tion of Canetti et al. [21], we exclude trivial protocols, and require that the
properties of guaranteed output delivery or security with abort will hold when
the environment provides sufficiently many activations to the parties, and the
adversary delivers all messages.8 In particular, unlike the stand-alone model, in
the UC model even when a protocol guarantees output delivery, we allow the
adversary to learn the output from the computation while the honest parties
do not; however, if an honest party terminates it is guaranteed to receive the
output. An alternative, is to work in the Fsync-hybrid model [31] or to consider
the framework of [67], which ensures guaranteed termination regardless of the
adversary’s actions (but, still, as long as the environment provides sufficiently
many activations to the parties).

3 Sublinear Communication in the Fully Adaptive
Setting

In this section, we consider the fully adaptive setting (where the adversary can
corrupt all parties) and construct two-round secure protocols with sublinear
communication and online-computation complexity (in the circuit size). Our
starting point is the protocol of Quach et al. [75] that is based on laconic function
evaluation (LFE).

8 Other properties such as privacy and independence of inputs are always required to
hold.
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3.1 Cryptographic Primitives Used in the Protocol

Laconic Function Evaluation. Informally, an LFE scheme consists of 4 algo-
rithms. The CRS generation algorithm generates a common random string given
the security parameter and function parameters (e.g., function depth and input
length) crs ← LFE.crsGen(1κ, params). The compression algorithm produces a
small digest of a circuit digestC = LFE.Compress(crs, C; r). The encryption algo-
rithm encrypts the input based on the digest ct ← LFE.Enc(crs, digestC , x). The
decryption algorithm decrypts the ciphertext using the random coins used in the
compression y = LFE.Dec(crs, C, r, ct).

We require the LFE to be correct, i.e., using the notation above it holds that
y = C(x), and secure, meaning that the ciphertext can be simulated given the
output value y without knowing the input x. LFE can be constructed with the
function-hiding property, which ensures that the digest can be simulated based on
the function parameters without knowing the function itself. If function hiding
is not required (as is the case in this section) the compression algorithm can
be made deterministic. We consider the “adaptive” version of LFE, where the
inputs to the computation can be chosen after the CRS has been sampled. Quach
et al. [75] constructed LFE schemes satisfying this property assuming adaptive
LWE.

Explainability Compilers. Informally, an explainability compiler takes as input
a description of a randomized algorithm Alg, and outputs two algorithms: ˜Alg

and Explain. The first algorithm ˜Alg computes the same functionality as Alg.
The second algorithm Explain takes an input/output pair (x, y) and produces
random coins r such that y = ˜Alg(x; r).

Assuming iO for circuits and OWF, Dachman-Soled et al. [38] constructed
explainability compilers with selective security, where the challenge input is
selected independently of the compiled circuit. Explainability compilers with
adaptive security, where the challenge input is selected based on the compiled
circuit follows via complexity leveraging [13] assuming iO and OWF with sub-
exponential security (see also [24]). Looking ahead, to support adaptive inputs
from the environment, our protocol requires the latter variant.

3.2 Adaptive Security with Sublinear Communication:
Secure-Erasures Setting

We will show that assuming LFE every function can be securely realized in
the common random string model with secure erasures, by a 2-round protocol
tolerating an arbitrary number of adaptive corruptions with sublinear commu-
nication, online-computation, and CRS size. In Sect. 3.3, we will show how to
replace the secure-erasures assumption by assuming explainability compilers, in
which case the protocol requires a common reference string.

The basis of our protocol is the 2-round protocol of Quach et al. [75,
Thm. 6.2] in the common random string model, that is secure against n − 1
static corruptions and achieves sublinear communication and online-computation
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assuming the existence of LFE. The protocol from [75] is specified in a
hybrid model with an ideally secure computation (with abort) of the function
LFE.Enc (i.e., the FLFE.Enc

sfe-abort-hybrid model). That is, the ideal functionality receives
(crs, digestf , xi, ri) from each party Pi and computes

ct = LFE.Enc(crs, digestf , x1, . . . , xn;⊕i∈[n]ri).

In case of inconsistent inputs, or if the adversary sends abort, the functionality
outputs ⊥.

Given a circuit Cf computing f , the protocol of [75] is defined as follows:

– The common random string is computed as crs ← LFE.crsGen(1κ, f.params).
– Upon receiving (input, sid, xi), every party Pi computes digestf =

LFE.Compress(crs, Cf ), samples a uniformly random ri ← {0, 1}∗, and invokes
the ideal functionality FLFE.Enc

sfe-abort with (input, sid, (crs, digestf , xi, ri)).
– Upon receiving (output, sid, ct) from the ideal functionality, party Pi checks

that ct �= ⊥ (otherwise, Pi outputs (output, sid,⊥)), computes y =
LFE.Dec(crs, Cf , ct), and outputs (output, sid, y).

Proving security of the protocol against a static adversary corrupting all-but-one
of the parties is straightforward. Namely, by definition of LFE schemes, the simu-
lator can simulate the ciphertext ct based on the output y, and without knowing
the input values, as ct ← Simlfe(crs, Cf , digestf , y). Furthermore, by the prop-
erties of LFE, the size of the circuit computing LFE.Enc is poly(κ, �in, �out, d, n).
By instantiating the ideal functionality using a statically secure 2-round protocol
(e.g., the one from [71]), Quach et al. [75] achieved a statically secure protocol
with sublinear communication and online-computational complexity.

A closer look at the protocol of [75] shows that it remains secure even facing
adaptive corruptions of all-but-one of the parties, since a single honest party
suffices to keep the randomness used for LFE.Enc hidden from the adversary.
Furthermore, under the additional assumption of secure erasures, each party
can erase his random coins ri immediately after invoking FLFE.Enc

sfe-abort, and the pro-
tocol can satisfy adaptive corruptions of all the parties. By instantiating the
functionality FLFE.Enc

sfe-abort with the 2-round adaptively secure MPC from [10], we
obtain the following theorem.

Theorem 6 (Theorem 1, secure-erasures version, restated). Assume
the existence of LFE schemes for P/poly, of 2-round adaptively and maliciously
secure OT, and of secure erasures, and let f : ({0, 1}�in)n → {0, 1}�out be an
n-party function of depth d.

Then, Ff
sfe-abort can be UC-realized tolerating a malicious, adaptive PPT

adversary by a 2-round protocol in the common random string model. The size of
the common random string is poly(κ, d), whereas the communication and online-
computational complexity of the protocol are poly(κ, �in, �out, d, n).

Note that following [10,75], the assumptions in Theorem6 hold under the
adaptive LWE assumption.
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3.3 Adaptive Security with Sublinear Communication:
Erasures-Free Setting

In the erasures-free setting, it is unclear how to simulate the output ciphertext,
and later upon learning all of the inputs values of the parties, explain the ran-
dom coins that are used to generate it. We get around this barrier by using
explainability compilers.

Two-Round Protocol Assuming Adaptive Explainability Compilers.
We consider explainability compilers with adaptive security (where the chal-
lenge ciphertext is dynamically chosen) that can be realized by sub-exponentially
secure iO and OWF. To define the common reference string for the protocol, we
define the distribution Dlfe(params) that is parametrized by an LFE scheme
and by the parameters of the function to be computed params. The distri-
bution Dlfe computes crs ← LFE.crsGen(1κ, params) and ( ˜LFE.Enc,Explain) ←
Comp(1κ, LFE.Enc), and outputs the reference string (crs, ˜LFE.Enc).

We would like to define the protocol in the ˜LFE.Enc-hybrid model; how-
ever, the function ˜LFE.Enc is only given in the CRS and is not known before
the protocol begins. To get around this technicality, we define the function
fC((C1, x1, r1), . . . , (Cn, xn, rn)) that receives a circuit Ci, a value xi, and ran-
dom coins ri from each party, and outputs C1(x1, . . . , xn;⊕ri) in case C1 = . . . =
Cn, or ⊥ otherwise (Fig. 1).

Theorem 7 (Theorem 1, erasures-free version, restated). Assume the
existence of LFE schemes for P/poly, of explainability compilers with adaptive
security for P/poly, and of 2-round adaptively and maliciously secure OT, and
let f : ({0, 1}�in)n → {0, 1}�out be a deterministic n-party function of depth d.

Then, Ff
sfe-abort can be UC-realized in the FDlfe

crs -hybrid model tolerating a mali-
cious, adaptive PPT adversary by a 2-round protocol. The size of the common
reference string, the communication complexity, and online-computational com-
plexity of the protocol are poly(κ, �in, �out, d, n).

The proof of the theorem follows from Lemma 1 (proven in the full ver-
sion [35]) by instantiating the functionality FfC

sfe-abort, that is used to compute
˜LFE.Enc, using the 2-round protocol from [10] that requires 2-round adaptively

and maliciously secure OT.

Lemma 1. Assume the existence of LFE schemes for P/poly, and of explain-
ability compilers with adaptive security for P/poly, and let f be a deterministic
n-party function. Then, the protocol πfull UC-realizes Ff

sfe-abort tolerating a mali-
cious, adaptive PPT adversary in the (FDlfe

crs ,FfC

sfe-abort)-hybrid model.

4 Adaptively Secure Alice/Bob-Optimized Protocols

In this section, we consider 2-message protocols between Alice and Bob, with
respective inputs xA ∈ {0, 1}�A and xB ∈ {0, 1}�B , where only Alice learns the
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Fig. 1. Two-round SFE with adaptive, malicious security

output y = f(xA, xB). We say that a protocol is “Alice-optimized” if Alice’s
computation and the total communication of the protocol are proportional to
|xA| + |y|, while the computation complexity of Bob is proportional to |f |. We
say that a protocol is “Bob-optimized” if Bob’s computation and the total com-
munication are proportional to |xB | + |y|, while the computation complexity of
Alice is proportional to |f |.

There exist insecure protocols which are Alice-optimized, where Alice sends
her input to Bob who computes the function and returns the output to Alice.
Similarly, there exist insecure protocols which are Bob-optimized, where Bob
sends his input to Alice when she asks for it, and Alice computes the function
on her own.

Assuming FHE [49], there exist statically secure Alice-optimized protocols,
where Alice sends her encrypted input to Bob who homomorphically evaluates
the function and returns the encrypted output to Alice. Alice’s computation
and the total communication of the protocol are (|xA|+ |y|) ·poly(κ). Assuming
function-hiding LFE [75], there exist statically secure Bob-optimized protocols,
where Alice sends digest ← LFE.Compress(crs, fxA

(·)) to Bob, who replies with
his encrypted input ct ← LFE.Enc(digest, xB), and finally Alice recovers the
output. Bob’s computation and the total communication of the protocol are
(|xB | + |y|) · poly(κ, d), where d is the depth of the function f .

The question we consider is whether there exist adaptively secure protocols
which are Alice-optimized or Bob-optimized.

4.1 Adaptively Secure Bob-Optimized Protocol

The elegant protocol from [75] is secure in the common random string model
tolerating a static corruption of one of the parties by a semi-malicious adver-
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sary (that can choose arbitrary random coins for the corrupted party, but acts
honestly otherwise).

Adjusting this protocol to the adaptive setting requires overcoming a few
obstacles. Namely, the simulator should be able to generate an equivocal first
message, i.e., to simulate the digest without knowing the input value of Alice, and
upon a later corruption of Alice generate appropriate random coins explaining
the message. Similarly, the simulator should be able to generate an equivocal
second message, i.e., generate the ciphertext without knowing the input of Bob,
and upon a later corruption of Bob provide appropriate random coins.

To support an adaptive corruption of Alice, we enhance the LFE scheme to
support an equivocal mode (see Sect. 4.1). In this mode, the CRS is generated
along with a trapdoor information. The trapdoor can be used to explain a sim-
ulated digest as a compression of any circuit with the appropriate parameters.
Similarly to Sect. 3, to support an adaptive corruption of Bob, we can use either
secure erasures or explainability compilers.

Theorem 8 (Part 1 of Theorem 2, restated). Assume the existence of
equivocal, function-hiding LFE schemes for P/poly and of explainability compil-
ers with adaptive security for P/poly, and let f : {0, 1}�A × {0, 1}�B → {0, 1}�out

be a deterministic two-party function computable by a depth-d circuit.
Then, Ff

sfe can be UC-realized tolerating a semi-malicious, adaptive PPT
adversary by a 2-message protocol in the common reference string model with
secure channels. The size of the common reference string, the communica-
tion complexity (of both parties), and the computational complexity of Bob are
(�B + �out) · poly(κ, d).

The proof of Theorem 8 follows from Lemma 3 below. In the secure-erasures
setting, we can remove the explainability compilers assumption, and get the
following corollary.

Corollary 1. Assume the existence of equivocal, function-hiding LFE schemes
for P/poly and let f be a two-party function as above. Then, Ff

sfe can be UC-
realized in the secure-erasures model tolerating a semi-malicious, adaptive PPT
adversary by a 2-message protocol in the common random string model with
secure channels. The size of the common random string is poly(κ, d), and the
communication complexity and computational complexity of Bob are (�B + �out) ·
poly(κ, d).

The secure channels can be instantiated over authenticated channels assum-
ing NCE [20,30,34,40]; however, delivering Bob’s public key to Alice requires
either an additional communication round or a trusted setup.

Equivocal LFE. We start by extending the notion of LFE to support an equiv-
ocal mode.
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Definition 1 (equivocal LFE). A function-hiding LFE scheme Π is equivocal
if there exists a PPT simulator (Sim1

equiv-fh,Sim
2
equiv-fh) for the scheme Π such

that for all stateful PPT adversary A, it holds that
∣

∣

∣Pr
[

ExptEquivFH-realΠ,A (κ) = 1
]

− Pr
[

ExptEquivFH-idealΠ,A (κ) = 1
]∣

∣

∣ ≤ negl(κ),

for the experiments ExptEquivFH-real and ExptEquivFH-ideal defined below:

In the following lemma (proven in the full version [35] We show that the
generic construction of function-hiding LFE from standard LFE presented in [75]
can be adjusted to provide equivocality.

Lemma 2. Assuming the existence of standard LFE schemes and semi-
malicious, adaptively secure, 2-round OT, there exists a function-hiding, equiv-
ocal LFE scheme.

We note that both LFE [75] and adaptively and maliciously (hence, also
semi-maliciously) secure 2-round OT [10] can be instantiated assuming adaptive
LWE. Hence, also equivocal FH-LFE can be instantiated assuming adaptive
LWE (Fig. 2).

Fig. 2. 2-round, Bob-optimized protocol with adaptive, semi-malicious security
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Semi-malicious Bob-Optimized Protocol. We proceed to our Bob-
optimized protocol. Recall that the distribution Dlfe(params) samples a crs for
the LFE scheme, computes ( ˜LFE.Enc,Explain) ← Comp(1κ, LFE.Enc), and out-
puts (crs, ˜LFE.Enc).

Lemma 3. Consider the notations and assumptions in Theorem8. Then, proto-
col πbob securely realizes the functionality Ff

sfe tolerating a semi-malicious, adap-
tive PPT adversary in the (Fsmt,FDlfe(f.params)

crs )-hybrid model.

The proof of Lemma 3 can be found in full version [35].

4.2 Impossibility of Adaptively Secure Alice-Optimized Protocol

We now turn to show that the impossibility of adaptively secure FHE from [68]
can be extended to rule out adaptively secure Alice-optimized protocols. In fact,
we prove a stronger impossibility showing that for some functions the size of
Bob’s message cannot be smaller than his input, even if Alice’s message and the
CRS are long. Intuitively, if the output of the function is simply Bob’s input,
then clearly Bob’s message cannot be compressing. We show that this is the case
even if the output is short.

For n ∈ N, we define the two-party functionality fn(xA, gB) = (gB(xA), λ),
where Alice has input xA ∈ {0, 1}log n, Bob has input a function gB : {0, 1}log n →
{0, 1}, represented by its truth table as an n-bit string, and Alice learns the
output gB(xA).

Theorem 9 (Part 2 of Theorem 2, restated). Let πn be a 2-message pro-
tocol in the common reference string model for computing fn, where Alice sends
first the message m1 and Bob replies with the message m2. If the protocol
tolerates a semi-honest, adaptive adversary in the secure-erasures model, then
|m2| ≥ n.

Intuitively, by adaptively corrupting Alice and equivocating her input, we can
essentially recover gB(xA) in any choice of xA from the protocol transcript. This
means that the Bob’s response must encode the entire truth table of gB, which
is of size n. The formal proof of Theorem9 can be found in the full version [35].

5 Adaptive Corruptions of All-But-One of the Parties

In this section, we prove an analogue result in the adaptive setting to the result
of Asharov et al. [3], who showed how to compute any function tolerating all-but-
one corruptions using a two-round protocol in the threshold-PKI model assuming
threshold FHE, which in turn can be instantiated using LWE. Our construction
relies on threshold equivocal FHE (defined in the full version [35]) that allows
simulating ciphertexts for honest parties and explaining them properly upon
later corruptions.
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We note that the simulation technique used in [3] (and similarly in [71])
does not translate to the adaptive setting. As observed in [3,71], the threshold
decryption protocol may leak some information about the shares of the secret
key, and the simulator for the decryption protocol can be used to protect exactly
one party. Since [3,71] considered static corruptions, the set of corrupted parties
was known ahead of time, and the simulator could choose one of the honest
parties Ph as a special party for the simulation. The decryption protocol was
simulated with respect to Ph, as if he is the only honest party. For this reason,
proving security of exactly n − 1 corruptions in [71] was considerably simpler
than proving security of up to n − 1 corruptions.9

The simulation strategy that was used in [3,71] does not translate to the
adaptive setting, since the party Ph that is chosen by the simulator may get
corrupted after simulating the decryption protocol. The simulator cannot know
in advance which party will be the last to remain honest. For this reason, we use
a different simulation strategy, which allows the simulator to “correct” his choice
of the party that is simulated as honest for the decryption protocol. Technically,
this is done by having each party send shares of zero to each other party over
a secure channel (that can be instantiated via NCE). These shares are used to
hide the partial decryptions without changing their value. Since shares exchanged
between pairs of honest parties remain hidden from the eyes of the adversary,
the simulator has more freedom to replace the special party Ph upon corruption,
by another honest party, even after simulating the decryption protocol.

5.1 Threshold Equivocal FHE

In the full version [35], we define equivocal FHE as an FHE scheme that is
augmented with the capability to generate a public key in an “equivocal mode,”
allowing to explain any ciphertext as an encryption of any value. We show how
to construct equivocal FHE from an HTDF scheme, which in turn can be based
on LWE. This serves as a stepping stone for threshold equivocal FHE which is
used in the construction below.

In a threshold FHE scheme, the key-generation and the decryption algorithms
are in fact n-party protocols. We consider the simplest case of n-out-of-n thresh-
old FHE and require a single round decryption protocol (following [3,43,54,71]).
We note that threshold FHE for more general access structures are also known
assuming LWE [14].

Definition 2 (TEFHE). A threshold equivocal fully homomorphic encryption
(TEFHE) is a seven-tuple of algorithms (TEFHE.Gen, TEFHE.Enc, TEFHE.Eval,
TEFHE.PartDec, TEFHE.FinDec, TEFHE.GenEquiv, TEFHE.Equiv) satisfying the
following properties:

9 We note that the same problem arises also in the threshold FHE scheme for more
general access structures [14, Def. 5.5], where the simulation is defined only for
maximal invalid party sets.
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– TEFHE.Gen(1κ, 1d) → (pk, sk1, . . . , skn): on input the security parameter κ
and a depth bound d, the key-generation algorithm outputs a public key pk
and n secret key shares sk1, . . . , skn.

– TEFHE.Enc(pk, μ) → ct: on input a public key pk and a plaintext μ ∈ {0, 1},
the encryption algorithm outputs a ciphertext ct.

– TEFHE.Eval(pk, C, ct1, . . . , ct�) → ct: on input a public key pk, a circuit C :
{0, 1}� → {0, 1}, and a tuple of ciphertexts (ct1, . . . , ct�), the homomorphic
evaluation algorithm outputs a ciphertext ct.

– TEFHE.PartDec(i, ski, ct) → pi: on input a secret key share ski and a cipher-
text ct, the partial decryption algorithm outputs a partial decryption pi.

– TEFHE.FinDec(pk, p1, . . . , pn) → μ̃: on input a public key pk and a set
{pi}i∈[n], the final decryption algorithm outputs μ̃ ∈ {0, 1,⊥}.

– TEFHE.GenEquiv(1κ, 1d) → (pk, td): on input the security parameter κ and a
depth bound d, the equivocal key-generation algorithm outputs a public-key pk
and a trapdoor td.

– TEFHE.Equiv(td, ct,m) → r: on input a trapdoor td, a ciphertext ct, and a
plaintext m, the equivocation algorithm outputs random coins r.

We require the following properties:

1. The FHE scheme that is defined by setting the decryption key sk = (sk1, . . . ,
skn) and the decryption algorithm is composed of executing TEFHE.PartDec
(i, ski, ct) for every i ∈ [n] followed by TEFHE.FinDec(pk, p1, . . . , pn) is a cor-
rect, compact, and secure equivocal FHE scheme for circuits of depth d.

2. Simulatability of partial decryption: there exists a PPT simulator Simtefhe such
that on input i ∈ [n], and all decryption keys except of the i’th one {skj}j �=i

The following distributions are statistically close:

{pi | pi ← TEFHE.PartDec(i, ski, ct)} c≡ {
p′

i | p′
i ← Simtefhe(i, ct, μ, {skj}j �=i)

}
,

where the keys are set as (pk, sk1, . . . , skn) ← TEFHE.Gen(1κ, 1d), the cipher-
text is set as ct ← TEFHE.Eval(pk, C, ct1, . . . , ct�) for a circuit C : {0, 1}� →
{0, 1} and for i ∈ [�] ciphertext cti ← TEFHE.Enc(pk, μi) with μi ∈ {0, 1},
and μ = C(μ1, . . . , μ�).

In the protocol, we will require some additional properties regarding the
key-generation and threshold-decryption protocols.

Definition 3 (special TEFHE). A special TEFHE is a TEFHE scheme sat-
isfying the following properties:

1. On input 1κ and 1d, the key-generation algorithm TEFHE.Gen outputs
(pk, sk1, . . . , skn) where the public key pk defines a prime number q, and each
secret key ski is uniformly distributed in Z

n′
q for some n′ = poly(κ, d).

2. The partial decryption algorithm pi ← TEFHE.PartDec(i, ski, ct) operates by
computing pi = 〈ct, ski〉 + e mod q.

3. For every v1, . . . , vn ∈ Zq, the final decryption algorithm TEFHE.
PartDec(pk, p1, . . . , pn) satisfies the following linearity property

TEFHE.FinDec(pk, p1 + v1, . . . , pn + vn) = TEFHE.FinDec(pk, p1, . . . , pn) +
∑

i∈[n]

vi.
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Lemma 4. Assuming LWE there exist special TEFHE schemes.

The lemma is proved in the full version [35].

5.2 The Protocol

We define the protocol in the threshold-PKI hybrid model, where a trusted party
generates the keys of the TEFHE scheme (pk, sk1, . . . , skn) ← TEFHE.Gen(1κ, 1d)
and (pk, ski) to every Pi. In the full version [35], we probe the following theorem
(Fig. 3).

Theorem 10. Assume that special TEFHE exists, let t < n, and let f :
({0, 1}�in)n → {0, 1}�out be an efficiently computable function of depth d. Then,
Ff

sfe-abort can be UC-realized in the (Fthresh-pki,Fsmt)-hybrid model, tolerating an
adaptive, semi-malicious, PPT t-adversary, by a two-round protocol with com-
munication complexity poly(�in, �out, d, κ, n).

Fig. 3. 2-round MPC with semi-malicious security

Malicious Security with Sublinear Communication. Asharov et al. [3]
provided a round-preserving compiler from semi-maliciously security to mali-
ciously security in the static setting assuming NIZK. In the full version [35], we
prove security of this compiler in the adaptive setting. We note that following
the GMW paradigm, it is important that the semi-malicious protocol can be
defined purely over a broadcast channel, however, the protocol in Sect. 5.2 uses
secure channels. To resolve this issue, the secret shares of zero that were sent
over secure point-to-point channels should be encrypted and transmitted over
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the broadcast channel. As we consider adaptive corruptions, we need to use non-
committing encryption and each non-committing public key should be used to
encrypt n elements in Zq. We consider the distribution of the NCE public keys
as part of the threshold-PKI functionality. Alternatively, the public keys can be
exchanged at the cost of an additional communication round.

Theorem 11 (Theorem 4, restated). Assume the existence of special
TEFHE schemes and NCE schemes, let t < n, and let f : ({0, 1}�in)n → {0, 1}�out

be an efficiently computable function of depth d. Then, Ff
sfe-abort can be UC-

realized in the (Fthresh-pki,Fbc,Fnizk)-hybrid model, tolerating an adaptive, mali-
cious, PPT t-adversary, by a two-round protocol with communication complexity
poly(�in, �out, d, κ, n).

6 The Honest-Majority Setting

In this section, we show how to adjust the protocol from Sect. 5 that provides
security with abort, into guaranteeing output delivery in the honest-majority
setting. We apply some of the techniques from [54] on our adaptively secure
protocol designed for the all-but-one setting, and achieve a matching result tol-
erating adaptive corruptions.

In the all-but-one case (Sect. 5) the decryption key was shared using addi-
tive secret sharing. As observed in [54], since the decryption of the GSW-based
threshold FHE consists of linear operations, it is possible to use Shamir’s secret
sharing [77] instead. The problem with a näıve use of this idea is that when the
partial decryptions are reconstructed, each decryption share is multiplied by the
Lagrange coefficient, and thus also the smudging noise. This will result in blow-
ing up the noise and may end up with an incorrect decryption. Gordon et al.
[54] overcame this problem by having each party secret share (using Shamir’s
scheme) its smudging noise in the first round of the protocol, and parties added
shares of the smudging noise of non-aborting parties in a way that is compatible
with the decryption algorithm.10

In the full version [35], we adjust the definition of TEFHE to support n/2-
out-of-n secret sharing, prove existence under LWE, and use it for proving the
following theorem.

Theorem 12. Assume the existence of special n/2-out-of-n TEFHE schemes,
let t < n/2, and let f : ({0, 1}�in)n → {0, 1}�out be an efficiently computable
function of depth d. Then, Ff

sfe-god can be UC-realized in the (Fthresh-pki,Fsmt)-
hybrid model, tolerating an adaptive, semi-malicious, PPT t-adversary, by a two-
round protocol with communication complexity poly(�in, �out, d, κ, n).

Similarly to the previous section, using the semi-malicious to malicious com-
piler, we obtain the following corollary.

Theorem 13. Consider the same assumptions as in Theorem12. Then, Ff
sfe-god

can be UC-realized in the (Fthresh-pki,Fbc,Fnizk)-hybrid model, tolerating an
10 Recently, Boneh et al. [14] showed that this problem can be overcome in a different

way, by using a special secret sharing scheme that ensures the Lagrange coefficients
are binary values.
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adaptive, malicious PPT t-adversary, by a two-round protocol with communi-
cation complexity poly(�in, �out, d, κ, n).
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Abstract. We prove a lower bound on the communication complexity
of unconditionally secure multiparty computation, both in the standard
model with n = 2t + 1 parties of which t are corrupted, and in the
preprocessing model with n = t + 1. In both cases, we show that for any
g ∈ N there exists a Boolean circuit C with g gates, where any secure
protocol implementing C must communicate Ω(ng) bits, even if only
passive and statistical security is required. The results easily extends to
constructing similar circuits over any fixed finite field. This shows that
for all sizes of circuits, the O(n) overhead of all known protocols when
t is maximal is inherent. It also shows that security comes at a price:
the circuit we consider could namely be computed among n parties with
communication only O(g) bits if no security was required. Our results
extend to the case where the threshold t is suboptimal. For the honest
majority case, this shows that the known optimizations via packed secret-
sharing can only be obtained if one accepts that the threshold is t =
(1/2 − c)n for a constant c. For the honest majority case, we also show
an upper bound that matches the lower bound up to a constant factor
(existing upper bounds are a factor lg n off for Boolean circuits).

1 Introduction

In secure multiparty computation (MPC) a set of n parties compute an agreed
function on inputs held privately by the parties. The goal is that the intended
result is the only new information released and is correct, even if t of the parties
are corrupted by an adversary.

In this paper we focus on unconditional security where even an unbounded
adversary cannot learn anything he should not, and we ask what is the min-
imal amount of communication one needs to compute a function securely. In
particular: how does this quantity compare to the size of the inputs and to the
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circuit size of the function? Since one can always compute the function with-
out security by just sending the inputs to one party and let her compute the
function, an interesting question is what overhead in communication (if any) is
required for a secure protocol? An even harder question is if the communication
must be larger than the circuit size of the function. Note that the questions only
seem interesting for unconditional security: for computational security we can
use homomorphic encryption to compute any function securely with only a small
overhead over the input size.

There is a lot of prior work on lower bounding communication in interactive
protocols, see for instance [Kus92,FY92,CK93,FKN94,KM97,KR94,BSPV99,
GR03] (and see [DPP14] for an overview of these results). The previous work
most relevant to us is [DPP14]. They consider a special model with three parties
where only two have input and only the third party gets output, and consider
perfect secure protocols. This paper was the first to show an explicit example of
a function where the communication for a (perfectly) secure protocol must be
larger than the input.

Later, in [DNOR16], a lower bound was shown on the number of messages
that must be sent to compute a certain class of functions with statistical security.
When the corruption threshold t is Θ(n), their bound is Ω(n2). This of course
implies that Ω(n2) bits must be sent. However, we are interested in how the
communication complexity relates to the input and circuit size of the function,
so once the input size become larger than n2 the bound from [DNOR16] is not
interesting in our context.

In [DNPR16], lower bounds on communication were shown that grow with the
circuit size. However, these bounds only hold for a particular class of protocols
known as gate-by-gate protocols, and we are interested in lower bounds with no
restrictions on the protocol.

In [IKM+13] the case of statistically secure 2-party computation with prepro-
cessing is considered, where the parties are given access to correlated randomness
at the start of the protocol. They show that the input size is (essentially) both an
upper and a lower bound for the communication needed to compute a non-trivial
function in this model, if one allows exponentially large preprocessed data. If one
insists on the more practical case of polynomial size preprocessing, virtually all
known protocols have communication proportional to the circuit size of the func-
tion. However, in [Cou18] it was shown (also for the 2PC case) that even with
polynomial size preprocessed data, one can have communication smaller than
the circuit size of the function, for a special class of so-called layered circuits.

1.1 Our Results

In this paper, we prove lower bounds for the model with n parties of which t are
passively and statically corrupted. The network is synchronous, and we assume
that the adversary can learn the length of any message sent (in accordance with
the standard ideal functionality modeling secure channels which always leaks the
message length). We consider statistically secure protocols in both the standard
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model with honest majority, n = 2t + 1 and the preprocessing model where
n = t + 1 is possible.

To understand our results, note first that any function can be computed
insecurely by sending the inputs to one party and let her compute the function.
This takes communication S where S is the input size, assuming the output
is short. What we show in both models is now that for any S, there exists a
function f with input size S such that any protocol that evaluates f securely
must communicate Ω(nS) bits. As mentioned, [DPP14] showed that such an
overhead over the input size is sometimes required, we are the first to show that
it grows with the number of players. So we see that security sometimes comes
at a price, compared to an insecure solution.

However, we can say even more: we are able to construct functions f as
we just claimed such that they can be evaluated by circuits of size O(S). This
means we also get the following: In both models, for any g ∈ N there exists a
Boolean circuit C with g gates, where any protocol that evaluates C securely
must communicate Ω(ng) bits. For the honest majority case, the result easily
extends to constructing similar circuits over any fixed finite field. This shows that
for all sizes of circuits, the Ω(n) overhead of all known protocols for maximal t is
inherent. It is the first time it has been shown that there are circuits of all sizes
which must suffer this Ω(n) overhead ([DNOR16] implies this result for circuits
of size n).

The reader should note that since our result only talks about functions with
linear size circuits, this leaves open the question of overhead over the circuit size
when the circuit is much bigger than the inputs1.

Our results extend to the case where the threshold t is suboptimal. Namely,
if n = 2t + s, or n = t + s for the preprocessing model, then the lower bound is
O(gn/s) and this shows that the improvement in communication that we know
we can get for honest majority using so-called packed secret-sharing, can only be
obtained if one accepts that the threshold t is t = (1/2− c)n for a constant c. In
more detail, [DIK10] shows that for large n end even larger circuits of “sufficiently
nice” shape, one can get a perfectly secure protocol with communication Õ(g)
for circuits with g gates (where the Õ hides logarithmic factors in g and n).
This protocol uses packed secret sharing which allows us to share a vector of
Θ(n) field elements where each share is only one field element. We can therefore
do Θ(n) secure arithmetic operations in parallel “for the price of one”. This
construction gives communication Õ(g) but a corruption threshold much smaller
than n/2. However, using the so-called committee approach (originally by Bracha
but introduced for MPC in [DIK+08]), one can build a new protocol for the
same function and similar complexity but now with threshold t = (1/2 − c)n for
an arbitrarily small constant c. Our results now imply that there is no way to
improve the committee approach (or any other approach) to yield t = (1/2 −

1 This is a much harder question of a completely different nature: for instance, if you
are given a circuit to evaluate securely, there might exist a much smaller circuit
computing the same function, so proving something on the overhead over the circuit
size in general seems out of the question unless we are “magically” given the smallest
circuit for the function in question.
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o(1))n: the circuits we build in this paper are indeed “nice enough” to be handled
by the protocol from [DIK10], so any hypothetical improvement as stated would
yield a protocol contradicting our lower bound.

For honest majority, we also show an upper bound that matches the lower
bound up to a constant factor for all values of t < n/2. This is motivated by the
fact that the existing upper bound from [DN07] is a factor lg n off for Boolean
circuits. We do this by exploiting recent results by Cascudo et al. [CCXY18] on
so-called reverse multiplication friendly embeddings.

For dishonest majority with preprocessing, an upper bound for t = n−1 was
already known. Namely, by an easy generalization of the two party protocol from
[IKM+13] (already mentioned there), one obtains communication complexity
O(nS) for any function where S is the input size, using an exponential amount
of preprocessed data. This matches our lower bound up to a constant factor: for
the functions we consider, circuit and input size are essentially the same, so our
bound is Ω(ng) = Ω(nS). This settles the question of communication complexity
in the preprocessing model for maximal t and exponential size preprocessing.
For the case of suboptimal values of t where t = n − s we show an upper bound
O(tg/s) with polynomial size preprocessing, using a simple generalization of
known protocols. We do not know if this can be strengthened to Ω(St/s) if one
allows exponential size preprocessing.

On the technical side, what we show are actually lower bounds on the entropy
of the messages sent on the network when the inputs have certain distributions.
This then implies similar bounds in general on the average number of bits to
send: an adversary who corrupts no one still learns the lengths of messages,
and must not be able to distinguish between different distributions of inputs.
Hence message lengths cannot change significantly when we change the inputs,
otherwise the protocol is insecure.

To show our results, we start from a lower bound for the communication
complexity of private information retrieval with or without preprocessing and
one server. While such a bound follows from the results in [IKM+13], we give
our own (much simpler) proof for self-containment. From this bound we show
lower bounds for honest majority in the 3-party case and then finally “lift” the
results to the multiparty case, while for dishonest majority we go directly from
2-party to multiparty. The observations we make in the 3-party case are related,
at least in spirit, to what was done in [DPP14], indeed we also prove a lower
bound for a case where 2 parties have input and the third has output. There are
two important differences, however: first, we prove results for statistical security
which is stronger than perfect security as in [DPP14] (because we show lower
bounds). Second, while [DPP14] considers a very general class of functions, we
consider a particular function (the inner product) which makes proofs simpler,
but more importantly, we need the structure of this function to lift our results
to the multiparty case.

The lifting is done using a simple but effective trick which is new to the
best of our knowledge: loosely speaking, we start from a circuit computing, say
f(x1, .., xn) where the xi’s are the private inputs. Then we introduce an extra
input bit bi for Pi, and demand that her output be bi·f(x1, ..., xn). By a reduction



Communication Lower Bounds for Statistically Secure MPC 65

to the 3-party case, we can show that Pi must communicate a lot when bi = 1
and bj = 0 for j �= i. Since now the identity of the party who gets the output is
determined by the inputs, a secure protocol is not allowed to reveal this identity,
and this forces all players to communicate a lot.

2 Preliminaries

2.1 Information Theory

We first recall the well-known Fano’s inequality which implies that for a random
variable X, if we are given the value of another random variable X ′ which is
equal to X except with probability δ, then the uncertainly of X drops to 0 as
δ → 0:

Lemma 1. Let δ be the probability that X �= X ′ and X be the support set of X
and X ′. Then H(X | X ′) ≤ h(δ) + δ(lg |X | − 1), where h() is the binary entropy
function.

It is easy to see from this result that if δ is negligible in some security parameter
while lg |X | is polynomial, then H(X | X ′) is also negligible.

In the following we will use D(X,X ′) to denote the statistical distance
between the distributions of X and X ′ with common support X , that is:

D(X,X ′) =
1
2

∑

x∈X
|Pr(X = x) − Pr(X ′ = x)|

Now, from Lemmas 4.5 and 4.6 in [DPP98] it follows immediately that we can
bound the change in entropy in terms of the distance;
Lemma 2. |H(X) − H(X ′)| ≤ D(X,X ′)(lg X − lg D(X,X ′)).

The other result we need considers a case where we have two random variables
X,Y and another pair X ′, Y ′ such that D((X,Y ), (X ′, Y ′)) is bounded by some
(small) δ. Then we can show that H(X | Y ) is close to H(X ′ | Y ′):

Corollary 1. Assume D((X,Y ), (X ′, Y ′)) ≤ δ, and let XY be the support set
of X,Y . Then we have |H(X | Y ) − H(X ′ | Y ′)| ≤ 2δ(lg |XY| − lg δ).

Proof. By the triangle inequality, it is easy to see that

D(Y, Y ′) ≤ D((X,Y ), (X ′, Y ′)).

Now we can use the above lemma and the triangle inequality again to calculate
as follows:

|H(X|Y ) − H(X ′|Y ′)| = |H(X,Y ) − H(Y ) − (H(X ′, Y ′) − H(Y ′))|
≤ |H(X,Y ) − H(X ′, Y ′)| + |H(Y ) − H(Y ′)|
≤ δ(lg |XY| − lg δ) + D(Y, Y ′)(lg |Y| − lg D(Y, Y ′))
≤ 2δ(lg |XY| − lg δ).

��
Again we can see that if δ is negligible in a security parameter while |XY| is
polynomial, then the difference in conditional entropies is negligible.



66 I. Damg̊ard et al.

2.2 Unconditionally Secure MPC

We look at a special case of MPC called secure function evaluation. There are
n parties P1, . . . ,Pn. They are connected by secure point-to-point channels in
a synchronous network. Each of them has an input xi ∈ {0, 1}I in round 1.
Eventually each Pi gives an output yi ∈ {0, 1}O. We assume that t < n/2 of
the parties can be corrupted. We consider only passive security. In this setting
security basically means that the outputs are correct and that the distribution
of the view of any t parties and be sampled given only their inputs and outputs.

Fig. 1. A special case of the model where n = 3 and P3 has no input and P1,P2 have
no output.

We define security as in [Can00]. Here we give a few details for self con-
tainment. Each party Pi has a random tape ri. In the pre-processing model or
correlated randomness model r = (r1, . . . , rn) is drawn from a joint distribution
R,

(r1, . . . , rn) ← R.

In the standard model, each ri is uniform and independent of everything else.
We use

(y1, . . . , yn) = 〈P1(x1; r1), . . . ,Pn(xn; rn)〉
to denote a run of the protocol with input x = (x1, . . . , xn) and fixed random
tapes, resulting in Pi(xi; ri) outputting yi. We use ci,j to denote the communi-
cation between Pi(xi; ri) and Pj(xj ; rj). We let ci,j = cj,i. We let

viewi(x, r) = (xi, ri, ci,1, . . . , ci,n, yi).
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This is all the values seen by Pi in the protocol. In Fig. 1, the model is illustrated
for n = 3 and for the case where P3 has no input and P1,P2 have no output.

For a set C ⊆ {P1, . . . ,Pn} and an input vector x we let

viewC(x, r) = (x, {(i, viewi(x, r))}i∈C ,y),

where y = (y1, . . . , yn) and yi is the output of Pi. We use viewC x to denote
viewC(x, r) for a uniformly random r.

We now define perfect correctness and perfect privacy.

Definition 1 (perfect correctness). For all inputs (x1, . . . , xn) and all ran-
dom tapes (r1, . . . , rn) it holds that

〈P1(x1; r1), . . . ,Pn(xn; rn)〉 = f(x1, . . . , xn).

An adversary structure is a set A of subsets C ⊆ {P1, . . . ,Pn}. It is usual to
require that A is monotone but we do not do that here. For a simulator S and
a set C of corrupted parties we define

simC,S x = (x, S{(i, xi, yi)}i∈C , fx).

The simulator might be randomized, and we use simC,S x to denote the distri-
bution obtained by a random run.

Definition 2 (perfect privacy). We say that a protocol for f has perfect pri-
vacy against A if there exists a simulator S such that for all inputs x and y = fx
and all C ∈ A it holds that the distributions simC,S x and viewC x are the same.

Note that perfect privacy implies perfect correctness.

When working with statistical security we introduce a security parameter
σ ∈ N. The protocol and the simulator is allowed to depend on σ. We use

(y1, . . . , yn) = 〈P1(σ, x1; r1), . . . ,Pn(σ, xn; rn)〉
to denote a run of the protocol with fixed security parameter σ and fixed random
tapes, resulting in Pi(σ, xi; ri) outputting yi. We let

viewi(x, r, σ) = (σ, xi, ri, ci,1, . . . , ci,n, yi).

We use
(y1, . . . , yn) ← 〈P1(σ, x1), . . . ,Pn(σ, xn)〉

to denote a random run. In a random run, viewi(x, σ) becomes a random vari-
able. For a simulator S, a set C of corrupted parties and security parameter σ
we define

simC,S(x, σ) = (x, S({(i, xi, yi)}i∈C , σ), fx).

We use D(V1, V2) to denote the statistical distance between the distributions
of random variables V1 and V2. Statistical security is defined as usual: even given
the inputs and outputs of honest parties, the simulated views of the corrupted
parties are statistically close to the real views.
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Definition 3 (negligible function). We call a function ε : N → R negligible
if for all c ∈ N there exists n ∈ N such that

∀n > n0 ( ε(n) < n−c ).

We use negl to denote a generic negligible function, i.e., the term negl both
takes the role as a function, but also has the implicit claim that this function is
negligible.

Definition 4 (statistical privacy). We say that a protocol for f has statistical
privacy against A if there exists a simulator S such that for all inputs x, all
values of σ, y = fx, and all C ∈ A it holds that

D(simC,S(x, σ), viewC(x, σ)).

is negligible (as a function of σ).

We call a protocol t-private if it is private for the adversary set consisting of
all subsets of size at most t.

2.3 Private Information Retrieval

A special case of MPC is private information retrieval. The setting is illustrated
in Fig. 2. The input of P1 is a bit string x1 ∈ {0, 1}I . The input of P2 spec-
ifies an index x2 ∈ {0, . . . , I − 1}. The output y2 is bit number x2 in x1. In
the correlated randomness setting the randomness can be sampled as any joint
distribution (r1, r2) ← R and ri securely given to Pi. We call this pre-processing
PIR (PP-PIR). In contrast, PIR takes place in the standard model where r1, r2
are independent and uniform.

Fig. 2. PIR with pre-processing (PP-PIR).
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Definition 5 (PIR). We call π a perfect (PP-)PIR if it is perfectly correct and
it is perfect {{P1}}-private, i.e., the view of Pi can be simulated given just x1.
We call π a statistical (PP-)PIR if it is statistical {{P1}}-private, i.e., the view
of Pi can be simulated statistically given just x1 and the protocol is statistically
close to correct.

We first (re)prove some basic facts about PIR. These results are known, at
least in the folklore. However, we could not find a reference for the proof in the
statistical security case, so we include proofs here for self-containment. Let c1,2
denote the communication between P1 and P2. Then:

Lemma 3. If π is a perfect PIR, then there exists a function x such that x1 =
x(c1,2).

Proof. The function postulated in the lemma can be implemented by computing
each value x1[j] as follows: Given c1,2, set x2 = j and iterate over all values of
r2, until one is found where where (x2, r2, c1,2) is a possible value of P2’s view of
π. More concretely, if P2 starts from x2, r2 and we assume P1 sent the messages
in c1,2 (with P1 as sender), then P2 would send the messages occurring in c1,2
(with P2 as sender). Once such an r2 is found, output the value y that P1 would
output based on this view. It now follows immediately from perfect correctness
that if the loop terminates, then y = x1[j]. Moreover, perfect privacy implies
that an r2 as required for termination must exist: Given any view x1, r1, c1,2 for
P1, then for any x2 there must be an r2 leading to this view. Otherwise, P1 could
exclude one or more values of x2. ��
Lemma 4. Assume that π is a statistical PIR. Let X1,X2 denote random vari-
ables describing uniformly random inputs to P1,P2. Let C1,2 be the random vari-
able describing c1,2 after a random run on X1,X2. Then there exists a function
x such that Pr[X1 = x(C1,2)] = 1 − negl(σ).

Proof. Let C1,2(x2) denote C1,2 when the input of P2 is x2. We now prove two
claims.

Claim 1. There exists a function xx2 such that

Pr[X1[x2] = xx2(C1,2(x2))] = 1 − negl(σ).

Claim 2. For all x2 and x′
2 it holds that

D((X1, C1,2(x2)), (X1, C1,2(x′
2))) = negl(σ).

Let us first see that if these claims are true, then we are done. By combining
the claims we get that:

Pr[X1[x2] = xx2(C1,2(x′
2))] = 1 − negl(σ).

Now let x(C) = (x0(C), . . . , xI−1(C)). Then by a union bound

Pr[X1 = x(C1,2(x′
2))] = 1 − negl(σ),
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as I is polynomial in σ. This holds for all x′
2, so

Pr[X1 = x(C1,2)] = 1 − negl(σ),

as desired.

Claim 1 follows from statistical correctness. Consider a random run of P2

using input x2 and uniformly random (r1, r2), resulting in communication c1,2
and output y2. We know that

Pr [y2 = X1[x2]] = 1 − negl(σ).

Assume now that someone gave you the execution of the protocol but deleted
x1, r1, r2, and y2, and hence left you with only c1,2 and x2. Consider now sampling
a uniformly random x′

1, r
′
1 and r′

2 that are consistent with c1,2 and x2, i.e.,
running P1(x′

1; r
′
1) and P2(x2; r′

2) produced exactly the messages c1,2. Let y′
2 be

the resulting output of P2(x2; r′
2) when running P1(x′

1; r
′
1) and P2(x2; r′

2).
Then clearly y′

2 and y2 will have the same distribution. Namely, the distri-
bution of the deleted x1, r1 and r2 were also uniform, consistent with c1,2, x2.
Hence

Pr [y′
2 = X1[x2]] = 1 − negl(σ).

Let y be the function which samples y′
2 from c1,2, x2 as described above. Let

xx2(·) = y(·, x2). Then

Pr [xx2(C1,2(x2)) = X1[x2]] = 1 − negl(σ),

as desired.

Claim 2 follows directly from statistical privacy (P1 does not learn x2).
Namely, we have that

sim{P1},S(x, σ) = ((X1, x2), S(X1, σ),X1[x2])

and
view{P1}(x, σ) = ((X1, x2), (X1, C1,2),X1[x2])

are statistically indistinguishable, so if we let C ′
1,2 be the distribution of C1,2

output by S, then

D((X1, C1,2(x2)), (X1, C
′
1,2)) = negl(σ)

for all x2. Then use the triangle inequality:

D((X1, C1,2(x2)), (X1, C1,2(x′
2))) ≤

D((X1, C1,2(x2)), (X1, C
′
1,2)) + D((X1, C

′
1,2), (X1, C1,2(x′

2))) = negl(σ).

��
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These results imply that the communication in single server PIR must be
large: By Lemmas 4 and 1 we can conclude that H(C1,2) ≥ I(X1;C1,2) =
H(X1) − H(X1|C1,2) ≥ H(X1) − negl(σ). We now show that a similar result
holds for PP-PIR:

Lemma 5. Assume that π is a statistical PP-PIR. Let X1,X2 denote random
variables describing uniformly random inputs to P1,P2. Let C1,2 be the random
variable describing c1,2 after a random run on X1,X2. Then H(C1,2) ≥ H(X1)−
negl(σ).

Proof. Let R be the function used to sample the correlated randomness (r1, r2),
i.e., (r1, r2) = R(r) for a uniformly random r. Notice that since (PP-)PIR does
not impose any privacy restrictions on what P2 learns, we can construct a secure
PIR protocol π′ from π as follows: P2 runs R, sends r1 to P1, and then we run π.
We can now apply Lemmas 4 and 1 to π′ and conclude that H(X1|C1,2, R1) =
negl(σ), here R1 is a random variable describing the choice of r1 and we note that
the conversation in π′ consists of r1 and c1,2. Since X1 and R1 are independent,
we have H(X1) = H(X1|R1) and now the chain rule gives immediately that
H(C1,2) ≥ H(X1) − negl(σ) as desired (intuitively, given R1, the uncertainty on
X1 is maximal, but if we add C1,2 the uncertainty drops to essentially 0, and so
C1,2 must contain information corresponding to the entropy drop). ��

3 Lower Bounds Without Correlated Randomness

In this section we prove that there is an n-party function describable by a cir-
cuit C of size |C| where each of the n parties have communication Θ(|C|), in the
standard model. For the sake of presentation we present it via a series of simpler
results, each highlighting one essential idea of the proof. We first give a function
for three parties where one party must have high communication, proving the
result first for perfect and then statistical security. Then we lift this up to an
n-party function where there is a special heavy party. A heavy party has a short
input and a short output, but still must have communication Θ(|C|) bits. Then
we embed this function into a slightly more complicated one, where each party
can obliviously choose to be the heavy party. This gives an n-party function
where all parties must have communication Θ(|C|). This is because they must
have communication Θ(|C|) when they are the heavy party, and a private pro-
tocol is not allowed to leak who is the heavy party. Throughout this series of
results we assume maximal threshold n = 2t + 1 for simplicity. At the end we
investigate how the bound behaves when n = 2t + s for 1 ≤ s ≤ t.

Our main theorem will be the following.

Theorem 1. Let n = 2t+s. There exists a function ÎPI,n with circuit complexity
O(nI) such that in any statistically t-private protocol for ÎPI,n in the model
without preprocessing, the average communication complexity is at least Int

2s −ε =
Θ(ntI)/s for a negligible ε.
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3.1 Lower Bound, Perfect Security, Three Parties

We start by considering a protocol for three parties of the form in Fig. 1. The
input of P1 is x1 ∈ {0, 1}I , the input of P2 is x2 ∈ {0, 1}I . The output of P3 is
the inner product between x1 and x2, i.e., the single bit

y3 =
I⊕

i=1

x1,ix2,i.

Denote this function by IPI,3.

Fig. 3. A special case of the model where n = 3 and P3 has no input and P1,P2 have
no output, and where the inputs are uniformly random.

Theorem 2. In any protocol for IPI,3 that is perfectly correct and perfectly
private if P1 or P2 are corrupt, party P3 will for random inputs have average
communication complexity at least I.

Proof. Assume that we have a protocol implementing IPI,3 with security as
assumed. Let X1 denote a random variable that is uniformly random on {0, 1}I .
Let X2 denote an independent random variable that is uniformly random on
{0, 1}I . Let Ci,j denote the communication between Pi and Pj in a random
execution 〈P1(X1),P2(X2),P3〉 and let Y3 denote output of P3 in the random
execution. See Fig. 3.

Below, we will first prove that the following two inequalities implies high
communication for P3:

H(X1 | C1,2, C1,3, C2,3) ≤ ε. (1)

H(X1 | C1,2, C2,3) ≥ I − ε. (2)
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Fig. 4. Collapsing P2 and P3 into a single party.

These inequalities will be true with ε = 0 for perfect security and for a negligible
ε for statistical security. We will show that this implies:

H(C1,3) ≥ I − 2ε, (3)

To see this, we use the chain rule for conditional Shannon entropy:

I − ε ≤ H(X1 | C1,2, C2,3) ≤ H(X1C1,3 | C1,2C2,3) =
H(X1 | C1,3C1,2C2,3) + H(C1,3 | C1,2C2,3) ≤ ε + H(C1,3).

We conclude that H(C1,3) ≥ I − 2ε, i.e., P3 must communicate on average at
least 1 − 2ε bits.

We now prove that for a perfectly secure protocol, (1) holds with ε = 0. For
this purpose, consider the 3-party protocol π′ in Fig. 4, where we consider P2

and P3 as one party. We call P1 the sender and (P2,P3) the receiver. Notice
that x2 can be taken to be any vector which is all-zero, except it has a 1 in
position j. In that case it follows from perfect correctness of π that the receiver
always learns the j’th bit of x1. Furthermore, if π is perfectly private when P1 is
corrupted, then the sender learns nothing about j. This is because a corrupted
sender learns only x1 and r1, exactly as in the protocol. So, if π is a perfectly
correct and perfectly 1-private protocol for IP3,I , then π′ is a perfect PIR. Hence
(1) follows from Lemma 3.

We then prove (2) for ε = 0. To see this note that by perfect privacy when
P2 is corrupt, we can simulate (C1,2, C2,3) given X2 as P2 has no output. This
implies that

H(X1 | C1,2, C2,3) ≥ H(X1 | X2) = I

as we wanted.
This completes the proof of Theorem 2. ��
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3.2 Lower Bound, Statistical Security, Three Parties

We now prove that essentially the same result holds also for statistical security.

Theorem 3. In any protocol for IPI,3 that is statistically correct and statis-
tically private if P1 or P2 are corrupt, party P3 will for random inputs have
average communication complexity at least I − ε for a negligible ε.

Proof. From the previous section it is clear that we only have to prove that (1)
and (2) still hold.

As for (1), we clearly get a statistically secure PIR by considering P2 and P3

as one party, exactly as in the proof for perfect security. Then, by Lemma4, it
follows that given C1,2, C1,3 one can compute a guess at X ′

1 such that Pr[X ′
1 �=

X1] is negligible. Then (1) follows by Lemma 1:

H(X|C1,2, C1,3, C2,3) ≤ H(X | C1,2, C1,3) ≤ H(X1 | X ′
1) ≤ ε

for a negligible ε.
As for (2), we exploit the fact that the protocol is statistically secure against a

corrupt P2. This means there exists a simulator that (using only x2 as input) will
simulate the view of P2, including c1,2, c2,3. The definition of statistical security
requires that the simulated view is statistically close to the real view even given
the input x1 (of the honest P1). Note that here the distributions are taken only
over the random coins of the parties and the simulator.

Now we run the protocol with a uniformly random X1 as input for P1, and
a uniformly random input X2 for P2. As before we let C1,2, C2,3 denote the
variables representing the communication in the real protocol while C ′

1,2, C
′
2,3

denote the simulated conversation. The statistical security now implies that

D((X1, (C1,2, C2,3)), (X1, (C ′
1,2, C

′
2,3)))

is negligible—actually statistical security implies the stronger requirement that
the distance be small for every fixed value of X1 and X2. Now (2) follows imme-
diately from this and Corollary 1.

This completes the proof of Theorem 3. ��

3.3 Lower Bound, Statistical Security, n Parties, Maximal
Resilience

We now generalize the bound to more parties. Assume that n = 2t + 1. We
will call the parties P1,1, . . . ,P1,t,P2,1, . . . ,P2,t,P3. We assume that P3 only has
output and the other parties only have inputs. Consider the following function
IPn,I , where each Pj,i for i = 1, . . . , t; j = 1, 2 has an input xj,i ∈ {0, 1}I and no
output, and where P3 has no input and has an output yn ∈ {0, 1}. The output
yn is the inner product between x1,1x1,2 . . . , x1,t and x2,1x2,2 . . . , x2,t computed
in the field with two elements. See Fig. 5.
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Fig. 5. A special case of the model where n = 7 and P3 has no input and
P1,1,P1,2,P1,3,P2,1,P2,2,P2,3 have no outputs.

Theorem 4. Let n = 2t + 1. In any statistically t-private and statistically cor-
rect protocol for IPI,n party P3 will for all inputs have average communication
complexity at least tI − ε for a negligible ε.

Proof. Given a protocol for IPI,n, we can make a protocol for IPtI,3 by grouping
parties together as in Fig. 6. Corrupting one party in IPtI,3 corrupts at most t
parties in IPI,n. Therefore we can apply Theorem 3. ��

3.4 Stronger Lower Bound, Statistical Security, n Parties, Maximal
Threshold

We now give a function where all parties need to have high communication com-
plexity. We do this essentially by making a function where each party obliviously
can choose to be the party P3 in the proof of Theorem 4. Since nobody knows
who plays the role of P3 and P3 needs to have high communication complexity,
all parties must have high communication complexity.

Assume that n = 2t + 1. We will call the parties P1,1, . . . ,P1,t,P2,1, . . . ,
P2,t,P3. Consider the following function IP′

n,I , where each Pj,i for i = 1, . . . , t;
j = 1, 2 has an input xj,i ∈ {0, 1}I and an input bj,i ∈ {0, 1}, and where
P3 has input b3 ∈ {0, 1}. First compute y to be the inner product between
x1,1x1,2 . . . , x1,t and x2,1x2,2 . . . , x2,t. The output of P3 is y3 = b3y. The output
of Pj,i is yj,i = bj,iy.
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Fig. 6. Reduction from the n-party case to the 3-party case, maximal threshold n =
2t + 1.

Fig. 7. Reduction from IP to IP′.
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Theorem 5. Let n = 2t+1. In any statistically t-private and statistically correct
protocol for IP′

I,n the average total communication is at least (n(t − 1)I)/2 − ε
for a negligible ε.

Proof. Assume we have such a protocol for IP′
I,n. Notice that if we pick any

input except that we hard-code the inputs b3 = 1 and bj,i = 0, then IP′
I,n is just

IPI,n, so it follows trivially that for these inputs the communication complexity
of P3 is tI − ε. And this holds for all possible inputs (by statistical security and
by considering the case where no parties are corrupted), in particular also the
inputs where we set all non-hardcoded inputs to be all-zero, i.e., xj,i = 0 and
x3 = 0. Call this input vector x3.

Consider then hard-coded inputs where we make the change that b3 = 0,
b1,1 = 1, bj,i = 0 for (j, i) �= (1, 1), x1,1 = 0, and x2,1 = 0. If we have a secure
protocol for IP′

n,I we of course also have one for the case with these hard-coded
inputs. We can then via the reduction in Fig. 7 apply Theorem 3 to see that the
communication complexity of P1,1 must be at least (t − 1)I − ε. Note that it is
t−1 and not t as we had to get rid of the input of P1,1 to be able to reduce to the
three-party case. The communication complexity of P1,1 is at least (t − 1)I − ε
for all ways to set the non-hardcoded inputs, so also when we set them to be
all-zero. Call this input vector x1,1.

Similarly, define xj,i to be the set of inputs where all inputs are 0 except that
bj,i = 1. We can conclude as above, that on this input Pj,i has communication
complexity at least (t − 1)I − ε.

Consider then the input vector 0 where all inputs are 0. The only difference
between for instance xj,i and 0 is whether bj,i = 1 or bj,i = 0. Notice, how-
ever, that since all other inputs are 0, this change does not affect the output of
any other party. Therefore their views cannot change by more than a negligible
amount. This easily implies that the average amount of communication with Pj,i

cannot change by more than a negligible amount. By linearity of expectation it
follows that the average communication complexity of Pj,i cannot change by
more than a negligible amount. So on input 0 party Pj,i will have average com-
munication complexity negligibly close to (t − I)I − ε. This holds for all parties.
Therefore the average total communication is at least (n(t − 1)I)/2 − ε/2. It is
not (t − 1)I as we would be counting each bit of communication twice (both at
the sending and the receiving end). ��

3.5 Lower Bound, Statistical Security, n Parties, Sub-maximal
Resilience

We now generalize our bound to the case with sub-maximal threshold, i.e.,
n > 2t + 1. Let s = n − 2t. We will first show that one group of s players
must communicate a lot. We consider the function IPI,n,t, where each Pj,i for
i = 1, . . . , t; j = 1, 2 has an input xj,i ∈ {0, 1}I and no output, and where
P3,1, . . . ,P3,s have no input, and P3,1 has an output yn ∈ {0, 1} which is the
inner product of between x1,1x1,2 . . . , x1,t and x2,1x2,2 . . . , x2,t computed in the
field with two elements. Call this function IPI,n,t. See Fig. 8.
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Fig. 8. Reduction from the n-party case to the 3-party case, sub-maximal threshold,
here n = 9 and t = 3.

Theorem 6. Let s = n − 2t. In any statistically t-private protocol for IPI,n,t

parties P3,1, . . . ,P3,s will for all inputs have average total communication com-
plexity at least tI − ε for a negligible ε.

Proof. Given a protocol for IPI,n,t, we can make a 3-party protocol for IPtI,3 by
grouping parties together as in Fig. 8. This protocol is secure against corruption
of P1 or P2 since this corrupts at most t parties in the protocol for IPn,I,t.
Therefore we can apply Theorem 3 (recall that to show that result, we only
needed to corrupt P1 or P2). ��

3.6 Stronger Lower Bound, Statistical Security, n Parties,
Sub-maximal Threshold

Assume that n = 2t + s. Assume for simplicity that s is even and that s divides
n. Let n = 2T .

We will call the parties P1,1, . . . ,P1,T ,P2,1, . . . ,P2,T . Consider the function
ÎPn,I . Each Pj,i for i = 1, . . . , t; j = 1, 2 has an input xj,i ∈ {0, 1}I along with an
input bj,i ∈ {0, 1} and an output yj,i ∈ {0, 1}. The outputs are defined as follows.
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First let y be the inner product between x1,1x1,2 . . . , x1,T and x2,1x2,2 . . . , x2,T

computed in the field with two elements. Let yj,i = bj,iy.
We prove Theorem 1, which we recall here:

Theorem 7. Let n = 2t+s. There exists a function ÎPI,n with circuit complexity
O(nI) such that in any statistically t-private protocol for ÎPI,n in the model
without preprocessing, the average communication complexity is at least Int

2s −ε =
Θ(ntI)/s for a negligible ε.

Proof. Assume we have a protocol for ÎPI,n. Let h = s/2. We can group the
parties into n/s groups of s parties, indexed by g = 0, . . . , n/s − 1. In group Gg

we put the parties P1,hg+1, . . . ,P1,hg+h and P2,hg+1, . . . ,P2,hg+h.
For each g we can define three virtual parties Pg

1,P
g
2,P

g
3. We let Pg

3 = Gg.
We let Pg

1 = {P1,1, . . . ,P1,T } \ Gg and we let Pg
2 = {P2,1, . . . ,P2,T } \ Gg. We

then hardcode the inputs of the parties in Gg to be all-zero, except that we
let P1,hg+1 choose to be the heavy party by setting b1,hg+1 = 1. For all other
parties, let them use bj,i = 0. It follows by statistical security, as in the proof
of Theorem 5, that the communication complexity for these hardcoded inputs
must be the same as for some fixed input, say the all-0 one.

Note that |Pg
1| = |Pg

2| = T − s/2 = t. So if the protocol we start from is
private against t corruptions, then the derived protocol for the three virtual
parties is private against corruption of Pg

1 or Pg
2. By Theorem 3, it follows that

Pg
3 must communicate at least tI −ε bits. There are n/s groups. Since the choice

of g depends only on the private inputs, we can argue exactly as in the proof
of Theorem 5 that all groups must communicate this much, so this gives a total
communication of at least (tIn/s)/2 − ε/2.

Finally, it is easy to see that the circuit complexity of ÎPn,I is O(nI), since
the cost of computing the function is dominated by the cost of computing the
inner product. ��

4 Lower Bounds, Correlated Randomness

In this section, we consider lower bounds for protocols in the correlated random-
ness model and arrive at the following result:

Theorem 8. Let n = t + s. There exists a function PIRn,I with circuit com-
plexity O(nI) such that in any statistically t-private protocol for PIRn,I in the
preprocessing model, the average communication complexity is at least Θ(ntI)/s.

We sketch the proof of this result, the details are trivial to fill in, as they are
extremely similar to the ideas in the previous section.

We define the function PIRn,I as follows: each party Pi has three inputs:
xi ∈ {0, 1}I , zi ∈ {0, 1}lg(nI) and bi ∈ {0, 1}. To evaluate the function, set x to
be the concatenation of all the xi’s and set z = ⊕n

i=1zi. Interpret z as an index
that points to a bit in x which we denote x[z] . Then the output for Pi is bi ·x[z].
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Assume first that we have a protocol π that computes PIRI,n with statistical
security in the correlated randomness model when t = n−1 parties are corrupted.
We consider the case s > 1 later.

For any fixed value 1 ≤ i ≤ n, we can group the parties {Pj | j �= i} together
to form one virtual party P1

i , and let Pi play the role of a second virtual party
P2
i . Furthermore we hardcode the inputs as follows: bi = 1 and bj = 0 for j �= i,

and furthermore zj = 0lg(nI) for j �= i. With this hardcoding we clearly obtain a
PP-PIR where P1

i is the sender and P2
i is the receiver. It follows from Lemma 5

that the communication complexity for P2
i must be Ω(nI). Since this holds for

any i, and since the communication pattern is not allowed to depend on the
inputs, it follows as in the proof of Theorem5 that all players must have this
much communication always, so we see that the total communication complexity
is Ω(n2I).

Assume now that the threshold t is sub-optimal, i.e., t = n − s, where we
assume for simplicity that s divides n. Now, given a protocol that computes
PIRI,n in this setting, we can divide the set of players in n/s disjoint subsets of
size s and show that each group of s players must have communication complex-
ity Ω(nI). This follows similarly to what we just did, by hardcoding the inputs
appropriately. As a result we get a lower bound of Ω(ntI/s) for this case.

Finally, we note that for any all large enough I (compared to n), the circuit
complexity of PIRn,I is O(nI). To see this, note that the cost of computing the
function is dominated by computing x[z] from x, z. This is known as the storage
access function and is known to have a linear size circuit [Weg87].

5 Upper Bounds

5.1 Honest Majority

In this section, we prove upper bounds that match up to a constant factor the
lower bounds we proved for the standard model with honest majority. At first
sight this may seem like a trivial exercise: In [DN07] a passively secure protocol
was presented that securely evaluates any arithmetic circuit C of size |C| with
communication complexity O(n|C|) field elements. This seems to already match
our lower bound. However, that protocol only works for a field F with more than
n elements, and so cannot be directly used for the Boolean case.

One can partially resolve this by noticing that all our lower bounds hold
for any finite field, in fact the proofs do not use the size of field at all. So if we
consider instead the inner product function over a larger field F, then the bounds
match. But this is still not completely satisfactory because the result still holds
only as long as n < |F|.

To get a cleaner result, we can combine the protocol from [DN07] with a
recent technique from [CCXY18] known as reverse multiplication friendly embed-
dings (RMFE). Such an embedding can be defined when we have a base field F

and an extension field K. Then the embedding consists of two F-linear mappings
S, T where S : Fk �→ K and T : K �→ F

k. The defining property we need is that

T (S(a) · S(b)) = a ∗ b
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for any a, b ∈ F
k, and where a ∗ b is the coordinate-wise (Schur) product.

So these mappings allow us to implement k multiplications in parallel in F

by one multiplication in K. In [CCXY18] it is shown how to construct (families
of) RMFE(s) such that F = F2 and K = F2u where u is Θ(k). So the encoding
of a as an element in K comes with only a constant factor overhead. With these
tools, we can prove:

Theorem 9. There exists a perfect passive secure protocol for honest majority
such that for any n and all large enough I, the protocol computes IP ′

I,n with
communication complexity O(n2I) bits.

Remark 1. Since the protocol handles n = 2t + 1 this matches our upper bound
in Theorem 5, up to a constant factor.

Proof. (Sketch) First we choose an RMFE by the above construction, so we have
S : Fk �→ K and T : K �→ F

k, we make the choice such that n < |K| = 2u. Then
the protocol we build will work as long as I ≥ k.

Recall that in the function IP ′
I,n, which is defined at the start of Sect. 3.4,

the first 2t parties get as input a vector consisting of I bits. We will call these
the vector parties. In addition, each party also gets an input bit that decides if
that party gets output. For convenience in this proof, we will denote the parties
by a single index, so that Pj , for j = 1..2t are the input parties, whereas Pn’s
only input is the bit bn. Initially, each vector party will split his input vector
into �I/k� vectors of length k bits each, padding the last block with 0’s if it
is incomplete. By appropriate renumbering we can say that between them, the
vector parties now hold k-bit vectors x1, ...,xv and y1, ...,yv, where party Pj

holds a subset of the xi’s if 1 ≤ j ≤ t, and holds a subset of the yi’s if t < j ≤ 2t.
Let x be the concatenation of all the xi’s and y the concatenation of all yi’s.
Now the desired output for party Pj , for all j, can be written as bj(x · y) where
x · y is the inner product.

Now, note that one way to compute x · y product is to first compute z =∑
i xi ∗ yi and then add all coordinates in z (recall that ∗ denotes the Schur or

coordinate-wise product). This is essentially the strategy we will follow.
Recall that each vector party Pj holds a subset of xi’s or a subset of yi’s.

He applies S to each vector in his subset to get a set Vj of elements in K. The
parties will now use the Vj ’s as input to an instance of the protocol from [DN07].
This protocol can compute any arithmetic circuit over K and is based on Shamir
secret sharing. It can therefore be used to compute securely [

∑
i S(xi) · S(yi)],

which denotes a secret sharing of
∑

i S(xi) · S(yi), i.e., each party holds a share
of the value.

Let w =
∑

i S(xi) · S(yi). Note that by linearity

T (w) = T (
∑

i

S(xi) · S(yi)) =
∑

i

T (S(xi) · S(yi)) =
∑

i

xi ∗ yi = z

So this means that the only remaining problem is the following: given a secret
sharing of w, we need to securely compute T (w) and add all coordinates of the
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resulting vector. The result of this will be x · y, the result we want. If we think
of K as a u-dimensional vector space over F, the combined operation of applying
T and adding the coordinates is an F-linear mapping and hence has a matrix
M over F, actually with just 1 row. Therefore we will first compute sharings
[w1], ..., [wu] where he wi’s are the coordinates of w. This can be done by a
standard method where we first create [r], [r1], ..., [ru] for a random r ∈ K (by
adding random contributions from all players). Then we open w−r, compute its
coordinates in public and add them to [r1], ..., [ru] to get [w1], ..., [wu]. Finally
linearity of the secret sharing implies we apply M to the coordinates by only
local computation to get a secret sharing of the result [x · y]. We can assume
that each party Pj has also secret shared a bit bj where bj = 1 if and only if he
is to get the result. We can then compute [bjs] for each j and open this privately
to Pj .

Let us compute the cost of all this: the main part of the computation is to
compute [w] from sharings of the inputs. This requires essentially �In/k� secure
multiplications which the protocol from [DN07] can do at communication cost
�In/k� · n elements in K. An element in K has u bits and u is O(k). So the cost
in bits is O(In/k · n · k) = O(In2). One easily sees that the cost of sharing the
inputs initially is also O(In2). The final stage where we go from [w] to the result
does not depend on I and its cost can therefore be ignored for all large enough I.

��
For values of t that are smaller than the maximal value, the protocol in

the above proof can be optimized in a straightforward way using packed secret
sharing. Concretely, if n = 2t+ �, one can secret share a vector of � values where
shares are only 1 field element, so this saves a factor � compared to the original
protocol. This way, we easily obtain an upper bound matching the result from
Theorem 1.

5.2 Dishonest Majority

In this section, we sketch a generalization of known protocols in the preprocessing
model leading to an upper bound that matches our lower bound for the PIRI,n

function.
Let us consider a passively secure variant of the well known SPDZ protocol

for n = t + 1, i.e., the secret values are additively secret shared among the
players (no authentication is needed because we consider passive security). Linear
operations can be done with no communication and multiplications are done
using multiplication triples that are taken from the preprocessed data. It is clear
that such a protocol would work with any linear secret sharing scheme as long
as corruption of t players gives no information the secret.

So for the case of n = t+s, we can use Shamir secret-sharing with polynomials
of degree t. Using the packed secret-sharing technique we can then encode a
vector of Θ(s) values as the secret, instead of one value. This allows us to perform
Θ(s) multiplications in parallel while communicating only O(n) field elements.
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Namely, a multiplication involves opening two values, and this is done by sending
shares to one player who reconstructs and sends the result to all parties.

Now, if we consider computing the PIRI,n function, the dominating part is
to compute the storage access function (see Sect. 4). This function has a log-
arithmic depth layered circuit of size O(In). We can therefore compute it by
doing s operations in parallel at a time, leading to a communication complexity
of O(In2/s) field elements.

One caveat is that this protocol will need a field with at least n elements,
and the PIRI,n function is defined on binary values. This leads to an overhead
factor of lg n. However, using reverse multiplication friendly embeddings as in
the previous subsection, we can get rid of this overhead.

Since we only need to consider n > t ≥ n/2 in this model, we can assume
that n is Θ(t), so a communication complexity of O(In2/s) bits matches our
lower bound Ω(Int/s).

6 Conclusion and Future Work

In a nutshell, we have seen that nS where S is the input size, is a (up to a constant
factor) lower bound on the communication complexity of unconditionally secure
MPC, and for the particular functions we consider, this bound even equals the
product of n and the circuit size of the function. For the dishonest majority
case with preprocessing O(nS) is also an upper bound (at least if one allows
exponentially large storage for preprocessing).

Now, for honest majority, the obvious open problem is what happens for
functions where the circuit size is much larger than the input: is there a lower
bound that grows with the circuit size of the function (if we also require compu-
tational complexity polynomial in the circuit size)? Another question is whether
our lower bound for suboptimal corruption threshold t is tight, in terms of the
input size. Here n = t+s and the bound is Ω(tS/s), so the question is if there is
a matching upper bound, possibly by allowing exponential size preprocessing?
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Abstract. We study the communication complexity of unconditionally
secure MPC with guaranteed output delivery over point-to-point chan-
nels for corruption threshold t < n/3. We ask the question: “is it possible
to construct MPC in this setting s.t. the communication complexity per
multiplication gate is linear in the number of parties?” While a number
of works have focused on reducing the communication complexity in this
setting, the answer to the above question has remained elusive for over
a decade.

We resolve the above question in the affirmative by providing an MPC
with communication complexity O(Cnκ + n3κ) where κ is the size of an
element in the field, C is the size of the (arithmetic) circuit, and, n is the
number of parties. This represents a strict improvement over the previ-
ously best known communication complexity of O(Cnκ+DMn2κ+n3κ)
where DM is the multiplicative depth of the circuit. To obtain this result,
we introduce a novel technique called 4-consistent tuples of sharings
which we believe to be of independent interest.

1 Introduction

In secure multiparty computation (MPC), a set of n players wish to evaluate
a function f on their private inputs. The function f is publicly known to all
players and is assumed to be an arithmetic circuit C over some finite field. Very
informally, the protocol execution should not leak anything about the individual
inputs beyond what can already be inferred from the function output.

The notion of MPC was introduced in the beautiful work of Yao [Yao82].
Early feasibility results on MPC were obtained by Yao [Yao82] and Goldreich
et al. [GMW87] in the computational setting where the adversary is assumed to
have bounded computational resources. Subsequent works [BOGW88,CCD88]
considered the unconditional (or information-theoretic) setting and showed a
positive result for up to t < n/3 corrupted parties assuming point-to-point com-
munication channels. If one assumes a broadcast channel in addition, it was
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shown in [RBO89,Bea89] how to obtain positive results in the unconditional
setting for up to t < n/2 corrupted parties. MPC plays a central role in cryptog-
raphy, and, by now has been studied in a variety of different interesting settings.
Examples include security against semi-honest adversaries vs malicious adver-
saries, unconditional security vs computational security, and, security with abort
vs guaranteed output delivery.

In this work, we are interested in the communication complexity of uncon-
ditionally secure MPC with guaranteed output delivery. We assume that the
parties are connected using point-to-point channels, the adversary is malicious
(and may deviate from the protocol arbitrarily), and, the corruption threshold
t < n/3 (to avoid the known negative results on Byzantine agreement [LSP82]).
Indeed, the classical BGW protocol already gives a feasibility result in this set-
ting by presenting an unconditional MPC with guaranteed output delivery for
corruption threshold t < n/3. Several subsequent works have focused on improv-
ing the communication complexity of MPC in this setting. Note that the real
world efficiency of MPC in the unconditional setting is typically dominated by
its communication complexity (as opposed to the computational complexity).
This is because the local computations required are typically simple: often just
a series of linear operations. Representing the functionality as an arithmetic cir-
cuit, the addition gates are typically “free” requiring no communication at all.
Hence, the communication complexity of the protocol depends upon the number
of multiplication gates in the circuit.

In this paper, we ask the following natural question:

“Is it possible to construct unconditional MPC with guaranteed output deliv-
ery for t < n/3 s.t. the communication complexity per multiplication gate is
linear in the number of parties?”

Having linear communication complexity is interesting as it means that the
work done by a single party is independent of the number of parties participating
in the computation, giving a fully scalable protocol. While a number of works
have made significant progress, the answer to this question has remained elusive
so far. Best known communication complexity for malicious adversaries in this
setting comes from the construction in [BTH08]. The construction in [BTH08]
has communication complexity O(Cnκ+DMn2κ+n3κ) where κ is the size of an
element in the field, C is the circuit size and DM is the multiplicative depth of the
circuit. For circuits which are “narrow and deep” (i.e., the multiplicative depth
DM is not much smaller than the circuit size C), the communication complexity
per multiplication gate can be as high as O(n2) elements. The factor of DMn2κ
unfortunately appears in several papers studying this setting [DN07,BTH08],
[DIK10,BSFO12]. This led Ben-Sasson, Fehr, and, Ostrovsky to ask the question
whether this factor is inherent [BSFO12].

Building on a variety of previous works, it was shown in [DI06,HN06] that
there exist cryptographic secure MPC protocols with linear communication com-
plexity with guaranteed output delivery. In the unconditional setting, linear
communication complexity protocols are known for passive adversaries [DN07].
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However the question of obtaining an analogous construction against active
adversaries has remained open for over a decade.

Our Results. In this work, we resolve the above question in the affirmative by
providing an MPC with guaranteed output delivery, perfect security against a
malicious adversary corrupting up to t < n/3 of the parties, and, using only
point-to-point communication channels. The communication complexity of our
construction is O(Cnκ + n3κ) which is a strict improvement over the previous
best result of [BTH08]. Compared with the work [BTH08], our main contribution
is removing the quadratic term related to the multiplicative depth of the cir-
cuit, while keeping the circuit-independent term as efficient as that in [BTH08].
To obtain this result, we introduce a novel technique which we call 4-consistent
tuples of sharings. Very informally, this technique allows us to increase the redun-
dancy in an n-out-of-n sharing “on demand” such that if an adversary cheats
and changes its share in the n-out-of-n sharing, it can be detected and either
kicked out or added to a list of disputed parties. A high level overview of the
key technical obstacle encountered by previous works, and, how we overcome it
using 4-consistent tuples of sharings is given in Sect. 2.

Related Works. The notion of MPC was first introduced in [Yao82,GMW87] in
1980s. Feasibility results for MPC were obtained by [Yao82,GMW87,CDVdG87]
under cryptographic assumptions, and by [BOGW88,CCD88] in the information-
theoretic setting. Subsequently, a large number of works have focused on improv-
ing the efficiency of MPC protocols in various settings.

In this work, we focus on improving the asymptotic communication com-
plexity of MPC for arithmetic circuits over a finite field with output delivery
guarantee and security against an active adversary which may control up to
t < n/3 parties, in the information-theoretical setting. After the pioneering
work of Ben-Or et al. [BOGW88] which shows the feasibility in this setting,
Hirt et al. [HMP00] introduced Party-Elimination Framework which is a gen-
eral technique to efficiently transform a semi-honest protocol into a protocol
providing unconditional security with minimal additional cost. With this tech-
nique, Hirt et al. constructed a MPC protocol with communication complexity
O(Cn3κ+poly(n, κ)) bits, where C is the size of the circuit and κ is the size of an
element in the underlying field. A number of works [HM01,DN07,BTH08] then
continued to improve the communication complexity by using this technique.
The previous best result [BTH08] provided a protocol with perfect security with
asymptotic communication complexity O(Cnκ+DMn2κ+n3κ) bits, where DM

is the multiplicative depth of the circuit. In a subsequent result [BSFO12] which
focuses on the setting of security against up to t < n/2 corrupted parties assum-
ing the existence of a broadcast channel, the authors raised the question whether
the quadratic dependency w.r.t. the multiplicative depth is an inherent restric-
tion. Our result answers this question by presenting the first construction which
achieves linear communication per multiplication gate.

A number of works also focus on improving the communication efficiency of
MPC with output delivery guarantee in the settings with different threshold on
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the number of corrupted parties. In the setting where t < (1/3 − ε)n, secret
sharing can be used to hide a batch of values, resulting in more efficient proto-
cols. E.g., Damgard et al. [DIK10] introduced a protocol with communication
complexity O(C log C log n ·κ+D2

Mpoly(n, log C)κ) bits. In the setting of honest
majority (i.e., t < 1/2n), Hirt et al. [HN06] presented a protocol with commu-
nication complexity O(Cnκ + nBC), where BC is the cost for broadcasting a bit
by one party, by using threshold homomorphic encryption [Pai99] and assum-
ing the existence of a broadcast channel. Ben-Sasson et al. [BSFO12] presented
a protocol with communication complexity O(Cnκ + DMn2κ + n7κ) assuming
the existence of a broadcast channel in the information-theoretical setting. More
recent works in the computational setting have been able to obtain communi-
cation efficient MPC with output delivery guarantee in as low as 3 rounds, e.g.,
[BJMS18].

A rich line of works have focused on the performance of MPC in practice.
Many concretely efficient MPC protocols were presented in [LP12,NNOB12,
FLNW17] [ABF+17,LN17,CGH+18]. All of these works emphasized on the
practical running time and only provided security with abort. Some of them
were specially constructed for two parties [LP12,NNOB12] or three par-
ties [FLNW17,ABF+17].

2 Technical Overview

Our goal is to construct an unconditionally secure MPC protocol with guar-
anteed output delivery against a fully malicious adversary which may corrupt
t < n/3 parties. Our construction is for arithmetic circuits over a finite field, and,
achieves a communication complexity per multiplication gate which is linear in
the number of parties. The previous best result in this setting was obtained over
a decade ago by [BTH08]. In this section, we present an overview of our main
ideas.

How Previous Techniques Work: The communication complexity achieved by
the construction in [BTH08] is O(Cnκ + DMn2κ + n3κ) where κ is the size
of an element in the field, C is the circuit size and DM is the multiplicative
depth of the circuit. Our goal would be to eliminate the term O(DMn2κ) which
would allow us to obtain a construction with linear communication complexity
per multiplication gate.

We now take a closer look at the construction in [BTH08]. To improve the
efficiency, several subroutines in [BTH08] handle a batch of O(n) multiplication
gates at one time. The overall cost of each such operation is O(n2) elements.
In this way, the amortized cost per multiplication gate only comes out to O(n)
elements. While this seems to already give us the result we seek, a major limi-
tation of the techniques in [BTH08] (as well as prior works) is that the batches
must solely consist of multiplication gates at the same depth in the circuit. Since
the communication cost for a batch is at least O(n2) field elements (even if
the number of multiplication gates in the batch is significantly lower than n),
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and, the number of batches is at least the multiplicative depth DM , the overall
communication complexity cannot be lower than O(DMn2κ).

The fundamental reason why we can only handle multiplication gates from a
single layer in any given batch is that the parties need to ensure that the result of
computing a layer is correct before moving on to the next layer. To understand
why this is the case, consider the following explicit attack.

The Key Bottleneck: We briefly describe the protocol for each multiplication
gate in [BTH08]. Let x, y be the inputs of the multiplication gate. We use [x]d
to denote a d-sharing of x. A d-sharing of x is the vector of shares obtained
by applying a (d + 1)-out-of-n secret sharing scheme on x. After a sharing is
distributed, each party holds a single share. Now consider the evaluation of a
multiplication gate. In the beginning, all parties hold shares of input wire values
[x]t, [y]t. In addition, all parties also hold a random (Beaver) tuple of sharings
([a]t, [b]t, [c]t) where c = ab generated in the preparation phase. To compute the
output sharing [xy]t, the parties will go through the following steps:

1. All parties locally compute [x + a]t := [x]t + [a]t and [y + b]t := [y]t + [b]t.
2. All parties reconstruct [x + a]t, [y + b]t by using a reconstruction protocol

discussed below.
3. On receiving x + a, y + b, all parties locally compute [xy]t = (x + a)(y + b) −

(x + a)[b]t − (y + b)[a]t + [c]t.

Our first attempt is to let one party Pking collect all the shares from [x +
a]t, [y+b]t, reconstruct x+a, y+b, and send the results back to all other parties.
In this way, each multiplication gate only costs O(nκ) bits even though we are
evaluating a single multiplication gate. Even if some of the parties are corrupted,
Pking can use error correction to recover the correct values. However, if Pking

itself is corrupted, the honest parties may get incorrect results. In fact, Pking

may even decide to send different values to different honest parties resulting in
honest parties holding inconsistent shares. At this point, if without any further
verification, one more multiplication gate is computed on the resulting output,
we show that Pking can learn the (full) value on an internal wire of the circuit!

In more detail, suppose Pking is corrupted. For a sharing [a]t, we use ai to
denote the i-th share of [a]t. All parties are going to evaluate x · y and then
(xy) · z. We give an attack to allow the adversary to recover the value of y:

1. Pking receives all shares of [x+a]t and [y+b]t from all parties. Pking computes
(x + a) and (y + b).

2. Pking selects a set of honest parties H′ with size |H′| = n − t − 1.
3. Pking sends (x + a) and (y + b) to parties which are not in H′. For parties

Pj ∈ H′, Pking sends (x + a + 1) and (y + b).
4. All parties locally compute [xy]t = (x+a)(y+b)−(x+a)[b]t−(y+b)[a]t+[c]t.

For a party Pj ∈ H′, the share of [xy]t it should hold is (x + a)(y + b) − (x +
a)bj−(y+b)aj+cj . However, since Pking sent (x+a+1) instead of (x+a) to Pj ,
the actual share Pj holds is ((x+a)(y+b)−(x+a)bj−(y+b)aj+cj)+(y+b−bj).
This is equal to the correct share of [xy]t plus the value (y + b − bj). A party
Pk which is not in H′ holds the correct share of [xy]t.



90 V. Goyal et al.

5. For the next multiplication gate, Pking receives shares of [xy+a′]t and [z+b′]t
from all the parties. For [xy + a′]t, Pking uses the (t + 1) shares provided by
parties (including those controlled by the adversary) that are not in H′ to
reconstruct (xy + a′). Then Pking computes the correct shares parties in H′

should hold.
6. For each party Pj ∈ H′, Pking computes the difference between the correct

share of Pj and the real share Pj provided, which is (y+b−bj). Note that Pking

learnt y + b while evaluting the previous multiplication gate, and therefore,
Pking learns the value of bj .

7. The adversary uses the shares of [b]t held by corrupted parties and {bj}Pj∈H′ ,
the shares of parties in H′, to reconstruct the value of b. Then it can compute
y from y + b and b. If y was the value on an input wire, the adversary has
learnt an input value. Else it learnt an intermediate wire value in the circuit.

Using n-out-of-n Secret Sharing: The above attack works because of the inher-
ent redundancy in a t-sharing. By only learning a small number of shares, the
adversary can compute the correct values of the remaining shares, obtain the
(incorrect) values for these shares, and finally, learn private information by com-
paring the incorrect values to the correct values. Our natural starting point to fix
this problem would be to use a (n − 1)-sharing (i.e., n-out-of-n sharing). In the
preparation phase, we generate a random tuple of sharings ([a]t,n−1, [b]t,n−1, [c]t)
where [a]t,n−1 denotes a t-sharing, and, an (n − 1)-sharing of the same value a.
The parties locally compute [x + a]n−1 = [x]t + [a]n−1 (instead of [x + a]t). Now
it can be shown that each share an honest party sends to Pking is uniformly dis-
tributed, and, the above attack ceases to work. The parties can safely evaluate
multiple layers of multiplication gates without leaking any information to the
adversary.

While this idea fixes the attack we outlined earlier, eliminating the redun-
dancy unfortunately opens the door to a host of other attacks which we discuss
next.

Checking the Reconstructions: An obvious issue with the above approach is now
not only Pking, but any party can cheat by sending a wrong share to Pking. As
before, a corrupted Pking can also send incorrect values and even different values
to different parties. Therefore, we need to run a verification procedure to ensure
every party behaved honestly. However before running a verification, all parties
evaluate exactly O(n) multiplication gates (even though they may not be at the
same layer). The verification is thus done in batches.

First, the parties check whether (for each multiplication gate) they all
received the same elements from Pking. This verification is done in batches and
is based on techniques from prior works. If this check fails, a pair of disputed
parties is identified and removed, and, all multiplication gates are re-evaluated.
Otherwise, this check guarantees that the sharings of the output of all the mul-
tiplication gates held by honest parties are consistent (though not necessarily
correct).
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Next, the parties check whether the reconstructions of values [x+a]n−1, [y +
b]n−1 are correct. Towards that end, we will use the reconstruction protocol
from [BTH08] to reconstruct [x + a]t := [x]t + [a]t, [y + b]t := [y]t + [b]t, which
guarantees that all honest parties get the correct results. If this second check
passes, then all multiplication gates are correctly evaluated and all parties con-
tinue to evaluate the remaining multiplication gates.

However if the above check fails, we run into an obstacle. In [BTH08], failure
of this check would necessarily imply the dishonesty of Pking (since the messages
sent by other parties to Pking, even if maliciously generated, could be corrected by
relying on the redundancy). Thus, Pking would be kicked out and the whole batch
would be executed again. However in our setting, there are two possibilities: (1)
at least one corrupted parties sent a wrong share to Pking, or, (2) Pking distributed
wrong results. Even if one is given that Pking behaved honestly, it is hard for
anybody (including Pking) to tell which party sent the wrong share. This is
because the shares do not have any redundancy and it is possible to change the
secret without getting detected by just changing a single share.

Without loss of generality, let (xi�

+ ai�

) be the first wrong value recon-
structed by Pking (the parties learn i� as part of the above check).

Increasing Redundancy Using 4-Consistent Tuples: Observe that if a party sup-
plied an incorrect share of [xi�

+ ai�

]n−1, then since (xi�

+ ai�

) was shared
using a (n − 1)-sharing, the only way to detect who is cheating would be
to go back to how these shares were generated, recompute the correct share
for each party, and, see which party supplied an incorrect share. Note that
[xi�

+ ai�

]n−1 = [xi�

]t + [ai�

]n−1 and [xi�

]t is a t-sharing. Therefore, we focus on
the generation process of [ai�

]n−1.
The generation of [ai]n−1 is done in batches as follows [BTH08]. Each party

Pi first randomly generates [si]t,n−1 for a random element si and distributes
the sharings to all other parties (i.e., j-th share to Pj). Then all parties extract
the randomness by using a hyper-invertible matrix M and locally computing
([a1]t,n−1, . . . , [an]t,n−1) = M([s1]t,n−1, . . . , [sn]t,n−1). In particular, [ai�

]n−1 =
Mi�([s1]n−1, . . . , [sn]n−1), where Mi� is the i�-th row of M .

Our first attempt to resolve this problem is as follows. The sharing
[si]t can be seen as the “redundant” version of the sharing [si]n−1. Simi-
larly, the matrix ([s1]t, . . . , [sn]t) can be seen as the redundant version of
([s1]n−1, . . . , [sn]n−1). The parties can generate the redundant version of [ai�

]n−1

as [ai�

]t = Mi�([s1]t, . . . , [sn]t). The parties can now send the shares from
[xi�

+ ai�

]t to Pking. These shares cannot be modified by the adversary because
of the large redundancy present. However what if a party cheated while sending
shares from [xi�

+ ai�

]n−1 but not while sending shares from [xi�

+ ai�

]t? The
goal of detecting who cheated still continues to evade us.

To resolve this problem, we wish to create a redundant version of the matrix
([s1]n−1, . . . , [sn]n−1) in a way such that from this version, the entire matrix can
be recovered. That is, for each i, we should be able to recover the entire sharing
[si]n−1 as opposed to just the secret si (even if the adversary tampers with the
shares it holds). Towards that end, our idea would be to actually convert this
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given matrix into three separate matrices such that each row of these matrices
is a carefully chosen t-sharing. Even if the adversary tampers with its shares
arbitrarily in each of these 3 matrices and the original matrix, these 3 matrices
can be entirely recovered and then, be used to recover the original matrix. We
now give more details.

All parties first agree on a partition of the set of all parties P = P1

⋃ P2

⋃ P3

such that |P1|, |P2|, |P3| ≤ t + 1. For the first matrix, the columns held by
parties in P1 are the same as the original matrix and the remaining columns are
randomly sampled such that each row of the matrix is a t-sharing. It can always
be achieved since for each row, only up to t+1 values are fixed (i.e., copied from
the original matrix). Similarly, for the second and the third matrices, the columns
held by parties in P2 and P3 are the same as the original matrix respectively.
The remaining columns are randomly sampled such that each row of these two
matrices is a t-sharing. To recover the original matrix from these 3 matrices, we
simply pick the columns held by parties in P1 from the first matrix, the columns
held by parties in P2 from the second matrix and the columns held by parties in
P3 from the third matrix. In case the adversary tampers with up to t columns
of each matrix, all the 3 matrices can be recovered using error correction and
then the original matrix can be recovered.

We now focus on the i-th row of these four matrices (including the original
one). Denote these by ([0si]n−1, [1si]t, [2si]t, [3si]t) (recall that each row of each
matrix is a sharing). Together with the t-sharing [0si]t := [si]t, we call such 4
sharings ([0si]t, [1si]t, [2si]t, [3si]t) a 4-consistent tuple of sharings. More formally,
we say a tuple of sharings ([0s]t, [1s]t, [2s]t, [3s]t) is 4-consistent w.r.t. a partition
of P = P1

⋃ P2

⋃ P3 where |P1|, |P2|, |P3| ≤ t + 1, if the (n − 1)-sharing [s]n−1,
where the k-th share of [s]n−1 equals the k-th share of [js]t for all j ∈ {1, 2, 3}
and Pk ∈ Pj , satisfies that s = 0s.

We prove that 4-consistency is preserved under linear operations. In more
detail, by applying Mi� to the 3 new matrices, we are able to obtain three t-
sharings [1ai�

]t, [2ai�

]t, [3ai�

]t such that these would entirely allow one to recover
all shares of [ai�

]n−1 and make sure [ai�

]n−1 and [ai�

]t are sharings of the same
value ai�

. We stress that these 3 sharings not only allow us to recover all shares
of [ai�

]n−1, but, in fact, also provide sufficient redundancy to make sure that an
adversary controlling up to t parties cannot cause the recovery procedure to fail.

Using 4-Consistent Tuples to Detect the Cheaters: How do the parties generate
these 4 matrices, and, ensure 4-consistency? Each party Pi generates the sharings
[si]t,n−1 and distributes them as before. Pi generates three additional t-sharings
[1si]t, [2si]t, [3si]t such that for j ∈ {1, 2, 3} and Pk ∈ Pj , the k-th share of [jsi]t
equals the k-th share of [si]n−1. Pi then distributes [jsi]t to all parties which
are not in Pj (because parties in Pj have already received their shares when Pi

distributed [si]n−1) for every j ∈ {1, 2, 3}. Let [0si]t := [si]t.
Next, all parties must check whether each party Pi distributed a valid 4-

consistent tuple of sharings ([0si]t, [1si]t, [2si]t, [3si]t). We develop subroutines
to do it efficiently by checking a batch of them each time. (If the check fails, a
pair of disputed parties is identified and removed.)
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Recall that [ai�

]n−1 = Mi�([s1]n−1, . . . , [sn]n−1). To verify whether parties
in Pj provided correct shares when reconstructing xi�

+ ai�

, all parties (locally)
compute

[jdi�

]t := [xi�

]t + [jai�

]t
= [xi�

]t + Mi�([js1]t, . . . , [jsn]t)

The computed shares are then sent to Pking. Observe that for Pk ∈ Pj , the
k-th shares of [js1]t, . . . , [jsn]t are exactly the k-th shares of [s1]n−1, . . . , [sn]n−1.
On receiving all shares of [jdi�

]t, Pking is able to recover all shares of [jdi�

]t even
if several of the received shares are incorrect. This allows Pking to recover correct
shares from [xi�

]t + [jai�

]n−1 for all Pk ∈ Pj . Pking can now check whether a
party in Pj behaved honestly by sending the correct share earlier. Therefore,
in the end, Pking claims that some party Pk is corrupted and all parties treat
(Pking, Pk) as a pair of disputed parties.

On the Proof of Security: We point out that it is non-trivial to prove the security
of our construction. Recall that each party Pi generates a tuple of t-sharings to
encode its randomness when generating [ai�

] (i.e., to encode [si]n−1). In general,
a t-sharing can only be used to hide one value since the adversary might have
t shares and just need one more to reconstruct all shares and the secret value.
However, we use a t-sharing to encode up to t+1 values, and, the values held by
honest parties should remain unknown to the adversary. Therefore, one must be
careful in using 4-consistent tuples to ensure that the simulator is able to obtain
an identical view. For more details, we refer the readers to Appendix A in the
full version of this paper.

Efficiency: In each batch, O(n) multiplication gates are first evaluated. Then all
parties check whether the results are correct. When a pair of disputed parties
is identified, these two parties are removed and all these O(n) multiplication
gates will be reevaluated. Our protocol costs O(n2κ) bits for the entire batch.
Therefore, on average, each multiplication only costs O(nκ) bits. For each failure,
at least one corrupted party is removed. Thus the number of reevaluations is
bounded by O(n), which means that reevaluations cost at most O(n3κ). Hence,
the communication complexity of the overall protocol is O(Cnκ + n3κ).

3 Preliminary

3.1 Model

We consider a set of parties P = {P1, P2, ..., Pn} where each party can provide
inputs, receive outputs, and participate in the computation. For every pair of
parties, there exists a secure (private and authentic) synchronous channel so that
they can directly send messages to each other.

We focus on functions which can be represented as arithmetic circuits over a
finite field F (with |F| ≥ 2n) with input, addition, multiplication, random, and
output gates. Let κ = log |F| be the size of an element in F.
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An adversary is able to corrupt at most t < n/3 parties, provide inputs
to corrupted parties, and receive all messages sent to the corrupted parties.
Corrupted parties can deviate from the protocol arbitrarily. We denote the set
of corrupted parties by C.

Each party Pi is assigned with a unique non-zero field element αi ∈ F\{0}
as the identity.

3.2 Byzantine Agreement

Byzantine agreement allows all honest parties to reach a binary consensus. A
protocol for byzantine agreement takes a bit from each party as input, and
all honest parties will reach to a consensus if at most t parties are corrupted.
Furthermore, if all honest parties hold the same bit b in the beginning, then all
honest parties agree on b finally.

In our protocol, we use a byzantine agreement protocol to let all parties
reach a binary consensus and let one party broadcast one bit to all other parties.
Broadcast allows a party (as a sender) to send a bit b to the remaining parties
and all parties eventually receive the same bit b′ where b = b′ when the sender
is honest. An easy way to instantiate broadcast is to let the party send the bit b
to all other parties, and then all parties run a byzantine agreement protocol to
reach a consensus on the bit b′ they received.

With t < n/3, both consensus and broadcast can be achieved by a perfect
byzantine agreement protocol communicating O(n2) bits [BGP92,CW92].

3.3 Party-Elimination Framework

Party-Elimination was first introduced in [HMP00]. It is a general strategy to
achieve perfect security efficiently.

The basic idea is to divide the computations into several segments. For each
segment, all active parties first evaluate this segment and then check the correct-
ness of the evaluation. It is guaranteed that at least one honest party will discover
that the segment is evaluated incorrectly if any corrupted parties deviate from
the protocol. After the check is completed, all active parties reach a consensus on
whether this segment is successfully evaluated. In the case of success, all active
parties continue to evaluate the next segment. In the case of failure, all active
parties run another protocol to locate two active parties such that at least one of
them is corrupted. Then these two parties are eliminated from the set of active
parties. The same segment is evaluated again.

Therefore, each failure results in a reduction in the number of corrupted
parties and only a bounded number (O(n)) of failures may happen.

We use Pactive to denote the set of parties which are active currently.
Only parties in Pactive can participate in the remaining computations. We use
Cactive ⊂ Pactive for the set of active corrupted parties. Let n′ be the size of
Pactive. We use t′ for the maximum possible number of the corrupted parties in
Pactive.
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Each time a pair of disputed parties is identified, these two parties are
removed from Pactive and hence Cactive. It results in n′ := n′ −2 and t′ := t′ −1.
Initially we have n = n′, t = t′. Let T = n′−2t′. Therefore, T remains unchanged
during the whole protocol.

We directly borrow the instantiation of Party-Elimination Framework used
in [BTH08]. We build a compiler which takes a procedure π as input and outputs
a procedure or a protocol π′ which either outputs the original result of π or
outputs a pair of disputed parties which contains at least one corrupted party.
In the rest of the constructions, each party maintains a happy-bit. Formally,

Procedure 1 Party-Elimination(π)

1: Initialization Phase:
All parties initially set their happy-bits to happy.

2: Computation Phase:
All parties run the procedure π.

3: Fault Detection Phase:
1. Each party sends its happy-bit to all other parties.
2. For each party, if at least one of the happy-bits it receives is unhappy,

sets its happy-bit to be unhappy.
3. All parties run a consensus protocol on their respective happy-bits. If

the result is happy, all parties take the result of π as the output and
halt. Otherwise, run the following steps.

4: Fault Localization Phase:
1. All parties agree on a referee Pr ∈ Pactive. Every other party sends

everything it generated, sent, and received in the Computation Phase
and Fault Detection Phase to Pr.

2. On receiving all information from other parties, Pr simulates the
Computation Phase and Fault Detection Phase. Pr broadcasts either
(Pi, corrupt) (in the case Pi does not follow the procedure) or
(�, Pi, Pk, v, v′,disputed) where � is the index of the message where Pi

should have sent v to Pk while Pk claimed to have received v′ �= v.
(a) If (Pi, corrupt) is broadcast, all parties set E = {Pr, Pi}.
(b) Otherwise, Pi and Pk broadcast whether they agree with Pr. If Pi

disagrees, set E = {Pr, Pi}; if Pk disagrees, set E = {Pr, Pk}; other-
wise, set E = {Pi, Pk}.

3. All parties take E as the output and halt.

We point out that the happy-bits are used in π and therefore, the value of a
happy-bit reflects whether this party is satisfied with the execution of π.

After a procedure π is compiled by Party-Elimination, parties will commu-
nicate with each other in Fault Detection Phase and Fault Localization Phase,
which adds some communication cost to π′. Parties will communicate O(n2)
elements in Fault Detection Phase to distribute happy-bits and reach the con-
sensus. Let m(π) be the total elements communicated in π, the overhead of
the Fault Localization Phase will then be O(m(π) + n2). In total, the overall
communication complexity is O(m(π) + n2) elements or O(m(π)κ + n2κ) bits.
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3.4 Hyper-Invertible Matrix

We adopt the definition of hyper-invertible matrices from [BTH08].

Definition 1 ([BTH08]). An r-by-c matrix M is hyper-invertible if for any
index sets R ⊆ {1, 2, ..., r} and C ⊆ {1, 2, ..., c} with |R| = |C| > 0, the matrix
MC

R is invertible, where MR denotes the matrix consisting of the rows i ∈ R
of M , MC denotes the matrix consisting of the columns j ∈ C of M , and
MC

R = (MR)C .

We point out a very useful property of hyper-invertible matrices, which is a
more generalized version compared with that shown in [BTH08].

Lemma 1. Let M be a hyper-invertible r-by-c matrix and (y1, ..., yr) =
M(x1, ..., xc). Then for any sets of indices A ⊆ {1, 2, ..., c} and B ⊆ {1, 2, ..., r}
such that |A| + |B| = c, there exists a linear function f : Fc → F

r which takes
{xi}i∈A, {yj}j∈B as inputs and outputs {xi}i�∈A, {yj}j �∈B.

3.5 Secret Sharing

In our protocol, we use the standard Shamir secret sharing scheme [Sha79]. We
adopt the notion of d-shared in [BTH08].

Definition 2 ([BTH08]). We say that a value s is (correctly) d-shared (among
the parties in Pactive) if every honest party Pi ∈ Pactive is holding a share si of s,
such that there exists a degree-d polynomial p(·) with p(0) = s and p(αi) = si for
every Pi ∈ Pactive. The vector (s1, s2, ..., sn′) of shares is called a d-sharing of s,
and is denoted by [s]d. A (possibly incomplete) set of shares is called d-consistent
if these shares lie on a degree-d polynomial.

For every function f : Fm → F
m′

, by writing f([x(1)]d, [x(2)]d, ..., [x(m)]d), we
mean f is applied on (x(1)

i , x
(2)
i , ..., x

(m)
i ) for every i ∈ {1, 2, ..., n′}. Especially,

when we say all parties in Pactive locally compute f([x(1)]d, [x(2)]d, ..., [x(m)]d),
each party Pi computes f(x(1)

i , x
(2)
i , ..., x

(m)
i ).

We point out that Shamir secret sharing scheme is linear, i.e., for every two d-
sharing [u]d, [v]d, [c1u+ c2v]d = c1[u]d + c2[v]d. We also heavily use the following
two facts: in the case t′ < (n′ − d)/2, a d-sharing [u]d is correctable with at
most t′ errors, e.g., by Berlekamp-Welch Algorithm; in the case t′ < n′ − d,
a d-sharing [u]d is detectable with at most t′ errors, due to the fact that two
different degree-d polynomials f1(·), f2(·) over F can have at most d points where
two polynomials are equal. Particularly, a t-sharing is always correctable in our
setting since n′ − 2t′ = T = n − 2t > t and therefore t′ < (n′ − t)/2.

We say a t-sharing [v]t is correct (or v is correctly t-shared) if all shares held
by honest parties lie on a degree-t polynomial. As we mentioned above, a correct
t-sharing is always recoverable.

In our protocol, we use [s]d1,d2 to represents two sharings of the same value
s, one is d1-sharing and the other one is d2-sharing. We use [s]d1,d2,d3 to repre-
sent three sharings of the same value s, d1-sharing, d2-sharing and d3-sharing
respectively.
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3.6 Batched Reconstruction

We directly borrow the procedure from [BTH08] to reconstruct a batch of d-
sharings. The procedure Recons takes T d-sharings as input and reconstructs
each sharing to all parties.

Procedure 2 Recons(Pactive, d, [s1]d, [s
2]d, . . . , [s

T ]d) [BTH08]

1: All parties agree on n′ different values β1, β2, . . . , βn′ ∈ F.
2: Expansion:

For every j ∈ {1, 2, . . . , n′}, all parties (locally) expand [s1]d, [s
2]d, . . . , [s

T ]d

into an error correction code [u1]d, [u
2]d, . . . , [u

n′
]d as:

[uj ]d = [s1]d + [s2]dβj + [s3]dβ
2
j + . . . + [sT ]dβ

T−1
j

3: Collecting shares of [ui]d:
For every party Pi, all other parties send their shares of [ui]d to Pi.

4: Each party Pi tries to reconstruct ui from the shares it received:
Pi checks whether there exists a degree-d polynomial f such that at least

min{d+ t′ +1, n′} of the shares lie on it. If not, Pi sets its happy-bit to unhappy. Pi

sends the value ui = f(0) or ⊥ (in the case that f does not exist) to other parties.

5: On receiving u1, . . . , un′
, each party Pi tries to reconstruct and output s1, . . . , sT :

If there exists a degree-(T − 1) polynomial g such that at least T + t′ values of

u1, u2, . . . , un′
lie on it, Pi computes s1, s2, . . . , sT from any T of them. Otherwise,

Pi sets its happy-bit to unhappy and sets sj =⊥ for all j ∈ {1, . . . , T}. Pi takes
s1, . . . , sT as output.

We point out two facts about the procedure Recons, which are shown
in [BTH08].

1. If d < T = n′ − 2t′ and all d-sharings are correct, then Recons always
successfully reconstructs the sharings to parties in Pactive. As we mentioned
before, a d-sharing is correctable with at most t′ errors when t′ < (n′ − d)/2,
which is equivalent to d < n′ − 2t′ = T .

2. If d < n′ − t′ and all d-sharings are correct, then either all sharings are cor-
rectly reconstructed or at least one happy-bit of an honest party is unhappy.

The procedure Recons will reconstruct T = Ω(n) sharings while commu-
nicating O(n2) elements to collect shares of [ui]d in Step 3 and distributed the
reconstructed ui to all parties. Thus, the overall communication complexity is
O(n2κ) bits. Note that for each sharing, the communication complexity to recon-
struct it is O(n) elements in average.

3.7 Input Gates

We directly use the result in [BTH08] where they provided a protocol for input
gates with communication complexity O(cInκ+n3κ) bits, where cI is the number
of input gates in the circuit. The formal functionality appears in Finput.
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Functionality 3 Finput(cI)

1: Finput receives inputs, which are denoted by v1, v2, . . . , vcI ∈ F, from all
parties including honest and corrupted parties. Finput initially sets statej =
1 for j ∈ {1, . . . , cI}.

2: From j = 1 to cI , Finput asks S what to do next:
– On receiving (Pi, Pk,disputed) where Cactive

⋂{Pi, Pk} �= ∅, Finput sets
Pactive := Pactive\{Pi, Pk} and Cactive := Cactive\{Pi, Pk}.

– On receiving (vj , corrupted) where vj is sent by a corrupted party, Finput

sets statej = 0,Pj = Pactive, Cj = Cactive and then handle j := j + 1.
– On receiving {vj

s}Ps∈Cactive
, Finput sets Pj = Pactive, Cj = Cactive and

then handle j := j + 1.
3: For each j ∈ {1, . . . , cI}, if statej = 1, Finput computes a random t-sharing

[vj ]t of the input vj received in the first step, such that for all Ps ∈ Cj , the
s-th share of [vj ]t is vj

s. If statej = 0, Finput sets [vj ]t = [0]0.
4: For every j ∈ {1, . . . , cI} and Pi ∈ Pj , Finput sends vj

i to Pi. Finput also
sends Pactive to all parties.

We refer the reader to the appendix of [BTH08] for the construction of a
protocol which instantiates Finput.

4 4-Consistency

In our protocol, we first use random (n′−1)-sharings to help evaluate the circuit.
Indeed, there is no redundancy in a (n′ − 1)-sharing: to reconstruct the value,
all shares from Pactive are needed. However, it makes the sharing vulnerable
and the verification becomes much harder due to the lack of redundancy, e.g.,
every party is able to change the value by changing its own share without being
detected.

Therefore, we need a tool to let each party commit their shares after eval-
uating the circuit to help verifying the honesty. To this end, we introduce the
notion 4-consistency. Recall that t is the maximum number of corrupted parties
an adversary can control and n′ is the number of active parties.

Definition 3. For a partition π of Pactive = P1

⋃ P2

⋃ P3 such that
|P1|, |P2|, |P3| ≤ t + 1, a tuple of t-sharings [[r]] = ([0r]t, [1r]t, [2r]t, [3r]t) is a
4-consistent tuple w.r.t. π if 0r = r and there exists a degree-(n′ − 1) polynomial
p(·) with p(0) = r and for all Pi ∈ Pj, p(αi) is the i-th share of the sharing [jr]t.

In fact, the vector (p(α1), p(α2), ..., p(αn′)) is a (n′ − 1)-sharing of r by def-
inition. We denote it as [r]n′−1. In our construction, [r]t,n′−1 is first generated
to do evaluation. Then, in the verification step, [1r]t, [2r]t, [3r]t are generated
to commit the shares of [r]n′−1. This is due to the fact that t-sharings are cor-
rectable (as we explained in Sect. 3.5). Therefore, each share of [r]n′−1 can be
recovered no matter how corrupted parties change their shares.
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Lemma 2. 4-consistency is preserved under linear combinations

Proof. We show that, for every two 4-consistent tuples [[r]], [[s]] which are w.r.t.
π and constants c1, c2,

[[c1r + c2s]] := c1[[r]] + c2[[s]]

= (c1[0r]t + c2[0s]t, c1[1r]t + c2[1s]t, c1[2r]t + c2[2s]t, c1[3r]t + c2[3s]t)

is still 4-consistent w.r.t. π.
To see this, by the linearity of Shamir secret sharing scheme, each entry of the

resulting tuple is still a t-sharing. Especially, c1[0r]t + c2[1s]t = [c1(0r)+ c2(0s)]t
and c1r + c2s = c1(0r) + c2(0s).

Let p(·), q(·) be the polynomials such that p1(0) = r, p2(0) = s and for
every j ∈ {1, 2, 3} and Pi ∈ Pj , p1(αi), p2(αi) are the i-th shares of the sharings
[jr]t, [js]t respectively (as per the definition). Let p3 = c1p1+c1p2. Then p3(0) =
c1p1(0) + c2p2(0) = c1r + c2s. For every Pi ∈ Pj , p3(αi) = c1p1(αi) + c2p2(αi)
which is exactly the i-th share of c1[jr]t + c2[js]t. 
�

We say a 4-consistent tuple [[r]] = ([0r]t, [1r]t, [2r]t, [3r]t) is correct if (1) each
of the t-sharings is correct and (2) after correcting possible wrong shares held
by corrupted parties, it is 4-consistent.

5 Building Block

In this section, we introduce several building blocks which will be utilized in the
full protocol.

5.1 Random Triple-Sharings

The following procedure, TripleShareRandom(Pactive, d1, d2, d3), is used
to generate and distribute T random triple-sharings {[ri]d1,d2,d3}T

i=1 where
r1, . . . , rT are sampled uniformly from F and d1, d2, d3 ≥ t′. It finally outputs
either T valid random triple-sharings or a pair of disputed parties. The ideal
functionality is described in Ftriple.

Functionality 4 Ftriple(d1, d2, d3)

1: On receiving (Pi, Pk,disputed), where Cactive

⋂{Pi, Pk} �= ∅, from S, Ftriple

sends (Pi, Pk,disputed) to all parties.
2: On receiving ({r1,d1

s , r1,d2
s , r1,d3

s }Ps∈Cactive
, . . . , {rT,d1

s , rT,d2
s , rT,d3

s }Ps∈Cactive
)

from S, Ftriple samples r1, r2, . . . , rT uniformly from F. Then Ftriple ran-
domly generates [r1]d1,d2,d3 , . . . , [r

T ]d1,d2,d3 such that for every j ∈ {1, . . . , T}
and Ps ∈ Cactive, the s-th shares of [rj ]d1,d2,d3 are rj,d1

s , rj,d2
s , rj,d3

s respec-
tively. For every j ∈ {1, . . . , T} and Pi ∈ Pactive, Ftriple sends the i-th
shares of [rj ]d1,d2,d3 to Pi.
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The basic construction is very similar to the protocol which generates ran-
dom double-sharings in [BTH08]. The only difference is that we generate triple-
sharings instead of double-sharings.

In the beginning of the computation, all parties will agree on a constant
hyper-invertible matrix M of size n′ ×n′, which will be employed to extract ran-
domness. The first step of the protocol is to let each party Pi distribute a triple-
sharing [si]d1,d2,d3 of a random value si. Then apply the hyper-invertible matrix
M on them, i.e., ([r1]d1,d2,d3 , . . . , [r

n′
]d1,d2,d3) = M([s1]d1,d2,d3 , . . . , [s

n′
]d1,d2,d3).

For the last 2t′ triple-sharings, each of them is reconstructed by a different
party. Each party who reconstructs one of the triple-sharings checks whether
they are valid and sets its happy-bit to unhappy if the triple-sharing is invalid.
Finally, all parties take the remaining T = n′ − 2t′ triple-sharings as output.

It guarantees that either the output (i.e., [r1]d1,d2,d3 , . . . , [r
T ]d1,d2,d3) is cor-

rect or at least one happy-bit of an honest party is unhappy.
Formally,

Procedure 5 TripleShareRandom(Pactive, d1, d2, d3)

1: All parties agree on a hyper-invertible matrix M of size n′ × n′.
2: Parties distribute their own randomness:

Each party Pi samples si ∈ F uniformly. Then randomly generate
[si]d1,d2,d3 . For each other party Pj , Pi sends the j-th shares of [si]d1,d2,d3 to
Pj .

3: Extracting randomness from honest parties:
All parties locally compute

([r1]d1,d2,d3 , . . . , [r
n′

]d1,d2,d3) = M([s1]d1,d2,d3 , . . . , [s
n′

]d1,d2,d3)

4: Check the correctness:
1. For j ∈ {T + 1, . . . , n′}, all parties send their shares of [rj ]d1,d2,d3 to Pj .
2. Pj checks whether the triple-sharing it received is valid, i.e., all shares

of [rj ]d1 , [r
j ]d2 , [r

j ]d3 lie on degree-d1 ,degree-d2, degree-d3 polynomials
g1, g2, g3 respectively, and g1(0) = g2(0) = g3(0). If not, Pj sets its
happy-bit to unhappy.

5: All parties take the first T triple-sharings [r1]d1,d2,d3 , . . . , [rT ]d1,d2,d3 as out-
put.

In procedure TripleShareRandom, parties communicate O(n2) elements
to distribute randomness in Step 2 and check correctness in Step 4. Thus, the
overall communication complexity is O(n2κ) bits. Note that the communication
complexity for generating each random triple sharing is O(n) elements.

Let TripleShareRandom-PE :=Party-Elimination(TripleShare
Random). Then TripleShareRandom-PE securely computes Ftriple.

Lemma 3 ([BTH08]). The protocol TripleShareRandom-PE computes
Ftriple with perfect security when |Cactive| < |Pactive|/3.

The overall communication complexity of TripleShareRandom-PE is
O(n2κ) bits.



Communication-Efficient Unconditional MPC 101

5.2 Random Multiplication Tuples

The procedure GenerateTuples(Pactive) is used to generate T correctly and
independently random tuples ([a]t,n′−1, [b]t,n′−1, [c]t), which we call multiplica-
tion tuples, where a, b are uniformly random and c = ab. It outputs either T
random multiplication tuples or a pair of disputed parties. The ideal function-
ality is described in Fmulti-tuple.

Functionality 6 Fmulti-tuple(Pactive)

1: On receiving (Pi, Pk, disputed), where Cactive

⋂{Pi, Pk} �= ∅, from S, Fmulti-tuple

sends (Pi, Pk, disputed) to all parties.

2: On receiving

({a
1,t
s , a

1,n′−1
s , b

1,t
s , b

1,n′−1
s , c

1,t
s }Ps∈Cactive

, . . . , {a
T,t
s , a

T,n′−1
s , b

T,t
s , b

T,n′−1
s , c

T,t
s }Ps∈Cactive

)

from S, Fmulti-tuple samples a1, . . . , aT , b1, . . . , bT uniformly from F and com

putes c1 = a1b1, . . . , cT = aT bT . Then Fmulti-tuple randomly generates

([a
1
]t,n′−1, [b

1
]t,n′−1, [c

1
]t), . . . , ([a

T
]t,n′−1, [b

T
]t,n′−1, [c

T
]t)

such that for every j ∈ {1, . . . , T} and Ps ∈ Cactive, the s-th shares of

([aj ]t,n′−1, [bj ]t,n′−1, [cj ]t) are (a1,t
s , a1,n′−1

s , b1,t
s , b1,n′−1

s , c1,t
s ) respectively. For

every j ∈ {1, . . . , T} and Pi ∈ Pactive, Fmulti-tuple sends the i-th shares of

([aj ]t,n′−1, [bj ]t,n′−1, [cj ]t) to Pi.

The basic construction is very similar to the protocol which generates ran-
dom triples in [BTH08]. The difference is that we generate triple-sharings
[a]t′,t,n′−1, [b]t′,t,n′−1, [r]t,2t′,n′−1 instead of double-sharings [a]t′,t, [b]t′,t, [r]t,2t′ in
the beginning. However [a]n′−1, [b]n′−1 are directly output and [r]n′−1 is dis-
carded.

GenerateTuples(Pactive) first invokes TripleShareRandom to generate
random triple sharings [a1]t′,t,n′−1, . . . , [aT ]t′,t,n′−1, [b1]t′,t,n′−1, . . . , [bT ]t′,t,n′−1

and [r1]t,2t′,n′−1, . . . , [rT ]t,2t′,n′−1. For every i ∈ {1, . . . , T}, [ai]t′ , [bi]t′ are used
to compute [ci]2t′ = [ai]t′ [bi]t′ locally and [ri]t,2t′ is used to generate [ci]t.

Procedure 7 GenerateTuples(Pactive)

1: Generate random triple-sharings:
All parties invoke TripleShareRandom(Pactive, t

′, t, n′ − 1) two times
to generate [a1]t′,t,n′−1, . . . , [a

T ]t′,t,n′−1 and [b1]t′,t,n′−1, . . . , [b
T ]t′,t,n′−1. Then

invoke TripleShareRandom(Pactive, t, 2t′, n′ − 1) to generate
[r1]t,2t′,n′−1, . . . , [r

T ]t,2t′,n′−1.
2: For j ∈ {1, . . . , T}, all parties locally compute [cj ]2t′ = [aj ]t′ [bj ]t′ where

cj = ajbj . Since each party directly multiplies its shares, the result is a 2t′-sharing.
3: For j ∈ {1, . . . , T}, the parties in Pactive locally compute [dj ]2t′ = [cj ]2t′ − [rj ]2t′ .
4: Invoke Recons(Pactive, 2t′, [d1]2t′ , . . . , [dT ]2t′) to reconstruct d1, . . . , dT .
5: For j ∈ {1, . . . , T}, the parties in Pactive locally compute [cj ]t = dj + [rj ]t.
6: Output the T tuples ([a1]t,n′−1, [b

1]t,n′−1, [c
1]t), . . . , ([a

T ]t,n′−1, [b
T ]t,n′−1, [c

T ]t).

As parties only communicate with each other when invoking
TripleShareRandom and Recons, the communication complexity of
GenerateTuples is thus O(n2κ) bits. Note that the communication cost of
each random multiplication tuple is O(n) elements.

Let GenerateTuples-PE :=Party-Elimination(GenerateTuples).
Then GenerateTuples-PE securely computes Fmulti-tuple.
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Lemma 4 ([BTH08]). The protocol GenerateTuples-PE computes
Fmulti-tuple with perfect security when |Cactive| < |Pactive|/3.

The overall communication complexity of GenerateTuples-PE is O(n2κ)
bits.

5.3 Generating 4-Consistent Tuples

The procedure QuadrupleShareRandom(Pactive,P1,P2,P3) is used to gen-
erate T correct and random 4-consistent tuples [[r]] = ([0r]t, [1r]t, [2r]t, [3r]t).
The procedure takes Pactive, and a partition Pactive = P1

⋃ P2

⋃ P3, where
|P1|, |P2|, |P3| ≤ t + 1, as input. It outputs either T correct random 4-consistent
tuples or a pair of disputed parties. The ideal functionality is described in
F4-consistency.

Functionality 8 F4-consistency(Pactive, P1, P2, P3)

1: On receiving (Pi, Pk, disputed), where Cactive

⋂{Pi, Pk} �= ∅, from S, F4-consistency

sends (Pi, Pk, disputed) to all parties.
2: On receiving ({0r

1
s, 1r

1
s, 2r

1
s, 3r

1
s}Ps∈Cactive , . . . , {0r

T
s , 1r

T
s , 2r

T
s , 3r

T
s }Ps∈Cactive) from

S, F4-consistency randomly generates

[[r1]], . . . , [[rT ]]

such that for every j ∈ {1, . . . , T} and Ps ∈ Cactive, the s-th shares of [[rj ]]
are (0r

j
s, 1r

j
s, 2r

j
s, 3r

j
s) respectively. For every j ∈ {1, . . . , T} and Pi ∈ Pactive,

F4-consistency sends the i-th shares of [[rj ]] to Pi.

The construction of QuadrupleShareRandom is similar to
TripleShareRandom by the following means: First, each party deals a ran-
dom 4-consistent tuple, and then a hyper-invertible matrix is applied to extract
the randomness. For the last 2t′ out of n′ 4-consistent tuples, they will then be
reconstructed to check whether corrupted parties cheated in the computation.
Finally, the remaining n′ − 2t′ = T 4-consistent tuples will be output.

Procedure 9 QuadrupleShareRandom(Pactive,P1,P2,P3)

1: All parties agree on a hyper-invertible matrix M .
2: Parties distribute their own randomness:

Each party Pi generates a random 4-consistent tuple
[[si]] = ([0si]t, [1si]t, [2si]t, [3si]t). For each other party Pj , Pi sends the j-th
shares of [[si]] to Pj .

3: Extracting randomness from honest parties:
All parties locally compute

([[r1]], . . . , [[rn′
]]) = M([[s1]], . . . , [[sn′

]]).

4: Check the correctness:
1. For j ∈ {T + 1, . . . , n′}, all parties send their shares of [[rj ]] to Pj .
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2. Pj checks whether the 4-consistent tuple [[rj ]] is valid. If not, Pj sets its
happy-bit to unhappy.

5: All parties take the first T tuples [[r1]], . . . , [[rT ]] as output.

Parties communicate O(n2) elements to deal n′ and reconstruct 2t′ 4-
consistent tuples, so the overall communication complexity is O(n2κ) bits. Note
that in average, the communication cost for each 4-consistent tuple is O(n) ele-
ments.

Let QuadrupleShareRandom-PE :=Party-Elimination(Quadruple
ShareRandom). Then QuadrupleShareRandom-PE securely computes
F4-consistency.

Lemma 5. The protocol QuadrupleShareRandom-PE computes
F4-consistency with perfect security when |Cactive| < |Pactive|/3.

The overall communication complexity of QuadrupleShareRandom-PE
is O(n2κ) bits.

5.4 Random 0-Sharings

The protocol ZeroShareRandom is used to generate T random t-sharings of
0. It outputs either T correct and random t-sharings of 0 or a pair of disputed
parties. The ideal functionality is described in Fzero.

Functionality 10 Fzero(Pactive)

1: On receiving (Pi, Pk,disputed), where Cactive

⋂{Pi, Pk} �= ∅, from S, Fzero

sends (Pi, Pk,disputed) to all parties.
2: On receiving ({r1s}Ps∈Cactive

, . . . , {rT
s }Ps∈Cactive

) from S, Fzero randomly gen-
erates [01]t, . . . , [0T ]t such that for all j ∈ {1, . . . , T} and Ps ∈ Cactive, the
s-th share of [0j ]t is rj

s. For all j ∈ {1, . . . , T} and Pi ∈ Pactive, F4-consistency

sends the i-th shares of [01]t, . . . , [0T ]t to Pi.

ZeroShareRandom first invokes Ftriple(t, t, t) to generate T random triple-
sharings [r]t,t,t. Then computes [0]t by subtracting the first t-sharing of r from
the second t-sharing of r. Formally,

Protocol 11 ZeroShareRandom(Pactive)

1: Generate random triple-sharings:
All parties invoke Ftriple(t, t, t) to generate [r1]t,t,t, . . . , [rT ]t,t,t. If Ftriple

outputs (Pi, Pk,disputed), all parties halt. We write each triple-sharings
[rj ]t,t,t as ([aj ]t, [bj ]t, [cj ]t) where rj = aj = bj = cj to distinguish these
three t-sharings of the same value rj .

2: For j ∈ {1, . . . , T}, all parties locally compute [0j ]t = [bj ]t − [aj ]t. All parties
take [01]t, . . . , [0T ]t as output.

As we invoke Ftriple(t, t, t) to generate T random sharings of 0 from T random
triple-sharings, the overall communication complexity is O(n2κ) bits. And in
average, the communication cost for each random t-sharing of 0 is O(n) elements.
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5.5 Check Consistency

The procedure CheckConsistency is used to check whether a party Pking sent
T same elements to all other parties. It outputs either ⊥ or a disputed pairs.

Wemay thinkPking distributesT 0-sharings (which are essentially constant val-
ues) to all other parties. Suppose these sharings are [d1]0, . . . , [dT ]0. In the begin-
ning, all parties agree on a hyper-invertible matrix M of size (T + t′) × T . Then
all parties (locally) compute ([r1]0, . . . , [rT+t′

]0) = M([d1]0, . . . , [dT ]0). Each 0-
sharing is reconstructed by a different party and each party who reconstructs one
of the 0-sharing checks whether it is valid and sets its happy-bit to unhappy if not.
Note that at least T sharings are checked by honest parties. If all honest parties
are satisfied with the execution, by the property of hyper-invertible matrices, all
honest parties received the same T elements from Pking.

However, in the fault-location phase, just providing all information in the
computation phase is not enough. To find a pair of disputed parties, Pking should
send these T elements to the referee. Formally,

Procedure 12 CheckConsistency(Pactive, Pking, [d1]0, . . . , [dT ]0)

1: Initialization Phase:
All parties initially set their happy-bits to happy.

2: Computation Phase:
1. All parties agree on a hyper-invertible matrix M of size (T + t′) × T .
2. All parties locally compute ([r1]0, . . . , [rT+t′

]0) = M([d1]0, . . . , [dT ]0).
3. For j ∈ {1, . . . , T + t′}, all parties send their shares of [rj ]0 to Pj .
4. Pj checks whether [rj ]0 it receives is valid, i.e., all shares of [rj ]0 are

equal. If not, Pj sets its happy-bit to unhappy.
3: Fault Detection Phase:

1. Each party sends their happy-bit to all other parties.
2. For each party, if at least one of the happy-bits it receives is unhappy,

set its happy-bit to be unhappy.
3. All parties run a consensus protocol on their respective happy-bits. If

the result is happy, all parties halt. Otherwise, run the following steps.
4: Fault Localization Phase:

1. All parties agree on a referee Pr ∈ Pactive. Every other party sends
everything it generated, sent and received in the Computation Phase
and Fault Detection Phase to Pr. Pking sends d1, . . . , dT to Pr.

2. On receiving all information from other parties, Pr simulates the
Computation Phase and Fault Detection Phase. Pr broadcasts either
(Pi, corrupt) (in the case Pi does not follow the procedure) or
(�, Pi, Pk, v, v′,disputed) where � is the index of the message where Pi

should have sent v to Pk while Pk claimed to have received v′ �= v.
(a) If (Pi, corrupt) is broadcast, all parties set E = {Pr, Pi}.
(b) Otherwise, Pi and Pk broadcast whether they agree with Pr. If Pi

disagrees, set E = {Pr, Pi}; if Pk disagrees, set E = {Pr, Pk}; other-
wise, set E = {Pi, Pk}.

3. All parties take E as output and halt.
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In the computation phase of CheckConsistency, all parties send O(n2)
elements. The remaining step is the same as Party-Elimination except that
Pking needs to send additional O(n) elements to Pr in the fault localization phase.
The overall communication complexity is O(n2κ) bits.

5.6 Check 4-Consistency

The procedure Check4Consistency is used to check whether each party dis-
tributed a correct 4-consistent tuple. The privacy is preserved when invoking
this procedure. It outputs either ⊥ or a pair of disputed parties.

In the beginning, all parties agree on a hyper-invertible matrix M of size
(T+t′)×T . Then, all parties invoke F4-consistency several times to generate enough
number of random tuples of 4-consistent sharings. Each random 4-consistent
tuple is associated to one input 4-consistent tuple and it is reconstructed to the
dealer of the input tuple. Instead of checking the original one, we will check the
summation of these two tuples.

Every time, up to T tuples are checked. All parties locally apply M on these
T tuples to get T + t′ tuples. Each tuple is then reconstructed by a different
party. Each party who reconstructs the tuple of sharings checks whether it is 4-
consistent and sets its happy-bit to unhappy if not. Note that at least T tuples are
checked by honest parties. If all honest parties are satisfied with the execution,
by the property of hyper-invertible matrices and the linearity of 4-consistent
sharings, these T tuples are correct and 4-consistent.

However, in the fault-location phase, the dealer cannot provide the original
tuple of sharings to the referee. Instead, the dealer provides the new tuple which
is the summation of the original one and a random one. Note that the original
tuple is generated by the dealer which should be 4-consistent and the random
tuple is 4-consistent guaranteed by F4-consistency.

Procedure 13 Check4Consistency(Pactive,P1,P2,P3, {[[sj ]]}n′
j=1)

1: Initialization Phase:
All parties initially set their happy-bits to happy.

2: Pre-Computation Phase:
1. All parties agree on a hyper-invertible matrix M of size (T + t′) × T .
2. From j = 1 to n′/T �:

All parties call F4-consistency to generate T random tuples of 4-
consistent sharings [[rT (j−1)+1]], . . . , [[rT (j−1)+T ]]. If F4-consistency outputs
(Pi, Pk,disputed), all parties take (Pi, Pk,disputed) as output and halt.

3. For j ∈ {1, . . . , n′}, all parties send their shares of [[rj ]] to Pj .
4. For j ∈ {1, . . . , n′}, all parties compute

[[uj ]] := [[sj ]] + [[rj ]]

3: Computation Phase:
For l > n′, we set [[ul]] := ([0]0, [0]0, [0]0, [0]0). For j ∈ {1, . . . n′/T �}:
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1. All parties locally compute ([[v1]], . . . , [[vT+t′
]]) = M([[uT (j−1)+1]], . . . ,

[[uT (j−1)+T ]]).
2. For k ∈ {1, . . . , T + t′}, all parties send their shares of [[vk]] to Pk.
3. Pk checks whether the 4-consistent tuple it received is valid. If not, Pk

sets its happy-bit to unhappy.
4: Fault Detection Phase:

1. Each party sends their happy-bit to all other parties.
2. For each party, if at least one of the happy-bits it receives is unhappy,

set its happy-bit to be unhappy.
3. All parties run a consensus protocol on their respective happy-bits. If

the result is happy, all parties halt. Otherwise, run the following steps.
5: Fault Localization Phase:

1. All parties agree on a referee Pr ∈ Pactive. Every other party sends
everything it generated, sent and received in the Computation Phase
and Fault Detection Phase to Pr. Each party Pi also sends [[ui]] to Pr.

2. On receiving all information from other parties, Pr simulates the
Computation Phase and Fault Detection Phase. Pr broadcasts either
(Pi, corrupt) (in the case Pi does not follow the procedure) or
(�, Pi, Pk, v, v′,disputed) where � is the index of the message where Pi

should have sent v to Pk while Pk claimed to have received v′ �= v.
(a) If (Pi, corrupt) is broadcast, all parties set E = {Pr, Pi}.
(b) Otherwise, Pi and Pk broadcast whether they agree with Pr. If Pi

disagrees, set E = {Pr, Pi}; if Pk disagrees, set E = {Pr, Pk}; other-
wise, set E = {Pi, Pk}.

3. All parties take E as output and halt.

In the pre-computation phase of Check4Consistency, all parties invoke
F4-consistency n′/T � = O(1) times and send O(n2) elements to reconstruct n′

[[rj ]]-s to different parties. In total, O(n2) elements are sent.
In the computation phase, all parties send O(n2) elements to reconstruct T +

t′ [[vk]]-s to different parties each round and n′/T � = O(1) rounds are executed.
The remaining step is the same as Party-Elimination except that, in the fault
localization phase, each party Pi should send [[ui]]-s to Pr, which contains O(n2)
elements in total. The overall communication complexity is O(n2κ) bits.

6 Protocol

In this section, we formally describe our construction. The main protocol is
divided into several parts. In the first part, all input gates are handled by Finput.
We refer the reader to Sect. 3.7. The second part generates random shares for all
random gates. In the third part, the circuit is divided into segments where each
segment contains exactly T multiplication gates. Then each segment is evaluated
sequentially. The last part handles the output gates.
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6.1 Random Gates

The functionality Frand is used to generate random sharings of uniform elements
in F. We use cR for the number of random gates in the circuit.

Functionality 14 Frand(cR)

1: From j = 1 to cR, Frand asks S what to do next:
– On receiving (Pi, Pk,disputed) where Cactive

⋂{Pi, Pk} �= ∅, Frand sets
Pactive := Pactive\{Pi, Pk} and Cactive := Cactive\{Pi, Pk}.

– On receiving {vj
s}Ps∈Cactive

, Frand sets Pj = Pactive, Cj = Cactive and
continue to handle j := j + 1.

2: For every j ∈ {1, . . . , cR}, Frand generates a random value vj ∈ F and
computes a random t-sharing [vj ]t such that for all Ps ∈ Cj , the s-th share
of [vj ]t is vj

s.
3: For every j ∈ {1, . . . , cR} and Pi ∈ Pj , Frand sends vj

i to Pi. Frand also sends
Pactive to all parties.

The formal instantiation of Frand is described below.

Protocol 15 Rand(Pactive, cR)

1: From j = 1 to cR/T �, do the follows:
1. All parties in Pactive call Ftriple(n′ − 1, t, t′).
2. If Ftriple outputs (Pi, Pk,disputed), all parties set Pactive :=

Pactive\{Pi, Pk} and Pi, Pk halt. Repeat this step.
3. Otherwise, all (n′ − 1)-sharings and t′-sharings are discarded. Denote

the T t-sharings as [vT (j−1)+1]t, . . . , [vT (j−1)+T ]t. All parties in Pactive

continue to handle j := j + 1.
2: All parties take [v1]t, . . . , [vcR ]t as output and the remaining sharings are

discarded.

We now show that Rand securely computes Frand.

Lemma 6. The protocol Rand computes Frand with perfect security when
|Cactive| < |Pactive|/3.

Proof. Let A be the adversary in the real world. We show the existence of S:
From j = 1 to cR/T �, S does the follows:

1. S emulates Ftriple(n′ − 1, t, t′).
2. On receiving (Pi, Pk,disputed), where Cactive

⋂{Pi, Pk} �= ∅, from A, S
sets Pactive := Pactive\{Pi, Pk} and Cactive := Cactive\{Pi, Pk}. S sends
(Pi, Pk,disputed) to Frand. Repeat the loop from the beginning.

3. On receiving ({r1,n′−1
s , r1,t

s , r1,t′
s }Ps∈Cactive

, {rT,n′−1
s , rT,t

s , rT,t′
s }Ps∈Cactive

) from
A, for i = 1, 2, . . . , T , S sets {v

T (j−1)+i
s }Ps∈Cactive

= {ri,t
s }Ps∈Cactive

.
4. From i = 1 to T , if T (j − 1) + i ≤ T , S sends {v

T (j−1)+i
s }Ps∈Cactive

to Frand.

Note that S does not send any message to A. The view of A in either world
is just empty. 
�
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Note that, each time we repeat Step 1.2, at least one corrupted party is
removed from Pactive. Thus, we will repeat Step 1.2 at most t = O(n) times.
Therefore, Ftriple is invoked at most cR/T � + O(n) times.

By using TripleShareRandom-PE to instantiate Ftriple in Rand, the over-
all communication complexity is O((cR/T �+O(n))n2κ) = O(cRnκ+n3κ) bits.

6.2 Addition and Multiplication Gates

The circuit is first divided into several segments such that each segment seg
contains T multiplication gates. All segments are evaluated sequentially. If a
segment is evaluated successfully, then in the end, every output wire of this
segment is a correct t-sharing. Otherwise, a pair of disputed parties is recognized.
We first describe the procedure for evaluating one segment.

Procedure 16 Eval(Pactive, seg)

1: Initialization:
All parties agree on a party Pking and a partition of Pactive =

P1

⋃ P2

⋃ P3 such that |P1|, |P2|, |P3| ≤ t + 1.
2: Generate multiplication tuples:

All parties invoke GenerateTuples-PE(Pactive). If the result is
(Pi, Pk,disputed), all parties take it as output and halt. Otherwise, run the
following steps.

3: Evaluate seg:
For every addition gate, all parties apply addition on their own shares.
For every multiplication gate, a multiplication tuple generated in the

first step is associated with it. We use [x]t, [y]t for the input wires and
([a]t,n′−1, [b]t,n′−1, [c]t) for the multiplication tuple.
1. All parties compute [d]n′−1 := [x]t + [a]n′−1 and [e]n′−1 := [y]t + [b]n′−1.
2. All parties send their shares of [d]n′−1 and [e]n′−1 to Pking.
3. Pking reconstructs the d and e. Then send these two elements back to all

other parties.
4. All parties compute [z]t := de − d[b]t − e[a]t + [c]t.

4: Check the consistency of Pking:
Let d1, . . . , dT , e1, . . . , eT be the elements Pking distributed in the last

step. We view that step as Pking distributing [d1]0, . . . , [dT ]0, [e1]0, . . . , [eT ]0.
1. All parties invoke the procedure CheckConsistency(Pactive, Pking,

[d1]0, . . . , [dT ]0). If the result is (Pi, Pk,disputed), all parties take it as
output and halt.

2. All parties invoke the procedure CheckConsistency(Pactive, Pking,
[e1]0, . . . , [eT ]0). If the result is (Pi, Pk,disputed), all parties take it as
output and halt.

5: Recompute all reconstructions:
We use ([x1]t, [y1]t), . . . , ([xT ]t, [yT ]t) for the input wires of the multi-

plication gates in seg and ([a1]t,n′−1, [b1]t,n′−1, [c1]t), . . . , ([aT ]t,n′−1,
[bT ]t,n′−1, [cT ]t) for the multiplication tuples associated with the multipli-
cation gates.
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1. For j ∈ {1, . . . , T}, all parties compute [dj ]t = [xj ]t +[aj ]t, [ej ]t = [yj ]t +
[bj ]t.

2. Invoke Recons(Pactive, t, [d1]t, . . . , [dT ]t) and Recons(Pactive, t,
[e1]t, . . . , [eT ]t).

3. On receiving d1, . . . , dT , e1, . . . , eT , each party checks that whether they
are correctly reconstructed by Pking in step 4. If they are all correct, take
the shares of each output wires of seg as output and halt. Otherwise,
find the first value which is incorrect. Without loss of generality, suppose
di�

is the first incorrect value. Then do the following check.
6: Commit randomness used in GenerateTuples-PE:

For Pi ∈ Pactive, let [si]t,n′−1 denote the t-sharing and (n′ − 1)-
sharing of si that Pi distributed in TripleShareRandom (which is used
in GenerateTuples-PE).
1. For party Pi, it randomly generates [1si]t, [2si]t, [3si]t such that for j ∈

{1, 2, 3} and Pk ∈ Pj , the k-th share of [jsi]t (i.e., js
i
k) is the same as

that of [si]n′−1.
2. For j ∈ {1, 2, 3} and Pk ∈ Pactive\Pj , Pi sends the k-th share of [jsi]t to

Pk.
7: Check 4-Consistency:

Let [0si]t := [si]t and [[si]] denote the tuple of sharings
([0si]t, [1si]t, [2si]t, [3si]t).
1. All parties invoke the procedure

Check4Consistency(Pactive,P1,P2,P3, {[[sj ]]}n′
j=1)

2. If the result is (Pi, Pk,disputed), all parties take it as output and halt.
Otherwise, run the following steps.

8: Find a disputed pair of parties:
Let M be the invertible matrix used in TripleShareRandom. Let Mi�

be the i�-th row of M . Then [ai�

]n′−1 = Mi�([s1]n′−1, . . . , [sn′
]n′−1).

1. For j ∈ {1, 2, 3}, all parties compute

[jdi�

]t = [xi�

]t + Mi�([js1]t, . . . , [jsn′
]t)

2. For j ∈ {1, 2, 3}, all parties send their shares of [jdi�

]t to Pking.
3. Pking finds j� and k� where the k�-th share of [j�di�

]t is not the value
he received from Pk� in Step 3. Pking broadcasts (k�, corrupt).

4. All parties take {Pking, Pk� ,disputed} as output and halt.

Now, we analyze the correctness of Eval. The first two steps are straightfor-
ward. For Step 3, every addition gate can be computed locally by all parties. To
evaluate a multiplication gate, we use a random multiplication tuple. Instead of
using random t-sharings in [BTH08], we use random (n′ − 1)-sharings (namely
[a]n′−1 and [b]n′−1) to hide the t-sharings (namely [x]t and [y]t). In this way,
the messages that Pking receives from honest parties are uniformly random. It
prevents a malicious Pking to gain addition knowledge from the shares of honest
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parties. Indeed, if all parties behave honestly, then all parties will get a random
t-sharing [z]t where z = xy.

However, a corrupted party may send an incorrect share to Pking or a mali-
cious Pking may send incorrect values back to all other parties. To detect such
malicious behaviors, we first check whether Pking sent the same values in Step
4. It is vital since it directly decides whether the shares of [z]t held by honest
parties are consistent or not.

If all parties confirm that Pking sent the same values to all other parties (at
least to all honest parties), the next step is to check whether these reconstructed
values are correct. This time, all parties use [a]t and [b]t instead of [a]n′−1 and
[b]n′−1. Note that for each input wire of multiplication gates, all parties have
already held a correct t-sharings, which is guaranteed by Step 4. Thus, we can
reconstruct all t-sharings [a]t+[x]t and [b]t+[y]t for multiple layers of multiplica-
tion gates, which were evaluated in this segment, in parallel. If all reconstructions
are the same as those in Step 3, then we confirm that this segment is evaluated
successfully.

If all parties find at least one of the reconstructions is incorrect, then there
must be some corrupted party which doesn’t follow the protocol. All parties
focus on the first incorrect one. Without loss of generality, we assume it is di�

.
The main difficulty is that the redundancy is not enough to identify a pair

of disputed parties. Therefore, in Step 6, all parties commit their randomness
used in generating [ai�

]t′,t,n′−1, namely [s1]t′,t,n′−1, . . . [sn′
]t′,t,n′−1. Note that

correct t′-sharings and t-sharings have already had enough redundancy in the
sense that all parties can correct all shares no matter how corrupted parties
change their shares. Therefore, we require that each party Pi commits [si]n′−1

by using several t-sharings [1si]t, [2si]t, [3si]t. Together with [0si]t = [si]t, the
tuple of these 4 sharings forms a 4-consistent tuple.

In Step 7, all parties check whether these tuples are 4-consistent.
In the last step, for every j ∈ {1, 2, 3}, all parties compute

[jdi�

]t = [xi�

]t + Mi�([js1]t, . . . , [jsn′
]t)

Note that for Pi ∈ Pj , the i-th share of [jdi�

]t is exactly the share Pi should
have sent to Pking and this time, Pi cannot change its share without being
caught. Pking collects all shares of [1di�

]t, [2di�

]t, [3di�

]t and is able to broadcast
a corrupted party. All party then view Pking and the party it broadcast as a pair
of disputed parties.

Now we analyze the communication complexity of Eval.
In Step 2, GenerateTuples-PE is invoked one time and the communication

complexity is O(n2κ) bits. In Step 3, for each multiplication gate, Pking receives
from and sends to other parties O(n) elements in total, which costs O(nκ) bits.
In Step 4, CheckConsistency is invoked two times and the communication
complexity is O(n2κ) bits. In Step 5, Recons is invoked two times and the
communication complexity is O(n2κ) bits. In Step 6, all parties send O(n2)
elements to distribute [1si]t, [2si]t, [3si]t. In Step 7, Check4Consistency is
invoked one time and the communication complexity is O(n2κ) bits. In Step 8,
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all parties send O(n) elements to Pking to reconstruct [1di�

]t, [2di�

]t, [3di�

]t to
Pking. Then another O(n2) elements are sent to let Pking broadcast a corrupted
party.

Therefore, the overall complexity is O(n2κ) bits.

6.3 Output Gates

The procedure Output helps reconstruct t-sharings to the parties specified by
the output gates under the guarantee that, for each sharing associated with the
output gates, the shares held by parties in Pactive\Cactive are consistent.

Procedure 17 Output(Pactive)
All output gates are divided into several segments of size T . All segments

are executed sequentially. For each segment:
1: All parties repeat the following steps until success:

1. All parties call Fzero.
2. If Fzero outputs (Pi, Pk,disputed), all parties set Pactive :=

Pactive\{Pi, Pk}. Redo the loop.
3. If Fzero outputs T t-sharings of 0, break the loop.

2: Each output gate consumes one [0]t generated in the last step. For each
output gate, [s]t denotes the t-sharing and Pi� ∈ P, the party who receives
s. All parties in Pactive compute [s]t := [s]t + [0]t and send their shares of
[s]t to Pi� .

3: Each receiver Pi� reconstructs s from the shares it receives in the last step.

Let cO be the number of output gates in the circuit. Then all output gates
are divided into cO/T � segments. Note that each time Fzero outputs a pair of
disputed parties, at least one corrupted party is removed from Pactive. Thus Fzero

will be rerun at most O(n) times. Fzero will be invoked at most O(n) + cO/T �
times. For each output gate, all parties send O(n) elements to the designated
party to reconstruct the output. Therefore, by using ZeroShareRandom to
instantiate Fzero, the overall communication complexity is O(cOnκ + n3κ) bits.

6.4 Main Protocol

Now, we are ready to present the main protocol. In the protocol, all parties first
invoke Finput to securely share their inputs. Then Frand is invoked to generate
random sharings for random gates.

Let cM denote the number of multiplication gates. The circuit is divided
into cM/T � segments such that each segment contains T multiplication gates.
Segments are evaluated sequentially based on their topological order. For each
segment seg, the procedure Eval is invoked. If the result is a pair of disputed
parties, then these two parties are removed from Pactive and all parties in Pactive

reevaluate seg. Otherwise, the protocol continues to evaluate the next segment.
Finally, Output is invoked to reconstruct the outputs to designated parties.
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Protocol 18 Main

1: Input gates:
All parties invoke Finput(cI).

2: Rand gates:
All parties invoke Frand(cR).

3: Evaluation:
1. All parties agree on a partition (seg1, seg2, . . . , seg�cM /T�) of the circuit

such that the number of multiplication gates of each segment is T .
2. From j = 1 to cM/T �:

(a) All parties run the procedure Eval(Pactive, segj).
(b) If the output is (Pi, Pk,disputed), all parties set Pactive :=

Pactive\{Pi, Pk} and repeat the loop.
(c) Otherwise, set j := j + 1 and continue to handle the next segment.

4: Output gates:
All parties invoke the procedure Output(Pactive).

Now we analyze the communication complexity of Main.
For Step 3, each time Eval outputs a pair of disputed parties, at least one

corrupted party is removed from Pactive. Thus, Eval will be rerun at most
O(n) times. In total, Eval will be invoked O(n) + cM/T � times. The overall
communication complexity of this step is O(cMnκ + n3) bits.

Let C = cI + cR + cM + cO. Then the overall communication complexity of
Main is O(Cnκ + n3κ) bits.

Theorem 1. Let F be a finite field of size |F| ≥ 2n and C be an arithmetic
circuit over F. Protocol Main evaluates C with perfect security against an active
adversary which corrupts at most t < n/3 parties.

We provide the full proof of Theorem1 in the full version of this paper in
Appendix B.
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Abstract. RIPEMD-160 is an ISO/IEC standard and has been applied
to generate the Bitcoin address with SHA-256. Due to the complex dual-
stream structure, the first collision attack on reduced RIPEMD-160 pre-
sented by Liu, Mendel and Wang at Asiacrypt 2017 only reaches 30 steps,
having a time complexity of 270. Apart from that, several semi-free-start
collision attacks have been published for reduced RIPEMD-160 with the
start-from-the-middle method. Inspired from such start-from-the middle
structures, we propose two novel efficient collision attack frameworks for
reduced RIPEMD-160 by making full use of the weakness of its message
expansion. Those two frameworks are called dense-left-and-sparse-right
(DLSR) framework and sparse-left-and-dense-right (SLDR) framework.
As it turns out, the DLSR framework is more efficient than SLDR frame-
work since one more step can be fully controlled, though with extra
232 memory complexity. To construct the best differential characteristics
for the DLSR framework, we carefully build the linearized part of the
characteristics and then solve the corresponding nonlinear part using a
guess-and-determine approach. Based on the newly discovered differen-
tial characteristics, we provide colliding messages pairs for the first prac-
tical collision attacks on 30 and 31 (out of 80) steps of RIPEMD-160
with time complexity 235.9 and 241.5 respectively. In addition, benefiting
from the partial calculation, we can attack 33 and 34 (out of 80) steps of
RIPEMD-160 with time complexity 267.1 and 274.3 respectively. When
applying the SLDR framework to the differential characteristic used in
the Asiacrypt 2017 paper, we significantly improve the time complex-
ity by a factor of 213. However, it still cannot compete with the results
obtained from the DLSR framework. To the best of our knowledge, these
are the best collision attacks on reduced RIPEMD-160 with respect to
the number of steps, including the first colliding message pairs for 30 and
31 steps of RIPEMD-160.
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1 Introduction

A cryptographic hash function is a function which takes arbitrary long mes-
sages as input and output a fixed-length hash value. Traditionally, such a cryp-
tographic hash function has to fulfill the three basic requirements of collision
resistance, preimage resistance and second preimage resistance in order to be
considered secure. Most standardized hash functions, like SHA-1, SHA-2, HAS-
160, or RIPEMD-160 are based on the Merkle-Damg̊ard paradigm [3,22] which
iterates a compression function with fixed-size input to compress arbitrarily long
messages. Furthermore, the aforementioned hash functions have in common that
their compression function is built by utilization of additions, rotations, xor and
boolean functions in an unbalanced Feistel network. This way of designing hash
functions has been greatly threatened, starting with a series of results as well as
advanced message modification techniques by Wang et al. [28–31].

Before Wang et al. proposed a series of collision attacks on MD-SHA hash
family, there existed substantial efforts to analyze the security of MD-SHA hash
functions. Historically, the start-from-the-middle structure was first exploited
by den Boer et al. at Eurocrypt 1993 to break the compression function of
MD5 [6]. Later at FSE 1996, Dobbertin applied the start-from-the-middle app-
roach to break full MD4 [7]. Since the target is the hash function rather than
the compression function, the initial value must be consistent with its defini-
tion of the primitive, which is costly under the start-from-the-middle structure.
To overcome this obstacle, Dobbertin introduced a connecting phase to connect
the correct initial value with the starting point in the middle by exploiting the
property of the round boolean function and the freedom of message words [7].
As will be shown, our SLDR framework is almost the same with Dobbertin’s
structure to break MD4. Moreover, the neutral bits introduced by Biham and
Chen [1] at Crypto 2004 serve as an important tool to analyze MD-SHA hash
family as well till now. A message bit is neutral up to step n if flipping this
bit does not influence the differential characteristic conditions up to step n with
a high probability. Due to the low diffusion of SHA-0/SHA-1’s step functions,
there exist many neutral bits up to a few steps.

Soon after Wang et al. presented their exciting work on MD4/MD5/SHA-
0/SHA-1, where all the differential characteristics were hand-crafted, De
Cannière and Rechberger invented the first automatic search tool to solve the
nonlinear part of the differential characteristic of SHA-1 with the guess-and-
determine technique [5]. With such a guess-and-determine technique, Mendel
et al. designed a tool to find the differential characteristic of SHA-2 at Asi-
acrypt 2011 [18]. Later, tools to solve the nonlinear characteristics of SHA-2,
RIPEMD-128 and RIPEMD-160 progressed well and a series of results were
published [10,11,16,17,19–21]. After Wang et al. presented the differential char-
acteristic as well as the corresponding sufficient conditions used to break MD5
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in [30], cryptographers soon observed that the differential characteristic condi-
tions were not sufficient in [30]. Specifically, Stevens revealed that the differen-
tial rotations must hold if the differential characteristic hold [24]. Consequently,
Stevens further investigated the influence of the carry and added some extra
bit conditions to have the differential rotations hold with probability close to 1.
A highly-related work is the recently proposed method to theoretically calcu-
late the probability of the step function of RIPEMD-160 at Asiacrypt 2017 [16],
where the authors introduced the influence of the modular difference propaga-
tion and also presented how to add extra conditions for RIPEMD-160 to ensure
the modular difference propagates correctly.

The very first theoretical collision attack on full SHA-1 was achieved by Wang
et al. at Crypto 2005 [29], which required about 269 calls to SHA-1’s compression
function. However, practical collisions were still out-of-reach. After a decade’s
effort, Stevens et al. presented the first practical collision of full SHA-1 at Crypto
2017 [25]. In that work, Stevens et al. utilized the SHA-1 collision search GPU
framework [13] and the speed-up techniques such as neutral bits and boomerangs
and finally found the practical collision of SHA-1. Boomerangs were introduced
by Joux and Peyrin at Crypto 2007 [12] to speed up the collision search for
SHA-1. It consists in carefully selecting a few bits that are all flipped together
in a way that this effectively flips only one state bit in the first 16 steps, and
therefore the diffusion of uncontrollable changes is greatly slowed down.

The RIPEMD family can be considered as a subfamily of the MD-SHA-
family, since, for instance, RIPEMD [2] consists of two MD4-like functions com-
puted in parallel with totally 48 steps. The security of RIPEMD was first put
into question by Dobbertin [8] and a practical collision attack on it was proposed
by Wang et al. [28]. In order to reinforce the security of RIPEMD, Dobbertin,
Bosselaers and Preneel [9] proposed two strengthened versions of RIPEMD in
1996, which are RIPEMD-128 and RIPEMD-160 with 128/160 bits output and
64/80 steps, respectively. In order to make both computation branches more
distinct from each other, not only different constants, but also different rotation
values, message expansions and boolean functions are used for RIPEMD-128 and
RIPEMD-160 in both of their branches.

Due to the complicated structure of the dual-stream RIPEMD-128 and
RIPEMD-160, collision attacks on the two primitives progressed slowly. For
RIPEMD-128, a practical collision attack on 38 steps was achieved at FSE 2012
with a new structure [19]. Later, a practical collision attack on 40 steps was
achieved at CT-RSA 2014 [26]. A break-through was made at Eurocrypt 2013,
when Landelle and Peyrin employed the start-from-the-middle approach to break
the compression function of full RIPEMD-128 [14]. As for RIPEMD-160, no col-
lision attack was presented before Asiacrypt 2017 [16]. However, several results
of semi-free-start collision attacks on the compression function of RIPEMD-160
were obtained with the start-from-the-middle approach [17,21], only one of them
started from the first step and the remaining started from the middle, further
showing the difficulty to cryptanalyze the collision resistance of RIPEMD-160.
In the work of [21], a partial calculation to ensure that more uncontrolled bit
conditions hold was also introduced with a few statements. Later, a thorough
discussion was presented at ToSC 2017 [27].
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At Asiacrypt 2017, the authors proposed a strategy to mount collision attacks
on the dual-stream RIPEMD-160 [16]. Specifically, they inserted the difference
at the message word m15, which is used to update the last internal state of the
left branch in the first round. Then, they utilized the search tool [21] to find a
differential characteristic whose left branch was linear and sparse and the right
branch was as sparse as possible. At last, they applied single-step and multi-
step message modification only to the dense right branch to make as many bit
conditions as possible hold in a very traditional way, i.e. starting modification
from the first step. Typically, multi-step message modification requires a lot of
complicated hand-crafted work for different discovered differential characteristics
and therefore is very time-consuming. This motivates us to come up with two
efficient collision attack frameworks.

Since SHA-3 does not provide the 160-bit digest and the first collision of
full SHA-1 has been presented [25], as an ISO/IEC standard, RIPEMD-160
is often used as a drop-in replacement of SHA-1 and therefore worth analyzing.
For instance, RIPEMD-160 and SHA-256 have been used to generate the Bitcoin
address. For completeness, we list some related work of RIPEMD-160 in Table 1.

This paper is organized as follows. The preliminaries of this paper are intro-
duced in Sect. 2, including some notations, description of RIPEMD-160, start-
from-the-middle structure to find collisions, single-step message modification,
and how to estimate the probability of the uncontrolled part. In Sect. 3, the
details of the two efficient collision attack frameworks are explained. Then, we
will show how to construct suitable differential characteristics for the DLSR
framework and report the newly discovered 30/31/33/34-step differential char-
acteristics in Sect. 4. The application of the frameworks to the differential char-
acteristics is shown in Sect. 5. Finally, our paper is summarized in Sect. 6.

Table 1. Summary of preimage and collision attack on RIPEMD-160.

Target Attack Type Steps Time Memory Ref

comp. function preimage 31 2148 217 [23]

hash function preimage 31 2155 217 [23]

comp. function semi-free-start collision 36a low negligible [17]

semi-free-start collision 36 270.4 264 [21]

semi-free-start collision 36 255.1 232 [16]

semi-free-start collision 42a 275.5 264 [21]

semi-free-start collision 48a 276.4 264 [27]

hash function collision 30 270 negligible [16]

collision 30b 257 negligible Appendix A

collision 30 235.9 232 Sect. 5.1

collision 31 241.5 232 Sect. 5.2

collision 33 267.1 232 Sect. 5.3

collision 34 274.3 232 Sect. 5.4
a An attack starting at an intermediate step.
b Based on the differential characteristic in [16].
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Our Contributions. With the start-from-the-middle structure, we propose
two efficient collision attack frameworks for reduced RIPEMD-160. For the sake
of clearness, we differentiate the two frameworks by dense-left-and-sparse-right
(DLSR) framework and sparse-left-and-dense-right (SLDR) framework. The two
frameworks significantly simplify the procedure of finding collisions after a dif-
ferential characteristic is discovered and provide an efficient way to choose the
best differential characteristic from many candidates discovered by a search tool.
To the best of our knowledge, we obtained the best collision attacks on reduced
RIPEMD-160 with respect to the number of steps, including the first practical
attack. Specifically, the contribution of this paper can be summarized as follows.

• Two novel efficient collision attack frameworks for reduced RIPEMD-160 are
proposed. The DLSR framework is much more efficient than SLDR framework
since one more step can be fully controlled, though with extra 232 memory
complexity.

• With a guess-and-determine technique, new 30/31/33/34-step differential
characteristics of RIPEMD-160 are discovered, whose left branch is dense
and right branch is linear and sparse.

• By applying the DLSR framework to the newly discovered 30-step and 31-
step differential characteristics, practical collision attacks on 30 and 31 steps
of RIPEMD-160 are achieved. The instances of collision are provided as well.

• With the partial calculation technique that fully exploits the property of the
round boolean function of RIPEMD-160 and the differential characteristic
conditions, we introduce a clever way to dynamically choose the value of free
message words under the DLSR framework. Thus, based on the newly discov-
ered 33-step and 34-step differential characteristics, we can mount collision
attack on 33 and 34 steps of RIPEMD-160 with time complexity 267.1 and
274.3 respectively.

• Applying the SLDR framework to the discovered 30-step differential charac-
teristic of Liu, Mendel and Wang [16], we improve the collision attack on 30
steps of RIPEMD-160 by a factor of 213.

2 Preliminaries

In this section, several preliminaries of this paper will be introduced.

2.1 Notation

For a better understanding of this paper, we introduce the following notations.

1. �, ≪, ≫, ⊕, ∨, ∧ and ¬ represent respectively the logic operation: shift
right, rotate left, rotate right, exclusive or, or, and, negate.

2. � and � represent respectively the modular addition and modular substrac-
tion on 32 bits.

3. M = (m0, m1, ..., m15) and M ′ = (m′
0, m′

1, ..., m′
15) represent two 512-bit

message blocks.
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4. Kl
j and Kr

j represent the constant used at the left and right branch for round
j.

5. Φl
j and Φr

j represent respectively the 32-bit boolean function at the left and
right branch for round j.

6. sl
i and sr

i represent respectively the rotation constant used at the left and
right branch during step i.

7. π1(i) and π2(i) represent the index of the message word used at the left and
right branch during step i.

8. Xi, Yi represent respectively the 32-bit internal state of the left and right
branch updated during step i for compressing M .

9. V j represent the (j + 1)-th bit of V (V can be Xi, Yi, Qi, F...), where the
least significant bit is the 1st bit and the most significant bit is the 32nd bit.
For example, X0

i represents the least significant bit of Xi.
10. V p∼q(0 ≤ q < p ≤ 31) represents the (q + 1)-th bit to the (p + 1)-th bit of

the 32-bit word V (V can be Xi, Yi, Qi, F...). For example, X1∼0
i represents

the two bits X1
i and X0

i of Xi.

Moreover, we adopt the concept of generalized conditions in [5]. Some related
notations for differential characteristics are presented in Table 2.

Table 2. Notations for differential characteristics

(x, x∗) (0,0) (1,0) (0,1) (1,1) (x, x∗) (0,0) (1,0) (0,1) (1,1)

? � � � � 3 � � − −
− � − − � 5 � − � −
x − � � − 7 � � � −
0 � − − − A − � − �
u − � − − B � � − �
n − − � − C − − � �
1 − − − � D � − � �
� − − − − E − � � �

• x represents one bit of the first message and x∗ represents the
same bit of the second message.

2.2 Description of RIPEMD-160

RIPEMD-160 is a 160-bit hash function that uses the Merkle-Damg̊ard con-
struction as domain extension algorithm: the hash function is built by iterating
a 160-bit compression function H which takes as input a 512-bit message block
Mi and a 160-bit chaining variable CVi:

CVi+1 = H(CVi,Mi)

where a message to hash is padded beforehand to a multiple of 512 bits and
the first chaining variable is set to the predetermined initial value IV , that is
CV0 = IV . We refer to [9] for a detailed description of RIPEMD-160.
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The RIPEMD-160 compression function is a wider version of RIPEMD-128
and is based on MD5, but with the particularity that it consists of two different
and almost independent parallel instances of it. We differentiate the two com-
putation branches by left and right branch. The compression function consists
of 80 steps divided into 5 rounds of 16 steps each in both branches.

Initialization. The 160-bit input chaining variable CVi is divided into five
32-bit words hi (i = 0, 1, 2, 3, 4), initializing the left and right branch 160-bit
internal state in the following way:

X−4 = h≫10
0 , X−3 = h≫10

4 , X−2 = h≫10
3 , X−1 = h2, X0 = h1.

Y−4 = h≫10
0 , Y−3 = h≫10

4 , Y−2 = h≫10
3 , Y−1 = h2, Y0 = h1.

Particularly, CV0 corresponds to the following five 32-bit words:

X−4 = Y−4 = 0xc059d148, X−3 = Y−3 = 0x7c30f4b8, X−2 = Y−2 =
0x1d840c95, X−1 = Y−1 = 0x98badcfe, X0 = Y0 = 0xefcdab89.

Message Expansion. The 512-bit input message block is divided into 16 mes-
sage words mi of size 32 bits. Each message word mi will be used once in every
round in a permuted order π for both branches.

Step Function. At round j, the internal state is updated in the following way.

LQi = X≪10
i−5 � Φl

j(Xi−1,Xi−2,X
≪10
i−3 ) � mπ1(i) � Kl

j ,

Xi = X≪10
i−4 � (LQi)≪sl

i ,

RQi = Y ≪10
i−5 � Φr

j(Yi−1, Yi−2, Y
≪10
i−3 ) � mπ2(i) � Kr

j ,

Yi = Y ≪10
i−4 � (RQi)≪sr

i ,

where i = (1, 2, 3, ..., 80) and j = (0, 1, 2, 3, 4). The details of the boolean
functions and round constants for RIPEMD-160 are displayed in Table 3. The
other parameters can be found in the specification [9].

Table 3. Boolean Functions and Round Constants in RIPEMD-160

Round j φl
j φr

j Kl
j Kr

j Function Expression

0 XOR ONX 0x00000000 0x50a28be6 XOR(x,y,z) x⊕y⊕z

1 IFX IFZ 0x5a827999 0x5c4dd124 IFX(x,y,z) (x∧y)⊕(¬x∧z)

2 ONZ ONZ 0x6ed9eba1 0x6d703ef3 IFZ(x,y,z) (x∧z)⊕(y∧¬z)

3 IFZ IFX 0x8f1bbcdc 0x7a6d76e9 ONX(x,y,z) x⊕(y∨¬z)

4 ONX XOR 0xa953fd4e 0x00000000 ONZ(x,y,z) (x∨¬y)⊕ z
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Finalization. A finalization and a feed-forward is applied when all 80 steps
have been computed in both branches. The five 32-bit words h′

i composing the
output chaining variable are computed in the following way.

h′
0 = h1 � X79 � Y ≪10

78 ,

h′
1 = h2 � X≪10

78 � Y ≪10
77 ,

h′
2 = h3 � X≪10

77 � Y ≪10
76 ,

h′
3 = h4 � X≪10

76 � Y80,

h′
4 = h0 � X80 � Y79.

2.3 Start-from-the-Middle Structure

The start-from-the-middle structure was first used to break the compression
function of MD5 [6]. However, when applying such a structure to find collisions,
an extra phase is essential to match the correct initial value. Historically, Dob-
bertin was the first to use it to find real collisions [7]. In order to match the correct
initial value of MD4, Dobbertin introduced a connecting phase in the framework.
Exploting the property of the boolean function and the freedom degree of mes-
sage words, Dobbertin could achieve a connection with a very low cost. Due to
the high cost once there is no efficient approach to achieve a connection, the
start-from-the-middle structure is generally applied to find semi-free-start or
free-start collisions, which do not require the match with the predefined initial
value. Although such a structure has been used to find collisions in [10,15], the
situation is much simpler than Dobbertin’s work [7]. Specifically, since the length
of the middle part is short, only a few message words are fixed [10,15] and the
connection can be achieved trivially.

Formally, suppose there are r consecutive internal states s1, s2, ..., sr to
be connected, which are updated with the messages words mw1 ,mw2 , ...,mwr

respectively. In [7], one of mw1 ,mw2 , ...,mwr
is fixed so as to extend the length

of the middle part. Therefore, an efficient approach to solve it is non-trivial. For
the start-from-the-middle structure used in [10,15] to find real collisions, none
of mw1 ,mw2 , ...,mwr

are fixed in order to obtain a solution of the middle part.
In this situation, they could achieve connection trivially when computing from
the first step, i.e. obtain the value of mwi

according to the already computed
si, si−1, ..., si−r. However, the length of the middle part is greatly limited, thus
leaving more uncontrolled conditions in such a situation. Or else, the authors
made a tradeoff and finally determined not to consider the complex situation.

As will be shown in our two frameworks, we also use the start-from-the-
middle approach to find real collisions in a complex situation similar to Dob-
bertin’s work [7]. Our motivation is to ensure that as many conditions as possible
hold in the second round, which sometimes is almost impossible with multi-
step message modification or requires sophisticated and time-consuming manual
work. Therefore, in the SLDR framework, one of the message words used to
update the internal states to be connected will be fixed. In the DLSR frame-
work, we even fix two of the message words used to update the internal states
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to be connected, thus greatly extending the controllable part of the differential
characteristic and leaving fewer uncontrolled conditions. Fortunately, because of
the property of the round boolean function and the weakness of the message
expansion of RIPEMD-160, we can manage to achieve a connection with a low
cost for the two frameworks.

2.4 Single-Step Message Modification

Since only single-step message modification [28] will be used in this paper, we give
a brief description of it. Generally, single-step message modification can ensure
all the conditions in the first round for most MD-SHA-like hash functions. The
implied reason is that the message words are used for the first time in the first
round. Therefore, the attackers can randomly choose values for the internal states
while satisfying the conditions in the first round, i.e. randomly choose values for
the free bits of internal states. Then, the corresponding message words can be
computed according to the already fixed internal states in the first round. For
the sake of clearness, we take the step function of RIPEMD-160 as instance.

Suppose the following pattern represents the conditions on Xi.

Xi = -11- ---- ---- -1-- 1--- n-un -u-- --11.

Then, we can first choose a random value for Xi and then correct it in the
following way to ensure the conditions on it hold.

Xi ← Xi ∧ 0xfffff9ff,

Xi ← Xi ∨ 0x60048243.

If there are two-bit conditions on Xi, we then check them and correct them.
Suppose X4

i = X4
i−1 is one two-bit condition, we first check whether X4

i = X4
i−1

holds. If it does not hold, we simply flip X4
i . In this way, all conditions on Xi can

hold. Finally, we compute the corresponding message word to update Xi with
Xi,Xi−1, ...,Xi−5. The above description of single-step message modification is
different from the original one [28], but the implied idea is the same.

2.5 Propagation of Modular Difference

At Asiacrypt 2017, theoretical calculation of the probability of the step function
of RIPEMD-160 was described by introducing the influence of the propagation of
modular difference [16]. The complete description of the calculation procedure
is complex. Generally, the authors divided the problem into two parts. The
first part is to calculate the characteristics of Qi (LQi/RQi for the left/right
branch) which satisfies an equation like (Qi � c0)≪s = Q≪s

i � c1 (c0 and c1 are
constants) to ensure the correct propagation of modular difference. Then, they
calculate the probability that the bit conditions on the internal state (Xi/Yi

for left/right branch) hold under the condition that Qi satisfies the equation
(Qi � c0)≪s = Q≪s

i � c1. In other words, they considered the dependency
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between the bit conditions and the propagation of modular difference and this
obviously is a more accurate assumption.

In this paper, since the dense part of the differential characteristic will be first
fixed and the remaining part is very sparse and short, we can simply assume the
independency between the bit conditions and the propagation of modular dif-
ference. Thus, the product of the probability of correct propagation of modular
difference and the probability of bit conditions will represent the final probabil-
ity of the uncontrolled part. Specifically, supposing Qi (LQi/RQi for left/right
branch) satisfies the equation (Qi � c0)≪s = Q≪s

i � c1 with probability p and
there are q bit conditions on the corresponding internal state (Xi/Yi for left/right
branch), then the final probability is p×2−q. According to our experiments, such
an assumption is reasonable and almost consistent with the experiments.

Calculating the probability (Qi �c0)≪s = Q≪s
i �c1 can be found in Daum’s

Ph.D thesis [4], which was well illustrated in [16] with the help of a table. Due
to the space limitation, we refer the readers to Table 3 in [16].

3 Efficient Collision Attack Frameworks

In this section, we will present the details of the two efficient collision attack
frameworks. Both frameworks aim at ensuring as many conditions as possible in
an efficient way for specific strategies to construct differential characteristics. For
the SLDR framework, the differential characteristic is constructed by inserting
a difference at the message word m15, which is used to update the last internal
state in the first round on the left branch. Moreover, the differential characteristic
on the left branch should be linear and sparse. For the DLSR framework, the
differential characteristic is constructed by inserting difference at the message
word m12, which is used to update the last internal state in the first round on
the right branch. In addition, the differential characteristic on the right branch
should be linear and sparse. For both frameworks, the linear and sparse branch
remains fully probabilistic. The differential characteristic patterns for SLDR and
DLSR framework are depicted in Fig. 1.

Fig. 1. Illustration of the differential characteristic patterns for both frameworks
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3.1 SLDR Collision Attack Framework

Since m15 is firstly used to update Y11, for the strategy to build differential
characteristic by inserting difference only at m15 and making the left branch
sparse at Asiacrypt 2017 [16], the following two observations can be obtained.

Observation 1. There is no condition on Yi (1 ≤ i ≤ 8).
Observation 2. The first internal state with difference on the right branch
is Y11. When considering the difference propagating to Y12, we are actually
considering the difference propagation of Y11⊕(Y10∨¬Y ≪10

9 ) where only Y11

has differences. If all the bits(pi, pi+1, ..., pj) with difference in Y11 are flipped
by adding conditions Y pi

10 = 1, Y
pi+1
10 = 1, ..., Y

pj

10 = 1 when constructing the
differential characteristic, there will not be conditions on Y9 either.

The above two observations motivate us to consider the start-from-the-middle
structure to find collisions. Therefore, we carefully investigated the message
expansion on the right branch and finally found an efficient collision attack
framework for such a strategy to construct differential characteristics.

The overview of SLDR attack framework is illustrated in Fig. 2. Such a frame-
work contains 4 steps, as specified below and illustrated in Fig. 3.

Fig. 2. Overview of SLDR collision attack framework for RIPEMD-160

Fig. 3. Specification of SLDR collision attack framework for RIPEMD-160. Message
words in red at Step 1 and Step 3 represent their values will be fixed.
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Step 1: Fix the internal states located in the middle part from Y10 to Y19, which
can be easily finished via single-step message modification since only m3

is used twice to update the internal states. Specifically, randomly choose
values for Yi (10 ≤ i ≤ 18) while keeping their conditions hold via single-
step message modification since (m3,m12,m6,m11) are used for the first
time. Then, we reuse m3 to compute Y19 and check its condition. If the
condition does not hold, choose another solution of Yi (10 ≤ i ≤ 18) and
repeat until we find a solution of Yi (10 ≤ i ≤ 19). We call a solution of
Yi (10 ≤ i ≤ 19) a starting point.

Step 2: Apply single-step message modification to ensure the conditions
on Yi (20 ≤ i ≤ 23) since their corresponding message words
(m7,m0,m13,m5) are used for the first time.

Step 3: Randomly choose values for the free message words m14 and m9. Com-
pute from the first step until Y5. Then achieve connection in Y10, whose
corresponding message word m6 has been fixed in the starting point.
The costly condition Y7 = 0 is used to ensure Y10 is irrelevant to Y8,
which can be satisfied by consuming the freedom degree of m2.

Y7 = 0.

Y6 = ((Y7 � Y ≪10
3 )≫15 � (m11 � Kr

0)) ⊕ (Y5 ∨ Y ≪10
4 ).

m2 = (Y6 � Y ≪10
2 )≫15 � (ONX(Y5, Y4, Y

≪10
3 ) � Y ≪10

1 � Kr
0).

Y9 = ((Y10 � Y ≪10
6 )≫7 � (Y ≪10

5 � m6 � Kr
0)) ⊕ 0xffffffff.

Y8 = ((Y9 � Y ≪10
5 )≫7 � (Y ≪10

4 � m13 � Kr
0)) ⊕ (Y7 ∨ Y ≪10

6 ),
m4 = (Y8 � Y ≪10

4 )≫5 � (ONX(Y7, Y6, Y
≪10
5 ) � Y ≪10

3 � Kr
0).

Compute m15, m8, m1, m10 to achieve connection in Yi (11 ≤ i ≤ 14).
More specifically, m15 is computed by Yi (6 ≤ i ≤ 11), m8 is computed
by Yi (7 ≤ i ≤ 12), m1 is computed by Yi (8 ≤ i ≤ 13) and m10 is
computed by Yi (9 ≤ i ≤ 14).

Step 4: All message words have been fixed after connection. Then we verify the
probabilistic parts in both branches. If they do not hold, return Step 2
until we find colliding messages. The degree of freedom is provided by
m0, m5, m7, m9, m13 and m14.

Such a general framework can ensure all the bit conditions on Yi (10 ≤ i ≤ 23)
trivially, which is almost impossible via multi-step message modification once the
conditions are dense. However, more attention should be paid when applying it
to a specific differential characteristic. In this framework, Y7 is fixed to zero to
achieve an efficient connection in Y10, thus resulting in RQ11 = Y

≫sr
11

11 . If the
differential characteristic conditions on Y11 always make RQ11 fail to satisfy its
corresponding equation, this framework cannot be applied directly. Although we
can fix some bits of Y7 to one to solve it, this will influence the success probability
of connection. Therefore, when constructing the differential characteristic, such
a bad case should be considered and avoided.
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3.2 DLSR Collision Attack Framework

Now, we consider an opposite strategy to construct differential characteristics
by inserting difference only at m12 and making the right branch sparse. In this
way, X13 is the first internal state with difference. To propagate the difference
in X13 to X14, we are actually propagating the difference of X13 ⊕X12 ⊕X≪10

11 .
Since there is no difference in X11 or X12 and it is an XOR operation, there will
be always conditions on X11 and X12. However, there will not be conditions on
Xi (1 ≤ i ≤ 10). This also motivates us to consider the start-from-the-middle
approach.

The overview of DLSR framework is shown in Fig. 4. The attack procedure
can be divided into four steps as well, as illustrated in Fig. 5.

Step 1: Fix the internal states located in the middle part from X11 to X23, which
can be easily finished via single-step message modification since only
m15 is used twice to update the internal states. If there are too many bit
conditions on X23, we can firstly fix the internal states from X12 to X23

via single-step message modification since all the corresponding message
words (m7, m4, m13, m1, m10, m6 and m15) are used for the first time.
Then, we compute X11 by using Xi (12 ≤ i ≤ 16) and m15. At last, we
check the conditions on X11 and the modular difference of X15. If they
do not hold, choose another solution of Xi (12 ≤ i ≤ 23) via single-step
message modification and repeat until we can find a solution for the
starting point Xi (11 ≤ i ≤ 23). After a starting point is fixed, we have
to achieve connection in five consecutive internal states Xi (11 ≤ i ≤
15). However, m10 and m13 have been already fixed. Thus, an efficient
approach to achieve connection in X11 and X14 is quite important and
non-trivial.
To achieve connection in X14, we pre-compute a solution set S for
(X9,X10) according to the following equation by exhausting all pos-
sible values of X9. For each X9, compute the corresponding X10 and
store X9 in a two-dimensional array with X9 ⊕ X10 denoting the row
number. Both the time complexity and memory complexity of the pre-
computation are 232.

X14 = X10
≪10 � (XOR(X13, X12, X11

≪10) � X9
≪10 � m13 � Kl

0)
≪7.

Step 2: Apply single-step message modification to ensure the conditions on X24

since its corresponding message word m3 is not fixed in the starting point
and is used for the first time. We have to stress that we have considered
the influence of the propagation of modular difference and have added
extra bit conditions to control its correct propagation with probability 1.

Step 3: Randomly choose values for the free message words m0, m2 and m5.
Compute from the first step until X8 and then achieve connection in
X11 and X14 as follows. First, we calculate the value of var.

var = ((X11 � X≪10
7 )≫14 � (X≪10

6 � m10 � Kl
0)) ⊕ X≪10

8 .
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Fig. 4. Overview of DLSR collision attack framework for RIPEMD-160

Fig. 5. Specification of DLSR collision attack framework for RIPEMD-160. Message
words in red at Step 1 and Step 3 represent their values will be fixed.

Second, find solutions of (X9,X10) from S which satisfy X9⊕X10 = var.
The corresponding solutions are stored in the row numbered var. In this
way, each solution of (X9,X10) will ensure the connection in X11 and
X14. At last, compute m8 and m9 as follows to ensure X9 and X10 can
be the computed value for connection. Since there are 232 valid pairs
of (X9,X10) in S and var is a random 32-bit variable, we expect one
solution of (X9,X10) for a random var on average.

m8 = (X9 � X≪10
5 )≫11 � (XOR(X8, X7, X

≪10
6 ) � X≪10

4 � Kl
0).

m9 = (X10 � X≪10
6 )≫13 � (XOR(X9, X8, X

≪10
7 ) � X≪10

5 � Kl
0).

Compute m11, m12 and m14 to achieve connection in X12, X13 and X15.
Specifically, m11 is computed by Xi (7 ≤ i ≤ 12), and m12 is computed
by Xi (8 ≤ i ≤ 13), and m14 is computed by Xi (10 ≤ i ≤ 15).

Step 4: All message words have been fixed after connection. Then we verify the
probabilistic part in both branches. If they do not hold, return Step 2
until we find colliding messages. The degree of freedom is provided by
m0, m2, m3 and m5.

However, observe that there will be difference in X13 and X14 when inserting
difference at m12. Therefore, LQ13 = (X13 � X≪10

9 )≫6 and LQ14 = (X14 �
X≪10

10 )≫7 have to satisfy their corresponding equations to ensure the correct
propagation of modular difference. Since X9 and X10 cannot be controlled, we
have to verify whether LQ13 and LQ14 satisfy their corresponding equations
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when obtaining a solution of (X9, X10). A way to reduce the verifying phase is
to filter the wrong pair of (X9, X10) in the pre-computing phase. However, we
cannot expect one solution of (X9, X10) for a random var anymore. In other
words, whatever the case is, the influence of the correct propagation of modular
difference of X13 and X14 must be taken into account when estimating the
success probability.

Therefore, under our DLSR framework, except the modular difference of X13

and X14, all the conditions on Xi (11 ≤ i ≤ 24) can hold trivially with an
efficient method, which sometimes is almost impossible with multi-step message
modification or at least very time-consuming and requires sophisticated manual
work, especially when the conditions are dense in the second round. For the
dense left branch, since there is no condition on Xi (1 ≤ i ≤ 10), we only need
focus on the the uncontrolled conditions on internal states Xi (i ≥ 25) and
the modular difference of X13 and X14. Thus, to construct the best differential
characteristic for this framework, there should be minimum active bits in Xi

(i ≥ 23) and the modular difference of X13 and X14 should hold with a high
probability. Moreover, to select the best differential characteristic from many
discovered candidates, we only need to analyze the probability of the conditions
on Xi (i ≥ 25), consisting of the number of bit conditions and the influence
of the modular difference propagation, as well as the probability of the correct
propagation of the modular difference of X13 and X14. Obviously, we significantly
simplify the procedure to construct and select differential characteristics as well
as find collisions with the DLSR framework.

3.3 Comparison

Under the SLDR framework, we can only control until Y23 by adding an extra
costly condition Y7 = 0 to achieve efficient connection. For the DLSR framework,
we can control until X24 by consuming extra 232 memory to achieve efficient
connection. Hence, the SLDR framework has the obvious advantage of having no
memory requirement. However, when there is sufficient memory available, there
is a great advantage to leverage the DLSR framework, since we can control the
internal state until the 24th step. In other words, one more step can be fully
controlled with the DLSR framework, thus having the potential to leave fewer
uncontrolled conditions. It should be noted that the number of steps that can
be controlled highly depends on the message expansion. Thus, we rely on the
specifics of RIPEMD-160’s message expansion and extend to more steps as well
as find an efficient approach to achieve connection in the complex situation.

A direct application of the SLDR framework to the 30-step differential char-
acteristic in [16] will improve the collision attack by a factor of 211. With a
partial calculation technique, two more uncontrolled bit conditions can be con-
trolled. Thus, the collision attack on 30 steps of RIPEMD-160 is improved to 257.
Actually, the 30-step differential characteristic in [16] is not perfect under our
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SLDR framework since there are three bit conditions on Y9. Although the three
bit conditions can be eliminated by generating a new differential characteristic
with Observation 2 taken into account, the time complexity is still too high.
As will be shown, we can attack 30 steps of RIPEMD-160 with time complexity
235.9 under the DLSR framework. Therefore, considering its improving factor,
we decided not to generate a new differential characteristic for the SLDR frame-
work and we refer the readers to Appendix A for the details of the improvement
for the collision attack at Asiacrypt 2017 [16]. The source code to verify the
correctness of the SLDR framework is available at https://github.com/Crypt-
CNS/Improved Collision Attack on Reduced RIPEMD-160.git.

Actually, not only the framework but also the characteristic of the fully
probabilistic branch has influences on the final effect of the collision attack.
Taking the two factors into consideration, we finally determined to utilize the
DLSR framework.

4 Differential Characteristics

As stated in the previous section, to construct the best differential characteristic
for the DLSR framework, the uncontrolled part should hold with a high proba-
bility. To achieve this, according to the boolean function IFX used in the second
round on the left branch, we have to control that there are a few active bits in Xi

(i ≥ 23) so that the number of bit conditions on Xi (i ≥ 25) is minimal. Suppose
we will analyze the collision resistance of t steps of RIPEMD-160. According to
the finalization phase of the compression function of RIPEMD-160, to achieve
a minimal number of active bits in Xi (i ≥ 23), it is better to let only one of
Yt−1, Yt−2, Yt−3, Yt−4 have differences and ΔYt = 0. In this way, only one of
Xt,Xt−1,Xt−2,Xt−3 has differences and ΔXt−4 = 0.

Based on such a strategy to construct differential characteristics, we
firstly determine the characteristics on the fully probabilistic right branch for
30/31/33/34 steps of RIPEMD-160, which can be found in Tables 11, 12, 13 and
14 respectively.

Then, we construct the sparse characteristics on the left branch starting from
X23 for 30/31/33/34 steps of RIPEMD-160, which are displayed in Table 4.

At last, we utilize a search tool [11,18–21] to solve the nonlinear character-
istic located at Xi (11 ≤ i ≤ 22) based on a guess-and-determine technique [5].
To choose the best nonlinear characteristic from many candidates, we only need
focus on the conditions on Xi (i ≥ 25), consisting of the number of bit condi-
tions and the probability of the correct propagation of the modular difference,
as well as the probability that LQ13 and LQ14 satisfy their corresponding equa-
tions. The best 30-step, 31-step, 33-step and 34-step differential characteristics
for RIPEMD-160 that we eventually determined are displayed in Tables 11, 12,
13 and 14 respectively. To save space, we only list the uncontrolled two-bit con-
ditions located at the fully probabilistic right branch and Xi (i ≥ 25), which

https://github.com/Crypt-CNS/Improved_Collision_Attack_on_Reduced_RIPEMD-160.git
https://github.com/Crypt-CNS/Improved_Collision_Attack_on_Reduced_RIPEMD-160.git
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Table 4. Sparse characteristics on the left branch

cannot be denoted by generalized conditions. The two-bit conditions located at
Xi (11 ≤ i ≤ 24) as well as the equations to ensure the correct propagation of
modular difference of Xi (15 ≤ i ≤ 24) are not listed in the four tables since
all these conditions can hold trivially under the DLSR framework. In addition,
from the differential characteristics and the corresponding starting points in next
section, it is not difficult to extract all these information.

If we construct characteristic for 32 steps of RIPEMD-160 in a similar way,
there will be many bit conditions in Xi (i ≥ 23), which is even greater than that
of 33 steps. This is because ΔX28 	= 0 and ΔX29 	= 0. Therefore, for the attack
with high time complexity, we only provide the results for more steps.

Thanks to the efficiency of our DLSR framework, once a differential char-
acteristic for collision attack is determined, the uncontrolled probability can be
calculated immediately. Therefore, for each characteristic in Tables 11, 12, 13
and 14, we also present the corresponding total uncontrolled probability in these
tables, consisting of the number of bit conditions on the right branch and Xi

(i ≥ 25), as well as the equations to ensure the correct propagation of modular
difference on the right branch and of X13, X14 and Xi (i ≥ 25). The proba-
bility estimated in these four tables represents the success probability to find
the collision when the DLSR framework is directly applied to the differential
characteristics.

For the best 34-step differential characteristic given in Table 14, a direct
application of the DLSR framework is infeasible since it is beyond the birthday
attack. However, by benefiting from the partial calculation, which fully exploits
the property of the round boolean function and the existing differential char-
acteristic conditions, we significantly improve this probability. Such a technique
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will be also used to improve the collision attack on 31 and 33 steps of RIPEMD-
160. The details will be explained in next section. It should be noted that the
effect of partial calculation highly depends on the existing differential character-
istic conditions. Therefore, when selecting differential characteristics from many
candidates, we actually have taken the effect of partial calculation into account
as well.

5 Application

5.1 Practical Collision Attack on 30 Steps of RIPEMD-160

By applying the DLSR framework to the discovered 30-step differential charac-
teristic in Table 11, we can mount collision attack on 30 steps of RIPEMD-160
with time complexity 235.9 and memory complexity 232. It should be noted that
there are sufficient free bits in m0, m2, m3 and m5 to generate a collision. The
collision is displayed in Table 5. For completeness, the starting point can be found
in Table 7.

5.2 Collision Attack on 31 Steps of RIPEMD-160

According to Table 12, the time complexity to mount collision attack on 31
steps is 242.5 if the DLSR framework is directly applied. However, we can make
it slightly better with partial calculation technique by using the property of the
boolean function IFX. This is based on the following observation.

Table 5. Collision for 30 steps of RIPEMD-160

Table 6. Collision for 31 steps of RIPEMD-160
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Table 7. Starting points for differential characteristics

Observation 3. Let F = X25X24 ⊕ X25X
≪10
23 , then

F i =

⎧
⎨

⎩

Xi
24 (Xi

24 = Xi−10
23 )

Xi
24 (Xi

25 = 1)
Xi−10

23 (Xi
25 = 0).

Note that X26 is updated by the free message word m0 and Xi (21 ≤ i ≤ 24)
can be fully controlled. Although X25 cannot be controlled and unknown, we
can use partial calculation to ensure several bit conditions on X26 hold.

Specifically, consider the 31-step differential characteristic in Table 12. We
write X25, X24, X≪10

23 in binary as follows for a better understanding. Consider
the following calculation of F , we can know several bits of F if the conditions
on X25 hold, where a denotes that the bit value is possible to be determined
by carefully choosing values of X24 and X23, and b denotes that the bit value
cannot be determined with existing differential characteristic conditions.
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X25 = 10-- ---- ---- ---- ---- ---- ---- -10-.

X24 = 1u10 0011 1111 1--0 -1-0 1-01 0--- --u1.

X≪10
23 = n001 0001 1110 1-11 01-- ---0 ---- -n-1.

F = 10bb 00b1 111b 1aab a1aa aaab aaaa aaa1.

Consider the calculation of sum0 = X≪10
21 �Kl

1 after adding four bit conditions
on X21. In this way, the higher 12 bits of sum0 are constant.

X≪10
21 = 0110 1010 0110 010- 0--0 0-01 n1-n ---0.

Kl
1 = 0101 1010 1000 0010 0111 1001 1001 1001.

sum0 = 1100 0100 1110 bbbb bbbb bbbb bbbb bbb1.

Then, we consider the calculation of sum1 = sum0�m0 by pre-fixing the pattern
of m0 as follows.

sum0 = 1100 0100 1110 bbbb bbbb bbbb bbbb bbb1.

m0 = 0-11 110- ---- ---- ---- ---- ---- ----.

sum1 = 0b00 00bb bbbb bbbb bbbb bbbb bbbb bbbb.

Next, we consider the calculation of sum2 = sum1 � F as follows.

sum1 = 0b00 00bb bbbb bbbb bbbb bbbb bbbb bbbb.

F = 10bb 00b1 111b 1aab a1aa aaab aaaa aaa1.

sum2 = 1bbb 0bbb bbbb bbbb bbbb bbbb bbbb bbbb.

At last, consider the calculation of X26 after adding three extra bit conditions
on X22.

X26 = X≪10
22 � (F � X≪10

21 � Kl
1 � m0)≪12 = X≪10

22 � sum≪12
2 .

sum≪12
2 = bbbb bbbb bbbb bbbb bbbb 1bbb 0bbb bbbb.

X≪10
22 = 11un nnnn nnnn n0-u ---- 0000 01-1 10-1.

X26 = bbbb bbbb bbbb bbbb bbbb 1bbb bbbb bbbb.

Therefore, X11
26 = 1 can hold with probability 1. In the same procedure to per-

form the partial calculation, if we choose the following pattern of m0, X11
26 = 1

can always hold as well.

m0 = 0100 000- ---- ---- ---- ---- ---- ----.

It should be noted that m0 is randomly chosen at the third step when apply-
ing the DLSR framework. Therefore, with our partial calculation, we can choose
the value for m0 in a clever way to have the condition X11

26 = 1 always hold.
Therefore, the time complexity of a collision attack on 31 steps of RIPEMD-160
is improved to 241.5.

According to the above analysis, it is not difficult to observe that such an
approach to make only one bit condition hold is costly since at least 6 bits of
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m0 have to be fixed. In the case when there are sufficient free bits in the free
message words, such a method is feasible. However, when the success probability
is low, we have to carefully consume the degree of freedom. As will be shown
in the collision attack on 33/34 steps of RIPEMD-160, we dynamically choose
a value for m0 to save the degree of freedom. Moreover, partial calculation will
show its significant effect to decrease the time complexity when attacking 33 and
34 steps of RIPEMD-160.

Verification. Both the correctness of the framework and the partial calcu-
lation are fully verified. The collision for 31 steps of RIPEMD-160 is displayed
in Table 6 and the corresponding starting point is provided in Table 7.

5.3 Collision Attack on 33 Steps of RIPEMD-160

If we directly apply the DLSR framework to the discovered 33-step differential
characteristic in Table 13, the time complexity is 271.6 and the memory com-
plexity is 232. With the partial calculation, we can choose m0 in a clever way to
ensure more uncontrolled bit conditions hold.

Write X25, X24, X≪10
23 in binary according to Table 13 as follows for a better

understanding. Thus, several bits of F = X25X24 ⊕ X25X
≪10
23 can be known if

the conditions on X25 hold based on Observation 3.

X25 = -11- ---- ---- -1-- 1--- n--n ---- --11.

X24 = 11u0 10-- 0--1 1u01 0001 01-1 1110 0--u.

X≪10
23 = 1u10 --1- 0-01 0n00 100- 0100 1-01 1-u1.

F = 1110 aaaa 0aa1 b10b 000a 01a0 1abb baa1.

Consider the calculation of X26,

X26 = X≪10
22 � (F � X≪10

21 � Kl
1 � m0)≪12.

Observe that the higher 12 bits of F can be fully fixed by properly setting values
for X24 and X23. Moreover, X≪10

21 � Kl
1 and X≪10

22 are all constants after a
starting point is found. Therefore, it is feasible to have a clever choice of the
higher 12 bits of m0 rather than in a random way to ensure the conditions on
the lower 12 bits of X26. To explain more precisely, we firstly present the starting
point of the 33-step differential characteristic in Table 7.

From this starting point, the following information can be extracted.

F ∧ 0xfffc0000 = 1110 1011 0101 b100 0000 0000 0000 0000.

X≪10
21 � Kl

1 = 0100 1110 1100 0011 1001 0010 1111 1010.

Then, we add some extra conditions on m0 to ensure that there is always a carry
from the 20th bit to 21st bit when calculating F �X≪10

21 �Kl
1 �m0. The reason

why there is a carry is as follows. Suppose sum3 = X≪10
21 �Kl

1 �m0. When m0
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satisfies such a pattern, sum19∼18
3 = 112. Since F 18 = 1, there will be always

carry from the 20th bit when calculating F � sum3.

F ∧ 0xfffc0000 = 1110 1011 0101 b100 0000 0000 0000 0000.

X≪10
21 � Kl

1 = 0100 1110 1100 0011 1001 0010 1111 1010.

m0 = ---- ---- ---- 101- ---- ---- ---- ----.

Therefore,

(F ∧ 0xfff00000) � ((X≪10
21 � Kl

1) ∧ 0xfff00000) � 0x100000 = 0x3a200000.

Moreover, to ensure that the modular difference of X26 can hold with a
probability close to 1, we add an extra bit condition X9

26 = 1. The rea-
son can be found in the following calculation of LQ≪12

26 = X26 � X≪10
22 .

In this way, LQ31∼30
26 = 002 can hold with probability 1, thus resulting

(LQ26 � 0x407fff7e)≪12 = LQ≪12
26 � 0xfff7e408 holds with a probability

close to 1.

X26 = ---1 ---- ---- -u-- u--- 1010 1--- ----.

X≪10
22 = 1011 ---- 0--- -nun nnu0 un0- 0-un n010.

LQ≪12
26 = ---- ---- ---- ---- ---- 00-- ---- ----.

After the above preparation, we give a complete description of how to choose
m0 in a clever way to ensure the bit conditions on the lower 12 bits of X26. After
choosing values for X24 via single-step message modification and computing the
corresponding m3, we will determine the value of m0 according to the following
procedure.

step 1: Randomly choose values for the lower 12 bits of X26 while keeping the
conditions on this part hold.

step 2: Compute the lower 12 bits of X26 � X≪10
22 . Then, the higher 12 bits of

LQ26 are known.
step 3: Based on LQ26 = m0 � F � X≪10

21 � Kl
1, we can compute the higher 12

bits of m0 since the higher 12 bits of LQ26 and F � X≪10
21 � Kl

1 as well
as the carry from the 20-th bit are all known. The remaining free bits of
m0 are set to a random value.

In this way, we can ensure that 4 extra bit conditions on X26 and the modular
difference of it hold. Therefore, the time complexity of collision attack on 33
steps of RIPEMD-160 becomes 271.6−4.5 = 267.1. It should be noted that there
are sufficient free bits in m0, m2, m3 and m5 to generate a collision even though
m0 is not fully random anymore. Specifically, it is equivalent to fixing 8 bits of
m0.

Verification. Our program has verified the correctness of the above opti-
mizing strategy of partial calculation. Moreover, due to the low time complexity
of the left branch after applying such a strategy, we can find a group solution of
message words to ensure the dense left branch as shown in Table 8.
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Table 8. Solution of dense left branch

Solution for 33-step left branch

m0 0xdc0b0468 m1 0xf2470729 m2 0xee83478c m3 0x3c25962

m4 0xd19ebad5 m5 0x1aed1d2b m6 0x1f2c0d0e m7 0xc4f488a9

m8 0x586e5bed m9 0x1a444ebb m10 0x236883a m11 0xd38ea539

m12 0x61e4d55f m13 0x8425047b m14 0xe8649646 m15 0x6458c5e3

Solution for 34-step left branch

m0 0xc2056cdf m1 0x58a0be2 m2 0xe114b874 m3 0xb7f045ff

m4 0x8d38c100 m5 0x4e926b96 m6 0x7214c160 m7 0xea755943

m8 0x496a5788 m9 0x857f0518 m10 0xa6a0ee3e m11 0xcd1f88a9

m12 0x14a4951c m13 0xb9e9de76 m14 0x65df3f3a m15 0xb949ab42

5.4 Collision Attack on 34 Steps of RIPEMD-160

The best 34-step differential characteristic is displayed in Table 14. A direct
application of the DLSR framework to this differential characteristic is infeasible
since the uncontrolled part holds with probability 2−81.4. Fortunately, we can
exploit the partial calculation of X26 as above to ensure a lot of bit conditions on
X26 hold. Different from the 33-step differential characteristic where the lower
12 bits of X26 can be controlled with probability 1, only the higher 20 bits of
X26 can be controlled with probability 2−2 for the discovered 34-step differential
characteristic. However, there are a lot of conditions on the higher 20 bits of X26.
Therefore, there is a great advantage if exploiting such a strategy even though
it succeeds with probability 2−2. The details will be explained in the following,
which share many similarities with the procedure for the 33-step differential
characteristic.

Let F = X25X24⊕X25X
≪10
23 . We write X25, X24, X≪10

23 in binary according
to Table 14 as follows. Thus, many bits of F can be controlled by properly
choosing values for the free bits of X24 and X23.

X25 = ---1 ---- --n- -u0- ---- 00-1 1--- ----.

X24 = 100n 011- -111 111- -10- -u00 n10- -111.

X≪10
23 = 001u -01- 1-11 -101 011- u1-n -1-- ----.

F = b0b0 ab1a aa11 a10a a1ba 11a0 01aa aaaa.

Consider the calculation of X26,

X26 = X≪10
22 � (F � X≪10

21 � Kl
1 � m0)≪12.

Observe that there are only two possible values for the lower 20 bits of F depending
on X13

25 after setting values for X24 and X23 properly. Moreover, X≪10
21 � Kl

1 and
X≪10

22 are all constants after a starting point is found. Therefore, it is feasible to
have a clever choice of the lower 20 bits of m0 rather than in a random way to ensure
the conditions on the higher 20 bits of X26. To explain more precisely, we firstly
present the starting point of the 34-step differential characteristic in Table 7.
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From this starting point, the following information can be extracted.

F ∧ 0x000fffff = 0000 0000 0000 1101 01b1 1100 0101 0111.

X≪10
21 � Kl

1 = 0110 1100 1001 1101 1001 0100 1110 0100.

Therefore, (F � X≪10
21 � Kl

1) ∧ 0x000fffff can only take two possible values,
which are 0xaf13b and 0xb113b.

Moreover, it should be observed that the modular difference of X26 holds with a
very low probability of 2−3.1. Therefore, adding extra bit conditions to control the
modular difference is vital as well. We add four extra bit conditions X31

26 = 1, X30
26

= X20
22 , X29

26 = 0 and X27
26 = 0, all of which are located at the higher 20 bits of X26.

The reason can be found in the following calculation of LQ≪12
26 = X26 � X≪10

22 .
In this way, LQ19∼16

26 = 00002 can hold with probability 1, thus resulting (LQ26 �
0xe06be)≪12 = LQ≪12

26 � 0xe06be000 holds with probability 1.

X26 = 1-0u 0-n- --00 -11- ---- ---- -1-- ----.

X≪10
22 = 1-n0 uuu0 -uu0 uu01 1nu1 01-1 00-0 --0-.

LQ≪12
26 = 0000 ---- ---- ---- ---- ---- ---- ----.

Since we are trying to control the higher 20 bits of X26, the influence of the
carry from the 12th bit must be taken into account when calculating X≪10

22 �
LQ≪12

26 . The carry behaves randomly since m0 is random and the higher 12 bits
of F �X≪10

21 �Kl
1 are random. However, since X1∼0

22 = 012, there is a bias that
there is no carry from the 12th bit. Therefore, in the implementation, we always
assume there is no carry, which holds with probability slightly higher than 2−1.

After the above preparation, we give a complete description of how to choose
m0 in a clever way to ensure the 10 bit conditions on the higher 20 bits of
X26. After choosing values for X24 via single-step message modification and
computing the corresponding m3, we will determine the value of m0 in the
following procedure.

step 1: Randomly choose values of the higher 20 bits of X26 while keeping the
10 bit conditions on this part hold.

step 2: Compute the higher 20 bits of X26 � X≪10
22 by assuming there is no

carry from the 12th bit. Then, the lower 20 bits of LQ26 are known.
step 3: Based on LQ26 = m0 � F � X≪10

21 � Kl
1, we can compute the lower

20 bits of m0 since the lower 20 bits of LQ26 and F � X≪10
21 � Kl

1 are
known. Randomly choose one value of the 20 bits of F � X≪10

21 � Kl
1

from the two possible values and compute the corresponding lower 20
bits of m0. The remaining free bits of m0 are set to a random value.

In this way, we can ensure that 6 bit conditions on X26 and the modular
difference of it hold. Therefore, the time complexity of collision attack on 33
steps of RIPEMD-160 is improved to 281.4−9.1+2 = 274.3. It should be noted
that there are sufficient free bits in m0, m2, m3 and m5 to generate a collision
even though m0 is not fully random anymore. Specifically, it is equivalent to
fixing 10 bits of m0.
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Verification. The above partial calculation to ensure 10 bit conditions on
the higher 20 bits of X26 has been verified with the program, which is consistent
with our estimated success probability 2−1−1 = 2−2. In addition, we also found
a solution for the dense left branch as shown in Table 8.

Experiment Details. The verification is briefly described above. To make this
paper more complete, we give a relatively detailed description of our experiments.
For the efficiency of the search, we store the solutions for (X9,X10) in RAM.
However, due to the memory limit of our PC (Linux system) or Linux server,
we could only store 228 solutions for (X9,X10) in a two-dimensional dynamic
array in RAM for one program, thus resulting that the success probability of
connection becomes 2−4.

Therefore, for our DLSR framework, we count the total times T1 to start from
Step 2 (where we start choosing another random values for free message words)
and the total times T2 to start verifying the probabilistic part Xi (i ≥ 25) and
Yj (j ≥ 14) after the connection succeeds. It is found that T1/T2 = 17, which is
consistent with the success probability of connection. Obviously, it is expected
that the total number of attempts to find the collision is T2 when all the 232

solutions can be stored in RAM for one program.
To find the collision for 30 steps of RIPEMD-160 in this paper, T2 =

0x4c11e4a5 and T1/T2 = 17. To find the collision for 31 steps of RIPEMD-
160 in this paper, T2 = 0xfa3bab4a47 and T1/T2 = 17.

Note that the estimated probability to find the collision for 30/31 steps of
RIPEMD-160 is 2−35.9 and 2−41.5 when all the 232 solutions can be stored in
RAM. Therefore, according the value of T2, we believe that the estimated prob-
ability is reasonable. Similar experiments have been conducted for the collision
attack on 33 and 34 steps of RIPEMD-160. The source code can be found at
https://github.com/Crypt-CNS/DLSR Framework RIPEMD160.

6 Conclusion

Inspired from the start-from-the-middle approach, we discovered two efficient col-
lision frameworks for reduced RIPEMD-160 by making full use of the weakness
of message expansion. With the DLSR framework, we achieved the first practical
collision attack on 30 and 31 steps of RIPEMD-160. Benefiting from the partial
calculation techniques, the random message word can be chosen in a clever way
so as to ensure more uncontrolled bit conditions hold. In this way, with the newly
discovered 33-step and 34-step differential characteristics, collision attack on 33
and 34 steps of RIPEMD-160 can be achieved with time complexity 267.1 and 274.3

respectively. When applying the SLDR framework to the differential characteris-
tic at Asiacrypt 2017, the time complexity is significantly improved, though it still
cannot compete with the result obtained from the DLSR framework.
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A Application of the SLDR Framework

A direct application of this framework to the 30-step differential characteristic
in [16] will improve the collision attack by a factor of 211. The constraints on
RQi and the starting point are displayed in Tables 9 and 10 respectively.

Observe that m14 is randomly chosen in the SLDR framework and used
to update Y25. When the starting point is extended to Y20, sum0 = Y ≪10

20 �
Kr

1 = 0xf45c8129 is constant. Let F = IFZ(Y24, Y23, Y
≪10
22 ) = (Y24

∧
Y ≪10
22 )⊕

(Y23

∧
Y ≪10
22 ). Adding six extra bit conditions on Y23 (Y 26∼24

23 = 0002) and Y22

(Y 16∼14
22 = 0002) will make F 26∼24 = 0002. Then, adding four bit conditions on

m14 (m26∼23
14 = 10002) will make RQ26∼25

25 = 002 since RQ25 = F �sum0 �m14.
In this way, the condition Y 1∼0

25 = 012 can always hold. Since all the newly added
conditions can be fully controlled under this framework, two more probabilistic
bit conditions are controlled, thus improving the collision attack by a factor of 213

in total. A solution for the dense right branch is as follows: m0 = 0x284ca581,
m1 = 0x55fd6120, m2 = 0x694b052c, m3 = 0xd5f43d9f, m4 = 0xa064a7c8,
m5 = 0xb9f7b3cd, m6 = 0x1221b7bb, m7 = 0x42156657, m8 = 0x121ecfee,
m9 = 0xce7a7105, m10 = 0xf2d47e6f, m11 = 0xf567ac2e, m12 = 0x20d0d1cb,
m13 = 0x9d928b7d, m14 = 0x5c6ff19b, m15 = 0xc306e50f.

Table 9. Starting point for the differential characteristic presented at Asiacrypt’17

Y10 01110000001111110100000010001010 Y16 1111n1uu000n1n110001n1111nuuuuuu

Y11 101101110000110110010000000nuuuu Y17 1u10111un110111100u10unnn0nnn011

Y12 nuuuuuuuuuuuuuuuu0n0n00100001100 Y18 010010000n1011111n00001001000001

Y13 0unn1uu0111110100nuunn11011011un Y19 1u000101100100100101001000011101

Y14 010000111111111110nu101011nu1111 Y20 000000010110011000000nu110101100

Y15 000010111100u1u11010000u11010101

Table 10. Information of RQi

Equation: (RQi � in)≪shift = RQ≪shift
i � out

i shift in out Pr. i shift in out Pr.

11 8 0x1000000 0x1 1a 26 7 0x1000800 0x80040000 ≈ 2−1

12 11 0x15 0xa800 0.999 27 12 0x7ffc0000 0xbffff800 ≈ 2−1.4

13 14 0x6ffba800 0xea001bff ≈ 2−1 28 7 0x0 0x0 1

24 11 0xffffff00 0xfff80000 0.999 29 6 0xc0000000 0xfffffff0 ≈ 2−0.4

25 7 0x80000 0x4000000 ≈ 2−0.02 30 15 0x10 0x80000 0.999
a The condition Y7 = 0 makes it hold with probability 1.
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B Differential Characteristics

We present the differential characteristics used for collision attack in this section.

Table 11. 30-Step differential characteristic
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Table 12. 31-Step differential characteristic
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Table 13. 33-Step differential characteristic
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Table 14. 34-Step differential characteristic
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Abstract. This paper has four main contributions. First, we calcu-
late the predicted difference distribution of Speck32/64 with one specific
input difference under the Markov assumption completely for up to eight
rounds and verify that this yields a globally fairly good model of the dif-
ference distribution of Speck32/64. Secondly, we show that contrary to
conventional wisdom, machine learning can produce very powerful cryp-
tographic distinguishers: for instance, in a simple low-data, chosen plain-
text attack on nine rounds of Speck, we present distinguishers based on
deep residual neural networks that achieve a mean key rank roughly five
times lower than an analogous classical distinguisher using the full differ-
ence distribution table. Thirdly, we develop a highly selective key search
policy based on a variant of Bayesian optimization which, together with
our neural distinguishers, can be used to reduce the remaining security
of 11-round Speck32/64 to roughly 38 bits. This is a significant improve-
ment over previous literature. Lastly, we show that our neural distin-
guishers successfully use features of the ciphertext pair distribution that
are invisible to all purely differential distinguishers even given unlimited
data.

While our attack is based on a known input difference taken from
the literature, we also show that neural networks can be used to rapidly
(within a matter of minutes on our machine) find good input differences
without using prior human cryptanalysis. Supplementary code and data
for this paper is available at https://github.com/agohr/deep speck.

Keywords: Deep Learning · Differential cryptanalysis · Speck

1 Introduction

1.1 Motivation and Goals of This Paper

Deep Learning has led to great improvements recently on a number of difficult
tasks ranging from machine translation [7,40] and autonomous driving [13] to
playing various abstract board games at superhuman level [16,37,38]. In cryp-
tography, practical work using machine learning techniques has mostly focused
on side-channel analysis [31,34,35]. On a theoretical level, it has long been recog-
nized that cryptography and machine learning are naturally linked fields, see e.g.
c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11693, pp. 150–179, 2019.
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the survey of the subject given in [36]. Many cryptographic tasks can be naturally
framed as learning tasks and consequently cryptographic hardness assumptions
may for instance yield examples for distributions that are by design difficult to
learn. However, not much work as been done on machine-learning based crypt-
analysis. This paper is the first to show that neural networks can be used to
produce attacks quite competitive to the published state of the art against a
round-reduced version of a modern block cipher.

1.2 Contributions and Structure of This Paper

Main Results. This paper tries to teach neural networks to exploit differential
properties of round-reduced Speck. To this end, we train neural networks to
distinguish the output of Speck with a given input difference from random data.
To test the strength of these machine-learned distinguishers, we first calculate the
expected efficiency of some multiple-differential distinguishers for round-reduced
Speck32/64 that use the full Markov model of Speck32/64, i.e. all differential
characteristics following a given input difference. This is the strongest form of
differential distinguishing attack known that does not involve key search and to
the best of our knowledge, the efficiency of distinguishing attacks of this kind has
not been studied before for any Speck variant. A fairly high detection efficiency
is achieved for up to about eight rounds past our chosen input difference.

Our neural distinguishers achieve better overall classification accuracy than
these very strong baselines (see Table 2 for details). As an additional performance
metric, we construct a simple partial key recovery attack on nine rounds of Speck
using only 128 chosen plaintexts where the two types of distinguisher can be
directly compared. In this test, we try to recover one subkey. The mean rank
of this subkey is roughly five times lower with the neural distinguishers than
with the difference distribution table. We explore this further by designing a
cryptographic task in which the adversary has to distinguish two ciphertext pair
distributions that have exactly the same ciphertext difference distribution. We
find that our neural distinguishers perform fairly well in this game without any
retraining, reinforcing the observation that the neural distinguishers use features
not represented in the difference distribution table.

In order to allow for a direct comparison to existing literature, we also con-
struct a partial key recovery attack against 11 (out of 22) rounds of Speck32/64
based on a lightweight version of our neural distinguishers. The attack is expected
to recover the last two subkeys after 214.5 chosen-plaintext queries at a compu-
tational complexity equivalent to about 238 Speck encryptions; expected average
wall time to recovery of the last two subkeys on a desktop computer under single-
threaded CPU-only execution is about 15 min in our proof of concept implemen-
tation. The closest comparison to this in the literature might be the attack on
Speck32/64 reduced to 11 rounds presented in [19], which needs an expected 214

chosen plaintexts to recover a Speck key with a computational effort of about
246 reduced Speck evaluations. For a summary, see Table 1.

All experiments reported in this paper have been performed with a full imple-
mentation of Speck32/64, i.e. including the real key schedule. However, there is
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no evidence that the neural distinguishers use any properties of the key sched-
ule. In particular, our 11-round key recovery attack has been tested also against
reduced Speck32/64 with the free key schedule (independent and uniformly dis-
tributed subkeys), with no difference in performance compared to the real key
schedule.

While other authors have tried to use neural networks for cryptanalytic tasks
(see e.g. [6,15,17,18,26,28] and the references cited therein), this paper is to the
best of our knowledge the first work that compares cryptanalysis performed by a
deep neural network to solving the same problems with strong, well-understood
conventional cryptanalytic tools. It is also to the best of our knowledge the
first paper to combine neural networks with strong conventional cryptanalysis
techniques and the first paper to demonstrate a neural network based attack on
a symmetric cryptographic primitive that improves upon the published state of
the art.

The comparison with traditional techniques serves in this paper both a bench-
marking purpose and heuristically also as an additional safeguard against possi-
ble flaws in experimental setup. In the examples here considered, the performance
of our deep neural networks is competitive with results obtained classically.

Table 1. Summary of key recovery attacks on 11 round Speck32/64. Computational
complexity is given in terms of Speck evaluations on a modern CPU, i.e. assuming full
utilisation of SIMD parallelism for fast key search.

Type Complexity Data Source

Single-trail differential 246 214 CP [19]

Neural multiple differential 238 214.5 CP This paper, Sect. 4

Structure of the Paper. In Sect. 2, we give a short overview of the Speck family
of block ciphers and fix some notations.

In Sect. 3, we systematically develop new high-gain random-or-real differen-
tial distinguishers for round-reduced Speck based on an approach similar to that
used on KATAN32 in [3]. For five to eight rounds of Speck32/64, we calculate
for the first time the full distribution of differences within the Markov model
for Speck induced by the input difference 0x0040/0000 up to double precision
rounding error. See Table 2 for details.

Section 4 contains our main results on using neural networks for cryptanaly-
sis: we develop strong neural distinguishers against Speck reduced to up to eight
rounds and show key recovery attacks competitive with classical methods for 9
and 11 rounds. We further show that using few shot learning techniques, fairly
strong distinguishers against up to six rounds of Speck can be trained from very
small data sets (see Fig. 2) and with very little computation. We use this further
to automatically find good input differences for Speck32/64 without using prior
human cryptanalysis.
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In Sect. 5, we further investigate the capabilities of our networks by introduc-
ing a differential cryptanalytic task which we call the real differences experiment
where the distinguishers of Sect. 3 are made useless. In this model, the adversary
has to distinguish a real ciphertext C = (C0, C1) obtained by encrypting two
blocks of data P0, P1 with a known plaintext difference Δ from ciphertext that
has additionally been bitwise-added with a random masking value Kout ∈ {0, 1}b,
where b is the block size of the primitive considered.

We show that our best neural models for the main distinguishing task dis-
cussed in Sect. 4 have discovered ways to win in this experiment significantly
more often than random guessing without any retraining, although for the five-
round case retraining is found to be quite helpful in extending this advantage.
We also discuss a concrete example of a ciphertext pair that is misclassified by
traditional differential distinguishers.

In Sect. 6 we discuss our results and possible extensions of this work.

1.3 Related Work

Related Cryptographic Work. Speck has since its publication [9] received a
fair amount of analysis, see e.g. [8] for a review. We focus only on those works
that are most relevant to the present paper.

The differential cryptanalysis of Speck was first studied by Abed, List, Lucks
and Wenzel in [2]. They constructed efficient differential characteristics for
round-reduced versions of all members of the Speck family of ciphers and showed
how to use these for key recovery. For Speck32/64, the round 3 difference of their
9-round characteristic is used in the present work as the input difference required
by our differential distinguishers.

In [19], Dinur improved the analysis given in [2] by using a two-round guess
and determine attack to speed up key recovery and extend the number of rounds
that can be attacked. The two-round guess and determine stage of this attack
takes as input a bitwise input difference and the cipher output two rounds later
and returns all possible solutions for the subkeys used in these final rounds. In
Sect. 3, we use this two-round attack to construct a practical distinguisher for
Speck reduced to five rounds that exploits the nonuniformity of the ciphertext
pair distribution perfectly in the setting where only the input difference but not
the input values to the cipher are known.

Biryukov and Velichkov proposed in [11] a framework for the automatic
search for optimal single differential characteristics of Speck and further
improved on the differential characteristics found in [2]. They also showed that
Speck is not a Markov cipher. This latter finding is reinforced by our finding that
neural distinguishers on Speck can for a nontrivial number of rounds outperform
in terms of prediction accuracy all purely differential distinguishers.

Differential attacks are most useful in the chosen plaintext setting, as the
adversary needs to see the output of the primitive under study given plaintext
inputs with a particular chosen difference. The most powerful attacks against
round-reduced Speck that have been put forward in the known plaintext setting
come from linear cryptanalysis [5,30].
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Multiple differential cryptanalysis as an extension of truncated differential
cryptanalysis was first studied by Blondeau and Gerard in [12]. A multiple-
differential attack framework for block ciphers with small block size which (under
the assumption that the relevant differential transition probabilities can be cal-
culated correctly) exploits the difference between the wrong-key and right-key
difference distributions perfectly was developed by Albrecht and Leander [3] and
used to provide new cryptanalytic results on the KATAN32 block cipher, signif-
icantly extending the number of rounds that can be shown to be attackable.

Prior Work on Machine Learning and Data Driven Techniques in
Cryptanalysis. A number of works have explored the use of machine learning
and broadly applicable statistical techniques for cryptanalytic purposes previ-
ously. We give a brief review here.

For the purpose of this review, precomputation attacks are generally viewed
as not being machine learning. Likewise, side channel attacks and other ways of
exploiting the implementation of a mechanism are considered not to be crypt-
analysis in the sense here discussed.

Laskari, Meletiou, Stamatiou and Vrahatis [28] reported some success (in
terms of search tree size, not necessarily in terms of execution time) compared
to the baseline given by unoptimized brute force search in applying evolutionary
computing methods to the problem of recovering additional subkey bits in four-
and six round reduced DES subsequent to a classical differential attack.

Klimov, Mityagin and Shamir used genetic algorithms and neural networks
to break a proposed public-key scheme itself based on neural networks [25]. The
same protocol was broken in the same paper also using two other methods.

A few authors have looked at the possibility of using machine learning directly
to distinguish between or to otherwise attack unreduced modern ciphers. From
a cryptographic point of view, this is clearly expected to be impossible, at least
unless mode-of-operation or other implementation issues make it feasible. This
is e.g. also the conclusion reached by Chou, Lin and Chen [15], who perform
some experiments along these lines and give a review of the literature.

Gomez, Huang, Zhang, Li, Osama and Kaiser [20] used unsupervised learning
using neural networks to achieve code book recovery for short-period Vigenere
ciphers in a setting in which neither parallel text nor information on the encipher-
ing mechanism was available to the network during training. Their motivation
was primarily to work towards unsupervised learning techniques for machine
translation.

Abadi and Andersen [1] trained two neural networks to protect their commu-
nications from a third network that was trying to read their traffic. They showed
that the two networks were in this setting able to use a pre-shared secret to shut
out the adversary. However, neither analysis of humanly designed primitives nor
human cryptanalysis of the communication method developed by the networks
was performed.
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Rivest in [36] reviewed various connections between machine learning and
cryptography. He also suggested some possible directions of research in cryptan-
alytic applications of machine learning.

Greydanus reported that recurrent neural networks can in a black box setting
learn to simulate a restricted version of Enigma [21].

Purely data driven attacks have been used with good success e.g. against
RC4 by Paterson, Poettering and Schuldt [32]. They basically learn from a very
large amount of RC4 keystream examples a Bayesian model of single-byte and
two-byte biases of RC4. This model is then used to derive some plaintext data
given on the order of millions of encryptions of the same plaintext.

2 The Speck Family of Block Ciphers

2.1 Notations and Conventions

Bitwise addition will in the sequel be denoted by ⊕, modular addition modulo
2n by �, and bitwise rotation of a fixed-size word by � for rotation to the left
and � for rotation to the right. Here, k will be the word size of the primitive in
question, which in the case of Speck32/64 is 16.

In this paper, differential cryptanalysis will always mean cryptanalysis with
regards to bitwise differences in the adversary-controlled input to the cipher
under study. Let hence F : {0, 1}n → {0, 1}m be a map. Then, a differen-
tial transition for F is a pair (Δin,Δout) ∈ {0, 1}n × {0, 1}m. The probability
P (Δin → Δout) of the differential transition F : Δin → Δout is defined as

P (Δin → Δout) :=
Card({x ∈ {0, 1}n : F (x) ⊕ F (x ⊕ Δin) = Δout})

2n
. (1)

In the description of differential attacks, it is sometimes necessary to specify
specific ciphertext or plaintext differences or ciphertext/plaintext states. A single
Speck block (or the difference between two blocks, depending on context) will
in this paper be described by a pair of hexadecimal numbers. For instance, for
Speck32/64, a state difference in which only the most significant bit is set will
be written as 0x8000/8000.

For a primitive iteratively constructed by repeated application of a simpler
building block (i.e. a round function), a differential characteristic or differential
trail will be a sequence of differential transitions, given by a sequence of dif-
ferences Δ0,Δ1, . . . ,Δn. When the same concepts are applied to key-dependent
function families (e.g. block ciphers), any key dependence of the differential prob-
ability will usually be suppressed, although such key-dependencies can make a
difference for security evaluation and although they are known to exist in ARX
primitives (see e.g. [4]).

As introduced by Lai, Massey and Murphy [27], a Markov cipher is an iter-
ated block cipher in which the probability of the individual differential transi-
tions is independent of the concrete plaintext values if the subkeys applied to
each round are chosen in a uniformly random manner. It is common to suppress
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the effect of initial or final keyless permutations on the assessment of the Markov
property, because the details of message modifying the data that goes into these
initial or final permutations are outside the scope of differential cryptanalysis. In
the case of Speck, the first round up to and excluding the first subkey addition
is for instance a fixed initial permutation on the plaintext.

A differential attack is any cryptographic attack that uses nonrandom prop-
erties of the output of a cryptographic primitive when it is being given input
data with a known difference distribution. The most general form of differential
attack that has been formally discussed in the literature are multiple differential
attacks [12], where information from an arbitrary set of differential transitions
is exploited in order to maximise the gain of the resulting attack.

In this paper, we will see both attacks that only use the information contained
in observed ciphertext differences and the full information contained in output
ciphertext pairs. We will in the sequel call the former purely differential attacks
and the latter general differential attacks.

A distinguisher is a classifier C that accepts as input d data sampled indepen-
dently from a finite event space Ω according to one of n probability distributions
Di, i = 1, . . . , n, and outputs a guess of i for the submitted input item d. Here,
i is chosen at each trial with a probability pi from the set {1, 2, . . . , n}. The
selection method for i together with the distributions Di is known in advance
and is in this paper called an experiment.

2.2 A Short Description of Speck

Speck is an iterated block cipher designed by Beaulieu, Treatman-Clark, Shors,
Weeks, Smith and Wingers [9] for the NSA with the aim of building a cipher
efficient in software implementations in IoT devices [8]. It is an ARX construc-
tion, meaning that it is a composition of the basic functions of modular addition
(mod 2k), bitwise rotation, and bitwise addition applied to k-bit words. In [9],
various versions of Speck were proposed, which differ from each other by the
values of some rotation constants, the number of rounds suggested, as well as by
the block and key sizes used. Generally, Speckn/m will denote Speck with n bit
block size and m bits key size.

The round function F : Fk
2 × F

2k
2 → F

2k
2 of Speck is very simple. It takes as

input a k-bit subkey K and a cipher state consisting of two k-bit words (Li, Ri)
and produces from this the next round state (Li+1, Ri+1) as follows:

Li+1 := ((Li � α) � Ri) ⊕ K,Ri+1 := (Ri � β) ⊕ Li+1, (2)

where α, β are constants specific to each member of the Speck cipher family
(α = 7, β = 2 for Speck32/64 and α = 8, β = 3 for the other variants).

The round function is applied a fixed number of times (for 22 rounds in the
case of Speck32/64) to produce from the plaintext input the ciphertext output.
The subkeys for each round are generated from a master key by a non-linear
key schedule that uses as its main building block also this round function. Some
details of the key schedule differ between different versions of Speck due to
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the different number of words in the master key. The key schedule will not be
analyzed in this paper and we therefore refer to [9] for further information.

3 Multiple Differential Attacks on Speck32/64

3.1 Pure Differential Distinguishers

Setting. Multiple differential attacks [12] build cryptographic distinguishers by
using a set S of differential transitions for some cryptographic function F to
characterise its behaviour. The basic idea is that each transition Δi → δj in S
has associated with it a probability pij of being observed given the experimen-
tal setting the cipher is being studied in and another probability p̃ij in some
situation that is being distinguished against. Given some observed data O from
the experiment, Bayesian inference can then be used to determine e.g. if the
observed data comes from the real or the random experiment.

Calculating Differential Transition Probabilities. We use algorithm 2 in [29] to
compute the differential behaviour of the nonlinear component of Speck32/64,
which is simply modular addition modulo 216. This gives us an efficient way
to access arbitrary entries of the single-round differential transition matrix A ∈
R

232×232 of Speck. Given an input difference distribution vi ∈ R
232 for round i

of Speck, we calculate the distribution at the input of round i + 1 by setting
vi+1 := Avi.

Starting from the input difference Δ = 0x0040/0000, i.e. the round 3 differ-
ence of the differential characteristic given in Table 7 of [2], we have calculated
the full predicted induced output distribution of Speck32/64 for up to 8 rounds
in this way. The required sparse matrix-vector multiplications and the on-the-fly
calculation of the relevant matrix entries took around 300 core-days of comput-
ing time in our implementation and produced about 34 gigabytes of distribution
data for each round, which was saved to disk for further study. The input differ-
ence Δ is used in most distinguishers developed in the remainder of this paper.
It transitions deterministically to the low-weight difference 0x8000/8000 and
has been chosen for being a very good starting point for truncated differential
cryptanalysis in a low-data setting.

Cryptographic Tasks. In this section, we set out to distinguish reduced-round
Speck output with the input difference Δ from random data. Our distinguishers
will use the full predicted output difference distribution for the number of rounds
considered. We will denote by Di the resulting distinguisher for i rounds. Hence,
D5 will e.g. be the resulting five-round distinguisher and the corresponding dis-
tinguishing problem will be referred to as the D5 task.

Classification. To distinguish between examples of real ciphertext pairs and
examples generated at random, we assume that random ciphertext pair differ-
ences are distributed according to the uniform distribution on nonzero ciphertext
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blocks. We classify an observed output difference δ as real if the predicted prob-
ability of observing it in the real distribution is > 1/(232 − 1) and as random
otherwise. This exploits the non-uniformity of the output difference distribu-
tion perfectly if our prediction of this distribution does not contain errors. The
reported true positive rates and accuracies for the distinguishers defined by the
predicted output distribution were calculated under the assumption that the
true output distribution is the predicted one.

Sources of Error. This kind of calculation works only if the cipher under study
does not deviate too strongly from the Markov property. Also, in our calculation
we used double-precision arithmetic, which introduces rounding errors. We have
therefore tested the validity of this model in three ways:

1. We checked empirically that the highest-probability transition found by our
model for eight rounds (0x0040/0000 → 0x0280/0080) is empirically observed
with the expected probability of 2−26.015. This was found to be the case.

2. We checked empirically that the predicted true positive rates of our differ-
ential distinguishers match observed values on a size 106 test set from the
real distribution. This was also the case within experimental error margins.
The corresponding experiment for true negative rates was not performed, as
the random distribution is a priori known exactly, so given the distinguisher,
there is no error in predicting its accuracy on random samples.

3. We approximated the true difference distribution of Speck32/64 also empiri-
cally using 100 billion samples in each case. The resulting distinguishers were
clearly inferior to our theoretical model.

These experiments indicate that our model captures the difference distri-
bution of round-reduced Speck32/64 for the considered input difference quite
well.

Distinguisher Accuracy and Key Rank. Accuracy as well as true positive and
true negative rate results are summarised in the next section, specifically in
Table 2. Computing the full difference distribution table of Speck32/64 yields
fairly strong distinguishers for at least up to eight rounds (better results than
presented here may be possible with other input differences). Statistics on key
ranking in the context of a simple key recovery attack can be found in Table 3.

3.2 Differential Distinguishers Using the Full Distribution of
Ciphertext Pairs

Setting and Motivation. The distinguishers so far considered in this paper
observe a ciphertext pair that has been generated from a known input differ-
ence (but unknown input plaintext pairs) and try to guess based on the cipher-
text difference whether the observed pair has been generated by reduced Speck
encryption or randomly chosen. It is clear that one could improve on this by
considering not only the difference data for an observed ciphertext pair, but
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the entire data observed. However, this is more difficult, because calculating the
full distribution of ciphertext pairs for the real distribution is not feasible. The
goal of this section is to determine, for differential distinguishers on five-round
Speck with the input difference used in the previously studied distinguishers, how
much of an advantage the adversary might gain in still exploiting this additional
information.

A Perfect Differential Distinguisher for Speck32/64 Reduced to Five Rounds.
We have developed a perfect distinguisher for the D5 task. Given an observed
ciphertext pair C := (C0, C1) and an input difference Δ, the likelihood P (C|real)
that we would observe (C0, C1) under the real distribution for a block cipher E
of block size b and key size k given uniformly random key and plaintext data
is given by 2−(b+k)N , where N is the number of key and plaintext pairs (K,P )
such that EK(P ) = C0 and EK(P ⊕ Δ) = C1. But N is just the number
Nkeys(C) of keys that decrypt C into a plaintext pair with difference Δ. On the
other hand, P (C|random) = 1/(22b − 2b), so applying Bayes’ theorem again, for
perfect classification we need to determine whether Nkeys(C) > 2b+k/(22b−2b) ≈
2b+k−2b or not. For Speck32/64, we hence check whether Nkeys > 232.

For the D5 task, it is possible to do this in practice by enumerating the
possible round-3 differential states and then launching the two-round attack
from [19] for each of these intermediate differences, enumerating the subkeys sk5

and sk4 used in rounds 4 and 5. After obtaining candidate round 3 output, we
note that the round 1 output difference is known (the input difference transitions
deterministically to 0x8000/8000) and use the two round attack again to recover
the first two subkeys. We stop after 232 +1 solutions have been found or the key
space has been exhausted, whichever comes first. We tested this distinguisher
on a test set of 10000 examples. 9456 of these were correctly classified, for an
overall accuracy of about 95%. Replacing key search on the first two rounds
with a (much faster) estimate of the number of solutions based on the 3-round
difference distribution table did not lead to a statistically significant loss in
performance.

4 Neural Distinguishers for Reduced Speck32/64

4.1 Overview

In this section, we will use neural networks to develop distinguishing attacks that
try to solve the same problems as those presented previously. We only report
results on our best neural models. The computational effort used in searching
for a good architecture was not excessive; all machine learning experiments here
reported were performed on a single workstation. Some other choices of archi-
tecture yield results that are also comparable or superior to the distinguishers
presented in the previous section. One example of a simpler network architecture
with still reasonable performance is shown in the github repository.
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4.2 Network Structure

Input Representation. A pair (C0, C1) of ciphertexts for Speck32/64 can be
written as a sequence of four sixteen-bit words (w0, w1, w2, w3), mirroring the
word-oriented structure of the cipher. In our networks, the wi are directly inter-
preted as the row-vectors of a 4 × 16-matrix and the input layer consists of 64
units likewise arranged in a 4 × 16 array.

Overall Network Structure. Our best network is a residual tower of two-layer
convolutional neural networks preceded by a single bit-sliced convolution and
followed by a densely connected prediction head. Deep residual networks were
first introduced in [22] for image recognition and have been successful since in
a number of other applications, for instance strategic board games [38,39]. The
results reported for five and six rounds use a depth-10 residual tower; for seven
and eight round Speck, our final models use just a single residual block.

Initial Convolution. The input layer is connected in channels-first mode to one
layer of bit-sliced, e.g. width 1, convolutions with 32 output channels. Batch
normalization is applied to the output of these convolutions. Finally, rectifier
nonlinearities are applied to the outputs of batch normalization and the resulting
32 × 16 matrix is passed to the main residual tower.

Convolutional Blocks. Each convolutional block consists of two layers of 32 fil-
ters. Each layer applies first the convolutions, then a batch normalization, and
finally a rectifier layer. At the end of the convolutional block, a skip connection
then adds the output of the final rectifier layer of the block to the input of the
convolutional block and passes the result to the next block.

Prediction Head. The prediction head consists of two hidden layers and one
output unit. The first and second layer are densely connected layers with 64
units. The first of these layers is followed by a batch normalization layer and a
rectifier layer; the second hidden layer does not use batch normalization but is
simply a densely connected layer of 64 relu units. The final layer consists of a
single output unit using a sigmoid activation.

Rationale. The use of the initial width-1 convolutional layer is intended to make
the learning of simple bit-sliced functions such as bitwise addition easier. The
number of filters in the initial convolution is meant to expand the data to the
format required by the residual tower. The choice of the input channels is moti-
vated by a desire to make the word-oriented structure of the cipher known to the
network. The use of a densely connected prediction head reflects the fact that for
a nontrivial number of rounds, we do not expect the input data to show strong
spatial symmetries, so any attempt to extract local features from the data using
a spatially symmetric pooling layer of some sort is probably futile. The size of
the layers was determined by experiment, although we tried only a few settings.
The depth of the residual tower was chosen so as to allow for integration of input
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data over the whole input string within the convolutional layers. However, even
a design with just one residual block achieves reasonably good (clearly superior
to a purely differential distinguisher) results.

4.3 Training Real vs Random Classifiers

Data Generation. Training and validation data was generated by using the Linux
random number generator (/dev/urandom) to obtain uniformly distributed keys
Ki and plaintext pairs Pi with the input difference Δ = 0x0040/0000 as well as a
vector of binary-valued real/random labels Yi. To produce training or validation
data for k-round Speck, the plaintext pair Pi was then encrypted for k rounds
if Yi was set, while otherwise the second plaintext of the pair was replaced with
a freshly generated random plaintext.

In this way, data sets consisting of 107 samples were generated for training.
Preprocessing was performed to transform the data so obtained into the format
required by the network. Data generation is very cheap. On a standard PC, it
takes a few seconds to generate a data set of size 107 in our implementation.

Basic Training Pipeline. Training was run for 200 epochs on the dataset of size
107. The datasets were processed in batches of size 5000. The last 106 samples
were withheld for validation. Optimization was performed against mean square
error loss plus a small penalty based on L2 weights regularization (with regular-
ization parameter c = 10−5) using the Adam algorithm [24] with default param-
eters in Keras [14]. A cyclic learning rate schedule was used, setting the learning
rate li for epoch i to li := α+ (n−i) mod (n+1)

n ·(β−α), with α = 10−4,β = 2 ·10−3

and n = 9. The networks obtained at the end of each epoch were stored and the
best network by validation loss was evaluated against a test set of size 106 not
used in training or validation.

Improving the Distinguishers by Key Search. We tested whether the distinguish-
ers obtained can be improved by key search. To this end, a size one million test
set for Speck reduced to seven rounds was generated as previously described.
Each ciphertext pair c in the test set was then evaluated by performing brute
force key search on the last round, grading the resulting partial decryptions using
a six-round neural distinguisher, and combining the results into a score for the
ciphertext pair c by transforming the scores into real-vs-random likelihood ratios
and averaging. Algorithm1 gives details on the method used.

Using Key Search as a Teacher for a Fast Neural Distinguisher. The size one
million sample set so obtained was further used as a training target for a single-
block distinguisher against seven rounds of Speck. Training was performed from
a randomly initialized network state for 300 epochs at batch size 5000 with a
single learning rate drop from 0.001 to 0.0001 at epoch 200. Data on the resulting
distinguisher can be found in Tables 2 and 3.
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Algorithm 1 . KeyAveraging: Deriving a differential distinguisher against a
block cipher Er+1 reduced to r + 1 rounds for input difference Δ from a corre-
sponding distinguisher D against Er. A sample is predicted to come from the
real distribution if and only if the output value of the algorithm is ≥ 0.5.
Require: Observed output ciphertext pair C0, C1 ∈ {0, 1}b

1: Di ← [DecryptOneRound(Ci, k) for k ∈ Subkeys]
2: vk ← D(D0[k], D1[k]) for all k ∈ Subkeys
3: vk ← vk/(1 − vk) for all k ∈ Subkeys
4: v ← Average([vk, k ∈ Subkeys])
5: v ← v/(1 + v)
6: return v

Training an 8-Round Distinguisher. For 8 rounds, the training scheme described
above fails, i.e. the model does not learn to approximate any useful function.
We still succeeded in training an 8-round distinguisher slightly superior to the
difference distribution table by using several stages of pre-training. First, we
retrained our best seven-round distinguisher to recognize 5-round Speck32/64
with the input difference 0x8000/840a (the most likely difference to appear three
rounds after the input difference 0x0040/0000). This was done on 107 examples
for ten epochs with a batch size of 5000 and a learning rate of 10−4. Then, we
trained the distinguisher so obtained to recognize 8-round Speck with the input
difference 0x0040/0000 by processing 109 freshly generated examples once with
batch size 10000, keeping the learning rate constant. Finally, learning rate was
dropped twice to 10−5 and finally to 10−6 after processing another 109 fresh
examples each, again with a batch size of 10000.

Training Cost. A single epoch of training according to the basic training schedule
for one of our ten-block networks takes about 150 s on a single GTX 1080 Ti
graphics card at batch size 5000. A full training cycle can therefore be run in
less than a day, and results superior to the difference distribution table can be
obtained in less than fifteen minutes after starting the training cycle for our
neural distinguishers against 5 to 7 rounds.

4.4 Results

Test Set Accuracy. We summarize data on our best models in Table 2. N5 and N6
are networks with ten residual blocks trained using the basic training method.
N7 was trained to predict output of the KeyAveraging algorithm used with
a six-round single-block neural distinguisher derived by knowledge distillation
from N6 (see the paragraph on inference speed below for further details). N8
was derived from N7 using the staged training method described in Sect. 4.3.
The neural distinguishers achieve higher accuracies than the purely differential
baselines discussed in the previous section on all tasks. The accuracy of the key
search based distinguishers was not matched, as expected. Validation losses were
only slightly lower than training losses at the end of training, suggesting that
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Fig. 1. Training a neural network to distinguish 5-round Speck32/64 output for the
input difference Δ = 0x0040/0 from random data. (left) Training and validation loss by
epoch. (right) Validation accuracy. (both) Only data for epochs with lowest learning rate
is shown. Intermediate epochs contained excursions to low performance. Full learning
history for this run is available from supplementary data.

only mild overfitting took place. An example learning history for a five-round
network is shown in Fig. 1. Algorithm 1 was tried on the seven round problem and
did slightly improve prediction accuracy: ground truth was matched in 62.7% of
the test sample.

If encryption is performed with fixed keys, a mild key dependency of distin-
guisher performance is observed, in line with previous work on Speck [4]. For
instance, with 100 random keys, we found that true positive rates for the 7-
round distinguisher empirically varied between 57.1 and 49.7%. See the github
repository for code and data on this.

Key Ranking. We can extend all of the distinguishers here discussed by one
round at no additional cost by using the fact that the first subkey addition
happens after the first application of nonlinearity in Speck. An adversary in the
chosen-plaintext setting can easily inject plaintext differences of their choosing
into the output of the first round of Speck. A simple attack on 9-round Speck
can then be performed as follows:

1. Request encryptions for n chosen plaintext pairs P1, . . . , Pn such that the
output difference of the first round will be Δ = 0x0040/0000. Obtain the
corresponding ciphertext pairs C1, . . . , Cn.

2. For each value of the final subkey k, decrypt the Ci under k to get Ck
i . Let

δk
i be the difference of the ciphertext pair Ck

i .
3. Use a 7-round differential distinguisher to get scores Zk

i for each partially
decrypted ciphertext pair.

4. For each k, combine the scores Zk
i into one score vk.

5. Sort the keys in descending order according to their score vk.

We have implemented this attack both with the 7-round distinguisher derived
from the difference distribution of 7-round Speck with the given input difference
and with our 7-round neural distinguisher. In the case of the neural distinguisher,
we used the formula
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Table 2. Accuracy of various distinguishers against Speck32/64 using two blocks of
ciphertext with chosen plaintext difference 0x0040/0000 for Nr rounds. D5-D8 are
classical differential distinguishers that use the entire difference distribution table of
Speck32/64 (calculated under the Markov assumption). N5-N8 are neural distinguish-
ers solving the same distinguishing task. The accuracies of the D5-D8 distinguishers
are theoretical predictions based on the assumption that they correctly predict the
difference distribution, but have been empirically confirmed within 2σ error margins
on size 106 test sets. The figures for the neural distinguishers were obtained by testing
on size 106 test sets containing approximately 500000 positive and negative examples
each. N5 and N6 are networks with ten residual blocks, while N7 and N8 are smaller
networks with only one block.

Nr Distinguisher Accuracy True Positive Rate True Negative Rate

5 D5 0.911 0.877 0.947

5 N5 0.929 ± 5.13 · 10−4 0.904 ± 8.33 · 10−4 0.954 ± 5.91 · 10−4

6 D6 0.758 0.680 0.837

6 N6 0.788 ± 8.17 · 10−4 0.724 ± 1.26 · 10−3 0.853 ± 1.00 · 10−3

7 D7 0.591 0.543 0.640

7 N7 0.616 ± 9.7 · 10−4 0.533 ± 1.41 · 10−3 0.699 ± 1.30 · 10−3

8 D8 0.512 0.496 0.527

8 N8 0.514 ± 1.00 · 10−3 0.519 ± 1.41 · 10−3 0.508 ± 1.42 · 10−3

vk :=
n∑

i=1

log2(Z
k
i /(1 − Zk

i )) (3)

to combine the scores of individual decrypted ciphertext pairs into a score for
the key; in the case of the difference distribution table, we set

vk :=
n∑

i=1

log2(P (δk
i )), (4)

where P (δk
i ) is the probability according to the difference distribution table of

observing the output difference δk
i in the output of Speck32/64 reduced to seven

rounds given the input difference Δ. This is comparable, since in both cases we
can up to a constant multiplicative factor heuristically treat the summed terms
as logarithms of real-vs-random likelihood ratios1.

We chose n = 64 for this experiment. In this setting, we found that the neural
distinguishers achieved much better key ranking (Table 3).

It is worth noting the following:

Proposition 1. Assume that E is any Speck variant with a free key schedule
and that A is an attack that tries to recover the Speck key used using purely
1 As an implementation remark, note that with the neural networks used in this paper,

the individual terms in the sum of Eq. 3 are up to a scale factor just the neural
network outputs before application of the final sigmoid activation.
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Table 3. Statistics on a key recovery attack on 9-round Speck32/64. The same attack
using 128 chosen plaintexts is executed using both a distinguisher based on the dif-
ference distribution table and a neural distinguisher against Speck32/64 reduced to 7
rounds. All values reported are based on 1000 trials of the respective attacks. Reported
error bars around the mean are for a 2σ confidence interval, where σ is calculated based
on the observed standard deviation of the key rank. The rank of a key is defined as the
number of subkeys ranked higher, i.e. rank zero corresponds to successful key recovery.
When several keys were ranked equally, the right key was assumed to be in a random
position among the equally ranked keys. Key rank data on all runs as well as data on
runs with 64 and 256 chosen plaintexts is available from the github repository.

Distinguisher Mean of key rank Median key rank Success rate

D7 263.9 ± 77.7 9.0 0.13

N7 52.1 ± 34.7 1.0 0.358

differential methods, i.e. assume that it gets as input plaintext differences P0 ⊕
P1, P0 ⊕ P2, . . . , P0 ⊕ Pn as well as ciphertexts C0, C1, . . . , Cn. Then full key
recovery can never be successful with a success rate beyond 50%.

Proof. To see this, consider any pair of ciphertexts C0, C1 and a Speck subkey k.
Suppose that E−1

k (C0)⊕E−1
k (C1) = δ, where Ek denotes single-round encryption

under the subkey k. Flip the most significant bit of k and call the resulting new
subkey k′. Then it is straightforward to verify that E−1

k′ (C0) ⊕ E−1
k′ (C1) = δ as

well. The proposition follows by applying this reasoning to the first round of E.

Hence, purely differential distinguishers for Speck always produce pairs (or
larger groups) of equally ranked subkeys until the key schedule can be used to
rule out candidate keys.

However, already with 256 chosen plaintexts our 9-round attack does in fact
yield a success rate of about 70% if a neural distinguisher is used. This is only
possible because our neural distinguishers are not purely differential distinguish-
ers. See Sect. 5 for further evidence of this.

Inference Speed. The deep residual architecture described yields networks that
are still reasonably efficient to evaluate. On a single machine using a GTX 1080
Ti graphics card we were able to process roughly 200000 ciphertext pairs per
second with our deeper networks (10 residual blocks). For single-block networks,
we reach about one million ciphertext pairs per second on the same hardware.
For seven and eight rounds of Speck, the best networks here presented are single-
block networks; for five and six rounds, one can produce networks that are almost
as good as the ten-block architecture by using a simple form of knowledge distil-
lation [23]. For instance, a single-block network with 92.7% accuracy on the D5
task can be obtained by training against the output of our ten-block network for
30 epochs on a size 107 training dataset with a single learning rate drop from
0.001 to 0.0001 at epoch 20.
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Disagreement with Difference Distribution Table. For five-round Speck, we gen-
erated a size one million test set and calculated for each example both the rele-
vant entry of the difference distribution table for Speck32/64 using the Markov
model of Speck, and the output of a five-round one-block neural predictor.
Exactly half of the test sample was generated using the real distribution, with the
other half being drawn at random. We used this data set to study disagreements
between the neural predictor and the difference distribution table.

Disagreement between both predictors was observed in 48826 samples, of
which the majority was from the random distribution (about 57%). Our neural
network chose the classification corresponding to ground truth in 67% of these
cases of disagreement.

However, exploitation of information that can be obtained reliably from the
difference distribution table was not perfect. For instance, 1549 of our samples
were found to correspond to impossible differential transitions. Two of these
were misclassified by the neural network as coming from the real distribution,
although in both cases the confidence level returned by the neural network output
was low (56% and 53% respectively).

On the other hand, the neural network also successfully identified output
pairs that could not have appeared in the real distribution. For instance, the low-
est neural network score on the set of disagreements was obtained for the output
pair (c0, c1) := (0xc65d2696, 0xa6a37b2a). This corresponds to an output dif-
ference of 0x60fe/5dbc, and the transition 0x0040/0000 → 0x60fe/5dbc for five
rounds has a transition probability of about 2−26 according to the Markov model.
Accordingly, the predictor based on the difference distribution table assigns a
98% probability to this output pair being from the real distribution, whereas
our neural distinguisher returns an almost zero score. Performing optimized key
search, we found that there is in fact no key that links this output pair to a
possible intermediate difference in round 3. Indeed, the sample had come from
the random distribution in our test set.

Few-Shot Learning of Cryptographic Distributions. Few-shot learning is the abil-
ity of people (and sometimes machines) to learn to recognize objects of a certain
category or to solve certain problems after having been shown only a few or even
just one example. We tested if our neural networks can successfully perform few-
shot learning of a cryptographic distribution given knowledge of another related
distribution by performing the following experiment: a fresh neural network with
one residual block was first trained to recognize Speck reduced to three rounds
with a fixed but randomly chosen input difference. Training consisted of a single
epoch of 2000 descent steps with batch size 5000, which on our hardware corre-
sponds to about a minute of training time. We then accessed the output of the
second-to-last layer of this network, treating it as a representation of the input
data. We generated small samples (only real examples, specifically between 1
and 50 of them) of the output distribution for six rounds of Speck with the
chosen input difference of our main distinguishers. Each example set so created
was complemented by the same number of samples drawn from the random dis-
tribution. The resulting example set S was sent through the neural network to
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obtain the corresponding set S′ ⊂ R
64 of internal representation vectors. Ridge

regression (with regularization parameter α = 1) was used to create from this
small training set a linear predictor L : R64 → R for the six-round distribution
minimizing the squared error between labels and predictions on S′. We classified
an example x ∈ S′ as real if L(x) > 0.5 and as random otherwise. This predictor
was then tested on a size 50000 test set to determine its accuracy. This worked
well even with a single-figure number of examples. Figure 2 gives detailed results,
Algorithm 2 summarizes the algorithm used.

Algorithm 2. TrainByTransfer: Training a distinguisher for a block cipher with
block size b reduced to r rounds Er with input difference δ by transfer learning
given an auxiliary neural distinguisher N for input difference Δ and Es.
Require: N, r, δ, n
1: X0 ← n samples drawn from the real output distribution of Er with input difference

δ.
2: Y0 ← (1, 1, ..., 1) ∈ R

n

3: X1 ← n samples drawn uniformly at random from {0, 1}2b.
4: Y1 ← 0 ∈ R

n.
5: N ′ ← N [−2], where N [−2] denotes the output of the second-to-last layer of N .
6: Z, Y ← N ′(X0||X1), Y0||Y1

7: L ← RidgeRegression(Z, Y )
8: return L ◦ N ′

Training a new distinguisher using Algorithm2 is very efficient. For instance,
retraining on a thousand example training set takes about a millisecond on our
platform.

Deriving Good Input Differences Without Human Knowledge. This few-shot
learning capability allows us to very quickly derive a rough lower bound for the
effectiveness of truncated differential distinguishers for Speck for a given input
difference and a given number of rounds. Concretely, given a pre-trained network
for three-round Speck and a random input difference δ, we can quickly train a
distinguisher for another random input difference δ′ and evaluate its accuracy on
a small test set. Starting with a random δ′, we then use Algorithm 3 to optimize
δ′ for test set accuracy of the resulting distinguishers. Using α = 0.01, t = 2000,
and test and training datasets of size 1000 for each new input difference to be
tested, we need less than two minutes of computing time for the training of the
initial three-round distinguisher and about 15 s for each full run of Algorithm3
on our platform. The initial difference of our main neural distinguishers is usu-
ally found within a few random restarts of the greedy optimizer and extending
the number of rounds to be attacked, one can then easily show using transfer
learning that at least six rounds of Speck can be distinguished with fairly high
gain.

It seems likely that other generic optimization algorithms, e.g. suitable vari-
ants of Monte Carlo Tree Search, might work even better.
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Fig. 2. Few-shot learning on the D5 and D6 tasks using a pre-trained classifier to
preprocess the input data. Algorithm 2 was used with a fixed auxiliary network trained
to distinguish Speck32/64 reduced to three rounds with a random fixed input difference.
The number of training examples supplied was varied from 1 to 50. The accuracy figures
shown are an average over 100 runs for each training set size, where for each training
run a fresh training set of the indicated size was generated on the fly. Accuracy was
measured against a fixed test set of size 50000. Measured accuracy is above guessing
at 2σ significance level even for a single training example.

Algorithm 3 . GreedyOptimizerWithExplorationBias: Given a function F :
{0, 1}b → R, try to find x ∈ {0, 1}b which maximises F .
Require: F , number t of iterations, exploration factor α, input bit size b
1: x ← Rand(0, 2b − 1)
2: vbest ← F (x)
3: xbest ← x
4: v ← vbest
5: H ← hashtable with default value 0
6: for i ∈ {1, . . . , t} do
7: H[x] ← H[x] + 1
8: r ← Rand(0, b − 1)
9: xnew ← x ⊕ (1 � r)

10: vnew = F (xnew)
11: if vnew − α log2(H[xnew]) > v − α log2(H[x]) then
12: v, x ← vnew, xnew

13: end if
14: if vnew > vbest then
15: vbest, xbest ← v, x
16: end if
17: end for
18: return xbest

4.5 Key Recovery Attack

To showcase the utility of our neural distinguishers as research tools, we have
constructed a partial-key recovery attack based on the N7 and N6 distinguisher
that is competitive to the best attacks previously known from the literature on
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Speck32/64 reduced to 11 rounds, i.e. in particular to the 11-round attack of
[19]. The attack proposed by Dinur has a computational complexity approxi-
mately equivalent to 246 Speck evaluations. The attack is expected to succeed
after querying 213 chosen-plaintext pairs and obtaining the corresponding cipher-
texts. Attacks on 12 to 14 rounds were also proposed in [19], naturally with
substantially larger computational and data complexities.

Our eleven-round attack, in contrast, is expected to succeed with a compu-
tational complexity of roughly 238 Speck evaluations if it is executed on a CPU.
Its data complexity is slightly higher than that of the attack in [19]; however,
computational complexity is reduced by a factor of more than 200.

Basic Attack Idea

Overview. The idea of our attack is to extend our neural 7-round distinguisher
to a 9-round distinguisher by prepending a two-round differential transition δ →
0x0040/0000 that is passed as desired with a probability of about 1/64. The
9-round distinguisher is then extended by another round at no additional cost
by asking for encryptions of ciphertext pairs P0, P1 that encrypt to the desired
input difference δ after one round of Speck encryption; this is easy, since no key
addition happens in Speck before the first nonlinear operation.

The signal from this distinguisher will be rather weak. We therefore boost
it by using k (probabilistic) neutral bits [10] to create from each plaintext
pair a plaintext structure consisting of 2k plaintext pairs that are expected to
pass the initial two-round differential together. For each plaintext structure, we
decrypt the resulting ciphertexts under all final subkeys and rank each partially
decrypted ciphertext structure using our neural distinguisher. If the resulting
score is beyond a threshold c1, we attempt to decrypt another round and grade
the resulting partially-decrypted ciphertexts using a six-round neural distin-
guisher. A key guess is returned if the resulting score for the partially decrypted
ciphertext structure then exceeds another threshold c2.

Ranking a Partial Decryption. To combine scores returned for individual cipher-
text pairs in a ciphertext structure into a score for the structure, we use Eq. (3)
as in the previously described 9-round attack.

Attack Parameters. This basic idea can be turned into a practical key recovery
attack on 11-round Speck. The initial difference (0x211/0xa04) and the neutral
bits set consisting of bits 14,15,20,21,22,23 of the cipher state work well, even
though bits 14,15 and 23 are not totally neutral. Using c1 = 15, c2 = 100 one
obtains an attack that succeeds on average within about 20 minutes of computing
time on a machine equipped with a GTX 1080 Ti graphics card, or in about 12
hours on a single core of a modern CPU. In one hundred trials, a key guess was
output after processing on average 213.2 ciphertext pairs. Recovery of both true
last subkeys was successful in 81 cases; the final subkey was correctly guessed in
99 cases. In the one remaining case, the second-to-last subkey was correct and
the guess for the last subkey was incorrect in one bit.
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Improved Attack. This basic attack can be accelerated in various ways. Here,
we focus on the following ideas:

1. The wrong key randomization hypothesis does not hold when only one round
of trial decryption is performed, especially in a lightweight cipher. We use
this to introduce an efficient key search policy using a generic optimization
algorithm.

2. It is inefficient to spend the same amount of computation on every ciphertext
structure. We use a generic method (an automatic exploitation versus explo-
ration tradeoff based on upper confidence bounds) to focus our key search on
the most promising ciphertext structures.

With these improvements, we can build an attack that recovers the final two
subkeys of Speck32/64 reduced to 11 rounds with a success probability of about
50% from ciphertext corresponding to 12800 chosen plaintexts in about 8 min
running in single-threaded mode on a single CPU core.2

Bayesian Optimization. Bayesian optimization [33] is a method that is com-
monly used for the optimization of black box functions f that are expensive to
evaluate. Examples are found in many domains; the tuning of hyperparameters
of machine learning models is one common example. It uses prior knowledge
about the function to be optimized to construct a probabilistic model of the
function that is easy to optimize. Knowledge about the model parameters is
adjusted to accomodate input from function evaluations f(x0), f(x1), . . . , f(xn).
An acquisition function is then used to decide which points of the function to
query next in order to improve in the most effective way possible knowledge
about the maximum.

In this work, we use Bayesian optimization to build an effective key search
policy for reduced-round Speck. This key search policy drastically reduces the
number of trial decryptions used by our basic attack, at the cost of a somewhat
expensive optimization step. The basic idea of our key search policy is that the
expected response of our distinguisher upon wrong-key decryption will depend
on the bitwise difference between the trial key and the real key. This wrong-
key response profile can be captured in a precomputation. Given some trial
decryptions, the optimization step then tries to come up with a new set of key
hypotheses to try. These new key hypotheses are chosen such that they maximize
the probability of the observed distinguisher responses.

Model Assumptions. Let C0, C1 be a ciphertext pair and let k be the real subkey
used in the final round of encryption. Let δ ∈ F

16
2 and let k′ = k ⊕ δ be a wrong

key. Denote the response of our distinguisher D to decryption by the key k′

by RD,δ(C0, C1) := D(E−1
k′ (C0), E−1

k′ (C1)). We can then view RD,δ as a random

2 Running the same code with different parameters, other attacks can be obtained.
The code repository, for instance, contains parameters for a 12-round attack that
is practical on a single PC (with the parameters used, average runtime is under an
hour on a GeForce GTX 1080 Ti GPU and success rate is ≈40%).
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variable depending on δ induced by the ciphertext pair distribution and compute
its mean μδ and standard deviation σδ. If we average the distinguisher response
over all elements of a ciphertext structure of size n as used in our attack, the
average can be expected to approximately follow a normal distribution3 with
mean μδ and standard deviation σδ/

√
n.

Wrong Key Randomization. We calculated the wrong key response profile for
our six- and seven round distinguishers for Speck32/64. To calculate the r + 1-
round wrong key response profile, we generated 3000 random keys and message
input pairs P0, P1 for each δ and encrypted for r+1 rounds to obtain ciphertexts
C0, C1. Denoting the final subkey of each encryption operation by k, we then per-
formed single-round decryption to get E−1

k⊕δ(C0), E−1
k⊕δ(C1) and had the resulting

partially decrypted ciphertext pair rated by an r-round neural distinguisher. μδ

and σδ were then calculated as empirical mean and standard deviation over these
3000 trials. The wrong key response profile for seven rounds is shown in Fig. 3.
A lot of non-random structure is evident. The shape of the curves for σδ and for
six rounds is similar.

Fig. 3. Wrong key response profile (only μδ shown) for 8-round Speck32/64 and our
7-round neural distinguisher. For each difference δ between trial key and right key, 3000
ciphertext pairs with the input difference 0x0040/0000 were encrypted for 8 rounds of
Speck using randomly generated keys and then decrypted for one round using a final
subkey at difference δ to the right key. Differences are shown on the x-axis, while mean
response over the 3000 pairs tried is shown in the y-axis.

Using the Wrong-Key Response Profile for Key Search. Given our model assump-
tions and observations of the distinguisher response r0, r1, . . . , rn−1 for keys
k0, k1, . . . , kn−1, we can view the ri as values obtained from an n-dimensional
normal distribution. The parameters of this normal distribution depend on the
bitwise differences of the ki to the real last subkey k, specifically on μk⊕ki

and

3 Note that for our neural networks, this argument can be slightly strengthened if the
final sigmoid activation is removed, since then distinguisher output on an individual
ciphertext pair is just a linear combination of 64 somewhat independent intermediate
network units.
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σk⊕ki
. It is easy to see that the probability density at the observed values is max-

imised by minimizing the weighted euclidean distance
∑n−1

i=0 (mi−μk⊕ki
)2/σ2

k⊕ki
.

Our algorithm first generates a set of random key candidates, then scores those
keys by decrypting the ciphertext structure currently under study, then calcu-
lates the average distinguisher response on the tried keys, and finds a new set
of key candidates that bring the precomputed wrong key response profile in line
with the observed values as well as possible. This is iterated for a few cycles.
Algorithm 4 sums up the algorithm.

Algorithm 4. BayesianKeySearch: efficiently find a list of plausible key candi-
dates given a ciphertext structure satisfying the initial differential of our attack.
Require: Ciphertext structure C = C0, . . . Cm−1, neural distinguisher N , number of

candidates to be generated n, number of iterations l.
1: S := {k0, k1, . . . , kn−1} ← choose at random without replacement from the set of

all subkey candidates.
2: L ← {}
3: for j ∈ {0, 1, . . . , l − 1}: do
4: Pi,k ← Decrypt(Ci, k) for all i ∈ {0, 1, . . . , m − 1}, k ∈ S.
5: vi,k ← N(Pi,k) for all i,k
6: wi,k ← log2(vi,k/(1 − vi,k)) for all i ∈ {0, . . . , m − 1}, k ∈ S
7: wk ← ∑n

i=1 vi,kfor allk ∈ S
8: L ← L||[(k, wk) for k ∈ S]
9: mk ← ∑n−1

i=0 vi,k/n for k ∈ {k0, . . . , kn−1}
10: λk ← ∑n−1

i=0 (mki − μki⊕k)2/σ2
ki⊕k for k ∈ {0, 1, . . . , 216 − 1}:

11: S ← argsortk(λ)[0 : n − 1]
12: end for
13: return L

All keys tried and their scores wk on the current ciphertext structure are
stored. Keys that obtain a score above a cutoff threshold c1 are expanded by
repeating the process for one further round, i.e. Algorithm4 is used with a six-
round neural distinguisher and its associated wrong key response profile. If one
of the resulting key candidates scores above another threshold c2, we determine
that the search will be terminated, but the processing of the current search
node is finished before the best pair of subkeys found for the last two rounds is
returned.

Before we return a key, we perform a small verification search with ham-
ming radius two around the two subkey candidates that are currently best. This
removes remaining bit errors in the key guess. If the verification search yields an
improvement, it is repeated with the new best key guess.

Given t ciphertext structures, our algorithm is first tried on each structure.
If no solution is found, since Algorithm4 is probabilistic, we continue for a pre-
set number of iterations it before returning the highest-scoring pair of subkeys
for the last two rounds. During these additional iterations, we have to actively
decide which ciphertext structures we will spend our computational budget on.
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We treat this as a multi-armed bandit problem and solve it using a standard
exploration-exploitation technique, namely Upper Confidence Bounds (UCB).
The order of the ciphertext structures to be tested in this phase depends on the
highest distinguisher score obtained in the last-key search for the structures so far
and on the number of visits they have received in our search. Specifically, denote
by wi

max the highest distinguisher score obtained so far for the ith ciphertext
structure, by ni the number of previous iterations in which the ith ciphertext
structure has been selected, and by j the number of the current iteration. We
calculate a priority score

si := wi
max + α ·

√
log2(j)/ni (5)

and pick the ciphertext structure with the highest priority score for further
processing. The visit count and the best result for this ciphertext structure are
updated after the iteration has finished. We set α to

√
nc, where nc is the number

of ciphertext structures available.

Results. In the trials subsequently described, we use 100 ciphertext structures
of 64 chosen plaintext pair encryptions each, the cutoff parameters c1 = 5,
c2 = 10, the UCB exploration term α = 10, an iteration count for the Bayesian
key search policy of l = 5 and candidate number n = 32, and an iteration
budget for the main loop it = 500. Given a hundred ciphertext structures, our
implementation outputs a key guess in approximately eight minutes on average
(measured average in 100 trials: 500.68 s) when running on a single thread of our
machine with no graphics card usage. This key guess is not always correct, but
if it is not, this is easily apparent from the scores returned. When a fast graphics
card is used, performance of our proof of concept implementation is not limited
by the speed of neural network evaluation, but by the key search policy. The key
search policy tries with the settings mentioned only 160 keys when processing a
ciphertext structure.

We count a key guess as successful if the last round key was guessed correctly
and if the second round key is at hamming distance at most two of the real
key. Under these conditions, the attack was successful in 521 out of 1000 trials;
recovery of the first round key was successful in 521 cases and in all of these
cases, the second round key guess was wrong for at most two bits within the
most significant nibble. For comparison, the attack presented in [19] is expected
to succeed with the same data complexity in about 55% of all trials. In the
simple model where in case of failure we request ciphertext values for another
100 plaintext structures, we expect that this attack will on average use 214.5

chosen plaintexts until success, slightly more than [19].

Computational Complexity. We estimate that a highly optimized, fully SIMD-
parallelized implementation of Speck32/64 could perform brute force key search
on our system at a speed of about 228 keys per second per core. Adjusting for
the empirically measured success rate of our attack we expect to need about
1000 s on average to execute the key recovery algorithm on a single core of our



174 A. Gohr

system. This yields an estimated computational attack complexity of 238 Speck
encryptions until a solution is found. The additional effort needed for full-key
recovery is negligible, since at that point a good ciphertext structure has been
found and the same attack can be launched on that single ciphertext structure
with distinguishers for less rounds of Speck.

5 The Real Differences Experiment

5.1 Summary

In this section, we design a cryptographic experiment in which the adversary
has to do differential cryptanalysis in a setting where the random and the real
difference distribution are the same. We show that our neural distinguishers are
successful in this experiment and compare their efficiency to solving the same
problem by key search in the case of five-round Speck.

5.2 Experiment

Motivation. We have seen in the previous section that our best neural distin-
guishers are better at recognizing Speck32/64 reduced up to eight rounds than
a distinguisher based on the full difference distribution table. We have also seen
that the Markov model at least predicts its own distinguishing success rate fairly
well and have seen some evidence that the neural distinguishers exploit features
outside the difference distribution table, e.g. from the fact that our neural dis-
tinguishers break Proposition 1. This section looks at that topic in isolation.

To this end, we introduce a differential cryptographic distinguishing task
in which perfect knowledge of the differential distribution of a primitive under
study does not in itself allow the adversary to do better than random guessing.

Experimental Setup. First, 106 samples were drawn from the real distribution
for the D5, D6, D7 and D8 tasks. Then, half of these samples were randomized
in the following way: for an output ciphertext pair C = (C0, C1) ∈ F

2b
2 to be

randomized, a blinding value K ∈ F
b
2 was generated uniformly at random by

reading from /dev/urandom. This value was bitwise-added to both ciphertexts
to produce the randomized ciphertext C̃ = (C0 ⊕ K,C1 ⊕ K).

The resulting 106 samples of randomized or non-randomized ciphertext pairs
were preprocessed as previously described and the results were passed to the
appropriate pretrained neural network for classification as random or real. No
further training took place.

Rationale. The distribution of difference values is clearly the same in both the
random and the real sample in this experiment. On the other hand, in the random
sample any information about the ciphertext other than the difference between
the two ciphertext blocks given is perfectly hidden, as the blinding makes the
results of the random sampling uniformly distributed on the hyperplane given
by each possible difference.
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Adapting Key Search. For reference, the key search based distinguisher on five
rounds from Sect. 3 was modified to work in the real differences setting. In this
setting, an exact solution by counting the keys leading to a decryption with
the desired input difference seems infeasible, as both random and real examples
are expected to regularly have a very high number of solutions. We therefore
calculate two approximations to Nkeys.

First, we calculate Arand := 264 ·DP (ΔC), where DP (ΔC) is the differential
probability of observing the output difference of the ciphertext pair C as given
by the Markov model of Speck.

Second, denoting by Dmid the set of possible round 3 differences, by P (δ) the
probability of observing the round 3 difference δ, and by Nδ(C) the number of
solutions for the final two subkeys that decrypt our observed ciphertext pair C
to the round 3 difference δ, we compute Areal := 232 · ∑

δ∈Dmid
P (δ) · Nδ(C).

C is then predicted as real if Areal > Arand and as random otherwise.

Results. Our best networks were found to solve the real differences task measur-
ably better than random guessing without ever having explicitly been trained
for it. Training on the real differences task was tried in the five-round case and
expanded this advantage considerably. Predictably, however, key search yielded
clearly superior distinguishing power. See Table 4 for details.

Table 4. Performance of neural distinguishers in the real differences experiment. For
comparison, the performance of a key search based distinguisher and a version of the
N5 network retrained to this task are also given. Test set size is 106 for the neural
distinguishers and 104 for Search.

Nr Distinguisher Accuracy

5 N5 0.707 ± 9.10 · 10−4

6 N6 0.606 ± 9.77 · 10−4

7 N7 0.551 ± 9.95 · 10−4

8 N8 0.507 ± 1.00 · 10−3

5 Search 0.810 ± 7.84 · 10−3

5 N5 retrained 0.762 ± 8.51 · 10−4

These tests show that ciphertext pairs are not evenly distributed within their
respective difference equivalence classes. Indeed, using neural distinguishers as
a search tool it is easy to find examples of ciphertext pairs with relatively high-
likelihood differences which have very little chance of appearing in the ciphertext
pair distribution of reduced Speck. One such example has already been discussed
in Sect. 4.4. For another, consider the output pair (0x58e0bc4, 0x85a4ff6c). It
has the ciphertext difference 0x802a/f4a8, which is a high probability output
difference for five round Speck given our input difference (p ≈ 2−15.3 according
to the full Markov model, which matches empirical trials well here). However,
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the pair decrypts to our input difference with a much lower likelihood, around
2−35.3 according to our calculations.

Constraining the Additional Signal. If we constrain the blinding values used
in the real differences experiment to be of the form aa, where a is any 16-bit
word, our distinguishers fail. This is consistent with the observation that the
distinguishers do not exploit the key schedule, as addition of a blinding value
of this form is equivalent to changing the final subkey used in encryption. It
also suggests that the networks exploit a strictly more fine-grained partition of
the output pairs into equivalence classes than the difference equivalence classes.
We find that intra-class variance of distinguisher output is very low for these
equivalence classes and that also the input representations generated by the
penultimate network layer show tight clustering.

6 Conclusions

We have tested in this paper whether neural networks can be used to develop sta-
tistical tests that efficiently exploit differential properties of a symmetric primi-
tive that has been weakened sufficiently by round reduction to allow for attacks
to be carried out in a low data setting. In the setting considered, this works
reasonably well: our distinguishers offer classification accuracy superior to the
difference distribution table for the primitive in question and use less memory,
even if inference speed is of course low compared to the simple memory lookup
needed with a precomputed difference distribution table. We consider it interest-
ing that this much knowledge about the differential distribution of round-reduced
Speck can be extracted from a few million examples by black-box methods.

The time needed to train a network from the ground up to an accuracy level
beyond the difference distribution table is on the order of minutes in our trials
when a single fast graphics card is available. Our networks start training with no
cryptographic knowledge beyond the word-structure of the cipher, making our
approach fairly generic. The transfer learning capabilities shown in this paper
demonstrate that finding good input differences from scratch is likewise possi-
ble using our networks with minimal input of prior cryptographic knowledge.
Our distinguishers have various novel properties, most notably the ability to
differentiate between ciphertext pairs within the same difference class.

In the context of this study, it certainly helped that Speck32/64 is a small
blocksize, lightweight primitive. However, this is true both for the optimisation
of conventional attacks and for the application of machine learning.

Given that the present work is an initial case study, we would not be surprised
if our results could be improved. Various directions for further research suggest
themselves. For instance, it would be interesting if a reasonably generic way were
found to give the model to be trained more prior knowledge about the cipher or
to enable the researcher to more easily extract knowledge from a trained model.

Small improvements to network performance are also completely expected to
be possible within the architecture and setting given by this paper.
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It would be interesting to see the effect of giving the network cryptographic
knowledge in the form of precomputed features. We did some tests along these
lines, for instance by giving the prediction head a classification derived from the
difference distribution table as an additional input, but this was only marginally
helpful.

The use of Bayesian optimization and related methods for key search could be
of more general interest whenever an attack exploits a statistical distinguisher
with high evaluation cost. This could be a neural network, but for instance
ordinary statistical distinguishers that need to be evaluated on very large sets
of ciphertexts to be effective may also be examples.

We do not think that machine learning methods will supplant traditional
cryptanalysis. However, we do think that our results show that neural networks
can learn to do cryptanalysis at a level that is interesting for a cryptographer
and that ML methods can be a useful addition to the cryptographic evaluators’
tool box. We expect that similar to other general-purpose tools used in crypto-
graphy such as SAT solvers or Groebner basis methods, machine learning will not
solve cryptography but usefully complement and support conventional dedicated
methods of doing research on the security of symmetric constructions.
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Abstract. We show that the correlation of any quadratic Boolean func-
tion can be read out from its so-called disjoint quadratic form. We further
propose a polynomial-time algorithm that can transform an arbitrary
quadratic Boolean function into its disjoint quadratic form. With this
algorithm, the exact correlation of quadratic Boolean functions can be
computed efficiently.

We apply this method to analyze the linear trails of MORUS (one of
the seven finalists of the CAESAR competition), which are found with
the help of a generic model for linear trails of MORUS-like key-stream
generators. In our model, any tool for finding linear trails of block ciphers
can be used to search for trails of MORUS-like key-stream generators.
As a result, a set of trails with correlation 2−38 is identified for all ver-
sions of full MORUS, while the correlations of previously published best
trails for MORUS-640 and MORUS-1280 are 2−73 and 2−76 respectively
(ASIACRYPT 2018). This significantly improves the complexity of the
attack on MORUS-1280-256 from 2152 to 276. These new trails also lead
to the first distinguishing and message-recovery attacks on MORUS-640-
128 and MORUS-1280-128 with surprisingly low complexities around 276.

Moreover, we observe that the condition for exploiting these trails in
an attack can be more relaxed than previously thought, which shows
that the new trails are superior to previously published ones in terms of
both correlation and the number of ciphertext blocks involved.
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1 Introduction

The notion of authenticated encryption (AE), which provides both confidential-
ity and authenticity, was first introduced by Bellare and Namprempre around
2000 [4,5]. It was further developed and evolved into the notion of authenti-
cated encryption with associated data (AEAD) [25–27] to capture the settings
of real-world communication networks, where the authenticity of some public
information (e.g., packet header) must be ensured. Informally, an AEAD is a
secret-key scheme involving an encryption algorithm and a decryption algorithm.
Its encryption algorithm receives a plaintext or message M , an associated data
A, and a secret key K, and produces a ciphertext C and a tag T . The authen-
ticity of the message and associated data can be checked against the tag T . We
refer the reader to [25] for a more rigorous treatment of the definition of AEAD.

The CAESAR competition (the Competition for Authenticated Encryption:
Security, Applicability, and Robustness) was announced at the Early Symmetric-
key Crypto workshop 2013 [13] and also on-line at [7]. After several years of inten-
sive analysis and comparison of the 57 submissions, the finalists were announced
at FSE 2018. In this work, our target is one of the seven finalists—MORUS [35],
which provides three main variants: MORUS-640 with a 128-bit key, and MORUS-
1280 with either a 128-bit or a 256-bit key.

Related Work. Apart from the analysis provided by the designers, MORUS
has received extensive third-party cryptanalysis. These cryptanalysis include
differential cryptanalysis [12,23,29], linear cryptanalysis [19], SAT-based crypt-
analysis [11], cube cryptanalysis [19,28], state-recovery [17,34] and key-recovery
attacks [12], as well as attacks in the nonce-reuse setting [23]. However, these
attacks either target round-reduced versions of MORUS, or are launched in
the nonce-reuse setting which is contradicting to the nonce-respect assumption
assumed by the designers. Therefore, none of these analysis violates the security
claims of MORUS.

A major breakthrough on the cryptanalysis of MORUS was made at ASI-
ACRYPT 2018 [2]. In this work, based on rotational-invariant linear approxima-
tions, Ashur et al. transfered linear approximations for a state-reduced version
of MORUS (named as MiniMORUS) to linear approximations for MORUS. Lin-
ear approximations in the ciphertext bits with correlation 2−73 and 2−76 were
identified for MORUS-640 and MORUS-1280 respectively. The approximation of
MORUS-1280 leads to distinguishing attacks and message-recovery attacks on
the full MORUS-1280 with 256-bit key. Since it requires about 22×76 = 2152

encryptions to exploit the correlation, MORUS-1280 with 128-bit keys remain
immune to these attacks. Similarly, to exploit the correlation of MORUS-640, it
requires about 2146 encryptions, which means MORUS-640-128 is also immune
to these attacks.

Our Contribution. In this work, we investigate the problem of computing
the correlation of quadratic Boolean functions. By transforming a quadratic
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Boolean function into its so-called disjoint quadratic form, we propose, to the
best of our knowledge, the first polynomial time algorithm that can determine
the correlation of an arbitrary quadratic Boolean function, while in previous
work (e.g., [2]), such correlations are computed with exhaustive or quite ad-hoc
approaches which intrinsically limits their effectiveness.

Equipped with this new weapon, we set out to search for more complex
rotational invariant linear trails of MORUS, and then compute their correlations
with the new method. To this end, we set up a model for finding linear trails of
MORUS-like key-stream generators, such that most existing search tools can
be applied. The model we proposed is generic and can be applied to many
other schemes, which is of independent interest. Eventually, using MILP based
approach, we identify trails of all versions of MORUS which lead to significant
improvement over the previous attack on MORUS-1280-256 presented by Ashur
et al. [2]. Generally, the complexity is reduced from 2152 to 276. Moreover, these
trails result in the first attacks on full MORUS-640 and MORUS-1280 with 128-
bit key. A summary of the results are given in Table 1, from which we can see that
the attack is not marginal and the complexities are approaching the boundary
of practical attacks. We verify the attacks on a reduced version of MORUS. Also,
following Ashur et al.’s approach [2], we verify all trail fragments for all versions
of full MORUS.

Along the way, we make an interesting observation that the condition
imposed on Ashur et al.’s attack can be relaxed. Specifically, the attacks actu-
ally only require that enough plaintexts with a common prefix of certain size are
encrypted, rather than the same plaintext is encrypted enough times as stated
in [2]. This observation motivates us to find trails involving a smaller number
of ciphertext blocks, since the common-prefix assumption does occur in some
practical protocols.

At this point, we would like to mention that even after Ashur et al.’s work [2],
many researchers are not sure if MORUS will stay in the competition given the
high complexities of the attacks and the status of MORUS-640-128 and MORUS-
1280-128. However, we think that the new attacks breaking all versions of full
MORUS with complexity around 276 severely shake the security confidence of
MORUS and should deserve more attentions. Finally, our technique is purely lin-
ear, and most of the attacks presented in our paper are known-plaintext attacks,
where we do not rely on any property of the output of the initialization process
except its randomness. Hence, it is interesting to see how to improve our analysis
by applying the differential-linear framework [3,18].

The exact linear trails we used can be found in an extended version of the
paper at https://eprint.iacr.org/2019/172, and the source code is available at
https://github.com/siweisun/attack morus.

Organization. In Sect. 2, we give a brief visualized description of the authenti-
cated encryption scheme MORUS. Then in Sect. 3, we show how to compute the
correlation of a quadratic Boolean function by transforming it into the so-called
disjoint quadratic form. A generic model for finding linear trails of MORUS-like

https://eprint.iacr.org/2019/172
https://github.com/siweisun/attack_morus
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key-stream generators is constructed in Sect. 4, which is employed in Sect. 5 to
search for linear trails of MORUS with high absolute correlations, leading to
attacks on all versions of full MORUS. Section 6 discusses the condition of the
attacks presented in the previous section and clarifies why trails involving a
smaller number of ciphertext blocks are preferred. We propose some open prob-
lems and conclude in Sect. 7.

2 Specification of MORUS and MiniMORUS

We give a brief description of MORUS and MiniMORUS, which largely follows
the notations used by Ashur et al. [2] to facilitate cross checking.

2.1 MORUS

MORUS is a family of AEAD schemes [35] whose interfaces are shown in Fig. 1.
The encryption algorithm of MORUS operates on a 5q-bit state composed of
five q-bit registers (q ∈ {128, 256}), and each register is divided into four q/4-
bit words as shown in Fig. 2, where we use Si,j to denote the jth bit of the
ith register Si of the 5q-bit state S. The three recommended parameter sets of
MORUS are listed in Table 2. Note that when the exact key size is not important,
we use MORUS-640 and MORUS-1280 to denote the versions with 640-bit state
and 1280-bit state, respectively.

Key

Message
Nonce

Associated Data

Ciphertext
Authentication Tag

Fig. 1. The high-level structure of the encryption algorithm of an AEAD scheme

S0

S0,q−1 S0,0

S1

S1,q−1 S1,0

S2

S2,q−1 S2,0

S3

S3,q−1 S3,0

S4

S4,q−1 S4,0

Fig. 2. A view of the MORUS internal state

During the encryption process of MORUS, a function

StateUpdate : F
5q
2 × F

q
2 → F

5q
2

is repeatedly executed on the internal state. Each call to the StateUpdate func-
tion is called a step. We denote the state at the very beginning of the encryption
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Table 2. The three variants of MORUS, where the sizes are measured in bits

Name
State size Register size Word size

Key size Tag size
(5q) (q) (q/4)

MORUS-640-128 640 128 32 128 128
MORUS-1280-128 1280 256 64 128 128
MORUS-1280-256 1280 256 64 256 128

process by S−16 = S−16
0 ‖ S−16

1 ‖ S−16
2 ‖ S−16

3 ‖ S−16
4 . After a series of steps, a

sequence of states is produced:

S−16 StateUpdate−−−−−−−→ S−15 StateUpdate−−−−−−−→ · · · StateUpdate−−−−−−−→ S0 StateUpdate−−−−−−−→ · · ·

Therefore, we can use the notion St = St
0 ‖ St

1 ‖ St
2 ‖ St

3 ‖ St
4 to reference the

state at step t. The detail of the StateUpdate function is shown in the following
equations:

St+1
0 ← (St

0 ⊕ (St
1 · St

2) ⊕ St
3) ≪w b0, St

3 ← St
3 ≪ b

′
0,

St+1
1 ← (St

1 ⊕ (St
2 · St

3) ⊕ St
4 ⊕ mi) ≪w b1, St

4 ← St
4 ≪ b

′
1,

St+1
2 ← (St

2 ⊕ (St
3 · St

4) ⊕ St
0 ⊕ mi) ≪w b2, St

0 ← St
0 ≪ b

′
2,

St+1
3 ← (St

3 ⊕ (St
4 · St

0) ⊕ St
1 ⊕ mi) ≪w b3, St

1 ← St
1 ≪ b

′
3,

St+1
4 ← (St

4 ⊕ (St
0 · St

1) ⊕ St
2 ⊕ mi) ≪w b4, St

2 ← St
2 ≪ b

′
4,

where ≪ω bi means rotation inside every w-bit (w = q/4) word of the register
to the left by bi bits, and ≪ is the ordinary left bitwise rotation operation. The
concrete values for the rotation offsets are listed in Table 3, and we refer the
readers to Fig. 3 for a visualization of the StateUpdate function.

M

≪ω b0

≪ b′
0

∧

M

≪ω b1

≪ b′
1

∧

M

≪ω b2

≪ b′
2

∧

M

≪ω b3

≪ b′
3

∧

≪ω b4

≪ b′
4

∧

S0

S1

S2

S3

S4

Fig. 3. The StateUpdate function of MORUS
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Table 3. Rotation constants bi for ≪w and b′
i for ≪ in round i of StepUpdate

Cipher
Rotation offsets for ≪w Rotation offsets for ≪
b0 b1 b2 b3 b4 b′

0 b′
1 b′

2 b′
3 b′

4

MORUS-640-128 5 31 7 22 13 32 64 96 64 32
MORUS-1280-128 13 46 38 7 4 64 128 192 128 64
MORUS-1280-256 13 46 38 7 4 64 128 192 128 64

f(St, V t) = StateUpdate(St, V t)
g(St) = St

0 ⊕ (St
1 ≪ b′

2) ⊕ (St
2 ∧ St

3)

c1
c0
1∗

Key
Nonce

S−16

f

0

· · ·· · ·· · ·· · ·· · ·
f

0 Key

Initialization S0

f

A0

· · ·· · ·· · ·· · ·· · ·
f

Au−1

SuAssociated data
processing

g

f

M0

C0

g

f

M1

C1

g

f

M2

C2

g

f

M3

C3

· · ·

Fig. 4. The encryption algorithm of MORUS

The encryption algorithm of MORUS can be divided into four phases. A visu-
alized description of the encryption algorithm of MORUS without the finalization
phase can be found in Fig. 4.

Initialization. The initialization of every MORUS instance starts by loading
the key and nonce materials into the state to produce the starting state S−16.
Then update the state by calling StateUpdate 16 times, and finally the key is
exclusive-ored into the state to produce the resulting state S0. Let c0 and c1 be
two 128-bit constants, and we use N128, K128, and K256 to denote the 128-bit
nonce, 128-bit key and 256-bit key, respectively. The details of the initialization
processes for different versions of MORUS are given in the following.

MORUS-640-128: S−16 = N128 ‖ K128 ‖ 1128 ‖ c0 ‖ c1. Then for t = −16,−15,
· · · , −1, St+1 = StateUpdate(St, 0128). Finally, we set S0 ← S0

0 ‖ S0
1 ⊕ K128 ‖

S0
2 ‖ S0

3 ‖ S0
4 .

MORUS-1280-128: S−16 = (N128 ‖ 0128) ‖ (K128 ‖ K128) ‖ 1256 ‖ 0256 ‖ (c0 ‖
c1). Then for t = −16,−15, · · · , −1, St+1 = StateUpdate(St, 0256). Finally, we
set S0 ← S0

0 ‖ S0
1 ⊕ (K128 ‖ K128) ‖ S0

2 ‖ S0
3 ‖ S0

4 .
MORUS-1280-256: S−16 = (N128 ‖ 0128) ‖ K256 ‖ 1256 ‖ 0256 ‖ (c0 ‖ c1).
Then for t = −16,−15, · · · , −1, St+1 = StateUpdate(St, 0256). Finally, we set
S0 ← S0

0 ‖ S0
1 ⊕ K256 ‖ S0

2 ‖ S0
3 ‖ S0

4 .
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Associated Data Processing. If there is no associated data, this process is
omitted. Otherwise, the associated data is padded with zeros when necessary to
form a multiple of q-bit (register size) block. Then the state is updated with the
associated data A as St+1 = StateUpdate(St, At), for t = 0, · · · , u − 1, where
u = �|A|/q� is the number of q-bit blocks of the (padded) associated data A.

Encryption. The plaintext is processed in q-bit blocks to update the state
and generate the ciphertext block at the same time. Similar to associated data
processing, the plaintext is padded with zeros if the last block is fractional. For
t = 0, · · · , v − 1, the following is performed.

Ct = M t ⊕ Su+t
0 ⊕ (Su+t

1 ≪ b′
2) ⊕ (Su+t

2 ∧ Su+t
3 ),

Su+t+1 = StateUpdate(Su+t,M t),

where v = �|M |/q� is the number of q-bit blocks of the padded plaintext.

Finalization. The authentication tag T is generated in the finalization phase by
calling StateUpdate ten more times. Since our attacks are completely irrelevant
to how the tag is generated, we omit its details.

2.2 MiniMORUS and Rotational Invariance

MiniMORUS, proposed by Ashur et al. [2], is a family of helper constructions
derived from MORUS. For every MORUS instance with a 5q-bit state, there
is a MiniMORUS instance with 5 · (q/4)-bit state. To be more specific, each
register in MiniMORUS contains a single word of w = q/4 bits. Therefore, the
word-oriented rotations in the StateUpdate function of MORUS are removed in
MiniMORUS, and the rotations within words (≪ω bi) are equivalent to ordinary
bit-wise rotations (≪bi) in MiniMORUS. We refer the reader to Figs. 5 and 3
for a comparison.

∧

C

M

≪ b0

∧

M

≪ b1

∧

M

≪ b2

∧

M

≪ b3

∧

≪ b4

∧

S0

S1

S2

S3

S4

Fig. 5. The StateUpdate function of MiniMORUS.
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Obviously, MiniMORUS can be regarded as a reduced version of MORUS.
Therefore, it is easier to search for linear trails of MiniMORUS. When a linear
trail of MiniMORUS is identified, we can consider the trail for MORUS where
the bits involved in every q/4-bit register of MiniMORUS are copied into all the
four q/4-bit words in the corresponding register of MORUS. To put it simply, we
only consider trails of MORUS involving the same bits within each word of one
register. This kind of patterns are invariant under word-wise rotations. Therefore,
the trails for MiniMORUS can be regarded as truncated representations of the
trails for MORUS with rotational invariant patterns. We refer the reader to [2]
for more details.

3 Correlation of Quadratic Boolean Functions

In this section, we give a brief introduction of necessary background of Boolean
functions, prove that the correlation of a quadratic Boolean function can be
read out from its disjoint quadratic form, and show how to convert an arbi-
trary quadratic Boolean function into its so-call disjoint quadratic term with a
polynomial time algorithm.

Let f : F
n
2 → F2 be a Boolean function with algebraic normal form (ANF)

f(x) =
∑

u∈Fn
2

aux
u ,

where x = (x1, · · · , xn),u = (u1, · · · , un), au ∈ F2, and xu =
∏n

i=1 xui
i . The

degree of the Boolean function f is defined as

deg(f) = max
u∈Fn

2 :au �=0
wt(u),

where wt(u) is the Hamming weight of u.

Definition 1 (Correlation). The correlation of an n-variable Boolean func-
tion f is cor(f) = 1

2n

∑
x∈Fn

2
(−1)f(x), and the weight of the correlation is defined

as − log2 |cor(f)|.
In the following, we use Var(f) to denote the set of variables involved in the

Boolean function f . For example, if h = x1x2 +x1x3 +1 and g = x2x3x4 +x3x4,
then Var(h) = {x1, x2, x3} and Var(g) = {x2, x3, x4}. Note that the variables are
treated as symbolic objects. A variable xi is degenerate if it does not appear in the
ANF of f , i.e., xi /∈ Var(f). For example, if f(x1, x2, x3, x4, x5) = x1+x2x3+x4,
then x5 is degenerate.

Lemma 1. Let g(x1, · · · , xn) =
∑k

t=1 ft be a Boolean function such that the k

sets Var(ft) for 1 ≤ t ≤ k are mutually disjoint. Then cor(g) =
∏k

t=1 cor(ft).
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Proof. Let ft be a Boolean function with nt variables for 1 ≤ t ≤ k, and m =
n − n1 − · · · − nk. According to Definition 1, we have

cor(g) =
1
2n

∑

x∈Fn
2

(−1)g(x) =
∑

x∈Fn
2

(−1)(f1+f2+···+fk)(x)

2n

=
∑

x1∈F
n1
2

(−1)f1(x1)

2n1
· · ·

∑

xk∈F
nk
2

(−1)fk(x1)

2nk
·

∑

x∈Fm
2

(−1)0

2m

=
k∏

t=1

cor(ft),

as desired. ��
Example 1. cor(x1x2 + x3x4) = cor(x1x2) · cor(x3x4) = 2−2.

Corollary 1. Let f(x1, · · · , xn) be a Boolean function, and f = g+xj such that
xj /∈ Var(g) is a separated linear term. Then cor(f) = 0.

Example 2. cor(x1x2+x2x3x4+x3x5+x6) = cor(x1x2+x2x3x4+x3x5)·cor(x6) =
cor(x1x2 + x2x3x4 + x3x5) · 0 = 0.

Lemma 2. Let f(x, y) = xy + ax + by be a Boolean function and a, b ∈ F2 are
constants. Then cor(f) = (−1)ab · 2−1.

Proof. Prove by exhaustive analysis of a and b with Definition 1. ��
Definition 2. Two Boolean functions f(x) and g(x) are called cogredient if
there exists an invertible matrix M , such that g(x) = f(xM).

Lemma 3. Let f(x) and g(x) be two Boolean functions cogredient to each other.
Then cor(f) = cor(g).

Proof. Since f(x) and g(x) are cogredient to each other, g(x) = f(xM) for
some invertible matrix M . The result follows from the following equation

cor(g) = 1
2n

∑
x∈Fn

2

(−1)g(x) = 1
2n

∑
x∈Fn

2

(−1)f(xM)

= 1
2n

∑
xM−1∈Fn

2

(−1)f(x) = 1
2n

∑
x∈Fn

2

(−1)f(x).

��
Lemma 3 implies that the correlation of a Boolean function is invariant by

applying an invertible linear transformation to the input variables. Also, it is
sufficient to consider functions with constant term 0 since cor(f) = −cor(f + 1)
for any f .
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Definition 3 (Quadratic form). A Boolean function f is quadratic if
deg(f) = 2. A quadratic Boolean function is called a quadratic form if its con-
stant term is 0. Hence, a quadratic form can be written as

f(x1, · · · , xn) =
∑

1≤i≤j≤n

ai,jxixj = Qf (x1, · · · , xn) + Lf (x1, · · · , xn)

where ai,j ∈ F2, Qf contains all quadratic terms of f while Lf consists of all
linear terms of f .

Let f(x1, · · · , xn) be a quadratic Boolean function. For i ∈ {1, · · · , n}, we
use σ(f, xi) to denote the number of terms of Qf involving variable xi.

Definition 4 (Disjoint quadratic form). Let f(x1, · · · , xn) be a quadratic
form. A term xixj of f is a separated quadratic term if σ(f, xi) = σ(f, xj) = 1.
In particular, f is disjoint if all its quadratic terms are separated quadratic terms.

Example 3. The two functions x1x2 + x3x4 and x1x3 + x2x4 + x2 + x5 are both
disjoint quadratic forms, while x1x2 + x2x3 is not a disjoint quadratic form.

Lemma 4. Let f = xi1xi2 + · · · + xi2k−1xi2k + xj1 + · · · + xjs be a disjoint
quadratic form. Then

cor(f) =

{
(−1)

∑k
t=1 Coef (xi2t−1 )Coef (xi2t ) · 2−k {j1, · · · , js} ⊆ {i1, · · · , i2k}

0 {j1, · · · , js} � {i1, · · · , i2k}
where Coef (xu ) denotes the coefficient of the monomial xu in the ANF of f .

Proof. It follows from Lemma 1, Corollary 1, and Lemma 2. ��
With Lemma 4, it is easy to obtain the correlation of a disjoint quadratic

form. In the remainder of this section, we will present an efficient algorithm
for converting any given quadratic form to a cogredient disjoint quadratic form.
Hence, we can efficiently compute the correlation of any given quadratic form.
Before diving into the details of the algorithm, we first introduce some useful
notations and subroutines employed in Algorithm 1.

Subroutine 1 (PickIndex). Given a quadratic Boolean function f(x) with x =
(x1, · · · , xn), PickIndex(f) returns the index t of xt, where t is the smallest
integer t ∈ {1, · · · , n}, such that σ(f, xt) ≥ σ(f, xt′) for all t′ ∈ {1, · · · , n}.
Example 4. Let n = 3, f(x) = x1x2 + x2x3 + x3. Then PickIndex(f) = 2.

Subroutine 2 (Substitute). Given a Boolean function f(x) = f(x1, · · · , xn)
and an n × n invertible matrix M , Substitute(f,M) returns the Boolean func-
tion f(xM).

Example 5. Let f = x1x2 + x2x3 + x3, and M =

⎡

⎣
1 0 0
1 1 0
0 1 1

⎤

⎦ . Then

Substitute(f,M) gives f(xM) = (x1 + x2)(x2 + x3) + (x2 + x3)x3 + x3 =
x1x2 + x1x3 + x2.
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In Algorithm 1, for a given Boolean function f(x1, · · · , xn), we repeatedly
use a substitution of variables of the form:

{
xu ← xt1 + xt2 + · · · + xtm

xj ← xj , ∀j ∈ {1, · · · , n} − {u} ,

where m ≥ 2, u ∈ {t1, · · · , tm}, and t1 < t2 < · · · < tm. This substitution can
be reformulated in the matrix form as x ← xIu←t1,··· ,tm , where Iu←t1,··· ,tm is
obtained from the n × n identity matrix I by substituting the u-th column with
a column vector whose tj-th entry is 1 for 1 ≤ j ≤ m and other entries are 0.
Note that we always have Iu←t1,··· ,tm = I−1

u←t1,··· ,tm .

Algorithm 1: Transform to disjoint quadratic form
Input: A quadratic form f(x) = f(x1, · · · , xn)
Output: An invertible matrix M and a disjoint quadratic form f̂(x) such

that f̂(x) = f(xM)

1 /* Initialization */

2 M ← I /* I is the n × n identity matrix */

3 f̂(x) ← f(x1, · · · , xn)

4 v ← PickIndex(f̂)

5 /* Transformation */

6 while σ(f̂ , xv) ≥ 2 do

7 m ← σ(f̂ , xv) /* The number of quadratic terms involving xv */

8 Find all t1 < t2 < · · · < tm, such that xvxti is a term of f̂ .

9 f̂ ← Substitute(f̂ , It1←t1,··· ,tm)
10 M ← It1←t1,··· ,tm · M

11 if σ(f̂ , xt1) ≥ 2 then

12 k ← σ(f̂ , xt1)

13 Find all s1 < s2 < · · · < sk, such that xt1xsi is a term of f̂ .

14 f̂ ← Substitute(f̂ , Iv←s1,··· ,sk )
15 M ← Iv←s1,··· ,sk · M

16 end

17 v ← PickIndex(f̂)

18 end

19 return M and f̂

Example 6. Let f̂ ← f(x1, x2, x3, x4, x5) = x1x2 +x1x5 +x2x3 +x2x4 +x1 +x2.
Then σ(f̂ , x1) = 2, σ(f̂ , x2) = 3, σ(f̂ , x3) = 1, σ(f̂ , x4) = 1, and σ(f̂ , x5) = 1.
Thus, v ← PickIndex(f̂) = 2. Now we extract the common factor xv = x2 in
Qf̂ :

f̂(x) = x2(x1 + x3 + x4) + x1x5 + x1 + x2.
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Then we apply the following substitution of variables:
{

x1 ← x1 + x3 + x4

xj ← xj , j ∈ {1, · · · , 5} − {1} . (1)

This variable substitution gives f̂ ← x2x1+(x1+x3+x4)x5+(x1+x3+x4)+x2 =
x1x2+x1x5+x3x5+x4x5+x1+x2+x3+x4. Then we need to check whether x1

(the variable corresponding to a sum of the original variables rather than a single
xj) appears multiple times in Qf̂ . Since σ(f̂ , x1) = 2 (x1 appears multiple times),
we extract the common factor: f = x1(x2+x5)+x3x5+x4x5+x1+x2+x3+x4.
Then we apply the variable substitution:

{
x2 ← x2 + x5

xj ← xj , j ∈ {1, · · · , 5} − {2} . (2)

This variable substitution gives f̂ ← x1x2 + x3x5 + x4x5 + x1 + (x2 + x5) +
x3 + x4 = x1x2 + x3x5 + x4x5 + x1 + x2 + x3 + x4 + x5. At this point (a whole
while loop is done), we can observe that x1x2 is a separated quadratic term
of f̂ . Actually, as shown in Theorem 1, every execution of the while loop will
make one quadratic term separated. Then PickIndex(f̂) returns 5, and we have
f̂ = x1x2 + (x3 + x4)x5 + x1 + x2 + x3 + x4 + x5. Applying the substitution

{
x3 ← x3 + x4

xj ← xj , j ∈ {1, · · · , 5} − {3} , (3)

gives f̂ = x1x2 + x3x5 + x1 + x2 + x3 + x5, which is a disjoint quadratic form.
It follows from Eqs. (1)–(3) that

M =

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 0 1

⎤

⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 1

⎤

⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 0 0 0 1

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
1 0 1 0 0
0 0 1 1 0
0 1 0 0 1

⎤

⎥⎥⎥⎥⎦
.

It is readily to verify that f̂ = f(xM). Consequently, according to Lemma 3,
the correlation of f is (−1)1·1+1·1 · 2−2 = 2−2 .

To show the validity of Algorithm 1, we present the following result.

Lemma 5. For any input quadratic form f(x) = f(x1, · · · , xn) of Algorithm 1,
each while loop will generate at least one separated quadratic terms.

Proof. Let f̂ = xv(xt1 + xt2 + · · · + xtm) + g, where v = PickIndex(f̂) and
t1, t2, · · · , tm be all the indices such that xtixv is a term of f̂ with t1 < t2 <
· · · < tm. Then we have σ(g, xv) = 0 according to the way we choose ti’s. After
the variable substitution x ← x · It1←t1,··· ,tm , we have

f̂ ← xvxt1 + g(x · It1←t1,··· ,tm).



Correlation of Quadratic Boolean Functions: Cryptanalysis of MORUS 193

Since xv is unchanged under It1←t1,··· ,tm , we have σ(f̂ , xv) = 1 + σ(g, xv) = 1.
If σ(f̂ , xt1) = 1, then xvxt1 is a separated quadratic term. Otherwise, we

have σ(f̂ , xt1) ≥ 2. Assume that the current f̂ can be written as f̂ = xt1(xv +
xs1 + · · · + xsk

) + h, where s1, s2, · · · , sk are all the indices such that xt1xsi
is

a term of f̂ and s1 < s2 < · · · < sk. It implies that σ(h, xt1) = 0. Further,
we have σ(h, xv) = 0 since σ(h, xv) ≤ σ(g, xv) = 0. Then the transformation
x ← Iv←s1,··· ,sk

carries the function f̂ into

f̂ ← xvxt1 + h(x · Iv←s1,··· ,sk
).

Thus, we have σ(f̂ , xt1) = 1 and σ(f̂ , xv) = 1. This means that xvxt1 is a
separated quadratic term. ��
Theorem 1. Given a quadratic form f(x) = f(x1, · · · , xn), Algorithm 1 out-
puts a disjoint quadratic form f̂(x) and an invertible n × n matrix M , such
that f̂(x) = f(xM). Moreover, Algorithm 1 has time complexity O(n3.8) and
memory complexity Ω(n2).

Proof. According to Lemma 5, each while loop will generate at least one sepa-
rated quadratic term. Hence, after at most n/2 while loops, all quadratic terms
of the current f̂ are disjoint quadratic terms.

Now we briefly analyze the complexity of Algorithm 1. From the above anal-
ysis, Algorithm 1 will have n/2 while loops in the worst case. This implies
that the time complexity is upper bounded by the n matrix multiplications.
Therefore, the time complexity of the algorithm can be estimated as O(n1+2.8),
where we take O(n2.8) as the time complexity of the multiplication two n × n
matrices [30]. It is readily seen that the memory complexity is Ω(n2). ��

To sum up, with Lemma 3, Lemma 4, and Algorithm 1, we can compute the
correlation of any quadratic Boolean function with polynomial time complexity.

4 Exploitable Linear Approximations of MORUS-like Key
Stream Generators

We consider a typical stream cipher construction shown in Fig. 6. A partially
unknown state SU (initialized with a secret key and some public values) is pro-
cessed by an initialization algorithm. Then a vectorial Boolean function G is
applied to the state S0 to produce one key stream word Z0. For 0 ≤ i < k, a
state update function is employed to obtain a new state Si+1 = F(Si), from
which a key stream word Zi+1 = G(Si+1) is extracted.

For this kind of stream ciphers, a generic attack based on linear cryptanalysis
(e.g., [24]) can be applied, whose goal is to find a sequence of linear masks
(λ0, · · · , λk) for the key-stream blocks Zi, such that the absolute value of the
correlation cor

(∑k
i=0 λiZ

i
)

can be maximized, where the number of ciphertext
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G
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F · · ·

· · ·
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Sk−1

γk−1

G
λk−1

Zk−1

αk−1 βk−1
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γk

G
λk

Zk

αk

Fig. 6. Linear trails for MORUS-like key-stream generator

blocks involved in the linear approximation is called the span. In what follows,
we establish a model in which finding (λ0, · · · , λk) is conceptually the same as
finding linear trails of a block cipher with additional constraints imposed on
some linear masks at some special positions. With this model, existing tools [8,
14,22,31,33] for finding good linear trails of block ciphers can be applied to
search for (λ0, · · · , λk).

Definition 5. A linear trail of the key stream generator shown in Fig. 6:

(β−1, γ0, λ0, α0, β0, · · · , αk−1, βk−1, γk, λk, αk)

is said to be exploitable if and only if β−1 = 0, αk = 0, and αi + γi + βi−1 = 0
for 0 ≤ i ≤ k.

The motivation behind Definition 5 is that when the following equations
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β−1 = 0
αk = 0
αi + γi + βi−1 = 0, 0 ≤ i ≤ k

γiS
i + λiZ

i = 0, 0 ≤ i ≤ k

αiS
i + βiS

i+1 = 0, 0 ≤ i ≤ k − 1

(4)

hold simultaneously, we have

k∑

i=0

λiZ
i =

k∑

i=0

γiS
i = β−1S

0 +
k−1∑

i=0

(αiS
i + βiS

i+1) + αkSk = 0. (5)

Although in Definition 5 we require β−1 = 0, in fact, any characteristic starting
with some βi = 0 that follows the same pattern specified in Definition 5 across
several consecutive ciphertext blocks can be exploited.

In this work, the MILP-based approach [14,31,33] is employed to search for
linear trails of MORUS. One solution of the MILP model is a linear characteristic
satisfying additional constraints specified in Definition 5. The objective function
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of the model is to minimize the number of active AND gates. The trails produced
by the models are only locally consistent, and thus we cannot guarantee their
global soundness with respect to optimality and validity, since the models are
constructed under the assumption that all AND gates are independent.

Let us inspect a toy example where f = f1 + f2 = x1x2 + x1x3 + x2 and
{

f1(x1, x2, x3) = x1x2 + x2

f2(x1, x2, x3) = x1x3

.

The reader can check that in this case cor(f1) = cor(f2) = 2−1, but cor(f) = 0,
which implies that the sum of biased Boolean functions may be balanced. There-
fore, global consistency of the full trail cannot be ensured by local consistency. To
be more concrete, we show a real example. Table 4 presents an invalid linear trail
generated by our MILP model whose span is 3. Note that in this paper, we show
our trails in their linear-mask representations. There is a correspondence between
the linear-mask representation and the trail-equation representation used in [2].
The five linear masks between α0 and β0 listed in Table 4 are the linear masks in
the positions shown in Fig. 5 marked with dashed lines. Each row of the linear
masks determines which AND gates are activated, and each active AND gate
produces one equation containing one product term. By adding up these equa-
tions, we can reproduce the trail-equation representations used in [2]. In this
work, we always need to convert the linear-mask representation into the trail-
equation representation, which is required to determine its overall correlation by
using the method proposed in Sect. 3.

For the sake of completeness, we give a complete example of the conversion
process based on the trail shown in Table 4. From the linear masks, we can get
the following equations:

C0
30 ⊕ S0

0,30 ⊕ S0
1,30 = S0

2,30 · S0
3,30

C0
22 ⊕ S0

0,22 ⊕ S0
1,22 = S0

2,22 · S0
3,22

S0
0,30 ⊕ S1

0,3 ⊕ S0
3,30 = S0

1,30 · S0
2,30

S0
0,22 ⊕ S1

0,27 ⊕ S0
3,22 = S0

1,22 · S0
2,22

S0
1,22 ⊕ S1

1,21 ⊕ S0
4,22 = S0

2,22 · S0
3,22

S0
4,22 ⊕ S1

4,3 ⊕ S1
2,22 = S1

0,22 · S1
1,22

C1
29 ⊕ S1

0,29 ⊕ S1
1,29 = S1

2,29 · S1
3,29

C1
27 ⊕ S1

0,27 ⊕ S1
1,27 = S1

2,27 · S1
3,27

C1
22 ⊕ S1

0,22 ⊕ S1
1,22 = S1

2,22 · S1
3,22

C1
21 ⊕ S1

0,21 ⊕ S1
1,21 = S1

2,21 · S1
3,21

C1
3 ⊕ S1

0,3 ⊕ S1
1,3 = S1

2,3 · S1
3,3

S1
0,29 ⊕ S2

0,2 ⊕ S1
3,29 = S1

1,29 · S1
2,29

S1
0,22 ⊕ S2

0,27 ⊕ S1
3,22 = S1

1,22 · S1
2,22
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S1
0,21 ⊕ S2

0,26 ⊕ S1
3,21 = S1

1,21 · S1
2,21

S1
1,27 ⊕ S2

1,26 ⊕ S1
4,27 = S1

2,27 · S1
3,27

S1
1,3 ⊕ S2

1,2 ⊕ S1
4,3 = S1

2,3 · S1
3,3

S1
2,27 ⊕ S2

2,2 ⊕ S2
0,27 = S1

3,27 · S1
4,27

C2
26 ⊕ S2

0,26 ⊕ S2
1,26 = S2

2,26 · S2
3,26

C2
2 ⊕ S2

0,2 ⊕ S2
1,2 = S2

2,2 · S2
3,2

Adding up the above equations gives the trail equation:

C0
30 ⊕ C0

22 ⊕ C1
29 ⊕ C1

27 ⊕ C1
22 ⊕ C1

21 ⊕ C1
3 ⊕ C2

26 ⊕ C2
2

= S1
2,22 · S1

3,22 ⊕ S1
1,22 · S1

2,22 ⊕ S1
2,22 ⊕ S1

3,22 ⊕ S1
1,22

⊕ S1
2,21 · S1

3,21 ⊕ S1
1,21 · S1

2,21 ⊕ S1
3,21

⊕ S1
2,29 · S1

3,29 ⊕ S1
1,29 · S1

2,29 ⊕ S1
3,29 ⊕ S1

1,29

⊕ S0
2,30 · S0

3,30 ⊕ S0
1,30 · S0

2,30 ⊕ S0
3,30 ⊕ S0

1,30

⊕ S0
1,22 · S0

2,22

⊕ S1
0,22 · S1

1,22

⊕ S1
3,27 · S1

4,27 ⊕ S1
4,27

⊕ S2
2,26 · S2

3,26

⊕ S2
2,2 · S2

3,2 ⊕ S2
2,2

⊕ S0
3,22

⊕ S1
2,27.

The right-hand side of the equation is a quadratic Boolean function. Thus by
applying the method shown in Sect. 3, we can obtain its correlation. However,
for this special case, we know that its correlation is zero without converting it
into the disjoint quadratic form, since the variable S1

2,27 never appears in any
other term of the quadratic Boolean function. Thus, according to Corollary 1,
the correlation of C0

30 ⊕ C0
22 ⊕ C1

29 ⊕ C1
27 ⊕ C1

22 ⊕ C1
21 ⊕ C1

3 ⊕ C2
26 ⊕ C2

2 is zero.
At this point, we emphasize that Definition 5 is only used as a mental helper

to identify potentially good trails. Since in practice, we apply search tools that
produce “good” linear trails assuming the independencies of the rounds or com-
ponents within F and G. However, these assumptions are generally not true
as illustrated by the above example. Therefore, the outputs of the search tools
are not reliable. We must recompute the correlation of the full trail by using
dedicated methods which are suitable to the target under consideration. For
instance, using the method presented in Sect. 3, we automatically detect such
inconsistencies shown in the above examples.
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Table 4. An invalid trail of MiniMORUS-640 with span 3

Round Linear masks

0

α0 40400000 40400000 00000000 40400000 00000000
08000008 00400000 00000000 00000000 00000000
08000008 00200000 00000000 00000000 00400000
08000008 00200000 00000000 00000000 00400000
08000008 00200000 00000000 00000000 00400000

β0 08000008 00200000 00400000 00000000 00000008
γ0 40400000 40400000 00000000 40400000 00000000
λ0 40400000

1

α1 20600000 28400008 00400000 20600000 00000008
0c000004 08000008 00000000 00000000 00000008
0c000004 04000004 08000000 00000000 08000000
04000004 04000004 00000004 00000000 00000000
04000004 04000004 00000004 00000000 00000000

β1 04000004 04000004 00000004 00000000 00000000
γ1 28600008 28600008 00000000 20600000 00000000
λ1 28600008

2
γ2 04000004 04000004 00000004 00000000 00000000
λ2 04000004

5 Searching for Linear Approximations of MORUS

By setting the plaintext to zero message as in [2], MiniMORUS and MORUS fit
exactly into the model established in Sect. 4. Hence, linear trails of MiniMORUS
and MORUS can be searched by using any existing tools for finding linear approx-
imations. In our work, we apply the MILP-based approach, where the constraints
imposed on the linear trails are encoded into MILP models.

In practice, we must determine the number of ciphertext blocks involved in
the final linear combination of the ciphertext bits before we can set up the MILP
model. First, we theoretically show that there is no useful linear approximation
for MORUS involving only one ciphertext block. Let λ0 be a linear mask of the
key-stream generator shown in Fig. 6 for one ciphertext block. Then we have

λ0Z
0 =

⊕

j,λ0,j=1

(S0
0,j ⊕ (S0

1,j+b
′
2
⊕ S0

2,j · S0
3,j))

=
⊕

j,λ0,j=1

S0
0,j ⊕

⊕

j,λ0,j=1

(S0
1,j+b

′
2
⊕ S0

2,j · S0
3,j).

Since the variable S0
0,j does not appear in other terms, we have cor(λ0Z

0) = 0
according to Corollary 1.

Since the linear trails used in [2] span across 5 ciphertext blocks, we decide
to only search for rotational invariant trails with spans greater than 1 and less
than 6 (models for larger spans will have more variables which are difficult to
solve). The best trails we found are of span 4, and the trails for MiniMORUS-640
and MORUS-640 are listed in Tables 5 and 6, respectively.

As an illustration, let us compute the correlation of the trail of MiniMORUS-
640 shown in Table 5. Firstly, according to the linear masks shown in Table 5,
we write down the following equations which hold with probability 1.
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Table 5. A linear trail of MiniMORUS-640 with correlation −2−8

Round Linear masks

0

α0 10000000 10000000 00000000 10000000 00000000
00000002 00000000 00000000 00000000 00000000
00000002 00000000 00000000 00000000 00000000
00000002 00000000 00000000 00000000 00000000
00000002 00000000 00000000 00000000 00000000

β0 00000002 00000000 00000000 00000000 00000000
γ0 10000000 10000000 00000000 10000000 00000000
λ0 10000000

1

α1 08000200 08000202 00000002 08000200 00000000
00004001 00000002 00000002 00000000 00000000
00004001 00000001 00000000 00000000 00000002
00004001 00000001 00000000 00000000 00000002
00004001 00000001 00000000 00000000 00000002

β1 00004003 00000003 00000002 00000000 00004000
γ1 08000202 08000202 00000002 08000200 00000000
λ1 08000202

2

α2 00000100 00004100 00000000 00000100 00004000
00002000 00004000 00000000 00000000 00004000
00002000 00002000 00000000 00000000 00000000
00002000 00002000 00000000 00000000 00000000
00002000 00002000 00000000 00000000 00000000

β2 00002000 00002000 00000000 00000000 00000000
γ2 00004103 00004103 00000002 00000100 00000000
λ2 00004103

3
γ3 00002000 00002000 00000000 00000000 00000000
λ3 00002000

C0
28 ⊕ S0

0,28 ⊕ S0
1,28 = S0

2,28 · S0
3,28

S0
0,28 ⊕ S1

0,1 ⊕ S0
3,28 = S0

1,28 · S0
2,28

C1
27 ⊕ S1

0,27 ⊕ S1
1,27 = S1

2,27 · S1
3,27

C1
9 ⊕ S1

0,9 ⊕ S1
1,9 = S1

2,9 · S1
3,9

C1
1 ⊕ S1

0,1 ⊕ S1
1,1 = S1

2,1 · S1
3,1

S1
0,27 ⊕ S2

0,0 ⊕ S1
3,27 = S1

1,27 · S1
2,27

S1
0,9 ⊕ S2

0,14 ⊕ S1
3,9 = S1

1,9 · S1
2,9

S1
1,1 ⊕ S2

1,0 ⊕ S1
4,1 = S1

2,1 · S1
3,1

S1
4,1 ⊕ S2

4,14 ⊕ S2
2,1 = S2

0,1 · S2
1,1

C2
14 ⊕ S2

0,14 ⊕ S2
1,14 = S2

2,14 · S2
3,14

C2
8 ⊕ S2

0,8 ⊕ S2
1,8 = S2

2,8 · S2
3,8

C2
1 ⊕ S2

0,1 ⊕ S2
1,1 = S2

2,1 · S2
3,1

C2
0 ⊕ S2

0,0 ⊕ S2
1,0 = S2

2,0 · S2
3,0

S2
0,8 ⊕ S3

0,13 ⊕ S2
3,8 = S2

1,8 · S2
2,8

S2
1,14 ⊕ S3

1,13 ⊕ S2
4,14 = S2

2,14 · S2
3,14

C3
13 ⊕ S3

0,13 ⊕ S3
1,13 = S3

2,13 · S3
3,13
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Table 6. A linear trail of MORUS-640 with correlation 2−38, where “*4” stands for 4
copies of the same bit string

Round Linear masks

0

α0 10000000*4 10000000*4 00000000*4 10000000*4 00000000*4
00000002*4 00000000*4 00000000*4 00000000*4 00000000*4
00000002*4 00000000*4 00000000*4 00000000*4 00000000*4
00000002*4 00000000*4 00000000*4 00000000*4 00000000*4
00000002*4 00000000*4 00000000*4 00000000*4 00000000*4

β0 00000002*4 00000000*4 00000000*4 00000000*4 00000000*4
γ0 10000000*4 10000000*4 00000000*4 10000000*4 00000000*4
λ0 10000000*4

1

α1 08000200*4 08000202*4 00000002*4 08000200*4 00000000*4
00004001*4 00000002*4 00000002*4 00000000*4 00000000*4
00004001*4 00000001*4 00000000*4 00000000*4 00000002*4
00004001*4 00000001*4 00000000*4 00000000*4 00000002*4
00004001*4 00000001*4 00000000*4 00000000*4 00000002*4

β1 00004003*4 00000003*4 00000002*4 00000000*4 00004000*4
γ1 08000202*4 08000202*4 00000002*4 08000200*4 00000000*4
λ1 08000202*4

2

α2 00000100*4 00004100*4 00000000*4 00000100*4 00004000*4
00002000*4 00004000*4 00000000*4 00000000*4 00004000*4
00002000*4 00002000*4 00000000*4 00000000*4 00000000*4
00002000*4 00002000*4 00000000*4 00000000*4 00000000*4
00002000*4 00002000*4 00000000*4 00000000*4 00000000*4

β2 00002000*4 00002000*4 00000000*4 00000000*4 00000000*4
γ2 00004103*4 00004103*4 00000002*4 00000100*4 00000000*4
λ2 00004103*4

3
γ3 00002000*4 00002000*4 00000000*4 00000000*4 00000000*4
λ3 00002000*4

Combining the above equations, we obtain an equation whose left-hand side
involves only cipher-text bits, while the right-hand side of the equation can be
regarded as a quadratic Boolean function.

C0
28 ⊕ C1

27 ⊕ C1
9 ⊕ C1

1 ⊕ C2
14 ⊕ C2

8 ⊕ C2
1 ⊕ C2

0 ⊕ C3
13

= S0
2,28 · S0

3,28 ⊕ S0
1,28 · S0

2,28 ⊕ S0
3,28 ⊕ S0

1,28

⊕ S1
2,9 · S1

3,9 ⊕ S1
1,9 · S1

2,9 ⊕ S1
3,9 ⊕ S1

1,9

⊕ S1
2,27 · S1

3,27 ⊕ S1
1,27 · S1

2,27 ⊕ S1
3,27 ⊕ S1

1,27

⊕ S2
2,8 · S2

3,8 ⊕ S2
1,8 · S2

2,8 ⊕ S2
3,8 ⊕ S2

1,8

⊕ S2
0,1 · S2

1,1 ⊕ S2
0,1 ⊕ S2

1,1

⊕ S2
2,1 · S2

3,1 ⊕ S2
2,1

⊕ S2
2,0 · S2

3,0

⊕ S3
2,13 · S3

3,13

The right-hand side of the above equation can be transformed into its disjoint
quadratic form with the method presented in Sect. 3.

S0
2,28 · S0

3,28 ⊕ S0
1,28 · S0

2,28 ⊕ S0
3,28 ⊕ S0

1,28

⊕ S1
2,9 · S1

3,9 ⊕ S1
1,9 · S1

2,9 ⊕ S1
3,9 ⊕ S1

1,9
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⊕ S1
2,27 · S1

3,27 ⊕ S1
1,27 · S1

2,27 ⊕ S1
3,27 ⊕ S1

1,27

⊕ S2
2,8 · S2

3,8 ⊕ S2
1,8 · S2

2,8 ⊕ S2
3,8 ⊕ S2

1,8

⊕ S2
0,1 · S2

1,1 ⊕ S2
0,1 ⊕ S2

1,1

⊕ S2
2,1 · S2

3,1 ⊕ S2
2,1

⊕ S2
2,0 · S2

3,0

⊕ S3
2,13 · S3

3,13

= (S0
2,28 ⊕ 1)(S0

1,28 ⊕ S0
3,28)

⊕ (S1
2,9 ⊕ 1)(S1

1,9 ⊕ S1
3,9)

⊕ (S1
2,27 ⊕ 1)(S1

1,27 ⊕ S1
3,27)

⊕ (S2
2,8 ⊕ 1)(S2

1,8 ⊕ S2
3,8)

⊕ (S2
0,1 ⊕ 1)(S2

1,1 ⊕ 1)

⊕ S2
2,1(S

2
3,1 ⊕ 1)

⊕ S2
2,0 · S2

3,0

⊕ S3
2,13 · S3

3,13 ⊕ 1

Therefore, the correlation of C0
28 ⊕ C1

27 ⊕ C1
9 ⊕ C1

1 ⊕ C2
14 ⊕ C2

8 ⊕ C2
1 ⊕ C2

0 ⊕ C3
13

is −2−8. Similarly, we can compute the correlations of the trails of MORUS-640,
MiniMORUS-1280, and MORUS-1280.

Before going any further, we would like to give some insight into the trails of
MiniMORUS to show how the linear approximations covering different parts of
the cipher eventually eliminate all internal variables, leading to approximations
involving only ciphertext variables. The following discussion is similar to the
Sect. 4 of [2]. Several fragments are common between [2] and ours. We recommend
the reader to review the Fig. 2 of [2] before reading the following part.

We can use the variables of Ct to approximate the variables of St+1
0 , denoted

by Ct → St+1
0 . At the same time, Ct+1, St+1

0 , St+2
1 → St+1

4 . These approxima-
tions are visualized in Fig. 7a and b, Note that two AND operations are involved
in Fig. 7a, in which one is approximated to S3 and the other is approximated
to S1. This seems to require weight 2. This trail fragment is the same as one of
the fragments in [2], and [2] explains that there is another way of approximating
those two AND operations: one is approximated to S3 ⊕ S2 and the other is
approximated to S2 ⊕ S1. Two ways of the approximation form a hull effect,
which makes its weight 1.

Figure 7b was also used in [2], which involves two AND operations. Those
AND operations take the same input variables, S2 and S3. Hence those two
deterministically cancel each other, which makes the weight of this fragment 0.

Basically, by combining the fragments in Fig. 7a to d, 1 bit of St+1
4 is approx-

imated from the ciphertext bits. We do the same to approximate 1 bit of St+2
4

by sliding the steps by 1. Figure 7e to h are for this approximation. Hence by
removing the step indices, Fig. 7e to h are exact copies of Fig. 7a to d.
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∧

C

M

≪ b0

∧

M

≪ b1

∧

M

≪ b2

∧

M

≪ b3

∧

≪ b4

∧

S0

S1

S2

S3

S4

(a) Ct → St+1
0 (weight is 1)

∧

C

M

≪ b0

∧

M

≪ b1

∧

M

≪ b2

∧

M

≪ b3

∧

≪ b4

∧

S0

S1

S2

S3

S4

(b) Ct+1, St+1
0 , St+2

1 → St+1
4 (weight is 0)

∧

C

M

≪ b0

∧

M

≪ b1

∧

M

≪ b2

∧

M

≪ b3

∧

≪ b4

∧

S0

S1

S2

S3

S4

(c) Ct+1 → St+2
0 (weight is 1)

∧

C

M

≪ b0

∧

M

≪ b1

∧

M

≪ b2

∧

M

≪ b3

∧

≪ b4

∧

S0

S1

S2

S3

S4

(d) Ct+2, St+2
0 → St+2

1 (weight is 1)

∧

C

M

≪ b0

∧

M

≪ b1

∧

M

≪ b2

∧

M

≪ b3

∧

≪ b4

∧

S0

S1

S2

S3

S4

(e) Ct+1 → St+2
0 (weight is 1)

∧

C

M

≪ b0
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M
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∧

M

≪ b2

∧

M
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∧
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∧

S0

S1

S2

S3

S4

(f) Ct+2, St+2
0 , St+3

1 → St+2
4 (weight is 0)
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M
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M

≪ b1

∧

M

≪ b2
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M

≪ b3
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(g) Ct+2 → St+3
0 (weight is 1)
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S1
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(h) Ct+3, St+3
0 → St+3

1 (weight is 1)

∧
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M

≪ b0
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M

≪ b1
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≪ b2
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M

≪ b3
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(i) St+2
0 , St+2

1 , St+2
2 → St+1

4 , St+2
4 (weight is 1)
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≪ b2

∧

M

≪ b3

∧

≪ b4

∧

S0

S1

S2

S3

S4

(j) Ct+2 → St+2
0 , St+2

1 , St+2
2 (weight is 1)

Fig. 7. MiniMORUS linear trail fragments
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Note that the linear trail up to here, which has weight 6, is identical with
[2]. Ashur et al. [2] iterated this approximation twice and added 4 more approx-
imations, which makes the weight of their trail (6 × 2) + 4 = 16. The core of our
improvement lies in the detection of a rather complicated new approximation
that approximates St+1

4 and St+2
4 by ciphertext bits only with weight 2. The new

approximations are shown in Fig. 7i to j, in which St+1
4 and St+2

4 are approxi-
mated to the 3-bit sum of St+2

0 , St+2
1 and St+2

2 , and Ct+2 are also approximated
to the 3-bit sum of St+2

0 , St+2
1 , St+2

2 . The previous work [2] found the attack by
hand thus the most of the approximations are simple such that 2 internal state
bits are approximated to 1-bit of another state. thanks to the generic model in
Sect. 4, we could detect this efficient approximation

We stress that the trail fragments are only used to shed insight on the full
trails, and the verification of these trail fragments are only used to provided
additional evidence of the validity of the analysis. We never use trail fragments
to compute the correlation. The correlation must be computed on the full trail as
whole.

Remark. we would like to make a remark on the effect of the in-word rota-
tion (≪w) offsets (bi, i ∈ {0, · · · , 4}) of MORUS on the linear trails we find.
In [2], Ashur et al. assumes that the trails work for any choice of bi without
any concrete discussion of the actual effect. We randomly choose 50 different
(b0, b1, b2, b3, b4)’s and generate 50 MILP models to search for their trails. We
do observe slight variance of the correlations of the trails we find for differ-
ent choices of (b0, b1, b2, b3, b4). For example, in the case of (b0, b1, b2, b3, b4) =
(16, 31, 23, 3, 17), we identify a trail of MORUS-640 with correlation 2−34, mean-
ing that under our current cryptanalysis technique, this version is weaker than
the original design.

5.1 Distinguishing Attack and Message-Recovery Attack on MORUS

So far, for the sake of simplicity, we have assumed that all message blocks are
zero. As already pointed out in [2], message variables only contribute linearly to
the trails.

Therefore, under the condition that the involved message bits are kept con-
stants, the trails we identified can be employed to mount two types of attacks.
The first one is a (partially) known-plaintext distinguishing attack, where a large
number of partially known plaintexts are encrypted, and then we can detect
the bias from the ciphertexts. The second one is a message-recovery attack,
in which we can recover some unknown plaintext bits if the same plaintext is
encrypted for many times. The scenario in which the message-recovery attack
can be applied does happen in practice. For example, the same message can
be encrypted with different IVs and potentially different keys in the so-called
broadcast setting [1,20].

For the message-recovery attacks, we rely on the approach proposed by Mat-
sui [21]. For example, if the correlation of the trail employed in our message-
recovery attack is 2ρ, we would encrypt a (unknown) message approximately n
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times with different nonces or keys. Let Tb be the number of encryptions such
that the linear combination (derived from the trail) of the ciphertext bits is equal
to b ∈ {0, 1}. Then we guess the value of the linear combination L(M) of the
message M according to the following rule:

L(M) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if T0 > T1 and ρ > 0,

1, if T0 > T1 and ρ < 0,

1, if T1 > T0 and ρ > 0,

0, if T1 > T0 and ρ < 0.

The success probability of the procedure can be estimated as
∫ ∞

−2
√

n|ρ|
1√
2π

e−x2/2dx, which would be greater than 84.1% if we set n > 1
4 |ρ|−2 [21].

Therefore, if the correlation of the underlying approximation is 2−c, we need
about 22c encryptions to mount the attack.

On the Data Complexity. As pointed out by Ashur et al. [2], the data
complexities of the attacks could be slightly lowered by using multiple linear
trails [6,15,16]. Actually, given any trail found in this paper, we can derive
another trail with the same correlation by rotating the masks within words by
a common offset. If we assume independency, we could run q/4 (the word size)
copies of the trail in parallel on the same encrypted blocks, which would save a
factor of 25 on the data complexity for MORUS-640, and 26 for MORUS-1280.

5.2 Verification of the Attacks

To confirm the validity of our analysis, we experimentally verify the trails or
trail fragments. For MiniMORUS, we are able to fully verify the correlations.
Experiments show that the weights of the correlations of

C0
28 ⊕ C1

27 ⊕ C1
9 ⊕ C1

1 ⊕ C2
14 ⊕ C2

8 ⊕ C2
1 ⊕ C2

0 ⊕ C3
13

and
C0

16 ⊕ C1
62 ⊕ C1

29 ⊕ C1
20 ⊕ C2

33 ⊕ C2
29 ⊕ C2

11 ⊕ C2
2 ⊕ C3

15

for MiniMORUS-640 and MiniMORUS-1280 are 7.7919 and 8.1528 respectively,
which are quite close to 8, the theoretically predicted correlation.

For MORUS, the correlation of the best trails we find is 2−38, indicating
that about 276 encryptions have to be performed to verify the full trail, which
is out of our reach. Following the approach presented in [2], we decompose the
full trail into trail fragments according to Fig. 7, and every fragment is verified
independently.

For MORUS-640 and MORUS-1280, the full trails can be divided into five
trail fragments shown in Tables 7 and 8, respectively. We independently verify
these trail fragments and the results are given in Fig. 8a and b. Again, the results
fit the theoretical analysis very well.
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Table 7. The five trail fragments of MORUS-640

Trail fragment Weight

χ1 C0
{124,92,60,28} ⊕ C1

{97,65,33,1} = S1
4,{97,65,33,1} ⊕ S2

1,{96,64,32,0} 7

χ2 C1
{123,91,59,27} ⊕ C2

{96,64,32,0} = S2
1,{96,64,32,0} 8

χ3 C2
{104,72,40,8} ⊕ C3

{109,77,45,13} = S3
1,{109,77,45,13} 8

χ4 C1
{105,73,41,9} ⊕ C2

{110,78,46,14} = S3
1,{109,77,45,13} ⊕ S2

4,{110,78,46,14} 7

χ5 C2
{97,65,33,1} = S1

4,{97,65,33,1} ⊕ S2
4,{110,78,46,14} 8

Table 8. The five trail fragments of MORUS-1280

Trail fragment Weight

χ1 C0
{208,144,80,16} ⊕ C1

{221,157,93,29} = S1
4,{221,157,93,29} ⊕ S2

1,{203,139,75,11} 7

χ2 C1
{254,190,126,62} ⊕ C2

{203,139,75,11} = S2
1,{203,139,75,11} 8

χ3 C2
{194,130,66,2} ⊕ C3

{207,143,79,15} = S3
1,{207,143,79,15} 8

χ4 C1
{212,148,84,20} ⊕ C2

{225,161,97,33} = S3
1,{207,143,79,15} ⊕ S2

4,{225,161,97,33} 7

χ5 C2
{221,157,93,29} = S1

4,{221,157,93,29} ⊕ S2
4,{225,161,97,33} 8
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Fig. 8. Experimental verification of the trail fragments of MORUS-640 and MORUS-
1280

6 Searching for Trails with Smaller Spans

In [2], it is said that ciphertext correlations like those presented in previous
sections can be exploited only when the same message is encrypted enough times:

“... they can be leveraged to mount an attack in the broadcast setting,
where the same message is encrypted multiple times with different IVs and
potentially different keys [20]. In particular, the broadcast setting appears
in practice in man-in-the-browser attacks against HTTPS connections fol-
lowing the BEAST model [10]. ”
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However, we find that this strong condition can be relaxed. Let us recall Fig. 4,
and consider a trail with a 4-block span. If we encrypt a set of n-block (n > 4)
messages sharing a common 4-block prefix M0 ‖ M1 ‖ M2 ‖ M3, then our anal-
ysis presented in previous sections is completely irrelevant with those message
blocks beyond this common prefix. In fact, if we encrypt M0 ‖ M1 ‖ M2 ‖ M3

and M0 ‖ M1 ‖ M2 ‖ M3 ‖ · · · ‖ Mn−1 with the same key, nonce, and associated
data, the same intermediate values and ciphertexts will be produced within the
4-block span. Therefore, we can draw the conclusion that the correlations involv-
ing k-block ciphertext can be leveraged to mount an attack if enough messages
with a k-block common prefix are encrypted with different IV ‖ key.

Note that the above condition is strictly weaker than that presented in ASI-
ACRYPT 2018 [2], and this setting does occur in practice. For example, when
ARP packets are encrypted in WPA2-AES enabled WIFI networks, they share a
16-byte common prefix (8-byte LLC header and 8-byte ARP request header) [9].
This 16-byte common prefix extends to 22 bytes if the attacker is able to con-
trol the following 6-byte MAC address, which is not difficult to carry out [32].
Therefore, trails with smaller spans are more preferable, which motivates us to
search for linear trails with smaller spans. The best trail with respect to the
number of ciphertext blocks involved (span) we find is a trail of MORUS-640
with correlation 2−79, whose span is 3 (see Table 9). However, the correlation is
too low to be used in an attack.

The discussion of this section also indicates that the trails we find are superior
to the ones presented in [2] in terms of both correlation and span. Moreover,
since given a trail found in this paper, we can derive another trail with the same
correlation by rotationally shift the masks within words by a common offset,
we can identify the shifting offset minimizing the number of trailing zeros in
the masks of the last block, which may further reduce the size of the common

Table 9. A linear trail of MORUS-640 with correlation 2−79 whose span is 3

Round Linear masks

0

α0 00002520*4 00002520*4 00002020*4 00002520*4 00000000*4
0004a400*4 00000000*4 00002020*4 00000000*4 00000000*4
0004a400*4 00000000*4 00002020*4 00000000*4 00000000*4
00048420*4 00000000*4 00101000*4 00000020*4 00000020*4
00048400*4 00000020*4 00101000*4 08000000*4 00000020*4

β0 00048420*4 00000000*4 00101020*4 08000000*4 00040000*4
γ0 00002520*4 00002520*4 00002020*4 00002520*4 00000000*4
λ0 00002520*4

1

α1 00009420*4 00041000*4 00140020*4 08041000*4 00040000*4
00128400*4 00040000*4 00140400*4 08048420*4 00040000*4
00128400*4 00020000*4 00100400*4 08008420*4 00000000*4
00028000*4 00020000*4 08020000*4 08008020*4 00000000*4
08028020*4 08028020*4 08020000*4 08020020*4 00000000*4

β1 08028020*4 08028020*4 08020000*4 08020020*4 00000000*4
γ1 00041000*4 00041000*4 00041000*4 00041000*4 00000000*4
λ1 00041000*4

2
γ2 08028020*4 08028020*4 08020000*4 08020020*4 00000000*4
λ2 08028020*4
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prefix. For example, by shifting the trail of MORUS-640-1280 shown in Table 6,
we obtain a trail shown in Table 10 requiring only 481-bit common prefix when
used in an attack.

To take it one step further, the positions of the identical message blocks
required in the attack do not need to be located at the beginning. A common
suffix works as well as a common prefix, and any four consecutive common blocks
work.

Table 10. A linear trail of MORUS-640 with correlation 2−38

Round Linear masks

0

α0 00004000*4 00004000*4 00000000*4 00004000*4 00000000*4
00080000*4 00000000*4 00000000*4 00000000*4 00000000*4
00080000*4 00000000*4 00000000*4 00000000*4 00000000*4
00080000*4 00000000*4 00000000*4 00000000*4 00000000*4
00080000*4 00000000*4 00000000*4 00000000*4 00000000*4

β0 00080000*4 00000000*4 00000000*4 00000000*4 00000000*4
γ0 00004000*4 00004000*4 00000000*4 00004000*4 00000000*4
λ0 00004000*4

1

α1 08002000*4 08082000*4 00000000*4 08082000*4 00000000*4
00040001*4 00080000*4 00000000*4 00080000*4 00000000*4
00040001*4 00040000*4 00000000*4 00000000*4 00080000*4
00040001*4 00040000*4 00000000*4 00000000*4 00080000*4
00040001*4 00040000*4 00000000*4 00000000*4 00080000*4

β1 000c0001*4 000c0000*4 00080000*4 00000000*4 00000001*4
γ1 08082000*4 08082000*4 00000000*4 08082000*4 00000000*4
λ1 08082000*4

2

α2 04000000*4 04000001*4 00000000*4 04000000*4 00000001*4
80000000*4 00000001*4 00000000*4 00000000*4 00000001*4
80000000*4 80000000*4 00000000*4 00000000*4 00000000*4
80000000*4 80000000*4 00000000*4 00000000*4 00000000*4
80000000*4 80000000*4 00000000*4 00000000*4 00000000*4

β2 80000000*4 80000000*4 00000000*4 00000000*4 00000000*4
γ2 040c0001*4 040c0001*4 00080000*4 04000000*4 00000000*4
λ2 040c0001*4

3
γ3 80000000*4 80000000*4 00000000*4 00000000*4 00000000*4
λ3 80000000*4

7 Conclusion and Open Problems

In this work, we propose a polynomial-time algorithm for computing the cor-
relation of a quadratic Boolean function based on its disjoint quadratic form.
This method is employed to determine the correlations of the linear trails of
MiniMORUS and MORUS we find by solving MILP problems derived from a
generic helper model for MORUS-like key-stream generators.

As a result, a set of trails involving four blocks of ciphertext with correla-
tion 2−38 is identified for all versions of full MORUS, which leads to the first
distinguishing and message-recovery attacks on MORUS-640-128 and MORUS-
1280-128. We also observe that the condition specified in [2] to launch the attacks
can be relaxed, and this relaxation shows that our trails are superior to those
presented in previous work not only in terms of correlation, but also in terms of
the numbers of ciphertext blocks involved.
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At this point, it is natural to ask some open questions. Firstly, is it possible
to compute the correlation of Boolean functions with degrees higher than two
efficiently? We believe that an efficient algorithm solving this problem would
have a significant effect for cryptanalysis. Secondly, can we find good trails for
MORUS which are not rotationally invariant?
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Abstract. The iterated Even-Mansour construction is an elegant con-
struction that idealizes block cipher designs such as the AES. In this work
we focus on the simplest variant, the 2-round Even-Mansour construc-
tion with a single key. This is the most minimal construction that offers
security beyond the birthday bound: there is a security proof up to 22n/3

evaluations of the underlying permutations and encryption, and the best
known attacks have a complexity of roughly 2n/n operations.

We show that attacking this scheme with block size n is related to
the 3-XOR problem with element size � = 2n, an important algorith-
mic problem that has been studied since the nineties. In particular the
3-XOR problem is known to require at least 2�/3 queries, and the best
known algorithms require around 2�/2/� operations: this roughly matches
the known bounds for the 2-round Even-Mansour scheme.

Using this link we describe new attacks against the 2-round Even-
Mansour scheme. In particular, we obtain the first algorithms where
both the data and the memory complexity are significantly lower than
2n. From a practical standpoint, previous works with a data and/or
memory complexity close to 2n are unlikely to be more efficient than
a simple brute-force search over the key. Our best algorithm requires
just λn known plaintext/ciphertext pairs, for some constant 0 < λ < 1,
2n/λn time, and 2λn memory. For instance, with n = 64 and λ = 1/2,
the memory requirement is practical, and we gain a factor 32 over brute-
force search. We also describe an algorithm with asymptotic complex-
ity O(2n ln2 n/n2), improving the previous asymptotic complexity of
O(2n/n), using a variant of the 3-SUM algorithm of Baran, Demaine,
and Pǎtraşcu.

Keywords: Even-Mansour · Cryptanalysis · 3-XOR

1 Introduction

The Even-Mansour construction [12] is a very simple and elegant way to design a
block cipher E from a public permutation P , defined as Ek(x) = P (x⊕k1)⊕k2.
In the random permutation model, this construction has been proven secure as
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long as D · Q ≤ 2n, with n the block size, D the data complexity (online queries
to the encryption function) and Q the number of evaluation of the permutation
(offline queries). In particular, the time T needed by an attacker is lower bounded
by Q, therefore attacks must satisfy D ·T ≥ 2n. We also have a number of attacks
matching this bound, such as [7] with chosen plaintext or [11] using just known
plaintext: when balancing online and offline queries, these attacks require only
2n/2 queries and 2n/2 computations (including all the computations required
by the attack, in addition to permutation queries). A single-key version of the
Even-Mansour construction has also been proposed with the same security [10],
defined as Ek(x) = P (x ⊕ k) ⊕ k.

More recently, this construction was generalized to the iterated Even-
Mansour scheme, also called key-alternating cipher [3]. The r-round construction
uses r independent permutations and r + 1 keys, and can be considered as an
idealization of concrete SPN ciphers:

Ek(x) = Pr

(
· · · P2

(
P1(x ⊕ k0) ⊕ k1

) · · ·
)

⊕ kr

This construction was first proven to be secure up to 22n/3 queries for r ≥ 2 [3],
and later improved to 2nr/(r+1) queries [6,17].

As in the single-round case, the requirement to have independent keys and
independent permutations can be relaxed without reducing the security. In par-
ticular, two single-key variants of the 2-round Even-Mansour have been pro-
posed [5]:

EMIP : Ek(x) = P2

(
P1(x ⊕ k) ⊕ k

) ⊕ k

EMSP : Ek(x) = P
(
P (x ⊕ k) ⊕ π(k)

) ⊕ k,with π a linear orthomorphism.

The EMIP construction (Fig. 1) uses two independent permutations, while the
EMSP construction uses a single permutation, and a fixed linear orthomorphism
(a linear operation such that both x �→ π(x) and x �→ x ⊕ π(x) are invertible,
such as multiplication by a constant in a field).

There are simple key-recovery attacks matching the 2nr/(r+1) bound on the
number of queries given in [3], but even with r = 2 the best known attacks
require about 2n/n operations (in addition to the queries). Attacks against the
3-round Even-Mansour construction have also been given in [8], with complexity
close to 2n/n, and no attack better than 2n is known for r > 3.

In this paper we focus on the most simple instances, the 2-round variants of
EMIP and EMSP, collectively denoted as 2EM, and we look for better attacks
than what is currently known, with a focus on low memory and low data.

Previous Works. The first non-trivial attack against an iterated Even-
Mansour construction was described by Nikolic, Wang, and Wu in [19] against
the two-round EMIP construction P2

(
P1(x ⊕ k) ⊕ k

) ⊕ k, using multi-collisions.
The main idea is to consider the function φ : u �→ P1(u) ⊕ u, and to evaluate it
on a large number of points, so as to identify a particular value v that occurs
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Fig. 1. Single key two-round Even-Mansour scheme (2EM) EMIP variant

more frequently than others (at least t times). Then, for each known plaintext
pair

(
x,E(x)

)
, the attacker assumes that φ(x⊕k) = v, i.e. P1(x⊕k)⊕k = x⊕v;

this gives a key candidate P2(x ⊕ v) ⊕ E(x). Since the assumption holds for at
least t values of x, the expected complexity is 2n/t.

According to the asymptotic analysis performed in [18], the optimal choice is
to set t = Θ(n/ ln n). A value with this number of repetitions is expected after
evaluating φ roughly 2n/n times, so that the total complexity of this attack is
2n ln n/n, asymptotically smaller than 2n.

This attack was later improved by Dinur, Dunkelman, Keller and Shamir [8].
In particular, they describe a variant with lower online complexity using Nv

different values vi that appear t times each, with a smaller value of t. Each online
pair

(
x,E(x)

)
is then used to make a key guess with every vi, which reduces the

data complexity to 2n/Nvt. They didn’t evaluate this strategy asymptotically,
but they computed that Nv = 2nμte−t/t! multi-collisions should be found, when
evaluating a fraction μ of the domain. In particular, with μ = 1/n and t =
o(n/ ln n), we have an upper bound on the data complexity: 2n/Nv ≤ n2t =
exp(2t ln n), which is asymptotically smaller than 2λn for any λ > 0. The time
complexity is still 2n/t. Variants of the attack that can applied to Even-Mansour
schemes with a linear key-schedule, such as EMSP are also given in [9].

Dinur et al. also proposed attacks against a more general construction
with 3 independent keys, using multi-collisions to find differential properties
of the random permutation. However this attack only reaches time complexity
O(2n/

√
n/ ln n).

All those attacks require a large pre-processing step to discover multi-
collisions: a t-collision is only expected after 2n(t−1)/t evaluations of φ. More-
over, the best known algorithm to locate multi-collisions requires a memory of
size 2n(t−2)/t [16]. Therefore, multi-collision based techniques intrinsically require
time and memory close to 2n (asymptotically, we need to have t approaching
infinity in order to gain a non-constant advantage over brute-force attacks).

In the journal version of their paper, Dinur et al. show an interesting side-
result on EMIP. They describe an alternative attack with low memory using
linear algebra [9, Section 4.2]. In this attack, they evaluate φ : u �→ P1(u) ⊕ u on
a small set of λn values (0 < λ < 1/3), and they look for linear relations that
are satisfied by all φ(u) in the set: L(φ(u)) = 0 with n−λn equations. Then, for
a given plaintext pair

(
x,E(x)

)
, if x⊕k is in the set, this implies linear relations

on z = k⊕P1(x⊕k), the input of P2: L(z) = L(x). Finally, using structures for x
and z, a match can be identified using linear relations on the key (following from
the assumption that x⊕k is in the set), using k = P2(z)⊕E(x). The full details
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of the attack are given in [9]. This attack only requires a memory of size 2λn to
store the structures, but it requires 2n/λn chosen plaintext pairs. However, this
approach is not applicable to 3EM or 2EM with independent keys, which are
the main focus of their work.

More recently, Isobe and Shibutani [14] introduced Meet-in-the-Middle tech-
niques to attack the 2-round Even-Mansour construction. The basic variant of
their attack uses a function f depending on a bits of the key kf (with a in
the order of lnn), and a function g depending on the remaining n − a bits kg.
Furthermore, they use a starting point such that a output bits of f are actually
independent of the key kf . This allows them to do the matching over P2 using
just kg. The attack requires time and data 2n−a, with chosen plaintexts.

The function f is such that it is equivalent to looking for partial multi-
collisions in φ while imposing a structure on the inputs: they fix n−a bits of u and
hope that a outputs bits of φ(u) will be independent of the remaining a bits of u.
For this to work the parameter a must satisfy a · (2a −1) ≤ n−a, and Isobe and
Shibutani only give concrete parameters for some values of n. Asymptotically,
the maximal value of a can be found by solving a · (2a −1) = n−a; since a ≪ n
and 1 ≪ 2a, we have a ≈ W (n ln 2)/ ln 2 ≈ log n − log log n, using the Lambert
W function.

They also describe a low data-complexity variant of the attack, where the
starting point is dynamically chosen so that a+ d bits of the plaintext are fixed.
This reduces the data complexity to 2n−d−a, while the time complexity is still
2n−a. The parameters are more constrained and must satisfy a · 2a + d ≤ n − a.
If we want to achieve a data complexity of 2λn for a constant 0 < λ < 1, we can
set d = n − λn, and a = log λ + log n − log log n. This gives a time complexity of
2n log n/λn.

Finally, they give a time-optimized attack where b = a + c output bits of f
are independent of kf (instead of just a). This reduces the number of queries
and memory needed for the matching to 2n−b, but the attack still requires 2n−a

memory accesses and chosen plaintext. The parameters must satisfy b·2a+b−a ≤
n − b, but the authors only give concrete values for some choices of n, and no
asymptotic analysis. However, we can observe that we must have b · 2a ≤ n; in
particular, if we want an attack with an advantage that is not asymptotically
bounded, we need to have a approaching infinity and therefore b/n approaching
zero (this attack cannot reduce the memory to 2λn with λ < 1). In particular,
the optimal parameters satisfy b · 2a + b − a = n − b, with b ≪ n and a ≪ 2a,
hence b · 2a ≈ n. Therefore we have a complexity of roughly 2n−b in queries and
memory, and b2n/n in time and data, with log n ≤ b ≪ n.

All those attacks are summarized in Tables 1 and 2. We point out that the
complexity reported in [14] is lower than listed here, because the authors assume
that a memory access to a large table is significantly cheaper than the evaluation
of the public permutations Pi. Given that a public permutation can obviously be
implemented with a table lookup if memory is fast and cheap, we assume that a
memory access to a table of size roughly 2n cannot be faster than the evaluation
of the Pi permutations.
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Table 1. Comparison of attacks against 2EM. Asymptotic complexity, up to constants.
“Data” denotes encryption queries, while “Queries” denotes calls to the public permu-
tations Pi. 0 < λ < 1; log n ≤ β ≪ n; KP: Known plaintext; CP: Chosen plaintext.

Ref Data Queries Time Memory Comment

[19] 2n ln n/n KP 2n ln n/n 2n ln n/n 2n ln n/n Multi-collisions

[8] 2n
√

ln n/n CP 2n
√

ln n/n 2n
√

ln n/n 2n
√

ln n/n Diff. m-c (indep. keys)

[8] 2λn KP 2n ln n/n 2n ln n/n 2n ln n/n Multi-collisions

[9] 2n/λn CP 2n/λn 2n/λn 2λn Linear algebra

[14] 2n ln n/n CP 2n ln n/n 2n ln n/n 2n ln n/n MitM

2λn CP 2n ln n/n 2n ln n/n 2n ln n/n MitM

2nβ/n CP 2n/2β 2nβ/n 2n/2β MitM

Section 3.3 n KP 2n/
√

n 2n/
√

n 2n/
√

n 3XOR [15]

Section 4.1 2d KP 2n−d/2 2n/n 2n−d/2 Clamping + 3XOR [4]

Section 4.3 2d KP 2n−d/2 2n ln2 n/n2 2n−d/2 Clamping + 3XOR [1]

Section 4.4 λn KP 2n/λn 2n/λn 2λn Low Data Filter

Our Results. The main results of the paper are the three key-recovery attacks
on EMIP given in Sect. 4 whose complexities are summarized in Tables 1 and 2.
To the best of our knowledge these are the first attacks on EMIP to significantly
reduce simultaneously the data and the memory complexities below 2n. The
first attack, Sect. 4.1, shows that we can achieve the best computational time
complexity known so far, that is O(2n/n), while using just as much data and
queries as the best known distinguisher which is optimal in the balanced case
(22n/3 calls to E,P1 and P2) with a memory usage not exceeding the number
of queries. The next attack in Sect. 4.3 works exactly the same way only it
is using another generic 3-XOR algorithm which improves the asymptotic time
complexity to O(2n ln2 n/n2) that beats the best one known so far. However this
3-XOR algorithm is believed to be impractical for realistic block sizes, notably
for n = 64. And the third attack in Sect. 4.4 uses very low data, λn, and possibly
low memory, 2λn, for some λ < 1 while keeping a competitive asymptotic time
complexity of O(2n/λn).

We also present some security reduction notably showing that adding a linear
key schedule does not protect against generic attacks on EMIP. This effectively
extends the scope of our attacks in particular showing they can also be applied
to the EMSP variant. We also explain the link between the 3-XOR problem and
the key-recovery attacks on EMIP showing how one can help us solve the other
which justifies our approach. Then we exhibit a symmetry in the Even-Mansour
construction that shows how, in the chosen ciphertext attack (CPA) model, an
attacker can always swap the number of queries he is making to E, P1 and P2

to optimize on the most available resources. This implicitly extends these and
previous attacks to adapt to many different data and query complexity profiles.

Lastly we generalize our approach to show that a single key r rounds Even-
Mansour scheme can be rewritten as a structured (r + 1)-XOR problem with
words of size rn. Interestingly both the single key r rounds Even-Mansour and
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Table 2. Comparison of attacks against 2EM with n = 64. The complexity unit is
one evaluation of the cipher; we assume that computing P1 or P2 costs 1/2, and that
a memory access to a large table also costs 1/2. The time complexity also includes the
time necessary to generate the data.

Ref Data Queries Time Memory Comment

[19] 258.7 KP 260.5 260.9 260 Multi-collisions

[8] 245 KP 260.7 260.7 260 Multi-collisions

[9] 260 CP 259 260.6 216 Linear algebra

[14] 260 CP 260 261.3 260 MitM

28 CP 262 262.6 262 MitM

261 CP 257 261.7 258 MitM

Section 3.3 26 KP 261 262 261 3XOR

Section 4.1 242 KP 243 258 242 Clamping + 3XOR [4], bal. case

214 KP 257 258.6 257 optim. data

Section 4.2 235 CP 257 258.6 235 optim. memory & swap E ↔ P1

Section 4.3 242 KP 243 N.A N.A Clamping + 3XOR [1], bal. case

Section 4.4 25 KP 259 260 232 Low Data Filter λ = 1/2

24 KP 260 261 216 λ = 1/4

the (r + 1)-XOR problem with words of size rn have a simple information the-
oretic solver using 2

r·n
r+1 queries though solving these uses more computations

than a brute-force solution for r ≥ 4.

Practical Considerations. In a practical setting, the data complexity and the
memory complexity are important considerations. In particular, an attack with
complexity 2n/n is unlikely to be more efficient than a brute-force attack if it
requires almost 2n data, or almost 2n memory. As mentioned above, some of the
previous attacks can reduce the data complexity to 2λn for an arbitrary λ > 0,
and the attack from [9, Section 4.2] can reduce the memory to 2λn, but so far
none of them can simultaneously reduce the data and memory complexity below
2λn for λ < 1.

Besides, multi-collision based attacks can use a sequential memory (such as
a hard drive) and sort values to locate collisions while the Meet-in-the-Middle
attacks require random access memory, with Θ(2n lnn/n) accesses to a table of
size Θ(2n ln n/n).

On the other hand the linear algebra techniques we use in our attacks will
require algorithmic tricks very close to what was done by Bouillaguet, Delaplace
and Fouque [4] for the 3-XOR problem. In particular the values we deal with
are sufficiently random to be sorted linearly and the right matrix multiplication
in GF(2) LM for an exponentially large matrix L can be computed with a
number of operations linear in the size of L. Many constant time optimizations
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are therefore omitted in this work which justify that right multiplications, sorting
and merging two big lists L1 and L2 take time and space O(|L1| + |L2|). This is
consistent with previous cryptanalysis on EMIP.

For the cost of queries to the oracles E, P1 and P2 we mainly follow the
convention established by Dinur et al. [9] which states that an online query to
E costs 1 unit of computation implying that P1 and P2 cost 1/2. The main
advantage is that it makes it easy to compare with the brute-force solution
that would use 2n computations. The disadvantage is that it makes it hard to
combine with the computations used for simple operations: an evaluation of a
cryptographically secure permutation should cost more than a XOR operation.

We give concrete complexity values for n = 64 in Table 2 with the assumption
that a combination of some linear time operations does not exceed the cost of
computing a permutation that is 1/2 time unit. Concretely, iteratively right
multiplying, sorting and merging two lists L1, L2 costs |L1|/2 + |L2|/2. We
believe this makes an honest comparison with previous works though they may
use other assumptions.

Organization of the Paper. First, in Sect. 2, we show some reductions that
extend our results and justify our approach. Then in Sect. 3 we take a close look
on previous works done on the 3-XOR Problem to show how it can help the
cryptanalysis of EMIP. Lastly, in Sect. 4, we devise three dedicated algorithms
for EMIP each having their own particular complexity trade-off. Also we extend
our approach in Sect. 5 to the r rounds iterated Even-Mansour construction.

Notations. We denote the block size of the Even-Mansour scheme (i.e. the
width of the public permutations) as n, and the concatenation of n-bit blocks x
and y as x‖y. When x and y fit together in one block, we use x|y to denote their
concatenation. We use L[i] to denote element i of list L, x[i] to denote bit i of x,
x[i:j] to denote bits i to j − 1, 0 to denote a zero GF(2) matrix and I to denote
an identity GF(2) matrix. When L is a list of � n-bit values, we identify it with
a � × n matrix where the elements of L are the rows of the matrix. Finally, we
use a curly brace for systems of equations.

2 Security Reductions

We start with some general observations about the security of iterated Even-
Mansour schemes. In particular, we show that we can focus on the EMIP con-
struction without loss of generality, how to reduce the security of this construc-
tion to an instance of the 3-XOR problem, and how to reorder the oracles to
achieve many different trade-offs.

Some previous works already implicitly took advantage of such reductions.
For example Isobe and Shibutani [14] realised that their recent attack on EMIP
is also applicable to EMSP and Dinur et al. [9] realised that they could reorder
the oracles for their cryptanalysis of reduced round LED. We formally show here
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that these tricks are in fact real security reductions and do not depend on the
approach used.

2.1 Removing the Key Schedule

There are several variants of single-key multiple-round Even-Mansour studied in
the literature. The most general form uses two independent permutations, and
an arbitrary key schedule (see Fig. 2):

Ek(x) = P2

(
P1(x ⊕ γ0(k)) ⊕ γ1(k)

) ⊕ γ2(k).

According to the analysis of [5], there is a class of good key schedules where the
γi’s are public linear bijective functions. In the following, we focus on this class
of key schedules, i.e. we assume that the γi ∈ GL(Fn

2 ). In order to simplify the
analysis, we reduce the security of this construction to the security of the EMIP
variant without a key schedule.

Fig. 2. Linear key-schedule 2-round Even-Mansour.

The main trick is to rewrite the addition of the subkey γi(k) as the application
of the inverse γ−1

i , the addition of k and the application of the forward γi:

x ⊕ γi(k) = γi

(
γ−1

i (x ⊕ γi(k))
)

= γi

(
γ−1

i (x) ⊕ k
)

which works thanks to γi being linear. Then we define E′, P ′
1, P

′
2 as follows:

P ′
1(x) = γ−1

1

(
P1(γ0(x))

)
P ′

2(x) = γ−1
2

(
P2(γ1(x))

)
E′(x) = γ−1

2

(
E(γ0(x))

)

Thanks to the previous relation, E′, P ′
1, P

′
2 is actually an instance of EMIP with

the same key k (see Fig. 3):

E′(x) = P ′
2

(
P ′

1(x ⊕ k) ⊕ k
) ⊕ k.

Therefore, any attack against EMIP can be used on E′, P ′
1, P

′
2, and break the

initial construction with a key schedule. In particular, a key-recovery attack
against EMIP will recover the key of the more general scheme of 2EM.

In the following we only consider the EMIP variant without a key schedule,
but thanks to this reduction our attacks can be applied to many other 2EM
variants, including the EMSP construction of [5].

Definition 1 (EMIP key recovery). Given oracle access to three permuta-
tions E,P1, P2 and their inverses, with the promise that there exist k such that
E(x) = P2

(
P1(x ⊕ k) ⊕ k

) ⊕ k, recover k.
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Fig. 3. Reduction of linear key schedule 2EM to EMIP.

2.2 Reduction to 3-XOR

Instead of directly focusing on a key-recovery attack, we focus on locating a
triplet of values x, y, z such that the encryption of x is evaluated with per-
mutation call P1(y) and P2(z). Formally, we say that x, y, z is a right triplet
when y = x ⊕ k and z = P1(y) ⊕ k. A right triplet corresponds to a sequence
of intermediate values in the Even-Mansour encryption, as shown in Fig. 4:(
x, y = x⊕k, P1(y), z = P1(y)⊕k, P2(z), E(x) = P2(z)⊕k

)
; we call this sequence

a path.

Fig. 4. A right triplet gives a path of EMIP

Since the permutations P1 and P2 are public, it is easy to compute a path
given the key. Recovering the key from a path is also easy (we have k = x ⊕ y),
but it is hard to identify a right triplet corresponding to a path without the key.
By definition a triplet is right when it follows the relation R defined as:

R(x, y, z) :=

⎧
⎪⎨
⎪⎩

x ⊕ y = k

P1(y) ⊕ z = k

P2(z) ⊕ E(x) = k

(1)

⇒
{

x ⊕ y = P1(y) ⊕ z

x ⊕ y = P2(z) ⊕ E(x)
(2)

Notice that we can’t directly observe (1) since we don’t know k but we can easily
verify the implied relation (2).
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We claim that if one takes a random triplet combination and observes that it
respects (2), then it is a right triplet with good probability. Indeed there are 2n

possible paths (one for every possible input x) implying as many right triplets
and 23n possible triplet combinations; thus a random triplet will be right with
probability 2−2n. Since (2) is a 2n-bit relation, a random but false triplet respects
(2) also with probability 2−2n. Therefore we can expect roughly as many right
triplets than false triplets that respect (2), thus the first one we find is right with
probability Ω(1). So from now on and for simplicity we will focus on filtering
and recovering a triplet that simply respects (2). This means that our algorithms
fails to recover the key on some instances, but they have a constant (non-zero)
probability of success. In order to improve the success probability arbitrarily
close to one, it is easy to test the triplets, and continue the attack until we find
a right triplet (alternatively, the whole attack can just be repeated).

In order to simplify the analysis, the condition (2) can be rewritten as:
{(

x
) ⊕ (

y ⊕ P1(y)
) ⊕ (

z
)

= 0(
x ⊕ E(x)

) ⊕ (
y

) ⊕ (
P2(z)

)
= 0

Therefore, finding a triplet satisfying (2) is equivalent to solving an instance of
the 3-XOR problem, defined as:

f0(x) := x ‖x ⊕ E(x)
f1(y) := y ⊕ P1(y) ‖y
f2(z) := z ‖P2(z)

(3)

The 3-XOR Problem is a well known algorithmic problem; it is a special case
of k-XOR problem analyzed by Wagner as the generalized birhtday problem [20].

Definition 2 (3-XOR problem). Given three functions f0, f1, f2, find three
inputs (x0, x1, x2) such that f0(x0) ⊕ f1(x1) ⊕ f2(x2) = 0.

We usually focus on functions f0, f1, f2 that are chosen at random. Equiv-
alently, we can be given lists L0, L1, L2 (of random elements) instead of func-
tions. The presentation with functions makes it more clear that the adversary
can choose how many queries he makes to each of the functions.

EMIP Key Recovery from the 3-XOR Problem. From the previous dis-
cussion, solving the 3-XOR instance defined by (3) gives a triplet satisfying R,
which has a high probability of being a right triplet and revealing the key. Eval-
uating each of the fi functions requires a single computation of a permutation.
However evaluating f0 must be done online (using an oracle call to E) because it
depends on the key, while evaluating f1 and f2 can be done offline as the permu-
tations are public and computable at will by the attacker. As per our adopted
convention, an evaluation of f0—that is a call to E—costs 1 unit of computation
and an evaluation of f1 or f2 costs 1/2.



220 G. Leurent and F. Sibleyras

We denote the list of values of fi evaluated by an attacker as Li. Therefore,
the data complexity of an attack is equal to D = |L0|. The time complexity is
the amount of computation required to break the scheme. In the computational
model, it will depend on the algorithm used and be denoted as T . In the infor-
mation theoretic model we only look at the number of calls to the permutations
and denote it Q, with Q = (|L1| + |L2|)/2. We will discuss both models.

As seen from the description in (3), we can choose some parts of the values
in Li. However, if we only use random values of x, y, z to build the lists, we
obtain a random 3-XOR instance with words of size w = 2n. It is known that to
find a solution of a 3-XOR problem with good probability, the lists size should
respect |L0| × |L1| × |L2| ≥ 2w. In the information theoretic setting this gives
a key recovery attack with D × Q2 = 22n. This is the exact same complexity
trade-off as the information theoretic distinguisher described by Gaži [13]. In
particular it is known that this trade-off is proven optimal in the balanced case
D = Q = 22n/3 [5].

2.3 Symmetry Between E, P1 and P2

In the 3-XOR problem the 3 functions behave essentially in the same way; if one
has a solver using a few evaluations f0 and lots of evaluations of f1 and f2, then
the same solver could decide to use lots of queries to f0 and f1 and use fewer
f2 queries (just by permuting the functions). In our case, a natural choice is
to minimize the number of evaluations of f0, because they correspond to online
queries. This ensures that we have D ≤ Q. While this is easy to do with a 3-XOR
approach, it is not obvious whether this can be done in general for an Iterated
Even-Mansour key recovery. We now show that in the chosen ciphertext setting
an attacker can actually permute the functions E, P1 and P2, and minimize the
amount of online queries.

We assume that we are given an instance E, P1, P2 of EMIP, i.e. we have
oracle access to E, P1, P2 denoting forward computations of the permutations,
and E−1, P−1

1 , P−1
2 denoting backward computations. We use a black-box solver

S(E,E−1, P1, P
−1
1 , P2, P

−1
2 ) that uses α calls to E/E−1 (online queries), β calls

to P1/P−1
1 and γ calls to P2/P−1

2 and outputs the key k.
The trick is that we can rewrite the EMIP instance E, P1, P2, by permuting

the oracles. For instance we have P1(x) = k ⊕ P−1
2 (k ⊕ E(k ⊕ x)) (directly from

the definition of E), which gives the following EMIP instance with the same
secret key k:

E′ = P1 P ′
1 = E P ′

2 = P−1
2 .

Therefore, we can use the solver as S(P1, P
−1
1 , E,E−1, P−1

2 , P2) to recover k
using β online queries. Similarly, we can write P2(x) = k ⊕ E(k ⊕ P−1

1 (k ⊕ x));
therefore, we can use the solver as S(P2, P

−1
2 , P−1

1 , P1, E,E−1) to recover k using
γ online queries.

We could further use E−1 to rewrite P−1
1 and P−1

2 in the same fashion and
obtain all the possible trade-off between α, β and γ. The point is that, given any
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solver S, it is always up to the attacker to choose what is the most accessible data.
From here onward all of our discussed trade-off will have |L0| ≤ min(|L1|, |L2|)
to lower the query complexity but one can remember it is an arbitrary choice.

In particular, this trick can be applied to the attack of [9, Section 4.2]. Indeed,
this attack uses λn queries to P1, with 0 < λ < 1/3 and 2n/λn queries to E and
P2. Using this trick we can reduce the data complexity from 2n/λn to λn, without
affecting the other parameters. Actually, the attack presented in Sect. 4.4 can
be seen as an improved variant of this modified attack (using known plaintext
rather than chosen plaintext).

3 2EM Attacks from 3-XOR Algorithms

In this section we explore the link between 2EM key recovery and the 3-XOR
problem. First, we review existing approaches to solve the 3-XOR problem, and
we show that previous 2EM attacks can be reinterpreted in a 3-XOR framework.
Then we describe new attacks against 2EM based on the reduction of the pre-
vious Section. In this section, we focus on a generic 3-XOR instance given by
three w-bit function f0, f1 and f2, or three lists L0, L1, L2.

3.1 3-XOR Algorithms

The Birthday Problem, that is the problem of finding collisions among two lists,
has been well studied and proven useful in a number of cryptanalysis. In 2002,
Wagner proposed a natural extension of this problem, the Generalized Birthday
Problem [20], that is the problem of finding collisions among k lists. Here we
refer to this problem as the k-XOR problem. In particular Wagner left the hard
case of k = 3 as an open problem. His best algorithm would just take one value
of the first function and solve the classical Birthday Problem among the two
others, with complexity 2w/2.

Subsequent works tried to address this open problem. Two main approaches
managed to improve the time complexity of the 3-XOR: an approach based on
partial multi-collisions by Nikolic and Sasaki [18] and an approach using linear
algebra by Joux [15]. Unfortunately, those two solutions seem hard to combine.

Multi-collisions Algorithms. Nikolic and Sasaki [18] introduced a multi-
collision algorithm for the 3-XOR problem as follows. First, compute many out-
puts of f0 and look for the most frequent w/2-bit prefix α appearing. Store all
the values with this fixed prefix in a list L0 (a partial multi-collision for f0).
Then evaluate f1 and f2, 2w/2/

√|L0| times each, and store the results in lists
L1 and L2. Sort the lists, and look for pairs with a difference α in the first
w/2 bits. An average, there should be 2w/2/|L0| such pairs, and there is a high
probability that one of them sums to a value in L0. According to their analysis,
the optimal attack uses around 2w/2/w evaluations of f0, resulting in a multi-
collision of size Θ(w/ ln(w)); therefore this algorithm solves the 3-XOR problem
with complexity O(

2w/2/
√

w/ ln(w)
)
.
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Linear Algebra. The second approach, introduced by Joux [15], uses linear
algebra and reaches a slightly better complexity of O(2w/2/

√
w). This attack

uses just w/2 evaluations of f0 stored in a list L0, and 2w/2/
√

w/2 evaluations
of f1 (resp. f2) stored in a list L1 (resp. L2). Instead of collecting values in L0

with a common prefix, we use Gaussian reduction to find a non-singular matrix
M such that the elements of L0 · M start with w/2 zeroes.1 Then we focus on a
modified 3-XOR instance:

L′
0 = L0 · M L′

1 = L1 · M L′
2 = L2 · M.

The new instance has the same solutions (L′
0[h] ⊕ L′

1[i] ⊕ L′
2[j] = 0 ⇔ L0[h] ⊕

L1[i] ⊕ L2[j] = 0), but the elements of L0 start with w/2 zeroes. Therefore, as
in the previous attack, we can efficiently find the solution after sorting the lists
L1 and L2.

This approach was later generalized by Bouillaguet, Delaplace and Fouque [4],
in order to deal with instances of the 3-XOR problem where the size of the lists
is limited: given three lists with |L0| · |L1| · |L2| = 2w, they solve the 3-XOR
problem with complexity O(|L0| · (|L1|+ |L2|)/w). In particular, with three lists
of size 2w/3 this gives a time complexity of O(22w/3/w).

In addition, this algorithm can be combined with the clamping trick of Bern-
stein to reduce the memory: the attacker first filters the lists Li to keep only
values that start with w/4 zero bits, and solves a shorter 3-XOR instance on
3w/4 bits. If the initial lists have 2w/2 elements, the filtered lists still have 2w/4

elements, which is sufficient to expect a solution. This gives an algorithm with
time O(2w/2) and memory only O(2w/3). Arguably, this is more practical that
algorithms using O(2w/2/w) memory.

BDP Algorithm. Even before these two approaches, Baran, Demaine and
Pǎtraşcu [1] proposed an algorithm for the 3-SUM problem (using modular addi-
tions instead of XORs) with the asymptotical complexity of O(2w/2 · ln2(w)/w2).
This algorithm has been adapted to the 3-XOR problem by Bouillaguet et al. [4]
with the same complexity. This is best known asymptotic complexity for the
3-XOR problem, even though the algorithm is highly impracticable for realistic
values of w. We nevertheless use this algorithm to cryptanalyse 2EM in Sect. 4.3.

3.2 Revisiting Previous Cryptanalysis

Interestingly all attacks so far on 2EM use the same techniques as developed
against the 3-XOR problem. Most of the attack are based on multi-collisions [8,
9,19], and the MitM attack by Isobe and Shibutani [14] can also be interpreted
as looking for a structured partial multi-collision, as seen in Sect. 1. On the other
hand, the attack from [9, Section 4.2] uses linear algebra.

1 For instance, we write L0 as a block matrix
[
A B

]
with two w/2×w/2 sub-matrices.

If B is non-singular, we can use M =
[

I 0
B−1A B−1

]
.
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Using the Reduction to 3-XOR. As explained in Sect. 2.2, we can use an
attack against 3-XOR to build a key-recovery against 2EM in a generic way.
In particular, this reduction gives attacks similar to the known attacks on 2EM
if we start from multi-collision algorithms to solve 3-XOR. More precisely, the
reduction leads to a 3-XOR instance with w = 2n, defined as:

f0(x) := x ‖x ⊕ E(x) (3)
f1(y) := y ⊕ P1(y)‖y

f2(z) := z ‖P2(z)

If we directly apply the previous algorithm the time complexity will be
O(

2n/
√

n/ ln(n)
)
. Concretely the most natural way would be to search for pre-

fix multi-collisions offline in f1 as it is computationally intensive. Because of the
definition of f1, the second half y won’t repeat but (y ⊕ P1(y)) should repeat
roughly as often as a random function (assuming that P1 is a random permuta-
tion). Indeed previous works [8,19] also use repetitions in the values of (y⊕P1(y))
in their attacks.

Improved Attack from Multi-collisions. We can actually improve this
attack and obtain an attack equivalent to the previous works from [8,19], by
using the special structure of the 3-XOR instance (3). After building a par-
tial multi-collision L1 with Θ(n/ ln(n)) values of f1 starting with α, we look
for pairs with

(
f0(x) ⊕ f2(z)

)
[0:n]

= α. Because of the structure of f0 and f2,
we can just use z = x ⊕ α for each known plaintext x. Therefore we have
|L0| = |L2| pairs partially colliding to a predefined value. Each couple gives a
full collision if the second n-bit part corresponds to one of the elements in L1;
this happens with probability n/ ln(n) · 2−n. Thus this attack requires lists of
size D = Q = O(

2n/(n/ ln(n))
)

in order to succeed with high probability in the
KPA model.

We see that because we can choose parts of the inputs our problem may be
easier than the purely random 3-XOR case. However generic algorithms are a
good start to find dedicated cryptanalysis of 2EM. Moreover, the best known
attacks against 2EM [8,19] can actually be reinterpreted in this way.

In this paper, we will give new attacks against 2EM starting from this 3-XOR
presentation, and using algorithms based on the linear algebra approach.

3.3 A Key Recovery Algorithm

Now we describe a key recovery algorithm simply using the linear algebra 3-
XOR algorithm by Joux [15] on the 3-XOR instance obtained by the reduction
from 2EM. Using this algorithms as a black box, we have a time complexity
of O(2n/

√
n) (since w = 2n). This is not as good as the best known 2EM key

recovery, but this will lay the ground for the more efficient algorithms in Sect. 4.
The full attack can be written as Algorithm GA:
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GA1. Compute f1(y) = (y ⊕ P1(y))‖y for Q different values y and store them
in L1.

GA2. Compute f2(z) = z‖P2(z) for Q different values z and store them in L2.
GA3. Observe and find a set of n pairs of plaintext/ciphertext (x,E(x)) such

that all {f0(x) = x‖(x⊕E(x))} are linearly independent and store x‖(x⊕
E(x)) in L0.

GA4. See L0 as a n × 2n matrix. Use column reduction to find a 2n × 2n
transformation matrix M s.t. L0M = [0n×n‖In].2

GA5. Right-multiply the lists with the transformation matrix:
L′

0 ← L0M ; L′
1 ← L1M ; L′

2 ← L2M .
GA6. Sort and find partial collisions in L′

1 and L′
2 on the first n−bit half. For

each partial collisions L′
1[i] ⊕ L′

2[j] check whether the second n-bit half
differs only on the hth bit for some h. If yes go to GA7. If no solution
found, algorithm fails.

GA7. A solution to the 3-XOR problem (L0[h], L1[i], L2[j]) has been found.
Output k = x ⊕ y with x the first half of L0[h] and y the second half of
L1[i].

The main idea is that, since the transformation matrix M is linear, solving
the 3-XOR problem for L′

0, L
′
1, L

′
2 yields the same solutions as L0, L1, L2. Using

the transformed lists is easier as we exploit the fact that L′
0 = [0n×n‖In×n] which

is always possible to ensure after step GA3.
Step GA3 will cost only n queries as n random words of size 2n will be

linearly independent with very high probability. Note that because we just need
to observe these, this attack works in the KPA setting.

Analysis. The query complexity Q is also the size of the lists L1 and L2. There
are Q2 pairs each XORing to one of the n elements of L0 with probability n/22n

as they are taken randomly. Thus the probability of step GA6 succeeding is
(n · Q2)/22n.

Therefore for a constant success probability we fix (n · Q2)/22n = Θ(1).
This leads to the following complexities: Q = O(2n/

√
n), T = O(2n/

√
n) and

D = O(n).
We recall here that sorting random values and performing a right matrix

multiplication L1M (resp. L2M) on an exponentially large Li are both computed
in time linear with the size of Li [4]. As for the computation of M , it is of
polynomial time in n and therefore negligible.

Q is the query complexity and we find the relation DQ2 = 22n as expected.
Memory-wise we need to store the full lists L1 and L2 so the memory complexity
will also be Q = O(2n/

√
n).

Steps GA1 and GA2 concentrate all the permutation’s evaluations but can
be done as a pre-processing step.

2 We write L0 =
[
A B

]
. If B is non-singular, we can use M =

[
I 0

B−1A B−1

]
.
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4 Improved Attacks from the 3-XOR Problem

In the previous section we saw how tools to solve the 3-XOR problem could
prove very useful for the 2EM key recovery attacks. But the cryptanalysis allows
us to do some tweaks and have better results than simply applying the generic
solutions.

In this section we will first show how to add a simple filter to Algorithm GA
to mount an attack following the trade-off curve DQ2 = 22n while improving
the time complexity of T = 2n/n (matching the best known 2EM attacks) and
memory not exceeding Q. We also show how using the same filter but with
the BDP algorithm adapted for the 3-XOR can give the best asymptotic time
complexity so far, T = O( 2n·ln2(n)

n2 ), though that largely remains theoretical.
Then we describe a very low data and low memory key recovery attack that

essentially tweaks the previous Algorithm GA to a version that uses, for some
parameter 0 < λ < 1, few queries, D = λn, time Q = T = 2n/λn and memory
2λn. This actually beats the best information theoretic distinguisher known so
far in this range of very low data (DQ2 < 22n).

4.1 Clamping to a Smaller 3-XOR Instance

We first describe an efficient algorithm with a large trade-off space with param-
eter D = |L0| = 2d and Q = |L1| = |L2| = 2n−d/2 and time complexity O(2n/n)
(independently of D and Q). This algorithm is built from the 3-XOR algorithm
of [4], but we take advantage of the structure of the 3-XOR problem to reduce
the time complexity below O(2n/

√
n) (reached by Algorithm GA). Indeed, our

3-XOR instance is given as:

f0(x) := x ‖x ⊕ E(x) (3)
f1(y) := y ⊕ P1(y)‖y

f2(z) := z ‖P2(z)

We can use a variant of the clamping trick of Bernstein [2] to simplify this
instance. For a parameter d, we consider the 2n−d/2 values y with y[0:d/2] = 0
and we evaluate f1 on those values. This gives a list L1 with |L1| = 2n−d/2 such
that all values have d/2 zero bits (L1[i][n:n+d/2] = 0). Similarly, we consider all
values z′ with z′

[0:d/2] = 0, and we evaluate f2 on z = P−1
2 (z′) to build a list L2

with L2[j][n:n+d/2] = 0. Finally, we consider 2d known plaintexts x, and we keep
the values with

(
x⊕E(x)

)
[0:d/2]

= 0 in a list L0. We expect to have |L0| = 2d/2.
We now have three lists with Li[u][n:n+d/2] = 0, so we can consider this as a
3-XOR problem on w = 2n − d/2 bits. We have |L0| · |L1| · |L2| = 22n−d/2 = 2w;
therefore there is on average one solution, and the algorithm of Bouillaguet et
al. [4] finds it with complexity O(|L0| · (|L1| + |L2|)/w

)
= O(2n/n).

When writing the full details, we have Algorithm CL:
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CL1. Compute f1(y) = (y ⊕ P1(y))‖y for all y such that y[0:d/2] = 0. Remove
bits [n : n + d/2] (fixed to 0) and store the (2n − d/2)-bit values in L1.

CL2. Compute f2(P−1
2 (z′)) = P−1

2 (z′)‖z′ for all z′ such that z′
[0:d/2] = 0.

Remove bits [n : n + d/2] (fixed to 0) and store the (2n − d/2)-bit values
in L2.

CL3. Until a solution is found do:
CL3.1. Capture and filter a set of n pairs of plaintext/ciphertext (x,E(x))

such that (x ⊕ E(x))[0:d/2] = 0 and all {f0(x) = x‖(x ⊕ E(x))} are
linearly independent. Remove bits [n : n + d/2] (fixed to 0) and store
the (2n − d/2)-bit values in L0.

CL3.2. See L0 as an n× (2n−d/2) matrix. Use column reduction to find the
(2n − d/2) × (2n − d/2) transformation matrix M such that L0M =
[0n×(n−d/2)‖In].

CL3.3. Right-multiply the lists with the transformation matrix:
L′

0 ← L0M ; L′
1 ← L1M ; L′

2 ← L2M .
CL3.4. Sort and find partial collisions in L′

1 and L′
2 on the] first (n − d/2)-

bit prefix. For each partial collisions L′
1[i] ⊕ L′

2[j] check whether the
second n-bit part differs only on the hth bit for some h. If yes go to
CL4. If no solution found, loop on CL3.

CL4. A solution to the 3-XOR problem (L0[h], L1[i], L2[j]) has been found.
Output k = x ⊕ y with x the first n-bit of L0[h] and y made of d/2 zeros
followed with the last n − d/2 bits of L1[i].

In steps CL1 and CL2 we only fixed the d/2 first bits so that we have lists
of size 2n−d/2. Step CL2 still constructs the usual L2 as a collection of z‖P2(z)
only we need to fix the values of P2(z) = z′ and compute the value z = P−1

2 (z′)
using the inverse.

Then all of this works very much like Algorithm GA the main difference begin
at step CL3.1 where we filter the observed pairs. Indeed we look for a triplet
such that x ⊕ y = z′ ⊕ E(x) so fixing bits of y and z′ fixes bits of (x ⊕ E(x)).

4.2 Complexity Analysis

Data Complexity. The data complexity depends on the number of plain-
text/ciphertext pairs we will expect to observe before we find a solution. One
way to see it is to count the number of observable right triplets. Initially there
are 2n right triplets but we restrict ourselves to triplets such that y[0:d/2] = 0
and P2(z)[0:d/2] = 0, a d-bit filter, so on average will remain 2n−d right triplets.
Therefore the moment we observe an x belonging to one of these right triplets it
will necessarily pass the filter, give a solution and finish the algorithm. This hap-
pens with probability 2n−d/2n = 2−d therefore we expect solution after D = 2d

pairs (x,E(x)).

Memory Complexity. The largest lists in memory are L1 and L2 that require,
in the balanced case, O(2n−d/2) blocks of memory.
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Query Complexity. The offline query complexity is also the size of L1 and
L2, that is 2n−d/2 = Q. In particular, we use as much data as the best known
distinguisher with D ·Q2 = 2n. Notice that for the balanced case D = Q = 22n/3

this attack is optimal in the information theoretic model as Chen et al. [5] proved
that O(22n/3) is a lower bound.

Time Complexity. First we need to compute both lists L1 and L2 requiring to
compute 2n−d/2 permutations each (this can be a precomputation). We expect
the algorithm to succeed after 2d pairs (x,E(x)) with good probability. Thanks
to the d/2-bit filter in step CL3.1 only 2d/2 pairs are expected to be processed by
batches of n values. Therefore we expect to do 2d/2/n loops CL3 before we finish.
Each loop consists of computing a small transformation matrix, applying it to
the big lists L1 and L2, sorting them and looking for prefix collisions. All of these
costs are linear in the lists size, 2n−d/2, or in the number of expected (n − d/2)-
bit prefix collisions in CL3.4 that is |L1| · |L2|/2n−d/2 = 2n−d/2. Therefore each
loop costs O(2n−d/2) and is expected to be performed 2d/2/n times for a total
computational time complexity of T = O(2n/n). This computational time is
independent of d.

Discussion. Algorithm CL achieves a computational time complexity of T =
2n/n while using as much information as the best known information theoretic
attack with D · Q2 = 22n. In particular this is information theoretically optimal
in the balanced case D = Q = 22n/3 that is for d = 2n/3. This attack works
with known plaintexts, and there is no obvious way to improve it using chosen
plaintext.

For most of the choices of d, evaluations of the cipher and the permuta-
tions is not the dominant cost of the algorithm. In this analysis we assume that
operations on n-bit words and memory access to lists L1 and L2 cost θ(1) evalu-
ations of the cipher, but if we assume instead that they cost much less than one
evaluation (as done in [14]) the attack is even more interesting.

To optimize the memory complexity that is 2n−d/2, we need to choose a fairly
high value d. In that case the data complexity D = 2d becomes problematic but
we can swap the number of online call to E with the number of offline calls to P1,
effectively swapping f0 and f1, thanks to the symmetry highlighted in Sect. 2.3.
This gives a data and memory complexity of 2n−d/2, a query complexity of
Q = 2n−d/2−1 + 2d−1 and the time remains T = O(2n/n). This becomes a
Chosen Plaintext attack because step CL1 requires to choose part of inputs.
Concrete values for n = 64 for such trade-off are given in Table 2 as “optim.
memory & swap E ↔ P1”.

4.3 Using Baran-Demaine-Pǎtraşcu’s 3-SUM Algorithm

Since the previous algorithm just uses a 3-XOR algorithm as a black box after
clamping, we can also use it with the BDP algorithm adapted to 3-XOR [4]. In
fact, any 3-XOR algorithm could be used after clamping which implies that an
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improved random 3-XOR algorithm would lead to an improved 2EM cryptanal-
ysis. This adapted BDP algorithm has a better asymptotic complexity, with a
speed-up of w2

ln2(w)
compared to the quadratic algorithm.

This results in a key-recovery attack against 2EM with asymptotic time com-
plexity O(2n · ln2(n)/n2). This is asymptotically better than the best known
2EM key recoveries. However, as shown in [4], it is not practical for realistic
word sizes w. Indeed the dominant term in the complexity of the BDP algorithm
is O(|L0|.|L1|/m2) with m = Θ(n/ ln(n)). Following the analysis of Bouillaguet
et al., we have more concretely m � n/(112 ln(n)). Therefore, in order to have
m2 > n, we would need n > 2.75 × 106.

4.4 Very Low Data Algorithm

The previous Algorithm CL can reach a low data complexity (with a small
parameter d) that would be a multiple of n, or a relatively low memory com-
plexity (close to 2n/2 with a large d), and having both close to 2n/2 requires
chosen plaintexts. We now describe a new algorithm that combines a very low
data complexity and a low memory. This algorithm uses only D = λn known
plaintexts for 0 < λ < 1, and has a time complexity T = O(2n/λn) while using
only a memory of size 2λn. Moreover, we have D·Q = 2n and D·Q2 = O(22n/λn),
that is the best information theoretical trade-off so far between online and offline
queries.

This will be algorithm LD with parameter 0 < λ < 1 (typically, we have
λ = 1/2):

LD1. Observe and find a set of λn pairs of plaintext/ciphertext (x,E(x)) such
that all {(x ⊕ E(x))[n−λn:n]} are linearly independent and store f0(x) =
x‖(x ⊕ E(x)) in L0.

LD2. See L0 as a three concatenated λn-line matrices:

L0 = [ A︸︷︷︸
n

‖ B︸︷︷︸
n−λn

‖ C︸︷︷︸
λn

]

Define the n × n small transformation matrix Ms:

Ms =
[

I 0
C−1B C−1

]
M−1

s =
[

I 0
B C

]

and the 2n × 2n big transformation matrix M :

M =

⎡
⎣

I 0(
Ms

[
0
A

])
Ms

⎤
⎦ =

⎡
⎣

I 0 0
0 I 0

C−1A C−1B C−1

⎤
⎦

LD3. Right-multiply the list L0 with the big transformation matrix:
L′

0 ← L0M = [ 0︸︷︷︸
n

‖ 0︸︷︷︸
n−λn

‖ I︸︷︷︸
λn

]
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LD4. Until a solution is found pick a new (n − λn)-bit value α and do:
LD4.1. For all λn-bit value u compute f1

(
[α|u] · M−1

s

)
= [α|u] · M−1

s ⊕
P1

(
[α|u] · M−1

s

)‖[α|u] · M−1
s . Store them in L1.

LD4.2. For all λn-bit value u compute f2

(
P−1

2 ([α|u] · M−1
s )

)
= P−1

2 ([α|u] ·
M−1

s )‖[α|u] · M−1
s . Store them in L2

LD4.3. Modify the lists with the big transformation matrix:
L′

1 ← L1M ; L′
2 ← L2M .

Note that all elements of L′
1 and L′

2 have bits [n : n + λn] set to α.
LD4.4. Sort and find partial collisions in L′

1 and L′
2 on the first n-bit half.

For each partial collisions L′
1[i]⊕L′

2[j] check whether the second half
differs on a single bit h with n − λn < h ≤ n. If yes go to LD5. If no
solution found, continue to loop on LD4.

LD5. A solution to the 3-XOR problem (L0[h− (n−λn)], L1[i], L2[j]) has been
found. Output k = x ⊕ y with x the first half of L0[h − (n − λn)] and y
the second half of L1[i].

We again use the property that finding a solution for the 3-XOR in the
modified lists yield the same solution in the original lists.

With the way we defined the big transformation matrix M in LD2 and the
fact that we applied M−1

s to the inputs in steps LD4.1 and LD4.2, when we
perform step LD4.3 we get the values f1

(
[α|u] · M−1

s

) · M = [α|u] · M−1
s ⊕

P1

(
[α|u] · M−1

s

) ⊕ (0|(u · A))‖[α|u] and f2

(
P−1

2 ([α|u] · M−1
s )

) · M = P−1
2 ([α|u] ·

M−1
s ) ⊕ (0|(u · A))‖[α|u] stored in L′

1 and L′
2 respectively. Thus the right-hand

side of both lists reverts to the form {α|u} with fixed α and for all u. Therefore
we get an (n − λn)-bit collision for free on α matching with zeroes in L′

0.

4.5 Complexity Analysis

For this attack, in each loop we pick a value α and build L1, L2 of size 2λn. Then
we have a solution among the 22λn pairs if one of them XORs to one of the λn
values of L0. Since we have a collision on (n−λn)-bit value α for free, one couple
gives a solution with probability λn · 2−(n+λn). Thus each loop gives a solution
with probability 22λn · λn · 2−(n+λn) = λn · 2λn−n. For a constant probability of
success we will need to perform around 2n−λn

λn iterations.

Data Complexity. Step LD1 completely determines the data complexity of
the algorithm. We capture λn plaintext/ciphertext pairs and we get a linearly
independent set of values with good probability. Therefore D = λn is the data
complexity.

Memory Complexity. The list L0 and the matrices take a space polynomial in
n and therefore negligible. The lists L1 and L2 are always of size 2λn. Therefore
the memory complexity is O(2λn).
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Query Complexity. The computation of the public permutations are all done
in steps LD4.1 and LD4.2 to build lists of size 2λn. We pass through this step
at each loop meaning that the total offline query complexity is:

Q = 2λn · 2n−λn

λn
=

2n

λn

Time Complexity. Again, computations of the matrices in step LD2 are essen-
tially polynomial in n so negligible. Step LD4.3 performs right-multiplications
on large matrices and step LD4.4 is about sorting and merging which makes
those steps linear given that the merged list is of reasonable size. Here we have
a partial collision on n bits with probability 2−n therefore there will be around
22λn · 2−n = 22λn−n partial collisions that is less than the size of the lists (2λn)
therefore step LD4.4 has also a linear cost. The computational time complexity
is therefore also led by the query complexity that is T = 2n

λn .

Acceptable Range. Notice that the previous reasoning to derive the time
complexity is only applicable when we do need more than one loop to finish the
algorithm as it makes no sense to multiply by half-a-round. So all those trade-off
depending on λ are constraints by:

2n−λn

λn
≥ 1 ⇔ λ ≤ W (2n ln 2)

n ln 2
= 1 − ln(n ln 2)

n ln 2
+ o(1)

(using the Lambert W function)

Discussion. This attack works in the KPA setting as we only need to observe
pairs of plaintext/ciphertext, and we need to observe surprisingly few of them,
λn pairs are sufficient.

The memory requirement, O(2λn), can also go quite low as we choose the
parameter λ but this comes at the cost of no pre-computation possible as we need
the transformation matrix to get the right inputs to the public permutations.

The computational time complexity T = 2n/λn compares well with previous
cryptanalysis done on this subject. So far there were no key recovery attack on
2EM with a better asymptotic complexity than O(2n/n).

In the information theoretic model, trade-off between D and Q is impor-
tant as a designer can always arbitrarily limit the maximum value of D by, for
example, rekeying in order to achieve a certain security goal. In this regard, this
algorithm has a better trade-off between the data and query complexity than the
best known generic distinguisher by Gaži [13] that has the trade-off DQ2 = 22n.
Here DQ2 = 22n/λn thus being the best known key recovery, and also the best
distinguisher, for the acceptable range of λn.

In fact the proof by Chen et al. [5] says nothing for low data range D ≤ 2n/4

and the best proof is therefore inherited from the original one round Even-
Mansour scheme that lower-bounds the trade-off with DQ ≥ 2n. Gap between
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the best known distinguisher and the proof in this range is still an open problem
but Algorithm LD, which has the trade-off DQ = 2n—and also DT = 2n—for
any λ, proves for the first time the optimality of the original proof of the trade-off
between D and Q for the acceptable range of λ that is for 1 ≤ D ≤ W (2n ln 2)

ln 2 .

Previous Work. We can see this cryptanalysis as an advanced version of the
attack by Dinur et al. using linear algebra [9, Section 4.2]. We can list three main
differences that make this attack an improvement over the previous one. First, as
already mentioned in Sect. 2.3, we use the symmetry between E,P1, P2 to reduce
the data complexity from 2n/λn to λn. Then the use of the big transformation
matrix M , that essentially performs a Gaussian elimination over the whole 2n-
bit words, makes the attack works with known plaintexts while Dinur et al.
required chosen plaintexts (even after applying the symmetry trick). Finally, the
resulting n-bit filter of step LD4.4 allows for a larger acceptable range of λ than
the previous attack that needed λ < 1/3 to limit the number of partial collisions.

5 Extension to r Rounds

The approach can be generalized to attack multiple rounds. In fact the crypt-
analysis of a single key r-round EM scheme can be written as a (r + 1)-XOR
problem with words of size rn. Even though for r ≥ 4 generic algorithms won’t
directly provide interesting attacks with competitive computational complexity,
this elegantly rewrites the known generic distinguisher on rEM and may be a
good start to look for dedicated cryptanalysis.

Fig. 5. A right tuple gives a path of rEM

Definition 3 (k-XOR problem). Given k functions f0, f1, f2, ..., fk, find k
inputs (x0, x1, x2, ..., xk) such that f0(x0) ⊕ f1(x1) ⊕ f2(x2) ⊕ ... ⊕ fk(xk) = 0.

Extended Relation. To see that we follow the same reasoning as in Sect. 2.2
but for the r-round EM, Fig. 5, and look for an (r + 1)-tuple (x0, x1, ..., xr)
satisfying the generalized relation R:
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R(x0, x1, x2, ..., xr) :=

⎧
⎪⎨
⎪⎩

x0 ⊕ x1 = k

Pi(xi) ⊕ xi+1 = k, 1 ≤ i ≤ r − 1
Pr(xr) ⊕ E(x0) = k

(4)

⇒

⎧
⎪⎨
⎪⎩

x0 ⊕ x1 = P1(x1) ⊕ x2

Pi(xi) ⊕ xi+1 = Pi+1(xi+1) ⊕ xi+2, 1 ≤ i ≤ r − 2
Pr−1(xr−1) ⊕ xr = Pr(xr) ⊕ E(x0)

(5)

Again we cannot directly observe R but we can observe the implied relation 5
which is an rn-bit filter and is enough so that a random (r + 1)-tuple satisfying
Filter 5 is a right tuple with good probability.

Define Lists. Now we can define r + 1 lists of r n-bit entries such that solving
the (r + 1)-XOR problem on those lists over all entries trivially gives a solution
to 5:

L0[h] :=

⎧
⎪⎨
⎪⎩

x0 , h = 1
0 , 2 ≤ h ≤ r − 1
E(x0) , h = r

L1[h] :=

⎧
⎪⎨
⎪⎩

x1 ⊕ P1(x1) , h = 1
P1(x1) , h = 2
0 , h ≥ 3

Li[h]
2≤i≤r−1

:=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 , h ≤ i − 2
xi , h = i − 1
xi ⊕ Pi(xi) , h = i

Pi(xi) , h = i + 1
0 , h ≥ i + 2

Lr[h] :=

⎧
⎪⎨
⎪⎩

0 , h ≤ r − 2
xr , h = r − 1
xr ⊕ Pr(xr) , h = r

see example for r = 5 in Table 3. Thus this indeed defines an (r + 1)-XOR
problem with rn-bit words even though it is more structured than the purely
random k-XOR problem. Upon its resolution we have a successful key recovery
with good probability when guessing k = x0 ⊕ x1.

Generic Cryptanalysis. Even though the problem is structured this allows
us to use generic algorithms for the k-XOR problem to perform a cryptanalysis.
With purely random functions it is known that the lower bounds of queries for
the rn-bit words (r + 1)-XOR problem is O(2

rn
r+1 ). Interestingly this exactly

coincides with the lower bound queries for the single key r-round Even-Mansour
scheme [3]. Using generic algorithms allows a cryptanalysis using D = Q =
O(2

rn
r+1 ) therefore being optimal in query complexity. In fact the approach can

be thought as similar to the simple known distinguisher but instead of looking
for contradictory paths we directly look for a correct path (that implies a right
tuple) and guess the key.
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Table 3. Cryptanalysis of 5EM.

Lists’ construction for a cryptanalysis using the 6-XOR problem.

L0 � { x0 . . . E(x0)}
L1 � { x1 ⊕ P1(x1) P1(x1) . . . }
L2 � { x2 x2 ⊕ P2(x2) P2(x2) . . }
L3 � { . x3 x3 ⊕ P3(x3) P3(x3) . }
L4 � { . . x4 x4 ⊕ P4(x4) P4(x4)}
L5 � { . . . x5 x5 ⊕ P5(x5)}

Limitation. The computational time complexity of generic algorithms by Wag-
ner for this problem is T = O(

r · 2
rn

�log(r+1)�+1
)

[20]. For r = 2 and 3 rounds this
is just O(2n) and we could improve from there in the 2EM case. For the 3EM
case Dinur et al. [9] showed that we can have a complexity below O(2n) using
multicollisions and while it is fairly straightforward to rewrite the same attack
in the 4-XOR context it is also non-trivial to improve this.

On the other hand the complexity is way over 2n for r ≥ 4 rounds. Therefore
this is mainly an information theoretic attack. However the lists here have a
strong structure, see Table 3, with many bits to 0 which opens the question of a
dedicated algorithm with competitive computational time/memory trade-off.

6 Conclusion

In this paper we presented a 3-XOR approach to key-recovery attacks on single-
key two-round Even-Mansour. That allows us to gain a better understanding of
previous works and devise competitive algorithms using linear algebra techniques
that have been initially developed for the random 3-XOR problem.

These attacks have a particularly interesting data and memory complexi-
ties. In particular, we give the first attacks where both the data and memory
complexity are below O(2n−ε) for ε > 0, while achieving the best known time
complexity of O(2n/n). Previous attacks with a similar time complexity required
either a very large memory or very large data, making them unlikely to be useful
in practice. We also give an attack that improves the asymptotic time complexity
to O(2n · ln2(n)/n2), although it is not applicable for practical values of n. As
another interesting result, we show a very low data attack that beats the best
known distinguisher, and actually matches the proven lower bound for single
round Even-Mansour construction, with DT = 2n.

All those attacks are shown on the 2EM construction with no key schedule
and independent permutations, but we prove that an attack on this variant of
2EM leads to an attack on the more general 2EM with a linear key schedule.
Additionally we show that the 2EM construction has an implicit symmetry that
allows to blindly swap the number of calls one makes to each oracle during an
attack; this automatically allows new trade-offs between the parameters.
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Iterated Even-Mansour schemes are idealized SPN networks and understand-
ing their security is important because many block ciphers, including the AES,
are based on this design. In this work we focused on the two-round construction
linking it to the 3-XOR problem such that a future improvement of the random
3-XOR algorithms will improve our cryptanalysis. But we can also extend this
approach to r-round constructions and the (r + 1)-XOR problem with a partic-
ular structure. We detail this link in Sect. 5 but additional work is required to
build competitive key-recovery attacks from that.
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References
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Abstract. The quantum random oracle model (QROM) has become the
standard model in which to prove the post-quantum security of random-
oracle-based constructions. Unfortunately, none of the known proof tech-
niques allow the reduction to record information about the adversary’s
queries, a crucial feature of many classical ROM proofs, including all
proofs of indifferentiability for hash function domain extension.

In this work, we give a new QROM proof technique that overcomes
this “recording barrier”. We do so by giving a new “compressed ora-
cle” which allows for efficient on-the-fly simulation of random oracles,
roughly analogous to the usual classical simulation. We then use this
new technique to give the first proof of quantum indifferentiability for
the Merkle-Damg̊ard domain extender for hash functions. We also give
a proof of security for the Fujisaki-Okamoto transformation; previous
proofs required modifying the scheme to include an additional hash term.
Given the threat posed by quantum computers and the push toward
quantum-resistant cryptosystems, our work represents an important tool
for efficient post-quantum cryptosystems.

1 Introduction

The random oracle model [BR93] has proven to be a powerful tool for heuristi-
cally proving the security of schemes that otherwise lacked a security proof. In
the random oracle model (ROM), a hash function H is modeled as a truly ran-
dom function that can only be evaluated by querying an oracle for H. A scheme
is secure in the ROM if it can be proven secure in this setting. Of course, random
oracles cannot be efficiently realized; in practice, the random oracle is replaced
with a concrete efficient hash function. The hope is that the ROM proof will
indicate security in the real world, provided there are no structural weaknesses
in the concrete hash function.

Meanwhile, given the looming threat of quantum computers [IBM17], there
has been considerable interest in analyzing schemes for so called “post-quantum”
security [NIS17,Son14,ATTU16,CBH+17,YAJ+17,CDG+17,CDG+15]. Many
of the proposed schemes are random oracle schemes; Boneh et al. [BDF+11]
argue that the right way of modeling the random oracle in the quantum setting
c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11693, pp. 239–268, 2019.
https://doi.org/10.1007/978-3-030-26951-7_9
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is to use the quantum random oracle model, or QROM. Such a model allows a
quantum attacker to query the random oracle on a quantum superposition of
inputs. The idea is that a real-world quantum attacker, who knows the code for
the concrete hash function, can evaluate the hash function in superposition in
order to perform tasks such as Grover search [Gro96] or collision finding [BHT98].
In order to accurately capture such real-world attacks, it is crucial to model the
random oracle to allow for such superposition queries. The quantum random
oracle model has been used in a variety of subsequent works to prove the post-
quantum security of cryptosystems [BDF+11,Zha12b,Zha15,TU16,Eat17].

The Recording Barrier. Unfortunately, proving security in the quantum random
oracle model can be extremely difficult. Indeed, in the classical random oracle
model, one can copy down the adversary’s queries as a means to learning what
points the adversary is interested in. Many classical security proofs crucially
use this information in order to construct a new adversary which solves some
hard underlying problem, reaching a contradiction. In the quantum setting, such
copying is impossible by no-cloning. One can try to record some information
about the query, but this amounts to a measurement of the adversary’s query
state which can be detected by the adversary. A mischievous adversary may
refuse to continue if it detects such a measurement, rendering the adversary
useless for solving the underlying problem. Because of the difficulty in reading
an adversary’s query, it also becomes hard to adaptively program the random
oracle, another common classical proof technique.

This difficulty has led authors to develop new quantum-sound proof tech-
niques to replace classical techniques, such as Zhandry’s small-range distribu-
tions [Zha12a] or Targhi and Unruh’s extraction technique [TU16]. These proof
techniques choose the oracle from a careful distribution that allows for proofs to
go through. However, every such proof technique always chooses a classical oracle
at the beginning of the experiment, and leave the oracle essentially unchanged
through the entire execution. The inability to change the oracle seems inherent,
since if the proof gives the adversary different oracles during different queries,
this is potentially easily detectable (even by classical adversaries).1

Constraining the oracles to be fixed functions seems to limit what can be
proved using such non-recording techniques. For example, Dagdelen, Fischlin,
and Gagliardoni [DFG13] show that such natural proof techniques are likely
incapable of proving the security of Fiat-Shamir2. This leads to a natural ques-
tion: Is it possible to record information about an adversary’s quantum query
without the adversary detecting.

1 The one exception we are aware of is Unruh’s adaptive programming [Unr15]. This
proof does change the oracle adaptively, but only inputs for which adversary’s queries
have only negligible “weight”. Thus, the change is not detectable. The following
discussion also applies to Unruh’s technique.

2 We note that if the underlying building blocks are strengthened, Fiat-Shamir was
proven secure by Unruh [Unr16].
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Enter Indifferentiability. The random oracle model (quantum or otherwise)
assumes the adversary treats the hash function as a monolithic object. Unfor-
tunately, hash functions in practice are usually built from smaller building
blocks, called compression functions. If one is not careful, hash functions built
in this way are vulnerable to attacks such as length-extension attacks. Coron
et al. [CDMP05] show that a hash function built from a compression function
can be as good as a monolithic oracle in many settings if it satisfies a notion
of indifferentiability, due to Maurer, Renner, and Holenstein [MRH04]. Roughly,
in indifferentiability, an adversary A has oracle access to both h and H, and
the adversary is trying to distinguish two possible worlds. In the “real world”,
h is a random function, and H is built from h according to the hash function
construction. In the “ideal world”, H is a random function, and h is simulated
so as to be consistent with H. A hash function is indifferentiable from a random
oracle if no efficient adversary can distinguish the two worlds.

Coron et al.’s proof of indifferentiability for Merkle-Damgard requires the
simulator to remember the queries that the adversary has made. This is actu-
ally inherent for any domain extender, by a simple counting argument discussed
below. In the quantum setting, such recording presents a serious issue, as record-
ing a query is equivalent (from the adversary’s point of view) to measuring the
query. As any measurement will disturb the quantum system, such measurement
may be detectable to the adversary. Note that in the case where A is interacting
with a truly random h, there is no measurement happening. Therefore, if such
a measurement can be detected, the adversary can distinguish the two cases,
breaking indifferentiability.

Example. To illustrate what might go wrong, we will use the simple example from
Coron et al. [CDMP05]. Here, we will actually assume access to two independent
compression functions h0, h1 : {0, 1}2n → {0, 1}n. We will define H : {0, 1}3n →
{0, 1}n as H(x, y) = h1(h0(x), y), where x ∈ {0, 1}2n, y ∈ {0, 1}n.

To argue that H is indifferentiable from a random oracle, Coron et al. use
the following simulator S, which has access to H, and tries to implement the
oracles h0, h1. S works as follows:

– S keeps databases D0,D1, which will contain tuples (x, y). Db containing
(x, y) means that S has set hb(x) = y.

– h0 is implemented on the fly: every query on x looks up (x, y) ∈ D0, and
returns y if it is found; if no such pair is found, a random y is chosen and
returned, and (x, y) is added to D0.

– By default, h1 is answered randomly on the fly as in h0. However, it needs
to make sure that h1(h0(x), y) always evaluates to H(x, y), else it is trivial
to distinguish the two worlds. Therefore, on a query (z, y), h1 will check if
there is a pair (x, z) in D0 for some x. If so, it will reasonably guess that the
adversary is trying to evaluate H(x, y), and respond by making a query to
H(x, y). Otherwise it will resort to the default simulation.

Note that by defining the simulator in this way, if the adversary ever tries to
evaluate H on (x, z) by first making a query x to h0 to get y, and then making
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a query (y, z) to h1, the simulator will correctly set the output of h1 to H(x, z),
so that the adversary will get a result that is consistent with H. However, note
that it is crucial that S wrote down the queries made to h0, or else it will not
know which point to query H when simulating h1.

Now consider a quantum adversary. A quantum query to, say, h0 will be the
following operation:

∑

x∈{0,1}2n,u∈{0,1}n

αx,u|x, u〉 �→
∑

x∈{0,1}2n,u∈{0,1}n

αx,u|x, u ⊕ h0(x)〉

Now, imagine our simulator trying to answer queries to h0 in superposition.
For simplicity, suppose this is the first query to h0, so D0 is empty. The natural
approach is to just have S store its database D0 in superposition, performing a
map that may look like |x, u〉 �→ |x, u ⊕ y〉 ⊗ |x, y〉, where y is chosen randomly,
and everything to the right of the ⊗ is the simulators state.

But now consider the following query by an adversary. It sets up the uniform
superposition

∑
x,u |x, u〉 and queries. In the case where h0 is a classical function,

then this state becomes
∑

x,u

|x, u ⊕ h0(x)〉 =
∑

x,u

|x, u〉

Namely, the state is unaffected by making the query. In contrast, the simulated
query would result in ∑

x,u

|x, u ⊕ y〉 ⊗ |x, y〉

Here, the adversary’s state is now entangled with the simulator’s. It is
straightforward to detect this entanglement by applying the Quantum Fourier
Transform (QFT) to the adversary’s x registers, and then measuring the result.
In the case where the adversary is interacting with a random h0, the QFT will
result in a 0. In the simulated case, the QFT will result in a random string.
These two cases are therefore easily distinguishable.

To remedy this issue, prior works in the quantum regime have abandoned
on-the-fly simulation, instead opting for stateless simulation. Here, the simulator
commits to a function to implement the oracle in the very beginning, and then
sticks with this implementation throughout the entire experiment. Moreover,
the simulator never records any information about the adversary’s query, lest
the adversary detect the entanglement with the simulator. This will certainly fix
the issue above, and by carefully choosing the right implementations prior works
have shown how to translate many classical results into the quantum setting.

However, for indifferentiability, choosing a single fixed function for h0 intro-
duces new problems. Now when the adversary makes a query to h1, the simulator
needs to decide if the query represents an attempt at evaluating H, and if so,
it must program the output of h1 accordingly. However, without knowing what
inputs the adversary has queried to h0, it seems impossible for the simulator to
determine which point the adversary is interested in. For example, if the adver-
sary queries h1 on (y, z), there will be roughly 2n possible x that gave rise to
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this y (since h0 is compressing). Therefore, the simulator must choose from one
of 2n inputs of the form (x, z) on which to query H.

To make matters even more complicated, an adversary can submit the uni-
form superposition

∑
x |x, 0〉, resulting in the state

∑
x |x, h0(x)〉, which causes

it to “learn” y = h0(x). At this point, the simulator should be ready to respond
to an h1 query on (y, z) by using x, meaning the simulator must be entangled
with x. Then, at some later time, the adversary can query again on the state∑

x |x, h0(x)〉, resulting in the original state
∑

x |x, 0〉 again. The adversary can
test that it received the correct state using the quantum Fourier transform.
Therefore, after this later query, the simulator must be un-entangled with x.
Even more complex strategies are possible, where the adversary can compute
and un-compute h0 in stages, so as to try to hide what it is doing from any
potential simulator.

These issues are much more general than just the simple domain extender
above. Indeed, even classically domain extension with a stateless simulator is
impossible, by the following simple argument. Suppose there is a hash function
H : {0, 1}M → {0, 1}N built from a compression function h : {0, 1}m → {0, 1}n

as H = Ch for an oracle circuit C. Let L = M + log2 N, � = m + log2 n. Then
L, � represent the logarithm of the size of the truth tables for H,h. Since we
are domain extending, we are interested in the case where L � �. Suppose even
L ≥ � + 0.001.

Suppose toward contradiction that h can be simulated statelessly, which we
will represent as SimH (since the function can make H queries). Then h has a
truth table of size 2�. In the real world, H agrees with Ch on all inputs; therefore
in order for indifferentiability to hold, in the simulated world a uniformly random
H must agree with Ch = CSimH

on an overwhelming fraction of inputs. But this is
clearly impossible, as it would allow us to compress the random truth table of H:
simply output the truth table for SimH , along with the ε fraction of input/output
pairs where H and CSimH

disagree. The total length of this compressed truth
table is 2� + (ε2M )(MN) = 2� + εN2L. As ε is negligible (and therefore much
smaller than 1/N) the compressed truth table will be smaller than 2L, the size
of the truth table for H. But since H is a random function its truth table cannot
be compressed, reaching a contradiction.

Therefore, any simulator for indifferentiability, regardless of the scheme, must
inherently store information about the adversary. But the existing QROM tech-
niques are utterly incapable of such recording. We therefore ask: Is indifferen-
tiable domain extension even possible?

1.1 This Work

In this work, perhaps surprisingly, we answer the question above in the affir-
mative. Namely, we give a new compressed oracle technique, which allows for
recording the adversary’s queries in a way that the adversary can never detect.
The intuition is surprisingly simple: an adversary interacting with a random ora-
cle can be thought of as being entangled with a uniform superposition of oracles.
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As entanglement is symmetric, if the adversary ever has any information about
the oracle, the oracle must also have information about the adversary. Therefore
a simulator can always record some information about the adversary, if done
carefully.

We then use the technique to prove the indifferentiability of the Merkle-
Damg̊ard construction. We believe our new technique will be of independent
interest; for example our technique can be used to prove the security of the
Fujisaki-Okamoto transformation [FO99], and also gives very short proofs of
several quantum query lower bounds.

The Compressed Oracle Technique. In order to prove indifferentiability, we
devise a new way of analyzing quantum query algorithms

Consider an adversary interacting with an oracle h : {0, 1}m → {0, 1}n. It is
well established that the usual quantum oracle mapping |x, y〉 �→ |x, y ⊕ h(x)〉
is equivalent to the “phase” oracle, which maps |x, u〉 �→ (−1)u·h(x)|x, u〉 (we
discuss this equivalence in Sect. 3). For simplicity, in this introduction we will
focus on the phase oracle, which is without loss of generality.

Next, we note that the oracle h being chosen at random is equivalent (from
the adversary’s point of view) to h being in uniform superposition

∑
h |h〉.

Indeed, the superposition can be reduced to a random h by measuring, and
measuring the h registers (which is outside of A’s view) is undetectable to A.
To put another way, the superposition over h is a purification of the adversary’s
mixed state.

Therefore, we will imagine the h oracle as containing
∑

h |h〉. When A makes
a query on

∑
x,u αx,u|x, u〉, the joint system of the adversary and oracle are

∑

x,u

αx,u|x, u〉 ⊗
∑

h

|h〉

The query introduces a phase term (−1)u·h(x), so the joint system becomes
∑

x,u

αx,u|x, u〉 ⊗
∑

h

|h〉(−1)u·h(x)

We normally think of the phase as being returned to the adversary, but the
phase really affects the entire system, so it is equivalent to think of the phase as
being added to the oracle’s state.

Now, we will think of h as a vector of length 2m × n by simply writing down
h’s truth table. We will think of each x, u pair as a point function Px,u which
outputs u on x and 0 elsewhere. Using our encoding of functions as vectors, we
can write u · h(x) as Px,u · h. We can therefore write the post-query state as

∑

x,u

αx,u|x, u〉 ⊗
∑

h

|h〉(−1)h·Px,u

In general, the state after making q queries can be written as
∑

x1,...,xq,u1,...,uq

αx1,...,xq,u1,...,uq
|ψx1,...,xq,u1,...,uq

〉 ⊗
∑

h

|h〉(−1)h·(Px1,u1+···+Pxq,uq )
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Next, notice that by applying the Quantum Fourier transform to h, the h
registers will now contain (Px1,u1 + · · · + Pxq,uq

) mod 2. Working in the Fourier
domain, we see that each query simply adds Px,u (modulo 2) to the result. In
the Fourier domain, the initial state is 0.

Therefore, from A’s point of view, it is indistinguishable whether the oracle
for h is a random oracle, or it is implemented as follows:

– The oracle keeps as state a vector D ∈ {0, 1}n×2m , initially set to 0.
– On any oracle query, the oracle performs the map |x, u〉⊗|D〉 �→ |x, u〉⊗|D⊕

P (x, u)〉
Thus, with this remarkably simple change in perspective, the oracle can actu-

ally be implemented by recording and updating phase information about the
queries being in made.

We can now take this a couple steps further. Notice that after q queries, D is
non-zero on at most q inputs (since it is the sum of q point functions). Therefore,
we can store the database in an extremely compact form, namely the list of (x, y)
pairs where y = D(x) and y 
= 0. Notice that this allows us to efficiently simulate
a random oracle, without an a priori bound on the number of queries. Previously,
simulating an unbounded number of queries efficiently required computational
assumptions, and simulation was only computationally secure. In contrast, sim-
ulating random oracles exactly required 2q-wise independent functions [Zha12b]
and hence required knowing q up front. We therefore believe this simulation will
have independent applications for the efficient simulation of quantum oracles.
We will call this the compressed Fourier oracle.

We can then take our compressed Fourier oracle, and convert it back into
a primal-domain oracle. Namely, for each (x, y) pair, we perform the QFT on
the y registers. The result is a superposition of databases of (x,w) pairs, where
w roughly represents h(x). For any pair not in the database, h(x) is implicitly
a uniform superposition of inputs independent of the adversary’s view. We call
this the compressed standard oracle. It intuitively represents what the adver-
sary knows about the function h: if (x, y) is in the database then the adversary
“knows” h(x) = y, and otherwise, the adversary “knows” nothing about h(x).
In Sect. 3, we show how to directly obtain the compressed standard oracle.

Applying Compressed Oracles to Indifferentiability. The compressed standard
oracle offers a simple way to keep track of the queries the adversary has made.
In particular, it tracks exactly the kind of information needed in the classical
indifferentiability proof above, namely whether or not a particular value has
been queried by the adversary, and what the value of the oracle at that point
is. We use this to give a quantum indifferentiability proof for Merkle-Damg̊ard
construction using prefix-free encodings [CDMP05].

To illustrate our ideas, consider our simple example above with h0, h1 and
H. Our simulator will simulate h0 as in the compressed standard oracle, keeping
a (superposition over) lists D0 of (x, y) pairs. Next, our simulator must handle
h1 queries. When given a phase query |y, z〉, the simulator does the following.
If first looks for a pair (x, y′) in D0 with y′ = y. If one is found, it reasonably
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guesses that the adversary is interested in computing H(x, z), and so it makes
a query on (x, z) to H. Otherwise, it is reasonable to guess that the adversary
is not trying to compute H on any input, since the adversary does not “know”
any inputs to h0 that would result in a query to h1 on (y, z).

While the above appears to work, we need to make sure the simulator does
not disturb the compressed oracle. Unfortunately, some disturbance is necessary.
Indeed, determining the value of h0(x) is a measurement in the primal domain.
On the other hand, the update procedure for the compressed oracles needs to
decide whether or not x belongs in the database, and this corresponds to a
measurement in the Fourier domain (since in the Fourier domain, h0(x) must
be non-zero). These two measurements do not commute, so by the uncertainty
principle it is impossible to perform both measurements perfectly.

Nonetheless, we show that the errors are small. Intuitively, we observe that
the simulator does not actually need to know the entire value of h0(x), just
whether or not it is equal to y. We call such information a “test”. Similarly, the
compressed oracle implementation just needs to know whether or not h0(x) is
equal to 0, but in the Fourier domain.

Now, these primal and Fourier tests still do not commute. Fortunately, they
“almost” commute, which we formalize in the full version [Zha18]. The intu-
ition is that, if a primal test of the form “is h0(x) = y” has a non-negligible
chance of succeeding, h0(x) must be very “far” from the uniform superposition.
This is because a uniform superposition puts an exponentially small weight on
every outcome. Recall that the uniform superposition maps to h0(x) = 0 in the
Fourier domain. Thus by being “far” from uniform, the Fourier domain test has
a negligibly-small chance of succeeding. Therefore, one of the two tests is always
“almost” determined, meaning the measurement negligibly affects the state. This
means that, no matter what initial state is, the two tests “almost” commute.

Thus, the simulator can perform these tests without perturbing the state
significantly. This shows that h0 queries are correctly simulated; we also need to
show that h1 queries are correctly simulated and consistent with H. The intuition
above suggests that h1 should be consistent with H, and indeed in Sect. 5 we
show this using a careful sequence of hybrids. Then in the full version [Zha18],
we use the same ideas to prove the indifferentiability of Merkle-Damg̊ard.

The Power of Forgetting. Surprisingly, our simulator ends up strongly resembling
the classical simulator. It is natural to ask, therefore, how the simulator gets
around the difficulties outlined above.

First, notice that if we translate the query
∑

x,u |x, u〉 in our example to a
phase query, it becomes

∑
x |x, 0〉. This query has no effect on the oracle’s state.

This means the oracle remains un-entangled with the adversary, as desired.
Second, a query

∑
x |x, 0〉 becomes

∑
x,u |x, u〉 for a phase query. Consider

applying the query to the compressed Fourier oracle. The joint quantum system
of the adversary and simulator becomes

∑

x,u �=0

|x, u〉|{(x, u)}〉 +
∑

x

|x, 0〉|{}〉
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A similar expression holds for the compressed standard oracle. Note that the
simulator can clearly tell (whp) that the adversary has queried on x. Later, when
the adversary queries on the same state a second time, (x, u) will get mapped
to (x, 0), and will hence be removed from the database. Thus, after this later
query, the database contains no information about x. Hence, the adversary is
un-entangled with x, and so it’s tests will output the correct value.

Ultimately then, the key difference between our simulator and the natural
quantum analog of the classical simulator is that our simulator must be ready to
forget some of the oracle points it simulated previously. By implementing h0 as
a compressed oracle, it will forget exactly when it needs to so that the adversary
can never detect that it is interacting with a simulated oracle.

Other Results. We expect our compressed oracle technique will have appli-
cations beyond indifferentiability. Here, we list two additional sets of results we
are able to obtain using our technique:

Post-quantum Security of Fujisaki-Okamoto. The Fujisaki-Okamoto transfor-
mation [FO99] transforms a weak public key encryption scheme into a public
key encryption scheme that is secure against chosen ciphertext attacks, in the
random oracle model. Unfortunately, the classical proof does not work in quan-
tum random oracle model, owing to similar issues with indifferentiability proofs.
Namely, in one step of the proof, the reduction looks at the queries made by the
adversary in order to decrypt chosen ciphertext queries. This is crucial to allow
the reduction to simulate the view of the adversary without requiring the secret
decryption key. But in the quantum setting, it is no longer straightforward to
read the adversary’s queries without disrupting its state.

Targhi and Unruh [TU16] previously modified the transformation by includ-
ing an additional random oracle hash in the ciphertext. In the proof, the hash
function is set to be injective, and the reduction can invert the hash in order to
decrypt.

In the full version [Zha18], we show how to adapt our compressed oracle tech-
nique to prove the security of the original transform without the extra hash. In
addition, we show security against even quantum chosen ciphertext queries, thus
proving security in the stronger model of Boneh and Zhandry [BZ13]. We note
that recently, Jiang et al. [JZC+18] proved the security of the FO transformation
when used as a key encapsulation mechanism. Their proof is tight, whereas ours
is somewhat loose. On the other hand, we note that their proof does not apply
if FO is used directly as an encryption scheme, and does not apply in the case
of quantum chosen ciphertext queries.

Simple Quantum Query Complexity Lower Bounds. We also show that our com-
pressed oracles can be used to give very simple and optimal quantum query
complexity lower bounds for problems for random functions, such as pre-image
search, collision finding, and more generally k-SUM.

Our proof strategy is roughly as follows. First, since intuitively the adversary
has no knowledge of values of h outside of D, except with very small probability
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any successful algorithm will output points in D. Therefore it suffices to bound
the number of queries required to get D to contain a pre-image/collision/k-sum.

For pre-image search, we re-prove the optimal lower bound of Ω(2n/2) queries
of [BBBV97], but for random functions; note that pre-image search for random
functions and worst-case functions is equivalent using simple reductions. The
proof appears superficially similar to [BBBV97]: we show that each query can
increase the “amplitude” on “good” databases by a small O(2−n/2) amount.
After q queries, this amplitude becomes O(q/2n/2), which we then square to get
the probability of a “good” database. The proof is only slightly over a page once
the compressed oracle formalism has been given.

We then re-prove the optimal collision lower bound of Ω(2n/3) queries for
random functions, matching the worst case bound [AS04] and the more recent
average case bound [Zha15]. Remarkably, our proof involves only a few lines
of modification to the pre-image lower bound. We show that the amplitude on
“good” databases increases by O(

√
q × 2n/2) for each query, where the extra

√
q

intuitively comes from the fact that the database has size at most q, giving q
opportunities for a collision every time a new entry is added to the database3.

In contrast to our very simple extension, the prior collision bounds involved
very different techniques and were much more complicated. Also note that prior
works could not prove directly that finding collisions were hard. Instead, they
show that distinguishing a function with many collisions from an injective func-
tion was hard. This then only works directly for expanding functions, which
are of little interest to cryptographers. Zhandry [Zha15] shows for random func-
tions a reduction from expanding functions to compressing functions, giving the
desired lower bound for compressing functions. Our proof, in contrast, works
directly with functions of arbitrary domain and range. These features suggests
that our proof technique is fundamentally different than those of prior works.

By generalizing our collision bound slightly, we can obtain an Ω(2n/(k+1))
lower bound for finding a set of distinct points x1, . . . , xk such that

∑
i H(xi) = 0.

This bound is tight as long as n ≤ km by adapting the collision-finding algorithm
of [BHT98] to this problem. Again, our proof is obtained by modifying just a
few lines of the pre-image search proof.

1.2 Related Works

Ristenpart, Shacham, and Shrimpton [RSS11] shows that indifferentiability is
insufficient for replacing a concrete hash function with a random oracle in the
setting of multi-stage games. Nonetheless, Mittelbach [Mit14] shows that indif-
ferentiability can still be useful in these settings. Exploring the quantum analogs
of these results is an interesting direction for future research.

3 and the square root comes from the fact that the norm of the sum of q unit vectors
of disjoint support is

√
q.
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2 Preliminaries

Distinguishing Quantum States. The density matrix captures all statistical infor-
mation about a mixed state. That is, if two states have the same density matrix,
then they are perfectly indistinguishable.

For density matrices ρ, ρ′ that are not identical, we define the trace distance
as T (ρ, ρ′) = 1

2

∑
i |λi|, where λi are the eigenvalues of ρ−ρ′. The trace distance

captures the maximum distinguishing advantage amongst all possible measure-
ments of the state.

We will need the following Theorem of Bennett et al. (which we have slightly
improved, see full version [Zha18] for the improved proof):

Lemma 1 ([BBBV97]). Let |φ〉 and |ψ〉 be quantum states with Euclidean dis-
tance ε. Then T (|φ〉〈φ|, |ψ〉〈ψ|) = ε

√
1 − ε2/4 ≤ ε.

We will also need the following relaxation of commuting operations:

Definition 1. Let U0, U1 be unitaries over the same quantum system. We say
that U0, U1 ε-almost commute if, for any initial state ρ, the images of ρ under
U0U1 and U1U0 are at most ε-far in trace distance.

3 Oracle Variations

Here, we describe several oracle variations. The oracles will all be equivalent;
the only difference is that the oracle registers and/or the query registers are
encoded in different ways between queries. We start with the usual quantum
random oracle, which comes in two flavors that we call the standard oracle and
phase oracle. Then we will give our compressed standard and phase oracles.

Standard Oracle. Here, the oracle H : {0, 1}m → {0, 1}n is represented as its
truth table: a vector of size 2m where each component is an n-bit string.

The oracle takes as input a state consisting of three sets of registers: m-
qubit x registers representing inputs to the function, n-qubit y registers for
writing the response, and n2m-qubit H registers containing the truth table of the
actual function. The x, y registers come from the adversary, and the H registers
are the oracle’s state, which is hidden from the adversary accept by making
queries. On basis states |x, y〉⊗ |H〉, the oracle performs the map |x, y〉⊗ |H〉 �→
|x, y ⊕ H(x)〉 ⊗ |H〉.

For initialization, the oracle H will be initialized to the uniform superposition
over all H: 1√

2m×2n

∑
H |H〉. We will call this oracle StO.

The only difference between StO and the usual quantum random oracle model
is that, in the usual model, H starts out as a uniformly chosen random function
rather than a superposition (that is, the H registers are the completely mixed
state). We will call the oracle with this different initialization StO′.

Lemma 2. StO and StO′ are perfectly indistinguishable. That is, for any adver-
sary A making oracle queries, let AStO() and AStO′

() denote the algorithm inter-
facing with StO and StO′, respectively. Then Pr[AStO() = 1] = Pr[AStO′

() = 1].
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Proof. This can be seen by tracing out the oracle registers. The mixed state of
the adversary in both cases will be identical. ��
Thus, our initialization is equivalent to H being a uniformly random oracle.

Phase Oracle. We will also consider the well-known phase model of oracle
queries. This model technically offers a different interface to the adversary, but
can be mapped to the original oracle by simple Hadamard operations.

The oracle takes as input a state consisting of three sets of registers: x reg-
isters representing inputs to the function, z phase registers, and H registers
containing the truth table of the actual function. On basis states |x, y〉 ⊗ |H〉, it
performs the map |x, z〉 ⊗ |H〉 �→ (−1)y·H(x)|x, z〉 ⊗ |H〉.

For initialization, H is the uniform superposition as before. We will call this
oracle PhO. Analogous to the above, this is equivalent to the case where H is
uniformly random. The following Lemma is implicit in much of the literature on
quantum-accessible oracles:

Lemma 3. For any adversary A making queries to StO, let B be the adversary
that is identical to A, except it performs the Hadamard transformation H⊗n

to the response registers before and after each query. Then Pr[AStO() = 1] =
Pr[BPhO() = 1].

Compressed Standard Oracles. We now define our compressed standard oracles.
The intuition for our compressed standard oracle is the following. Let |τ〉 be the
uniform superposition. In the standard (uncompressed) oracle, suppose for each
of the 2m output registers, we perform the computation mapping |τ〉 �→ |τ〉|1〉
and |φ〉 �→ |φ〉|0〉 for any |φ〉 orthogonal to |τ〉. In other words, this computation
tests whether or not the state of the output registers is 0 in the Fourier basis. We
will write the output of the computation in some auxiliary space. Now the state
of the oracle is a superposition over truth tables, and a superposition over vectors
in {0, 1}2m containing the output of the tests. A straightforward exercise (and
a consequence of our analysis below) shows that if we perform these tests after
q queries, all vectors in the test vector superposition have at most q positions
containing a 0. The reason is, roughly, if we do the tests before any queries the
vector will be identically 1 since we had a uniform superposition (which is 0 in the
Fourier basis). Then, each query affects only one position of the superposition,
increasing the number of 0’s by at most 1.

Also notice that anywhere the vector contains a 1, the corresponding truth
table component contains exactly the uniform superposition |τ〉. Anywhere the
vector contains a 0, the corresponding truth table component contains a state
that is guaranteed to be orthogonal to |τ〉.

What we can do then is compress this overall state. We will simply write
down all the positions where the test vector contained a 0, and keep track of the
truth table component for that position. Everywhere else we can simply ignore
since we know what the truth table contains. The result is a (superposition over)
database consisting of at most q input/output pairs.
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In more detail, a database D will be a collection of (x, y) pairs, where (x, y) ∈
D means the function has been specified to have value y on input x. We will
write D(x) = y in this case. If, for an input x there is no pair (x, y) ∈ D, then
we will write D(x) = ⊥, indicating that the function has not been specified. We
will maintain that a database D only contains at most one pair for a given x.

Concretely, if we have an upper bound t on the number of specified points, a
database D will be represented an element of the set St, where S = ({0, 1}m ∪
{⊥}) × {0, 1}n. Each value in S is an (x, y) pair; if x 
= ⊥ the pair means
D(x) = y, and x = ⊥ means the pair is unused. For x1 < x2 < · · · < x� and
y1, . . . , y�, the database representing that input xi has been set to yi for i ∈ [�],
with all other points unspecified, will be represented as:

((x1, y1), (x2, y2), . . . , (x�, y�), (⊥, 0n), . . . , (⊥, 0n))

where the number of (⊥, 0n) pairs is equal to t − �.
After query q, the state of the oracle will be a superposition of databases in

this form, using the upper bound t = q. So initially the state is empty. We will
maintain several invariants:

– For any database in the support of the superposition, for any (x, y) pair where
x = ⊥, we have that y = 0n. All (⊥, 0n) pairs are at the end of the list.

– For any database in the support of the superposition, if (x, y) occurs before
(x′, y′), it must be that x < x′.

– For any of the � positions that have been specified, the y registers are in a
state that is orthogonal to the uniform superposition |τ〉 (indicating that in
the Fourier domain, the registers do not contain 0).

We also need to describe several procedures on databases. Let |D| be the
number of pairs (x, y) ∈ D for x 
= ⊥. For a database D with |D| < t and
D(x) = ⊥, write D ∪ (x, y) to be the new database obtained by adding the pair
(x, y) to D, inserting in the appropriate spot to maintain the ordering of the
x values. Since |D| was originally less than t, there will be at least one (⊥, 0n)
pair, which is deleted. Therefore, the overall number of pairs (including ⊥s) in
D and D ∪ {(x, y)} are the same.

Before describing how to process a query, we need to describe a local decom-
pression procedure StdDecompx which acts on databases. This is a unitary oper-
ation. It suffices to describe its action on a set of orthonormal states. Let t be
the current upper bound on the number of set points.

– For D such that D(x) = ⊥ and |D| < t,

StdDecompx|D〉 =
1√
2n

∑

y

|D ∪ (x, y)〉

That is, StdDecompx inserts into D the pair (x, |τ〉). This corresponds to
decompressing the value of the database at position x
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– For D such that D(x) = ⊥ and |D| = t, StdDecompx|D〉 = |D〉. This means,
if there is no room to expand for decompression, StdDecompx does nothing.
Note that these states are illegal and StdDecompx will never by applied to
such states.

– For a D′ such that D′(x) = ⊥ and |D′| < t,

StdDecompx

(
∑

y

(−1)z·y|D′ ∪ (x, y)〉〉
)

=
∑

y

(−1)z·y|D′ ∪ (x, y)〉〉 for z 
= 0

StdDecompx

(
1√
2n

∑

y

|D′ ∪ (x, y)〉〉
)

= |D′〉

In other words, if D already is specified on x, and moreover if the correspond-
ing y registers are in a state orthogonal to |τ〉 (meaning they do not contain 0
in the Fourier domain), then there is no need to decompress and StdDecompx

is the identity. On the other hand, if D is specified at x and the corresponding
y registers are in the state |τ〉, StdDecompx will remove x and the y register
superposition from D.

Note that the left-hand sides of last two cases form an orthonormal basis
for the span of |D〉 such that D(x) 
= ⊥. The left-hand sides of the first two
cases form an orthonormal basis for the remaining D. Thus, StdDecompx is
defined on an orthonormal basis, which by linearity defines it on all states. The
right-hand sides are the same basis states just in a different order. As such, this
operation maps orthogonal states to orthogonal states, and is therefore unitary.
Note that StdDecompx is actually an involution, as applying it twice results in the
identity. Let StdDecomp be the related unitary operating on a quantum system
over x, y,D states, defined by it’s action on the computational basis states as:

|x, y〉 ⊗ |D〉 = |x, y〉 ⊗ StdDecompx|D〉
In other words, in superposition it applies StdDecompx to |D〉, where x is

taken from the x registers.
For some additional notation, we will take y ⊕ ⊥ = y and y · ⊥ = 0. Let

Increase be theprocedure which initializes a new register |(⊥, 0n)〉 and appends
it to the end. In other words, Increase|x, y〉 ⊗ |D〉 = |x, y〉 ⊗ |D〉|(⊥, 0n)〉, where
|D〉|(⊥, 0n)〉 is interpreted as a database computing the same partial function as
D, but with the upper bound on number of points increased by 1.

Let CStO′,CPhsO′ be unitaries defined on the computational basis states as

CStO′|x, y〉 ⊗ |D〉 = |x, y ⊕ D(x)〉 ⊗ |D〉
CPhsO′|x, y〉 ⊗ |D〉 = (−1)y·D(x)|x, y〉 ⊗ |D〉

Finally, we describe the CStO and CPhsO oracles:

CStO = StdDecomp ◦ CStO′ ◦ StdDecomp ◦ Increase

CPhsO = StdDecomp ◦ CPhsO′ ◦ StdDecomp ◦ Increase
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In other words, increase the bound on the number of specified points, then
uncompress at x (which is ensured to have enough space since we increased
the bound), apply the query (which is ensured to be specified since we decom-
pressed), and then re-compress.

Lemma 4. CStO and StO are perfectly indistinguishable. CPhsO and PhO are
perfectly indistinguishable. That is, for any adversary A, we have Pr[ACStO() =
1] = Pr[AStO() = 1], and for any adversary B, we have Pr[BCPhsO() = 1] =
Pr[APhO() = 1].

Proof. We prove the case for CStO and StO, the other case being almost identical.
We prove security through a sequence of hybrids.

Hybrid 0. In this case, the adversary interacts with StO. That is, the oracle’s
database is initialized to the uniform superposition over all H, and each query
performs the unitary mapping |x, y〉 ⊗ |H〉 �→ |x, y ⊕ H(x)〉 ⊗ |H〉.
Hybrid 1. In this hybrid, we use a slightly different way of representing the
function H. Instead of writing H as a truth table, we represent it as a complete
database D = ((0,H(0)), (1,H(1)), . . . , (2m − 1,H(2m − 1))). Here, the upper
bound on the number of determined points is exactly 2m. The oracle’s state
starts out as

1√
2n2m

∑

H

|((0,H(0)), (1,H(1)), . . . , (2m − 1,H(2m − 1)))〉

The update procedure for each query is simply CStO′, meaning that each query
maps |x, y〉 ⊗ |((0,H(0)), (1,H(1)), . . . , (2m − 1,H(2m − 1)))〉 to |x, y ⊕ H(x)〉 ⊗
|((0,H(0)), (1,H(1)), . . . , (2m − 1,H(2m − 1)))〉.

Hybrid 1 is identical to Hybrid 0, except that we have inserted the input
points 1, . . . , 2m − 1 into the oracle’s state, which has no effect on the adversary.

Hybrid 2. Next, introduce a global decompression procedure StdDecomp′, which
applies StdDecompx for all x in the domain, one at a time from 0 up to 2m − 1.

We observe that when the upper bound on determined points is 2m, then
StdDecompx commutes with StdDecompx′ for any x, x′. This readily follows from
the fact that when the upper bound is t = 2m, D(x) = ⊥ implies |D| < t.

In Hybrid 2, the oracle starts out as the empty database with upper bound
2m. Then, each query is implemented as StdDecomp′ ◦ CStO′ ◦ StdDecomp′.

Notice that StdDecomp′ only affects the oracle’s registers and therefore com-
mutes with the any computation on the adversary’s side. Also notice that
between each two queries, StdDecomp′ is applied twice and that it is an involu-
tion. Therefore the two applications cancel out. At the beginning, StdDecomp′

is applied to an empty database, which maps it to the uniform superposition
1√

2n2m

∑

H

|((0,H(0)), (1,H(1)), . . . , (2m − 1,H(2m − 1)))〉

before the first application of CStO′. Therefore, this hybrid is perfectly indistin-
guishable from Hybrid 1.
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Hybrid 3. This hybrid applies StdDecomp ◦ CStO′ ◦ StdDecomp for each query.
To prove indistinguishability from Hybrid 2, consider a database D with

upper bound 2m but where |D| = � for some � ≤ 2m. Notice that for any D′ in
the support of StdDecompx′ |D〉, D′(x) = D(x) for all x 
= x′. This means

CStO′ ◦ StdDecompx′ (|x, y〉 ⊗ |D〉) = StdDecompx′ (|x, y ⊕ D(x)〉 ⊗ |D〉)
= StdDecompx′ ◦ CStO′(|x, y〉 ⊗ |D〉)

In other words, when the query register contains x 
= x′, StdDecompx′ and
CStO′ commute. Therefore,

StdDecomp′ ◦ CStO′ ◦ StdDecomp′(|x, y〉 ⊗ |D〉)
= StdDecompx ◦ CStO′ ◦ StdDecompx(|x, y〉 ⊗ |D〉)
= StdDecomp ◦ CStO′ ◦ StdDecomp(|x, y〉 ⊗ |D〉)

This shows that Hybrid 2 and Hybrid 3 are identical.

Hybrid 4. Finally, this hybrid is the compressed standard oracle: the oracle’s
state starts out empty, and CStO is applied for each query.

To prove equivalence, first notice that for any x, y,D, StdDecomp ◦ CStO′ ◦
StdDecomp(|x, y〉 ⊗ |D〉) has support on databases D′ such that |D′| ≤ |D| + 1.
Indeed, all D′ are defined on the same inputs except for possibly the input x.

This means that after q queries in Hybrid 3, the oracle’s registers only have
support on D containing at most q defined points; the remaining ≥ 2m−q points
are all (⊥, 0n). Therefore, we can discard all but the first q pairs in D, without
affecting the adversary’s state. The result is identical to Hybrid 4. ��

In the full version [Zha18], we give several more oracle variations; while not
used in this work, they may be useful in other settings. These variations also
provide an alternative way to arrive at the compressed standard oracles.

3.1 A Useful Lemma

Here, we provide a lemma which relates the adversary’s knowledge of an oracle
output to the probability that point appears in the compressed oracle database.
This lemma is proved in the full version [Zha18], and follows from a straightfor-
ward (albeit delicate) analysis off the action of CStO.

Lemma 5. Consider a quantum algorithm A making queries to a random oracle
H and outputting tuples (x1, . . . , xk, y1, . . . , yk, z). Let R be a collection of such
tuples. Suppose with probability p, A outputs a tuple such that (1) the tuple is in
R and (2) H(xi) = yi for all i. Now consider running A with the oracle CStO,
and suppose the database D is measured after A produces its output. Let p′ be
the probability that (1) the tuple is in R, and (2) D(xi) = yi for all i (and in
particular D(xi) 
= ⊥). Then

√
p ≤ √

p′ +
√

k/2n.
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4 Quantum Query Bounds Using Compressed Oracles

In this section, we re-prove several known query complexity lower bounds, as well
as provide some new bounds. All these bounds follow from simple applications
of our compressed oracles.

4.1 Optimality of Grover Search

Here, we re-prove that the quadratic speed-up of Grover search is optimal. Specif-
ically, we prove that for a random function H : {0, 1}m → {0, 1}n, any q query
algorithm has a success probability of at most O(q2/2n) for finding a pre-image
of 0n (or any fixed value).

Theorem 1. For any adversary making q queries to CStO or CPhsO and an
arbitrary number of database read queries, if the database D is measured after
the q queries, the probability it contains a pair of the form (x, 0n) is at most
O(q2/2n).

Proof. Let 0n ∈ D mean that D contains a pair of the form (x, 0n). The com-
pressed oracle’s database starts out empty, so the probability 0n ∈ D is zero.
We will show that the probability cannot rise too much with each query. We
consider compressed phase queries, CPhsO. Compressed standard queries are
handled analogously. Consider the joint state of the adversary and oracle just
before the qth CPhsO query:

|ψ〉 =
∑

x,y,z,D

αx,y,z,D|x, y, z〉 ⊗ |D〉

Where D represents the compressed phase oracle, x, y as the query registers,
and z as the adversary’s private storage. Define P as the projection onto the span
of basis states |x, y, z〉 ⊗ |D〉 such that 0n ∈ D. Our goal will be to relate the
norms of P |ψ〉 (the magnitude before the query) to P ·CPhsO|ψ〉 (the magnitude
after the query).

Define projections Q onto states such that (1) 0n /∈ D (meaning the database
does not yet contain 0n), (2) y 
= 0 (meaning CPhsO will affect D), and (3)
D(x) = ⊥ (meaning D has not yet been specified at x). Define projection R
onto states such that 0n /∈ D, y 
= 0 and D(x) 
= ⊥; projection S onto states
such that 0n /∈ D, y = 0. Then P + Q + R + S = I.

Consider Q|ψ〉. CPhsO maps basis states |x, y, z〉⊗|D〉 in the support of Q|ψ〉
to |x, y, z〉⊗ 1√

2n

∑
w(−1)y·w|D ∪ (x,w)〉. Since 0n /∈ D, applying P to this state

will yield |x, y, z〉⊗ 1√
2n

|D∪(x, 0n)〉. Notice that the images of the different basis
states are orthogonal. Therefore, ‖P · CPhsO · Q|ψ〉‖ = 1√

2n
‖Q|ψ〉‖.

For basis vectors in the support of R, we must have D(x) /∈ {⊥, 0n}. Let D′

be the database with x removed, and write D = D′ ∪ (x,w) for w = D(x). Then
some algebraic manipulations show that CPhsO|x, y, z〉 ⊗ |D′ ∪ (x,w)〉 is:
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|x, y, z〉 ⊗
(

(−1)y·w
(

|D′ ∪ (x,w)〉 +
1√
2n

|D′〉
)

+
1
2n

∑

y′
(1 − (−1)y·w − (−1)y·y′

)|D′ ∪ (x, y′)〉
)

Then P ·CPhsO|x, y, z〉 ⊗ |D′ ∪ (x,w)〉 = −(−1)y·w

2n |x, y, z〉 ⊗ |D′ ∪ (x, 0n)〉. Write
R|ψ〉 =

∑
x,y,z,D′,w αx,y,z,D′,w|x, y, z〉 ⊗ |D′ ∪ (x,w)〉. Then ‖P · CPhsO · R|ψ〉‖2

is equal to:

1
4n

∑

x,y,z,D′
‖
∑

w

αx,y,z,D′,w(−1)y·w‖2 ≤ 1
2n

∑

x,y,z,D′,w

‖αx,y,z,D′,w‖2 =
1
2n

‖R|ψ〉‖2

Finally, ‖P · CPhsO · P |ψ〉‖ ≤ ‖P |ψ〉‖ and CPhsO · S|ψ〉 = S|ψ〉. Putting it
all together, we have that ‖P ·CPhsO|ψ〉‖ ≤ ‖P |ψ〉‖ + 1√

2n
(‖Q|ψ〉‖ + ‖R|ψ〉‖) ≤

‖P |ψ〉‖ + 1√
2n

.
Therefore, after q queries, we have that the projection onto D containing a

zero has norm at most q/
√

2n. Now, the probability the database in |ψ〉 contains
a 0n is just the square of this norm, which is at most q2

2n . ��
The following is obtained by combining Theorem 1 with Lemma 5:

Corollary 1. After making q quantum queries to a random oracle, the proba-
bility of finding a pre-image of 0n is at most O(q2/2n).

Proof. We will assume the adversary always makes a final query on it’s output x,
and outputs (x,H(x)). This comes at the cost of at most 1 query, so it does not
affect the asymptotic result. Then we can use the relation R(x, y) which accepts
if and only if y = 0n. In the second experiment of Lemma 5, the only way for
the adversary to win is to have the database contain a pre-image of 0n. As such,
Theorem 1 shows p′ = O(q2/2n). Then Lemma 5 shows that p = O(q2/2n),
which is exactly the probability the adversary outputs a pre-image of 0n when
interacting with the real random oracle.

4.2 Collision Lower Bound

Theorem 2. For any adversary making q queries to CStO or CPhsO and an
arbitrary number of database read queries, if the database D is measured after
the q queries, the resulting database will contain a collision with probability at
most O(q3/2n).

Proof. The proof involves changing just a few lines of the proof of Theorem 1.
We define P to project onto databases D containing a collision, and re-define
Q,R, S accordingly. Write Q|ψ〉 =

∑
x,y,z,D αx,y,z,D|x, y, z〉 ⊗ |D〉. Then

P · CPhsO · Q|ψ〉 =
∑

x,y,z,D

αx,y,z,D|x, y, z〉 ⊗ 1√
2n

∑

w∈D

|D ∪ (x,w)〉
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We can write this as the 1√
2n

∑
i |φi〉, where |φi〉 is the partial sum which sets

w to be the ith element in D (provided it exists). The |φi〉 are orthogonal, and
satisfy ‖|φi〉‖ ≤ ‖Q|ψ〉‖. Moreover, after q queries D has size at most q, and so
there are at most q of the |φi〉. Therefore, ‖P · CPhsO · Q|ψ〉‖ ≤ √

q/2n‖Q|ψ〉‖.
By a similar argument, ‖P · CPhsO · R|ψ〉‖ ≤ √

q/2n‖R|ψ〉‖. Putting every-
thing together, this shows that the norm of P |ψ〉 increases by at most

√
q/2n

with each query. Therefore, after q queries, the total norm is at most
√

q3/2n,
giving a probability of q3/2n. ��
Corollary 2. After making q quantum queries to a random oracle, the proba-
bility of finding a collision is at most O(q3/2n).

4.3 More General Settings

We can easily generalize even further. Let R be a relation on �-tuples over {0, 1}n.
Say that R is satisfied on a database D if D contains � distinct pairs (xi, yi) such
that R(y1, . . . , y�) = 1. Let k(q) be the maximum number of y that can be added
to an unsatisfied database of size at most q − 1 to make it satisfied.

Theorem 3. For any adversary making q queries to CStO or CPhsO and an
arbitrary number of database read queries, if the database D is measured after
the q queries, the resulting database will be satisfied with probability at most
O(q2k(q)/2n).

For the k-sum problem, there are at most
(

q
k−1

)
incomplete tuples that can

be completed by adding a new point. As such, k(q) ≤ (
q

k−1

) ≤ qk−1. This gives:

Corollary 3. After making q quantum queries to a random oracle, the prob-
ability of finding k distinct inputs xi such that

∑
i H(xi) = 0n is at most

O(qk+1/2n).

5 Indifferentiability of A Simple Domain Extender

5.1 Definitions

Let h : {0, 1}m → {0, 1}n be a random oracle, and let Ch : {0, 1}M → {0, 1}N

be a polynomial-sized stateless classical circuit that makes oracle queries to h.

Definition 2. Let H : {0, 1}M → {0, 1}N be a random function. A stateful
quantum polynomial-time simulator SimH : {0, 1}m → {0, 1}n is indifferentiable
for C if, for any polynomial-time distinguisher D making queries to h,H,

|Pr[Dh,Ch

() = 1] − Pr[DSimH ,H() = 1]| < negl

Definition 3. Ch is quantum indifferentiable from a random oracle if there
exists an indifferentiable simulator Sim for C.
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Intuitively, in the “real” world, h is a random function and H is set to be
Ch. Ch is indifferentiable if this real world is indistinguishable from an “ideal”
world, where H is a random function, and h is set to be Simh for some efficient
simulator Sim.

In order to help us prove indifferentiability of a simulator Sim, we introduce
two weaker requirements. The first is indistinguishability, a weakened version of
indifferentiability where the distinguisher is not allowed any queries to H:

Definition 4. A simulator Sim is indistinguishable if, for any polynomial-time
distinguisher D making queries to h,

|Pr[Dh() = 1] − Pr[DSimH

() = 1]| < negl

Next, we introduce the notion of consistency. Here, we set h to be simulated
by SimH , and we ask the adversary to distinguish honest evaluations of H from
evaluations of Ch (where again h is still simulated by SimH).

Definition 5. A simulator Sim is consistent if, for any polynomial-time distin-
guisher D making queries to h,H, if H is simulated by SimH , then

|Pr[DSimH ,H() = 1] − Pr[DSimH ,CSimH

() = 1]| < negl

Lemma 6. Any consistent and indistinguishable simulator is indifferentiable.

The proof of Lemma 6 is straightforward, and proved in the full version [Zha18].
Finally, it is straightforward to adapt the definitions and Lemma 6 to handle

the case of many random compression functions h1, . . . , h�. In this case, C makes
queries to h1, . . . , h�, D has quantum oracle access to h1, . . . , h� and H, while S
makes quantum queries to H and simulates h1, . . . , h�.

5.2 A Simple Domain Extender

We now consider a simple domain extender. Let h1 : {0, 1}m → {0, 1}n, h2 :
{0, 1}n ×{0, 1}� → {0, 1}n be two functions. Let Ch1,h2(x1, x2) = h2(h1(x1), x2).

Theorem 4. If h1, h2 are random oracles, the simple domain extender C is
indifferentiable from a random oracle.

Coron et al. [CDMP05] show that the indifferentiability of C is sufficient
to prove the indifferentiability of Merkle-Damg̊ard for a particular choice of
prefix-free encoding (see paper for details). That part of the paper translates
immediately to the quantum setting, so Theorem 4 then shows quantum indif-
ferentiability for the same prefix free encoding. In the full version [Zha18], we
show more generally that Merkle-Damg̊ard is indifferentiable for any choice of
prefix-free encoding. All the main ideas for the full proof are already contained
in the proof of Theorem 4 below, just the details get a bit more complicated in
the more general setting.
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5.3 Our Simulator

Before describing our simulator, we need some terminology. For a database D of
input/output pairs, a collision is two pairs (x1, y1), (x2, y2) ∈ D,x1 
= x2 such
that y1 = y2. For an input (y, x2) ∈ {0, 1}n × {0, 1}�, a completion in D is a
pair (x1, y) ∈ D. For such a completion, we will call w = (x1, x2) the associated
input.

We define a classical procedure FindInput. FindInput takes as input x ∈
{0, 1}n×{0, 1}�, and a database D. It parses x as (y, x2) ∈ {0, 1}n×{0, 1}�. Then,
it looks for a completion (x1, y) ∈ D. If found, it will take, say, the completion
with the smallest x1 value, and output (b = 1, w = (x1, x2)). If no completion is
found, it will output (b = 0, w = 0m+�). Note that for the output values in D,
FindInput only needs to apply an equality check on those values, testing if they
contain y. By applying such an equality check to each output register, it can
compute b and w. Looking forward, when we implement FindInput in superposi-
tion, this means FindInput only touches the output registers of D by making a
computational basis test.

We are now ready to describe our simulator. Sim will keep a (superposition
over) database Da, which represents the simulation of the random oracle ha that
it will update according to the CStO update procedure. Da is originally empty.
It will also have a private random oracle hb. For concreteness, hb will be imple-
mented using another instance of CStO, but it will be notationally convenient
to treat hb as being a uniformly random function.

On h1 queries, Sim makes a query to ha, performing the appropriate CStO
update procedure to Da. On h2 queries, Sim performs a unitary operation with
the following action on basis states:

|x, y〉 ⊗ |Da〉 �→
{

|x, y ⊕ hb(x)〉 ⊗ |Da〉 if FindInput(x,Da) = (0, 0m+�)
|x, y ⊕ H(w)〉 ⊗ |Da〉 if FindInput(x,Da) = (1, w)

This unitary is straightforward to implement with a single query to each of
hb and H, and is detailed in the full version [Zha18].

In the next three subsections, we prove that our simulator is indifferen-
tiable. In Sect. 5.4, we prove a useful commutativity lemma. Then in Sects. 5.5
and 5.6, we prove the indistinguishability and consistency, respectively, of Sim.
By Lemma 6, this proves that Sim is indifferentiable, proving Theorem 4.

5.4 The Almost Commutativity of StdDecomp and FindInput

Lemma 7. Consider a quantum system over x,D, x′, z. The following two uni-
taries O(1/

√
2n)-almost commute:

– StdDecomp, acting on the x,D registers.
– FindInput, taking as input the D,x′ registers and XORing the output into z.

The intuition is that, for StdDecomp to have any effect, either (1) D(x) = ⊥
or (2) D(x) is in uniform superposition; StdDecomp will simply toggle between
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the two cases. Now, a uniform superposition puts a weight of 1/
√

2n on each
possible y value. Since there is only a single possible y value for D(x) that
matches x′, it is exponentially unlikely that FindInput will find a match at input
x in Case (2). On the other hand, it will never find a match at input x in Case
(1). Hence, there is an exponentially small error between the action of FindInput
on these two cases. We prove the lemma formally in the full version [Zha18].

5.5 Indistinguishability

Lemma 8. Sim is indistinguishable. In particular, for any distinguisher D mak-
ing at most q queries to h1, h2,

|Pr[Dh1,h2() = 1] − Pr[DSimH

() = 1]| < O(q2/
√

2n)

Proof. Recall that in the ideal world where h1, h2 are simulated by SimH , h1

is implemented by a CStO oracle on database Da. By applying Lemma 4, we
can think of the simulator’s other oracle hb as another instance of CStO for a
database Db. Additionally, H can be simulated with yet another instance of
CStO for a database E. Similarly, in the real world, h1, h2 will be implemented
by independent instances of CStO with databases Da,Db. Note that, in either
case, h1 is implemented by a CStO oracle on database Da. Therefore, the only
difference between the two cases is how h2 is implemented.

We define a classical encoding procedure Encode for pairs Da,Db of
databases. Intuitively, Encode will scan the values ((z, x2), y) in Db, seeing if
any of the (z, x2) values correspond to a completion in Da. If so, such a com-
pletion will have an associated input w. Encode will reasonably guess that such
a completion corresponds to an evaluation of H(w) = Ch1,h2(w). Therefore,
Encode will remove the value ((z, x2), y) in Db, and add the pair (w, y) to a new
database E, intuitively representing the oracle H. In more detail, Encode does
the following:

– For each pair ((z, x2), y) ∈ Db, run FindInput((z, x2),Da) = (b, w). If b = 1,
re-label the pair to (w, y)

– Remove all re-labeled pairs Db (which are easily identifiable since the input
will be larger) and place them in a new database E.

We define the following Decode procedure, which operates on triples Da,Db, E:

– Merge the databases Db, E
– For each pair (w, y) that was previously in E, where w = (x1, x2), evaluate

z = Da(x1). Re-label (w, y) to ((z, x2), y). If z = ⊥ or if the input (z, x2) was
already in the database, output ⊥ and abort.

Note that Encode,Decode are independent of the order elements are pro-
cessed. It also follows from the descriptions above that Decode(Encode(Da,Db))
= (Da,Db). Therefore, Encode can be implemented in superposition, giving the
unitary that maps |Da,Db〉 to |Encode(Da,Db)〉. Also note that Encode(∅, ∅) =
(∅, ∅, ∅).
With this notation in hand, we are now ready to prove security: consider a
potential distinguisher D. We prove security through a sequence of hybrids.
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Hybrid 0. This is the real world, where h1, h2 are random oracles. Let p0 be the
probability D outputs 1 in this case.

Hybrid 1. This is still the real world, but we add an abort condition. Namely,
after any query to h1, we measure if the database ha contains a collision; if so, we
immediately abort and stop the simulation. Let p1 be the probability D outputs
1 in Hybrid 1.

Lemma 9. |p1 − p0| ≤ O(
√

q3/2n).

Proof. First, suppose that before the ith query to h1, the superposition over
ha has support only on databases containing no collisions. Let |ψ〉 be the joint
state of the adversary and simulator just after the query to h1. Then write
|ψ〉 = |ψ0〉 + |ψ1〉 where |ψ0〉 is the projection onto states where ha has no
collisions, and |ψ1〉 is the projection onto states where ha contains at least one
collision. Following the proof of Theorem 2, we know that ‖|ψ1〉‖ ≤ √

i/2n.
Therefore, if we let |ψq〉 be the joint state after the qth query in Hybrid

0 and |φq〉 the joint state in Hybrid 2, we would have that ‖|ψq〉 − |φq〉‖ ≤∑q
i=0

√
i/2n ≤ O(

√
q3/2n). By Lemma 1, this means that |p1−p0| ≤ O(

√
q3/2n)

as desired. ��

Hybrid 2. In this hybrid, there are three databases Da,Db, E, initialized to
|∅, ∅, ∅〉. Each query is answered in the following way:

– Apply Decode to the Da,Db, E registers. Measure if Decode gives ⊥, in which
case abort. Otherwise, there are now just two database registers Da,Db.

– Answer an h1 (resp. h2) query by applying the CStO update procedure to Da

(resp. Db).
– Apply Encode to Da,Db.
– Apply the collision check to the database Da.

Let p2 be the probability D outputs 1 in Hybrid 2.

Lemma 10. p1 = p0.

Proof. We start with Hybrid 1. First, by Lemma 4, we can implement Da,Db

in Hybrid 1 as independent instances of CStO. Now, between all the queries
insert Encode followed by Decode. Also insert the two procedures before the first
query. Now each query is preceded by a Decode and followed by a collision check
and an Encode. Note that Encode,Decode do not affect the database Da, and
so commute with the collision check. Therefore, we can swap the order of the
collision check and Encode that follow each query.

By merging the Decode, query, Encode and collision check operations
together, we get exactly the update procedure of Hybrid 2. All that’s left is
an initial Encode procedure at the very beginning, which produces |∅, ∅, ∅〉 as the
database state, just as in Hybrid 2. ��
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Hybrid 3. This hybrid is the ideal world, where h1, h2 queries are answered by
Sim, except that we will have the abort condition if a collision in ha is ever found.
In other words, instead of decoding, applying the query, and then encoding, in
Hybrid 3 we act directly on the encoded state using the algorithms specified
by Sim. For h1 queries, the difference from Hybrid 2 is just that the queries
are made directly to ha, instead of Decode, then ha query, then Encode. For h2

queries, the differences appear more substantial. h2 queries, on superpositions
over x, y,Da,Db, E, can be summarized as follows:

1. Compute the unitary mapping |x, y,Da,Db, E〉 �→ |x, y,Da,Db, E, (b, w) =
FindInput(x,Da)〉

2. In superposition, apply the following conditional procedures:
3. Conditioned on b = 0,

(a) Apply StdDecomp to uncompress Db at x.
(b) Apply in superposition the map

|x, y,Da,Db, E, b, w〉 �→ |x, y ⊕ Db(x),Da,Db, E, b, w〉
(c) Apply StdDecomp to re-compress Db at x.

4. Conditioned on b = 1,
(a) Apply StdDecomp to uncompress E at w.
(b) Apply in superposition the map

|x, y,Da,Db, E, b, w〉 �→ |x, y ⊕ E(w),Da,Db, E, b, w〉
(c) Apply StdDecomp to re-compress E at w.

5. Uncompute (b, w) by running FindInput(x,Da) in superposition again.

Let p3 be the probability D outputs 1 in this hybrid.

Lemma 11. |p3 − p2| ≤ O(q2/
√

2n).

Proof. We start with the very last query, and gradually change the queries one-
by-one from how they were answered in Hybrid 2 to Hybrid 3.

For h1 queries, we observe that it suffices to swap the order of Encode and
CStO. Indeed, suppose we move the final Encode to come before CStO. The previ-
ous query ended with an Encode, and now the current query begins with Decode
then Encode. Since Decode ◦ Encode is the identity, all thee of these operations
collapse into a single Encode, which we keep at the end of the previous query. The
result is that the current query is just a direct call to CStO, as in Hybrid 3. Then
it remains to show that we can swap the order of Encode and CStO. For this,
notice that Encode only interacts with Da through FindInput. As such, all steps
in Encode,CStO commute except for the two StdDecomp operations in CStO and
the FindInput operation in Encode for each entry in Db (plus another FindInput
operation when un-computing the scratch-space of Encode in order to implement
in superposition). By Lemma 7, these ≤ 4q operations each O(1/

√
2n)-almost

commute, meaning Encode and CStO O(q/
√

2n)-almost commute.
For h2 queries, fix an x,Da and suppose Da contains no collisions as guar-

anteed. There are two cases:
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– FindInput(x,Da) = (0, 0m+�). Then in Hybrid 2, decoding/encoding does not
affect the labeling for an (x, z) pair in Db. As such, Hybrid 2 will uncompress
Db at x, apply the map |x, y,Da,Db, E〉 �→ |x, y⊕Db(x),Da,Db, E〉 and then
re-compress Db at x, for these x,Da.

– FindInput(x,Da) = (1, w). Then in Hybrid 2, by the collision-freeness of Da,
decoding will re-label a (w, z) ∈ E (if present) to (x, z) ∈ Db. The effect
of Hybrid 2 in this case will be to uncompress E at w, apply the map
|x, y,Da,Db, E〉 �→ |x, y ⊕ E(x),Da,Db, E〉, and then re-compress E at w.

In either case, answering h2 queries in Hybrid 2 and 3 act identically. Therefore,
this change introduces no error.
After q h1 or h2 queries, the total error between Hybrid 1 and Hybrid 2 is at
most O(q2/

√
2n). ��

Hybrid 4. This is the ideal world, where we remove the abort condition from
Hybrid 3. Let p4 be the probability D outputs 1 in Hybrid 4. By an almost
identical proof to that of Lemma 9, we have:

Lemma 12. |p4 − p3| ≤ O(
√

q3/2n)

Summing up, we have that |p0 − p4| < O(q2/
√

2n), proving Lemma 8. ��

5.6 Consistency

Lemma 13. Sim is consistent. In particular, for any distinguisher D making at
most q quantum queries to h1, h2,H,

|Pr[DSimH ,H() = 1] − Pr[DSimH ,CSimH

() = 1]| < O(
√

q3/2n)

In other words, h1, h2 are simulated as SimH , and the adversary cannot
distinguish between H and Ch1,h2 .

Proof. We first work out how H queries are answered using Ch1,h2 , when we
simulate h1, h2 using SimH . The input registers will be labeled with x = (x1, x2),
and the output registers labeled with y.

1. First, make an h1 query on the x1 registers, writing the output to some new
registers initialized to z = 0n. Since we are implementing h1 using CStO, this
is accomplished using the following steps:
(a) Apply StdDecomp to un-compress Da at x1

(b) Evaluate the map |x1, z, x2, y〉 ⊗ |Da〉 �→ |x1, z ⊕ Da(x1), x2, y〉 ⊗ |Da〉,
where z is the new register that was initialized to 0.

(c) Re-compress Da at x1 by applying StdDecomp again.
2. Next, make an h2 query on input (z, x2) (where z where the registers created

previously) with output registers y. This has the effect of mapping to:

|x1, z, x2, y ⊕ hb(x)〉 ⊗ |Da〉 if FindInput((z, x2),Da) = (0, 0m+�)
|x1, z, x2, y ⊕ H(w)〉 ⊗ |Da〉 if FindInput(z, x2),Da) = (1, w)
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3. Finally, make another h1 query to un-compute the value of z. This is accom-
plished in the following steps:
(a) Apply StdDecomp to un-compress Da at x1

(b) Evaluate the map |x1, z, x2, y〉 ⊗ |Da〉 �→ |x1, z ⊕ Da(x1), x2, y〉 ⊗ |Da〉.
(c) Re-compress Da at x1 by applying StdDecomp again.
(d) Then discard the z registers.

Let D be a potential distinguisher. We consider the following hybrids:

Hybrid 0. In this hybrid, H queries are answered using Ch1,h2 , as worked out
above. Let p0 be the probability D outputs 1.

Hybrid 1. This hybrid is identical to Hybrid 0, except that Steps 1c and 3a are
removed. Let p1 be the probability D outputs 1 in this hybrid.

Lemma 14. |p1 − p0| < O(q/
√

2n).

Proof. Since Steps 1c and 3a are inverses of each other, Hybrid 1 is equiva-
lent to moving Step 3a up to occur just after Step 1c. Note that Step 2 only
interacts with Da through two applications of FindInput (one for computing, one
for un-computing), which in turn O(1/

√
2n)-almost commutes with Step 1c. By

Lemma 7, each query to H therefore creates an error O(1/
√

2n), yielding a total
error of O(q/

√
2n). ��

Hybrid 2. This hybrid is identical to Hybrid 2, except that after each query we
measure if the database Da contains a collision. If so, we abort and stop the
simulation. Let p2 be the probability D outputs 1 in this hybrid. By an almost
identical proof to that of Lemma 9, we have:

Lemma 15. |p2 − p1| < O(
√

q3/2n).

Hybrid 3. This hybrid is identical to Hybrid 2 as outlined above, except that:

– Steps 1c and 3a are removed (as in Hybrid 1 and 2)
– The operation in Step 2 is replaced with

|x1, z, x2, y〉 ⊗ |Da〉 �→ |x1, z, x2, y ⊕ H(x1, x2)〉 ⊗ |Da〉
In other words Hybrid 3 is identical to Hybrid 2, except that we change Step 2.
Let p3 be the probability D outputs 1 in this hybrid.

Lemma 16. p3 = p2.

Proof. In either hybrid, since we do not apply the Steps 1c and 3a, Da is guar-
anteed to contain the pair (x1, z), where z is the same as in Step 2. Therefore,
in Hybrid 2, FindInput((z, x2),Da) is guaranteed to find a completion. Moreover,
for Da that contain no collisions, FindInput((z, x2),Da) will find exactly the com-
pletion (x1, z). In this case, w = (x1, x2), and Hybrid 2 will make a query to
H on (x1, x2). The end result is that for Da containing no collisions, Step 2 is
identical in both Hybrids. Since the collision check guarantees no collisions in
Da, this shows that the two hybrids are identical. ��
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Hybrid 4. In this hybrid, H queries are made directly to H, but we still have
the abort condition. Let p4 be the probability D outputs 1 in this hybrid.

Lemma 17. p4 = p3.

Proof. In Hybrid 3, what remains of Steps 1 and 3 are exact inverses of each
other and moreover commute with the new Step 2 from Hybrid 3. Therefore,
we can remove Steps 1 and 3 altogether without affecting how oracle queries are
answered. The result is identical to Hybrid 4. ��

Hybrid 5. This hybrid has H queries made directly to H, but without the abort
condition. Let p5 be the probability D outputs 1 in this hybrid. By an almost
identical proof to that of Lemma 9, we have:

Lemma 18. |p5 − p4| < O(
√

q3/2n).

Overall then |p0 − p5| < O(
√

q3/2n), finishing the proof of Lemma 13. ��

6 Fujisaki Okamoto CCA-Secure Encryption

Here, we summarize our results on the Fujisaki-Okamoto transformation [FO99].
The transformation starts with a symmetric key encryption scheme (EncS ,DecS)
and a public key encryption scheme (GenP ,EncP ,DecP ). Assuming only mild
security properties of these two schemes (which are much easier to obtain
than strong CCA security), the conversion produces a new public key scheme
(Gen,Enc,Dec) which is secure against chosen ciphertext attacks. Let G,H are
two random oracles, where G outputs keys for EncS and H outputs the random
coins used by EncP . The scheme is as follows:

– Gen = GenP .
– Enc(pk,m) chooses a random δ ∈ {0, 1}n, and computes d ← EncS(H(δ),m).

Then it computes c ← EncP (pk, δ;G(δ, d)), and outputs (c, d)
– Dec(sk, (c, d)) first computes δ′ ← DecP (sk, c). Then it checks that c =
EncP (pk, δ′;G(δ′, d)); if not, output ⊥. Finally it computes and outputs
m′ ← DecS(H(δ′), d)

The main difficulty in the classical proof of security is allowing the reduction
to answer decryption queries. The key idea is that, in order for the adversary to
generate a valid ciphertext, it must have queried the oracles on δ. The reduction
will simulate G,H on the fly by keeping track of tables of input/output pairs.
When a chosen ciphertext query comes in, it will scan the tables looking for a δ
that “explains” the ciphertext.

In the quantum setting, we run into a similar recording barrier as in the
indifferentiability setting. Our key observation is that the output values of the
G,H tables are only used for set membership tests. Just like equality tests used in
our indifferentiability simulator, set membership tests in the primal and Fourier
domain very nearly commute. As such, we can use our compressed oracles to
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mimic the classical proof following our techniques. Our reduction can even handle
chosen ciphertext queries on quantum superpositions of ciphertexts. In the full
version [Zha18], we prove the following theorem:

Theorem 5. If (EncS ,DecS) is one-time secure and (Gen,EncP ,DecP ) is well-
spread and one-way secure, then (Gen,Enc,Dec) is quantum CCA secure in the
quantum random oracle model.
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Abstract. We present an improved version of the one-way to hiding
(O2H) Theorem by Unruh, J ACM 2015. Our new O2H Theorem gives
higher flexibility (arbitrary joint distributions of oracles and inputs, mul-
tiple reprogrammed points) as well as tighter bounds (removing square-
root factors, taking parallelism into account). The improved O2H Theo-
rem makes use of a new variant of quantum oracles, semi-classical oracles,
where queries are partially measured. The new O2H Theorem allows us
to get better security bounds in several public-key encryption schemes.
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1 Introduction

Ever since it was first introduced in [6] as a proof technique for cryptographic
proofs, the random oracle model has been widely used to analyze cryptographic
schemes, especially when highly efficient, practical solutions are desired. In the
post-quantum setting, however, we need to be careful how the random oracle is
modeled. When the adversary makes a query, the input to the random oracle
should not be measured [8]. That is, queries should be possible in superposi-
tion between different inputs (we then speak of a “quantum random oracle”).
Otherwise, the random oracle model would be a very unrealistic idealization of
the real world since a quantum adversary can evaluate, say, a hash function in
superposition.

Unfortunately, proving the security in the quantum random oracle model
is considerably more difficult than in the classical random oracle model. One
example of a classical proof technique that is not easy to mimic is programming
of the random oracle. In this technique, we run the adversary with access to a
random oracle but we change the answer to certain queries during the execution.
In a nutshell, as long as we can show that the probability of changing a value
that the adversary has already queried is negligible, the adversary will not notice
c© International Association for Cryptologic Research 2019
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the programming, and the proof goes through. In the quantum setting, this does
not make sense. The adversary could query the superposition of all inputs in its
first query. Then any programming would change a value that has already been
queried.

A technique that can solve this problem (at least in certain situations) is
the One-Way to Hiding (O2H) Theorem from [33]. The O2H Theorem solves
the reprogramming problem by showing, roughly speaking, that we can bound
the probability that the adversary distinguishes between two oracles G and H
(the original and the reprogrammed oracle) in terms of the probability that the
adversary can guess the location where the oracle is reprogrammed (we speak
of the “guessing game”). This conceptually simple theorem has proven powerful
in a number of security proofs for post-quantum secure encryption schemes and
other constructions (see our overview in Sect. 1.2). However, the O2H Theorem
has a number of limitations that limit its applicability, or give bad bounds in
concrete security proofs.

In this work, we present a new version of the O2H Theorem that improves
on the state of the art in a number of aspects:

– Non-uniform random oracles. The random oracle that is reprogrammed
does not have to be a uniformly random function. We allow any distribution
of oracles, e.g., invertible permutations, ideal ciphers, etc.

– Multiple reprogrammed points. We can reprogram the oracle in more
than a single point. That is, we can reprogram the random oracle at a set of
positions S and then bound the probability that the adversary detects this
reprogramming with a single application of the O2H Theorem.

– Arbitrary joint distributions. We allow the distribution of reprogrammed
locations and of the adversary’s input to be arbitrarily correlated with the
distribution of the random oracle. This is especially important if the repro-
grammed location depends on the random oracle (e.g., reprogramming H(x)
where x := H(r) for random r).

– Tighter bounds for guessing games. Our O2H Theorem bounds the dif-
ference of the square-roots of the adversary probabilities between two games.
In many cases involving guessing games (i.e., where we intend to show that
the probability of a certain event is negligible) this leads to bounds that are
quadratically better.

– Tighter bounds using semi-classical oracles. We introduce a new tech-
nique, called semi-classical oracles. By applying the O2H Theorem to games
involving semi-classical oracles, we can again get better bounds in some cases.
(Whether some advantage is gained depends very much on the specific proof
in which the O2H Theorem is used.)

– Query depth. Our O2H Theorem distinguishes query number q and query
depth d. Thus, for cases in which the adversary has a high parallelism, we
get better bounds (and for sequential adversaries nothing is lost by setting
d := q).

One crucial novelty in our O2H Theorem is the use of “semi-classical oracles”.
In a nutshell, a semi-classical oracle is an oracle that only measures whether the
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adversary queried a given “forbidden” input, but does not measure anything
beyond that. (In contrast, a quantum oracle does not measure anything, and a
classical oracle measures everything.) So, for example, if the adversary queries a
superposition of non-measured inputs, nothing is measured.

Our O2H Theorem bounds the distinguishing probability between two oracles
G and H again in terms of the success probability in a “guessing game” where
the adversary has to query an oracle on one of the forbidden inputs on which G
and H differ. But in contrast to the original O2H Theorem, the adversary is given
a semi-classical oracle in the guessing game! (In the original O2H Theorem, the
adversary is given a quantum oracle.) Using a semi-classical oracle, the guessing
game can be expressed more simply since it is well-defined whether the forbidden
input has been queried or not. (In the original O2H Theorem, we instead have to
stop at a random query and measure whether that particular query queries the
forbidden input. This makes the description of the game more complex, and the
random selection of a single query is the reason why the original O2H Theorem
gives worse bounds.)

We stress that the semi-classical oracles are purely a proof technique and
occur in intermediate games in proofs involving the new O2H Theorem. The
final security results still hold in the quantum random oracle model, not in some
“semi-classical random oracle model”.

In this work, we introduce semi-classical oracles, state and prove the new
O2H Theorem (together with a query complexity result about searching in semi-
classical oracles), and demonstrate its usefulness by elementary examples and by
exploring the impact on the security bounds of existing encryption schemes.

Organization. In Sect. 1.1 we shortly discuss some related work, and in Sect. 1.2
we discuss the impact of our result on existing cryptographic schemes. Section 2
presents basic notation. Our notion of semi-classical oracles is introduced in
Sect. 3. We also state our main theorems in Sect. 3, the proofs are deferred to
Sect. 5 (after the examples). We present examples how to use the new technique
in Sect. 4.

1.1 Related Work

Variants of the O2H Theorem. Variants of the O2H Theorem were intro-
duced in [14,22,31–33], see the beginning of Sect. 1.2 for more details.

Other Proof Techniques for the Quantum Random Oracle Model. [10]
showed that Grover search is optimal with respect to worst-case complexity
([36] when parallelism is considered). [21,32] generalized this to the average-case
which implies that finding preimages of the random oracle is hard. [8] introduced
“history-free reductions” which basically amounts to replacing the random oracle
by a different function right from the start. [38] showed that random oracles can
be simulated using 2q-wise independent functions. Based on this, [32] introduces
a technique for extracting preimages of the random oracle. [38] introduces the
“semi-constant distributions” technique that allows us to program the random
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oracle in many random locations with a challenge value without the adversary
noticing. [37] improves on this with the “small-range distribution” technique
that allows us to simulate random oracles using random looking functions with
a small range. [39] shows that random oracles are indistinguishable from random
permutations, and as a consequence that random oracles are collision resistant
(this is generalized by [4,15,29] to the case of non-uniformly distributed func-
tions). Collision-resistance of the random oracle is generalized to the “collapsing
property” which allows us to show that measuring the output of the random
oracle effectively measures the input. More general methods for problems in
quantum query complexity (not limited to random oracles) include the polyno-
mial method [5] and the adversary method [1]. [3] shows that the difficulties of
using the quantum random oracle are not just a matter of missing proof tech-
niques, but that in certain cases classically secure schemes are not secure in the
quantum random oracle model.

Cryptosystems Whose Security Proof is Based on O2H Theorems. See
Sect. 1.2.

1.2 Impact on Existing Cryptosystems

Above, we explained why our new O2H Theorem can lead to better bounds. We
will also illustrate that point with a few simple examples in Sect. 4. However, to
better judge the impact on realistic cryptosystems, we need to ask the question
how the bounds achieved by existing security proofs improve.

We are aware of the following results in the quantum random oracle model
that employ some variant of the original O2H Theorem from [33]: [33] intro-
duced the O2H Theorem to build revocable timed-release encryption schemes,
[31] introduced an “adaptive” version of the O2H Theorem1 to analyze a quan-
tum position verification protocol, [32] made the O2H Theorem even more adap-
tive and used this for the design of non-interactive zero-knowledge proof systems
and signature schemes (and this in turn is the basis for various follow-up schemes
such as [9,11–13,18,35]). [34] uses the O2H variant from [32] to prove security of
Fiat-Shamir [16], both as a proof system and as a signature scheme. [14] uses a
variant of the O2H Theorem for proving security of Leighton-Micali signatures
[25] (their variant generalizes [33] in some aspects but only works when the
position where the oracle is programmed is information-theoretically hidden).
[28] uses the O2H Theorem for constructing PRFs and MACs. [30] was the first
paper to employ the O2H Theorem for designing public key encryption schemes:
it proved the security of variants of the Fujisaki-Okamoto transform [17] and
the OAEP transform [7] (introducing one extra hash value in the ciphertext
for “key confirmation”). [19] modularized and improved the Fujisaki-Okamoto
variant from [30], also using key confirmation. [27] proved security of a construc-
tion without key confirmation, still using the O2H Theorem. [22] introduced a
variant of the O2H Theorem that allows some of the oracles and inputs given
1 Which allows to reprogram the random oracle at a location that is influenced by the

adversary.
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to the adversary to be non-uniformly distributed, subject to the independence
and uniformity of certain random variables, and uses it to prove the security of
further public-key encryption schemes. (Since our O2H Theorem can also handle
non-uniform inputs, it might be that it can serve as a drop-in replacement in
the proofs in [22] removing the necessity to check the independence conditions.)
[24] proves security of public-key encryption schemes with explicit rejection; an
earlier version [23] of [24] used the O2H Theorem from [22], the current version
uses our new O2H Theorems. [20] analyzes public-key encryption and authenti-
cated key exchange schemes, using the original O2H Theorem from [33] in the
first revision, but improving the bounds using our new O2H Theorem.

Thus, O2H Theorems might be one of the most widely used proof tech-
nique for cryptosystems involving quantum random oracles. We expect that our
improvement of the O2H Theorem allows us to derive better security bounds
for most of the above schemes. To give some evidence to this hypothesis, we
report on the advantages gained by using our improvement in three of the
works above, namely Targhi-Unruh [30], Hövelmanns-Kiltz-Schäge-Unruh [20],
and Jiang-Zhang-Ma [24].

In case of [24], an earlier draft [23] used the O2H variant from [22], while the
current version [24] already uses our new O2H Theorem. Since the O2H variant
from [22] was introduced to handle the case where not all oracles and adversary
inputs are independent, this demonstrates that our O2H Theorem can handle
this case, too. (Besides giving tighter bounds.) Similarly, the first eprint version
of [20] used the original O2H Theorem from [33], while the second version was
updated to use our new O2H Theorem.

The old and new bounds are summarized in Fig. 1. The figure lists the advan-
tages against IND-CCA security for different settings. Since it is difficult to
compare the various formulas, in the column “queries”, we summarize the rela-
tionship between query number and attack probability: Assuming that the terms
involving ε, the advantage against the underlying public-key encryption scheme,
dominate all other terms, how many queries does one have to make to break
the scheme (with constant probability)? E.g., given an advantage q

√
ε, we need

q ≈ ε−1/2 queries for a successful attack, so we write q2 ≈ 1/ε in that case.
Furthermore, in the full version [2], we reprove the security of the Fujisaki-

Okamoto variant from [30] using our O2H Theorem. That result is particularly
interesting because of its heavy use of the O2H Theorem. This allows us to make
use of several of the new features of our O2H Theorem.

– It uses “nested invocations” of the O2H Theorem. That is, first the O2H
Theorem is applied as usual to a pair of games, leading to a guessing game in
which we need to show that the guessing probability Pguess of the adversary
is negligible. But then the O2H Theorem is applied again to prove this. Since
the bound obtained by the O2H Theorem contains a square root over Pguess,
the nested application of the O2H Theorem introduces nested square roots,
i.e., a forth root. This leads to a particularly bad bound in [30].
In contrast, our new O2H Theorem allows us to directly bound the differ-
ence of the square roots of the success probabilities of the adversary in two
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Setting Bound Queries
Targhi-Unruh [30]

old O2H, one-way εsym + q9/52−γ/5 + q3/2ε1/4 + q3/22−n1/4 q6 ≈ 1/ε

new O2H, IND-CPA εsym + q9/52−γ/5 + qq
1/2
dec ε1/2 + q3/2qdec2−n/2 q2qdec ≈ 1/ε

new O2H, one-way εsym + q9/52−γ/5 + q3/2qdecε
1/2 q3q2dec ≈ 1/ε

]02[hurnU-egähcS-ztliK-snnamlevöH
old O2H, IND-CPA qε1/2 + q2−n/2 q2 ≈ 1/ε

new O2H, IND-CPA q1/2ε1/2 + q2−n/2 q ≈ 1/ε

Jiang-Zhang-Ma [24]
old O2H, one-way qε1/2 q2 ≈ 1/ε

new O2H, one-way qε1/2 q2 ≈ 1/ε

new O2H, IND-CPA q1/2ε1/2 + q2−n/2 + q2−n′
q ≈ 1/ε

The “setting” column says whether the proof uses the old/new O2H and whether it is
based on one-wayness or IND-CPA security of the underlying public-key encryption
scheme.
The “bound” column gives the bound on the advantage of the adversary against
IND-CCA security, up to constant factor. (In the case of [30] a hybrid public-key
encryption scheme is constructed, in the other cases a KEM.) ε is the advantage of
the reduced adversary against the one-wayness or IND-CPA security of the underlying
public-key scheme, respectively. (A complete description would contain the runtime of
that adversary. For this overview this is not relevant since in all cases, that runtime did
not change when switching to the new O2H Theorem.) εsym is the advantage against the
underlying symmetric encryption scheme. q is the number of queries (random oracle +
decryption queries), qdec only the decryption queries. γ is the min-entropy of ciphertexts,
n the plaintext length of the underlying public-key scheme, and n′ is the length of the
additional hash appended to the ciphertext in [24].
The “queries” column summarizes the effect of queries compared to the security of
the underlying public-key scheme (see the explanation in the text, higher exponent is
worse).
For simplicity, we give the bounds for the case where no decryption errors occur.

Fig. 1. Security bounds of different Fujisaki-Okamoto variants with new and old O2H
Theorems.

games. This means that in a nested invocation, when we analyze Pguess, the
O2H Theorem directly tells us how

√
Pguess changes (instead of how Pguess

changes). This avoids the nested square root.
– It uses the adaptive version of the O2H Theorem (from [31]). While our O2H

Theorem is not adaptive (in the sense that the input where the oracle is
reprogrammed has to be fixed at the beginning of the game), it turns out
that in the present case our new O2H Theorem can replace the adaptive one.
This is because our new O2H Theorem allows us to reprogram the oracle at a
large number of inputs (not just a single one). It turns out we do not need to
adaptively choose the one input to reprogram, we just reprogram all potential
inputs. At least in the proof from [30], this works without problems.
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We restate (in [2]) the proof from [30] both under the assumption that the
underlying public-key encryption scheme is one-way and under the assumption
that it is IND-CPA secure. While in the original proof, we get essentially the
same bound no matter which of the two assumptions we use, with the new O2H
Theorem, the resulting bounds are much better when using IND-CPA security
(but there is also an improvement in the one-way case).

The resulting bounds are given in Fig. 1 as well. We see that the biggest
improvement is in the case of IND-CPA security, where the dependence on the
query number changed from the sixth power to cubic.

We also noticed a mistake in the proof,2 which we fixed in our proof. (We do
not know if the fix carries over to the original proof.)

But our analysis also shows some potential for future research on the O2H
Theorem. The proof from [30] constructs a plaintext extractor Dec∗∗ that is
relatively inefficient because it iterates through a large number of possible can-
didate keys. Thus the number of oracle queries performed by Dec∗∗ (namely,
O(qqdec)) by far outweighs the number of oracle queries performed by the adver-
sary (namely, O(q)). This large number of queries negatively influences the
bounds obtained when applying the new O2H Theorem. However, the O(qqdec)
queries performed by Dec∗∗ are all classical, only O(q) quantum queries are
made. Our O2H Theorem treats classical and quantum queries the same. A vari-
ant of the O2H Theorem that gives better bounds when only a small fraction
of the queries are quantum would lead to improvements in the bounds obtained
here. We leave this as a problem for future work.

2 Preliminaries

For basics of quantum computing, we refer to a standard textbook such as [26].
Given a function f : X → Y , we model a quantum-accessible oracle O for

f as a unitary transformation Uf operating on two registers Q,R with spaces
C

X and C
Y , respectively, where Uf : |q, r〉 �→ |q, r ⊕ f(x)〉, where ⊕ is some

involutive group operation (e.g., XOR if Y is a set of bitstrings).
A quantum oracle algorithm is an algorithm that can perform classical and

quantum computations, and that can query classical and/or quantum-accessible
oracles. We allow an oracle algorithm A to perform oracle queries in parallel. We
say A is a q-query algorithm if it performs at most q oracle queries (counting
parallel queries as separate queries), and has query depth d if it invokes the
oracle at most d times (counting parallel queries as one query). For example, if
A performs 5 parallel queries followed by 7 parallel queries, we have q = 12 and
d = 2.

The distinction between query number and query depth is important because
realistic brute-force attacks are highly parallel. It’s easy to do 264 hash queries
2 In Game 7 in [30], a secret δ∗ is encrypted using a one-time secure encryption scheme,

and the final step in the proof concludes that therefore δ∗ cannot be guessed. How-
ever, Game 7 contains an oracle Dec∗∗ that in turn accesses δ∗ directly, invalidating
that argument.
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on parallel machines—the Bitcoin network does this several times a minute—but
it would take millennia to do them sequentially. Query depth is also important
because early quantum computers are likely to lose coherency quickly, limiting
them to shallow circuits. Our model does not capture this limitation because it
does not differentiate between a deep quantum computation and several shallow
ones with measurements between. But we hope that future work can account for
coherency using a notion of query depth.

We will make use of the well-known fact that any quantum oracle algorithm
AO(z) can be transformed into a unitary quantum oracle algorithm with con-
stant factor computational overhead and the same query number and query
depth. Such an algorithm has registers QA (for its state), and Q1, . . . , Qn and
R1, . . . , Rn for query inputs and outputs, respectively. It starts with an initial
state |Ψ〉 (that may depend on the input z). Then, A alternatingly applies a
fixed unitary U on all registers (independent of z and O), and performs parallel
queries. Parallel queries apply the oracle O to Qi, Ri for each i = 1, . . . , n. (I.e.,
if O is implemented by Uf , we apply Uf ⊗ · · · ⊗ Uf between U -applications.)
Finally, the classical output of AO(z) is the result of a projective measurement
on the final state of A. This implies that in many situations, we can assume our
algorithms to be unitary without loss of generality.

3 Semi-classical Oracles

Classical oracles measure both their input and their output, whereas quantum-
accessible oracles measure neither. We define semi-classical oracles, which mea-
sure their output but not their input. Formally, a semi-classical oracle OSC

f for
a function f with domain X and codomain Y is queried with two registers: an
input register Q with space C

X and an output register R with space C
Y .

When queried with a value |x〉 in Q, the oracle performs a measurement of
f(x). Formally, it performs the measurements corresponding to the projectors
My : y ∈ Y where My :=

∑
x∈S:f(x)=y|x〉〈x|. The oracle then initializes the R

register to |y〉 for the measured y.
In this paper, the function f is always the indicator function fS for a set S,

where fS(x) = 1 if x ∈ S and 0 otherwise. For brevity, we overload the notation
OSC

S to be the semiclassical oracle for this index function.
To illustrate this, let us see what happens if the adversary performs the same

query with a quantum oracle, a classical oracle, and a semi-classical oracle imple-
menting the indicator function for S, respectively: Say the adversary sends the
query

∑
x 2−n/2|x〉|0〉, and say S = {x0}. When querying a quantum oracle, the

oracle returns the state
∑

x 2−n/2|x〉|fS(x)〉 = 2−n/2|x〉|1〉 +
∑

x�=x0
2−n/2|x〉|0〉.

When querying a classical oracle, the resulting state will be |x〉|fS(x)〉 for a
uniformly random x. But when querying a semi-classical oracle, with probabil-
ity 1 − 2−n, the resulting state is

∑
x�=x0

1√
2n−1

|x〉|0〉, and with probability 2−n,
the resulting state is |x0〉|1〉. In particular, the superposition between all |x〉 that
are not in S is preserved!
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In the execution of a quantum algorithm AOSC
S , let Find be the event that

OSC
S ever returns |1〉. This is a well-defined classical event because OSC

S mea-
sures its output. This event is called Find because if it occurs, the simulator
could immediately stop execution and measure the input register Q to obtain
a value x ∈ S. If H is some other quantum-accessible oracle with domain X
and codomain Y , we define H \ S (“H punctured on S”) as an oracle which, on
input x, first queries OSC

S (x) and then H(x). We call this “puncturing” for the
following reason: when Find does not occur, the outcome of AH\S is independent
of H(x) for all x ∈ S. Those values are effectively removed from H’s domain.
The following lemma makes this fact formal.

Lemma 1. Let S ⊆ X be random. Let G,H : X → Y be random functions
satisfying ∀x /∈ S. G(x) = H(x). Let z be a random bitstring. (S,G,H, z may
have arbitrary joint distribution.)

Let A be a quantum oracle algorithm (not necessarily unitary).
Let E be an arbitrary (classical) event.
Then Pr[E ∧ ¬Find : x ← AH\S(z)] = Pr[E ∧ ¬Find : x ← AG\S(z)].

Unruh’s “one-way to hiding” (O2H) Theorem [33] is a key ingredient in most
post-quantum security analyses. This theorem bounds how much a quantum
adversary’s behavior can change when the random oracle changes on a set S,
based on the probability that measuring a random query would give a result
in S, which we call the “guessing probability”. Semi-classical oracles allow us
to split the O2H Theorem into two parts. The first part bounds how much a
quantum adversary’s behavior changes when a random oracle is punctured on S
based on Pr [Find]:

Theorem 1 (Semi-classical O2H). Let S ⊆ X be random. Let G,H : X →
Y be random functions satisfying ∀x /∈ S. G(x) = H(x). Let z be a random
bitstring. (S,G,H, z may have arbitrary joint distribution.)

Let A be an oracle algorithm of query depth d (not necessarily unitary).
Let

Pleft := Pr[b = 1 : b ← AH(z)]

Pright := Pr[b = 1 : b ← AG(z)] (1)

Pfind := Pr[Find : AG\S(z)] Lem. 1= Pr[Find : AH\S(z)]

Then

|Pleft − Pright|≤ 2
√

(d + 1) · Pfind and
∣
∣∣
√

Pleft − √
Pright

∣
∣∣≤ 2

√
(d + 1) · Pfind

The theorem also holds with bound
√

(d + 1)Pfind for the following alternative
definitions of Pright:

Pright := Pr[b = 1 : b ← AH\S(z)], (2)
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Pright := Pr[b = 1 ∧ ¬Find : b ← AH\S(z)], (3)

Pright := Pr[b = 1 ∧ ¬Find : b ← AG\S(z)], (4)

Pright := Pr[b = 1 ∨ Find : b ← AH\S(z)], (5)

Pright := Pr[b = 1 ∨ Find : b ← AG\S(z)]. (6)

In this theorem, we give A only access to a single oracle (G or H). In many
settings, there may be additional oracles that A has access to. It may not be
obvious at the first glance, but Theorem 1 applies in that case, too. Since there
is no assumption on the runtime of A, or on the size of z, nor on the number of
queries made to the additional oracles, additional oracles can simply be encoded
as part of z. That is, if we want to consider an adversary AH,F (), we can instead
write AH(F ) where F is a complete (exponential size) description of F .

The proof of Theorem 1 is given in Sect. 5.2.
The second part relates Pr [Find] to the guessing probability:

Theorem 2 (Search in semi-classical oracle). Let A be any quantum oracle
algorithm making some number of queries at depth at most d to a semi-classical
oracle with domain X. Let S ⊆ X and z ∈ {0, 1}∗. (S, z may have arbitrary
joint distribution.)

Let B be an algorithm that on input z chooses i
$← {1, . . . , d}; runs AOSC

∅ (z)
until (just before) the i-th query; then measures all query input registers in the
computational basis and outputs the set T of measurement outcomes.

Then
Pr[Find : AOSC

S (z)] ≤ 4d · Pr[S ∩ T �= ∅ : T ← B(z)] (7)

The proof is given in Sect. 5.3.
In the simple but common case that the input of A is independent of S, we

get the following corollary:

Corollary 1. Suppose that S and z are independent, and that A is a q-query
algorithm. Let Pmax := maxx∈X Pr[x ∈ S]. Then

Pr[Find : AOSC
S (z)] ≤ 4q · Pmax. (8)

For example, for uniform x ∈ {1, . . . , N}, AOSC
{x} finds x with probability

≤ 4q/N .

Proof. Since the query depth of A does not occur in the lemma, we can assume
that A does not perform parallel queries. Then the output T of B in Theorem 2
has |T | ≤ 1, and d = q. Thus Pr[S ∩T �= ∅ : T ← B(z)] is simply the probability
that B(z) outputs an element of S. Hence Pr[S ∩ T �= ∅ : T ← B(z)] ≤ Pmax.
Then by Theorem 2, Pr[Find : AOSC

S (z)] ≤ 4q · Pmax. ��
Note that Corollary 1 is essentially optimal (we cannot improve on the fac-

tor 4, see Appendix A). Thus, searching in a semi-classical oracle is still slightly
easier than in a classical one.
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4 Examples How to Use the O2H Theorems

To illustrate the use of the theorems from the previous section, we give two
illustrative examples: hardness of searching in a sparse random function, and
hardness of inverting a random oracle with leakage (in the sense that an only
computationally secret encryption of the preimage is given to the adversary).

4.1 Hardness of Searching in a Sparse Random Function

Consider the following setting: H : X → {0, 1} is a random function where for
each x, H(x) = 1 with probability ≤ λ (not necessarily independently). What
is the probability to find x with H(x) = 1 in q queries? We will prove an upper
bound.

We solve this problem using the semi-classical O2H technique introduced by
Theorem 1. Let A be a q-query algorithm with depth d. We want to bound
Pr[H(x) = 1 : x ← AH()]. We do this by a series of games.

Game 1. x ← AH(). Measure x. Then A wins if H(x) = 1.

We would like to apply Theorem 1 to this game. But it doesn’t work well to
apply it to AH because H is also used outside of A. Therefore, we use a different
but obviously equivalent game:

Game 2. Define ÂH() to run x ← AH(); measure x; and return b := H(x).
Game 2 runs b ← ÂH(). Then A wins if b = 1.

Note that Â is a (q + 1)-query algorithm with depth d + 1.
We can apply the semi-classical O2H Theorem (Theorem 1), variant (4)3 to

this game, where G := 0 (the constant zero function) and S := {x : H(x) = 1}.
This gives us:

∣∣
∣
√

Pr[b = 1 : Game 2]
︸ ︷︷ ︸

Pleft

−
√

Pr[b = 1 ∧ ¬Find : Game 3]
︸ ︷︷ ︸

Pright

∣∣
∣

≤
√

(d + 2)Pr[Find : Game 3]
︸ ︷︷ ︸

Pfind

(9)

with

Game 3. Run b ← ÂG\S(). Then A wins if b = 1 and not Find.

3 Theorem 1 gives us different options how to define the right game. Conceptually
simplest is variant (1) (it does not involve a semi-classical oracle in the right game),
but it does not apply in all situations. The basic idea behind all variants is the same,
namely that the adversary gets access to an oracle G that behaves differently on the
set S of marked elements.

In the present proof, we use specifically variant (4) because then Game 4 will be
of a form that is particularly easy to analyze (the adversary has winning probability
0 there).
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which is equivalent to

Game 4. x ← AG\S(); set b ← (G \ S)(x). Then A wins if b = 1 and not Find.

What has happened so far? We have used the O2H Theorem to rewrite a
game with access to an oracle H (Game 1) into the same game with a different
oracle G = 0 (Game 4) (“right game”). The new oracle is considerably simpler: in
this specific case, it is all zero. The difference between the two games is bounded
by (9) in terms of how hard it is to find an element in the set S (the “marked
elements”), i.e., a position where G and H differ (the “finding game”). This is the
typical way of applying an O2H Theorem: Replace the oracle H by something
simpler, continue the game-based proof from the right game, and additionally
perform a second game-based proof to bound the probability of finding a marked
element in the finding game.

However, there are several crucial differences to the use of prior O2H lemmas
(e.g., [33]). First, prior O2H Theorems required G and H to be uniformly random
functions, and to differ only at a single location x. But here H is not assumed to
be uniform, and it differs from G at more than a single input (i.e. at the entire
set S). This allows us to analyze search problems with multiple targets.

Second, (9) has square roots on the left-hand side. This is optional: Theorem
1 also gives a bound without square roots. In our example, since Pright is very
small, the square-root variant gives smaller bounds for Pleft.

Third, the finding game is expressed using semi-classical oracles. This is never
a limitation because we can always replace the semi-classical oracles by quantum-
accessible ones using Theorem 2 (which then gives bounds comparable to the
O2H from [33]). However, as we will see in the next section, in some cases semi-
classical oracles give better bounds.

In our case, we trivially have Pr[G(x) = 1∧¬Find : Game 4] = 0 since G = 0.
However, analyzing Pr[Find : Game 3] is less trivial. At the first glance, it

seems that having access to the oracle G = 0 yields no information about S,
and thus finding an element of S is down to pure luck, and cannot succeed with
probability greater than (q+1)λ. But in fact, computing G\S requires measuring
whether each query is in S. The measurement process can leak information about
S. Section A shows that at least in some cases, it is possible to find elements of
S with greater probability than (q + 1)λ. Fortunately, we have a result for this
situation, namely Corollary 1, which shows that Pr[Find : Game 4] ≤ 4(q + 1)λ.

Plugging this into (9), we get

Pr[H(x) = 1 : Game 1] ≤ 4(d + 2)(q + 1)λ.

Without the square roots on the left-hand side of (9), we would get only the
bound

√
4(d + 2)(q + 1)λ.

We summarize what we have proven in the following lemma:

Lemma 2 (Search in unstructured function). Let H be a random function,
drawn from a distribution such that Pr[H(x) = 1] ≤ λ for all x. Let A be
a q-query adversary with query depth d. Then Pr[H(x) = 1 : b ← AH()] ≤
4(d + 2)(q + 1)λ.
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While this is a simple consequence of our O2H technique, we are not aware
that this bound was already presented in the literature. While [36] already
showed a trade-off between parallelism and query number in unstructured quan-
tum search. However, our result gives an explicit (and tight) success probability
and applies even to functions whose outputs are not i.i.d. For the special case of
no-parallelism (d = q) and i.i.d. functions, the best known bound was [21, The-
orem 1] which we improve upon by a factor of 2. Additionally, our lemma allows
the different outputs of H to be correlated while prior results require them to
be independent.

4.2 Hardness of Inverting a Random Oracle with Leakage

The previous example considered a pure query-complexity problem, searching
in a random function. It can easily be solved with other techniques (giving
slightly different bounds). Where O2H Theorems shine is the combination of
computational hardness and random oracles. The following example illustrates
this.

Let E be a randomized algorithm taking input from a space X, such that it
is difficult to distinguish the distributions

D1 := {(x,E(x)) : x
$← X} and D0 := {(x1, E(x2)) : x1, x2

$← X}

For a quantum algorithm B, define its E-distinguishing advantage as

AdvIND−E(B) :=
∣∣∣∣
Pr [1 ← B(x, e) : (x, e) ← D1]

− Pr [1 ← B(x, e) : (x, e) ← D0]

∣∣∣∣

For example, E could be IND-CPA-secure encryption. Let H : X → Y be a
random oracle which is independent of E. How hard is it to invert H with a
leakage of E? That is, given a quantum oracle algorithm A, we want to bound

AdvOW-LEAK-E(A) := Pr
[
AH(H(x), E(x)) = x : x

$← X
]

We can do this using a series of games. For brevity, we will go into slightly
less detail than in Sect. 4.1. Let wi be the probability that the adversary wins
Game i.

Game 0 (Original). x
$← X;x′ ← AH(H(x), E(x)). The adversary wins if

x′ = x.

Now choose a random y
$← Y , and set a different random oracle G := H(x := y)

which is the same as H on every input except S := {x}. We can define a new
game where the adversary has access to G \ S:

Game 1 (Punctured, first try). x
$← X;x′ ← AG\{x}(H(x), E(x)). The

adversary wins if x′ = x and not Find.
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Applying Theorem 1 variant (4),4 we find that
∣∣∣
∣∣∣∣

√
Pr[x′ = x : Game 0]
︸ ︷︷ ︸

Pleft=w0

−
√

Pr[x′ = x ∧ ¬Find : Game 1]
︸ ︷︷ ︸

Pright=w1

∣∣∣
∣∣∣∣

≤
√

(d + 1)Pr [Find : Game 1]
︸ ︷︷ ︸

Pfind

Unlike in Sect. 4.1, this time we do not have a trivial bound for w1. We could
bound it in terms of distinguishing advantage against E. But let’s instead try
to make this game more like the ones in Sect. 4.1: we can cause the adversary
to Find instead of winning. To do this, we just apply an extra hash operation.
Let ÂH(y, e) be the algorithm which runs x′ ← AH(y, e); computes H(x′) and
ignores the result; and then returns x′. Then Â performs q + 1 queries at depth
d + 1. This gives us a new game:

Game 2 (Original with extra hash). x
$← X;x′ ← ÂH(H(x), E(x)). The

adversary wins if x′ = x.

Clearly w2 = w0. The new punctured game is also similar:

Game 3 (Punctured, extra hash). x
$← X;x′ ← ÂG\{x}(H(x), E(x)). The

adversary wins if x′ = x and not Find.

Applying Theorem 1 variant (4)5 as before gives

|√w3 − √
w2| ≤

√
(d + 2)Pr [Find : Game 3] (10)

But the adversary cannot win Game 3: the extra hash query triggers Find if
x′ = x, and the adversary does not win if Find. Therefore w3 = 0. Plugging this
into (10) and squaring both sides gives:

w0 = w2 ≤ (d + 2)Pr [Find : Game 3] (11)

It remains to bound the right-hand side. We first note that in Game 3, the value
H(x) is only used once, since the adversary does not have access to H(x): it only
has access to G, which is the same as H everywhere except x. So Game 3 is the
same as if H(x) is replaced by a random value:

Game 4 (No H(x)). Set x
$← X; y $← Y ; ÂG\{x}(y,E(x)). We do not care

about the output of Â, but only whether it Finds.

Clearly Pr [Find : Game 4] = Pr [Find : Game 3]. Finally, we apply the indistin-
guishability assumption by comparing to the following game:

4 Choosing a different variant here would slightly change the formula below but lead
to the same problems.

5 The reason for choosing this particular variant is that same as in footnote 3.
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Game 5 (IND-E challenge). (x1, x2)
$← X; y $← Y ; ÂG\{x1}(y,E(x2)).

Let B(x, e) be an algorithm which chooses y
$← Y ; runs ÂG\{x}(y, e); and

returns 1 if Find and 0 otherwise. Then B runs in about the same time as
A plus (q + 1) comparisons. If (y, e) are drawn from D1, then this experiment
is equivalent to Game 4, and it they are drawn from D0 then it is equivalent to
Game 5. Therefore B is a distinguisher for E with advantage exactly

AdvIND−E(B) = |Pr [Find : Game 5] − Pr [Find : Game 4]| (12)

Furthermore, in Game 5, the oracle G is punctured at x1, which is uniformly
random and independent of everything else in the game. So by Theorem 2,

Pr [Find : Game 5] ≤ 4(q + 1)/card (X)

Combining this with (11) and (12), we have

AdvOW-LEAK-E(A) ≤ (d + 2)AdvIND−E(B) +
4(d + 2)(q + 1)

card (X)

This is a much better bound than we would have gotten without using semi-
classical oracles (i.e., the O2H Theorem from [33]). In front of AdvIND−E(B),
we only have the factor d + 2. In contrast, if we had applied Theorem 2 directly
after using Theorem 1, then we would have gotten a factor of O(qd) in front of
AdvIND−E(B). If we had used the O2H from [33], then we would have gotten an
even greater bound of O(q

√
AdvIND−E(B) + 1/card (X)). However, this bound

with semi-classical oracles assumes indistinguishability, whereas an analysis with
the original O2H Theorem would only require E to be one-way.

5 Proofs

5.1 Auxiliary Lemmas

The fidelity F (σ, τ) between two density operators is tr
√√

στ
√

σ, the trace
distance TD(σ, τ) is defined as 1

2 tr|σ − τ |, and the Bures distance B(τ, σ) is√
2 − 2F (τ, σ).

Lemma 3. For states |Ψ〉, |Φ〉 with ‖|Ψ〉‖ = ‖|Φ〉‖ = 1, we have

F (|Ψ〉〈Ψ |, |Φ〉〈Φ|) ≥ 1 − 1
2
‖|Ψ〉 − |Φ〉‖2

so that
B(|Ψ〉〈Ψ |, |Φ〉〈Φ|) ≤ ‖|Ψ〉 − |Φ〉‖

Proof. We have

‖|Ψ〉 − |Φ〉‖2 = (〈Ψ | − 〈Φ|)(|Ψ〉 − |Φ〉) = ‖|Ψ〉‖2 + ‖|Φ〉‖2 − 〈Ψ |Φ〉 − 〈Φ|Ψ〉
= 2 − 2�(〈Ψ |Φ〉) ≥ 2 − 2|〈Ψ |Φ〉| (∗)= 2 − 2F (|Ψ〉〈Ψ |, |Φ〉〈Φ|)

where � denotes the real part, and (∗) is by definition of the fidelity F (for
pure states). Thus F (|Ψ〉〈Ψ |, |Φ〉〈Φ|) ≥ 1− 1

2‖|Ψ〉 − |Φ〉‖2 as claimed. The second
inequality follows from the definition of Bures distance. ��
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Lemma 4 (Distance measures vs. measurement probabilities). Let
ρ1, ρ2 be density operators (with tr ρi = 1). Let M be a binary measurement
(e.g., represented as a POVM). Let Pi be the probability that M returns 1 when
measuring ρi.

Then √
P1P2 +

√
(1 − P1)(1 − P2) ≥ F (ρ1, ρ2) (13)

Also, ∣∣∣
√

P1 −
√

P2

∣∣∣ ≤ B(ρ1, ρ2). (14)

Furthermore,
|P1 − P2| ≤ TD(ρ1, ρ2) ≤ B(ρ1, ρ2). (15)

Proof. In this proof, given a probability P , let P̄ := 1 − P . Let E be the super-
operator that maps ρ to the classical bit that contains the result of measuring ρ

using M . That is, for every density operator ρ with tr ρ = 1, E(ρ) =
(
p 0
0 p̄

)
where

p is the probability that M returns 1 when measuring ρ.

Then ρ′
i := E(ρi) =

(
Pi 0
0 P̄i

)
for i = 1, 2. We then have

F (ρ1, ρ2)
(∗)

≤ F (ρ′
1, ρ

′
2)

(∗∗)=
∥∥∥
√

ρ′
1

√
ρ′
2

∥∥∥
tr

= tr
(√

P1P2 0

0
√

P̄1P̄2

)
=

√
P1P2 +

√
P̄1P̄2

where (∗) is due to the monotonicity of the fidelity [26, Thm. 9.6], and (∗∗) is
the definition of fidelity. This shows (13). To prove (14), we compute:

(√
P1 −

√
P2

)2

= P1 + P2 − 2
√

P1P2

≤ P1 + P2 − 2
√

P1P2 +
(√

P̄1 −
√

P̄2

)2

= 2 − 2
√

P1P2 − 2
√

P̄1P̄2

(13)

≤ 2 − 2F (ρ1, ρ2)
(∗)= B(ρ1, ρ2)2

where (∗) is by definition of the Bures distance. This implies (14).
The first inequality in (15) is well-known (e.g., [26, Thm. 9.1]). For the second

part, we calculate

TD(ρ, τ)
(∗)

≤
√

1 − F (ρ, τ)2 =

√
1 + F (ρ, τ)

2
·
√

2 − 2F (ρ, τ)

=

√
1 + F (ρ, τ)

2
· B(ρ, τ)

(∗∗)

≤ B(ρ, τ)

Here the inequality marked (∗) is shown in [26, (9.101)], and (∗∗) is because
0 ≤ F (ρ, τ) ≤ 1. ��
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5.2 Proof of Theorem 1

In the following, let H : X → Y , S ⊆ X, z ∈ {0, 1}∗.

Lemma 5 (O2H in terms of pure states). Fix H,S, z. Let AH(z) be a uni-
tary quantum oracle algorithm of query depth d. Let QA denote the register
containing all of A’s state.

Let L be a quantum register with space C
2d (for the “query log”).

Let BH,S(z) be the unitary algorithm on registers QA, L that operates like
AH(z), except:

– It initializes the register L with |0 . . . 0〉.
– When A performs its i-th set of parallel oracle queries on input/output reg-

isters (Q1, R1), . . . , (Qn, Rn) that are part of QA, B instead first applies US

on (Q1, . . . , Qn, L) and then performs the oracle queries. Here US is defined
by:

US |x1, . . . , xn〉|l〉 :=

{
|x1, . . . , xn〉|l〉 (every xj /∈ S),
|x1, . . . , xn〉|flipi(l)〉 (any xj ∈ S)

Let |Ψleft〉 denote the final state of AH(z), and |Ψright〉 the final state of
BH,S(z).

Let P̃find be the probability that a measurement of L in the state |Ψright〉
returns �= 0. (Formally,

∥
∥(I ⊗ (I − |0〉〈0|))|Ψright〉

∥
∥2.)

Then ∥∥|Ψleft〉 ⊗ |0〉 − |Ψright〉
∥∥2 ≤ (d + 1)P̃find.

Proof. We first define a variant Bcount of the algorithm B that, instead of keeping
a log of the successful oracle queries (as B does in L), just counts the number
of successful oracle queries (in a register C). Specifically:

Let C be a quantum register with space C
{0,...,d}, i.e., C can store states

|0〉, . . . , |d〉. Let BH,S
count(z) be the unitary algorithm on registers QA, S that oper-

ates like AH(z), except:

– It initializes the register C with |0〉.
– When A performs its i-th set of parallel oracle queries on input/output

registers ((Q1, R1), . . .) that are part of QA, B instead first applies U ′
S on

(Q1, . . . , Qn), C and then performs the oracle queries. Here U ′
S is defined by:

U ′
S |x1, . . . , xn〉|c〉 :=

{
|x1, . . . , xn〉|c〉 (every xj /∈ S),
|x1, . . . , xn〉|c + 1 mod d + 1〉 (any xj ∈ S)

Note that the mod d+1 part of the definition of U ′
S has no effect on the behavior

of B̃ because US is applies only d times. However, the mod d + 1 is required so
that US is unitary.
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Consider the state |Ψcount〉 at the end of the execution BH,S
count(z). This may

be written

|Ψcount〉 =
d∑

i=0

|Ψ ′
i〉|i〉C . (16)

for some (non-normalized) states |Ψ ′
i〉 on QA.

Consider the linear (but not unitary) map N ′ : |x〉|y〉 �→ |x〉|0〉. Obviously,
N ′ commutes with the oracle queries and with the unitary applied by A between
queries (since those unitaries do not operate on C.) Furthermore N ′U ′

S = N ′,
and the initial state of Bcount is invariant under N ′. Thus N ′|Ψcount〉 is the same
as the state we get if we execute Bcount without the applications of U ′

S . But
that state is |Ψleft〉|0〉C because the only difference between Bcount and A is that
Bcount initializes C with |0〉 and applies U ′

S to it.
So we have

d∑

i=0

|Ψ ′
i〉|0〉C = N ′|Ψcount〉 = |Ψleft〉|0〉C

and hence

|Ψleft〉 =
d∑

i=0

|Ψ ′
i〉. (17)

The state |Ψright〉 is a state on QA, L and thus can be written as

|Ψright〉 =
∑

l∈{0,1}q

|Ψl〉|l〉L (18)

for some (non-normalized) states |Ψl〉 on QA.
Furthermore, both |Ψcount〉 and |Ψright〉, when projected onto |0〉 in register

C/L, respectively, result in the same state, namely the state corresponding to
no query to OSC

S succeeding. By (16) and (18), the result of that projection is
|Ψ0〉|0〉L and |Ψ ′

0〉|0〉C , respectively. Hence

|Ψ0〉 = |Ψ ′
0〉. (19)

Furthermore, the probability that no query succeeds is the square of the norm
of that state. Hence ∥∥|Ψ0〉

∥∥2 = 1 − P̃find. (20)

We have

d∑

i=0

∥
∥|Ψ ′

i〉
∥
∥2 =

d∑

i=0

∥
∥|Ψ ′

i〉|i〉C
∥
∥2 =

∥∥
∥

d∑

i=0

|Ψ ′
i〉|i〉C

∥∥
∥
2 (16)=

∥
∥|Ψcount〉

∥
∥2 = 1.

∑

l∈{0,1}d

∥∥|Ψl〉
∥∥2 =

∑

l∈{0,1}d

∥∥∥|Ψl〉|l〉L
∥∥∥
2

=
∥∥∥
∑

l∈{0,1}d

|Ψl〉|l〉L
∥∥∥
2 (18)=

∥∥|Ψright〉
∥∥2 = 1.
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Thus

d∑

i=1

∥∥|Ψ ′
i〉

∥∥2 = 1 − ∥∥|Ψ ′
0〉

∥∥2 (20)= P̃find,
∑

l∈{0,1}d

l �=0

∥∥|Ψl〉
∥∥2 = 1 − ∥∥|Ψ0〉

∥∥2 (20)= P̃find. (21)

Therefore
∥
∥∥|Ψright〉 − |Ψleft〉|0〉L

∥
∥∥
2 (18)=

∥
∥∥
(|Ψ0〉 − |Ψleft〉

)|0〉 +
∑

l∈{0,1}d

l �=0

|Ψl〉|l〉
∥
∥∥
2

=
∥∥∥|Ψ0〉 − |Ψleft〉

∥∥∥
2

+
∑

l∈{0,1}d

l �=0

∥∥|Ψl〉
∥∥2 (21)=

∥∥∥|Ψ0〉 − |Ψleft〉
∥∥∥
2

+ P̃find

(19),(17)=
∥∥∥

d∑

i=1

|Ψ ′
i〉

∥∥∥
2

+ P̃find

(∗)

≤
( d∑

i=1

∥∥∥|Ψ ′
i〉

∥∥∥
)2

+ P̃find

(∗∗)

≤ d ·
d∑

i=1

∥∥∥|Ψ ′
i〉

∥∥∥
2

+ P̃find

(21)= dP̃find + P̃find = (d + 1)P̃find.

Here (∗) uses the triangle inequality, and (∗∗) the AM-QM (or Jensen’s) inequal-
ity. This is the inequality claimed in the lemma. ��

Theorem 1 follows mechanically from Lemma 5 by applying Lemmas 4 and
3 to each case.

Lemma 6 (O2H in terms of mixed states). Let X,Y be sets, and let H :
X → Y, S ⊂ X, z ∈ {0, 1}∗ be random. (With some joint distribution.)

Let A be an algorithm which queries H at depth d. Let Pfind be as in Theo-
rem 1.

Let ρleft denote the final state of AH(z).
Let ρright denote the final state of AH\S. This is the state of the registers QA

and L, where QA is the state of A itself, and L is a register that contains the
log of the responses of OSC

S . If the i-th query to OSC
S returns 	i, then L contains

|	1 . . . 	q〉 at the end of the execution of B.
Then F (ρleft ⊗ |0〉〈0|, ρright) ≥ 1− 1

2 (d+1)Pfind and B(ρleft ⊗ |0〉〈0|, ρright) ≤√
(d + 1)Pfind.

Proof. Without loss of generality, we can assume that A is unitary: If A is not
unitary, we can construct a unitary variant of A that uses an extra auxiliary
register Z, and later trace out that register again from the states ρleft and ρright.

Let
∣∣ΨHSz

left

〉
be the state

∣∣Ψleft

〉
from Lemma 5 for specific values of H,S, z.

And analogously for
∣∣ΨHSz

right

〉
and P̃HSz

find .
Then ρleft = ExpHSz[

∣∣ΨHSz
left

〉〈
ΨHSz
left

∣∣].
Furthermore, if we define ρ′

right := ExpHSz[|ΨHSz
right 〉〈ΨHSz

right |], then ρright =
EL(ρ′

right) where EL is the quantum operation that performs a measurement in
the computational basis on the register L.
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And Pfind = ExpHSz[P̃HSz
find ].

Then

F (ρleft ⊗ |0〉〈0|, ρright)
= F

(EL(ρleft ⊗ |0〉〈0|), EL(ρ′
right)

)

(∗)

≥ F
(
ρleft ⊗ |0〉〈0|, ρ′

right

)

= F

(
Exp
HSz

[∣∣ΨHSz
left

〉〈
ΨHSz
left

∣∣ ⊗ |0〉〈0|
]
,Exp
HSz

[∣∣ΨHSz
right

〉〈
ΨHSz
right

∣∣
])

(∗∗)

≥ Exp
HSz

[
F

(∣∣ΨHSz
left

〉〈
ΨHSz
left

∣
∣ ⊗ |0〉〈0|, ∣∣ΨHSz

right

〉〈
ΨHSz
right

∣
∣)

]

Lem. 3≥ 1 − 1
2 Exp

HSz

[∥
∥|ΨHSz

left 〉 ⊗ |0〉 − |ΨHSz
right 〉

∥
∥2

]

Lem. 5≥ 1 − 1
2

Exp
HSz

[
(d + 1)P̃HSz

find

]
= 1 − 1

2 (d + 1)Pfind.

Here (∗) follows from the monotonicity of the fidelity [26, Thm. 9.6], and (∗∗)
follows from the joint concavity of the fidelity [26, (9.95)]. This shows the first
bound from the lemma.

The Bures distance B is defined as B(ρ, τ)2 = 2(1 − F (ρ, τ)). Thus

B(ρleft ⊗ |0〉〈0|, ρright)2 = 2(1 − F (ρleft ⊗ |0〉〈0|, ρright))
≤ 2(1 − (1 − 1

2 (d + 1)Pfind)) = (d + 1)Pfind,

hence B(ρleft ⊗ |0〉〈0|, ρright) ≤ √
(d + 1)Pfind. ��

Theorem 1 (Semi-classical O2H – restated). Let S ⊆ X be random. Let
G,H : X → Y be random functions satisfying ∀x /∈ S. G(x) = H(x). Let z be a
random bitstring. (S,G,H, z may have arbitrary joint distribution.)

Let A be an oracle algorithm of query depth d (not necessarily unitary).
Let

Pleft := Pr[b = 1 : b ← AH(z)]

Pright := Pr[b = 1 : b ← AG(z)] (1)

Pfind := Pr[Find : AG\S(z)] Lem. 1= Pr[Find : AH\S(z)]

Then

|Pleft − Pright|≤ 2
√

(d + 1) · Pfind and
∣∣
∣
√

Pleft − √
Pright

∣∣
∣≤ 2

√
(d + 1) · Pfind

The theorem also holds with bound
√

(d + 1)Pfind for the following alternative
definitions of Pright:

Pright := Pr[b = 1 : b ← AH\S(z)], (2)
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Pright := Pr[b = 1 ∧ ¬Find : b ← AH\S(z)], (3)

Pright := Pr[b = 1 ∧ ¬Find : b ← AG\S(z)], (4)

Pright := Pr[b = 1 ∨ Find : b ← AH\S(z)], (5)

Pright := Pr[b = 1 ∨ Find : b ← AG\S(z)]. (6)

Proof. We first prove the theorem using the definition of Pright from (2).
Let M be the measurement that measures, given the the register QA, L, what

the output b of A is. Here QA is the state space of A, and L is the additional
register introduced in Lemma 6. (Since A obtains b by measuring QA, such a
measurement M exists.)

Let PM (ρ) denote the probability that M returns 1 when measuring a state ρ.
Then Pleft = PM (ρleft ⊗ |0〉〈0|) and Pright = PM (ρright) where ρleft and ρright

are defined in Lemma 6.
Then

∣∣∣Pleft − Pright

∣∣∣ =
∣∣∣PM (ρleft ⊗ |0〉〈0|) − PM (Pright)

∣∣∣
Lem. 4≤ B(ρleft ⊗ |0〉〈0|, ρright)
Lem. 6≤

√
(d + 1)Pfind

∣∣∣
√

Pleft − √
Pright

∣∣∣ =
∣∣∣
√

PM (ρleft ⊗ |0〉〈0|) −
√

PM (Pright)
∣∣∣

Lem. 4≤ B(ρleft ⊗ |0〉〈0|, ρright)
Lem. 6≤

√
(d + 1)Pfind.

This shows the theorem with the definition of Pright from (2).
Now we show the theorem using the definition of Pright from (3). Let M

instead be the measurement that measures whether b = 1 and L contains |0〉
(this means Find did not happen). Then Pleft = PM (ρleft ⊗ |0〉〈0|) and Pright =
PM (ρright), and the rest of the proof is as in the case of (2).

Now we show the theorem using the definition of Pright from (5). Let M
instead be the measurement that measures whether b = 1 or L contains |x〉
for x �= 0 (this means Find did happen). Then Pleft = PM (ρleft ⊗ |0〉〈0|) and
Pright = PM (ρright), and the rest of the proof is as in the case of (2).

Now we show the theorem using the definition of Pright from (4). This follows
immediately by case (3), and the fact that Pr[b = 1 ∧ ¬Find : b ← AH\S(z)] =
Pr[b = 1 ∧ ¬Find : b ← AG\S(z)] by Lemma 1.

Now we show the theorem using the definition of Pright from (6). By
Lemma 1,

Pr[b = 1 ∧ ¬Find : b ← AH\S(z)] = Pr[b = 1 ∧ ¬Find : b ← AG\S(z)] (22)
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Pr[true ∧ ¬Find : b ← AH\S(z)] = Pr[true ∧ ¬Find : b ← AG\S(z)]. (23)

From (23), we get (by considering the complementary event):

Pr[Find : b ← AH\S(z)] = Pr[Find : b ← AG\S(z)]. (24)

Adding (22) and (24), we get

Pr[b = 1 ∨ Find : b ← AH\S(z)] = Pr[b = 1 ∨ Find : b ← AG\S(z)]. (25)

Then case (6) follows from case (5) and the fact (25).
Now we show the theorem using the definition of Pright from (1). Let

Pmid := Pr[b = 1 ∧ ¬Find : b ← AH\S(z)],

P ′
mid := Pr[b = 1 ∧ ¬Find : b ← AG\S(z)],

P ′
find := Pr[Find : AG\S(z)].

By the current lemma, case (3) (which we already proved), we have

|Pleft − Pmid| ≤
√

(d + 1)Pfind, |Pleft − Pmid| ≤
√

(d + 1)Pfind,

and by case (4), we also get

|Pright − P ′
mid| ≤

√
(d + 1)P ′

find, |Pright − P ′
mid| ≤

√
(d + 1)P ′

find,

Note that in the second case, we invoke the current lemma with G and H
exchanged, and our Pright is their Pleft.

By Lemma 1, Pmid = P ′
mid and by (24), Pfind = P ′

find. With this and the
triangle inequality, we get

|Pleft − Pright| ≤ 2
√

(d + 1)Pfind, |Pleft − Pright| ≤ 2
√

(d + 1)Pfind.

as required. ��

5.3 Proof of Theorem 2

In the following, let S ⊆ X, z ∈ {0, 1}∗.

Lemma 7. Fix S, z (S, z are not randomized in this lemma.) Let AH(z) be a
unitary oracle algorithm with query depth d.

Let B be an oracle algorithm that on input z does the following: pick
i

$← {1, . . . , d}, runs AOSC
∅ (z) until (just before) the i-th query, measure all query

input registers in the computational basis, output the set T of measurement out-
comes.

Then
Pr[Find : AOSC

S (z)] ≤ 4d · Pr[S ∩ T �= ∅ : T ← B(z)].
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Proof. Let |Ψi〉 be the (non-normalized) state of AOSC
S (z) right after the i-th

query in the case that the first i queries return 0. That is, ‖|Ψi〉‖2 is the prob-
ability that the first i queries return 0, and |Ψi〉/‖|Ψi〉‖ is the state conditioned
on that outcome. Let |Ψ ′

i〉 be the corresponding state of AOSC
∅ (z), that is, |Ψ ′

i〉 is
the state just after the ith query (or before, since queries to OSC

∅
do not affect

the state). Note that |Ψ0〉 = |Ψ ′
0〉 is the initial state of A(z) (independent of the

oracle).
From the state |Ψi〉, the algorithm A first applies a fixed unitary U that

depends only on A. Then it queries the semi-classical oracle OSC
S .

Let PS be the orthogonal projector projecting the query input registers
Q1, . . . , Qn onto states |T 〉 with S ∩T �= ∅, formally PS :=

∑
T s.t.S∩T �=∅

|T 〉〈T |.
Thus ‖PSU |Ψi〉‖2 is the probability of measuring T with S ∩ T �= ∅ in registers
Q1, . . . , Qn given the state U |Ψi〉.

Then the i-th query to OSC
S applies I − PS to |Ψi〉. Therefore |Ψi+1〉 =

(I − PS)U |Ψi〉.
Let pi = 1−‖|Ψi〉‖2 be the probability that one of the first i queries returns 1,

and let

ri := pi + 2‖|Ψi〉 − |Ψ ′
i〉‖2 = 1 − ‖|Ψi〉‖2 + 2‖|Ψi〉‖2 − 4�〈Ψ ′

i |Ψi〉 + 2 ‖|Ψ ′
i〉‖2︸ ︷︷ ︸
=1

= 3 − 4�〈Ψ ′
i |Ψi〉 + ‖|Ψi〉‖2. (26)

Notice that r0 = 0 since |Ψ0〉 = |Ψ ′
0〉 and ‖|Ψ0〉‖ = 1. During the (i + 1)-st query,

U |Ψi〉 is changed to U |Ψi〉 − PSU |Ψi〉, and U |Ψ ′
i〉 stays the same, so that

|Ψi+1〉 = U |Ψi〉 − PSU |Ψi〉
|Ψ ′

i+1〉 = U |Ψ ′
i〉

Therefore,

‖|Ψi+1〉‖2 = ‖U |Ψi〉‖2 − 〈
Ψi

∣∣U†PSU
∣∣Ψi

〉 − 〈
Ψi

∣∣U†P †
SU

∣∣Ψi

〉
+

〈
Ψi

∣∣U†P †
SPSU

∣∣Ψi

〉

= ‖|Ψi〉‖2 − 〈
Ψi

∣∣U†PSU
∣∣Ψi

〉
(27)

because PS is a projector and thus P †
SPS = P †

S = PS . Likewise,

〈Ψ ′
i+1|Ψi+1〉 =

〈
Ψ ′
i

∣∣U†U
∣∣Ψi

〉 − 〈
Ψ ′
i

∣∣U†PSU
∣∣Ψi

〉

= 〈Ψ ′
i |Ψi〉 − 〈

Ψ ′
i

∣∣U†PSU
∣∣Ψi

〉
(28)

Let
gi := 〈Ψ ′

i−1|U†PSU |Ψ ′
i−1〉 =

∥∥PSU |Ψ ′
i−1〉

∥∥2
.

Then gi is the probability that the algorithm B returns T with S ∩T �= ∅ when
measured at the i-th query.
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We calculate

ri+1 − ri
(26)= −4�〈Ψ ′

i+1|Ψi+1〉 + ‖|Ψi+1〉‖2 + 4�〈Ψ ′
i |Ψi〉 − ‖|Ψi〉‖2

(27),(28)= 4�〈Ψ ′
i |U†PSU |Ψi〉 − 〈Ψi|U†PSU |Ψi〉

= 4〈Ψ ′
i |U†PSU |Ψ ′

i〉 − 〈2Ψ ′
i − Ψ |U†PSU |2Ψ ′

i − Ψi〉︸ ︷︷ ︸
≥0

≤ 4〈Ψ ′
i |U†PSU |Ψ ′

i〉 = 4gi+1

Since r0 = 0, by induction we have

Pr[Find : AOSC
S (z)] = pd ≤ rd ≤ 4

d∑

i=1

gi = 4d · Pr [S ∩ T �= ∅ : T ← B(z)]

as claimed. ��
Theorem 2 (Search in semi-classical oracle – restated). Let A be any
quantum oracle algorithm making some number of queries at depth at most d to
a semi-classical oracle with domain X. Let S ⊆ X and z ∈ {0, 1}∗. (S, z may
have arbitrary joint distribution.)

Let B be an algorithm that on input z chooses i
$← {1, . . . , d}; runs AOSC

∅ (z)
until (just before) the i-th query; then measures all query input registers in the
computational basis and outputs the set T of measurement outcomes.

Then
Pr[Find : AOSC

S (z)] ≤ 4d · Pr[S ∩ T �= ∅ : T ← B(z)] (7)

Proof. Immediate from Lemma 7 by using the fact that A can always be trans-
formed into a unitary oracle algorithm, and by averaging. ��
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A Optimality of Corollary 1

Lemma 8. If S = {x} where x
$← {1, . . . , N}, then there is a q-query algorithm

AOSC
S such that

Pr[Find : AOSC
S ()] ≥ 4q − 3

N
− 8q(q − 1)

N2

Proof. The algorithm is as follows:
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– Make the first query with amplitude 1/
√

N in all positions.
– Between queries, transform the state by the unitary U := 2E/N − I where

E is the matrix containing 1 everywhere. That U is unitary follows since
U†U = 4E2/N2 − 4E/N + I = I using E2 = NE.

One may calculate by induction that the final non-normalized state has ampli-
tude (

1 − 2
N

)q−1

· 1√
N

in all positions except for the xth one (where the amplitude is 0), so its squared
norm is

1 − Pr[Find] =
(

1 − 2
N

)2q−2

· 1
N

· (N − 1) =
(

1 − 2
N

)2q−2

·
(

1 − 1
N

)

As a function of 1/N , this expression’s derivatives alternate on [0, 1/2], so it is
below its second-order Taylor expansion:

1 − Pr[Find] ≤ 1 − 4q − 3
N

+
8q(q − 1)

N2

This completes the proof. ��
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Abstract. In this work we show that the sponge construction can be
used to construct quantum-secure pseudorandom functions. As our main
result we prove that random sponges are quantum indistinguishable from
random functions. In this setting the adversary is given superposition
access to the input-output behavior of the construction but not to the
internal function. Our proofs hold under the assumption that the inter-
nal function is a random function or permutation. We then use this
result to obtain a quantum-security version of a result by Andreeva,
Daemen, Mennink, and Van Assche (FSE’15) which shows that a sponge
that uses a secure PRP or PRF as internal function is a secure PRF.
This result also proves that the recent attacks against CBC-MAC in
the quantum-access model by Kaplan, Leurent, Leverrier, and Naya-
Plasencia (Crypto’16) and Santoli, and Schaffner (QIC’16) can be pre-
vented by introducing a state with a non-trivial inner part.

The proof of our main result is derived by analyzing the joint distri-
bution of any q input-output pairs. Our method analyzes the statistical
behavior of the considered construction in great detail. The used tech-
niques might prove useful in future analysis of different cryptographic
primitives considering quantum adversaries. Using Zhandry’s PRF/PRP
switching lemma we then obtain that quantum indistinguishability also
holds if the internal block function is a random permutation.

Keywords: Symmetric cryptography · Keyed sponges ·
Indistinguishability · Quantum security · Message-authentication codes

1 Introduction

Originally introduced in the context of cryptographic hash functions, the sponge
construction [2] became one of the most widely used constructions in symmetric
cryptography. Consequently, sponges get used in keyed constructions, including
message authentication codes (MAC), stream ciphers, and authenticated encryp-
tion (AE), see e.g. [1,4,5,7,13,17,20]. For all these applications it is either neces-
sary or at least sufficient for security if a secretly keyed sponge is indistinguish-
able from a random function. That this is indeed the case was already shown in
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the original security proof for the sponge construction [3] where cryptographic
sponges were shown to be indifferentiable from random functions. This result
is widely applicable and consequently was followed up with several improved
bounds for specific applications. Recent works [1,13,17] improved the bound for
the setting of indistinguishability of secretly keyed sponges.

While these results show the applicability of the sponge construction
in today’s computing environment, they leave open the question of its appli-
cability in a future post-quantum setting where adversaries have access to quan-
tum computers. Such an attacker can for example run Shor’s algorithm [22] to
break the security of constructions based on the RSA or discrete-logarithm prob-
lem. While such constructions are hardly ever considered for practical symmetric
cryptography due to their slow operations, the impact of quantum adversaries
goes beyond Shor’s algorithm. Conventional security proofs, especially in ide-
alized models, might break down in the light of quantum attackers who are
allowed to ask queries in superposition [8]. Going even further, allowing adver-
saries superposition access to secretly keyed primitives, it was shown that several
well known MACs and encryption schemes, including CBC-MAC and the Even-
Mansour block cipher become insecure [14,16,21]. While these latter attacks are
not applicable in the post-quantum setting, they are indications that secret-key
cryptography does not trivially withstand quantum adversaries and that it is
necessary to study the security of symmetric cryptography in the post-quantum
setting.

In this work we do exactly this: We study the security of secretly keyed
sponges against quantum adversaries. Quantum security of sponges was also
analyzed in [11], although the authors there focused on different properties then
we.

Sponges. The sponge construction [2] is an eXtendable Output Function (XOF)
that maps arbitrary-length inputs to outputs of a length specified by an addi-
tional input. The construction operates on an (r + c)-bit state. The parameter
r is called the rate and the parameter c is called the capacity. The first r bits
of the state are called the outer part or outer state, the remaining c bits are
called the inner part or inner state. The sponge uses an internal function f map-
ping (r + c)-bit strings to (r + c)-bit strings. To process a message consisting of
several r-bit blocks, the sponge alternates between mixing a new message block
into the outer state and applying f , as shown in Fig. 1. When all message blocks
are processed (i.e. absorbed into the internal state) the sponge can be squeezed
to produce outputs by alternating between applying f and outputting the outer
state. We write Spongef for the sponge using f as internal function.

Sponges can be keyed in several ways. For example, the state can be initialized
with the key, referred to as root-keyed sponge in [1]. Another option is to just
apply the sponge on the concatenation of key and message. This was called the
keyed sponge in [4] and the outer-keyed sponge in [1]. The last and for us most
relevant concept is keying the sponge by replacing f with a keyed function fK .
For the special case of fK being a single-key Even-Mansour construction this was
called E-M keyed sponge construction in [10] and later the inner-keyed sponge
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Input: M = M1‖M2‖M3 Output: Z = Z1‖Z2

Fig. 1. A scheme illustrating the sponge construction.

in [1]. We refer to the general case for any keyed function fK as keyed-internal-
function sponge.

Our Results. As main result, we prove that the sponge construction using
a random function or permutation is quantumly indistinguishable from a ran-
dom function (see Theorems 8 and 16). This result can be used to obtain a
quantum version of Theorem 1 from [1] (see Theorem 12) which states that the
indistinguishability of keyed-internal-function sponges can be derived from the
quantum-PRF-security (or quantum-PRP-security in case of a block-cipher) of
the keyed internal function. Thereby we not only provide a proof for the secu-
rity of keyed-internal-function sponges in the post-quantum setting, but even
in the stronger quantum settings where the adversary gets full quantum-access
to the keyed-internal-function sponge, i.e we prove that keyed-internal-function
sponges are quantum PRFs.

Another implication of our result is that the quantum attacks against CBC-
MAC mentioned above can be prevented using a state with a non-trivial inner
part. The authors of the attack already noted1 that their attack does not work in
this case. More specifically, CBC-MAC can be viewed as full-width sponge (where
the state has no inner part, i.e., the capacity is 0). On the other hand, a CBC-
MAC where all message blocks are padded with 0c and the output is truncated
to the first r bits can be viewed as an keyed-internal-function sponge. Hence,
our result applies and shows that the quantum attacks by Kaplan, Leurent,
Leverrier, and Naya-Plasencia [14] and Santoli, and Schaffner [21] using Simon’s
algorithm are not applicable any longer. Even more, our result proves that this
little tweak of CBC-MAC indeed results in a quantum secure MAC.

In the full version of the paper [12] we show a direct proof of indistinguisha-
bility for f being a random permutation. In this proof we state and prove a
lemma that generalizes the average case polynomial method to allow for func-
tions that are not necessarily polynomials but are close to one; this result is not
necessary to achieve the main goal of the paper but might be useful in other
works using similar techniques.

1 See slide 16 (page 26) of their Crypto 2016 presentation available at https://who.
rocq.inria.fr/Gaetan.Leurent/files/Simon CR16 slides.pdf.

https://who.rocq.inria.fr/Gaetan.Leurent/files/Simon_CR16_slides.pdf
https://who.rocq.inria.fr/Gaetan.Leurent/files/Simon_CR16_slides.pdf
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A Limitation. The authors of [1] use their Theorem 1 to show security of inner-
keyed sponges using the PRP-security of single-key Even-Mansour. Their result
does not carry over to the quantum setting as Even-Mansour is vulnerable in
the quantum setting [16]. This does not lead an actual attack on inner-keyed
sponges in the quantum setting. The attack needs access to the full input to
the Even-Mansour cipher, which is never the case for inner-keyed sponges as
long as a non-trivial inner state is used. However, the attack on Even-Mansour
does render the modular proof strategy not applicable for inner-keyed sponges.
We also need to stress that our result so far does not cover the commonly used
approaches to secretly key SHA3 for this very reason.

Our Approach. The main technical contribution of our work is a proof that
the probability for any given input-output behavior of Spongef is a polynomial
in the capacity of the sponge. This observation allows us then to apply the
average-case polynomial method of [24] (see Theorem 4 below).

In more detail, recall that the capacity of a Spongef is the size of the inner
state (there are 2c possible inner states for a sponge as in Fig. 1). If the capacity
of a sponge increases, it becomes less and less likely that there are collisions in
the inner state. Hence for infinite capacity, the inner states are unique and so the
internal functions are called on unique inputs and therefore, the sponge behaves
like a random function. Our proof formalizes this intuition by carefully analyzing
the probabilities for q given input-output values of the sponge in terms of the
capacity. We show that these probabilities are in fact polynomials in the inverse
of the capacity of degree at most q times the length of the input-output values.
We refer to Lemma 9 for the formal statement.

By establishing the capacity as this crucial parameter, we fit directly into the
proof technique from [24] that uses approximating polynomials of low degree to
show closeness of distributions and in turn small quantum distinguishing advan-
tage. By the PRF/PRP switching lemma from [25], quantum indistinguishability
also holds for the case of f being a random permutation. In the appendix, we
provide an alternative proof for this case by generalizing the proof technique of
[24] to the case of permutations.

Organization. Section 2 introduces the definition of quantum indistinguishabil-
ity and other notions used throughout this work. In Sect. 3 we extend the above
informal discussion of the sponge construction with a more formal description.
At the end of the section we show that Spongef is indistinguishable from a ran-
dom oracle in the conventional-access setting (in contrast to the quantum-access
model). In Sect. 4 we state the main result of our paper as well as several derived
results. In the full version [12] we also provide an example proof valid for limited
distinguishers but giving sufficient details to understand our approach and verify
correctness without all the particulars of the full proof. Section 5 contains the
proof of Lemma 9, the main technical result of this work. The case of random
permutations is covered in Sect. 6. We conclude the paper with Sect. 7 discussing
some open problems related to the problem we analyze and related work.



300 J. Czajkowski et al.

2 Preliminaries and Tools

In this section we introduce the definition of quantum indistinguishability and
other notions used throughout this work.

2.1 Quantum Threat Model

The quantum threat model we consider allows the adversary to query oracles in
superposition. Oracles are modeled as unitary operators Uh acting on compu-
tational basis states as follows

Uh|X,Y 〉 �→ |X,Y ⊕ h(X)〉. (1)

The adversary is considered to have access to a fault-tolerant (perfect) quantum
computer. We do not provide more details on quantum computing as we do not
directly require it here, but we refer to [19] instead.

2.2 Distributions

A distribution D on a set X is a function D : X → [0, 1] such that
∑

X∈X D(X) =
1. We denote sampling X from X according to D by X ← D. YX denotes the
set of functions {f : X → Y}. If D is a distribution on Y then DX denotes
a distribution on YX where the output for each input is chosen independently
according to D. By $← X we denote sampling uniformly at random from the
set X .

2.3 Classical and Quantum Indistinguishability

By classical indistinguishability we mean a feature of two distributions that are
hard to distinguish if only polynomially many classical queries are allowed. The
mentioned polynomial is evaluated on the security parameter. Note however that
we have not yet specified it. For now though we leave it implicit, the security
parameter will be specified for the particular construction we are going to ana-
lyze. In the following we are going to use functions N → R that for big enough
argument are smaller than any inverse polynomial, they are called negligible
functions.

Definition 1 (Classical Indistinguishability). Two distributions D1 and D2

over a set YX are computationally classically indistinguishable if no quantum
algorithm A can distinguish D1 from D2 using a polynomial number of classical
queries. That is, for all A, there is a negligible function ε such that

∣
∣
∣
∣ P
g←D1

[Ag(.) = 1] − P
g←D2

[Ag(.) = 1]
∣
∣
∣
∣ ≤ ε. (2)

We write Ag to denote that adversary A has classical oracle access to g. We
will use the following generalization of the above definition to specify our goal.
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Definition 2 (Quantum Indistinguishability [24]). Two distributions D1 and
D2 over a set YX are computationally quantumly indistinguishable if no quantum
algorithm A can distinguish D1 from D2 using a polynomial number of quantum
queries. That is, for all A, there is a negligible function ε such that

∣
∣
∣
∣ P
g←D1

[
A|g〉(.) = 1

]
− P

g←D2

[
A|g〉(.) = 1

]∣∣
∣
∣ ≤ ε. (3)

We write A|g〉 to denote that adversary A has quantum oracle access to g,
i.e. she can query g on a superposition of inputs.

In what follows the setting that we focus on is indistinguishability from a
random oracle. The first distribution is the one analyzed and the other is the
uniform distribution over the set of all functions from X to Y, i.e. YX . Sampling
a uniformly random function is denoted by $← YX .

2.4 Main Tools

In this section we describe the proof technique—based on approximating
polynomials—that proves useful when dealing with notions like quantum indis-
tinguishability. In the following [q] := {1, 2, . . . , q}.

Theorem 3 (Theorem 3.1 in [26]). Let A be a quantum algorithm making q
quantum queries to an oracle h : X → Y. If we draw h from some distribution
D, then the quantity Ph←D[A|h〉() = 1] is a linear combination of the quantities
Ph←D[∀i ∈ [2q] : h(Xi) = Y i], where ∀i ∈ [2q] : (Xi, Y i) ∈ X × Y.

The intuition behind the above theorem is that with q queries the amplitudes
of the quantum state of the algorithm depend on at most q input-output pairs.
The probability of any outcome is a linear combination of squares of amplitudes,
that is why we have 2q input-output pairs in the probability function. Finally as
the probability of any measurement depends on just 2q input-output pairs the
same holds for the algorithm’s output probability. All the information about h
comes from the queries A made.

We use the above theorem together with statements about approximating
polynomials to connect the probability of some input-output behavior of a func-
tion from a given distribution with the probability of the adversary distinguishing
two distributions.

Theorem 4 (Theorem 7.3 in [24]). Fix q, and let Ft be a family of distri-
butions on YX indexed by t ∈ Z

+ ∪ {∞}. Suppose there is an integer d
such that for every 2q pairs ∀i ∈ [2q] : (Xi, Y i) ∈ X × Y, the function
p(1/t) = Ph←Ft

[
∀i ∈ [2q] : h(Xi) = Y i

]
is a polynomial of degree at most d

in 1/t. Then for any quantum algorithm A making at most q quantum queries,
the output distribution under Ft and F∞ are π2d3/3t-close

∣
∣
∣
∣ P
h←Ft

[
A|h〉() = 1

]
− P

h←F∞

[
A|h〉() = 1

]∣∣
∣
∣ <

π2d3

6t
. (4)
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This theorem is an average case version of the polynomial method often
used in complexity theory. If the polynomial approximating the ideal behavior
of h ← F∞ is of low degree the distance between polynomials must be small.

3 The Sponge Construction

In this section we give a formal definition of sponges and recall a known result
about their indisitinguishability.

3.1 Definition of Sponges

While an informal explanation of sponges was given in the introduction, we now
give a more formal definition.

We define a sponge-compliant padding as:

Definition 5 (Definition 1 in [6]). A padding rule is sponge-compliant if it
never results in the empty string and if it satisfies the following criterion:

∀ν ≥ 0 ∀M,M′ ∈ {0, 1}∗ : M = M′ ⇒ M‖pad(|M|) = M′‖pad(|M′|)‖0νr,
(5)

where ‖ denotes concatenation of bit strings.

A formal definition of the construction is provided as Algorithm 1. Note that
⊕ denotes the bitwise XOR, |P|r denotes the number of blocks of length r in P,
Pi is the i-th block of P and �Z�� are the first � bits of Z.

Algorithm 1: Spongef [pad, r]
Input : M ∈ {0, 1}∗, � ≥ 0.
Output: Z ∈ {0, 1}�

1 P := M‖pad[r](|M|), and S := 0r+c.
2 for i = 0 to |P|r − 1 do // Absorbing phase

3 S = S ⊕ (Pi‖0c)
4 S = f(S)

5 Z := �S�r // Squeezing phase

6 while |Z| < � do
7 S = f(S)
8 Z = Z‖�S�r

9 Output �Z��
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3.2 Classical Indistinguishability of Random Sponges

In the following we state the indistinguishability result in the classical domain.
We use the following notation for a set of arbitrary finite-length bit strings:

{0, 1}∗ :=
⋃

l≥0

{0, 1}l, (6)

we usually denote this set by M. Before we proceed let us define what we mean
by a random oracle.

Definition 6 (Random Oracle). A random oracle is sampled from a distribution
R on functions from M × N to M, where M := {0, 1}∗. We define h ← R as
follows:

– Choose g uniformly at random from {g : M → {0, 1}∞}, where by {0, 1}∞

we denote the set of infinitely long bit-strings.
– For each (X, �) ∈ M × N set h(X, �) := �g(X)��, that is output the first �

bits of the output of g.

Theorem 7 (Classical indistinguishability of Sponge). If f is a random trans-
formation or a random permutation then Spongef defined in Algorithm 1 is
classically indistinguishable from a random oracle. Namely for all quantum algo-
rithms A making polynomially many classical queries there is a negligible func-
tion ε such that

∣
∣
∣
∣
∣

P

f
$←SS

[
ASpongef (.) = 1

]
− P

h←R
[Ag(.) = 1]

∣
∣
∣
∣
∣
≤ ε, (7)

where S = {0, 1}r+c, and R is defined according to Definition 6.

Proof. The proof follows closely the proof of Theorem 2 of [2]. Even though we
give more power to the adversary giving her access to a quantum computer, the
queries are considered to be classical. All arguments in the proof of Bertoni and
others depend only on the queries made by the adversary and not her computing
power. For that reason we can use the result of [18], which states that a query-
based classical result easily translates to the quantum case if we do not change
the query model. ��

4 Random Sponges Are Quantumly Indistinguishable
from Random Oracles

We want to show that the distribution corresponding to random sponges is
quantumly indistinguishable from a random oracle. We can define a family of
distributions indexed by the security parameter that intuitively gets closer to a
random oracle with increasing parameter. For that reason Theorem 4 is a perfect
theoretical tool to be used. The relevant tasks that remain are to identify the



304 J. Czajkowski et al.

family of distributions that correspond to our figure of merit, to show that in
fact the most secure member of the family with t = ∞ is a random oracle, and
to prove that the assumptions of Theorem 4 are fulfilled.

The security parameter in Sponge is the capacity; we parametrize the family
of random sponges by the size of the inner state space t = 2c. Intuitively speak-
ing, for c → ∞ each evaluation of the internal function is done with a different
inner state. In this case irrespective of the input, the output is a completely ran-
dom string, which is the definition of a random oracle (RO). Hence we conclude
that we identified a family of distributions that is well suited to be used with
Theorem 4. If we show that indeed for t = ∞ the member of the family is the
random oracle we have that:

F2c is quantumly indistinguishable from F∞

⇒ random sponge is quantumly indisitinguishable from RO. (8)

We are left with the task to prove the left-hand side of the above statement. The
assumption of Theorem 4 is that the probability of witnessing any input-output
behavior on q queries is a polynomial in 1/2c. At this point we stumble upon a
problem with the set of indices. If we want to use the statement about closeness
of polynomials we have to show that p is a polynomial for any inverse integer
and not only for 2−c. This difficulty brings us to the definition of the generalized
sponge construction SpGen. The only difference between SpGen and Sponge
is the space of inner states, we change it from {0, 1}c to any finite-size set C.
This modification solves the problem of defining distributions for any integer,
not only powers of 2. It remains to prove that p(|C|−1) is in fact a polynomial in
|C|−1, where by |C| we denote cardinality of the set. With that statement proven
we fulfill the assumptions of Theorem 4 and show quantum indistinguishability
of SpGen, which implies the same for Sponge.

In Algorithm 2 we present a generalization of Sponge. The set of inner states
is denoted by C and can be any finite set, to be specified by the user. The internal
function is generalized to any map ϕf : {0, 1}r ×C → {0, 1}r ×C. In the following
we denote the part of the entire state S in {0, 1}r by S̄ and call it the outer part
and the part in C by Ŝ, we will refer to it as the inner part of a state.

Let us now formally state the main claim of this paper. We are going to focus
on the internal function being modeled as a random function, in Sect. 6 though,
we are going to cover the case of random permutations.

Theorem 8. SpGenϕf
for random ϕf is quantumly indistinguishable from a

random oracle. More concretely, for all quantum algorithms A making at most q
quantum queries to SpGen, such that the input length is at most m · r bits long
and the output length is at most z · r bits long,

∣
∣
∣
∣
∣

P

ϕf
$←SS

[
A|SpGenϕ f

〉(.) = 1
]

− P
h←R

[
A|h〉(.) = 1

]
∣
∣
∣
∣
∣
<

π2

6
η3|C|−1, (9)

where η := 2q(m+z−2) and R is defined according to Definition 6. The domain
is defined as S = {0, 1}r × C for some non-empty finite set C.
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Algorithm 2: SpGenϕf
[pad, r, C]

Input : M ∈ {0, 1}∗, � ≥ 0.
Output: Z ∈ {0, 1}�

1 P := pad(M)
2 S := (0r, IC) ∈ {0, 1}r × C. // IC-initial value

3 for i = 1 to |P|r do // Absorbing phase

4 S := (S̄ ⊕ Pi, Ŝ)
5 S := ϕf (S)

6 Z := S̄ // Squeezing phase

7 while |Z| < � do
8 S := ϕf (S)
9 Z := Z‖S̄

10 Output �Z��

Before we prove the above theorem we state the main technical lemma.

Lemma 9. For a fixed q and for every (M,Z) :=
(
(Mi,Zi)

)
i∈[2q]

, where ∀i ∈
[2q] : (Mi,Zi) ∈ {0, 1}∗ × {0, 1}∗, such that ∀i ∈ [2q] : |Mi|r ≤ m, |Zi|r ≤ z, it
holds that

(i) the probability function is a polynomial in |C|−1 of degree η

P
[
∀i ∈ [2q] : SpGenϕf

(Mi, �i) = Zi
]

=
η∑

j=0

aj |C|−j =: p(|C|−1) (10)

(ii) and the coefficient

a0 =
2q∏

i=1

δ(M,Z, i)2−|Zi|. (11)

All coefficients aj are real, and the degree of the polynomial equals η := 2q(m+z−
2). In the equation describing a0 we use δ(M,Z, i) to denote a Boolean function
that is 0 if Mi is input more than once and Zi is not the longest output of SpGen
on Mi or is inconsistent with other outputs (inputting the same message for the
second time should yield the same output) and is 1 otherwise.

The full proof is presented in Sect. 5.

Proof Idea. Our goal is to explicitly evaluate P[∀i ∈ [2q] : SpGenϕf
(Mi, �i)

= Zi]. We base all of our discussion on two facts: SpGen has a structure that
we know and it involves multiple evaluations of the internal function ϕf . ϕf is
a random function with well specified probability of yielding some output on a
given input. The main idea of our approach is to extract terms like P[ϕf (S1) =
S2] for some states S1, S2 from the overall probability expression and evaluate
them.
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Let us go through a more detailed plan of the proof. Fix (M,Z) and set
�i := |Zi|. In the first step we include all intermediate states in the probabilis-
tic event

(
∀i ∈ [2q] : SpGenϕf

(Mi, �i) = Zi
)
. We write explicitly all inner states

and outer states not specified by the input-output pairs (M,Z). Next we rewrite
the full probability expression in the form

∑∏
P[ϕf (S1) = S2 | . . . ]. The sum

comes from the fact that there are many possible intermediate states that yield
the given input-output behavior. The product is the result of using Bayes’ rule
to isolate a single evaluation of ϕf in the probability. To correctly evaluate the
summands we need to analyze all states in P[ϕf (S1) = S2 | . . . ] from the per-
spective of uniqueness—we say a state is unique if it is input to ϕf just a single
time. Given a specific setup of unique states in all 2q evaluations of SpGen
we can easily evaluate the probabilities, as the only thing we need to know is
that ϕf is random. The final step of the proof is to calculate the number of
states in the sum. We sum over all values of states that fulfill the constraints
of
(
∀i ∈ [2q] : SpGenϕf

(Mi, �i) = Zi
)

and ϕf being a function. The previous
analysis of uniqueness of states makes it easier to include the latter constraint;
non-unique states have predetermined outputs under ϕf decreasing the number
of possible states. After those steps we end up with an explicit expression for
P
[
∀i ∈ [2q] : SpGenϕf

(Mi, �i) = Zi
]
, which allows us to show that p is a poly-

nomial of the claimed degree and its limit in t → ∞, i.e. the coefficient a0 is the
probability of uniformly random outputs. ��
Proof of Theorem 8. Let us define a family Ft indexed by t ∈ N∪{∞}, t > 0. Ft is
a distribution on functions from M ×N to M, where M := {0, 1}∗. The family
is additionally parametrized by the choice of r ∈ N and a sponge-compliant
padding function pad. We define h ← Ft as follows:

– Choose ϕf uniformly at random from SS , where S := {0, 1}r × C and C is
any finite set of size t > 0.

– Use ϕf , C, the fixed r, and pad to construct SpGenϕf
[pad, r, C].

– For each (X, �) ∈ M × N set h(X, �) := SpGenϕf
[pad, r, C](X, �).

To show that we defined Ft in the right way, let us analyze Eq. (8) from
the point of view of the newly defined distribution. On the one hand from our
definition it follows that

P
h←Ft

[
A|h〉() = 1

]
= P

h←Ft

[
A|SpGenϕ f

〉() = 1
]

= P

ϕf
$←SS

[
A|SpGenϕ f

〉() = 1
]
,

(12)

where the first equality follows from our definition of h and the second from the
fact that all randomness in Ft comes from choosing a random function ϕf . On
the other hand if we take t → ∞ the internal function is going to be injective on
its inner part. Namely ϕ̂f—the internal function with its output restricted to the
inner part—is injective. That implies a different inner state in every evaluation
of ϕf in SpGen what in turn implies a random and independent outer part in
every step of generating the output, formally

P
h←F∞

[
A|h〉() = 1

]
= P

h←R

[
A|h〉() = 1

]
. (13)
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This intuition is formally captured by Statement (ii) of Lemma 9, where we
state that in the limit of |C| → ∞ the probability of getting particular outputs
of SpGen is the same as for a random oracle.

From the above discussion we get that
∣
∣
∣
∣ P
h←Ft

[
A|h〉() = 1

]
− P

h←F∞

[
A|h〉() = 1

]∣∣
∣
∣ =

∣
∣
∣
∣
∣

P

ϕf
$←SS

[
A|SpGenϕ f

〉() = 1
]

− P
h←R

[
A|h〉() = 1

]
∣
∣
∣
∣
∣
, (14)

which is the crucial equality for using Theorem 4 to prove our statement. The
last element of the proof is the assumption about p being a polynomial and that
is exactly the statement of Lemma 9. ��

Quantum indistinguishability of commonly used sponges with binary state
follows directly from the general result.

Corollary 10. If f is a random function or a random permutation, then
Spongef is quantumly indistinguishable from a random oracle.

Proof. For a random function we use Theorem 8 and for a random permutation
Theorem 16 and set C = {0, 1}c. ��

4.1 Application to Keyed-Internal-Function Sponges

We show that Theorem 8 implies that keyed-internal-function sponges are indis-
tinguishable from a random oracle under quantum access if the used internal
function is a quantum-secure PRF (or if the internal function is a permutation,
a quantum-secure PRP). This means that in the case f is a quantum-secure
pseudorandom function or permutation the sponge construction is a quantum-
secure pseudorandom function. For keyed primitives, indistinguishability from a
random oracle/permutation is exactly what we call pseudorandomness.

We first formally define quantum-secure pseudorandom functions (PRF) and
pseudorandom permutations (PRP).

Definition 11 (Quantum-secure PRF/PRP). Say f : K × S → S is a keyed
function (permutation), then we say that f is a quantum-secure pseudorandom
function (permutation) if for every quantum algorithm running in polynomial
time, there is a negligible function εPR such that

∣
∣
∣
∣
∣

P

K
$←K

[
A|fK〉(.) = 1

]
− P

g
$←SS

[
A|g〉(.) = 1

]
∣
∣
∣
∣
∣
≤ εPR(n), (15)

where n := �log |K|� and g is sampled uniformly from the set of functions (per-
mutations) from S to S. Below, we refer to εPR as advantage.



308 J. Czajkowski et al.

Now we state and prove a quantum version of Theorem 1 of [1] which for-
malizes the above statement about quantum security of keyed-internal-function
sponges. Note that we state the theorem for the general sponge construction but
thanks to Corollary 10 it holds for the regular construction as well.

Theorem 12. If the internal function f used in SpGenf is a quantum-secure
PRF/PRP with advantage εPR, then the resulting keyed-internal-function sponge
is a quantum-secure PRF with advantage

∣
∣
∣
∣
∣

P

K
$←K

[
A|SpGenfK

〉(.) = 1
]

− P
g←R

[
A|g〉(.) = 1

]
∣
∣
∣
∣
∣
≤ εPR +

π2

6
η3|C|−1, (16)

where η := 2q(m + z − 2), q is the number of queries A makes to its oracle, m
and z are as defined in the statement of Theorem 8, and R is defined according
to Definition 6.

Proof. We give the proof for f being a keyed function. The proof when f is a
keyed permutation is obtained by using Theorem 16 in place of Theorem 8 and
restricting the sets from which g and ϕf are drawn below to permutations.

We show that the advantage of any quantum adversary in distinguishing the
keyed-internal-function sponge from a random oracle is bound by its ability to
distinguish f from a random oracle (permutation, respectively) plus its ability to
distinguish a random sponge from a random oracle. In the following calculation
we use the triangle inequality and the result of Theorem 8.

∣
∣
∣
∣
∣

P

K
$←K

[
A|SpGenfK

〉(.) = 1
]

− P
g←R

[
A|g〉(.) = 1

]
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

P

K
$←K

[
A|SpGenfK

〉(.) = 1
]

− P

ϕf
$←SS

[
A|SpGenϕ f

〉(.) = 1
]
+

P

ϕf
$←SS

[
A|SpGenϕ f

〉(.) = 1
]

− P
g←R

[
A|g〉(.) = 1

]
∣
∣
∣
∣
∣

(17)

≤
∣
∣
∣
∣
∣

P

K
$←K

[
A|SpGenfK

〉(.) = 1
]

− P

ϕf
$←SS

[
A|SpGenϕ f

〉(.) = 1
]
∣
∣
∣
∣
∣

︸ ︷︷ ︸

≤

∣
∣
∣
∣
∣
∣

P

K
$←K

[B|fK〉(.)=1]− P

ϕ f
$←SS

[B|ϕ f 〉(.)=1]
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

P

ϕf
$←SS

[
A|SpGenϕ f

〉(.) = 1
]

− P
g←R

[
A|g〉(.) = 1

]
∣
∣
∣
∣
∣

︸ ︷︷ ︸
Quantum Indistinguishability, Thm. 8 or 16

≤ εPR +
π2

3
η3|C|−1, (18)

where B is an adversary that uses A as a subroutine, simulating A’s oracle using
its own oracle and the sponge construction. B outputs the same output as A. ��
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5 Proof of Lemma9

In this section we give the complete proof of Lemma 9 for the general case of q ≥ 1
queries the adversary makes and message lengths bounded by some m, not fixed
to 2 like in the previous section. In Subsect. 5.1 we expand the probability expres-
sion to encompass all intermediate states of

(
∀i ∈ [2q] : SpGenϕf

(Mi, �i) = Zi
)

and individual evaluations of ϕf . In Subsect. 5.2 we introduce the concept of
unique states to evaluate the probabilities of P[ϕf (S1) = S2]. In Subsect. 5.3 we
define the algorithm that calculates the cardinality of the set of intermediate
states—and equivalently inner functions—consistent with given characteristics.
In Subsect. 5.4 we conclude the proof and provide the final expression for the
probability of an input-output pair under a random SpGenϕf

.
We omit the padding function of the sponge construction and assume that

the length of all Mi is a multiple of r. This is done without loss of generality
since we can just say that all the considered messages are in fact messages after
padding and we do not use any properties of the padding in the proof. Also we
focus on q evaluations of SpGen instead of 2q to improve readability.

5.1 Expansion of the Probability Function

In this section we expand the probability function to the point that all
intermediate states are accounted for. We consider the event (∀i ∈ [q] :
SpGenϕf

(Mi, �i) = Zi) and then include the states that appear between con-
secutive evaluations of ϕf .

To keep track of the states we introduce the following notation. By the upper-
index we denote the number of evaluations of SpGen, going from 1 to q. The
lower index corresponds to the number of evaluations of ϕf in the i-th calculation
of SpGen. A state occurring during the calculation on Mi that is the input to
the j-th evaluation of ϕf is denoted by Si

j⊕. The output of that evaluation is
Si

j+1. States traversed in q evaluations of SpGen can be represented by an array
with q rows with |Mi|r + |Zi|r columns each. By array we mean a 2-dimensional
matrix with unequal length of rows.

We call an array like that with values assigned to every state a nabla con-
figuration ∇-c. ∇ symbolizes the triangle shape in which we put states between
evaluations of ϕf , each corner being an outer or inner part of the state. Now
we define ∇-c relative to input-output pairs (M,Z). The size of the array is
determined by the number of blocks in Mi and Zi.

Definition 13 (∇-c). The nabla configuration ∇-c for (M,Z) is an array of

triples

(
S̄ S̄⊕

Ŝ

)

∈ {0, 1}2r × C, where C is an arbitrary non-empty finite set.

The array ∇-c consists of q rows, for every i row i has ki columns and ki :=
|Mi|r +|Zi|r (|Mi|r denotes the number of r-bit blocks in Mi). Formally we have
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∇-c :=

[(
S̄i

j S̄i
j⊕

Ŝi
j

)]

i∈[q]

j∈[ki]

. (19)

To refer to the element of ∇-c that lies in row i and column j we write ∇-ci
j. To

refer to parts of the triple that lies in row i and column j we write

Si
j ∈ ∇-c ⇔ ∇-ci

j =

(
S̄ S̄⊕

Ŝ

)

∧ Si
j = (S̄, Ŝ)

Si
j⊕ ∈ ∇-c ⇔ ∇-ci

j =

(
S̄ S̄⊕

Ŝ

)

∧ Si
j⊕ = (S̄⊕, Ŝ)

(20)

Let us define the number of evaluations of ϕf in ∇-c for (M,Z) as

κ :=
q∑

i=1

(ki − 1), (21)

note that |∇-c | = κ + q.
To make good use of the newly introduced concept of nabla configurations

∇-c we want to restrict the set of arrays we discuss. We want to put constraints
on the set of ∇-c to make explicit the requirement that states correspond to a
correct input-output behavior of SpGen. The set of ∇-c for (M,Z) is defined
as follows.

Definition 14 (∇-C(M,Z)). The set of nabla configurations ∇-c for (M,Z) is
a set of arrays of size specified by (M,Z), ∇-C(M,Z) ⊂

(
{0, 1}2r × C

)κ+q. We
define ∇-C(M,Z) by the following constraints

∀i ∈ [q] : Ŝi
1 = IC ,

∀i ∈ [q] : S̄i
1 = 0r,

∀i ∈ [q], 1 ≤ j ≤ |Mi|r : S̄i
j⊕ = S̄i

j ⊕ M i
j ,

∀i ∈ [q], |Mi|r < j ≤ ki : S̄i
j⊕ = S̄i

j = Zi
j−|Mi|r .

(22)

The formal definition reads

∇-C(M,Z) := {∇-c for (M,Z) : ∇-c fulfills constraints (22)} . (23)

In the following we assume that rows of all ∇-c ∈ ∇-C(M,Z) are initially
sorted according to the following relation. We arrange (Mi,Zi) in non-decreasing
order in terms of length, so ∀i < j : ki ≤ kj , this also means that rows of ∇-c
are ordered in this way.

Having established the notation we move on to realizing the goal of this
section: rewriting the probability function in a suitable way for further analysis.
In the following when we consider

(
ϕf (Si

j⊕) = Si
j+1

)
for some ∇-c we leave

implicit that Si
j⊕, Si

j+1 ∈ ∇-c. We have that
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∀i ∈ [q] : SpGen(Mi) = Zi ⇔∀i ∈ [q] :
∨

∇-c∈∇-C(M,Z)

(
ϕf (S

i
1⊕) = Si

2

)

∧
(
ϕf (S

i
2⊕) = Si

3

)
∧ · · · ∧

(
ϕf (S

i
(ki−1)⊕) = Si

ki

)

(24)

⇔
∨

∇-c∈∇-C(M,Z)

q∧

i=1

ki−1∧

j=1

(
ϕf (S

i
j⊕) = Si

j+1

)
. (25)

In the above equations we first include the intermediate states and then combine
all evaluations of ϕf . In the following we make use of the fact that the events we
take the disjunction of are disjoint and the logical disjunction turns into a sum
of the probability.

P

ϕf
$←SS

[
∀i ∈ [q] : SpGen(Mi) = Zi

]
= P

⎡

⎣
∨

∇-c

q∧

i=1

ki−1∧

j=1

(
ϕf (S

i
j⊕) = Si

j+1

)
⎤

⎦

=
∑

∇-c∈∇-C(M,Z)

P

⎡

⎣
q∧

i=1

ki−1∧

j=1

(
ϕf (S

i
j⊕) = Si

j+1

)
⎤

⎦ . (26)

To further extract an expression involving the probability of a single(
ϕf (Si

j⊕) = Si
j+1

)
we use Bayes’ rule. By a chain of conditions we want to arrive

at a function we can evaluate in the end. At this point we want to choose a par-
ticular order of

(
ϕf (Si

j⊕) = Si
j+1

)
events. Let us define the order ≺ as

(i, j) ≺ (i′, j′) ⇔ (j < j′) ∨ (j = j′ ∧ i < i′) . (27)

The above rule imposes an order that begins with the top-left corner of a ∇-c
and proceeds downwards to the end of the column to continue from the second
column from the left.

p(|C|−1) =
∑

∇-c∈∇-C(M,Z)

P

[
q∧

i=1

ki−1∧

j=1

(
ϕf (S

i
j⊕) = Si

j+1

)]

=
∑

∇-c

P

⎡

⎣
(
ϕf (S

q
(kq−1)⊕) = Sq

kq

)
|

∧

(i,j)≺(q,kq−1)

(
ϕf (S

i
j⊕) = Si

j+1

)
⎤

⎦

· P
⎡

⎣
∧

(i,j)≺(q,kq−1)

(
ϕf (S

i
j⊕) = Si

j+1

)
⎤

⎦

=
∑

∇-c∈∇-C(M,Z)

(q,kq−1)∏

(i,j)=(1,1)

P

⎡

⎣
(
ϕf (S

i
j⊕) = Si

j+1

)
|

∧

(i′,j′)≺(i,j)

(
ϕf (S

i′
j′⊕) = Si′

j′+1

)
⎤

⎦ .

(28)
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In the case there is no state (q − 1, kq − 1) we just take the next state preceding
(q, kq − 1) in the order given by Eq. (27).

Up to this point we have performed some transformations of the event(
∀i ∈ [q] : SpGenϕf

(Mi, �i) = Zi
)
, but we did not address the issue of correct-

ness. Is it correct to consider state values in evaluations of SpGen instead of
different ϕf—are we in fact discussing the probability over the random choice
of the internal function? The answer to this question is “yes”, that is because of
the equivalence of every ∇-c with some set of ϕf . We can treat the input-output
pairs for ϕf assigned in ∇-c as values in the function table of ϕf . By picking a
single ∇-c we fix at most κ rows of this table. As we sample ϕf uniformly at
random we are interested in the fraction of functions that are consistent with
the input-output pairs (M,Z) among all functions. Note however, that we only
care about κ evaluations of ϕf and all the details of those future evaluations
are implicitly simplified in the fraction. This allows us to focus only on the part
of the function table corresponding to those few evaluations and that is exactly
∇-c. The summing over nabla configurations ∇-c corresponds to different values
of the function table that are still consistent with (M,Z).

The probability P

[(
ϕf (Si

j⊕) = Si
j+1

)
|
∧

(i′,j′)≺(i,j)

(
ϕf (Si′

j′⊕) = Si′
j′+1

)]

equals either 1
2r·|C| or 1 or 0. If the internal function is queried on a “fresh”

input, it outputs any value with uniform probability. If on the other hand it
is queried on the same input for the second time, it outputs the value it has
output before with probability 1. One might think that the proof is finished,
p(λ) =

∑
i wi(λ), where wi are monomials in λ of degree up to κ + q. There

is one problem with that reasoning, namely that the sum limits depend on the
variable λ. Up until now we have shown that p(λ) =

∑v(1/λ)
i=1 wi(λ), where v is

another polynomial. Even for v = id (the identity function) the degree of p is
different than the maximal degree of wi. This means that we have to analyze the
expression derived in Eq. (28) in more detail. To this end, we add more structure
to ∇-C(M,Z) which will make it easier to count the number of values that the
intermediate states can assume, i.e. the number of nabla configurations ∇-c in
∇-C(M,Z).

5.2 Unique and Non-unique States

The goal of this section is to evaluate
P

[(
ϕf (Si

j⊕) = Si
j+1

)
|
∧

(i′,j′)≺(i,j)

(
ϕf (Si′

j′⊕) = Si′
j′+1

)]
for any ∇-c and any

(M,Z). We approach this problem by recognizing which states in a particular ∇-c
are fed to ϕf once and which are repeated. We define an algorithm that includes
the information about uniqueness of the intermediate states in ∇-c. The notion of
uniqueness is derived relative to the events we condition on in Eq. (28), that is why
we took special care of the order in which we use the chain rule.

In this section we introduce two algorithms Prep and Flag-Assign. The
former is an auxiliary algorithm that prepares the array ∇-c for further analysis.
The latter algorithm assigns flags to states in ∇-c. Flags signify if a state appears
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once or more in the array. We use an algorithmic definition to explicitly show
every step of the procedure.

Algorithm 3 takes as input an array ∇-c and groups its elements according
to the value input to ϕf . An important detail is the sorting rule among states
with the same “⊕”-state value; we use the order defined in Eq. 27. The output
of Algorithm 3 Prep(∇-c) is a vector (1-dimensional matrix), to access its l-th
element we write ∇-cl.

Algorithm 3: Prep
Input : ∇-c for (M,Z)

Output: ∇̃-c

1 ∇̃-c := ∇-c, append three work spaces to each element of ∇̃-c
2 foreach 1 ≤ i ≤ q, 1 ≤ j ≤ ki − 1 do

3 ∇̃-c
i

j =
(∇-ci

j , index, ⊕-state, image
)

:=
(∇-ci

j , (i, j), S
i
j⊕, Si

j+1

)

4 Sort ∇̃-c primarily according to the third entry and secondarily according to the
second entry (using the order defined in Equation (27)).

5 Output ∇̃-c

The main contribution of this subsection is Algorithm 4 which adds to each
∇-c information about the repetitions of the internal states. Running Prep
groups the state values. The next step is to assign specific flags to states that
are first (according to a specified rule) in each group. To each Si

j⊕ we will assign
a flag, u for unique states, n for non-unique states, and f for states that appear
twice or more in total but from our perspective it is their first appearance. The
output of Algorithm 4 is Flag-Assign(∇-c) = ∇-cf (“nabla configuration with

flags”) and ∀i, j : ∇-cfij = (F ∇-ci
j , S) , where the first register is the whole

state between evaluations together with the assigned flag of ϕf and S is the
corresponding image. To refer to the l-th register of ∇-ci

j we write ∇-ci
j(l). Flag

f is important when discussing the relative position of unique flags (u or f ) in
the array of ∇-cf. In the end of this section and in the beginning of the next
section we are not going to need this distinction but it will become important
when analyzing the final probability expression.

Let us define a simple function acting on elements of arrays ∇-cf output by
Flag-Assign. Flag : {u , f ,n} × {0, 1}2r × C → {u , f ,n},

Flag(∇-cfij) = Flag(

(
S̄i

j
F S̄i

j⊕
F Ŝi

j

)

, S) := F . (29)
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Algorithm 4: Flag-Assign

Input : ∇-c for (M,Z)
Output: ∇-cf

1 ∇-cf = ∅
2 ∇̃-c := Prep(∇-c)
3 Set counter l := 1
4 while l ≤ |∇̃-c| = κ + q do
5 Set counter i := 1 // the number of states with the same value

6 while ∇̃-cl+i(3) = ∇̃-cl(3) do
7 i := i + 1

8 if i = 1 then

9

(
S̄ S̄⊕

Ŝ

)
:= ∇̃-cl(1), append

((
S̄ u S̄⊕

u Ŝ

)
, ∇̃-cl(2), ∇̃-cl(4)

)
to ∇-cf

//

// (state with the same value and a flag, indices, image)

10 (i′, j′) := ∇̃-cl(2)

11 if i > 1 then

12

(
S̄ S̄⊕

Ŝ

)
:= ∇̃-cl(1), append

((
S̄ f S̄⊕

f Ŝ

)
, ∇̃-cl(2), ∇̃-cl(4)

)
to ∇-cf

13 for j = 1, 2, . . . , i − 1 do

14

(
S̄ S̄⊕

Ŝ

)
:= ∇̃-cl(1), append

((
S̄ n S̄⊕

n Ŝ

)
, ∇̃-cl(2), ∇̃-cl(4)

)
to

∇-cf

15 l := l + i

16 Make a 2-dimensional array out of ∇-cf according to the second entry in a
standard left-to-right order ((i, j) ≺l-r (i′, j′) ⇔ (i < i′) ∨ (i = i′ ∧ j < j′)),
delete the second entry of ∇-cf // ∇-cf i

j =(state with a flag, image)

17 Output ∇-cf

Transition probabilities in Eq. (28) depend on the flags we assigned to states
in ∇-c. We have that

Flag(∇-cfij) ∈ {u , f} ⇒P

⎡

⎣ϕf (
(u ∨ f )Si

j⊕) = S |
∧

(i′,j′)≺(i,j)

(
ϕf (S

i′
j′⊕) = Si′

j′+1

)
⎤

⎦

=
1

2r · |C| ,

Flag(∇-cfij) = n ⇒P

⎡

⎣ϕf (
n Si

j⊕) = S |
∧

(i′,j′)≺(i,j)

(
ϕf (S

i′
j′⊕) = Si′

j′+1

)
⎤

⎦

=

{
1 if S = ∇-cfij(2)
0 otherwise

.

(30)
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5.3 Cardinality of ∇-C(M,Z)

In this section we evaluate the number of intermediate states that give(
∀i ∈ [q] : SpGenϕf

(Mi, �i) = Zi
)
. First we impose the constraint of ϕf being a

function. Then we want to calculate the product of probabilities in Eq. (28). It
depends on the number of unique states in ∇-c so we divide the set of possible
states into subsets with the same number of states with the flag u or f . The
next steps involve further divisions of ∇-C(M,Z).

In the process of calculating the conditional probabilities in Eq. (28) we
included in each state in ∇-c the image it should have under ϕf . The set
∇-C(M,Z) does however contain states that would violate the constraint of
ϕf being a function. The first step to calculate the cardinality of ∇-C(M,Z) is
to exclude ∇-c that do not fulfill this requirement. The set of states that should
be taken into consideration is defined below, we denote this set by p-∇-CF(M,Z)
(p emphasizes the fact that ϕf is a proper function).

Definition 15 (p-∇-CF(M,Z)). The set of nabla configurations ∇-c for (M,Z)
with flags and a proper function ϕf is a set of arrays of size specified

by (M,Z). p-∇-CF(M,Z) ⊂ {u , f ,n} × {0, 1}2r × C × ({0, 1}r × C) κ+q

, the
set is defined in two steps, first we define the set of ∇-cf that are output by
Flag-Assign,

∇-CF(M,Z) := {∇-c : ∃∇-c0 ∈ ∇-C(M,Z),∇-c = Flag-Assign(∇-c0)} .
(31)

We define p-∇-CF(M,Z) by the following constraints on ∇-CF(M,Z):

∀Si
j ∈ ∇-cf ∀j > 1 : Si

j = ∇-cfij−1(2). (32)

The formal definition reads

p-∇-CF(M,Z) := {∇-cf ∈ ∇-CF(M,Z) : ∇-cf fulfills constraints (32)} . (33)

One may think about p-∇-CF(M,Z) as follows, first we consider ∇-c: an array
of states. The collection of all those arrays—with the exception of those that do
not fulfill constraints (22)—is denoted by ∇-C(M,Z). On each ∇-c ∈ ∇-C(M,Z)
we run the algorithm Flag-Assign, getting a collection of ∇-cf—denoted by
∇-CF(M,Z). Now we discard all those ∇-cf that do no fulfill constraints (32).
The collection we are left with is denoted by p-∇-CF(M,Z). We have the fol-
lowing relations between sets:

∇-CF(M,Z)(1)
omitting the flags� ∇-C(M,Z) (34)

p-∇-CF(M,Z) ⊂ ∇-CF(M,Z) . (35)

Each p-∇-cf ∈ p-∇-CF(M,Z) has some number of unique states: with flag
u or f . Let us denote this number by ū. Equation (30) implies that no matter
in what configurations the unique states are, the product of probabilities in
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Eq. (28) is the same. Hence the first division of p-∇-CF(M,Z) is in terms of the
total number of unique states. We denote the state with a fixed number ū by
p-∇-CF(M,Z, ū), we have that

p-∇-CF(M,Z) =
κ⋃

ū=1

p-∇-CF(M,Z, ū). (36)

The product in Eq. (28) for p-∇-cf ∈ p-∇-CF(M,Z, ū) evaluates to

(q,kq−1)∏

(i,j)=(1,1)

P

⎡

⎣
(
ϕf (S

i
j⊕) = Si

j+1

)
|

∧

(i′,j′)≺(i,j)

(
ϕf (S

i′
j′⊕) = Si′

j′+1

)
⎤

⎦ =
(

1
2r · |C|

)ū

,

(37)

where all states p-∇-cf are in p-∇-CF(M,Z, ū).
We have to work a bit more to calculate the total number of states. The num-

ber of possibilities in which a single transition event can be realized depends
both on the input and the output. For that reason we need to specify the
configuration of flags in more detail, not just by the total number of unique
states. Let us denote a transition event from a unique state to a unique state
by ϕf (( ∨ f )S⊕) = ( ∨ f )Su u and similarly for other flags. The flag of the out-

put is defined by the XORed message block or the output block. Before we go
into details of the analysis of the structure of p-∇-CF(M,Z), we list the intu-
itive principles of counting the output states depending on the input and output
states:

(a) ϕf ((u ∨ f )S⊕) = (u ∨ f )S —the only constraint is that the output cannot be

the same as any on the previous unique states, the number of possible output
values is at most 2r · |C| or |C| and can be smaller by at most κ (the bound
is 2r · |C| if the transition is in the absorbing phase and |C| if it is in the
squeezing phase),

(b) ϕf ((u ∨ f )S⊕) = n S —the output has to be in the set of outputs of states

with the flag f , the number of possible output values is at most κ,
(c) ϕf (n S⊕) = (u ∨ f ∨n )S —the output is defined by the image memorized in

the second entry of the state, the number of possible output values = 1.

The actual numbers in the above guidelines can be calculated precisely but they
depend on the actual case we deal with.

To properly treat the transition events we need to keep track of not only
the total number of unique states but also the number of truly unique u
states. We denote the latter by u and the set with those numbers fixed
by p-∇-CF(M,Z, ū, u). In the above paragraph we also noticed that we
should include in our considerations the number of unique states in differ-
ent phases of SpGen. The number of states with the flag u in the absorb-
ing phase is denoted by uabs. Note that we are addressing all q absorb-
ing phases so we take into account flags of all states with indices (i, j) ∈
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{(i′, j′)}i′∈{1,...,q},j′∈{1,...,|Mi′ |r}. The number of states with the flag u in the
squeezing phase is denoted by usqu and we take into account states with indices
(i, j) ∈ {(i′, j′)}i′∈{1,...,q},j′∈{|Mi′ |r+1,...,ki′ −1}. Similarly the total number of
unique states is denoted by ūabs and ūsqu.

Next we fix particular placements of flags in the arrays p-∇-cf ∈
p-∇-CF(M,Z, ūabs, uabs, ūsqu, usqu). We no longer need to keep u and ū explicit
as u = uabs + usqu and ū = ūabs + ūsqu. Let us define a placement P for

(M,Z) as an array of flags F ∈ {u , f ,n} with its dimensions determined by
(M,Z) in the same way as for nabla configurations ∇-c. The set of placements
P(M,Z, ūabs, uabs, ūsqu, usqu) is defined as the set of all placements P encoun-
tered in elements of p-∇-CF(M,Z, ūabs, uabs, ūsqu, usqu). We are going to write
Flag(P i

j ) to determine the flag in the position (i, j) in placement P . For each
P we are able to calculate the size of p-∇-CF(M,Z, P ), we no longer add ūabs

and other parameters as they are already included in P . Before we define the
algorithm performing this calculation we need to bound the number of different
placements.

Let us assume for a moment that (M,Z) restrains only the size of p-∇-cf and
not the values of the states. If there were no constraints coming from the workings
of Flag-Assign then unique states would be distributed in all combinations of
picking ūabs elements among states in absorbing phases. Additionally, we also
want to take into account combinations of uabs elements among the ūabs flags.
Let us recapitulate: first we distribute ūabs flags (without specifying whether
they are u or f ) and then assign them concrete values (u or f ). The total
number of state-triples in the absorbing phases of p-∇-cf is μ :=

∑q
i=1|Mi|r.

The number of possibilities for the first step is
(

μ
ūabs

)
and the second step is

(
ūabs
uabs

)
. The total number of possibilities of placing the unique flags in absorbing

phases is
(

μ
ūabs

)
·
(

ūabs
uabs

)
.

The problem of distributing unique states in squeezing phases is the same as
in absorbing phases. The total number of state-triples with flags in the squeezing
phases of p-∇-cf is ζ :=

∑q
i=1(|Zi|r − 1). The number of placements is

(
ζ

ūsqu

)
.

We also need to multiply this result by the number of placements of states with
flag u among all unique states.

The two calculations above bring us to the conclusion that our analysis
is sufficiently detailed; we have identified and taken into account all parts of(
∀i ∈ [q] : SpGenϕf

(Mi, �i) = Zi
)

that depend on |C|. In summary we divided
p-∇-CF(M,Z) into a small (relatively to |C|) number of subsets whose size we
can actually calculate. The last result assures that even though we do not for-
mally describe the structure of the last level of division of p-∇-CF(M,Z), the
number of possibilities of next divisions does not depend on |C|. So we have
that
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|P(M,Z, ūabs, uabs, ūsqu, usqu)| ≤
(

μ

ūabs

)(
ūabs

uabs

)

·
(

ζ

ūsqu

)(
ūsqu

usqu

)

(38)

≤
(

μ

μ/2

)2(
ζ

ζ/2

)2

≤
(

κ

κ/2

)4

≤ κ4κ. (39)

Our assumption is that κ is fixed so the number of placements is independent of
|C|. Note that we can compute |P(M,Z, ūabs, uabs, ūsqu, usqu)| for fixed parame-
ters and the above inequality just shows that irrespective of the exact value of
the calculation the number of placements does not depend on |C| and is relatively
small.

Let us define a function that helps us accommodate for the fact that some
subsets of p-∇-CF(M,Z) are empty for some specific (M,Z):

δ(M,Z, P ) :=

{
1 if p-∇-CF(M,Z, P ) = ∅
0 otherwise

. (40)

In what follows we leave out the input to δ, as it can be inferred from context.
For example δ evaluates to 0 if the input includes ūabs = μ and the first block
of the input messages is not always different.

The last division we make is done be characterizing uniqueness of outer and
inner parts of states. This step is done to get the precise and correct result,
but the high level explanation and an approximation of the output of Calc is
already captured by principle (a). We have not captured this situation in detail
in our example proof because it becomes important only if longer outputs are
present. Here we explain the procedure of including the necessary details.

Main detail we add is assigning flags to outer and inner parts of states indi-
vidually. We introduce those flags only now to keep the proof as clear as possible;
technically to include the additional flags we modify the algorithm Flag-Assign
in such a way that it runs over a configuration ∇-c two additional times but act-
ing solely on outer states and inner states. Those two additional runs assign
the same flags as the original one but corresponding to just one of the parts of
S⊕ states. Rest of the discussion after applying Flag-Assign is unchanged and
depends only on flags of the full states.

When discussing placements note that a unique state (u or f ) can consist
of a unique outer state and a unique inner state but also out of a non-unique
outer state and a unique inner state or vice versa. After we assign a particular
placement P ∈ P(M,Z, ūabs, uabs, ūsqu, usqu) there are still many possibilities of
arranging outer and inner states flags. There are exactly three possibilities every

unique state can be arranged in:

(
u ∨ f
u ∨ f

)

,

(
u ∨ f
n

)

, and

(
n

u ∨ f

)

, where we

symbolize a state S⊕ by a column vector with flags assigned to its outer state
in the first row and inner state in the second row. Hence, for every placement P
we have 3ūabs+ūsqu placements of the outer and inner states flags. We are going
to mark the fact that we have included those additional details into placements
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by adding a star to the set of placements P ∈ P∗(M,Z, ūabs, uabs, ūsqu, usqu).
We have that

|P∗(M,Z, ūabs, uabs, ūsqu, usqu)| ≤ κ4κ · 3ūabs+ūsqu . (41)

We also write Flag(P̄ i
j ) and Flag(P̂ i

j ) to access the flag of the outer and inner
part of P i

j respectively.
Algorithm 5 below shows the algorithm Calc that outputs the number of

different p-∇-cf ∈ p-∇-CF(M,Z, ūabs, uabs, ūsqu, usqu) for some given placement
P ∈ P∗(M,Z, ūabs, uabs, ūsqu, usqu). To capture the fact that the number of
possible values a unique state can have depends on the number of unique states
with already assigned values we define the following sets. For unique outer states
we have

Ūprev(P, i, j) := P i′
j′ : (i′, j′) ≺ (i, j) ∧ Flag(P̄ i′

j′ ) ∈ {u , f}
(42)

Ū
f
prev(P, i, j) := P i′

j′ : (i′, j′) ≺ (i, j) ∧ Flag(P̄ i′
j′ ) = f

(43)

For unique inner states we have

Ûprev(P, i, j) := P i′
j′ : (i′, j′) ≺ (i, j) ∧ Flag(P̂ i′

j′ ) ∈ {u , f} ,
(44)

Û
f
prev(P, i, j) := P i′

j′ : (i′, j′) ≺ (i, j) ∧ Flag(P̂ i′
j′ ) = f .

(45)

Note that all of the above quantities (42, 43, 44, 45) are bounded by

1 Ūprev(P, i, j), Ûprev(P, i, j), Ūf
prev(P, i, j), Û

f
prev(P, i, j) ūabs + ūsqu κ.

(46)
In the algorithm we also use N-Possibilities is the number of possibilities

in which one can assign values to non-unique states in a nabla configuration.
N-Possibilities is bounded by κκ. More details on that are provided in the full
version [12].

Thanks to the additional details we get the precise form of the expression p.

5.4 Final Expression

In the previous subsections we formalized algorithms that help us analyze the
expression in Eq. (28). First we introduced Flag-Assign that analyzes ∇-c from
the perspective of having the same input to ϕf multiple times. Then we defined
Calc that counts the arrays of states that fulfill a given set of constraints, the
number and arrangement of unique states. The final part of the proof of Lemma 9
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is to use those algorithms to show that p(|C|−1) is of the claimed form. We start
by formally writing down the expression in terms of divisions of p-∇-CF(M,Z)
we introduced and the outputs of Calc. Next we identify crucial elements of the
sum that lead to the claim of the lemma, showing the maximal degree of |C|−1

in the expression p(λ).

Algorithm 5: Calc

Input : P ∈ P∗(M,Z, ūabs, uabs, ūsqu, usqu)
Output: α ∈ N, cardinality of the set p-∇-CF(M,Z, P )

1 α := 1
2 for j = 1, . . . , ki − 2, i = 1, . . . , q do
3 if j < |Mi|r and Flag(P i

j ) ∈ {u , f} then // Absorbing phases

4 if Flag(P i
j+1) ∈ {u , f} then //

(
ϕf (

(u ∨ f )S⊕) = (u ∨ f )S
)

5 if Flag(P̄ i
j+1) ∈ {u , f} and Flag(P̂ i

j+1) ∈ {u , f} then

// P i
j+1 =

(
u ∨ f
u ∨ f

)
6 α = α · 2r − Ūprev(P, i, j + 1)

) ·
(
|C| − Ûprev(P, i, j + 1)

)
7 if Flag(P̄ i

j+1) ∈ {u , f} and Flag(P̂ i
j+1) = n then

// P i
j+1 =

(
u ∨ f
n

)
8 α = α · 2r − Ūprev(P, i, j + 1)

) · Ûf
prev(P, i, j + 1)

9 if Flag(P̄ i
j+1) = n and Flag(P̂ i

j+1) ∈ {u , f} then

// P i
j+1 =

(
n

u ∨ f

)
10 α = α · Ūf

prev(P, i, j + 1) ·
(
|C| − Ûprev(P, i, j + 1)

)
11 if j ≥ |Mi|r and Flag(P i

j ) ∈ {u , f} then // Squeezing phases

12 if Flag(P i
j+1) ∈ {u , f} then //

(
ϕf (

(u ∨ f )S⊕) = (u ∨ f )S
)

13 if Flag(P̂ i
j+1) ∈ {u , f} then // P i

j+1 ∈ {
(
u ∨ f
u ∨ f

)
,

(
n

u ∨ f

)
}

14 α = α ·
(
|C| − Ûprev(P, i, j + 1)

)
15 if Flag(P̂ i

j+1) = n then // P i
j+1 =

(
u ∨ f
n

)
16 α = α · Ûf

prev(P, i, j + 1)

17 for i = 1, . . . , q, j = ki − 1 do
18 if Flag(P i

j ) ∈ {u , f} then
19 α = α · |C| · 2r|Zi|r−�i

20 α = α · N-Possibilities(κ − ūabs − ūsqu, ūabs + ūsqu − uabs − usqu, P )
21 Output α · δ(M,Z, P )



Quantum Indistinguishability of Random Sponges 321

In the previous sections we showed that

p(|C|−1) =
∑

∇-c∈∇-C(M,Z)

(q,kq−1)∏

(i,j)=(1,1)

P

⎡

⎣
(
ϕf (S

i
j⊕) = Si

j+1

)
∣
∣
∣
∣
∣
∣

∧

(i′,j′)≺(i,j)

(
ϕf (S

i′
j′⊕) = Si′

j′+1

)
⎤

⎦ (47)

=
∑

p-∇-cf∈p-∇-CF(M,Z)
︸ ︷︷ ︸

Eq. (49),(50)

(q,kq−1)∏

(i,j)=(1,1)

P

⎡

⎣
(
ϕf (S

i
j⊕) = Si

j+1

)
∣
∣
∣
∣
∣
∣

∧

(i′,j′)≺(i,j)

(
ϕf (S

i′
j′⊕) = Si′

j′+1

)
⎤

⎦

︸ ︷︷ ︸
Eq. (37)

, (48)

where the second equality comes from the fact that constraints (32) exclude
those ∇-c that have probability 0. Let us also make the division of p-∇-CF(M,Z)
explicit

p-∇-CF(M,Z) =
μ⋃

ūabs=1

μ⋃

uabs=0

ζ⋃

ūsqu=0

ζ⋃

usqu=0

⋃

P∈P∗(M,Z,ūabs,uabs,ūsqu,usqu)

p-∇-CF(M,Z, P ). (49)

Next we use Eq. (37) and the fact that for P ∈ P(M,Z, ūabs, uabs, ūsqu, usqu) we
have

|p-∇-CF(M,Z, P )| = Calc(P ) (50)

to expand p(|C|−1) to

p(|C|−1) =
∑

ūabs,uabs,ūsqu,usqu,P

Calc(P )
(

1
2r · |C|

)ūabs+ūsqu

(51)

To calculate a0 and the maximal degree of p let us focus on p(|C|−1) for all
unique (with the flag u in both outer and inner part) sates:

q∏

i=1

|Mi|r−1∏

j=1

(2r − jq − i) (|C| − jq − i)

q∏

i=1

ki−2∏

j=|Mi|r

(|C| − jq − i)
q∏

i=1

(
2r|Zi|r−�i |C|

)
(2r|C|)−κ

. (52)

In the above expression if we take all messages of maximal length m and outputs
of maximal length z we get a polynomial of degree κ − q = q(m + z − 2). This



322 J. Czajkowski et al.

is necessarily the maximal degree as every evaluation of ϕf increases the degree
by one, except for the last but this cannot be changed, the last column does not
matter at all for the overall probability. Hence the maximal degree of p is as
claimed

η := q(m + z − 2). (53)

In the case all states are unique, i.e. |C| → ∞, p(|C|−1) evaluates to ∼ 2−
∑

i �i .
This expression corresponds to the output probability of a random oracle, exactly
how expected of a sponge with all different inner states. If we only take the terms
2r|C| and |C| and the probability we arrive at 2−

∑

i �i . This result is only one
of the terms in a0 but note that all other terms will correspond to different
placements and will include δ(M,Z, P ) with different inputs, being non-zero for
different (M,Z). Hence for any given input-output pairs (M,Z) for |C| → ∞ the
probability function approaches the probability of a random oracle outputting
Z on M. To get the power of |C| equal to zero we need to have the same number
of unique states (probability terms decreasing the degree by one) as pairs of
unique states (increasing the degree by one). Configurations that satisfy those
conditions come from inputs and outputs that are either fully unique or exactly
the same as at least one other input or output, respectively. One special case
occurs if the output is just a single block long then messages can differ by just
the last block and still have different outputs.

In our proof we have focused on the case of ϕf being a random transforma-
tion. In Sect. 6 we provide the details that should be considered to show that
Theorem 8 holds also for random permutations.

6 Internal Permutations

In this section we prove the main result but for the internal function ϕf being a
random permutation. We use Zhandry’s PRF/PRP switching lemma from [25].
In the full version of the paper [12], we also give a direct proof, resulting in a
slightly worse bound.

Theorem 16. SpGenϕf
for a random permutation ϕf is quantumly indistin-

guishable from a random oracle. More concretely, for all quantum algorithms A
making at most q quantum queries to SpGen, such that the input length is at
most m · r bits long and the output length is at most z · r bits long,

∣
∣
∣
∣
∣

P

ϕf
$←T (S)

[
A|SpGenϕ f

〉(.) = 1
]

− P
h←R

[
A|h〉(.) = 1

]
∣
∣
∣
∣
∣
<

π2

3
η3|C|−1, (54)

where the set of permutations is denoted by T (S) := {ϕf : S → S |
ϕf is a bijection}. The domain is defined as S = {0, 1}r ×C for some non-empty
finite set C.

Proof. It was proven in [25] that a random permutation can be distinguished
from a random function with probability at most π2q2/6|C| for any adversary
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making at most q quantum queries. We can use this result in a reduction from
distinguishing SpGen using a random permutation from SpGen using a random
function to distinguishing of a random permutation from a random function.
Using this result together with Theorem 8 gives us the resulting bound as follows

∣
∣
∣
∣
∣

P

ϕf
$←T (S)

[
A|SpGenϕ f

〉(.) = 1
]

− P
h←R

[
A|h〉(.) = 1

]
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

P

ϕf
$←T (S)

[
A|SpGenϕ f

〉(.) = 1
]

− P

ϕf
$←SS

[
A|SpGenϕ f

〉(.) = 1
]
∣
∣
∣
∣
∣

(55)

+

∣
∣
∣
∣
∣

P

ϕf
$←SS

[
A|SpGenϕ f

〉(.) = 1
]

− P
h←R

[
A|h〉(.) = 1

]
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

P

ϕf
$←T (S)

[
B|ϕf 〉(.) = 1

]
− P

φ
$←SS

[
B|ϕf 〉(.) = 1

]
∣
∣
∣
∣
∣
+

π2

6
η3|C|−1 (56)

≤ π2

3
η3|C|−1. (57)

��

7 Open Question

One of the most desirable security notions for hash functions is indifferentiabil-
ity from a random oracle which is defined with respect to a possible simulator
that fools a distinguisher into believing that it interacts with the internal func-
tion instead of a simulation of it. Proving indifferentiability is more challenging
than indistinguishability. It is not clear whether the natural translation of the
classical notion of indidfferentiability to the quantum setting is achievable. Only
recently, two articles [9,27] opened the discussion, but so far, the results remain
inconclusive.

In our work, we provide a quantum security guarantee more suitable for keyed
primitives where an attacker does not have access to the internal building block.
On the one hand, we increase the trust that hash functions based on the sponge
construction are quantum safe and on the other hand, we formally prove that
it is a quantum secure pseudorandom function when used with a keyed internal
function—like it is used in the hash-based signatures scheme SPHINCS+ [23] in
the instantiation using the Haraka hash function [15].
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Abstract. The Fiat-Shamir transformation is a useful approach to
building non-interactive arguments (of knowledge) in the random oracle
model. Unfortunately, existing proof techniques are incapable of proving
the security of Fiat-Shamir in the quantum setting. The problem stems
from (1) the difficulty of quantum rewinding, and (2) the inability of cur-
rent techniques to adaptively program random oracles in the quantum
setting. In this work, we show how to overcome the limitations above in
many settings. In particular, we give mild conditions under which Fiat-
Shamir is secure in the quantum setting. As an application, we show that
existing lattice signatures based on Fiat-Shamir are secure without any
modifications.

1 Introduction

The Fiat-Shamir transformation is an approach to remove interaction in a pro-
tocol by using a hash function, by setting one party’s messages to be hashes of
the communication transcript. The transformation has many important applica-
tions, from removing interaction from proofs to constructing efficient signatures.

With the growing threat of quantum computers, there is great need for so-
called “post quantum” cryptosystems, those secure against quantum attack. In
the case of signatures, the most efficient constructions [DKL+18] use the Fiat-
Shamir transformation [FS87]. Fiat-Shamir is a general tool to remove interac-
tion from interactive protocols using a hash function.

Classically, the security of the transform is proved in the classical random
oracle model (ROM) [BR93,PS96]. Here, the hash function is replaced with a
truly random function that can only be evaluated by query access. As argued by
Boneh et al. [BDF+11], the correct way to model random oracles in the quantum
setting is to allow quantum queries to the random oracle. While many techniques
have been developed to prove security in the quantum ROM [BDF+11,Zha12,
BZ13,Unr17,TU15,Unr15,KLS18,Zha18], to date the post-quantum security of
general Fiat-Shamir remains unresolved.

In fact, there has been some compelling justification for this state of affiars.
Dagdelen, Fischlin, and Gagliardoni [DFG13] demonstrate that there cannot be a
reduction with certain natural features (discussed below) which capture many of
the existing techniques. What’s more, Ambainis, Rosmanis, and Unruh [ARU14]
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show that many classical results about Fiat-Shamir that rely on rewinding are
simply false in the quantum setting. In particular, they show that special sound-
ness is insufficient to prove the security of Fiat-Shamir in the quantum ROM.

As a result, authors have proposed various ways to strengthen the underlying
protocol so that post-quantum Fiat-Shamir can be proved (e.g. [DFG13,Unr17,
KLS18]) or use an alternative transformation altogether (e.g. [Unr15]). However,
in all cases, this leads to a less efficient and less elegant scheme.

1.1 Summary of Results

In this work, we revisit Fiat-Shamir, showing that in many cases Fiat-Shamir can
be successfully applied for post-quantum security without modifying the underly-
ing protocols.

Our results come in two parts. The first set of results concerns the Fiat-
Shamir transformation itself, resurrecting standard classical results in the quan-
tum ROM:

– If the underlying protocol is an argument (of knowledge), then Fiat-Shamir
gives an argument (of knowledge).

– If the underlying protocol is a secure identification scheme, then Fiat-Shamir
gives a secure signature scheme.

These results do not require making any additional assumptions on the under-
lying protocol than what is needed classically (other than, of course, needing
security to hold against quantum adversaries).

These results overcome the barrier of Dagdelen, Fischlin, and Gagliar-
doni [DFG13] by giving a proof that is outside the class of natural reductions
they consider. On the other hand, the results side-step the rewinding barrier
of Ambainis, Rosmanis, and Unruh [ARU14], as the rewinding barrier already
applies to the security of the underlying protocol.

Our second set of results concerns overcoming the rewinding barrier
of [ARU14]. Classically, 2-soundness/2-extractability1 are often used to prove
that a protocol is an argument/argument of knowledge. While [ARU14] show
that in general these conditions are insufficient in the quantum setting, we show
the following:

– We define a notion of collapsing for a protocol which is similar to the notion
of collapsing for hash functions [Unr16b].

– Abstracting a result of Unruh [Unr16b], we show that the usual classical
results carry over to the quantum setting, provided the protocol is collapsing.
That is, 2-soundness plus collapsing implies an argument, and 2-extractability
plus collapsing implies an argument of knowledge.

– Next, we give two weaker conditions, either of which are sufficient for a pro-
tocol to be collapsing. The first is that the protocol has an associated lossy
function with certain properties. The second is that the protocol is separable,
a new notion we define.

1 2-extractability is often called “special soundness” in the literature.
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– Finally, we then show that the lattice-based protocol of Lyubashevsky [Lyu12]
is separable under the LWE assumption. Piecing together with our other
results, we demonstrate that Lyubashevsky’s protocol is secure in the quan-
tum random oracle model without any modifications. These results naturally
extend to protocols built from this protocol, such as [DKL+18].

A key feature of our results is that they can be used as a black box with-
out requiring the complicated details of quantum computing. In particular, the
needed security properties are 2-soundness/2-extractability and associated lossy
functions/separability. These properties are essentially classical in nature (except
for having to hold with respect to quantum adversaries) and can be proved using
classical proof techniques, and trivially porting them into the quantum setting.
All of the quantum difficulties are hidden inside our proofs.

1.2 Technical Details

A Quantum ROM Fiat-Shamir Proof. Our first result is to prove the
security of Fiat-Shamir in the quantum random oracle model, showing that Fiat-
Shamir is an argument (of knowledge) assuming the original protocol is.

Fiat-Shamir operates on a sigma protocol, which is a three-message protocol
with a public-coin verifier. The prover has some witness w for a statement x. In
the first message, the prover sends a commitment a. Then the verifier chooses
a random challenge c which it sends back. Finally, the prover comes up with a
response r. The verifier then looks at the transcript (a, c, r), which it accepts or
rejects. The protocol is an argument if no (computationally bounded) malicious
prover can cause the verifier to output 1 in the case x is false. The protocol is an
argument of knowledge if, moreover, from any computationally bounded prover,
a valid witness w can be extracted.

Honest verifier zero knowledge means that it is possible to generate valid
transcripts (a, c, r) without knowing a witness. Note that this generation proce-
dure typically chooses a based on c and maybe r; as such a generation procedure
does not allow one to break the soundness of the argument.

The Fiat-Shamir transformation, using a hash function H, simply replaces
the verifier’s challenge with c = H(a). Thus the prover can generate the entire
interaction for himself. The hope is that the hash function prevents a dishonest
prover from using the zero knowledge property to generate the transcript, by
forcing c to be determined after a. In fact, in the classical random oracle model,
this idea can be turned into a proof, showing how to turn any adversary for
Fiat-Shamir into an adversary for the original sigma protocol.

In the classical proof, the reduction simulates the random oracle on the fly,
keeping track of the points the adversary queries and programming the random
oracle to fresh random points with each query. It is straightforward to prove that
if the adversary eventually outputs a valid argument (a, c = H(a), r), then one
of the random oracle queries must have been on a. If the reduction knew which
query this was at the time of that query, it sends a as its commitment to the sigma
protocol. When it receives c from the verifier, it programs H(a) = c instead of
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choosing its own random value. Since the verifier chose c at random anyway, this
is undetectable to the adversary. Finally, when the adversary outputs (a, c, r),
the reduction simply sends r to the verifier, which will pass. Now, the reduction
does not know which query will correspond to the adversary’s output when the
query is made, so the adversary simply guesses a query at random, and aborts
if the guess turned out wrong. The resulting adversary still succeeds with non-
negligible probability.

This proof strategy is problematic once we consider quantum queries to the
random oracle. The classical on-the-fly simulation strategy of random oracles
does not work once quantum queries are allowed. The reason is that the sim-
ulation strategy requires recording the adversary’s queries; if the queries were
quantum, the result is effectively a measurement of the adversary’s query. Such
a measurement is easily detectable. A mischievous adversary could test for such
a measurement, and refuse to keep working if detected.

This is a universal problem in the quantum ROM; as such, the typical solution
is to avoid on-the-fly simulation. Instead, the function is set once and for all to
be a fixed function chosen from a careful distribution [BDF+11,Zha12,BZ13,
Unr17,TU15,Unr15,KLS18]. The reduction then answers the queries with this
function, without trying to record anything about the adversary’s query. By
designing the function to be indistinguishable from a truly random oracle, the
adversary cannot tell that it was given a different oracle.

However, while such fixed functions can be made to work in a wide variety
of settings, they seem incapable of proving the security of Fiat-Shamir. Indeed,
an impossibility of this sort is formalized by [DFG13]. The issue is that a Fiat-
Shamir proof needs to extract a from the adversary’s queries and feed it into its
own verifier. But such an extraction constitutes a detectable measurement. Even
worse, it then needs to program the challenge c into the oracle, but this might be
happening after many queries to the random oracle. Therefore, it seems crucial
for a proof to adaptively program the random oracle.

Compressed Oracles. Toward resolution, we start with a very recent technique
that allows for on-the-fly simulation of random oracles in the quantum setting:
Zhandry’s compressed oracles [Zha18].

Zhandry’s key observation is that some sort of on-the-fly simulation analo-
gous to the classical simulation is possible if care is taken to implement the oracle
correctly. Concretely, Zhandry simulates the random oracle as a stateful oracle
which stores a quantum superposition of databases D, where a database is just
a list of input/output pairs (x, y). A database intuitively represents a partial
specification of the oracle: if a pair (x, y) is in the database, it means the oracle
on input x is set to y, whereas if there is no pair that begins with x, it means
the oracle is un-specified at x. Since the oracle actually stores a superposition of
databases, a point x can be in superposition of being specified and unspecified.
Originally, the database starts out empty.

In the classical setting, on query x, the oracle would look up x in the database
and add a pair (x, y) for a random y if x was not found. Afterward (since there
is now guaranteed to be a pair (x, y)) it will output y.
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In the quantum setting, something similar happens. The following description
is slightly inaccurate, but gives the high-level idea. On query x, very roughly,
if x is not found in the database, a pair (x, y) is added, where y is in uniform
superposition over all possible y values. Recall that the query can be quantum,
so this addition to the database is happening in superposition. Then once x is
guaranteed to be specified, the query is answered (again in superposition).

Now, an important difference from the classical setting is this: in order to
maintain perfect indistinguishability from a truly random oracle, a particular
test is performed on the database after answering the query. This test determines
whether the adversary maintains any knowledge of the oracle at input x. If not,
the pair (x, y) is removed from the database.

The above description is informal and slightly inaccurate. But nonetheless
by carrying out the operations correctly, Zhandry shows that this approach can
be made to correctly simulate a random oracle.

For us, Zhandry’s simulation gives a glimmer of hope. Indeed, we notice
that the oracle is now recording information about which points the adversary is
interested in. Therefore, the database has all the information we need to generate
a. Unfortunately though, there is a problem: in order for the reduction to win
against the verifier, it must produce a classical a. However, in order to produce a
classical a, we must measure the adversary’s database. But such a measurement
will affect the state of the oracle, and can be detected by the adversary. Indeed,
it is straightforward to devise adversaries that can catch such a measurement
and refuse to keep running.

Our New Extraction Technique. First, we observe that when the adversary out-
puts (a, c, r), the first thing the verifier does is to check that c = H(a). If the
adversary succeeds, it means that the adversary knows about the value of H at
a. But a lemma of Zhandry [Zha18] shows that in the compressed oracle simu-
lation, the pair (a, c) must be in the oracle’s database (whp). By the end of the
experiment, a has been measured (since the adversary produces a classical out-
put) which roughly has the effect of measuring a in the oracle’s database. Since
the oracle’s database starts out empty, this must mean that (a, c) was added at
some query. One may hope that this means it is possible to measure a random
query to get a.

Unfortunately, things are not so straightforward. The problem is that a might
not have been added to the database at a well-defined point in time. It could be
that each of the adversary’s queries is on a superposition that contains a, and
only after making several queries does the adversary have enough information
to determine H(a).

Now, as a thought experiment, consider running the adversary, and after
each query measuring the database in the compressed oracle. We will define the
adversary’s history as the vector of resulting databases (D1, . . . , Dq). Suppose
the adversary still was able to output (a, c, r) that passed verification. Then we
know that (a, c) ∈ Dq, and so there must be some point i at which a first enters
Di. But this means the adversary actually queries on input a for query i. This
means we could use the classical strategy for extracting a.
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Unfortunately, measuring all the queries would of course destroy the adver-
sary’s state, making it potentially unlikely the adversary would still pass verifica-
tion. The good news is that we can show the probability of passing verification is
at least non-zero. Indeed, Boneh and Zhandry [BZ13] give a measurement lemma
which says that if a measurement has T possibilities, it can only reduce the adver-
sary’s success probability by at most a multiplicative factor of T . Therefore, the
adversary still passes with probability at least the reciprocal of the number of
database histories. Of course, the number of histories is exponentially large, so
this is not useful yet. We note that the measurement lemma is tight in general.

However, we can use this notion of a history to help us achieve an extraction
technique with a higher success probability. For a history h, let |φh〉 be the final
state (where the queries were measured as above) of the algorithm conditioned
on observing the history h. Recall that quantum states are complex vectors of
unit norm. In contrast, |φh〉 will not be normalized, but instead have norm whose
square is equal to the probability of observing h.

Our key idea is to group histories in together, and apply a generalization of
the measurement lemma to the groups of histories. We show that a polynomial
number of groups of histories are possible, leading to a non-negligible chance of
success.

In more detail, we observe that the adversary’s final state, if we did not
measure the history, is exactly

∑
h |φh〉 where the sum is over all possible his-

tories. This is similar to the classical case, where the adversary’s probability
distribution is the sum of the conditional probability distributions for each his-
tory, weighted by the probability of that history. The key difference is that in
the quantum setting, the relation between states and probabilities distributions
requires squaring the amplitudes.

Next, we partition the histories into a polynomial number of sets S1, . . . , Sq.
Set Si consists of all histories (D1, . . . , Dq) for which:

– Di−1 does not contain a
– Di through Dq all contain a

For the clarity of exposition, we assume that the adversary always outputs
a successful tuple (a, c, r), meaning we know that a is in Dq. Therefore, Dq will
contain a in all histories. As such, the sets Si in fact do partition the space of
all possible histories. In the more general case where the adversary may fail, we
would include a set S⊥ of histories where Dq does not contain q.

Now we consider the states |φSi
〉 =

∑
h∈Si

|φh〉. We note that
∑

i |φSi
〉 is

exactly the adversary’s final state, since the Si form a partition. By generalizing
the Boneh-Zhandry measurement lemma, we can show that the |φSi

〉 must result
in (a, c, r) which pass verification with non-negligible probability.

Therefore, our goal is to extract a from the adversary’s query, and then hope
that the resulting state is |φSi

〉 for some i. First, we choose a random i. For that
query, we measure two things:

– Whether that query resulted in a value being added to the database
– And if so, we measure that value to get a guess a′ for a
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If successful, this corresponds to the requirement that histories have Di−1 which
did not contain a and Di contained a. If unsuccessful, we abort. Then, for each
subsequent query, we measure if a′ is still in the database, corresponding to
the requirement that a ∈ Dj for all subsequent databases; if not we abort. At
the end, we test that the value a′ we measured happens to match the a in the
adversary’s output (a, c, r). If a′ = a, the end result is exactly the state |φSi

〉,
since our measurements remove all histories except those in Si.

We show that this procedure succeeds with non-negligible probability, and
then by applying the generalized measurement lemma we get that (a, c, r) passes
verification with non-negligible probability. The result is that we can actually
extract the a at query time, and still have the adversary succeed in producing a
valid (a, c, r), just as in the classical setting.

Our New Programming Technique. Unfortunately, the above is not quite suf-
ficient for a reduction. After all, while we can now query the verifier on a, it
is unclear what it should do with the response c. It could program H(a) = c
by adding the pair (a, c) to the database (recall that H was previously un-
programmed at a since a /∈ Di−1). However, this is different from what the
compressed oracle would have done: the compressed oracle would have added a
uniform superposition over c of (a, c) pairs.

In particular, the information the compressed oracle uses to determine if a
pair should be removed is stored in the phase information of the output registers
in the database. By inserting a classical value c into the output, there is no
phase information for the compressed oracle to use. Actually, this will cause the
compressed oracle to almost always decide to keep the value in the database,
even if it should have been removed.

A natural solution is: in query i once we have extracted a, switch the oracle
database for input a to be permanently “uncompressed”. On all other inputs,
the database will behave as before, but on the special input a, it will no longer
run the check to remove a from the database.

Such a modification can indeed be made to Zhandry’s compressed oracle,
allowing for programming a random c. However, it does not quite work for us.
Remember that our extraction technique above required testing whether a was in
the database after query i. But this test needed to be applied to the original com-
pressed oracle, not the new oracle which doesn’t compress a. In particular, the
new compressed oracle will always report that a is in the database. Roughly this
means our extraction captures all histories where a was added to the database
at query i, even those where it was subsequently removed and added again.

Let Ti be the set of histories of this form. Notice that the Ti’s do not partition
all histories: the multi-set obtained by unioning the Ti contains each history
multiple times. In fact, the number of times each history is included is equal to
the number of times a is added to the database in that history. Some histories
will add a many times.

In order to overcome this issue, we need a way to partition the set of histories
such that the set of histories for query i is independent of the history after the
query. This corresponds to, after query i, no longer testing whether a is in the
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database. If we do not need such a test, we can switch the oracle at a to be
uncompressed and then program a random c.

One thought is to reverse the sets Si. That is, let S′
i be the set of histories

where a is not in the history at any query up until i, and then is added at query
i; we do not care after i if a is added or removed from the database. These
S′

i certainly partition the set of all histories, but unfortunately they cannot be
sampled efficiently. The problem is that a is not known until it is added to the
database in query i; yet, sampling histories in S′

i requires knowing a at the very
beginning in order to test for a’s presence from the start.

Our solution is to try to combine the features of Si and S′
i so that we do not

need to know a at the beginning, but also do not need to test for a’s presence
at the end. Toward that end, we define sets Ti,j,k. A history is in set Ti,j,k if:

– a is added to the database at query i
– a remains in the database until query j, at which point it is removed
– a remains absent from the database until query k, at which point it is added

a second time.

These sets can be easily sampled: at query i, we measure to learn a guess a′

for a. Then we keep testing to make sure that a′ is in the database until query
j, at which point we make sure that a′ is removed. Then we keep testing that a′

is absent until query k, when it is added back in. Once we get to query k, the
database is now programmed at point a′, and we will never need to check for the
presence of a′ in the database again. Therefore we can change the compressed
oracle to be uncompressed at a′, and simply program it’s value to c. When the
adversary finally outputs (a, c, r), we test if a′ = a; if so, the adversary’s state is
exactly the collection of histories in Ti,j,k.

The problem, of course, is that these Ti,j,k also do not partition the space of
all histories. In fact, if a history adds a a total of � times, it will appear in � − 1
histories. Therefore the multi-set obtained by unioning the Ti,j,k contains each
history equal to the number of times a is added, minus 1.

Our final idea is to observe that if we take the multiset derived from the
Ti’s, and subtract the multiset derived from the Ti,j,k’s, we will get every history
exactly once. That means if we define |φT 〉 =

∑
h∈T |φh〉, we have that

|φ〉 =

(
∑

i

|φTi
〉
)

−
⎛

⎝
∑

i,j,k

|φTi,j,k
〉
⎞

⎠

Analogous to the case of the Si’s this allows us to sample a |φTi
〉 or |φTi,j,k

〉—
which let us extract a and program c—and then have the adversary give us a
valid (a, c, r) with non-negligible probability. The reduction then simply sends r
and convinces the verifier. The end result is any adversary for Fiat-Shamir can
be turned into an adversary for the original interactive protocol, completing the
proof of security.
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How to Rewind an Argument. For our next set of results, we show how to
rewind a sigma protocol to allow for proving that the protocol is an argument
(of knowledge). We note that [ARU14] show that 2-soundness/2-extractability
is insufficient. Therefore, we aim to identify some mild extra conditions that will
allow for the proof to go through.

The difficulty in proving soundness comes from the difficulty of quantum
rewinding, which was first observed by Watrous [Wat06]. In a classical rewinding
proof, the adversary commits to a, gets a challenge c1 from the verifier, and
responds with r1. Then, the adversary is rewound to just after a is produced. The
adversary is then run on a different challenge c2, which causes it to give a different
response r2. Then the tuple (a, c1, r1, c2, r2) either breaks 2-soundness, or in
the case of 2-extractability can be used to generate a witness. 2-soundness/2-
extractability are typically easy to prove using standard tools.

In the quantum setting, a problem arises. Namely, while the adversary is
quantum, the r1 it produces during the first run is classical. This means that
r1 must be measured. But this measurement in general cannot be undone. As
such, it is in general impossible to rewind back to the first message to try
again. [ARU14] formalizes this observation by showing (relative to an oracle)
that there are schemes for which 2-soundness/2-extractability are not enough to
prove security.

The natural solution, and the approach we take in this work, is to show that
for some schemes rewinding is possible. Basically, in the absence of measurements
quantum computation is reversible. Therefore we know that if r1 is not measured,
then the adversary can be rewound and it will succeed in producing r2. What we
need to show is that measuring r1 does not significantly impact the probability
that the adversary will successfully produce r2.

Unruh [Unr12] shows that if a sigma protocol additionally satisfies the notion
of strict soundness—meaning that for every a, c there is unique valid r—then
rewinding is possible. The idea is that you can leave r1 in superposition and
not measure it. Then, just the fact that (a, c1, r1) passed verification means that
the superposition over r1 collapses to the unique valid r1. Therefore, measuring
r1 has no additional affect over measuring whether verification succeeded. Of
course, measuring whether verification succeeded will also affect the probability
r2 passes, but Unruh shows that the probability is not too low.

Collapsing Protocols. Unfortunately, strict soundness is undesirable in practice,
as it leads to inefficient schemes. Instead, Unruh [Unr16b] shows that for a par-
ticular protocol built from an object known as a collapse-binding commitment,
rewinding is possible even though there are multiple valid r. Collapse-binding
commitments can in turn be built from a so-called a collapsing hash function.

We abstract Unruh’s ideas, defining a general notion of collapsing for sigma
protocols. Roughly, a collapsing sigma protocol is one where there may be many
valid r’s for a given (a, c), but the adversary cannot tell whether a superposition
of valid r’s is measured or not. This is exactly what Unruh’s protocol guarantees,
and is exactly what is needed to be able to rewind in the setting of many r’s.
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By following Unruh’s techniques, we show that collapsing is a sufficient extra
condition to get the classical results to carry though to the quantum setting.

But now we face another challenge: how do we construct a collapsing sigma
protocol? We can look for techniques for building collapsing hash functions or
commitments and see if they apply. However, the techniques are sparse. [Unr16b]
only shows that a random oracle is collapsing, and a more recent work of
Unruh’s [Unr16a] gives a construction using lossy trapdoor functions (LTDFs).
However, trying to embed a LTDF in the sigma protocol construction will result
a less efficient scheme, which will be important for the application to signatures.
In particular, Lyubashevsky’s scheme is inherently lossy, and moving to a regime
where there is an injective mode will significantly increase parameter sizes.

Associated Lossy Functionss. Our resolution is to devise a new technique for
proving that a sigma protocol (or hash function) is collapsing. They key idea is
that the protocol itself does not need to be lossy, just that there is an associated
lossy function (not necessarily trapdoored) with a useful relationship to the
protocol.

In more detail, an associated lossy function for a sigma protocol consists
of two sampling procedures GenL,GenI . GenI(a, c) takes as input the first two
messages of the protocol, and outputs a function f . It guarantees that over the
space of valid r, f is injective. In contrast, GenL(a, c) samples a lossy mode f ,
which is guaranteed to be constant over the space of valid r. In either case, no
guarantees are made on invalid r. Lastly, we require that for any a, c, the two
modes are computationally indistinguishable (even if the attacker knows a, c).

Any scheme with an associated lossy function is collapsing. Indeed, given a, c
and a superposition over valid r, sample a lossy mode f . Then measuring f(r)
has no effect on the state (since f is constant over the set of valid r). Then
we switch f to an injective mode and still measure f(r). By the computational
indistinguishability of the modes, this change is undetectable. Finally, in the
injective mode, f(r) information-theoretically contains all information about r,
so measuring f(r) is equivalent to measuring r. This means we can measure r
without detection.

Next, we observe that typical lattice-based sigma protocols have associated
lossy functions. For example, Lyubashevsky’s signature scheme [Lyu12] uses a
sigma protocol where the set of valid responses r are short vectors such that
A ·r = u mod q where A is a short wide matrix that is part of the public key and
u depends on a, c. We will define our associated lossy function to be the natural
lossy function built from the Learning With Errors (LWE) problem [AKPW13].
A lossy mode f is sampled by choosing a tall skinny matrix C, a matrix E with
short entries, and computing B = C · A + E mod q. The function fB(r) is then
�B·r mod q�, where �·� represents a suitably course rounding. Since r is short and
E has short entries, we will have that B ·r mod q ≈ C ·A ·r mod q = C ·u mod q,
which is independent of which valid r is used.

For the injective mode, we simply choose B at random mod q. By choosing
parameters correctly, one can ensure that fB(r) is injective.
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One problem with the above is that, in order for the lossy mode to be con-
stant, we need that q is super-polynomial. Otherwise, rounding errors will cause
fB(r) in the lossy mode to not quite equal �C · u�, and the errors will depend
on r. As such, for polynomial modulus, fB(r) is not constant on valid r. Using
a super-polynomial modulus will negatively impact the efficiency of the scheme,
and requires a stronger computational assumption.

Our first observation is that we do not actually need full indistinguishability
of the measured vs not measured r. For our application to sigma protocols, we
just need that anything that happens when r is unmeasured will also happen
with reasonable probability when r is measured. But the two cases could be
distinguishable in the strict sense. This gives a weak notion of collapsing which
is sufficient for rewinding.

What this allows us to do is shrink q to be small, and we will have that
the lossy mode in constant with non-negligible probability, which we show is
sufficient. However, we still need q to be somewhat larger than what is required
classically. This is because when we prove that the lossy mode is constant, we
need to union bound over each row of C. Decreasing the height of C improves
the probability of success, but we need to keep C a certain height so that the
injective mode is actually injective.

Separable Sigma Protocols. In order circumvent the above difficulties and get an
optimally-small q, we show that we can get by using a single row of C.

In more detail, we will say that a sigma protocol is separable if there is an
associated family of functions with particular properties. Like associated lossy
functions, the family of functions has two modes: a preserving mode (which can
be seen as the analog of the lossy mode) and a separating mode (the analog of
the injective mode). Unlike the lossy functions, the family of functions here will
output only a single bit. In this case, there clearly can not be an injective mode.

Instead, we will use the following requirements. A preserving mode f is still
constant on valid r. On the other hand, the separating mode has the property
that, for any valid r �= r′, f(r) = f(r′) with probability, say, 1/2.

We show that such separating functions can be used to show collapsing.
What’s more, for lattice-based schemes, the separating functions can be seen as
instances of the lossy functions where C is just a single row. As before, we will
need to allow for some weak indistinguishability between preserving and sepa-
rating modes, leading to weak collapsing. We will also need to handle separating
modes where the probability is not necessarily exactly 1/2. We show how to do
all of this, demonstrating that Lyubashevsky’s sigma protocol [Lyu12] is weakly
collapsing.

Putting It All Together. Piecing our results from the previous sections
together, we show that Lyubashevsky’s signature scheme [Lyu12] is secure under
standard lattice assumptions. Namely, 2-soundness follows from the SIS assump-
tion, under the same asymptotic parameters needed to prove security classically.
The separating function we need in the quantum setting follows from the LWE
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assumption; recall that LWE implies SIS. The result is that the sigma proto-
col underlying Lyubashevsky’s signatures is sound under the LWE assumption.
Then we apply our Fiat-Shamir proof, obtaining existentially unforgeable signa-
tures. Our techniques readily extend to schemes based on Lyubashevsky’s, such
as the efficient signature scheme of [DKL+18].

Other Results. Our techniques for showing lattice-based sigma protocols are
collapsing can also be applied to hash functions. In particular, our techniques
show that the SIS hash function is collapsing. Recall that the SIS hash function
is specified by a short wide matrix A, takes as inputs short vectors r, and outputs
A · r mod q.

If q is super-polynomial, then SIS will have an associated lossy function
with strong indistinguishability, namely the same function constructed for the
sigma protocols. As such, SIS with super-polynomial q is collapsing. On the
other hand, for polynomial q, SIS is weakly separable using the same functions
as above, showing that SIS is weakly collapsing. This gives the to-date most
efficient standard-model collapsing hash function.

Limitations. The obvious limitation of our work is the tightness of our reduc-
tions. Our Fiat-Shmir proof is quite loose, losing a factor of q9 where q is the
number of random oracle queries; we leave tightening our proof as an important
open problem.

This looseness makes our results all but useless for guiding parameter choices
in practice. However, we note that in practice parameter choices typically are
chosen to block the best attacks rather than the bounds obtained by reductions.
Of course, getting a tight bound that matches the parameters used in practice is
the ideal outcome, but this is often not attainable. Indeed, even the classical Fiat-
Shamir proof is somewhat loose. This has lead to some authors (e.g. [DKL+18])
to make new assumptions that incorporate the hash function which can be tightly
connected to the security of their scheme. These new assumptions can then be
justified (with a loss!) using the classical Fiat-Shamir proof.

We therefore view our results as at least showing asymptotically that Lyuba-
shevsky’s and related signature schemes are secure, meaning there are no funda-
mental weaknesses incurred by using the Fiat-Shamir heuristic in the quantum
world. Alternatively, our proof can be used to give a quantum justification for
assumptions which can then be tightly connected to the security of schemes.

2 Weakly Collapsing Sigma Protocol

2.1 Sigma Protocol

First, let us recall the definition of sigma protocol. The full definition can be
found in the full version [LZ19].

For every λ, there is a relation Rλ = {(x,w) : x ∈ Lλ, w ∈ W (x)} such
that the length of x and w is bounded by a polynomial of λ, x is a statement
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in an NP language Lλ and W (x) is the set of witness for proving x ∈ Lλ. In
other words, there is an polynomial time algorithm runs in poly(λ) that decides
whether (x,w) ∈ Rλ.

A sigma protocol for Rλ consists two polynomial time algorithms, prover
P and verifier V. The sigma protocol procedure looks like the follows:

– P is given both x,w and generates (a, st) ← P.Commit(1λ, x, w). st is its own
state and it sends the commitment a to V;

– V given x and a, generates a challenge c uniformly at random in {0, 1}λ where
wlog λ is the security parameter of this protocol;

– P given the challenge c, generates a response r ← P.Prove(1λ, x, w, st, c);
– V.Ver(1λ, x, a, c, r) returns 0/1 meaning the transcript is valid or not.

When it is clear in the context, we omit 1λ for convenience.
Sometimes, we will need to consider a distribution over instances. In these

cases, we associate a Gen(·) algorithm to a sigma protocol. Gen(1λ) outputs a
pair of (x,w) ∈ Rλ. Gen(·) defines a distribution over Rλ. In this setting, we
use pk to denote x and sk to denote (x,w). Moreover, we have P.Commit(sk) =
P.Commit(x,w), P.Prove(sk, st, c) = P.Prove(x,w, st, c) and V.Ver(pk, a, c, r) =
V.Ver(x, a, c, r). This notation will be useful when we build an ID protocol or
a signature scheme from a sigma protocol. In this case, some definitions are
average-case definitions: for example, correctness is defined as probability that
the above procedure outputs 1 taken the randomness of challenge c, P,V and
also the distribution over Rλ induced by Gen(·).

2.2 Collapsing

In addition to the usual properties considered classically, we define a new notion
of security for sigma protocols, inspired by Unruh’s notion of collapsing for hash
functions and commitments [Unr16b]:

Definition 1 (Collapsing Sigma Protocol). For any λ, for any Gen(1λ)
and any polynomial time quantum distinguisher D, define the following game
CollapsingGameb

D,pk,sk:

– (pk, sk) ← Gen(1λ), D is given pk and generates and sends a to the challenger;
it then gets a uniformly random c from the challenger Ch; then it generates
a superposition |φ〉 over all r (may not be a valid r) together with its own
quantum states and sends the part |φ〉 to the challenger Ch;

– Upon receiving |φ〉, Ch verifies in superposition that |a, c〉|φ〉 is a superposition
over valid transcripts. If the verification fails, Ch outputs a random bit and
aborts. Otherwise, let |φ′〉 be the superposition after the measurement, which
is the projection of |φ〉 onto r such that |a, c, r〉 is valid.
Then Ch flips a coin b, if b = 0, it does nothing; if b = 1, it measures |φ′〉 in
computational basis. Finally it sends the superposition back to D.

– The experiment’s output is what D outputs.
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We say a quantum sigma protocol associated with Gen(·) is collapsing if for
every polynomial time quantum distinguisher D, the probability D distinguishes
is negligible, in other words, there is a negligible function negl, such that

∣
∣Pr

[
CollapsingGame0D,pk,sk = 0

] − Pr
[
CollapsingGame1D,pk,sk = 0

]∣
∣ ≤ negl(λ)

Where probabilities are taken over the randomness of (pk, sk) ← Gen(1λ) and the
randomness of D.

We can similarly define weakly collapsing property which is used in the rest of
the paper.

Definition 2 ((γ-)Weakly Collapsing). We say a quantum secure sigma pro-
tocol associated with Gen(1λ) is weakly collapsing, if there exists a non-negligible
γ(·), such that for any polynomial time quantum distinguisher D,

Pr
[
CollapsingGame1D,pk,sk = 0

] ≥ γ(λ) · Pr
[
CollapsingGame0D,pk,sk = 0

] − negl(λ)

Weak collapsing captures the setting where measuring the adversary’s
response causes a noticeable change in outcome in contrast to not measuring,
but any event that occurs in the un-measured setting also occurs in the measured
setting. We can similarly define a worst case version of weak collapsing where
that holds for any choice of (x,w) ∈ R, rather than for a random (pk, sk) chosen
from Gen.

In the next subsections, we give sufficient conditions for demonstrating the
collapsing property. Our definitions are given for sigma protocols, but can easily
be extended to hash functions. A key feature of our definitions is that they
are essentially classical definitions, as opposed to collapsing which is inherently
quantum. As such, we believe our weaker definitions will be easier to instantiate,
as we demonstrate in Sect. 4.

2.3 Compatible Lossy Function

A compatible lossy function can be thought as a function generator CLF.Gen(·).
It takes all the parameters λ, pk, sk, a, c and mode ∈ {constant, injective}, outputs
a constant or small range (polynomial size) function over all valid r. Here valid r
means V.Ver(pk, a, c, r) = 1. Also, no efficient quantum algorithm can distinguish
whether it is given a function description from constant mode or injective mode.
In the full version [LZ19], we give the full definition, and show that it implies
collapsing. For the remainder of this section, we will instead focus on an even
weaker notion.

2.4 Compatible Separable Function

Definition 3 ((τ, β)-Compatible Separable Function). A compatible sep-
arable function for a sigma protocol is an efficient procedure CSF.Gen(λ, pk, sk,
a, c,mode) which takes a security parameter λ, pk, sk, a commitment a, a chal-
lenge c and mode ∈ {preserving, separating}, it outputs a description of an effi-
ciently computable function f that outputs 0, 1 such that
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1. preserving mode: over the set Va,c of valid r, with non-negligible probability f
is a constant function. Formally, there exists a non-negligible function τ(·),
such that for all λ, pk, sk, for all a, c, let Fp be the distribution sampled by
CSF.Gen(λ, pk, sk, a, c, preserving),

Pr
f←Fp

[|Im(f)| = 1] ≥ τ(λ)

where Im(f) is the image of f over all valid r satisfying (a, c, r) is a valid
transcript.

2. separating mode: there exists an α such that, for all valid r �= r′, the probability
of f(r) = f(r′) is exactly 1+α

2 where the randomness is taken over the choice
of f .
Formally, there exists β(λ) < τ(λ) such that τ(λ)−β(λ) is non-negligible, for
all λ, pk, sk, for all a, c, let Fs be the distribution of functions that sampled by
CSF.Gen(λ, pk, sk, a, c, injective), there exists an α(·) which is upper bounded
by β(·) (but which is potentially negative), for every pair of valid r �= r′,

Pr
f←Fs

[f(r) = f(r′)] =
1 + α(λ)

2

3. Indistinguishability: Let us first define SFGameb
D,pk,sk:

– D is given pk and interacts with the challenger Ch which has pk, sk,
– D sends a pair of valid a, c to the challenger,
– Ch chooses a random function f from Fp if b = 0 or from Fs if b = 1,

where Fp or Fs is determined by pk, sk, a, c,
– D is given the description of f , the result of the game is D’s output.

We require that for every λ, for every polynomial time quantum distinguisher
D, taken the randomness of (pk, sk) ← Gen(1λ),

∣
∣Pr

[
SFGame0D,pk,sk = 0

] − Pr
[
SFGame1D,pk,sk = 0

]∣
∣ ≤ negl(λ)

Lemma 1. If a sigma protocol associated with Gen(·) has (τ, β)-compatible sep-
arable functions, it is τ−β

2 -weakly collapsing.

Proof. Assume there is a non-negligible function ε(·) and a polynomial time
quantum distinguisher D that breaks the τ−β

2 -weakly collapsing property of this
sigma protocol. From the definition, taken the randomness of pk, sk, we have,

Pr
[
CGame1D,pk,sk = 0

]
<

τ(λ) − β(λ)
2

· Pr
[
CGame0D,pk,sk = 0

] − ε(λ)

where CGame stands for CollapsingGame.
Let us assume there exist a (τ, β)-compatible separable function. We will

build an adversary A that uses D as a subroutine and breaks the compatible
separable function. Here is what A does:

– A given pk, it runs D (which taks pk as input) and gets a,

– A samples c
$← {0, 1}λ, and gives c to D and a, c to the challenger Ch,



Revisiting Post-quantum Fiat-Shamir 341

– A gets |φ〉 from D and a function f from Ch. It first checks |φ〉 contains valid r
on superposition. If the measurement does not pass, A randomly guesses a bit.
Otherwise, let |φ′〉 =

∑
r αr|r〉 be the superposition after the measurement.

It applies f to |φ′〉,
|φ′′〉 = Uf |φ′〉 =

∑

valid r

αr · (−1)f(r)|r〉

– It gives |φ′′〉 to D and outputs what D outputs.

For any pk, sk, a, c, any possible |φ′〉 =
∑

valid r αr|r〉 in the above game, what
is the density matrix of |φ′〉 or |φ′〉 measured in computational basis? If the state
is not measured (which corresponds to the density matrix in CGame0D,pk,sk), we
have the density matrix is

ρ0 =
∑

valid r,r′
ᾱrαr′ |r〉〈r′|

and if |φ′〉 is measured (which corresponds to the density matrix in CGame1D,pk,sk),
the density matrix is ρ1 =

∑
valid r |αr|2 · |r〉〈r|.

If we take a function f ← Fp, let Uf be a unitary Uf |r〉 = (−1)f(r)|r〉. Apply
Uf to ρ0, we have

ρp =
∑

f←Fp

1
|Fp| ·Uf ρ0 U†

f = Pr
f←Fp

[|Im(f)| = 1] ·ρ0 +
∑

f←Fp

f is not constant

1
|Fp| ·Ufρ0U

†
f

which is easy to see that ρp is a convex combination of ρ0 and Ufρ0U
†
f for f is

not constant. The above equality holds because when f is a constant function,
Uf is an identity. It says if a distinguisher outputs 0 when ρ0 is given, the same
distinguisher outputs 0 with probability at least Pr[|Im(f)| = 1] ≥ τ(λ) when
ρp is given. In other words, we have

Pr[SFGame0A,pk,sk = 0] ≥ τ(λ) · Pr[CGame0D,pk,sk = 0]

Next if we apply Uf where f ← Fs to the density matrix ρ0, we have

ρs =
∑

f←Fs

1
|Fs| · Uf ρ0 U†

f =
∑

valid r,r′

∑

f←Fs

1
|Fs| · ᾱrαr′ · Uf |r〉〈r′|U†

f

=
∑

valid r

|αr|2 · |r〉〈r| +
∑

valid r �=r′
ᾱrαr′ · |r〉〈r′| ·

⎧
⎨

⎩

∑

f←Fs

1
|Fs| (−1)f(r)+f(r′)

⎫
⎬

⎭

= (1 − α(λ)) · ρ1 + α(λ) · ρ0

If α(λ) ≤ 0, we have ρ1 = 1
1−α(λ) · ρs + −α(λ)

1−α(λ) · ρ0. If a distinguisher outputs
0 when ρs is given, the same distinguisher outputs 0 with probability at least 1

2
when ρ1 is given. In other words, for any distinguisher D′,

Pr[D′(ρs) = 0] ≤ 2 · Pr[D′(ρ1) = 0]
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If α(λ) is positive, we have ρs = (1 − α(λ)) · ρ1 + α(λ) · ρ0. In other words,
for any distinguisher D′, because α(λ) < β(λ),

Pr[D′(ρs) = 0] = (1 − α(λ)) · Pr[D′(ρ1) = 0] + α(λ) · Pr[D′(ρ0) = 0]
≤ Pr[D′(ρ1) = 0] + β(λ) · Pr[D′(ρ0) = 0]

Combining the two above equations, taken over the randomness of pk, sk, a, c,

Pr[SFGame1A,pk,sk = 0] ≤ 2 · Pr[CGame1D,pk,sk = 0]+

β(λ) · Pr[CGame0D,pk,sk = 0]

Finally, we show that A breaks the compatible separable function,

Pr[SFGame0A,pk,sk = 0] − Pr[SFGame1A,pk,sk = 0]

> τ(λ) · Pr[CGame0D,pk,sk = 0]−
(
2 · Pr[CGame1D,pk,sk = 0] + β(λ) · Pr[CGame0D,pk,sk = 0]

)

= (τ(λ) − β(λ)) · Pr[CGame0D,pk,sk = 0] − 2 · Pr[CGame1D,pk,sk = 0]

> 2 · ε(λ)

�

3 Quantum ID Protocol and Quantum HVZKPoK

In this section, we will see that given a quantum secure sigma protocol with
weakly collapsing property, we can overcome the difficulty of doing quantum
rewinding and build a quantum secure identification protocol. The same tech-
nique can be applied to HVZKPoK.

3.1 Quantum ID Protocol

Theorem 1. Assume we have a quantum secure sigma protocol with associated
Gen(·) which satisfies the weakly collapsing property (with perfect/weak complete-
ness). Then it is a quantum secure identification protocol (with perfect/weak
completeness).

In other words, if a sigma protocol has (1) perfect/weak completeness, (2)
post-quantum 2-soundness, (3) statistical/post-quantum computational HVZK
and (4) weakly collapsing property, it is a sigma protocol with (1) perfect/weak
completeness, (2) post-quantum ID soundness.

Proof. We recall the definitions of the various properties in the full ver-
sion [LZ19]. The full proof of Theorem 1 is in the full version [LZ19]. Here,
we briefly sketch the proof.

Assume there is an algorithm A breaks the soundness of the sigma protocol
as an ID protocol. We can use A and output one valid tuple (a, c, r). If we can
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then rewind the algorithm to just after a was produced, we can run it again and
will find two valid tuples (a, c, r) and (a, c′, r′). Notice that c, c′ are distinct with
overwhelming probability.

However, when A generates (a, c, r), it will in general be a superposition over
r. By measuring this superposition, A has a non-negligible change to output a
valid r. Measurement will destroy superposition and we can not roll-back the
quantum machine and restart the whole algorithm.

Suppose we just measure whether (a, c, r) is a valid transcript, but not the
entire superposition over r. Even though this will alter the adversary’s state,
Unruh [Unr12] demonstrates that (a, c′, r′) from the second run will still be a
valid transcript with non-negligible probability. However, by not measuring the
first transcript, we still do not have a classical (a, c, r) that we can output along
with (a, c′, r′).

Fortunately, weak collapsing tells us that even if A measures the superposi-
tion over r, (a, c′, r′) will still be a valid transcript with non-negligible probability.
So we will obtain two pairs (a, c, r), (a, c′, r′) with non-negligible probability. �

3.2 Quantum HVZKPoK

Theorem 2. If a sigma protocol has (1) perfect completeness, (2) statistical/
post-quantum computational HVZK, (3) worst case weakly collapsing property
and (4) 2-extractability, it is a quantum HVZKPoK. In other words, it is a
sigma protocol with (1) perfect completeness, (2) statistical/post-quantum com-
putational HVZK and (3) (c, p, κ, negl)−validity form c = 3, polynomial p and
negligible functions κ = 0, negl.

The proof idea can also be found in the full version [LZ19].

4 Construction of Collapsing Sigma Protocol

The following protocol is from [Lyu12]. Although in the paper, Lyubashevsky
only shows a digital signature scheme, it follows the framework of Fiat-Shamir.
We extract the following sigma protocol from the digital signature. We will
reprove it is a quantum secure sigma protocol (which is already shown to be
secure as a signature scheme in [Lyu12]) and then show it has compatible
lossy/separable functions. We will have parameters, most of the proofs (already
shown in [Lyu12]) and the proof of compatible lossy functions in the full ver-
sion [LZ19] and only show the proof of compatible separable functions in this
section.

– Gen(1λ): A $← Z
n×m
q and S $← {−d, · · · , d}m×k and let pk = (A,T = AS)

and sk = (A,S).

– Commitment Stage: P given sk, y $← Dm
σ and a = Ay. It sends a to V.

– Challenge Stage: V randomly samples c $← {−1, 0, 1}k satisfying ‖c‖1 ≤ κ
and sends c to P.
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– Response Stage: P after getting c, r = Sc+y and sends y with probability
pr(c, r). Otherwise, it sends ⊥.

pr(c, r) = min

{
Dm

σ (r)
M · Dm

Sc,σ(r)
, 1

}

– Verification Stage: V outputs 1 if Ar = Tc + a and ‖r‖2 ≤ ησ
√

m.

Remark: The definition of discrete Normal Dm
σ and Dm

v,ς can be found in the
full version [LZ19]. We note that the protocol only satisfies a weak completeness
requirement, where the honest prover succeeds with non-negligible probability.

The challenge stage looks different from a challenge stage defined by a sigma
protocol. But indeed, we can think of it as choosing a random bit string and
mapping it to a vector c that c ∈ {−1, 0, 1}k and ‖c‖1 ≤ κ.

We reprove this scheme is a secure quantum sigma protocol in the full ver-
sion [LZ19]. Next let us prove it is weakly collapsing. Theorem 3 directly follows
from Theorem 4.

Theorem 3. The sigma protocol constructed above is weakly collapsing.

Compatible Separable Functions.

Theorem 4. There exists (τ, β)-compatible separable function CSF.Gen where
τ(λ) = 0.499 and β(λ) = 1/q(λ)2, for any λ, pk = (A,T), sk = (A,S),a, c,

Fp =
{

f : f(r) = [(uA + e) · r + z][q/2],u
$← Z

n
q , e $← Dm

q,αq, z
$← Zq

}

Fs =
{

f : f(r) = [v · r + z][q/2],v
$← Z

m
q , z

$← Zq

}

where [x][q/2] rounds x/[q/2] to the nearest integer (0 or 1), αq > 2
√

n, Δ =
(ησ

√
m) · (αq) · 2√

m = q/8. In which case, q = 32ησm
√

n is a polynomial of λ.

Proof. Preserving: First, let us show that for any λ, pk, sk, a, c, the correspond-
ing Fp has many constant functions.

Because we say r is valid if and only if Ar = Tc + a and r is short. For any
function f

$← Fp, we have

f(r) = [(uA + e) · r + z][q/2] = [uAr + er + z][q/2]

where uAr+ z = uA(Tc+ a) + z is constant regardless of the input r and with
the random choice of z, its value is uniformly at random in Zq.

We have the following corollary that bounds the inner product of e and r,

Corollary 1. For any r ∈ R
m, ‖r‖ ≤ ησ

√
m, we have

Pr
[|〈e, r〉| > Δ ; e ← Dm

q,αq

] ≤ 2e
− Δ2

2(ησ
√

m)2(αq)2

By letting Δ = (ησ
√

m)(αq) · 2
√

m, we have the above probability is bounded by
2e−m.
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By setting Δ = q/8, in which case αq = q
16·ησm , we know that

1. uAr+ z falls into [Δ, [q/2] − Δ] or [[q/2] + Δ, q − Δ] with probability ≥ 1/2,

2. Draw e $← Dm
q,αq, for all valid r, with overwhelming probability, |〈e, r〉| ≤ Δ.

So τ(λ) = Prf←Fp
[|Im(f)| = 1] > 1

2 − negl(λ) > 0.499.
0 Separating: Second, let us show that there exists a β(·) such that for any

λ, pk, sk,a, c, for any pair of valid r �= r′, f(r) and f(r′) will be mapped to the
same bits with the same probability 1+α(λ)

2 where β(λ) = α(λ) = 1
q2 .

Fixing r �= r′, let us consider the distribution of (vr+ z,vr′ + z) for random
chosen v, z. Given a random chosen v, the difference vr − vr′ is uniformly at
random. And given the random choice of z, (vr + z,vr′ + z) is a uniformly
random element in Zq × Zq. Therefore we have

Pr
f←Fs

[f(r) = f(r′)] = 1 − 2 · ([q/2] + 1) · [q/2]
q2

=
1 + α(λ)

2
where α(λ) =

1
q2

It also satisfies that τ − β is non-negligible.

Indistinguishability: A distinguisher is given either (uA + e, z) or (v, z). It
corresponds to an instance of DLWE. Based on the quantum security of DLWE,
indistinguishability holds. �

Compatible Lossy Functions. It also has a compatible lossy function. The
full theorem statement is in the full version [LZ19].

5 Compressed Oracles

In [Zha18], Zhandry showed a new proof technique to analyze random oracles
[2N ] → [2N ] under quantum query access. The technique allows a simulator,
given a random oracle machine making polynomial number of queries, to simulate
a quantum random oracle efficiently. The full details can be found in the full
version [LZ19], and we sketch the details here:

1. Compressed Fourier Oracles: Assume a simulator B is simulating a quan-
tum random oracle for A. The simulator B maintains a superposition over
databases of pairs D = {(xi, ui)} (here we always assume a database is sorted
according to xi). At the beginning, B only has |D0〉 which is a pure state over
an empty database D0. We will think of the database as being the specifica-
tion for a function, where (xi, ui) ∈ D means xi �→ ui, whereas if x is not
present in the database, then x �→ 0.
Define D(x) = ⊥ if x is not in the database and D(x) = ui if there is a
pair (xi, ui) such that x = xi. We then define the following operation ⊕ for
a database D and a pair (x, u). Intuitively, thinking of D as the encoding of
a function, it will XOR u into the image of x. More precisely, (1) if u = 0,
D ⊕ (x, u) = D, (2) else if D(x) = ⊥, D ⊕ (x, u) = D ∪ {(x, u)}, (3) else if
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D(x) = ui and u + ui ≡ 0 (mod 2N ), D ⊕ (x, u) = D \ {(x, ui)} and (4)
otherwise, D ⊕ (x, u) = (D \ {(x, ui)}) ∪ {(x, ui + u)}.
So we start with

∑
x,u a0

x,u|x, u〉 ⊗ |D0〉 where D0 is empty. After making the
i-th query, we have

CFourierO
∑

x,u,D

ai−1
x,u,D|x, u〉 ⊗ |D〉 ⇒

∑

x,u,D

ai−1
x,u,D|x, u〉 ⊗ |D ⊕ (x, u)〉

One observation is when the algorithm A only makes q queries, any database
in the superposition contains at most q non-zero entries. So B can efficiently
simulate quantum random oracle. And Zhandry shows the density matrices
of A given B or a true quantum random oracle are identical.

2. Compressed Phase Oracles: By applying the QFT on the database of a
compressed Fourier oracle, we get a compressed phase oracle.
In this model, a database contains all the pairs (xi, ui) which means the oracle
outputs ui on xi and uniformly at random on other inputs. We can also define
D(x) = ⊥ if x is not in the database and D(x) = ui if there is a pair (xi, ui)
such that x = xi. When making a query on |x, u,D〉,

– If (x, u′) is in the database D for some u′, a phase ωuu′
N (where ωN =

e2πi/2N

) will be added to the state; it corresponds to update u′ to u′ + u
in the compressed Fourier oracle model;

– Otherwise a superposition is appended to the state |x〉 ⊗ ∑
u′ ωuu′

N |u′〉; it
corresponds to put a new pair (x, u′) in the list in the compressed Fourier
oracle model;

– Also make sure that the list will never have a (x, 0) pair in the compressed
Fourier oracle model (by doing a QFT and see if the register is 0); if there
is one, delete that pair;

– all the ‘append’ and ‘delete’ operations above means doing QFT on |0〉 or
a uniform superposition.

Intuitively, it is identical to a compressed Fourier oracle. You can image QFT
is automatically applied to every entry of the compressed Fourier database
and converts it to a compressed phase oracle.

In this paper, we introduce two more quantum oracle variations. These vari-
ations can be based on both compressed Fourier oracles and compressed phase
oracles. Here we only introduce the first case. The second one is straightforward.

– The first variation is almost compressed Fourier oracles, which is based
on compressed Fourier oracles. For most points, we simulate using the com-
pressed Fourier oracle. However, for a small set of points, we just keep them as
a (uncompressed) phase oracle. Formally, let x∗ be an element in the domain
of the random oracle O : X → Y . The database D contains only the (x, u)
pairs for x �= x∗, the whole system can be written as the following, at the
beginning of the computation, D0 is an empty list:

∑

x,u

αx,u|x, u〉 ⊗
(

|D0〉 ⊗
∑

r

|r〉
)

By making a quantum query, the simulator does the follows:
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• If the query is (x, u) and x �= x∗, the simulator updates D as what it does
in the compressed Fourier oracle setting;

• If the query is on the special point (x∗, u), the second part of the oracle
is updated as a phase oracle:

αx∗,u,D,u′ |x∗, u〉 ⊗ |D〉 ⊗
∑

r

ωu′r
N |r〉

⇒αx∗,u,D,u′ |x∗, u〉 ⊗ |D〉 ⊗
∑

r

ω
(u′+u)r
N |r〉

In other words, we only apply QFT on most of the domain but x∗. This ran-
dom oracle model can be extended to the case where we exclude a polynomial
numbe of special points from D. As long as the number is polynomial, it can
be efficiently simulated.

– The second one is inspired from our technique of extracting information from
quantum oracle queries in the next section. Assume before the i-th query,
the database does not have x∗, in other words, for any D containing x∗ and
arbitrary x, u, z, αx,u,z,D = 0. The superposition is

∑

x,u,z,D
D(x∗)=⊥

αx,u,z,D|x, u, z,D〉

Then we can switch random oracle models between the i-th query: before
the i-th query, we simulate a random oracle as a compressed Fourier oracle,
and right before the i-th query, we switch to almost compressed Fourier ran-
dom oracle. We call i is the switch stage. Because before the i-th query, every
database D with non-zero weight does not contain x∗, we can simply append∑

r |r〉 to the superposition. So the superposition now becomes
∑

x,u,z,D
D(x∗)=⊥

αx,u,z,D|x, u, z,D〉 ⊗
∑

r

|r〉

6 Extracting Information from Quantum Oracle Queries

We first describe a technique for extracting the adversary’s query, without per-
turbing its behavior too much. The setting is the following. The adversary makes
some number of oracle queries (let us say q) to a random oracle, implemented
as a compressed Fourier oracle. At the end of the interaction, we measure the
entire state of the adversary and oracle, obtaining (w,D), where w is some string
that we will call a witness. We will only be interested in the case where D is
non-empty. Let γw,D denote the probability of obtaining w,D.

We now consider the following experiment on the adversary. We run the
adversary as above, but we pick a random query i ∈ [q] or a random triple
i < j < k ∈ [q] with equal probability. That is, we pick a random i with
probability 1/(q+

(
q
3

)
) or pick a random triple i, j, k with probability 1/(q+

(
q
3

)
).

Then we do Expi or Expi,j,k as follows:
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1. Expi: Before making the i-th query, we measure the query register to get x∗

and check if the database D does not have x∗ before the i-th query and has
x∗ right after the i-th query.
In other words, before measuring query register, let us assume the state is

∑

x,u,z,D

αx,u,z,D |x, u, z,D〉

Conditioned on the measurement gives x∗, the state becomes
∑

u,z,D

αx∗,u,z,D |x∗, u, z,D〉

If the database D does not have x∗ before the i-th query and has x∗ right
after the i-th query, it means (1) all D does not contain x∗, (2) u �= 0 so that
after the i-th query, all D will contain x∗. So if the check passes, the state
becomes ∑

u�=0,z,D:D(x∗)=⊥
αx∗,u,z,D |x∗, u, z,D〉

And then we do not care whether D contains x∗ for all the remaining oracle
queries and computation. If it does not satisfy any condition, we abort.
We know that after the measurement, the superposition contains all D that
does not contain x∗. We can switch to almost compressed Fourier oracle with
the special point x∗.

2. Expi,j,k: We measure the query register to get x∗ before making the i-th query.
And we check the following (on superposition) that

– D does not have x∗ before the i-th query,
– D always has x∗ after the i-th query and before the j-th query,
– D does not have x∗ after the j-th query and before the k-th query,
– D has x∗ right after the k-th query. (But we do not care whether D

contains x∗ for the remaining oracle queries and computation.)

If the check does not pass, we abort. Just right before the k-th query, we
switch to almost compressed Fourier oracles with the special point x∗.

Let γi,x∗,w,D be the probability that conditioned on we are in Expi, the mea-
surement gives x∗ and the final output is w,D. Let γi,j,k,x∗,w,D be the probability
that conditioned on we are in Expi,j,k, the measurement gives x∗ and the final
output is w,D. We have the following lemma:

Theorem 5. For any w,D, for any x such that D(x) �= ⊥, there are at least
one i or one tuple i < j < k such that γi,x,w,D ≥ γw,D/(q+

(
q
3

)
)2 or γi,j,k,x,w,D ≥

γw,D/(q +
(
q
3

)
)2.

Proof. Let
∑

x,y,z αx,y,z|x, y, z〉 be the state of the adversary just before the first

query, and let U
(i)
x,y,z,x′,y′,z′ be the transition function after the i-th query. For

vectors x ,y , z and w, let

αx ,y ,z ,w = αx1,y1,z1U
(1)
x1,y1,z1,x2,y2,z2

· · · U (q)
xq,yq,zq,w
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Then we can write the final joint state of the adversary and oracle as:

∑

x ,y ,z ,w

αx ,y ,z ,w|w〉 ⊗
∣
∣
∣
∣
∣

q⊕

i=1

(xi, yi)

〉

For any D, define the following sets SD: it contains all the vector x ,y pairs such
that

⊕q
i=1(xi, yi) = D. Thus we have γw,D = |γ′

w,D|2 where

γ′
w,D =

∑

(x ,y)∈SD,z

αx ,y ,z ,w

Next consider any x such that D(x) �= ⊥, we can define the following sets:

– SD,i: it contains all the vector x ,y such that
1. The fixed x is not in the database defined by ⊕i−1

j=1(xi, yi),
2. xi = x and yi �= 0.

In other words, x is not in the database before the i-th query and
appears in the database right after i-th query. We can define γ′

i,x,w,D =
∑

(x ,y)∈SD,i,z
αx ,y ,z ,w. Similarly we have γi,x,w,D = |γ′

i,x,w,D|2.
– SD,i,j,k: it contains all the vector x ,y such that

1. x is not in the database before the i-th query,
2. x is in the database after the i-th query and before the j-th query,
3. x is not in the database after the j-th query and before the k-th query,
4. x appears in the database right after the k-th query.

We can define γ′
i,j,k,x,w,D =

∑
(x ,y)∈SD,i,j,k,z αx ,y ,z ,w. Similarly we have

γi,j,k,x,w,D = |γ′
i,j,k,x,w,D|2.

Then we have the following lemma:

Lemma 2. For any w,D and any x such that D(x) �= ⊥, we have
∑

i

γ′
i,x,w,D −

∑

i<j<k

γ′
i,j,k,x,w,D = γ′

w,D

Given the lemma above, we can argue that there exists some i or some triple
i < j < k such that either |γ′

i,x,w,D| ≥ |γw,D|/(q +
(
q
3

)
) or |γ′

i,j,k,x,w,D| ≥
|γw,D|/(q +

(
q
3

)
) by triangle inequality. Combining with γi,x,w,D = |γ′

i,x,w,D|2
and γi,j,k,x,w,D = |γ′

i,j,k,x,w,D|2, we complete the proof of our theorem. The only
thing we need to prove is Lemma 2.

Proof. Consider every (x ,y) ∈ SD and z , consider the database defined by
these vectors. Assume x is inserted t times into the database. On the left side,
αx ,y ,z ,w,D will appear in

∑
i γ′

i,x,w,D exactly t times and appear in the second
term

∑
i<j<k γ′

i,j,k,x,w,D exactly t − 1 times. On the right side, it appears only
once. Every αx ,y ,z ,w,D appears exactly once on both side. So the left side is equal
to the right side. �
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We finish our proof for the Theorem 5. �
And we notice that if A makes measurement during computation, the theo-

rem also holds. And all the theorems and corollary below apply to the case where
the algorithm can make measurement during computation. This proof and all
proofs for the theorems below are in the full version [LZ19].

Theorem 6. For any w, compressed Fourier database D and any x such that
D(x) �= ⊥, let τx,w,D be the probability that in the above extracting experiment
(that is to randomly pick Expi or Expi,j,k), the measurement gives x and the
output is w,D, we have τx,w,D ≥ 1

(q+(q
3))3

· γw,D.

Proof. It follows directly from Theorem 5. Because we have probability 1

q+(q
3)

to

stay in the experiment that maximize the probability of getting x and outputting
w,D, the total probability is at least τx,w,D ≥ 1

(q+(q
3))3

· γw,D. �

Theorem 6 can be generalized to the setting where D is a compressed phase
database, i.e, applying QFT on compressed Fourier database.

Corollary 2. Define a set S contains pairs of w and compressed phase database
D. Define a measurement, P0 =

∑
(w,D)∈S |w,D〉〈w,D|, P1 = I − P0.

Let τ be the probability that in the extracting experiment, the extraction gives
some xw,D in the database D for a given pair (w,D) and the final measurement
is 0. Let γ be the probability that in the normal game, the final measurement is
0. q is the total number of oracle queries made. We have τ ≥ 1

(q+(q
3))3

· γ.

7 Programming Quantum Random Oracles

Lemma 3. Assume an adversary A is interacting with an almost compressed
phase oracle whose the switch stage is i and the special point is x∗. Wlog, assume
the random oracle maps {0, 1}N → {0, 1}N . Instead of appending

∑
r |r〉 before

the i-th query, the simulator chooses a random r and appends |r〉 to the whole
superposition. Then the adversary and the simulator keeps running. Finally the
simulator measures the output registers.

Let γr,w,D be the probability that the output is w,D ∪ {(x∗, r)} in the normal
game (where D does not contain x∗) and γ′

r,w,D be the probability that the output
is w,D ∪ {(x∗, r)} in the modified game with |r〉 is appended. We have

1
2N

γ′
r,w,D = γr,w,D

where D is a compressed phase database.

In other words, if we choose r uniformly at random, the probability of getting
certain output does not change at all even if we program the oracle at x∗ to
output r. The lemma also holds if the almost compressed phase oracle has several
special points and applies the technique to all the special points. The proof
directly follows the proof for a single special point.
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Proof. The proof is in the full version [LZ19]. Intuitively, when 1/
√

2N · ∑
r |r〉

is appended, from A’s view, the density matrix remains the same as the case
where a random |r〉 is appended. �
Corollary 3. Assume an adversary A is interacting with an almost compressed
phase oracle whose the switch stage is i and the special point is x∗. Wlog, assume
the random oracle maps {0, 1}N → {0, 1}N . Instead of appending

∑
r |r〉 before

the i-th query, the simulator chooses a random r and appends |r〉 to the whole
superposition. Then the adversary and the simulator keeps running. Finally the
simulator measures the output registers.

Let S be a set of w and compressed phase database D ∪ {(x∗, r)}. Define a
measurement P0, P1,

P0 =
∑

(w,D∪{(x∗,r)})∈S

|w,D ∪ {(x∗, r)}〉〈w,D ∪ {(x∗, r)}| P1 = I − P0

Let γ be the probability that the measurement gives 0 in the normal game and
γ′ the probability that the measurement gives 0 in the extracting game where |r〉
is randomly chosen. We have γ = γ′.

The lemma also holds if the almost compressed phase oracle has several special
points and applies the technique to all the special points.

8 Fiat-Shamir in the QROM

8.1 Post-quantum Signature

Consider a (weakly complete) quantum secure identification protocol P,V, Fiat-
Shamir approach gives a post-quantum digital signature as follows:

– It generates a pair of valid keys for identification protocol, say (pk, sk). pk is
the verification key and sk is the signing key.

– SignH(sk,m): it generates (a, st) ← P.Commit(sk), and c ← H(a||m); and it
generates r ← P.Prove(sk, st, c). If r is not valid, it runs another round. It
keeps running until r is valid. Finally it returns σ = (a, c, r).

– VerH(pk,m, σ = (a′, c′, r′)): given pk,m and a′, c′, r′, it first verifies whether c′

is generated honestly, in other words, c′ = H(a′||m). Then it checks (a′, c′, r′)
is a valid transcript by checking whether V.Ver(pk, a′, c′, r′) = 1.

Theorem 7. For a (weakly complete) secure quantum identification proto-
col with unpredictable commitment, Fiat-Shamir heuristic gives a secure post-
quantum digital signature in the quantum random oracle model.

First, let us look at completeness. By definition, there exist sets Goodλ, such
that for all (pk, sk) ∈ Goodλ, a honest generated transcript (a, c, r) is valid with
some non-negligible probability at least η(λ). It is easy to see when SignH runs
the sigma protocol λ· 1

η(λ) rounds, it generates a valid transcript with probability
≥ 1 − O(e−λ). Besides, if (pk, sk) is sampled by Gen(1λ), with overwhelming
probability (pk, sk) ∈ Goodλ. Completeness follows. Next, let us look at security
(existential unforgeability).
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Proof. Assume we have quantum polynomial time A that makes q classical sign-
ing queries and p quantum oracle queries breaks the digital signature with advan-
tage ε where ε is non-negligible.

Hyb 0: Let ChSign be the challenger in A’s game. The game is defined as the
following:

1. A makes p quantum oracle queries to the random oracle which
is simulated by B;

2. A makes q classical signing queries to the challenger ChSign. Every
time A wants to make a classical signing query, it measures the
query register (to make sure the signing query is classical).
To answer signing queries mi, the challenger draws (ai, st) ←
P.Commit(sk), makes a classical oracle query to the random ora-
cle to get ci = H(ai||mi) and gets ri = P.Prove(sk, st, ci). ChSign
sends σi = (ai, ci, ri) to A.

Wlog, the final superposition will have three parts. The first part is A’s
registers containing a new signature, the second part is ChSign’s registers which
contain all the signing queries made by A and the third part is the oracle’s
registers (which B simulates it by using a compressed phase oracle).

Define the following measurement that checks if A succeeds in forgery:

P0 =
∑

valid m,σ,s
{(mi,σi},D

|m,σ, s〉|{(mi, σi)}〉|D〉〈m,σ, s|〈{(mi, σi)}|〈D|

and P1 = I − P0. In P0, we require that the output satisfies

1. σ = (a, c, r) and σi = (ai, ci, ri).
2. It contains a valid new signature m,σ and all signing queries mi, σi.
3. m,σ is new relative to {(mi, σi)}q

i=1, i.e, (m,σ) �∈ {(mi, σi)}q
i=1.

4. All the signatures (including the newly forged one) are valid. First, for all
i, V.Ver(sk, ai, ci, ri) = 1 and V.Ver(sk, a, c, r) = 1. And second, for all i,
D(ai||mi) = ci and D(a||m) = c.

Because D is a compressed phase oracle. It is possible that D(ai||mi) = ⊥
but still we have H(ai||mi) = ci. But in this case, H(ai||mi) is completely
random. From Lemma 5 in [Zha18], there is only negligible loss (as long as q is
polynomial). So we have in the above game, the final measurement gives 0 with
probability at least ε0 = ε − negl(λ) which is non-negligible.

Next we are going to modify the above game step by step until we get a B
which simulates signing queries and breaks the underlying identification protocol.
The difference of each hybrid is marked and the detailed algorithms in each
hybrid are in the full version [LZ19].
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Hyb 1: Here for each classical query ai||mimade by ChSign, B checks
the current compressed phase database does not have ai||mi. In other
words, B applies the measurement

∑
w,D:D(ai||mi)=⊥ |w,D〉〈w,D|.

Because the sigma protocol has unpredictable commitments, the probability
the measurement does not pass is negligible in λ. And every time B checks ai||mi

is not in any database, it puts ai||mi into the set of the special points, i.e, append∑
ci

|ci〉 to the oracle superposition denoting D(ai||mi) = ci.
Let ε1 be the probability that in the above game, all the intermediate mea-

surements pass and the final measurement gives 0. We have ε1 ≥ ε0 − negl(λ)
which is non-negligible.

Hyb 2: The algorithm A is interacting with a simulated random oracle (sim-
ulated by B) and ChSign. B applies our extracting technique in Sect. 6: it
randomly picks i or i, j, k ∈ [p], and does one of the experiments.

We care about the probability the all that measurements/checks pass, the
extracted x = a||m contains the same thing (the same a,m) as the message of
the forged signature x, σ = (a, c, r) and the final measurement gives 0 which tells
a valid new signature is generated correctly.

From Corollary 2, given w = ((m,σ), s, {(mi, σi)}q
i=1) and D that passes the

measurement P0, define xw,D = a||m. Then we have the probability that the
above experiment passes all the checks, the extracted query is a||m and the final
output measured over P0, P1 is 0 is at least ε2 ≥ 1

(q+(q
3))3

· ε1.

Hyb 3: At the time of appending
∑

c |c〉 or
∑

ci
|ci〉 to the superposition, B

randomly picks c and ci and appends |c〉 and |ci〉. From Corollary 3, the
probability that the experiment passes all the checks, the extracted query is a||m
and the final output measured over P0, P1 is 0 remains the same, i.e, ε3 = ε2.

Hyb 4: Now each ci is chosen uniformly at random. B can simulate ChSign
using the honest generated transcripts. Every time A makes a signing
query mi, B picks the next generated transcript (ai, ci, ri). Let H(ai||mi) = ci

and σi = (ai, ci, ri).
The distribution of transcripts does not change. So the overall probability

that the experiment passes all the checks, the extracted query is a||m and the
final output measured over P0, P1 is 0 remains the same, i.e, ε4 = ε3.

Hyb 5: In the final hybrid, |c〉 is not longer chosen uniformly at random.
B is now in the game of breaking the quantum computational soundness of an
identification protocol with the challenger Chid.

B gives a to Chid where the extracted query is x = a||m, and receives c
from Chid. It then uses the given |c〉 instead of the randomly chosen one.
The distribution does not change because c is also uniformly chosen by Chid.
The overall probability that the experiment passes all the checks, the extracted
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query is a||m and the final output measured over P0, P1 is 0 remains the same,
i.e, ε5 = ε4 is non-negligible.

And because the extracted query is x = a||m and the newly forged signature
is m,σ = (a, c, r). We know that a, c, r is valid. So B can use an adversary A
for breaking the signature scheme with advantage ε, to break the underlying
identification protocol with advantage at least Ω(ε/p9) − negl(λ). �

8.2 Quantum NIZKPoK

We have the following theorem (The proof is in the full version [LZ19].):

Theorem 8. If a sigma protocol has (1) perfect completeness, (2) post-quantum
computational HVZK, (3) quantum proof of knowledge, (4) unpredictable com-
mitments, the Fiat-Shamir heuristic gives a quantum NIZKPoK.

Acknowledgements. This work is supported in part by NSF and DARPA. Opinions,
findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of NSF or DARPA.

References

[AKPW13] Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding,
revisited. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 57–74. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 4

[ARU14] Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical
proof systems: the hardness of quantum rewinding. In: 55th FOCS, pp.
474–483. IEEE Computer Society Press, October 2014
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Abstract. The famous Fiat-Shamir transformation turns any public-
coin three-round interactive proof, i.e., any so-called Σ-protocol, into a
non-interactive proof in the random-oracle model. We study this trans-
formation in the setting of a quantum adversary that in particular may
query the random oracle in quantum superposition.

Our main result is a generic reduction that transforms any quantum
dishonest prover attacking the Fiat-Shamir transformation in the quan-
tum random-oracle model into a similarly successful quantum dishon-
est prover attacking the underlying Σ-protocol (in the standard model).
Applied to the standard soundness and proof-of-knowledge definitions,
our reduction implies that both these security properties, in both the
computational and the statistical variant, are preserved under the Fiat-
Shamir transformation even when allowing quantum attacks. Our result
improves and completes the partial results that have been known so far,
but it also proves wrong certain claims made in the literature.

In the context of post-quantum secure signature schemes, our results
imply that for any Σ-protocol that is a proof-of-knowledge against quan-
tum dishonest provers (and that satisfies some additional natural prop-
erties), the corresponding Fiat-Shamir signature scheme is secure in the
quantum random-oracle model. For example, we can conclude that the
non-optimized version of Fish, which is the bare Fiat-Shamir variant
of the NIST candidate Picnic, is secure in the quantum random-oracle
model.

1 Introduction

The (Quantum) Random-Oracle Model. The random-oracle model (ROM)
is a means to treat a cryptographic hash function H as an ideal primitive. In the
ROM, the only way to “compute” the hash H(x) of any value x is by making
a query to an imaginary entity, the random oracle (RO), which has chosen H
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uniformly at random from the set of all functions with the considered domain
and range.

The hope is that if a cryptographic scheme is secure in the ROM then it is
also secure in the standard model, as long as H is instantiated with a “good
enough” cryptographic hash function. Even though in general we cannot hope
to obtain provable security in the standard model in this way, (since there exist
artificial counter examples [CGH04]), this approach works extremely well in
practice, leading to very efficient schemes that tend to resist all known attacks.

What makes the ROM particularly convenient is that in the security proof of
a cryptographic scheme, we can control the RO. For instance, simply by recording
the queries that the adversary makes to the RO, we know exactly which hash
values he knows, and the hash value H(x) is random to him for any x that he
has not queried. Furthermore, we can reprogram the RO, meaning that we can
let H(x) be some particular value y for some specific x, as long as it is random
from the adversary’s perspective.

When considering a quantum adversary, the picture changes a bit. In order
to model that such an adversary can evaluate any hash function in superposition
on different inputs, we must allow such a quantum adversary in the ROM to
make superposition queries to the RO: for any superposition

∑
x αx|x〉 it may

learn
∑

x αx|x〉|H(x)〉 by making a single query to the RO. This is referred to
as the quantum random-oracle model (QROM) [BDF+11].

Unfortunately, these superposition queries obstruct the above mentioned
advantages of the ROM. By basic properties of quantum mechanics one can-
not observe or locally copy such superposition queries made by the adversary
without disturbing them. Also, reprogramming is usually done for an x that is
queried by the adversary at a certain point, so also here we are stuck with the
problem that we cannot look at the queries without disturbing them.

As a consequence, security proofs in the ROM almost always do not carry over
to the QROM. This lack of proof does not mean that the schemes become inse-
cure; on the contrary, unless there is some failure because of some other reason1,
we actually expect typical schemes to remain secure. However, it is often not
obvious how to find a security proof in the QROM. Some examples where secu-
rity in the QROM has been established are [Unr14,Zha15,ES15,Unr15,KLS18,
ABB+17,Zha18,SXY18,BDK+18].

Main Technical Result. Our main technical result (Theorem2) can be under-
stood as a particular way to overcome—to some extent—the above described
limitation in the QROM of not being able to “read out” any query to the RO
and to then reprogram the corresponding hash value. Concretely, we achieve the
following.

We consider an arbitrary quantum algorithm A that makes queries to the
RO and in the end outputs a pair (x, z), where z is supposed to satisfy some
relation with respect to H(x), e.g., z = H(x). We then show how to extract early
1 E.g., the underlying computational hardness assumption does not hold anymore in

the context of a quantum adversary.
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on, by measuring one of the queries that A makes, the very x that A will output,
and to reprogram the RO at the point x with a fresh random value Θ, with the
effect that the pair (x, z) that A then outputs now satisfies the given relation
with respect to Θ, with a not too large loss in probability.

The way this works is surprisingly simple. We choose the query that we
measure uniformly at random among all the queries that A makes (also counting
A’s output), in order to (hopefully) obtain x. Subsequently we reprogram the
RO, so as to answer x with Θ, either from this point on or from the following
query on, where this binary choice is made at random. This last random decision
seems counter-intuitive, but it makes our proof work. Indeed, we prove that the
probability that (x, z) satisfies the required relation drops by no more than a
factor O(q2), where q is the number of oracle queries A makes.

Application to the Fiat-Shamir Transformation. The Fiat-Shamir trans-
formation [FS87] turns any public-coin three-round interactive proof, i.e., any so-
called Σ-protocol, into a non-interactive proof in the (Q)ROM. In the classical
case it is well known that the security properties of the Σ-protocol are inherited by
the Fiat-Shamir transformation [BR93,FKMV12]. In the quantum setting, when
considering the security of the Fiat-Shamir transformation against quantum dis-
honest provers in the QROM, mainly negative results are known—see below for a
more detailed exposition of previous results and how they compare to ours.

It is quite easy to see that the above result on the reprogrammability of the
RO is exactly what is needed to turn a quantum prover that attacks the Fiat-
Shamir transformation into a quantum prover that attacks the underlying Σ
protocol. Indeed, from any Fiat-Shamir dishonest prover A that tries to produce
a proof π = (a, z) for a statement x, we obtain an interactive dishonest prover
for the Σ protocol that extracts a from A and sends it to the verifier, and then
uses the received challenge c to reprogram the RO, so that the z output by A
will be a correct reply with respect to c with a probability not much smaller
than the probability that A succeeds in forging π in the QROM.

This gives us a very generic transformation (stated in Theorem8 below) from
a Fiat-Shamir dishonest prover to a Σ-protocol dishonest prover that is similarly
successful, up to a loss in probability of order O(q2). Applied to the standard
notions of soundness and proof-of-knowledge, we prove that both these security
properties, in both the computational and the statistical variant, are preserved
under the Fiat-Shamir transformation in the QROM (Corollaries 13 and 16).

Comparison with Prior Results. Mainly negative results are known about
the security of the Fiat-Shamir transformation against quantum attacks. Figure 1
shows a table copied from [ARU14], which outlines the different negative results
on the security of Σ-protocols against quantum attackers that carry over to the
Fiat-Shamir transformation. All the potential positive claims on the security of
the Fiat-Shamir transformation were left unanswered (see Fig. 1).

Currently, the only known positive result on the security of the Fiat-
Shamir transformation against quantum attacks is the result by Unruh [Unr17],
which shows that statistical soundness of the Σ-protocol implies computational
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Fig. 1. Table adapted from [ARU14], showing which versions of special soundness and
strict soundness, which we call unique responses, imply that the Σ-protocol is a proof
of knowledge (PoK) or a proof (in the sense of ordinary soundness). The values comp,
stat and perf mean that the considered property holds respectively computationally,
statistically and perfectly, and attack means that there exist example schemes that
allow an attack. Gray values are copied from [ARU14]. The last column shows that
the negative results carry over to the Fiat-Shamir transformation, while our results (in
bold face) complete the table by showing that also the positive results carry over.
Previously, the lower right corner entry was only known to be comp, and the other
two entries were unknown. If the computational version of the unique responses, or
strict soundness, property is replaced by our quantum strengthening (Definition 24),
all instances of attack can be replaced by comp.

soundness of the Fiat-Shamir transformation. This means, the lower right stat
in the Fiat-Shamir column in Fig. 1 was known to be ‘comp’.

Our generic transformation from a Fiat-Shamir dishonest prover to a
Σ-protocol dishonest prover implies that all the (considered) security proper-
ties of the Σ-protocol carry over unchanged to the Fiat-Shamir transformation,
i.e., without degradation from ‘stat’ to ‘comp’. Hence, we show that all the three
open settings from [ARU14] are statistically secure, as shown in Fig. 1.2

We point out that [DFG13] claims an impossibility result about the sound-
ness of the Fiat-Shamir transformation as a quantum proof of knowledge, which
contradicts one of our implications above. However, their result only applies to
a restricted notion of proof of knowledge where the extractor is not allowed
to measure any of the adversary’s queries to the random oracle. The rational
for this restriction was that such a measurement would disturb the adversary’s
quantum state beyond control; however, our technical result shows that it actu-
ally is possible to measure one of the adversary’s queries and still have sufficient
control over the adversary’s behavior.

Relativizing Prior Negative Results. At first glance, the negative results
from [ARU14] together with our new positive results, as shown in the Fiat-
Shamir column in Fig. 1, seem to give a complete answer to the question of the
security of the Fiat-Shamir transformation against quantum attacks. However,
there is actually more to it.

We consider a stronger but still meaningful notion of computational unique
responses, which is in the spirit of the collapsing property as introduced by Unruh
2 In the (quantum) random-oracle model, statistical security considers a computation-

ally unbounded attacker with a polynomially bounded number of oracle queries.
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[Unr16]. We call the new notion quantum computationally unique responses and
define it in Definition 24. Adapting a proof from [Unr12], it is not hard to see
that a Σ-protocol with (perfect or computational) special soundness and quan-
tum computational unique responses is a computational proof of knowledge.
Therefore, our result then implies that its Fiat-Shamir transformation is a com-
putational proof of knowledge as well.

Finally, our result also implies that if the Σ-protocol is computationally sound
(as a ‘proof’), then its Fiat-Shamir transformation is computationally sound as
well. Interestingly, Unruh seems to suggest in [Unr17] (right after Theorem21)
that this is not true in general, due to a counterexample from [ARU14]. The
counter example is, however, a Σ-protocol that is computationally special sound
but not computationally sound (the issue being that in the quantum setting,
special soundness does not imply ordinary soundness).

Thus, with the right adjustments of the considered computational soundness
properties, the three negative answers in the Fiat-Shamir column in Fig. 1 may
actually be turned into positive answers. One caveat here is that we expect
proving quantum computationally unique responses to be much harder than
computational unique responses.

Application to Signatures. Our positive results on the Fiat-Shamir transfor-
mation have direct applications to the security of Fiat-Shamir signatures. From
the proof-of-knowledge property of the Fiat-Shamir transformation we immedi-
ately obtain the security of the Fiat-Shamir signature scheme under a no-message
attack, assuming that the public key is a hard instance (Theorem21). Further-
more, [Unr17] and [KLS18] have shown that for Fiat-Shamir signatures, up to
some loss in the security parameter and under some additional mild assumptions
on the underlying Σ-protocol, one can also derive security under chosen-message
attack.

In conclusion, Fiat-Shamir signatures offer security against quantum attacks
(in the QROM) if the underlying Σ-protocol is a proof of knowledge against quan-
tum attacks and satisfies a few additional natural assumptions (Theorem22).

As a concrete application, using Unruh’s result on the collapsing property of
the RO [Unr16] to argue the collapsing version of computational unique responses
(which we call quantum computational unique responses) for the underlying
Σ-protocol, we can conclude that the non-optimized version of Fish, which is the
Fiat-Shamir variant of Picnic, is secure in the QROM.

Comparison with Concurrent Results. In concurrent and independent work
[LZ19]3, Liu and Zhandry show results that are very similar to ours: they also
show the security of the Fiat-Shamir transformation in the QROM, and they
introduce a similar stronger version of the computational unique responses prop-
erty in order to argue that a Σ-protocol is a (computational) proof of knowledge

3 The paper [LZ19] was put on eprint (ia.cr/2019/262) a few days after our eprint
version (ia.cr/2019/190).
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against a quantum adversary. In short, [LZ19] differs from the work here in the
following aspects. In [LZ19], the result on the Fiat-Shamir transformation is
obtained using a very different approach, resulting in a greater loss in the reduc-
tion: O(q9) compared to the O(q2) loss that we obtain. On the other hand, on the
quantum proof of knowledge front, Liu and Zhandry introduce some additional
techniques that, for instance, allow them to prove that the Σ-protocol underlying
Dilithium satisfies (their variant) of the newly introduced strong version of the
computational unique responses property, while we phrase this as a conjecture
in order to conclude the security of (some variant of) the Dilithium signature
scheme.

2 Reprogramming the Quantum Random Oracle

We show and analyze a particular way to reprogram a random oracle in the
quantum setting, where the oracle can be queried in superposition.

2.1 Notation

We consider a quantum oracle algorithm A that makes q queries to an oracle,
i.e., an unspecified function H : X → Y with finite non-empty sets X ,Y. We may
assume without loss of generality that A makes no intermediary measurements.
Formally, A is then described by a sequence of unitaries A1, . . . , Aq and an
initial state |φ0〉.4 The unitaries Ai act on registers X,Y,Z,E, where X and Y
have respective |X |- and |Y|-dimensional state spaces, while Z and E is arbitrary.
As will become clear, X and Y are the quantum registers for the queries to H as
well as for the final output x, Z is for the output z, and E is internal memory.
For any concrete choice of H : X → Y, we can write

AH |φ0〉 := AqOH · · · A1OH |φ0〉,
for the execution of A with the oracle instantiated by H, where OH is the unitary
OH : |x〉|y〉 �→ |x〉|y ⊕ H(x)〉 that acts on registers X and Y.

It will be convenient to introduce the following notation. For 0 ≤ i, j ≤ q we
set

AH
i→j := AjOH · · · Ai+1OH

with the convention that AH
i→j := 1 for j ≤ i. Furthermore, we set

|φH
i 〉 :=

(AH
0→i

)|φ0〉
to be the state of A after the i-th step but right before the (i + 1)-st query, and
so that |φH

q 〉 equals
(AH

0→q

)|φ0〉 = AH |φ0〉, the output state produced by A.
Finally, for a given function H : X → Y and for fixed x ∈ X and Θ ∈ Y,

we define the reprogrammed function H∗Θx : X → Y that coincides with H on
X \ {x} but maps x to Θ. With this notation at hand, we can then write

(AH∗Θx
i→q

) (AH
0→i

) |φ0〉 =
(AH∗Θx

i→q

)|φH
i 〉

4 Alternatively, we may understand |φ0〉 as an auxiliary input given to A.
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for an execution of A where the oracle is reprogrammed at a given point x after
the i-th query.

We are interested in the probability that after the execution of AH and upon
measuring register X in the computational basis to obtain x ∈ X , the state of
register Z is of a certain form dependent on x and H(x). This relation is captured
by a projection GH

x , where, more generally, for x, x′ ∈ X and Θ ∈ Y we set

GΘ
x,x′ = |x′〉〈x′| ⊗ 1 ⊗ Πx,Θ ⊗ 1,

where {Πx,Θ}x∈X ,Θ∈Y is a family of projections acting on Z, which we refer to
as a quantum predicate. We use the short hands GΘ

x for GΘ
x,x and GH

x for G
H(x)
x ,

i.e.,
GH

x = |x〉〈x| ⊗ 1 ⊗ Πx,H(x) ⊗ 1.

For an arbitrary but fixed x◦ ∈ X , we then consider the probability

‖GH
x◦ |φH

q 〉‖22 .

Understanding AH as an algorithm that outputs the measured x together with
the state z in register Z, we will denote this probability also by

Pr
[
x=x◦ ∧ V (x,H(x), z) : (x, z) ← AH

]
,

understanding V to be a quantum predicate specified by the projections Πx,H(x).

2.2 Main Technical Result

We consider a quantum oracle algorithm A as formalized above, and we define
a two-stage algorithm S with black-box access to A as follows. In the first stage,
S tries to predict A’s future output x, and then, upon input a (random) Θ, in
the second stage tries to output what A is supposed to output, but now with
respect to Θ instead of H(x).

S works by running A, but with the following modifications. First, one of
the q + 1 queries of A (also counting the final output in register X) is selected
uniformly at random and this query is measured, and the measurement outcome
x is output by (the first stage of) S. Then, this very query of A is answered either
using the original H or using the reprogrammed oracle H ∗ Θx, with the choice
being made at random, while all the remaining queries of A are answered using
oracle H∗Θx.5 Finally, (the second stage of) S outputs whatever A outputs.

Here, the figure of merit is the probability that for a fixed x, both the inter-
mediate measurement and a measurement of the register X return x and that
the register Z contains a state that satisfies the considered quantum predicate
with respect to x and its (now reprogrammed) hash value Θ. Formally, this
probability is captured by

E
Θ,i,b

[∥
∥GΘ

x

(AH∗Θx
i+b→q

) (AH
i→i+b

)
X|φH

i 〉∥∥2

2

]

5 If it is the final output that is measured then there is nothing left to reprogram.
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where here and from now on, we use X as a short hand for the projection |x〉〈x|
acting on X. The expectation is taken over Θ ∈ Y, i ∈ {0, ..., q} and b ∈ {0, 1}
uniformly random. Note that the random bit b ∈ {0, 1} determines whether the
measured query is answered with H or with H∗Θx.

We write SA[H] to emphasize that S only makes black-box access to A and
that it depends on H. Our main technical lemma below then ensures that for
any H and for a random Θ ∈ Y, the success probability of SA[H] is up to an
order-q2 loss not much smaller than that of AH∗Θx, and therefore not much
smaller than that of AH in case of a random H.

Lemma 1. For any H : X → Y and x ∈ X , it holds that

E
Θ,i,b

[∥
∥GΘ

x

(AH∗Θx
i+b→q

)(AH
i→i+b

)
X|φH

i 〉∥∥2

2

]
≥

EΘ

[∥
∥GΘ

x |φH∗Θx
q 〉∥∥2

2

]

2(q + 1)(2q + 3)
−

∥
∥X|φH

q 〉∥∥2

2

2(q + 1)|Y| .

where the expectation is over random Θ ∈ Y, i ∈ {0, . . . , q} and b ∈ {0, 1}.6

Proof. We assume that the Y-register of |φH
q 〉 =

(AH
0→q

)|φ0〉 is |0〉 no matter
what H is; this is without loss of generality since it can always be achieved by
an insignificant modification to A, i.e., by swapping Y with a default register
within E. For the purpose of the proof, we introduce an additional step AH

q→q+1

that simply applies OH , and we expand the notions of |φH
j 〉 and AH

i→j to allow
j = q + 1. Finally, we “enhance” GΘ

x to7

G̃Θ
x := GΘ

x (1 ⊗ |Θ〉〈Θ| ⊗ 1 ⊗ 1) = X ⊗ |Θ〉〈Θ| ⊗ Πx,Θ ⊗ 1.

For any 0 ≤ i ≤ q, inserting a resolution of the identity and exploiting that
(AH∗Θx

i+1→q+1

)(AH
i→i+1

)(
1 − X

)|φH
i 〉 =

(AH∗Θx
i→q+1

)(
1 − X

)|φH
i 〉,

we can write
(AH∗Θx

i+1→q+1

)|φH
i+1〉

=
(AH∗Θx

i+1→q+1

)(AH
i→i+1

)(
1 − X

)|φH
i 〉 +

(AH∗Θx
i+1→q+1

)(AH
i→i+1

)
X|φH

i 〉
=

(AH∗Θx
i→q+1

)(
1 − X

)|φH
i 〉 +

(AH∗Θx
i+1→q+1

)(AH
i→i+1

)
X|φH

i 〉
=

(AH∗Θx
i→q+1

)|φH
i 〉 − (AH∗Θx

i→q+1

)
X|φH

i 〉 +
(AH∗Θx

i+1→q+1

)(AH
i→i+1

)
X|φH

i 〉

6 We consider |Y| to be superpolynomial in the security parameter, so that 1
2(q+1)|Y|

is negligible and can be neglected. In cases where |Y| is polynomial, the presented
bound is not optimal, but an improved bound can be derived with the same kind of
techniques.

7 Informally, these modifications mean that we let A make one more query to get H(x)

into register Y, and G̃
H(x)
x would then check that Y indeed contains H(x).
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Rearranging terms, applying G̃Θ
x and using the triangle equality, we can thus

bound
∥
∥G̃Θ

x

(AH∗Θx
i→q+1

)|φH
i 〉∥∥

2
≤ ∥

∥G̃Θ
x

(AH∗Θx
i+1→q+1

)|φH
i+1〉

∥
∥
2

+
∥
∥G̃Θ

x

(AH∗Θx
i→q+1

)
X|φH

i 〉∥∥
2

+
∥
∥G̃Θ

x

(AH∗Θx
i+1→q+1

)(AH
i→i+1

)
X|φH

i 〉∥∥
2
.

Summing up the respective sides of the inequality over i = 0, . . . , q, we get
∥
∥G̃Θ

x |φH∗Θx
q+1 〉∥∥

2
≤ ∥

∥G̃Θ
x |φH

q+1〉
∥
∥
2

+
∑

0≤i≤q
b∈{0,1}

∥
∥G̃Θ

x

(AH∗Θx
i+b→q+1

)(AH
i→i+b

)
X|φH

i 〉∥∥
2
.

By squaring both sides, dividing by 2q+3 (i.e., the number of terms on the right
hand side), and using Jensen’s inequality on the right hand side, we obtain

∥
∥G̃Θ

x |φH∗Θx
q+1 〉∥∥2

2

2q + 3
≤ ∥

∥G̃Θ
x |φH

q+1〉
∥
∥2

2
+

∑

0≤i≤q
b∈{0,1}

∥
∥G̃Θ

x

(AH∗Θx
i+b→q+1

)(AH
i→i+b

)
X|φH

i 〉∥∥2

2

and thus

E
i,b

[∥
∥G̃Θ

x

(AH∗Θx
i+b→q+1

)(AH
i→i+b

)
X|φH

i 〉∥∥2

2

]
≥

∥
∥G̃Θ

x |φH∗Θx
q+1 〉∥∥2

2

2(q + 1)(2q + 3)
−

∥
∥G̃Θ

x |φH
q+1〉

∥
∥2

2

2(q + 1)
.

(1)
Since both |Θ〉〈Θ| and AH∗Θx

q→q+1 = OH∗Θx commute with GΘ
x , we get

∥
∥G̃Θ

x

(AH∗Θx
i+b→q+1

)(AH
i→i+b

)
X|φH

i 〉∥∥2

2
≤ ∥

∥GΘ
x

(AH∗Θx
i+b→q+1

)(AH
i→i+b

)
X|φH

i 〉∥∥2

2

=
∥
∥GΘ

x

(AH∗Θx
i+b→q

)(AH
i→i+b

)
X|φH

i 〉∥∥2

2
. (2)

Also, because (X ⊗|Θ〉〈Θ|)OH∗Θx = (X ⊗1)OH∗Θx, and OH∗Θx commutes with
GΘ

x , we get
∥
∥G̃Θ

x |φH∗Θx
q+1 〉∥∥2

2
=

∥
∥GΘ

x |φH∗Θx
q 〉∥∥2

2
. (3)

Finally,

E
Θ

[∥
∥G̃Θ

x |φH
q+1〉

∥
∥2

2

]
≤ E

Θ

[∥
∥(X ⊗ |Θ〉〈Θ|)OH |φH

q 〉∥∥2

2

]
≤ 1

|Y|
∥
∥X|φH

q 〉∥∥2

2
. (4)

Inserting (2), (3) and (4) into (1) yields the claimed result. ��

2.3 Switching Notation, and Simulating the Random Oracle

Introducing more algorithmic-probabilistic notation, we write

(x, x′, z) ← 〈SA[H], Θ〉
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to specify the probability space determined as follows, relying on the above
construction of the two-stage algorithm S when given A. In the first stage SA[H]
produces x, and then in the second stage, upon receiving Θ, it produces x′ and z,
where z may be quantum. Our figure of merit above, i.e., the left hand side of
the bound in Lemma 1 (with x replaced by x◦), is then denoted by

Pr
Θ

[
x=x◦ ∧ x′ =x◦ ∧ V (x,Θ, z) : (x, x′, z) ← 〈SA[H], Θ〉],

where the subscript Θ in PrΘ denotes that the probability is averaged over a
random choice of Θ.

Using this notation, but also weakening the bound slightly by not requiring
x′ = x◦, for any H and x◦ the bound from Lemma 1 then becomes

Pr
Θ

[
x=x◦ ∧ V (x,Θ, z) : (x, z) ← 〈SA[H], Θ〉]

� 1
O(q2)

Pr
Θ

[
x=x◦ ∧ V (x,H(x), z) : (x, z) ← AH∗Θx

]

where the approximate inequality � hides the term

1
2(q + 1)|Y| Pr

H

[
x=x◦ : (x, z) ← AH

]
.

Recall that the output z may be a quantum state, in which case the predicate
V is given by a measurement that depends on x, and H(x) or Θ, respectively.

We fix a family H of 2(q + 1)-wise independent hash functions and average
the above inequality over a random choice of H ∈ H from this family. We simply
write S for S[H] with H chosen like that. Furthermore, we observe that, for any
fixed x, the family {H ∗ Θx |H ∈ H, Θ ∈ {0, 1}n} is a family of 2(q + 1)-wise
independent hash functions as well. Finally, we use that A (together with the
check V (x,H(x), z)) cannot distinguish a random function H∗Θx in that family
from a fully random function H [Zha12]. This gives us the following variation of
Lemma 1, which we state as our main technical theorem:

Theorem 2 (Measure-and-Reprogram). Let X ,Y be finite non-empty sets.
There exists a black-box polynomial-time two-stage quantum algorithm S with the
following property. Let A be an arbitrary oracle quantum algorithm that makes
q queries to a uniformly random H : X → Y and that outputs some x ∈ X and
a (possibly quantum) output z. Then, the two-stage algorithm SA outputs some
x ∈ X in the first stage and, upon a random Θ ∈ Y as input to the second stage,
a (possibly quantum) output z, so that for any x◦ ∈ X and any predicate8 V :

Pr
Θ

[
x=x◦ ∧ V (x,Θ, z) : (x, z) ← 〈SA, Θ〉]

� 1
O(q2)

Pr
H

[
x=x◦ ∧ V (x,H(x), z) : (x, z) ← AH

]
,

where the � hides a term that is bounded by 1
2q|Y| when summed over all x◦.

8 We recall that in case z is a quantum state, V is given by means of a measurement.
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Remark 3. We do not spell out in detail what it means for a quantum algorithm
like S to be black-box; see e.g. [Unr17] for a rigorous definition. What we obviously
need here is that SA has access to A’s initial state |φ0〉 and to q, and is given
black-box access to the unitaries Ai. Furthermore, for later purposes, we need
the following composition property: if S is a black-box algorithm with access
to A, and K is a black-box algorithm with access to SA, then there exists a
black-box algorithm KS with access to A so that (KS)A = K(SA).

3 Security of the Fiat-Shamir Transformation

In this section, we show how to reduce security of the Fiat-Shamir transformation
to the security of the underlying Σ-protocol: any dishonest prover attacking the
Fiat-Shamir transformation can be turned into a dishonest prover that succeeds
to break the underlying Σ-protocol with the same probability up to a polynomial
loss. This reduction is obtained by a straightforward application of Theorem2.
Our security reduction holds very generically and is not strongly tight to the
considered notion of security, as long as the respective security definitions for
the Σ-protocol and the Fiat-Shamir transformation “match up”.

3.1 Σ-protocols

We recall the definition of a Σ-protocol.

Definition 4 (Σ−protocol). A Σ-protocol Σ = (P,V) for a relation R ⊆ X ×
W is a three-round two-party interactive protocol of the form:

Prover P(x,w) Verifier V(x)
a−→
c←− c

$← C
z−→ Accept iff V (x, a, c, z) = 1

Using our terminology and notation from above, P is a two-stage algorithm and
we can write

(a, z) ← 〈P(x,w), c〉
for the generation of the first message a in the first stage and the reply z in the
second stage once given the challenge c.

Remark 5. We allow the set of instances X , the set of witnesses W and the
relation R to depend on a security parameter η. Similarly, the interactive algo-
rithms P and V may depend on η (or have η as part of their input). However,
for ease of notation, we suppress these dependencies on η unless they are crucial.
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Remark 6. We do not necessarily require a Σ-protocol to be perfectly or sta-
tistically correct. This allows us to include protocols that use rejection sampling,
where with a constant probability, the value z would leak too much informa-
tion on the witness w and so the prover sends ⊥ instead. On the other hand,
by default we consider the soundness/knowledge error to be negligible, i.e., a
dishonest prover succeeds only with negligible probability to make the verifier
accept if x is not a valid instance or the prover has no witness for it (depending
on the considered soundness notion). Negligible soundness/knowledge error can
always be achieved by parallel repetition (see e.g. [Dam10]).

3.2 The Fiat-Shamir Transformation

The Fiat-Shamir transformation turns a Σ-protocol Σ into a non-interactive
proof system, denoted FS[Σ], by replacing the verifier’s random choice of c ∈ C
with c := H(x, a), where H : X ′ → C is a hash function with a domain X ′ that
contains all pairs x′ = (x, a) with x ∈ X and a produced by P. In other words,
upon input x and w, the honest FS-prover produces π = (a, z) by running the
two-stage Σ-protocol prover P but using c = H(x, a) as challenge (i.e., as input
to the second stage). In case Σ is not statistically correct, the above process of
producing π = (a, z) is repeated sufficiently many times until V (x, a,H(x, a), z)
is satisfied (or some bound is reached). In either case, we will write this as

π = (a, z) ← PH
FS(x,w).

We may write as V H
FS(x, π) the FS-verifier’s check whether V (x, a,H(x, a), z) is

satisfied or not. In the security analysis, the hash function H is modeled by a
random oracle, i.e. by oracle access to a uniformly random H : X ′ → C.

When considering an adversary A that tries to forge a proof for some
instance x ∈ X , one can distinguish between an arbitrary but fixed x, and an x
that is chosen by A and output along with a in case of Σ-protocols, respectively
along with π in case of the Fiat-Shamir transformation. If x is fixed then the
adversary is called static, otherwise it is called adaptive. For the typical secu-
rity definitions for Σ-protocols this distinction between a static and an adaptive
A makes no difference (see Lemmas 12 and 15 below), but for the Fiat-Shamir
transformation it (potentially) does.

3.3 The Generic Security Reduction

Since an adaptive adversary is clearly not less powerful than a static adver-
sary, we restrict our attention for the moment to the adaptive case. Recall that
such an adaptive FS-adversary A outputs the instance x ∈ X along with the
proof π = (a, z), and the figure of merit is the probability that x, a, z satisfies
V (x, a,H(x, a), z). Thus, we can simply apply Theorem 2, with (x, a) playing the
role of what is referred to as x in the theorem statement, to obtain the existence
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of an adaptive Σ-adversary SA that produces (x, a) in a first stage, and upon
receiving a random challenge c produces z, such that for any x◦ ∈ X

Pr
c

[
x=x◦ ∧ V (x, a, c, z) : (x, a, z) ← 〈SA, c〉]

� 1
O(q2)

Pr
H

[
x=x◦ ∧ V (x, a,H(x, a), z) : (x, a, z) ← AH

]
,

where the approximate inequality hides a term that is bounded by 1
2q|C| when

summed over all x◦ ∈ X . Understanding that x is given to V along with the
first message a but also treating it as an output of SA, while V’s output v is its
decision to accept or not, we write this as

Pr
[
x=x◦ ∧ v = accept : (x, v) ← 〈SA,V〉]

� 1
O(q2)

Pr
H

[
x=x◦ ∧ V H

FS(x, π) : (x, π) ← AH
]
.

Summed over all x◦ ∈ X , this in particular implies that

Pr
[〈SA,V〉 = accept

] ≥ 1
O(q2)

Pr
H

[
V H

FS(x, π) : (x, π) ← AH
]− 1

2q|C| .

Remark 7. We point out that the above arguments extend to a FS-adversary
A that, besides the instance x and the proof π = (a, z), also produces some
local (possibly quantum) output satisfying some (quantum) predicate that may
depend on x, a, z. The resulting Σ-adversary SA is then ensured to produce a
local output that satisfies the considered predicate as well, up to the given loss in
the probability. Indeed, we can simply include this local output in z and extend
the predicate V accordingly.

In a very broad sense, the above means that for any FS-adversary A there
exists a Σ-adversary SA that “achieves the same thing” up to a O(q2) loss
in success probability. Hence, for matching corresponding security definitions,
security of a Σ-protocol (against a dishonest prover) implies security of its Fiat-
Shamir transform.

We summarize here the above basic transformation from an adaptive FS-
adversary A to an adaptive Σ-adversary SA.

Theorem 8. There exists a black-box quantum polynomial-time two-stage quan-
tum algorithm S such that for any adaptive Fiat-Shamir adversary A, making q
queries to a uniformly random function H with appropriate domain and range,
and for any x◦ ∈ X :

Pr
[
x=x◦ ∧ v = accept : (x, v) ← 〈SA,V〉]

� 1
O(q2)

Pr
H

[
x=x◦ ∧ V H

FS(x, π) : (x, π) ← AH
]
,

where the � hides a term that is bounded by 1
2q|C| when summed over all x◦.
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Below, we apply the above general reduction to the respective standard defini-
tions for soundness and proof of knowledge. Each property comes in the variants
computational and statistical, for guarantees against computationally bounded
or unbounded adversaries respectively, and one may consider the static or the
adaptive case.

3.4 Preservation of Soundness

Let Σ = (P,V) be a Σ-protocol for a relation R, and let FS[Σ] be its Fiat-Shamir
transformation. We set L := {x ∈ X | ∃w ∈ W : R(x,w)}. It is understood that
P and V, as well as R and thus L, may depend on a security parameter η. We
note that in the following definition, we overload notation a bit by writing A for
both for the ordinary static and for the adaptive adversary (even though a given
A is usually either static or adaptive).

Definition 9. Σ is (computationally/statistically) sound if there exists a
negligible function μ(η) such that for any (quantum polynomial-time/unbounded)
adversary A and any η ∈ N:

Pr [〈A,V(x)〉 = accept] ≤ μ(η)

for all x /∈ L; respectively, in case of an adaptive A:

Pr [x �∈ L ∧ v = accept : (x, v) ← 〈A,V〉] ≤ μ(η).

FS[Σ] is (computationally/statistically) sound if there exists a negligi-
ble function μ(η) and a constant e such that for any (quantum polynomial-
time/unbounded) adversary A and any η ∈ N:

Pr
H

[
V H

FS(x, π) : π ← AH
] ≤ qeμ(η)

for all x /∈ L; respectively, in case of an adaptive A:

Pr
H

[
V H

FS(x, π) ∧ x /∈ L : (x, π) ← AH
] ≤ qeμ(η).

Remark 10. Note that for the soundness of FS[Σ], the adversary A’s success
probability may unavoidably grow with the number q of oracle queries, but we
require that it grows only polynomially in q.

Remark 11. In line with Sect. 2, the description of a quantum algorithm A is
understood to include the initial state |φ0〉. As such, when quantifying over all
A it is understood that this includes a quantification over all |φ0〉 as well. This
stays true when considering A to be quantum polynomial-time, which means
that the unitaries Ai can be computed by polynomial-time quantum circuits,
and q is polynomial in size, but does not put any restriction on |φ0〉.9 This is in
line with [Unr12, Def. 1], which explicitly spells out this quantification.
9 In other words, A is then non-uniform quantum polynomial-time with quantum

advice.
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We consider the following to be folklore knowledge; for completeness, we still
give a proof in AppendixA.

Lemma 12. If Σ is computationally/statistically sound for static adversaries
then it is also computationally/statistically sound for adaptive adversaries.

The following is now an immediate application of Theorem8 and the above
observation regarding static and adaptive security for Σ-protocols.

Corollary 13. Let Σ be a Σ-protocol with superpolynomially sized challenge
space C. If Σ is computationally/statistically sound against a static adversary
then FS[Σ] is computationally/statistically sound against an adaptive adversary.

Proof. Applying Theorem8, we find that for any adaptive FS-adversary A,
polynomially bounded in the computational setting, there exists an adaptive
Σ-protocol adversary SA, polynomially bounded if A is, so that

Pr
[
x /∈ L ∧ V H

FS(x, π) : (x, π) ← AH
]

=
∑

x◦ /∈L
Pr

[
x=x◦ ∧ V H

FS(x, π) : (x, π) ← AH
]

≤ O(q2) ·
(( ∑

x◦ /∈L
Pr

[
x=x◦ ∧ v = accept : (x, v) ← 〈SA,V〉]

)

+
1

2q|C|
)

= O(q2) ·
(

Pr
[
x �∈ L ∧ v = accept : (x, v) ← 〈SA,V〉]

)

+
O(q)
|C|

≤ O(q2) · μ(η) +
O(q)
|C|

where the last inequality holds for some negligible function μ(η) if Σ is sound
against an adaptive adversary. The latter is ensured by the assumed soundness
against a static adversary and Lemma 12. This bound can obviously be written
as q2μ′(η) for another negligible function μ′(η), showing the claimed soundness
of FS[Σ]. ��

3.5 Preservation as a Proof of Knowledge

We now recall the definition of a proof of knowledge, sometimes also referred to
as (witness) extractability, tailored to the case of a negligible “knowledge error”.
Informally, the requirement is that if A succeeds in proving an instance x, then
by using A as a black-box only it is possible to extract a witness for x. In case of
an arbitrary but fixed x, this property is formalized in a rather straightforward
way; however, in case of an adaptive A, the formalization is somewhat subtle,
because one can then not refer to the x for which A manages to produce a proof.
We adopt the approach (though not the precise formalization) from [Unr17],
which requires x to satisfy an arbitrary but fixed predicate.
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Definition 14. Σ is a (computational/statistical) proof of knowledge if
there exists a quantum polynomial-time black-box ‘knowledge extractor’ K, a poly-
nomial p(η), a constant d ≥ 0, and a negligible function κ(η) such that for any
(quantum polynomial-time/unbounded) adversary A, any η ∈ N and any x ∈ X :

Pr
[
(x,w) ∈ R : w ← KA(x)

] ≥ 1
p(η)

· Pr [〈A,V(x)〉 = accept]d − κ(η);

respectively, in case of an adaptive A:

Pr
[
x ∈ X ∧ (x,w) ∈ R : (x,w) ← KA]

≥ 1
p(η)

· Pr [x ∈ X ∧ v = accept : (x, v) ← 〈A,V〉]d − κ(η)

for any subset X ⊆ X .
FS[Σ] is a (computational/statistical) proof of knowledge if there exists

a polynomial-time black-box ‘knowledge extractor’ E, a polynomial p(η), con-
stants d, e ≥ 0, and a negligible function μ(η), such that for any (quantum
polynomial-time/unbounded) algorithm A, any η ∈ N and any x ∈ X :

Pr
[
(x,w) ∈ R : (x,w) ← EA] ≥ 1

qep(η)
· Pr

H

[
V H

FS(x, π) : π ← AH
]d − μ(η);

respectively, in case of an adaptive A:

Pr
[
x ∈ X ∧ (x,w) ∈ R : (x,w) ← EA]

≥ 1
qep(η)

· Pr
H

[
x ∈ X ∧ V H

FS(x, π) : (x, π) ← AH
]d − μ(η)

for any subset X ⊆ X , where q is the number of queries A makes.

Also here, for Σ-protocols static security implies adaptive security.

Lemma 15. If Σ is a computational/statistical proof of knowledge for static A
then it is also a computational/statistical proof of knowledge for adaptive A.

Again, the following is now an immediate application of Theorem8 and the above
observation regarding static and adaptive security for Σ-protocols.

Corollary 16. Let Σ be a Σ-protocol with superpolynomially sized C. If Σ is a
computational/statistical proof of knowledge for static adversaries then FS[Σ] is
a computational/statistical proof of knowledge for adaptive adversaries.

Proof. First, we observe that by Lemma 15, we may assume Σ to be a computa-
tional/statistical proof of knowledge for adaptive adversaries. Let K be the black-
box knowledge extractor. Let A be an (quantum polynomial-time/unbounded)
adaptive FS-adversary A. We define a black-box knowledge extractor E for FS[Σ]
as follows. EA simply works by running KSA

, where SA the adaptive Σ-protocol
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adversary obtained by invoking Theorem8. For any subset X ⊆ X , invoking the
proof-of-knowledge property of Σ and using Theorem8, we see that

Pr
[
x ∈ X ∧ (x,w) ∈ R : (x,w) ← EA]

= Pr
[
x ∈ X ∧ (x,w) ∈ R : (x,w) ← KSA]

=
1

p(η)
· Pr

[
x ∈ X ∧ v = accept(x, v) ← 〈SA,V〉]d − κ(η)

=
1

p(η)
·
( ∑

x◦∈X

Pr
[
x = x◦ ∧ v = accept(x, v) ← 〈SA,V〉]

)d

− κ(η)

≥ 1
p(η)

(
1

O(q2)

∑

x◦∈X

Pr
H

[
x = x◦ ∧ V H

FS(x, π) : (x, π) ← AH
] − 1

2q|C|
)d

− κ(η)

≥ 1
p(η) · O(q2d)

· Pr
H

[
x ∈ X ∧ V H

FS(x, π) : (x, π) ← AH
]d − μ(η)

for some negligible function μ(η). ��
Remark 17. We point out that in [Unr17] Unruh considers a stronger notion of
extractability than our Definition 14, where it is required that, in some sense, the
extractor also recovers any local (possibly quantum) output of the adversary A.
In the light of Remark 7, we expect that our result also applies to this stronger
notion of extractability.

4 Application to Fiat-Shamir Signatures

Any Fiat-Shamir non-interactive proof system can easily be transformed into a
public-key signature scheme.10 The signer simply proves knowledge of a witness
(the secret key) for a composite statement x∗ := x‖m, which includes the public
key x as well as the message m. The signature σ then consists of a proof for x∗.

Definition 18. A binary relation R with instance generator G is said to be hard
if for any quantum polynomial-time algorithm A we have

Pr [(x,w′) ∈ R : (x,w) ← G,w′ ← A(x)] ≤ μ(η)

for some negligible function μ(η), where G is such that it always outputs a pair
(x,w) ∈ R.

Definition 19. A Fiat-Shamir signature scheme based on a Σ-protocol Σ =
(P,V) for a hard relation R with instance generator G, denoted by Sig[Σ] is
defined by the triple (Gen, Sign, Verify), with
10 In fact, that is how the Fiat-Shamir transform was originally conceived in [FS87].

Only later [BG93] adapted the idea to construct a non-interactive zero-knowledge
proof system.
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– Gen: Pick (x,w) ← G, set sk := (x,w) and pk := x.
– SignH(sk,m): Return (m,σ) where σ ← PH

FS(x‖m,w).
– VerifyH(pk,m, σ): Return V H

FS(x‖m,σ).

Here (PH
FS , V H

FS) = FS[Σ∗], where Σ∗ = (P∗,V∗) is the Σ-protocol obtained from
Σ by setting P∗(x‖m) = P(x) and V∗(x‖m) = V(x) for any m.

Note that by definition of FS in Sect. 3.2, we use V H
FS(x‖m,σ) as shortcut for

V (x‖m,a,H(x‖m,a), z).
We investigate the following standard security notions for signature schemes.

Definition 20 (sEUF−CMA/EUF−NMA). A signature scheme fulfills strong
existential unforgeability under chosen-message attack (sEUF−CMA) if for all
quantum polynomial-time algorithms A and for uniformly random H : X ′ → C
it holds that

Pr
[
VerifyH(pk,m, σ) ∧ (m,σ) /∈ Sig−q : (pk, sk) ← Gen, (m,σ) ← AH,Sig(pk)

]

is negligible. Here Sig is classical oracle which upon classical input m returns
SignH(m, sk), and Sig−q is the list of all queries made to Sig.

Analogously, a signature scheme fulfills existential unforgeability under no-
message attack (EUF−NMA) if for all quantum polynomial-time algorithms A
and for uniformly random H : X ′ → C it holds that

Pr
[
VerifyH(pk,m, σ) : (pk, sk) ← Gen, (m,σ) ← AH(pk)

]

is negligible.

The unforgeability (against no-message attacks) of a Fiat-Shamir signature
scheme is shown below to follow from the proof-of-knowledge property of the
underlying proof system (hence, as we now know, of the underlying Σ-protocol),
under the assumption that the relation is hard, i.e. it is infeasible to compute
sk from pk.

Theorem 21. Let Σ be Σ-protocol for some hard relation R, with superpolyno-
mially sized challenge space C and the proof-of-knowledge property according to
Definition 14. Then, the Fiat-Shamir signature scheme Sig[Σ] fulfills EUF−NMA
security.

Proof. Let A be an adversary against EUF−NMA, issuing at most q quantum
queries to H. We show that

AdvEUF−NMA
Sig[Σ] (A) := Pr

[
VerifyH(pk,m, σ) : (pk, sk) ← Gen, (m,σ) ← AH(pk)

]

is negligible.
Recall from Definition 19 of Fiat-Shamir signatures that the Σ-protocol Σ∗

is the Σ-protocol Σ where the prover and verifier ignore the message part m of
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the instance x‖m. A successful forgery (m,σ) is such that V H
FS(x‖m,σ) accepts

the proof σ. Therefore,

AdvEUF−NMA
Sig[Σ] (A) = E

(x,w)←G

[
Pr
H

[
V H

FS(x‖m,σ) : (m,σ) ← AH(x)
]]

. (5)

Note that if Σ is a proof of knowledge, so is Σ∗. Our Corollary 16 assures
that if Σ∗ is a proof of knowledge, then also FS[Σ∗] is a proof of knowledge.

For fixed instance x, let X be the set of instance/message strings x′‖m where
x′ = x. We apply the knowledge extractor from Definition 14 to the adaptive FS-
attacker AH(x) that has x hard-wired and outputs it along with a message m
and the proof/signature σ: There exists a knowledge extractor E , constants d, e
and a polynomial p (all independent of x) such that

Pr
H

[
x′‖m ∈ X ∧ V H

FS(x′‖m,σ) : (x′‖m,σ) ← AH(x)
]

≤ (
Pr

[
x′‖m ∈ X ∧ (x′, w) ∈ R : (x′‖m,w) ← EA]

qep(η) + μ(η)
)1/d

(6)

Finally, taking the expected value of (6) over the choice of the instance x
according to the hard-instance generator G, we obtain that the left hand side
equals AdvEUF−NMA

Sig[Σ] (A). For the right-hand side, we can use the concavity of
(·)1/d (note that we can assume without loss of generality that d > 1) and apply
Jensen’s inequality to obtain

E
x←G

[(
Pr

[
x′‖m ∈ X ∧ (x′, w) ∈ R : (x′‖m,w) ← EA]

qep(η) + μ(η)
)1/d

]

≤
(

E
x←G

Pr
[
x′‖m ∈ X ∧ (x′, w) ∈ R : (x′‖m,w) ← EA]

qep(η) + μ(η)
)1/d

.

Note that the expected probability is the success probability of the extractor
to produce a witness w matching the instance x. As long as the relation R is
hard according to Definition 18, this success probability is negligible, proving our
claim. ��

If we wish for unforgeability under chosen-message attack, zero-knowledge
is required as well. [Unr17] and [KLS18] contain partial results that formalize
this intuition, but they were unable to derive the extractability of the non-
interactive proof system. Instead, they modify the Σ-protocol to have a lossy
mode [AFLT12], i.e. a special key-generation procedure that produces key pairs
whose public keys are computationally indistinguishable from the real ones, but
under which it is impossible for any (even unbounded) quantum adversary to
answer correctly.

Our new result above completes these previous analyses, so that we can
now state precise conditions under which a Σ-protocol gives rise to a (strongly)
unforgeable Fiat-Shamir signature scheme, without the need for lossy keys.



Security of the Fiat-Shamir Transformation in the QROM 375

Theorem 22. Let Σ be Σ-protocol for some hard relation R, with superpolyno-
mially sized challenge space C and the proof-of-knowledge property according to
Definition 14. Assume further that Σ is ε-perfect (non-abort) honest-verifier zero-
knowledge (naHVZK), has α bits of min entropy and computationally unique
responses as defined in [KLS18]. Then, Sig[Σ] fulfills sEUF−CMA security.

Proof. By Theorem 3.3 of [KLS18], we can use the naHVZK, min-entropy
and computationally-unique-response properties of Σ to reduce an sEUF−CMA
adversary to an EUF−NMA adversary11. The conclusion then follows immedi-
ately from our Theorem 21 above. ��

5 Extractable Σ-protocols from Quantum
Computationally Unique Responses

In the last section, we have seen that the proof-of-knowledge property of the
underlying Σ-protocol is crucial for a Fiat-Shamir signature scheme to be
unforgeable. In [Unr12], Unruh proved that special soundness (a witness can
be constructed efficiently from two different accepting transcripts) and perfect
unique responses are sufficient conditions for a Σ-protocol to achieve this prop-
erty in the context of quantum adversaries. The perfect-unique-responses prop-
erty is used to show that the final measurement of the Σ-protocol adversary
that produces the response is nondestructive conditioned on acceptance. This
property ensures that the extractor can measure the response, and then rewind
“as if nothing had happened”.

A natural question is therefore which other property except the arguably
quite strict condition of perfect unique responses is sufficient to imply
extractability together with special soundness. In [ARU14], the authors show
that computationally unique responses is insufficient to replace perfect unique
responses. A Σ-protocol has computationally unique responses if the verification
relation V is collision-resistant from responses to commitment-challenge pairs
in the sense that it is computationally hard to find two valid responses for the
same commitment-challenge pair.

In [Unr16], Unruh introduced the notion of collapsingness, a quantum gen-
eralization of the collision-resistance property for hash functions. It is straight-
forward to generalize this notion to apply to binary relations instead of just
functions.

Definition 23 (generalized from [Unr16]). Let R : X × Y → {0, 1} be a
relation with |X| and |Y | superpolynomial in the security parameter η, and define
the following two games for polynomial-time two-stage adversaries A = (A1,A2),

Game 1 :
(S,X, Y ) ← A1, r ← R(X,Y ), X ← M(X), Y ← M(Y ), b ← A2(S,X, Y )

Game 2 :
(S,X, Y ) ← A1, r ← R(X,Y ), Y ← M(Y ), b ← A2(S,X, Y ).

11 See also Theorem 25 in [Unr17] for a different proof technique.
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Here, X and Y are registers of dimension |X| and |Y |, respectively, M
denotes a measurement in the computational basis, and applying R to quan-
tum registers is done by computing the relation coherently and measuring it. R
is called collapsing from X to Y, if an adversary cannot distinguish the two
experiments if the relation holds, i.e. if for all adversaries A it holds that

∣
∣
∣
∣ Pr
A, Game 1

[r = b = 1] − Pr
A, Game 2

[r = b = 1]
∣
∣
∣
∣ ≤ negl(η). (7)

Note that this definition is equivalent to Definition 23 in [Unr16] for functions,
i.e. if R(x, y) = 1 if and only if f(x) = y for some function f .

Via the relation that is computed by the second stage of the verifier, the
collapsingness property can be naturally defined for Σ-protocols.

Definition 24 (Quantum computationally unique responses). A
Σ-protocol has quantum computationally unique responses, if the verification
predicate V (x, ·, ·, ·) : Y × C × Z → {0, 1} seen as a relation between Y × C
and Z is collapsing from Z to Y × C, where Y, C and Z are the commitment,
challenge and response spaces of the protocol, respectively.

Intuitively, for fixed commitment-challenge pairs, no adversary should be able
to determine whether a superposition over successful responses z has been mea-
sured or not. As in the case of hash functions (where collapsingness is a natural
stronger quantum requirement than collision-resistance), quantum computation-
ally unique responses is a natural stronger quantum requirement than computa-
tionally unique responses.

The following is a generalization of Theorem 9 in [Unr12] where the assump-
tion of perfect unique responses is replaced by the above quantum computa-
tional version. Additionally, we relax the special soundness requirement to t-
soundness, which requires that for any first message a, for uniformly random
chosen challenges c1, . . . , ct, and for any responses z1, . . . , zt with V (x, ai, ci, zi)
for all i ∈ {1, . . . , t}, a witness w for x can be efficiently computed except with
negligible probability (over the choices of the ci).

Theorem 25 (Generalization of Theorem 9 from [Unr12]). Let Π be a
Σ-protocol with t-soundness for some constant t and with quantum computa-
tionally unique responses. Then Π is a computational proof of knowledge as in
Definition 14.

The proof follows very much the proof of Theorem 9 in [Unr12], up to some
small extensions; thus, we only give a proof sketch here.

Proof (sketch). We consider the following extractor K. It runs A to the point
where it outputs a. Then, it chooses a random challenge c1 and sends it to A, and
obtains a response z1 by measuring A’s corresponding register. K then rewinds
A (on the measured state!) and chooses and sends to A a fresh random challenge
c2, resulting in a response z2, etc., up to obtaining response zt. If V (x, ai, ci, zi)
for all i ∈ {1, . . . , t} then K can compute w except with negligible probability
by the t-soundness property; otherwise, it aborts.
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It remains to analyze the probability, denoted by F below, that V (x, ai, ci, zi)
for all i. If the Σ-protocol has perfect unique responses then measuring the
response z is equivalent to measuring whether the response satisfies the veri-
fication predicate V (with respect to x, a, c). Lemma 29 in AppendixB, which
generalizes Lemma 7 in [Unr12], allows us then to control the probability F
by means of the probability V that A succeeds in convincing the verifier in an
ordinary run (this holds for an arbitrary but fixed a, and on average over a
by means of Jensen’s inequality). If the Σ-protocol has quantum computation-
ally unique responses instead, then measuring the response z is computationally
indistinguishable from measuring whether the response satisfies the verification
predicate, and so there can only be a negligible loss in the success probability of
K compared to above. ��

We expect the above theorem to be very useful in practice, for the following
reason. Usually, Σ-protocols deployed in Fiat-Shamir signature schemes have
computationally unique responses to ensure strong unforgeability via Theorem22
or similar reductions. On the other hand, only very artificial separations between
the notions of collision resistance and collapsingness for hash functions are known
(e.g. the one presented in [Zha17]). It is therefore plausible that many Σ-protocols
deployed in strongly unforgeable Fiat-Shamir signature schemes have quantum
computationally unique responses as well. In the next section we take a look at
a couple of examples that form the basis of some signature schemes submitted
to the NIST competition for the standardization of post-quantum cryptographic
schemes.

6 Application to NIST Submissions

In the previous sections we gave sufficient conditions for a Fiat-Shamir signa-
ture scheme to be existentially unforgeable in the QROM. Several schemes of
the Fiat-Shamir kind have made it into the second round of the NIST post-
quantum standardization process. In this section we outline how our result might
be applied to some of these schemes, and under which additional assumptions.
We leave the problems of applying our techniques to the actual (highly opti-
mized) signature schemes and of working out the concrete security bounds for
future work.

6.1 Picnic

In order to obtain QROM-security, Picnic uses the Unruh transform [Unr15]
instead of the Fiat-Shamir transformation, incurring a 1.6x loss in efficiency
(according to [CDG+17]) compared to Fish, which is the same scheme under
plain Fiat-Shamir.

The underlying sigma-protocol for these schemes is ZKB++ [CDG+17], an
optimized version of ZKBoo [GMO16], which uses an arbitrary one-way function
φ, a commitment scheme COM and a multi-party computation protocol to prove
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knowledge of a secret key. Roughly, a prover runs the multi-party protocol ‘in its
head’ (i.e. simulates the three agents from the protocol, see [IKOS07]) to compute
pk := φ(sk). Only a prover who knows the secret key can produce the correct
view of all three agents, but the public key suffices to verify the correctness of
two of the views. In the first round, the prover uses COM to commit to all three
views separately, and sends these commitments to the verifier. The verifier replies
with a random challenge i ∈ {1, 2, 3}, to which the prover in turn responds by
opening the i-th and i+1-th commitment.

ZKBoo does not specify a concrete commitment scheme for COM. A natural
option is to commit by hashing the input together with some random bits.

Corollary 26. Sig[ZKBoo] is strongly existentially unforgeable in the QROM
when COM is instantiated with a hash function H.

Proof. If we treat H as a quantum-accessible random oracle, then H is collapsing
by [Unr16]. Since the response of the prover in the third round consists only of
openings to the commitments ci, ci+1, i.e. preimages of ci and ci+1 under H,
and since collapsingness is closed under concurrent composition [Feh18], the
collapsingness of H implies that ZKBoo has quantum computational unique
responses. ZKBoo further has 3-soundness, and thus the claim follows using
Theorems 25 and 22. ��

ZKB++ improves on ZKBoo by introducing optimizations specific to the sig-
nature context, which complicate the analysis of the overall scheme. We therefore
leave the adaption of Corollary 26 to ZKB++ and Fish for future work.

6.2 Lattice-Based Fiat-Shamir Signature Schemes –
CRYSTALS-Dilithium and qTesla

In [Lyu09] and [Lyu12], Lyubashevsky developed a Fiat-Shamir signature scheme
based on (ring) lattice assumptions. In the following, we explain the lattice
case and mention ring-based lattice terms in parentheses. The underlying sigma
protocol, which forms the basis of the NIST submissions CRYSTALS-Dilithium
and qTesla, can be roughly described as follows. The instance is given by a
key pair ((A, T ), S), with T = AS. Here, A and S are matrices of appropriate
dimensions over a finite field (polynomials of appropriate degree), and S is small.
For the first message to the verifier, the prover selects a random short vector
(small polynomial) y, and sends over Ay. The second message, from the verifier
to the prover, is a random vector (polynomial) c with entries (coefficients) in
{−1, 0, 1} and a small Hamming weight. The third message, i.e. the response of
the prover, is z = Sc + y, which is short (small) as well. The prover actually
sends z only with a particular probability, which is chosen so as to make the
distribution of (sent) z independent of S. Otherwise, it aborts and tries again.
Verification is done by checking whether z is indeed short (small), and whether
Az − Ay = Tc. Let us denote this protocol by LatticeΣ. In the following we
restrict our attention to the lattice case, but we expect that one can do a similar
analysis for the ring-based schemes.
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The security of the scheme is, in the lattice case, based on the Short Inte-
ger Solution (SIS) problem, which essentially guarantees that it is hard to
find an integral solution to a linear system that has a small norm. The computa-
tionally unique responses property for the simple Σ-protocol described above, in
fact, follows directly from SIS: If one can find a vector c and two short vectors
xi, i = 1, 2 such that Ax0 = c = Ax1, then the difference x = x1 − x0 is a short
solution to the linear system Ax = 0.

Another way to formulate the computationally unique responses property
for the above Σ-protocol is as follows. Let S ⊂ Fn

q be the set of short vectors.
Let fA : S → Fm

q be the restriction to S of the linear map given by the matrix
A ∈ Fm×n

q . The Σ-protocol above has computationally unique responses if and
only if fA is collision resistant. As pointed out at the end of Sect. 5, the known
examples that separate the collision resistance and collapsingness properties are
fairly artificial. Hence it is a natural to assume that fA is collapsing as well.

Assumption 27. For m,n and q polynomial in the security parameter η, the
function family fA keyed by a uniformly random matrix A ∈ Fm×n

q is collapsing.

Under Assumption 27, LatticeΣ has quantum computational unique responses,
and hence gives rise to an unforgeable Fiat-Shamir signature scheme.

Corollary 28. Under Assumption 27, Sig[LatticeΣ] is strongly existentially
unforgeable in the QROM.

As mentioned at the end of the introduction, in their concurrent and indepen-
dent work [LZ19], Lie and Zhandry show that fA satisfies their notion of weak -
collapsingness (assuming hardness of LWE), which roughly says that there is
some non-negligible probability that the adversary does not notice a measure-
ment. Weak-collapsingness implies a similarly weakened variant of our property
‘quantum computational responses’, which is still sufficient to let the proof of
Theorem 25 go through, albeit with a worse but still non-negligible success prob-
ability for the knowledge-extractor.

Acknowledgement. We thank Tommaso Gagliardoni and Dominique Unruh for com-
ments on early basic ideas of our approach, and Andreas Hülsing, Eike Kiltz and Greg
Zaverucha for helpful discussions. We thank Thomas Vidick for helpful remarks on an
earlier version of this article.

JD and SF were partly supported by the EU Horizon 2020 Research and Innovation
Program Grant 780701 (PROMETHEUS). JD, CM, and CS were supported by a NWO
VIDI grant (Project No. 639.022.519).

A Proof of Lemmas 12 and 15

Proof (of Lemma 12). Let A be an adaptive Σ-protocol adversary, producing
x and a in the first stage, and z in the second stage. We then consider the
following algorithms. Ainit runs the first stage of A (using the same initial state),
outputting x and a. Let |ψx,a〉 be the corresponding internal state at this point.
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Furthermore, for any possible x and a, Ax,a is the following static Σ-protocol
adversary. Its initial state is |ψx,a〉|a〉 and in the first stage it simply outputs a,
and in the second stage, after having received the verifier’s challenge, it runs the
second stage of A. We then see that

Pr
[
x �∈ L ∧ v = accept : (x, v) ← 〈A,V〉]

=
∑

x◦ 	∈L
Pr

[
x = x◦ ∧ v = accept : (x, v) ← 〈A,V〉]

=
∑

x◦ 	∈L

∑

a

Pr
[Ainit = (x◦, a)

]
Pr

[〈Ax◦,a,V(x◦)〉 = accept
]
.

Since Pr
[〈Ax◦,a,V(x◦)〉 = accept

]
is bounded by a negligible function, given

that Ax,a is a (quantum polynomial-time/unbounded) static adversary, the claim
follows. ��
Proof (of Lemma 15). Let A be an adaptive Σ-protocol adversary, producing x
and a in the first stage, and z in the second stage. We construct a black-box
knowledge extractor Kad that works for any such A. In a first step, KA

ad runs the
first stage of A using the black-box access to A (and having access to the initial
state of A). Below, we call this first stage of A as Ainit. This produces x and
a, and we write |ψx,a〉 for the corresponding internal state. Then, it runs KAx,a

na ,
where Kna is the knowledge extractor guaranteed to exist for static adversaries,
and Ax,a is the static adversary that works as follows. It’s initial state is |ψx,a〉|a〉
and in the first stage it simply outputs a, and in the second stage it runs the
second stage of A on the state |ψx,a〉. Note that having obtained x and a and
the state |ψx,a〉 as first step of KA

ad, KAx,a

na can then be executed with black box
access to (the second stage of) A. For any subset X ⊆ X , we now see that

Pr
[
x ∈ X ∧ (x,w) ∈ R : (x,w) ← KA

ad

]

=
∑

x∈X

∑

a

Pr
[Ainit = (x, a)

]
Pr

[
(x,w) ∈ R : w ← KAx,a

na

]

≥
∑

x∈X

∑

a

Pr
[Ainit = (x, a)

]· 1
p(η)

· Pr
[〈Ax,a,V(x)〉 = accept

]d − κ(η)

≥ 1
p(η)

( ∑

x∈X

∑

a

Pr
[Ainit = (x, a)

]
Pr

[〈Ax,a,V(x)〉 = accept
]
)d

− κ(η)

=
1

p(η)
Pr

[
x ∈ X ∧ v=1 : (x, v) ← 〈Ax,a,V(x)〉]d − κ(η),

where the first inequality is because of the static proof-of-knowledge property,
and the second is Jensen’s inequality, noting that we may assume without loss
of generality that d ≥ 1. ��
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B Generalization of Lemma 7 from [Unr12]

Lemma 29. Let P1, . . . , Pn be projections and |ψ〉 a state vector, and set

V :=
1
n

∑

i

〈ψ|Pi|ψ〉 =
1
n

∑

i

‖Pi|ψ〉‖2 and F :=
1
nt

∑

i1···it
‖Pit · · · Pi1 |ψ〉‖2.

Then F ≥ V 2t−1.

The case t = 2 was proven in [Unr12, Lemma 7]. We show here how to extend
the proof to t = 3; the general case works along the same lines.

Proof (of the case t = 3). For convenience, set A := 1
n

∑
i Pi and |ψijk〉 :=

PkPjPi|ψ〉. Then, using convexity of the function x �→ x5 to argue the first
inequality, we get

V 5 =(〈ψ|A|ψ〉)5 = 〈ψ|A5|ψ〉 =
1
n5

∑

ijk�m

〈ψ|PiPjPkP�Pm|ψ〉

=
1
n5

∑

ijk�m

〈ψijk|ψm�k〉 =
1
n

∑

k

(
1
n2

∑

ij

〈ψijk|
)(

1
n2

∑

�m

|ψm�k〉
)

=
1
n

∑

k

∥
∥
∥

1
n2

∑

ij

|ψijk〉
∥
∥
∥
2

≤ 1
n3

∑

ijk

‖|ψijk〉‖2 = F,

where the last inequality is Claim 2 in the proof of Lemma 7 in [Unr12]. ��
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Abstract. We consider the problem of constructing leakage-resilient
circuit compilers that are secure against global leakage functions with
bounded output length. By global, we mean that the leakage can depend
on all circuit wires and output a low-complexity function (represented as
a multi-output Boolean circuit) applied on these wires. In this work, we
design compilers both in the stateless (a.k.a. single-shot leakage) setting
and the stateful (a.k.a. continuous leakage) setting that are uncondition-
ally secure against AC0 leakage and similar low-complexity classes.

In the stateless case, we show that the original private circuits con-
struction of Ishai, Sahai, and Wagner (Crypto 2003) is actually secure
against AC0 leakage. In the stateful case, we modify the construction of
Rothblum (Crypto 2012), obtaining a simple construction with uncondi-
tional security. Prior works that designed leakage-resilient circuit compil-
ers against AC0 leakage had to rely either on secure hardware components
(Faust et al., Eurocrypt 2010, Miles-Viola, STOC 2013) or on (unproven)
complexity-theoretic assumptions (Rothblum, Crypto 2012).

1 Introduction

There is a rich body of work on protecting computations that involve sensi-
tive data against partial information leakage. This line of work is motivated by
practical side-channel attacks that use physical measurements such as running
time [36] or power consumption [37] to compromise secret keys embedded in
cryptographic hardware or software. The recent high-profile Meltdown, Spec-
tre, and Foreshadow attacks [13,35,38] demonstrated the vulnerability of most
modern computer systems to this kind of attacks.

A clean theoretical model that captures the goal of protecting general com-
putations against leakage is that of a leakage resilient circuit compiler (LRCC).
Here the computation is modeled as a logical circuit, and the leakage as a function
applying to the internal wires of the circuit. The goal of a LRCC is to randomize
the computation of a given circuit in a way that resists broad classes of leakage

c© International Association for Cryptologic Research 2019
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while at the same time respecting the input-output relation of the original cir-
cuit. The problem of LRCC has many flavors, depending on the computational
model and the type of leakage.

A crude form of LRCC was already given in the 1980s by the seminal works
on secure multiparty computation [6,15,27,44]. Such protocols distribute com-
putations across multiple parties in a way that resists leakage from a bounded
number of parties. The work of Ishai, Sahai, and Wagner (ISW) [32] initiated a
more explicit and refined study of LRCC at the circuit level, but still focused on
the case of localized “probing attack” leakage that applies to a bounded number
of circuit wires. In spite of its restricted nature, this leakage model turned out
to be quite relevant to practical defenses against side-channel attacks. This is
due in part to the simplicity of the constructions and the ability of the same
leakage model to accommodate more realistic noisy leakage [19,23] that obtains
an independent noisy measurement of every wire in the circuit. LRCCs in this
model have been the subject of a large body of theoretical and applied work
(see, e.g., [1,3–5,16,17,21,22,42] and references therein).

Originating from the works of Micali and Reyzin [39] and Faust et al. [23,24],
another line of work went in the direction of accommodating more general types
of leakage classes that apply restricted types of functions to all wires in the
circuit. In particular, Faust et al. [23] presented a variant of the ISW com-
piler that employs small leak-free hardware components to protect against any
class of “computationally simple” leakage functions for which strong average-
case lower bounds are known. The most prominent example is that of AC0 leak-
age, computed by constant-depth polynomial-size circuits with unbounded fan-
in AND/OR/NOT gates and a bounded number of outputs. Subsequent works
along this line studied LRCCs for different classes of global leakage under a
variety of trusted hardware or setups and computational intractability assump-
tions [7–9,11,12,18,20,25,26,28–30,34,40,41,43].

Constant-Depth Leakage. The focus of this work is mainly on the class of AC0

leakage and related constant-depth complexity classes, such as AC0 augmented
with additional mod-p gates. This type of leakage strictly generalizes the ISW
leakage model, which as discussed above is relevant to many realistic scenarios.
Moreover, while the class AC0 does not capture some natural leakage functions,
such as ones that take weighted sums of many wire values, it does apply to a
wide variety of natural attacks. For instance, suppose that a system crashes if
a secret value represented by a wire bundle is in a certain forbidden range, and
there are many such wire bundles that may lead to the system crashing. Then,
whether the system crashes at a given moment is a single bit of depth-3 AC0

leakage that can be observed by the outside world. One can similarly cast in
this class other types of natural leakage functions that take the conjunction,
disjunction, maximum, or minimum of values that can themselves be computed
by low-depth circuits.

Stateless vs. Stateful LRCC. Before describing our contributions, it is instructive
to present the current state of the art in a more precise way. The ISW paper
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introduced two variants of the LRCC problem: a simpler stateless variant and a
more complex stateful variant. The stateless variant captures standard computa-
tions that map a secret input to a secret or public output, where the computation
is subject to a single round of one-shot leakage. For instance, this scenario can
apply to zero-knowledge authentication by a hardware device, or computations
performed by payment terminals and access control readers (see [26] for fur-
ther discussion). In a more theoretical context, stateless LRCCs have also been
applied towards constructing different zero-knowledge flavors of probabilistically
checkable proofs [33]. The stateful variant of LRCCs captures a system (such as
a personal computer or an IoT device) with persistent memory that may store
secrets. Users interacting with this system can feed it with a sequence of inputs
and observe the resulting outputs. For instance, think of an encryption device
that stores a secret encryption key, takes a plaintext as input and produces a
ciphertext as output. Stateful LRCCs may be subject to continuous leakage that
applies a different leakage function in each round. To help defend against this
kind of leakage, they are allowed to refresh their internal state.

More formally, in the stateless variant of LRCC, the goal is to compile
a (deterministic, stateless) circuit C into a randomized circuit ̂C, such that
together with leak-free randomized input encoder Enc and output decoder Dec
we get the following correctness and security guarantees: (1) For any input x,
we have Dec( ̂C(Enc(x))) = C(x); (2) For any admissible leakage function � ∈ L,
applying � to the internal wires of the computation ̂C(Enc(x)) reveals essentially
nothing about x. To rule out a trivial solution in which the entire computation
is carried out by the leak-free components Enc and Dec, these components are
required to be universal in the sense that they depend only on the input and
output size of C and not on C itself. The ISW construction protects computa-
tions against leakage that involves a bounded number of wire-probes. That is,
the leakage � can output the values of t wires in ̂C. Here we are interested in a
bigger class L that includes constant-depth circuits with t bits of output.

The stateful variant of LRCC considers the more challenging goal of pro-
tecting computations against continual leakage. Here the ideal functionality is
specified by a deterministic, stateful circuit C, mapping the current input and
state to the current output and the next state. The input and output are consid-
ered to be public whereas the state is secret. The goal, as before, is to transform
C into a leakage-resilient randomized circuit ̂C. The circuit ̂C is initialized with
some randomized encoding ŝ0 of the initial secret state s0 of C. The computa-
tion can then proceed in a virtually unlimited number of rounds, where in each
round ̂C receives an input, produces an output, and replaces the old encoding
of the secret state by a fresh encoding of a new state. The correctness goal is to
ensure that ̂C[ŝ0] has the same input-output functionality as C[s0]. The security
goal is defined again with respect to a class L of leakage functions, where the
adversary may adaptively choose a different function � ∈ L in each round. The
security goal is to ensure that whatever the adversary learns by interacting with
̂C[ŝ0] and by additionally observing the leakage, it can simulate by interacting
with C[s0] without obtaining any leakage.
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State of the Art. Existing results of LRCCs for AC0 and similar constant-depth
leakage classes leave a number of basic questions open. In the stateful case,
the works of Faust et al. [23] and Miles and Viola [41] yield constructions that
require small but leak-free trusted hardware components, whose number is lin-
ear in the size of C and whose size grows with a statistical security parameter.
Alternatively, Rothblum [43] showed how to eliminate the trusted hardware com-
ponents, but at the cost of further complicating the construction and relying on
an unproven complexity theoretic conjecture (the so-called “IPPP conjecture”)
that remains open to date. In the stateless case, the trusted hardware com-
ponents in the constructions of [23,41] can be replaced by correlated random
input bits that are fed directly into the stateless circuit in addition to the input
x [10,26,41]. However, this requires the user of the leakage-resilient circuit ̂C to
work at least as hard as computing C rather than simply feed ̂C with its input.

We note that unlike the case of security against noisy leakage, which is
implied by security against probing attacks [19], this is not the case for security
against AC0 leakage. Indeed, there are pairs of distributions over {0, 1}N that
cannot be distinguished by probing any N0.99 of their bits, and yet they can be
distinguished by AC0 circuits with one bit of output [10,14]. In the stateful case,
an additional difficulty stems from the need to prove simulation-based security
rather than mere indistinguishability by AC0 circuits. The efficient simulation
requirement poses a major challenge in some related contexts [33].

1.1 Our Contribution

In this work, we improve the above state of the art in both the stateless and
stateful case by proving two main unconditional results.

In the stateless case (with one-shot leakage), we show that the original ISW
construction [32], which is quite simple and concretely efficient, is actually uncon-
ditionally secure against a much wider class of low-complexity leakage functions
that includes AC0. We also show similar results for leakage computed by AC0

circuits with mod-p gates, for a prime modulus p > 2, though in this case our
security only follows from standard complexity-theoretic conjectures. In contrast
to previous constructions from [10,26,41], here the circuit ̂C directly computes
on the input x and does not require additional correlated random inputs or
trusted leak-free hardware. This construction is also simpler and more efficient
than the (conditional) construction from [43].

In the stateful case (with continuous leakage), we modify the previous con-
struction of Rothblum [43], obtaining the first construction that unconditionally
resists AC0 leakage without relying on trusted leak-free hardware.

At a higher level of generality, both of our constructions satisfy a composition
theorem of the following form (Theorems 4 and 5): For any given class of leakage
functions L, if parity has low correlation with L composed with NC0 (namely,
functions where each output depends on a constant number of inputs), then our
constructions are secure against leakage from L. For L = NC0 we recover the
ISW result, for L = AC0 we obtain our main result, and for L = AC0[mod p]
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we get the extension to constant-depth circuits with mod p gates, assuming this
class has low correlation with parities.

Here is a formal statement of the results in these cases of interest. For the
relevant definitions see Sect. 3. The corresponding constructions are described in
Sects. 4 and 5.

Corollary 1. The ISW compiler when applied to circuits of size S and input
length k is a kε-leakage resilient stateless circuit compiler against the following
classes, where n is the security parameter:

1. Functions that depend on the values of at most (n − 1)/2 wires, with ε = 0,
2. Unbounded fan-in AND/OR/NOT circuits of size s − O(n2S), depth d, and

cdn/(log s)d outputs, with ε = 2−cdn/(log s)d ,
3. Unbounded fan-in AND/OR/NOT/MODp circuits of size s−O(n2S), depth

d, and m outputs, assuming n-bit random parity-0 and parity-1 strings are
2 · 3−mε-indistinguishable by such circuits of size s and depth d + 1 (and one
output).

Here cd is a constant that depends on d only. Part 1 recovers the stateless
security result of Ishai, Sahai, and Wagner. Parts 2 and 3 are new.

Corollary 2. There exists a construction of LRCC for a class of stateful circuits
of size S that is O(εT (S + n))-leakage resilient stateful circuit compiler against
the following leakage classes, where T , S, and n are the number of rounds of the
leakage experiment, the circuit size, and the security parameter, respectively:

1. Unbounded fan-in AND/OR/NOT circuits of size 2n
O(1/d) − O(n3S), depth

d, and nO(1/d) outputs, with ε = 2−nO(1/d)
.

2. Unbounded fan-in AND/OR/NOT/MODp circuits of size s−O(n3S), depth
d, and m outputs, assuming n-bit random parity-0 and parity-1 strings are
2 ·3−mε-indistinguishable by such circuits of size O(2ms) and depth d+1 (and
one output).

2 Our Techniques

In this section, we give a high-level overview of our techniques for constructing a
leakage resilient compiler that is unconditionally secure against AC0 leakage. We
start with a brief overview of the prior approaches and highlight the limitations
of these approaches in obtaining an unconditional result. Next, in Sect. 2.1, we
give an overview of the proof that the original private circuit construction of
Ishai, Sahai and Wagner [32] is secure against AC0 leakage in the stateless a.k.a.
single-shot leakage setting. Finally, in Sect. 2.2, we discuss our construction of a
leakage resilient circuit compiler in the stateful a.k.a. continuous leakage setting.
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Prior Approaches. All the prior works [23,32,40,41,43] (including ours) follow
the same high-level blue print in constructing a leakage resilient circuit compiler.
Each wire in the original circuit C is transformed into a “bundle” of n-wires in the
compiled circuit ̂C such that the bundle encodes the bit carried by the wire (using
a suitable encoding procedure). Few examples of the encoding procedures used
in the prior work are the (i) parity encoding [23,32,43] i.e., the parity of the wire
bundle is equal to the value carried by the wire and (ii) group encoding [40,41]
i.e., each element in the bundle is represented as an element of an alternating
group and the product of the group elements encodes the bit carried by the
wire. For concreteness, let us assume that the wires are encoded using the parity
encoding. The next step in these constructions is to implement the addition and
the multiplication gates over the wire bundles. That is, every gate g ∈ {+, ∗}
in the original circuit C, is transformed into a gadget ĝ that takes in 2 wire
bundles, say a,b ∈ {0, 1}n and outputs a wire bundle c such that parity of c
is equal to g(⊕a,⊕b). Thus, evaluating these gate gadgets in ̂C will eventually
lead us to the output wire bundles which are finally decoded by computing their
parity. This construction ensures correctness i.e., the compiled circuit computes
the same function as that of the original circuit. However, to prove security,
these works required an additional refreshing gadget (denoted as Refresh). The
refreshing gadget takes in a wire bundle x and outputs a random bundle y
conditioned on ⊕y = ⊕x. In other words, this gadget refreshes the randomness
used in the encoding. To get a secure construction, the implementation of each
gate gadget ĝ were augmented in such a way that the output wire bundle, say
c is sent through the Refresh gadget and the resultant wire bundle is the new
output. At an intuitive level, this leads to a secure construction as the Refresh
gadget ensures that the randomness used in encoding the output of each gate is
refreshed and hence, the leakage that has been accumulated as a result of the
ĝ computation does not propagate to the higher layers. This allowed the prior
works to argue security against specific leakage classes such as AC0 circuits.
However, the task of implementing this refreshing gadget is highly challenging
and this is the primary reason that the prior works had to rely on secure hardware
components [23,40,41] or computational assumptions [43]. Specifically, Faust et
al. used a secure hardware component to generate a random vector z whose
parity is 0 and implemented the Refresh gadget as y = x + z. This ensures that
y has the same parity as that of x and additionally, it is distributed randomly
conditioned on its parity being fixed. Rothblum removed the need of secure
hardware components by generating random encodings of 0 using a more involved
procedure (that will be explained later) but had to rely on a computational
assumption in the proof of security. In the next two subsections, we discuss our
approach of dealing with the problem of generating a random encoding of 0, first
in the stateless setting and then in the more complicated stateful setting.

2.1 Unconditional Result in the Stateless Setting

The key insight behind our unconditional result in the stateless setting is that
refreshing the output of every gate gadget is actually an overkill and a far weaker
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property called as “local sampleability” is sufficient. Before we go into the details,
let us first give the definition of a local sampler. A circuit Samp(x; r) (x ∈ {0, 1}n
is the regular input and r is the randomness) is said to be a 2-local sampler if
each output bit of the circuit depends at most two bits of the regular input x.
It can be easily seen that for every r, Samp(PAR(n, 0); r) is indistinguishable to
Samp(PAR(n, 1); r) by AC0 circuits where PAR(n, b) is an uniform distribution
over n-bit strings whose parity is b.

The main technical lemma which allows us to prove security in the stateless
setting is the following. Fix the encodings of all input bits except one, say x and
let ̂C be the compiled circuit in the construction of Ishai, Sahai and Wagner [32].
Then, the distribution of the wires in ̂C is identical to the output of a 2-local
sampler Samp(x; r) for an uniformly chosen r. This allows us to prove an uncon-
ditional result as we can go over a sequence of hybrids such that in each hybrid,
we fix the encodings of all bits except one (say, x), use Samp(x; r) to generate
the distribution of all the wires in ̂C and then conclude that the wire distribu-
tion is indistinguishable to AC0 circuits when x encodes the bit 0 or 1. We stress
that unlike the prior unconditional results in the stateless setting [23,41], our
construction does not require a source of correlated randomness generated in a
leak-free manner. We also remark that in the prior results, the number of bits of
this correlated randomness string is very large and in the worst case, could be
as large as the circuit itself.

Before we delve into the details of the proof of the main lemma, let us first
recall the construction of Ishai, Sahai and Wagner [32]. As mentioned before, in
this construction, each wire in the original circuit is transformed into a bundle
of n wires such that the parity of this wire bundle is equal to the value carried
by the wire. Given this encoding, implementing the addition gadget is simple.
It takes in two wire bundles, a,b ∈ {0, 1}n and outputs c = a + b. We give the
details of the multiplication gadget below.

Construction 1. On input two wire bundles a and b, the multiplication gadget
does the following:

1. Define the matrix M ∈ {0, 1}n×n such that Mi,j = aibj.
2. For every 1 ≤ i, j ≤ n and i < j, choose a random bit zi,j.
3. For every 1 ≤ i, j ≤ n and i < j, set zj,i = zi,j ⊕ (Mj,i ⊕ Mi,j).
4. For every 1 ≤ i ≤ n, set ci = (⊕j �=izi,j) ⊕ Mi,i.
5. Output c = (c1, . . . , cn).

Correctness of both the gadgets is straightforward to verify. Let us fix the
encodings of all the input bits except one, say x. To prove the main lemma, we
need to show that the wire distribution in the compiled circuit conditioned on
this fixing is identical to the output of a 2-local sampler.

Proof Overview. We prove this lemma via an inductive argument. We first prove
that the distribution of the internal wires in an addition and a multiplication
gate is identical to a locally sampleable distribution. We then use induction to
prove that the wire assignment in the entire circuit is locally sampleable.
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Local sampleability of addition gadget is trivial and the main challenge is to
show local sampleability of multiplication gadget. For simplicity, let us consider
a multiplication gate at the first layer of the circuit where one input is x (which
is the non-fixed encoding) and the other input is b (for some fixed b). The other
cases are dealt in Sect. 4 of our paper. We need to show that for any b, there
exists a 2-local sampler Sampmult(x; z′) such that the output of the sampler (for
an uniform z′) is identical to the distribution of the internal wire assignments of
a multiplication gate on input x,b.

At first inspection, it appears that the internal wire assignments of the mul-
tiplication gadget are “non-local.” Specifically, consider the wires in the compu-
tation of cn; it depends on every bit of x. So the main question is how do we
prove that the wires are 2-locally sampleable? The key insight is that while the
internal wires of the multiplication gadget could be non-local, it is distributed
identically to a 2-locally sampleable distribution. So, we need to demonstrate a
2-locally sampleable distribution (which is the output of a Sampmult) and argue
that this distribution is identical to the distribution of the internal wires of the
multiplication gadget. We now give details of such a sampler Sampmult. On input
x and uniform randomness z′, Sampmult (that depends on b) does the following:

1. Define the matrix M ∈ {0, 1}n×n where the (i, j)-th element Mi,j = xi · bj .
2. For every 1 ≤ i ≤ n, 1 ≤ j ≤ n and i < j, choose a random bit z′

i,j and define
zi,j = z′

i,j ⊕ Mi,j .
3. For every 1 ≤ i ≤ n, 1 ≤ j ≤ n and i < j, set zj,i = zi,j ⊕ (Mj,i ⊕ Mi,j).
4. For every 1 ≤ i ≤ n, set c′

i = (⊕j �=izi,j) ⊕ Mi,i.
5. Output M, {zi,j}i<j , all the wires in the computation of {zi,j}i>j and the

computation of {c′
i}i∈[n] along with the vector c′ = (c′

1, . . . , c
′
n) (which are

the output wires).

The only difference between the wire assignments output by Sampmult and the
actual wire assignments in multiplication gate is how {zi,j}i<j is set. Note that
if z′ is chosen uniformly at random then the distribution of {zi,j}i<j is identical
to the uniform distribution. Thus, the wire assignment output by Sampmult is
identical to the actual wire assignment in the implementation of the multiplica-
tion gate for a randomly chosen z. To see the 2-local sampleability of Sampmult,
observe that for any i < j, zi,j depends only on xi. Furthermore, for any i > j,
it can be observed that zi,j = z′

j,i ⊕ Mi,j depends on only xi and wires used
in computing zi,j is a 2-local function in x. These two observations imply that
for every i ∈ [n], computing c′

i depends only on xi and hence the wires in this
computation are locally sampleable. This shows that the output of Sampmult is
a 2-local distribution. Combining this with the inductive argument allows us to
obtain an unconditional result in the stateless setting.

2.2 Unconditional Result in the Stateful Setting

In this subsection, we give a high level overview of our construction of a leakage-
resilient circuit compiler against AC0 circuits in the stateful setting that has
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unconditional security. As mentioned before, the prior results in this setting
either relied on secure hardware components or on computational assumptions.

Main Challenges. In the stateful setting, there are two key challenges that we
need to overcome. The first challenge is dealing with absence of a trusted decoder.
In the stateless setting, a trusted decoder was available and this allowed the sim-
ulator to “cheat” by hardwiring the correct output in the trusted decoder such
that even when the circuit is run on some junk inputs, the output obtained is
consistent with the actual output. However, in the stateful case, no such trusted
decoder is available and this makes the task of simulation much harder. In this
case, the simulator must somehow incorporate the correct output (without know-
ing the actual input) in the wire distribution such that a leakage function cannot
distinguish this from the real word distribution. When considering leakage classes
such as AC0 functions, this task is even more challenging as these functions can
check local consistency of the gates. The second challenge in the stateful setting
is the necessity to refresh the randomness. Unlike the stateless setting where we
observed that local sampleability is sufficient, in the stateful case, we need to
additionally refresh the randomness used in the encoding procedure. To see why
this is the case, consider a stateful circuit that has a PRF key k as its state and
computes PRF(k, x) on a regular input x. If the randomness of the key k is not
refreshed across multiple queries, then in O(n|k|) leakage queries, the entire key
can be successfully retrieved by leakage functions that output a single bit. Thus,
we need to refresh the randomness of the state bundles across queries and for
technical reasons, we also need to refresh the randomness of the output of every
gate.

Rothblum’s Construction. The starting point of our construction is the work
of Rothblum [43] who showed that under a complexity theoretic assumption
referred to as “Inner Products with Pre-Processing” (IPPP)1, there exists a
construction of a leakage resilient circuit compiler against AC0 in the stateful
setting. Unfortunately, this assumption is unproven and even the state of highly
restricted versions of the assumption such as allowing only linear functions in the
pre-processing phase [2] is far from being resolved. In the rest of this subsection,
we first give a high level overview of the construction of Rothblum, indicate why
the IPPP assumption is needed, and then discuss our approach of removing the
need for the assumption.

Recall that in the stateful setting, the output of every gate is refreshed and
thus, the first step is to implement the Refresh gadget. This Refresh gadget in fact
helps in overcoming both the challenges that we discussed earlier. Firstly, it helps
in refreshing the randomness and thus, helps in overcoming the second challenge.
To overcome the first challenge, we additionally send the wire bundles coming

1 Let D′
0, D

′
1 be uniform distributions over 2n-bit strings such that for every (x,y) ∈

D′
b, <x,y>= b. IPPP states that it is hard for AC0 circuits to distinguish between

D′
0 and D′

1 even when given f(x) and g(y) for arbitrary polynomial-time computable
functions f, g.
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out of the output gate through the Refresh gadget and compute the parity of the
resultant output. In the ideal world distribution, the simulator will change the
internal workings of the Refresh gadget such that instead of only refreshing the
randomness, this gadget could also switch the parity when needed. This helps
the simulator to hardcode the correct output of the circuit even when it is run
with some junk input.

Now, to implement the Refresh gadget, it is sufficient to generate a random
encoding of the bit 0. The main technical contribution in Rothblum’s work is a
method to securely generate a random encoding of 0 without the use of hard-
ware components. This is done as follows. A generator matrix G ∈ {0, 1}n×2n is
chosen uniformly at random subject to the parity of each column of G being 0.
This generator matrix is part of the state of the compiled circuit ̂C. Whenever
a random encoding of 0 is required, choose r uniformly at random from {0, 1}2n
and compute G ·r. It is straightforward to see that the resultant vector is statis-
tically close to a random vector whose parity is 0. This vector is then used in the
Refresh gadget. In Rothblum’s work, the circuit for computing the matrix-vector
product G · r is the trivial O(n2) sized circuit (denoted by CMV).

While the above idea may seem extremely simple at first sight, the proof that
this is indeed secure in the presence of AC0 leakage is highly involved and requires
the use of the (unproven) IPPP assumption. Intuitively, the IPPP assumption
is used in the proof to generate the assignment to every wire in CMV by an AC0

circuit. To see this, consider the following two hybrids in the proof of security
from Rothblum’s work. In the first hybrid, G, r are sampled as in the construc-
tion i.e., G is chosen randomly subject to its column parity being 0 and r is
chosen uniformly at random. In the second hybrid, G, r are both chosen uni-
formly at random from their respective domains. Just given (G, r), these two
distributions are clearly indistinguishable to an AC0 function. However, to make
sure that these hybrids are indistinguishable to an AC0 leakage function, one
needs to additionally generate, in constant depth, all the intermediate wire val-
ues in CMV when given G and r as inputs. Rothblum showed that this is indeed
possible with polynomial time, independent pre-processing on G and r and that
is why IPPP assumption is needed.

Our Approach. In this work, we remove the need for the IPPP assumption by
designing a new gadget called “RandZero” that generates a random encoding
of 0. Crucially, unlike the circuit CMV, it has a special property that its wire
assignments are locally sampleable. This allows us to get rid of the pre-processing
phase in Rothblum’s paper and obtain an unconditionally secure construction.
We now give more details of our approach.

Like in Rothblum’s construction, we choose a generator matrix G ←
{0, 1}n×n uniformly at random subject to its column parity being 0 and make
it part of the state. When we have to generate a random encoding of 0, we
choose r uniformly at random and compute RandZero(G, r). Below, we give the
description of this gadget.
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Construction 2. Given a matrix G ∈ {0, 1}n×n and a vector r ∈ {0, 1}n,
RandZero does the following:

1. Define the matrix M ∈ {0, 1}n×n where the (i, j)-th element Mi,j = Gi,jrj.
2. For every 1 ≤ i ≤ n, 1 ≤ j ≤ n and i < j, choose a random bit zi,j.
3. For every 1 ≤ i ≤ n, 1 ≤ j ≤ n and i < j, set zj,i = (zi,j ⊕ Mj,i) ⊕ Mi,j.
4. For every 1 ≤ i ≤ n, compute ci = (⊕j �=izi,j) ⊕ Mi,i.
5. Output c = (c1, . . . , cn).

We first make a couple of simple observations. The first observation is that the
parity of the output c is same as that of the vector G ·r. The second observation
is that the distribution of c is uniformly random subject to its parity being equal
to parity of the vector G · r. Thus, when the column parity of G is 0, we can
use the output of this gadget to refresh the randomness.

Notice that the above gadget has a lot of similarities with the multiplication
gadget in the work of Ishai, Sahai and Wagner [32] (described in Construction 1).
In fact, the only difference is how the matrix M is defined. We thus, extend the
local sampleability property that we proved for Construction 1 to this construc-
tion. In the actual proof of security, we go over a sequence of hybrids (similar
to the hybrid sequence used in Rothblum’s work) and show that each neigh-
boring hybrids in the sequence are indistinguishable to AC0 leakage using the
local sampleability property of our RandZero gadget. This allows us to prove an
unconditional result. See Sect. 5 for the details.

3 Preliminaries

Notation We will denote vectors by bold lowercase letters (e.g., x) and matrices
with bold uppercase letters (e.g., M). We will denote the i-th entry of a vector
x by xi and the (i, j)-th entry of the matrix M by Mi,j . We use ek ∈ {0, 1}n
for the unit vector whose k-th coordinate is 1 and the rest of the coordinates to
be 0.

We use the notation W[C] for the vector of wire values of a circuit C (under
a canonical ordering consistent with the direction of evaluation), and PAR(n, b)
for the distribution on n-bit strings that is chosen uniformly at random subject
to having parity b.

3.1 Indistinguishability

Definition 1 (Statistical distance). Let D1 and D2 be two distributions on
a set S. The statistical distance between D1 and D2 is defined to be:

Δ(D1,D2) = max
T⊆S

|D1(T ) − D2(T )| =
1
2

∑

s∈S

|Pr[D1 = s] − Pr[D2 = s]|

We say that D1 is ε-close to D2 if Δ(D1,D2) ≤ ε, and ε-far otherwise.

Definition 2 (ε-indistinguishability). Let X and Y be two distribution over
the same domain. We say that (X,Y ) is ε-indistinguishable by a class of func-
tions C if for every C ∈ C, Δ(C(X), C(Y )) ≤ ε.
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3.2 Circuit Complexity

A class of functions C is closed under restriction (resp., negation) if for every f
in C, the function obtained by fixing the value of any input (resp., negating it)
is also in C.

The composition C ◦ C′ consists of all functions (f ◦ f ′)(x) = f(f ′(x)), where
f ∈ C and f ′ ∈ C′.

We use NC0[c] for the class of all multi-input, multi-output Boolean functions
in which every output depends on at most c inputs, AC0(d, s,m) for the class of
circuits that use unbounded fan-in AND-OR-NOT gates, have depth d, size at
most s and m output bits, and AC0[B](d, s,m) for circuits that may have other
types of basis gates B that are closed under negation. If the input or output
length is unrestricted or clear from context it is left out of the notation. The
following claim follows directly from the definition.

Claim 1. NC0[c]◦NC0[c′] ⊆ NC0[cc′], AC0(d, s,m)◦NC0[c] ⊆ AC0(d+1, s+n·2c),
and AC0[B](d, s,m) ◦ NC0[c] ⊆ AC0[B](d + 2, s + n · 2c) where n is the output
length of the NC0[c] circuit.

A 2-adaptive circuit over C is a collection of functions (A,By), where y ranges
over all possible output values of C. The value of the circuit on input x is
(A(x), BA(x)(x)).

Claim 2. If (D1,D2) is ε-indistinguishable by AC0(2d+1, (2m+1)(s+O(1)), 2m)
(resp., AC0[B](2d + 1, (2m + 1)(s + O(1)), 2m)), then it is ε-indistinguishable by
all 2-adaptive circuits over AC0(d, s,m) (resp., AC0[B](d, s)).

Claim 3. If (D0,D1) is ε-indistinguishable by AC0(d, s, 1) (resp., AC0[B](d, s, 1))
then it is 3mε/2-indistinguishable by AC0(d, 2s,m) (resp., AC0[B](d + 1, s,m)).

We give the proof of the above two claims in the full version.
We conclude with H̊astad’s unconditional result on indistinguishability of

parity by constant-depth circuits.

Theorem 3 ([31]). For any d, s ∈ N there exists a constant cd that depends
only on d such that (PAR(n, 0),PAR(n, 1)) is 2−cdn/(log s)d−1

-indistinguishable by
AC0(d, s, 1)

Corollary 3. There exists a constant cd such that (PAR(n, 0),PAR(n, 1)) are
2−cdn/(log s)d−1

-indistinguishable by AC0(d, s/2, cdn/(log s)d−1) and 2−nO(1/d)
-

indistinguishable by 2-adaptive circuits over AC0(d/2 − 1, 2n
O(1/d)

, nO(1/d)).

3.3 Leakage Resilient Circuit Compilers

In this subsection, we give the definitions of leakage resilient circuit compiler
(abbreviated as LRCC) for stateful and stateless circuits.
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LRCC for Stateful Circuits. We first recall the notion of stateful circuits. This
description is taken verbatim from [32]. A stateful circuit is a circuit augmented
with memory cells. A memory cell is a stateful gate with fan-in 1: on any invo-
cation of the circuit, it outputs the previous input to the gate, and stores the
current input for the next invocation. Thus, memory cells act as delay elements.
We extend the usual definition of a circuit by allowing stateful circuits to pos-
sibly contain cycles, so long as every cycle traverses at least one memory cell.
When specifying a stateful circuit, we must also specify an initial state for the
memory cells. When C denotes a circuit with memory cells and s0 an initial state
for the memory cells, we write C[s0] for the circuit C with memory cells initially
filled with s0. Stateful circuits can also have external input and output wires.
For instance, in an AES circuit the internal memory cells contain the secret key,
the input wires a plaintext, and the output wires produce the corresponding
ciphertext. The computation of C[s] on an input x results in a wire assignment
W (a wire assignment is a string that is obtained by concatenating the values
carried by all the wires in C), the output y and an updated state s1.

Definition 3 ((L, τ, ε)-leakage resilient implementation). Let C be a deter-
ministic stateful circuit, L be a leakage class, τ be a round parameter and ε be an
error parameter. We say that ( ̂C,Setup) is an (L, τ, ε)-leakage resilient imple-
mentation of C if:

– ̂C is a randomized, stateful circuit.
– Setup is a randomized mapping from the initial state s0 of C to an initial

state ŝ0 of ̂C.
– Correctness. For every k ∈ N and every sequence of inputs x1, . . . , xk, we

require that probability (over the random coins of Setup and ̂C) that the same
outputs are obtained by (stateful) invocations of C[s0] and ̂C[ŝ0] on this input
sequence is 1.

– Security. For every (possibly unbounded) stateful adversary A, there exists
a (stateful) simulator S such that for every initial state s0 :

∣

∣ Pr[RealA, ̂C,Setup,L(s0, τ) = 1] − Pr[IdealA, ̂C,Setup,S,L(s0, τ) = 1]
∣

∣ ≤ ε

where Real and Ideal experiments are defined in Fig. 1.

Definition 4 (LRCC for Stateful Circuits). Let n be the security parameter.
A leakage resilient stateful circuit compiler for the (stateful) circuit class C is a
pair of polynomial-time algorithms (Tr,St) such that:

– Tr is a deterministic algorithm that maps a deterministic stateful circuit in
C ∈ C and the security parameter 1n to another stateful, randomized cir-
cuit ̂C.

– St is a randomized algorithm that maps an initial state s0 of C and the secu-
rity parameter 1n to an initial state ŝ0 of ̂C.

For a leakage class L(n), round parameter τ(n) and error parameter ε(n), we say
that (Tr,St) is a (L(n), τ(n), ε(n))-leakage resilient circuit compiler for C, if for
every stateful circuit C ∈ C, (Tr(C, 1n),St(�, 1n)) is a (L(n), τ(n), ε(n))-leakage
resilient implementation of C.
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Fig. 1. Real and Ideal experiments

LRCC for Stateless Circuits. We now define a leakage-resilient circuit compiler
for stateless circuits.

Definition 5 ((L, ε)-leakage resilient implementation). Let C : {0, 1}k →
{0, 1}m be a deterministic stateless circuit, L be a leakage class, and ε be an error
parameter. We say that (I, ̂C,O) is a (L, ε)-leakage resilient implementation of
C if:

– I : {0, 1}k → {0, 1}̂k is a randomized input encoder which maps an input x
to an encoded input x̂.

– ̂C is a randomized circuit that maps an encoded input x̂ to an encoded output
ŷ ∈ {0, 1}m̂.

– O : {0, 1}m̂ → {0, 1}m is the deterministic output decoder that maps an
encoded output ŷ to y.

– Correctness: For every input x ∈ {0, 1}k, Pr[O( ̂C(I(x))) = f(x)] = 1 where
the probability is over the random coins of I and ̂C.

– Security: For any two inputs x0, x1 ∈ {0, 1}k, let (W0, ŷ0) � ̂C[I(x0)] and
(W1, ŷ1) � ̂C[I(x1)] where W0 (resp. W1) represents the assignment to every
wire of ̂C on input I(x0) (resp. I(x1)). For any leakage function � ∈ L, the
statistical distance between �(W0) and �(W1) is at most ε.

Definition 6 (LRCC for Stateless Circuits). Let n be the security param-
eter and let C be a class of stateless circuits taking k input bits and having m
output bits. A leakage resilient stateless circuit compiler for the class C is a tuple
of polynomial-time algorithms (Enc,Tr,Dec) where

– Enc is a randomized input encoder which maps an input x ∈ {0, 1}k and the
security parameter 1n to an encoded input x̂.

– Tr is a deterministic algorithm that maps a deterministic stateless circuit in
C ∈ C and the security parameter 1n to another stateful, randomized circuit
̂C. ̂C maps an encoded input x̂ to an encoded output ŷ.

– Dec is the deterministic output decoder that maps an encoded output ŷ to
y ∈ {0, 1}m.
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For a leakage class L(n) and the error parameter ε(n), we say that (Enc,Tr,Dec)
is a (L(n), ε(n))-leakage resilient circuit compiler for C if for every C ∈ C,
(Enc(�, 1n),Tr(C, 1n),Dec) is a (L(n), ε(n))-leakage resilient implementation
of C.

4 Improved Analysis of the ISW Construction

The leakage-resilient circuit transformer of Ishai, Sahai, and Wagner [32] is shown
in Fig. 2. Ishai et al. proved it is correct and perfectly secure against leakage
functions that depend on at most n/2 − 1 wires.

Fig. 2. The Ishai-Sahai-Wagner circuit compiler [32].

The transformer maintains the invariant that every wire w of C is represented
by a wire bundle w that XORs to the bit value w, ensuring correctness; for details
of the correctness proof see [32].

Theorem 4. Let C be any class of functions that is closed under restriction
and negation of inputs. Assume (PAR(n, 0),PAR(n, 1)) is ε-indistinguishable by
C ◦ NC0[2]. Then the ISW circuit compiler is (C, kε)-leakage resilient stateless
compiler where k is the input size of the circuit.

Let ̂C(x1, . . . ,xk) represent the transformed circuit when it is given wire
bundles x1, . . . ,xk as its inputs. The following lemma is key to the proof of
Theorem 4.



402 A. Bogdanov et al.

Lemma 1. For every circuit C of size S on k inputs, every k strings
w1, . . . ,wk ∈ {0, 1}n, and every k bits c1, . . . , ck, the wire distributions of
̂C(w1 + c1 ·x, . . . ,wk + ck ·x) in the cases x ∼ PAR(n, 0) and x ∼ PAR(n, 1) are
ε-indistinguishable by C under the assumption in Theorem4.

Proof of Theorem 4: Fix a leakage function � ∈ C. We need to show that �(W)
is statistically close to �(W′) where W and W′ are the wires of ̂C(Enc(x)) and
̂C(Enc(x′)) for any x, x′ ∈ {0, 1}k. First consider the case when x and x′ differ in
a single bit, say the i-th bit. Hardwiring all encoded inputs except for xi into ̂C
and applying Lemma1 with wj = xj , cj = 0 for j �= i, and wi = 0, ci = 1,x = xi,
it follows that ̂C(Enc(x)) and ̂C(Enc(x′)) are ε-indistinguishable by C.

For the general case, consider the hybrid wire distributions ̂C(Enc(xi)), where
x0 = x, xk = x′, and xi−1, xi differ in at most one bit. By what was just proved
̂C(Enc(xi−1)) and ̂C(Enc(xi)) are ε-indistnguishable, so by the triangle inequality
̂C(Enc(x)) and ̂C(Enc(x′)) must be kε-indistinguishable. �

The main idea in the proof of Lemma1 is the following claim, which states
that the wire distribution of any single gate in the transformed circuit can be
described locally, and moreover the output of the gate obeys the same type of
distribution as its inputs.

Claim 4. For all g ∈ {+,×} and w,w′, c, c′ there exists a simulator Sim such
that

1. The wires of Sim(w+c ·x,w′ +c′ ·x) and ĝ(w+c ·x,w′ +c′ ·x) are identically
distributed even conditioned on x.

2. The value y assigned to the output bundle by Sim(w+ c ·x,w′ + c′ ·x) equals
w′′ + c′′ · x for some w′′ and c′′ that depend on the internal randomness of
Sim only.

3. Every wire of Sim(w + c · x,w′ + c′ · x) depends on at most two bits of x.

Proof of Lemma 1: We consider the following slightly stronger formulation of
the lemma as it enables a proof by induction: Under the same assumptions, the
joint distribution

(

x,W[ ̂C(w1 + c1 · x, . . . ,wk + ck · x)]
)

in the cases x ∼ PAR(n, 0) and x ∼ PAR(n, 1) are ε-indistinguishable by circuits
that are C ◦ NC0[2] functions in the first input x and C functions in the second
input W[· · · ].

The proof is by induction on S. When S = 0, there are no internal gates so the
leakage function � observes x together with the input wires (w1+c1 ·x, . . . ,wk +
ck · x) and attempts to distinguish x ∼ PAR(n, 0) from x ∼ PAR(n, 1). As each
input wire bundle is either a constant or a shift of x, the second input can
be emulated from the first one by the closure properties of C. Therefore the
distributions PAR(n, 0) and PAR(n, 1) can be distinguished by C, and therefore
by C ◦ NC0[2], with the same advantage ε.
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Now suppose the lemma holds for all circuits of size S−1. Given a circuit C of
size S, let g be a bottom gate of C and xi, xj its (possibly identical) inputs. The
leakage function � of interest observes x, the wires of ĝ(wi+ci ·x,wj +cj ·x), and
the wires of ̂C−(w1 + c1 ·x, . . . ,wk + ck ·x,y), where C− is the circuit obtained
by removing gate g from C and replacing its output by y.

By part 1 of Claim 4, the wires of ĝ(wi + ci ·x,wj + cj ·x) can be replaced by
those of Sim(wi+ci ·x,wj+cj ·x) without affecting the distinguisher’s advantage.
By part 3 they are 2-local functions of x. Therefore they are a C◦NC0[2] function
of x, so can be omitted from the input to �. The Lemma now follows from part
2 of Claim 4 and the inductive hypothesis applied to the circuit C−. �
Proof of Claim 4: If g is an addition gate, set Sim = ̂+: The output is the sum
of its two inputs confirming part 2, and there are no wires other than the output
wires, from where part 3 follows.

Let a = w+ cx and b = w′ + c′x. If g is a multiplication gate, the simulator
Sim(a,b) works like ̂×, but uses the following alternative implementation of the
matrix Z:

Zij =

⎧

⎪

⎨

⎪

⎩

a random bit + aiw
′
j + biwj , if i < j

aibj , if i = j

Zji + aibj + ajbi, if i > j

This alternative implementation of Z does not affect the distribution of the
entries of Z and therefore of the wires of the transformed circuit. We now argue
properties 2 and 3 of Claim 4.

When i = j and i < j, Zij only depends on the i-th bit of a and b, which
are independent of all but possibly the i-th bit of x. When i > j, Zij = Zji +
aibj + ajbi and this equals randomness plus the bit

(ajw
′
i + bjwi) + (aibj + ajbi).

The first bracketed term equals cxjw
′
i + c′xjwi plus a term that only depends

on w. The second one equals

(wi + cxi)(w′
j + c′xj) + (w′

i + c′xi)(wj + cxj)
= (cxiw

′
j + c′xiwj) + (cxjw

′
i + c′xjwi) + (wiw

′
j + wjwi).

Therefore the sum of the two equals cxiw
′
j+c′xiwj plus a term that only depends

on w. It follows that for any i, j, Zij can only depend on the i-th bit of x and
the wires in the computation of Zi,j for i > j is a 2-local function of x. We thus
conclude that the wires in the computation of Z ·1 is a 1-local function in x and
the output is of the form w′′ + c′′ · x. �

Corollary 1 follows directly from Theorem 4, Claim 1 and Corollary 3.

5 LRCC for Stateful Circuits

In this section, we give a construction of leakage resilient circuit compiler and
prove its security against leakage classes that have low correlation with parity.
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The class C ◦NC0[c] consists of all composed functions f ◦ g where f ∈ C and
every output of g depends on at most c inputs.

Theorem 5. Let c be a universal constant and C be any class of functions
that is closed under restriction. If (PAR(n, 0),PAR(n, 1)) is ε-indistinguishable
by 2-adaptive functions in C ◦ NC0[c], then the construction in Fig. 3 is a
(C, T,O(εT (S + n)))-leakage resilient stateful circuit compiler for the class of
stateful circuits of size S and T is the number of rounds.

Organization. In Sect. 5.1, we will describe a building block that generates a
random encoding of 0 and prove some useful properties. In Sect. 5.2, we give the
description of the transformer (Tr,St). In Sects. 5.3–5.5, we prove the security of
the construction.

5.1 The Zero-Encoder

In this subsection, we describe and analyze a circuit RandZero that produces
random encodings of the bit zero.

Construction 6. RandZero: On input matrix G ∈ {0, 1}n×n and vector r ∈
{0, 1}n, calculate

Zij =

⎧

⎪

⎨

⎪

⎩

a random bit, if i < j,

Giiri, if i = j,

Zji + Gijrj + Gjiri, if i > j,

and output the matrix-vector product Z · 1 computed from left to right.

We denote by W[RandZero(G, r; z)] the wire assignment of the circuit on
input G, r and internal randomness z. The dependence on internal randomness
is hidden when irrelevant.

For an n-by-m matrix R with columns r1, . . . , rm, we write RandZero(G,R)
for the multi-output circuit (RandZero(G, r1; z1), . . . ,RandZero(G, rm; zm)),
where zi is chosen uniformly and independently.

Basic Properties. The following facts can be inferred directly from the construc-
tion.

Fact 7 (Output distribution). For every G and r, c = RandZero(G, r) is
uniformly random conditioned on 1T · c = 1T · G · r.

In particular, when the columns of G have parity zero then RandZero(G, r)
is a random string of parity zero. On the other hand, when the columns of G
have parity one and r is random, then the RandZero(G, r) is a uniformly random
string.
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Proof. The equation is satisfied as both the left and right-hand sides are equal
to the sum of the entries of Z. On the other hand c is (n − 1)-wise independent
as any n − 1 of its outputs depend on distinct random bits.

Fact 8 (Linearity). W[RandZero(G, r1 + r2)] is identically distributed to W
[RandZero(G, r1; z1)] +W[RandZero(G, r2; z2)] provided at least one of z1, z2 is
uniformly random.

Proof. W[RandZero(G, r; z)] is a linear function of r and z, so even when say z1
is fixed, z = z1 + z2 is uniform.

Simulation. The following claims provide simulations of the RandZero that are
in a suitable sense “indepenent” of its respective inputs G and r.

Claim 5. There exists a simulator circuit Simr such that

1. For every G and r, W[Simr(G, r)] and W[RandZero(G, r)] are identically dis-
tributed.2

2. The output of Simr(G, r; z) equals Diagonal(r1, . . . , rn)GT1 plus some func-
tion that depends only on z.

3. For fixed G and z, W[Simr(G, r; z)] is an NC0 function of r.

Claim 6. There exists a simulator Simv such that

1. For every G, r, and v ∈ {0, 1}n, W[Simv(G,v, r)] and W[RandZero(G + v ·
1T , r)] are identically distributed.

2. Simv(G,v, r) equals vrT1 plus some function that does not depend on v.
3. For fixed G, r, z, W[Simr(G,v, r; z)] is an NC0 function of v.

We defer the proofs of these claims to the full version.

5.2 Construction

We give the description of our leakage resilient circuit compiler (Tr,St) in Fig. 3.

Correctness. The invariant maintained by the implementation is that the value
of each wire w of C equals the parity of the wire bundle w in ̂C representing
it. By construction this is true for the input wires and the state wires. In all
applications of RandZero, the parity of the output of RandZero equals zero by
Fact 7. It follows that the output of addition has parity 1Ta+1Tb =

∑

(ai+bi),
the output of multiplication has parity 1TaTb1 = (

∑

ai)(
∑

bi), and the state
wire updates, including those to G, preserve parity. Finally, the output gates
equal the parity of the corresponding wires, establishing correctness.

2 The simulator circuit Simr is the composition of RandZero and a preprocessing circuit.
The irrelevant wires from preprocessing are discounted when comparing the two
distributions.
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Fig. 3. LRCC (Tr, St) for stateful circuits.

Security. We now prove the security part of Theorem5. We will show that
for every (possibly unbounded) stateful adversary A, there exists a (stateful)
simulator S such that for every initial state, the adversary’s view in the real and
ideal experiment described in Fig. 1 are statistically close.

In Sect. 5.3, we give the description of our simulator. The security proof
consists of two steps, following the structure in the works of Faust et al. [23]
and Rothblum [43] (a pictorial representation of the structure of the proof is
given in Fig. 4). First, in Sect. 5.4, we describe a local internal reconstruction
procedure that represents the adversary’s view as a local (NC0) function of an
external wire distribution. This distribution contains explicit descriptions for all
the wires in all evaluation rounds of ̂C, as well as some additional information
for the multiplication gates and state updates.

Then in Sect. 5.5, we gradually modify the components of the external wire
distribution until the wire values in ̂C observed by the adversary become inde-
pendent of the wires of C and so the adversary’s view can be simulated, unless
various circuits obtained by restricting inputs in the composition of the leakage
and the internal reconstruction procedure can compute parity.
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Fig. 4. Components of the security proof. When the external sampler is given the input
data for Hybrid0, the adversary’s view is identical to the output of the transformed cir-
cuit as in the real world. In Hybrid3, the adversary’s view is identical to the output of the
simulator as in the ideal world. Indistinguishability of consecutive hybrids is argued by
analyzing the view of the the leakage function composed with Internal Reconstruction.

5.3 Description of the Simulator

We give the description of the simulator S in Fig. 5.

5.4 External Data Sampler

The external data associated to a circuit wire (of C in a given round) consists
of the wires of a copy of the circuit RandZero. The external data associated to
a gate consists of the external data of all its incident wires, plus some auxiliary
data specific to the gate. We give the description of the external data sampler
in Fig. 6.

The external wire distribution denotes the induced distribution on the output
of the external data sampler when it run by sampling G1 (which is the generator
matrix of the first round) and for every round, sampling {ri},R from some
distribution.

Internal Reconstruction Procedures. We now prove the following lemmas.

Lemma 2 (Addition Reconstruction Procedure). Fix a round and let
G be the generator matrix for this round. There exists an NC0 circuit IR+

that, given inputs a, b ∈ {0, 1} and the external gate data Wa = W[RandZero
(G, ra; za)], Wb = W[RandZero(G, rb; zb)], Wc = W[RandZero(G, rc; zc)] out-
puts an assignment to the wires of a transformed addition gate ̂+ such that if
rc and zc are uniformly random, the output of IR+ is identically distributed to
the wires of ̂+((ae1 + oa), (be1 + ob)), where oa, ob are the outputs of Wa, Wb,
respectively.
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Fig. 5. The simulator S.

Fig. 6. External data sampler

Proof. The circuit IR+ outputs the values (ae1+oa) and (be1+ob) for the input
wires a and b and Wa + Wb + Wc for the wires of the RandZero(G, r) circuit
used in the implementation of ̂+, and obtains the output by adding the values
assigned to the top gate of ̂+.

By Fact 8, Wa +Wb +Wc is identically distributed to W[RandZero(G, r)] for
a random r, from where the identical distribution of the wires follows.

Note that updating the state can be expressed as special case of the addition
circuit (i.e., setting one of the input vectors as 0). Hence, we get the following
corollary.

Corollary 4 (State Update Reconstruction Procedure). Fix a round
and let G be the generator matrix for this round. There exists an NC0 cir-
cuit IRst that, given inputs a ∈ {0, 1} and the external gate data Wa =
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W[RandZero(G, ra; za)], Wc = W[RandZero(G, rc; zc)], outputs an assignment
to all the wires in the transformed state update gate ̂st such that if rc and zc
are uniformly random, the output of IRst is identically distributed to the wires
of ̂st(ae1 + oa), where oa is the output in Wa.

Lemma 3 (Output Reconstruction Procedure). Fix a round and let G
be the generator matrix for this round. There exists an NC0 circuit IRout that,
given inputs a ∈ {0, 1} and the external gate data Wa = W[RandZero(G, ra; za)],
Wc = W[RandZero(G, rc; zc)], outputs an assignment to all the wires except those
in the final decoding step of a transformed output gate ̂out such that:

1. If 1T · G = 0T and rc and zc are uniformly random, the output of IRout is
identically distributed to these wires in ̂out(ae1 + oa), where oa is the output
in Wa.

2. If 1T ·G = 1T and rc ∼ PAR(n, 0), zc is chosen uniformly random, the output
of IRout is identically distributed to these wires in the simulated distribution.

Proof. Consider the NC0 circuit from Lemma 2 where we set b = 0 and ob, rb and
Wb to be all zeroes string. The first part of the corollary is a direct consequence
of Lemma 2. To see the second part, note that the NC0 circuit from Lemma 2
implicitly sets the randomness used in the gadget as r = ra + rc. Thus, parity
of r is equal to the parity of G · (ra + rc) (since column parity of G is 1). This
is equal to parity of oa + oc (follows from Fact 7) which is in turn equal to the
parity of (ae1 + oa) + (ae1 + oc). Since rc is chosen uniformly subject to its
parity being 0, r is distributed uniformly subject to its parity being equal to the
parity of (ae1 + oa) + (ae1 + oc). This is precisely the simulated distribution.

Lemma 4 (Multiplication Reconstruction Procedure). Fix a round and
let G be the generator matrix for this round. There exists an NC0 circuit IR×
that, given inputs a, b ∈ {0, 1} and the external gate data Wa = W[RandZero
(G, ra; za)], Wb = W[RandZero(G, rb; zb)], Wc = W[RandZero(G, rc; zc)], WF =
W[RandZero(G,F; zF )] outputs an assignment to the wires of a transformed mul-
tiplication gate ̂× such that if rc, zc,F, zF are uniformly random, the output of
IR× is identically distributed to the wires of ̂×((ae1 +oa), (be1 +ob)), where oa,
ob are the outputs of Wa, Wb, respectively.

We give the proof of this lemma in the full version.

Lemma 5 (Composition). There exists a circuit IR such that for every
round, given the tableau of C and the external data for that round, outputs
an assignment to all the wires of the transformed circuit except for those wires
involved in the final output decoding such that:

1. (Locality) IR is in NC0, and moreover every gate in the output of IR only
depends the tableau of the gate and on external data for its incident wires and
the gate.

2. (Real world distribution) If G for the first round is sampled randomly such
that 1T ·G = 0T and for every round, if the external data is generated by giving
the sampler {ri},R that are chosen uniformly at random, the concatenated
outputs of IR in every round is identical to the real distribution of these wires.
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3. (Ideal world distribution) If G for the first round is sampled randomly such
that 1T · G = 1T and for every round, if the external data is generated by
giving the sampler ri

$← {0, 1}n for every wire i that is not an output wire

and for every output wire i, ri ∼ PAR(n, 0) and R $← {0, 1}n×n subject to
1TR = 1T then the concatenated outputs of IR for every round is identical
to the simulated distribution of these wires.

We give the proof of this lemma in the full version.

5.5 Proof of Indistinguishability

In this subsection, we complete the proof of security. For this purpose we describe
describe four hybrid distributions Hybrid0,Hybrid1,Hybrid2,Hybrid3 observed by
the leakage. We argue that Hybrid0 and Hybrid3 are identically distributed to the
wires of the transformed circuit and the simulator’s output, respectively, and
that all pairs of consecutive distributions are computationally indistinguishable
by the leakage.

The four distributions are sampled by instantiating the external data sampler
with different inputs, and then applying the internal reconstruction in Lemma5
to the output. The inputs used to instantiate the external data sampler are:

Hybrid0: Initial G is random conditioned on having zero column-parity (1TG =
0T ). all wire update seeds rwt and all state update seeds Rt are uniformly
random.

Hybrid1: G is sampled as in Hybrid0. All wire update seeds rwt and all state
update seeds Rt are random conditioned on having column-parity 0 (1T rwt =
0,1TRt = 0T ).

Hybrid2: rwt are sampled as in Hybrid1. G and Rt are random conditioned on
having column-parity 1 (1TG = 1T ,1TRt = 1T ).

Hybrid3: G and Rt are sampled as in Hybrid2. rwt are uniformly random except
for the output wires, which remain unchanged.

We note that the assignment to the final output decoding wires is a deter-
ministic function of the external data. Thus, it follows from part 2 of Lemma5,
the view of the leakage function in Hybrid0 is identical to the real distribution of
the transformed circuit’s wires, and by part 3, its view in Hybrid3 is identical to
the output of the simulator. To finish the proof, we establish the following three
claims.

Claim 7. Under the assumptions of Theorem 5, the adversary’s outputs on
Hybrid0 and Hybrid1 are O(εT (S + n))-statistically close.

Proof. We fix G = G1 and modify the distribution of the relevant seeds rwt

and the columns of Rt one by one, in increasing order of the round t. As the
effect of both types of seeds is the same, without loss of generality, we analyze
the effect of changing a seed of type rwt from being uniformly random to having
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parity zero, assuming all the other seeds are fixed to maximize the adversary’s
distinguishing advantage.

We can simulate the first (t − 1) rounds of the leakage experiment using the
fixed seeds. In the t-th round, we can generate all the external data for this round
non-uniformly except W[RandZero(Gt, rwt)]. As all random seeds from the pre-
vious rounds have been fixed, by Fact 7 Gt is a fixed matrix with column-parity
zero. By part 1 of Claim 5, this external data item can therefore be replaced
by W[Simr(Gt, rwt)] without affecting the adversary’s advantage. By part 3 of
Claim 5, we infer that W[Simr(Gt, rwt)] is NC0 computable from rwt and there-
fore, we can generate all the external data for the t-th round by an NC0 circuit.
Now, running the internal reconstruction procedure IR (which is again an NC0

circuit) on this external data outputs an assignment to every wire of ̂C in the
t-th round except those in the final output decoding step. Since GT

t 1 = 0, by
part 2 of Claim 5, the output of Simr(Gt, rwt) is statistically independent of
rwt. Therefore, the wires of all the gates in the computation (including the final
output decoding in case that w is an output wire) that are evaluated after w
are independent of rwt and can be fixed to maximize the adversary’s advantage.
Thus, we can generate the wire assignment to every wire of ̂C in the t-th round
using an NC0 circuit. The subsequent rounds of the leakage experiment can be
simulated from the fixed seeds since even if w is an updated state wire, the out-
put of Simr(Gt, rwt) is statistically independent of rwt and hence the bundles
which feed into the subsequent rounds are independent of rwt and depend only
on the fixed seeds.

By the above argument, we deduced that (i) the first (t − 1) rounds of the
leakage experiment can be simulated independent of rwt, (ii) the wire assignment
in t-th round are NC0 computable from rwt, and (iii) the subsequent rounds of the
experiment are independent of rwt. Therefore the adversary’s advantage cannot
exceed the ability of C ◦ NC0 in distinguishing a uniform random string from a
parity-zero string. This is at most twice the advantage in distinguishing random
parity-zero and parity-one strings, which is assumed to be ε.

By the triangle inequality, the adversary’s advantage accumulated by all
O(T (S + n)) changes is at most O(εT (S + n)).

Claim 8. Under the assumptions of Theorem 5, the adversary’s outputs on
Hybrid1 and Hybrid2 are O(εT )-statistically close.

Proof. We modify the distribution on the matrices G = G1,R1, . . . ,Rn one by
one such that they are random subject to their column parity being 1.

The change in the distribution of G can be implemented by setting G =
G′ + v · 1T , where G′ is a random column-parity zero matrix and v changes
from a random parity-0 to a random parity-1 vector.

To analyze the effect of this change, we apply part 1 Claim 6
and replace all items of type W[RandZero(G, rw1)], W[RandZero(G,F)],
and W[RandZero(G,R1)] in the external data for the first round by
W[Simv(G′,v, rw1)], W[Simv(G′,v,F)], and W[Simv(G′,v,R1)] without affect-
ing the adversary’s advantage. This defines the external data for the first round
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and by part 3 of Claim 6, we can generate this by an NC0 circuit. Now, apply-
ing the internal reconstructing procedure, IR (which is again an NC0 circuit)
from Lemma 5 on this external data allows us to generate all the wires in the
computation of ̂C in the first round, except the assignment to the final output
decoding wires. By part 2 of Claim 6, the output of Simv(G′,v, r) is independent
of v provided r has parity zero, which is true in all instantiations. Therefore all
the wires in the final output decoding step of the first round are independent of
v and can be non-uniformly computed. Thus, we have generated the assignment
to every wire of ̂C in the first round by an NC0 circuit. The subsequent rounds
are independent of v as a direct consequence of part 2 of Claim 6. Thus, the
assumption that random strings of parity zero and one are indistinguishable by
C ◦NC0, we obtain that the adversary’s outputs when G is modified are ε-close.

We now analyze the change in advantage when Rt−1 is modified from having
column-parity zero to one. We represent Rt−1 as R′ + v · 1T , where R′ s a
random column-parity zero matrix and v changes from a random parity-0 to a
random parity-1 vector. We fix all the random seeds given as input the external
data sampler except for v such that adversary’s distinguishing advantage is
maximized conditioned on this fixing. This allows us to simulate the first (t− 2)
rounds of the leakage experiment.

Recall that Gt = RandZero(Gt−1,Rt−1). By part 1 of Claim 5, we may
replace W[RandZero(Gt−1, Rt−1)] in external data of the (t − 1)-th round with
W[Simr(Gt−1,Rt−1)] without affecting the adversary’s advantage. This defines
the external data for the (t − 1)-th round as well as the assignment to the
final output decoding wires which are independent of v and hence can be non-
uniformly fixed. As a consequence of part 3 of Claim5 and part 1 of Lemma 5,
we deduce that the assignment to all the wires of ̂C in the (t − 1)-th round can
be generated by an NC0 circuit. Since the column parity of Gt−1 is 1, by part 2
of Claim 5 Gt = RandZero(Gt−1,Rt−1) can be expressed as G′ + v · 1T where
G′ is independent of v. We may now use Claim 6 and Lemma 5 in an analogous
manner to the first part of the proof to deduce that the assignment to all the
wires of ̂C in the t-th round can be generated by an NC0 circuit. Again, it follows
from the part 2 of Claim 6, the subsequent rounds of the leakage experiment can
be simulated independent of v.

We thus, conclude that the advantage of the adversary cannot exceed that
of a 2-adaptive circuit in the class C ◦ NC0 in distinguishing random strings v
of parity zero and one. By assumption, this advantage is at most ε.

By the triangle inequality, the adversary’s advantage accumulated by all T
changes is at most εT .

Claim 9. Under the assumptions of Theorem 5, the adversary’s outputs on
Hybrid2 and Hybrid3 are O(εTS)-statistically close.

We give the proof of this Claim in the full version.

From the above claims, we deduce that the real distribution is O((S + n) ·
τ · ε)-close to the simulated distribution. This completes the proof of Theorem5.
Corollary 2 follows directly from Theorem 5, Claim 1 and Corollary 3.
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Abstract. We propose the concept of quasi-adaptive hash proof system
(QAHPS), where the projection key is allowed to depend on the specific
language for which hash values are computed. We formalize leakage-
resilient(LR)-ardency for QAHPS by defining two statistical properties,
including LR-〈L0,L1〉-universal and LR-〈L0,L1〉-key-switching.

We provide a generic approach to tightly leakage-resilient CCA (LR-
CCA) secure public-key encryption (PKE) from LR-ardent QAHPS. Our
approach is reminiscent of the seminal work of Cramer and Shoup (Euro-
crypt’02), and employ three QAHPS schemes, one for generating a uni-
form string to hide the plaintext, and the other two for proving the
well-formedness of the ciphertext. The LR-ardency of QAHPS makes
possible the tight LR-CCA security. We give instantiations based on the
standard k-Linear (k-LIN) assumptions over asymmetric and symmetric
pairing groups, respectively, and obtain fully compact PKE with tight
LR-CCA security. The security loss is O(log Qe) where Qe denotes the
number of encryption queries. Specifically, our tightly LR-CCA secure
PKE instantiation from SXDH has only 4 group elements in the public
key and 7 group elements in the ciphertext, thus is the most efficient
one.

1 Introduction

Tightly Secure Public-Key Encryption. Usually, the security proof of a
public-key encryption (PKE) scheme is accomplished through a security reduc-
tion. In a security reduction, any probabilistic polynomial-time (PPT) adver-
sary A successfully attacking the PKE scheme with advantage εA is converted
to another PPT algorithm B that solves a specific problem with advantage εB,
such that εA ≤ � · εB. Here � is called the security loss factor. If � is a polynomial
in the number of encryption queries Qe and/or the number of decryption queries
Qd, the security reduction is called a loose one. To achieve a target security level,
one has to augment the security parameter λ to compensate for the security loss
�. If Qe (Qd) is large, say 230, a loose reduction will pay the price of inefficiency,
c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11693, pp. 417–447, 2019.
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since the compensation will slow the algorithms of PKE and enlarge the sizes of
public/secret key and ciphertexts. Therefore, it is desirable that � is a constant
or only linear in the security parameter λ. Such a security reduction is called a
tight one or an almost tight one.

Starting from the work of Bellare et al. [8], brilliant works have been done
in the construction of tightly (multi-challenge) IND-CCA secure PKE. Hofheinz
and Jager [25] designed the first tightly IND-CCA secure PKE from a standard
assumption. More efficient constructions follow in [7,9,17,18,20,23,24,30,31].

Leakage-Resilient Security. The traditional security requirements for PKE
are indistinguishability under chosen-plaintext attacks (IND-CPA) and chosen-
ciphertext attacks (IND-CCA), which implicitly assume that the secret key of
PKE is completely hidden from adversaries. In practice, however, various kinds
of side-channel attacks on the physical implementation of the PKE algorithms
[21] demonstrated that partial information about the secret key might be leaked
to the attackers, thus threaten the security of PKE. To deal with key leakage,
Akavia et al. [5] and Naor and Segev [32] formalized the leakage-resilient (LR)
security model and defined LR-CPA/CCA securities, which stipulate the PKE
remain IND-CPA/CCA secure even if an adversary has access to a leakage oracle
and obtains additional information about the secret key. In this work, we focus
on the bounded leakage-resilient model [5], where the total amount of key leakage
is bounded.

Generally, there are two approaches for designing PKE with LR-CCA secu-
rity. The first is an adaption of the Naor-Yung double encryption paradigm
[33] to the LR setting. Through this approach, an LR-CPA secure PKE can be
upgraded to an LR-CCA secure one, with the help of a simulation-sound non-
interactive zero-knowledge proof system (SS-NIZK) [28,32] or a true-simulation
extractable NIZK (tSE-NIZK) [11]. However, the resulting PKE may not be effi-
cient due to the usage of SS-NIZK/tSE-NIZK. The second approach utilizes the
more efficient Cramer-Shoup hash proof system (HPS) paradigm [10] based on
the fact that HPS is intrinsically leakage-resilient [32]. Through this approach,
many efficient LR-CCA secure PKE schemes were designed [15,16,34].

Efficient PKE with Tight LR-CCA Security. Although great progress
was made on tight IND-CCA security, only Abe et al. [2] ever considered LR-
CCA secure PKE with a tight security reduction. They followed the Naor-
Yung paradigm and employed a tightly secure tSE-NIZK. Due to the tightness-
preserving of the Naor-Yung paradigm, the resulting PKE is tightly LR-CCA
secure. However, their PKE is highly impractical. The ciphertext of their PKE
contains more than 800 group elements. Even plugging in the recent efficient
and tightly secure SS-NIZKs/tSE-NIZKs [17,19]1, the resulting LR-CCA secure
1 Gay et al. [19] constructed the state-of-the-art tightly secure (structure-preserving)

signature schemes, where the signature is comprised of 14 group elements. By apply-
ing the framework in [2,25], this signature scheme can be transformed to a tightly
secure SS-NIZK/tSE-NIZK whose proof contains around 40 group elements.
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PKE still contains over 100 group elements in the public key or around 40 group
elements in the ciphertext, thus is far from practical. A most recent work by
Abe et al. [3] presented a construction of quasi-adaptive NIZK (QA-NIZK) with
tight unbounded simulation-soundness (USS) based on the MDDH assumptions
and tried to use it to obtain a tightly CCA-secure PKE via the paradigm of
CPA-PKE + USS-QA-NIZK. It is also possible to achieve tight LR-CCA secu-
rity if the underlying PKE building block is LR-CPA secure. Unfortunately, their
USS-QA-NIZK suffers from an attack, as shown in their full-version paper [4]
(in which the QA-NIZK was updated to a new one but its USS security remains
to be justified).

For the sake of efficiency, one might like to try the second approach to LR-
CCA security. However, the Cramer-Shoup HPS paradigm [10,32] does not work
well in the face of multi-challenge ciphertexts (cf. Subsect. 1.1 for a detailed
explanation). To pursue tight security reduction, great effort has been devoted
to new designs of PKE from variants of HPS [17,18]. Gay et al. [17] used com-
binations of multiple HPSs to construct PKE and proved its tight IND-CCA
security (not LR-CCA), but at the price of more than 100 group elements in the
public key. Gay et al. [18] evolved HPS to a so-called “qualified proof system”
(QPS) to obtain tightly IND-CCA secure PKE with full compactness (compact
ciphertext and compact public key). However, their PKE is unlikely to be LR-
CCA secure.2 Up to now, there is no available approach to efficient PKE with
tight LR-CCA security.

Our Contribution. In this paper, we propose a novel approach to the design
of tightly LR-CCA secure PKE. More precisely,

– We propose the concept of quasi-adaptive HPS (QAHPS), and formalize
LR-ardency for QAHPS by defining two statistical properties, including LR-
〈L0,L1〉-universal and LR-〈L0,L1〉-key-switching. Our LR-ardent QAHPS
generalizes the well-known universal1, universal2 [10] and extracting [12]
HPSs.

– We provide a generic approach to tightly LR-CCA secure PKE from LR-
ardent QAHPS, inheriting the spirit of the Cramer-Shoup HPS paradigm to
LR-CCA security [10,32], but in the multi-challenge setting. Ignoring leakage
resilience, our construction provides a new approach to tightly IND-CCA
secure PKE with full compactness, which may be of independent interest.

– We give efficient instantiations based on the matrix DDH (MDDH) assump-
tions [14] (which include the standard k-linear (k-LIN) and SXDH assump-
tions) over asymmetric and symmetric pairing groups, respectively. This
results in the most efficient PKE schemes with tight LR-CCA security.

2 The properties of “constrained soundness” and “extensibility” of QPS are needed for
the tight IND-CCA security proof of the PKE proposed by Gay et al. [18]. We note
that these two properties of their QPS are unlikely to hold when partial information
about the secret key of QPS is leaked to adversary. See our full version [22] for more
details. Thus it is reasonable to conjecture that their PKE is not LR-CCA secure.



420 S. Han et al.

Table 1. Comparison among tightly (LR-)CCA secure PKE schemes. Here λ denotes
the security parameter and Qe = poly(λ) the number of challenge ciphertexts. |PK|
and |C| − |M | show the size of public key and ciphertext overhead, where size means
the number of group elements in the underlying groups. “k-LIN” is short for the k-
Linear assumption. For pairing-free groups, 1-LIN = DDH; for asymmetric pairing
groups, 1-LIN = SXDH, which requires the DDH assumption hold in both G1 and G2.
“sym” stands for symmetric pairing groups and “asym” asymmetric pairing groups.
“LR?” asks whether the security is proved in the leakage-resilient setting. The analysis
of PKElr

sym is given in our full version [22]. We note that the security loss O(log Qe)=
O(log λ) is lower than O(λ).

Scheme |PK| |C| − |M | Sec. loss Assumption Pairing LR?

LPJY15 [30, 31] O(λ) 47 O(λ) 2-LIN yes (sym) —
AHY15 [7] O(λ) 12 O(λ) 2-LIN yes (sym) —

GCDCT16 [20] O(λ) 6k O(λ) k-LIN (k ≥ 1) yes (asym) —
GHKW16 [17] O(λ) 3k O(λ) k-LIN (k ≥ 1) no —
Hof16 [23] 2 60 O(λ) 1-LIN = SXDH yes (asym) —
Hof17 [24] 28 (resp. 2k2 + 10k) 6 (resp. k + 4) O(λ) 2-LIN (resp. k-LIN) yes (sym) —
Hof17 [24] 20 28 O(λ) DCR — —
GHK17 [18] 6 3 O(λ) 1-LIN = DDH no —
GHK17 [18] 20 (resp. k3 + k2 + 4k) 8 (resp. k2 + 2k) O(λ) 2-LIN (resp. k-LIN) no —

ADKNO13 [2] ≥ 40 861 O(1) 2-LIN yes (sym)
√

Ours: PKElr
asym 4 (resp. k2 + 3k) 7 (resp. 4k + 3) O(logQe)= O(log λ) 1-LIN = SXDH (resp. k-LIN) yes (asym)

√

Ours: PKElr
syma 10 (resp. k2 + 3k) 6 (resp. 2k + 2) O(logQe)= O(log λ) 2-LIN (resp. k-LIN) yes (sym)

√

Specifically, our tightly LR-CCA secure PKE instantiation from SXDH over
asymmetric pairing groups has only 4 group elements in the public key and
7 group elements in the ciphertext, hence a couple of hundred times smaller
than that of [2] (which has to be over symmetric pairing groups)3. The security
loss of LR-CCA security is O(log Qe) = O(log λ), where Qe= poly(λ) denotes
the number of encryption queries and λ the security parameter.

In Table 1, we compare our tightly (LR-)CCA secure PKE with existing ones.

1.1 Technical Overview

We firstly recall the Cramer-Shoup paradigm for constructing (LR-)CCA secure
PKE [10,32], explain the difficulty of extending it to the multi-challenge setting,
then detail our new approach for designing tightly LR-CCA secure PKE.

The Cramer-Shoup Paradigm: (LR-)CCA Secure PKE from HPS.
Hash Proof System (HPS) was originated in [10] and can be instantiated from
a collection of assumptions. The power of HPS was firstly shown by Cramer
and Shoup [10], who proposed a paradigm for constructing IND-CCA secure
PKE from a smooth-HPS and a universal2 tag-based (labeled) HPS. Naor and
Segev [32] showed that HPS is a natural candidate for LR-CCA secure PKE, and

3 To the best of our knowledge, the PKE scheme in [2] is the only tightly LR-CCA
secure one prior to our work.



Tight LR-CCA Security from Quasi-Adaptive HPS 421

proved a variant of the Cramer-Shoup PKE scheme to be LR-CCA secure. Over
the years, HPS and its variants have demonstrated their charm with a variety
of applications in public-key cryptosystem [6,15,29,34,36], to name a few.

Roughly speaking, an HPS is associated with an NP-language L ⊆ X and has
two evaluation modes. In the private evaluation mode, the hash value Λsk(x) of
an arbitrary x ∈ X can be efficiently computed from the hashing key sk and x,
i.e., Priv(sk, x) = Λsk(x); in the public evaluation mode, the hash value Λsk(x)
of an instance x ∈ L is completely determined by the projection key pk = α(sk),
and can be efficiently computed from pk with the help of any witness w for
x ∈ L, i.e., Pub(pk, x, w) = Λsk(x). The notion of HPS can be generalized to
tag-based HPS, where a tag τ serves as an auxiliary input for Λsk, Pub and Priv.

A typical construction of CCA-secure PKE from a smooth HPS = (Λ(·), α,

Pub,Priv) and a universal2 tag-based ˜HPS = ( ˜Λ(·), α̃, ˜Pub, ˜Priv) works as follows
[10]. The public key contains pk = α(sk) and ˜pk = α̃(˜sk). The ciphertext is

C =
(

x, d = Pub(pk, x, w) + M, π = ˜Pub(˜pk, x, w, τ)
)

,

where M is a plaintext, x ←$ L with witness w and τ = H(x, d) with H a collision-
resistant hash function. The CCA-security with a single challenge ciphertext
C∗ = (x∗, d∗, π∗) is justified by the following arguments.

(1) By the hardness of the subset membership problem (SMP) related to HPS

and ˜HPS, we can replace x∗ ← $ L in the challenge ciphertext with x∗ ←
$ X \ L, and compute C∗ =

(

x∗, d∗ = Λsk(x∗) + M, π∗ = ˜Λ
˜sk

(x∗, τ∗)
)

.
(2) By the (perfectly) universal2 property of tag-based ˜HPS, any ill-formed

ciphertext C =
(

x ∈ X \ L, d, π′ ) results in a uniformly distributed
π = ˜Λ

˜sk
(x, τ), even conditioned on ˜pk = α̃(˜sk) and π∗ = ˜Λ

˜sk
(x∗, τ∗). Thus

any decryption query on ill-formed ciphertexts will be rejected (due to the
fact that π′ = π holds with a negligible probability).

(3) Now the information that the decryption oracle leaks about sk is limited to
pk = α(sk). By the smoothness of HPS, Λsk(x∗) involved in the challenge
ciphertext is uniformly random conditioned on pk = α(sk), thus it perfectly
hides M and the IND-CCA security follows.

LR-CCA security is also easy to achieve since the universal2 property of ˜HPS
is intrinsically leakage-resilient, and the smoothness of HPS guarantees that
Λsk(x∗) still has enough entropy in case of key leakage, then an extractor can
be applied to Λsk(x∗) to distill a uniform string to hide M .

Note that the above arguments only apply to the single-challenge setting. In
the more realistic setting of multiple challenge ciphertexts, the universal2 prop-
erty of ˜HPS and the smoothness of HPS are too weak to support arguments (2)
and (3). More precisely, argument (2) fails since multiple {π∗ = ˜Λ

˜sk
(x∗, τ∗)}

involved in the challenge ciphertexts might leak too much information about ˜sk,
and argument (3) fails since the limited entropy contained in sk is not enough
to randomize multiple {Λsk(x∗)} involved in the challenge ciphertexts. Con-
sequently, one has to resort to a hybrid argument to prove (multi-challenge)
(LR-)CCA security, which inevitably introduces a security loss of factor Qe [8].
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Quasi-Adaptive HPS. We provide a novel approach to tightly (LR)-CCA
secure PKE in the multi-challenge setting. The core building block in our app-
roach is a new technical tool named quasi-adaptive HPS (QAHPS), which gener-
alizes HPS in a quasi-adaptive setting [26]. Different from (traditional) HPS [10],
QAHPS is associated with a collection L = {Lρ}ρ of NP-languages, and the pro-
jection key pkρ is allowed to depend on the language Lρ. In particular, QAHPS
possesses a family of projection functions α(·) indexed by a language parameter
ρ, so that the action of Λsk(·) on Lρ is completely determined by pkρ = αρ(sk).
Intuitively, this allows us to distribute different projection keys for computing
hash values of instances from different languages. Tag-based QAHPS can be
similarly defined by allowing Λsk, Pub and Priv to take a tag τ as an auxiliary
input.

Our Approach: Tightly LR-CCA Secure PKE from QAHPS. We
need three QAHPS schemes for our PKE construction, QAHPS = (Λ(·), α(·),

Pub,Priv), Q̂AHPS = ( ̂Λ(·), α̂(·), ̂Pub, ̂Priv) and a tag-based Q̃AHPS = ( ˜Λ(·), α̃(·),
˜Pub, ˜Priv). The public key is comprised of pkρ = αρ(sk), ̂pkρ = α̂ρ(̂sk) and
˜pkρ = α̃ρ(˜sk). The ciphertext is

C =
(

x, d = Pub(pkρ, x, w) + M, π = ̂Pub(̂pkρ, x, w) + ˜Pub(˜pkρ, x, w, τ)
)

=
(

x, d = Λsk(x) + M, π = π̂ + π̃ = ̂Λ
̂sk

(x) + ˜Λ
˜sk

(x, τ)
)

,

where M is a plaintext, x ← $ Lρ with witness w and τ = H(x, d) with H a
collision-resistant hash function.

For a simple exposition, we first briefly explain why our approach works in
the multi-challenge setting and provide a high-level proof of its tight IND-CCA
security. Then we show how to extend our approach to the leakage-resilient
setting.

Intuition of Tight CCA-Security Proof. Similar to the single-challenge
(LR-)CCA security proof of the PKE from HPS, our proof goes with three steps.

(1) Replace all {x∗ ← $ Lρ} in the challenge ciphertexts with {x∗ ← $ Lρ0}.4

This step is computationally indistinguishable due to the hardness of SMP.
(2) Reject any decryption query on ill-formed ciphertext C = (x ∈ X \

Lρ, d, π′ ).
(3) Replace all {Λsk(x∗)} involved in the challenge ciphertexts with uniform

strings. Then CCA-security follows.

As shown before, the universal2 and smooth properties are insufficient to
support (2) and (3) to achieve tight CCA-security. Thus, stronger properties are
needed from QAHPS.
4 Here Lρ0 is from another language collection L0 and only appears in the security

proof. The same is true for Lρ1 and L1, as shown later.
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Technical Tool for(2): Ardent QAHPS. We define two statistical properties
for QAHPS. Let L0 = {Lρ0}ρ0 and L1 = {Lρ1}ρ1 be two language collections.

• (Perfectly 〈L0,L1〉-Universal). It demands the uniformity of Λsk(x) con-
ditioned on αρ0(sk) and αρ1(sk) for any x ∈ X \ (Lρ0 ∪ Lρ1), i.e.,
(

αρ0(sk), αρ1(sk),
∣

∣Λsk(x)
)

≡
(

αρ0(sk), αρ1(sk),
∣

∣π ←$ Π
)

. (1)

• (Perfectly 〈L0,L1〉-Key-Switching). It requires that αρ1(sk) can be
switched to αρ1(sk

′) for an independent sk′ in the presence of αρ0(sk), i.e.,
(

αρ0(sk),
∣

∣αρ1(sk)
)

≡
(

αρ0(sk),
∣

∣αρ1(sk
′)

)

. (2)

It is also reasonable to define 〈L ,L0〉-universal and 〈L ,L0〉-key-switching. We
call QAHPS enjoying these two kinds of properties a perfectly ardent QAHPS.
Ardency of QAHPS can be naturally adapted for tag-based QAHPS.

With ardent QAHPS, Q̂AHPS and tag-based Q̃AHPS, we describe the high-
level idea of justifying (2). By modifying and adapting the latest techniques for
proving tight security [19] (which in turn built upon [17,18,24]), we partition
the ciphertext space economically according to a counter ctr ∈ {1, · · · , Qe},
which records the serial number of each encryption query issued by the adver-
sary. Taking ctr as a binary string of length n := 
log Qe�, our proof pro-
ceeds with n hybrids. In the i-th hybrid, i ∈ {0, 1, · · · , n}, a random func-
tion RFi(ctr|i) on the first i bits of ctr (instead of ˜sk) is employed to compute
π̃∗ = ˜ΛRFi(ctr|i)(x

∗, τ∗) for the challenge ciphertexts; meanwhile, it is also used
to compute π̃ = ˜ΛRFi(ctr|i)(x, τ) for the decryption of ciphertexts with x /∈ Lρ.
In order to go from the i-th hybrid to the (i+1)-th hybrid, firstly we replace all
{x∗ ←$ Lρ0} in the challenge ciphertexts with {x∗ ←$ Lρ0 ∪Lρ1 s.t. x∗ ∈ Lρ0 if
ctri+1 = 0 and x∗ ∈ Lρ1 if ctri+1 = 1 }; next we employ the ardency of Q̂AHPS
and Q̃AHPS to add a dependency of RFi(ctr|i) on the (i + 1)-th bit ctri+1 so
that RFi(ctr|i) moves to RFi+1(ctr|i+1), as shown below.

• (〈L0,L1〉-universal forces the instances in decryption queries to fall
in Lρ0 ∪Lρ1). By the 〈L0,L1〉-universal property of Q̂AHPS, any decryption
query on ciphertext with x /∈ Lρ0 ∪ Lρ1 is rejected. The reason is that, the
information of ̂sk leaked by the challenge ciphertexts and by the decryption
of ciphertexts with x ∈ Lρ0 ∪ Lρ1 is limited to α̂ρ0(̂sk) and α̂ρ1(̂sk).

• (〈L0,L1〉-key-switching allows the usage of two independent keys
for Lρ0 and Lρ1). Note that for x ∈ Lρ0 , π̃ = ˜ΛRFi(ctr|i)(x, τ) is completely
determined by α̃ρ0(RFi(ctr|i)), while for x ∈ Lρ1 , it is completely determined

by α̃ρ1(RFi(ctr|i)). By the 〈L0,L1〉-key-switching property of Q̃AHPS,
(

α̃ρ0(RFi(ctr|i)), α̃ρ1(RFi(ctr|i))
)

≡
(

α̃ρ0(RFi(ctr|i)), α̃ρ1(RFi(ctr|i))
)

,

where RFi is an independent random function. Consequently, we can use
RFi(ctr|i) to compute π̃∗ for challenge ciphertexts with x∗ ∈ Lρ1 , and to
compute π̃ for the decryption of ciphertexts with x ∈ Lρ1 .
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Now we successfully double the entropy in RFi(ctr|i) to get RFi+1(ctr|i+1) (which
equals RFi(ctr|i) if ctri+1 = 0 and RFi(ctr|i) if ctri+1 = 1)5 and this leads us to
the (i+1)-th hybrid. After n hybrids, for any ill-formed ciphertext with x /∈ Lρ,
π̃ = ˜ΛRFn(ctr)(x, τ) is fully randomized by RFn(ctr), thus the decryption on such
ciphertexts will be rejected.

Technical Tool for (3): Multi-Extracting. We define a computational prop-
erty for QAHPS so that it can amplify the (limited) entropy of a uniform sk to
randomize multiple {Λsk(x∗)}.

• (L0-Multi-Extracting). It demands the pseudorandomness of Λsk(xj) for
multiple instances xj uniformly chosen from Lρ0 , i.e.,

{xj ←$ Lρ0 ,
∣

∣Λsk(xj) }j∈[Qe]
c≈ {xj ←$ Lρ0 ,

∣

∣πj ←$ Π }j∈[Qe].

By requiring ardent QAHPS to be L0-multi-extracting, we are able to justify
(3). Note that after the change in (2), the decryption oracle might leak pkρ =
αρ(sk) about sk, therefore, the L0-multi-extracting property is not applicable
immediately. We solve this problem by first applying the 〈L ,L0〉-key-switching
property of QAHPS to switch sk to an independent sk′ in the computation of
{Λsk′(x∗)}. Under uniform sk′, the L0-multi-extracting property applies and the
{Λsk′(x∗)} involved in the challenge ciphertexts can be replaced with uniform
strings {rand}. Then CCA-security follows.

Extension to Tight LR-CCA Security. Like the leakage-resilient PKE [6,
32,34] from HPS, it is easy to upgrade the tight CCA-security of our PKE
construction to tight LR-CCA, as long as the 〈L0,L1〉-universal and 〈L0,L1〉-
key-switching properties of QAHPS holds even if some information L(sk) about
sk is leaked. The LR-CCA security proof almost verbatim follows the proof of
IND-CCA security. We refer to the main body for more details.

By instantiating leakage-resilient ardent QAHPS over pairing-friendly
groups, our approach yields the most efficient tightly LR-CCA secure PKE from
the MDDH assumptions, with security loss O(log Qe).

1.2 Relation to Existing Techniques for Tight Security

To obtain tight (LR-)CCA security, it is inevitable to implement “consistency
check”, explicitly or implicitly, to reject decryption queries on ill-formed cipher-
texts. In [2,23,25,30,31], a NIZK proof is added in the ciphertext as an explicit

5 Note that for the instance x∗ ∈ Lρ0 ∪ Lρ1 in challenge ciphertext, the bit indicating
whether x∗ ∈ Lρ0 or x∗ ∈ Lρ1 is consistent with the (i+1)-th bit of ctr, i.e., x∗ ∈ Lρ0

if ctri+1 = 0 and x∗ ∈ Lρ1 if ctri+1 = 1. But this might not be true for the instances
x ∈ Lρ0 ∪Lρ1 in the decryption queries. This problem is circumvented by borrowing
the trick from [18,24]. We refer to the main body for details.
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consistency check, where NIZK is required to have tight unbounded simulation-
soundness (SS) or true-simulation extractability (tSE). Efficient NIZK with tight
SS/tSE is very hard to construct, thus leading to large public keys or ciphertexts
in these schemes. Gay et al. [17] implicitly employed a designated-verifier NIZK
(DV-NIZK) with tight SS in their construction, which results in large public
keys (of over 100 group elements).

In order to get more efficient constructions, Hofheinz [24] used benign proof
system (BPS) as a main technical tool, which is essentially a DV-NIZK with
strong soundness, but not as strong as SS. Gay et al. [18] proposed qualified proof
system (QPS), which is a combination of a DV-NIZK and an HPS. The weak
(computational) soundness requirement for QPS enables efficient instantiations,
hence resulting in the most compact PKE with tight CCA-security from the
DDH assumption over non-pairing groups.

Our construction of PKE employs LR-ardent QAHPS, with LR-〈L0,L1〉-
universal and LR-〈L0,L1〉-key-switching properties. QAHPS can be regarded
as a (deterministic) DV-NIZK, and the LR-〈L0,L1〉-universal property corre-
sponds to (statistical) soundness which is weaker than BPS but stronger than
QPS. Our LR-ardent QAHPS can be instantiated over pairing-friendly groups.

The key-leakage resilience of (QA)HPS enables us to obtain tight LR-CCA
security. However, this feature does not apply to the PKE constructions [18,24]
from BPS or QPS. For example, the soundness of QPS is a computational notion
and might not be justified in the LR setting (cf. our full version [22] for the
reasons). Thus, the PKE in [18] is unlikely to be tightly LR-CCA secure but
is pairing-free, while ours are over pairing-groups but achieve tight LR-CCA
security.

2 Preliminaries

Let λ ∈ N denote the security parameter. For i, j ∈ N with i < j, define [i, j] :=
{i, i + 1, · · · , j} and [j] := {1, 2, · · · , j}. Denote by x ← $ X the operation of
picking an element x according to a distribution X . If X is a set, then this denotes
that x is sampled uniformly at random from X . For an algorithm A, denote by
y ←$ A(x; r), or simply y ←$ A(x), the operation of running A with input x
and randomness r and assigning the output to y, and by T(A) the running time
of A. “PPT” is short for probabilistic polynomial-time. Denote by poly some
polynomial function, and negl some negligible function. For a primitive XX and
a security notion YY, we typically denote the advantage of a PPT adversary
A by AdvYY

XX,A(λ) and define AdvYY
XX(λ) := maxPPTA AdvYY

XX,A(λ). For an � × k

matrix A with � > k, denote the upper k rows of A by A and the lower � − k
rows of A by A. For a string τ ∈ {0, 1}λ and an integer i ∈ [0, λ], denote by
τi ∈ {0, 1} the i-th bit of τ and τ|i ∈ {0, 1}i the first i bits of τ . Let ε denote an
empty string. For random variables X, Y , Z, let Δ(X, Y ) denote the statistical
distance between X and Y , Δ(X, Y |Z) a shorthand for Δ((X,Z), (Y,Z)), and
˜H∞(X |Y ) the average min-entropy of X conditioned on Y , where the formal
definitions appear in the full version [22].
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Games. Our security proof will consist of game-based security reductions. A
game G starts with an Initialize procedure and ends with a Finalize proce-
dure. There are also some optional procedures Proc1, · · · ,Procn performing
as oracles. All procedures are described using pseudo-code, where initially all
variables are empty strings ε and all sets are empty. That an adversary A is exe-
cuted in G implies the following procedure: A first calls Initialize, obtaining
the corresponding output; then it may make arbitrary oracle-queries to Proci

according to their specifications, and obtain their outputs; finally it makes one
single call to Finalize. The output of Finalize is called the output of the game
G. The symbol “⇒” stands for “Return” in the description of algorithms and
procedures. By GA ⇒ b we mean that G outputs b after interacting with A. By
Pri[·] we denote the probability of a particular event occurring in game Gi.

2.1 Public-Key Encryption

A public-key encryption (PKE) scheme PKE = (Param,Gen,Enc,Dec) with mes-
sage space M consists of a tuple of PPT algorithms: the parameter generation
algorithm PP ← $ Param(1λ) outputs a public parameter PP, and we require
PP to be an implicit input of other algorithms; the key generation algorithm
(PK,SK) ←$ Gen(PP) outputs a pair of public key PK and secret key SK; the
encryption algorithm C ← $ Enc(PK,M) takes as input a public key PK and
a message M ∈ M, and outputs a ciphertext C; the decryption algorithm
M /⊥ ← Dec(SK, C) takes as input a secret key SK and a ciphertext C, and
outputs either a message M or a failure symbol ⊥. Perfect correctness of PKE
requires that, for all PP ←$ Param(1λ) and (PK,SK) ←$ Gen(PP), all messages
M ∈ M, it holds that Dec(SK, Enc(PK,M)) = M .

LR-CCA Security for PKE. Naor and Segev [32] defined the leakage-resilient
CCA (LR-CCA) security for PKE. In contrast to IND-CCA, the LR-CCA secu-
rity also allows the adversary A to make Leak (key leakage) queries adap-
tively and obtain additional information L(SK) about the secret key SK, where
L : SK −→ {0, 1}∗\{ε} is the leakage function submitted by A. According to [32],
two restrictions are necessary: (i) the total amount of leakage bits is bounded by
some positive integer κ; (ii) A can only access the Leak oracle before it obtains
a challenge ciphertext (otherwise A could trivially win by querying the first few
bits of Dec(·, C∗) after receiving a challenge ciphertext C∗).

We present the definition of the κ-leakage-resilient CCA security in its multi-
ciphertext version. The leakage-rate of the LR-CCA security is defined as the
ratio of κ to the bit-length of secret key, i.e., κ/BitLength(SK).

Definition 1 (Multi-Ciphertext κ-Leakage-Resilient CCA Security).
Let κ = κ(λ). A PKE scheme PKE is κ-LR-CCA secure, if for any PPT adver-
sary A, it holds that Advκ−lr-cca

PKE,A (λ) :=
∣

∣ Pr[κ-lr-ccaA ⇒ 1]− 1
2

∣

∣ ≤ negl(λ), where
game κ-lr-cca is specified in Fig. 1.

If κ = 0, κ-LR-CCA security is reduced to the traditional IND-CCA security.



Tight LR-CCA Security from Quasi-Adaptive HPS 427

Fig. 1. κ-lr-cca security game for PKE, where |L(SK)| denotes the bit length of L(SK).

2.2 Pairing Groups

Let PGGen(1λ) be a PPT algorithm outputting a description of pairing group
PG = (G1, G2, GT , p, e, P1, P2, PT ), where G1, G2 and GT are additive cyclic
groups of order p, p is a prime number of bit-length at least λ, e : G1 × G2 −→
GT is a non-degenerated bilinear pairing, and P1, P2, PT are generators of
G1, G2, GT , respectively, with PT := e(P1, P2). We assume that the operations in
G1, G2, GT and the pairing e are efficiently computable. We require the pairing
group PG to be an implicit input of other algorithms.

We use the implicit representation of group elements following [14]. For a
matrix A = (ai,j) over Zp, denote by [A]s := (ai,j ·Ps) the implicit representation
of A in Gs (which may be G1, G2, or GT ). Clearly, given A, [B]s, [C]s and D
with composable dimensions, one can efficiently compute [AB]s, [B+C]s, [CD]s;
given [A]1 and [B]2, one can efficiently compute [AB]T with the pairing e.

Let �, k ≥ 1 be integers with � > k. A probabilistic distribution D�,k is called
a matrix distribution, if it outputs matrices in Z

�×k
p of full rank k in polynomial

time. Without loss of generality, we assume that the first k rows of A ←$ D�,k are
linearly independent. Let Dk := Dk+1,k. Denote by U�,k the uniform distribution
over all matrices in Z

�×k
p . Let Uk := Uk+1,k. We review the Matrix DDH (MDDH)

and Q-fold MDDH assumptions relative to PGGen, as well as the random self-
reducibility of the MDDH assumptions, in the full version [22].

2.3 Collision-Resistant Hashing

Definition 2 (Collision-Resistant Hashing). A family of functions H =
{H : X −→ Y} is collision-resistant, if for any PPT adversary A, it holds that

Advcr
H,A(λ) := Pr

[

H ←$ H, (x, x′) ←$ A(H) : H(x) = H(x′) ∧ x �= x′] ≤ negl(λ).

3 Quasi-Adaptive HPS: Ardency and Leakage Resilience

For hash proof system (HPS) defined in [10], the associated NP-language L is
generated in the setup phase once and for all, and the projection key pk is used
for computing hash values of instances in this fixed L.

In this section, we formalize the notion of quasi-adaptive HPS (QAHPS),6

which is associated with a collection L = {Lρ}ρ of NP-languages. Different from
6 Quasi-adaptiveness of HPS was discussed in [27]. Here we give a formal definition of

QAHPS and build our novel LR-ardency notion over it.
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HPS, the projection key pkρ of QAHPS is allowed to depend on the specific
language Lρ for which hash values are computed.

As the main technical novelty, we propose two new statistical properties for
QAHPS, including κ-LR-〈L0,L1〉-universal and κ-LR-〈L0,L1〉-key-switching.
This type of QAHPS is termed as LR-ardent QAHPS. We also define the tag-
based version of QAHPS and adapt the notion of LR-ardency for it. LR-ardent
QAHPS and tag-based one will serve as our core technical tools.

3.1 Language Distribution

In this subsection, we formalize the collection of NP-languages, with which a
QAHPS is associated, as a language distribution.

Definition 3 (Language Distribution). A language distribution L is a
probability distribution that outputs a language parameter ρ as well as a trap-
door td in polynomial time. The language parameter ρ publicly defines an NP-
language Lρ ⊆ Xρ. For simplicity, we assume that the universe Xρ is the same
for all languages Lρ, denoted by X . The trapdoor td is required to contain enough
information for deciding whether or not an instance x ∈ X is in Lρ. We require
that there are PPT algorithms for sampling x ←$ Lρ uniformly together with a
witness w and sampling x ←$ X uniformly.

We define a subset membership problem (SMP) for a language distribution
L , which asks whether an element is uniformly chosen from Lρ or X .

Definition 4 (Subset Membership Problem). The subset membership prob-
lem (SMP) related to a language distribution L is hard, if for any PPT adversary
A, it holds that Advsmp

L ,A(λ) := |Pr [A(ρ, x) = 1] − Pr [A(ρ, x′) = 1] | ≤ negl(λ),
where (ρ, td) ←$ L , x ←$ Lρ and x′ ←$ X .

We also define a multi-fold version of SMP, which is to distinguish multiple
instances, all of which are uniformly chosen either from Lρ or from X .

Definition 5 (Multi-fold SMP). The multi-fold SMP related to a language
distribution L is hard, if for any PPT adversary A, any polynomial Q = poly(λ),

AdvQ-msmp
L ,A (λ) :=

∣

∣Pr
[

A(ρ, {xj }j∈[Q]) = 1
]

− Pr
[

A(ρ, {x′
j }j∈[Q]) = 1

]∣

∣ ≤ negl(λ)

holds, where (ρ, td) ←$ L , x1, · · · , xQ ←$ Lρ and x′
1, · · · , x′

Q ←$ X .

By a standard hybrid argument, SMP and multi-fold SMP are equivalent. For
some language distributions, such as those for linear subspaces (cf. Subsect. 5.2),
the hardness of multi-fold SMP can be tightly reduced to that of SMP.

3.2 Quasi-Adaptive HPS

Definition 6 (Quasi-Adaptive Hash Proof System). A quasi-adaptive
hash proof system (QAHPS) QAHPS = (Setup, α(·),Pub,Priv) for a language
distribution L consists of a tuple of PPT algorithms:
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– pp ←$ Setup(1λ): The setup algorithm outputs a public parameter pp, which
implicitly defines (SK,Π,Λ(·)), where

• SK is the hashing key space and Π is the hash value space;
• Λ(·) : X −→ Π is a family of hash functions indexed by a hashing key

sk ∈ SK, where X is the universe for languages output by L .
We assume that Λ(·) is efficiently computable and there are PPT algorithms
for sampling sk ← $ SK uniformly and sampling π ← $ Π uniformly. We
require pp to be an implicit input of other algorithms.

– pkρ ← αρ(sk): The projection algorithm outputs a projection key pkρ of hash-
ing key sk ∈ SK w.r.t. the language parameter ρ.

– π ← Pub(pkρ, x, w): The public evaluation algorithm outputs the hash value
π = Λsk(x) ∈ Π of x ∈ Lρ, with the help of the projection key pkρ = αρ(sk)
specified by ρ and a witness w for x ∈ Lρ.

– π ← Priv(sk, x): The private evaluation algorithm outputs the hash value
π = Λsk(x) ∈ Π of x ∈ X , directly using the hashing key sk.

Perfect correctness (a.k.a. projectiveness) of QAHPS requires that, for all possible
pp ←$ Setup(1λ) and (ρ, td) ←$ L , all hashing keys sk ∈ SK with pkρ = αρ(sk)
the corresponding projection key w.r.t. ρ, all x ∈ Lρ with all possible witnesses
w, it holds that Pub(pkρ, x, w) = Λsk(x) = Priv(sk, x).

Remark 1 (Relation to HPS). In contrast to the HPS defined by Cramer
and Shoup [10], there are two main differences:

• Instead of a single language, QAHPS is associated with a collection of lan-
guages L = {Lρ}ρ characterized by a language distribution. In particular,
the specific language Lρ is no longer generated in the setup phase Setup.

• Instead of a single projection function, QAHPS possesses a family of projec-
tion functions α(·) : SK −→ PK(·) indexed by a language parameter ρ, so
that the action of Λsk(·) on Lρ is completely determined by pkρ := αρ(sk).

In a nutshell, the relation between HPS and QAHPS is analogous to the relation
between NIZK and QA-NIZK [26].

Remark 2 (Relation to DV-QA-NIZK). An HPS is essentially a (deter-
ministic) designated-verifier non-interactive zero-knowledge (DV-NIZK) proof
system [17]. Similarly, our QAHPS can be viewed as a (deterministic) DV-QA-
NIZK.

Dodis et al. [12] defined an extracting property for (traditional) HPS, which
requires the hash value Λsk(x) to be uniformly distributed over Π for any x ∈
X , as long as sk is uniformly chosen from SK. Intuitively, Λ(·)(x) acts as an
extractor and extracts the entropy from sk. Here, we introduce a computational
analogue of the extracting property in a multi-fold version for QAHPS, called
multi-extracting property, which demands the pseudorandomness of Λsk(xj) for
multiple instances xj , j ∈ [Q].

Definition 7 (L0-Multi-Extracting QAHPS). Let L0 be a language distri-
bution (which might be different from L ). QAHPS for L is called L0-multi-
extracting, if for any PPT adversary A, any Q = poly(λ), AdvQ−L0−mext

QAHPS,A (λ) :=
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∣
∣ Pr

[A(
pp, ρ0, {xj ,

∣
∣Λsk(xj) }j∈[Q]

)
= 1

] − Pr
[A(

pp, ρ0, {xj ,
∣
∣πj }j∈[Q]

)
= 1

] ∣
∣

is negligible, where pp ←$ Setup(1λ), (ρ0, td0) ←$ L0, sk ←$ SK, x1, · · · , xQ ←
$ Lρ0 , and π1, · · · , πQ ←$ Π.

We note that the L0-multi-extracting property is defined in an average-case
flavor, i.e., the instances xj , j ∈ [Q], are uniformly chosen from Lρ0 .

3.3 Ardent QAHPS with Leakage Resilience

In this subsection, we introduce two statistical properties for QAHPS, including
κ-LR-〈L0,L1〉-universal and κ-LR-〈L0,L1〉-key-switching. These two proper-
ties are formalized in a general manner and are parameterized by κ ∈ N and two
language distributions 〈L0,L1〉. We name QAHPS enjoying these properties as
LR-ardent QAHPS. We highlight the leakage L(sk) with gray boxes, in order to
show the difference from the perfectly ardent QAHPS as stated in Subsect. 1.1.

Definition 8 (Leakage-Resilient Ardent QAHPS). Let κ = κ(λ) ∈ N, and
let L0,L1 be a pair of language distributions. A QAHPS scheme QAHPS for
a language distribution L is called κ-leakage-resilient 〈L0,L1〉-ardent (κ-LR-
〈L0,L1〉-ardent), if the following two properties hold:

• (κ-LR-〈L0,L1〉-Universal). With overwhelming probability 1−2−Ω(λ) over
pp ←$ Setup(1λ), (ρ0, td0) ←$ L0 and (ρ1, td1) ←$ L1, for all x ∈ X \ (Lρ0 ∪
Lρ1) and all leakage functions L : SK −→ {0, 1}κ, if sk ←$ SK, then

˜H∞
(

Λsk(x)
∣

∣ αρ0(sk), αρ1(sk), L(sk)
)

≥ Ω(λ). (3)

We require the inequality to hold for adaptive choices of x and L, where x
and L can arbitrarily depend on ρ0, ρ1, αρ0(sk), αρ1(sk).

• (κ-LR-〈L0,L1〉-Key-Switching). With overwhelming probability 1 −
2−Ω(λ) over pp ←$ Setup(1λ) and (ρ0, td0) ←$ L0, for all leakage functions
L : SK −→ {0, 1}κ, it holds that:

Δ
( (

ρ1,
∣
∣αρ1(sk)

)
,

(
ρ1,

∣
∣αρ1(sk

′)
) ∣

∣ αρ0(sk), L(sk)
) ≤ 2−Ω(λ), (4)

where the probability is over sk, sk′ ←$ SK and (ρ1, td1) ←$ L1. We require
the inequality to hold for L that is arbitrarily dependent on ρ0, αρ0(sk). How-
ever, L is required to be independent of ρ1.

When κ = 0, the term “κ-LR” is omitted from these properties. The parameter
〈L0,L1〉 is also omitted when it is clear from context.

Definition 9 (Ardent QAHPS). QAHPS is called 〈L0,L1〉-ardent if it is 0-
leakage-resilient 〈L0,L1〉-ardent.

Furthermore, if (3) and (4) are replaced by (1) and (2), then it
is perfectly 〈L0,L1〉-universal and key-switching which is obviously
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(0-LR-)〈L0,L1〉-universal and key-switching. Observe that, perfectly universal
property itself carries leakage resilience to some extent as shown in Lemma 1.
(See the full version [22] for the proof.)

Lemma 1 (Perfectly 〈L0,L1〉-Universal ⇒ LR-〈L0,L1〉-Universal). If
a QAHPS scheme is perfectly 〈L0,L1〉-universal, then it is κ-LR-〈L0,L1〉-
universal for any κ ≤ log |Π|−Ω(λ), where Π is the hash value space of QAHPS.

Remark 3 (On the Independence Between L(·) and ρ1). We stress that,
in the definition of κ-LR-〈L0,L1〉-key-switching, the independence between the
leakage function L(·) and the language parameter ρ1 is necessary. Otherwise,
this property is unsatisfiable by simply taking L(·) as the first κ bits of αρ1(·).
Remark 4 (On the Choices of 〈L0,L1〉). We stress that, in the above def-
inition, L0 or L1 is allowed to be L itself. In particular, it is reasonable to
define κ-LR-〈L ,L0〉-ardency for a QAHPS scheme QAHPS for L . Besides, we
note that κ-LR-〈L0,L1〉-universal is identical to κ-LR-〈L1,L0〉-universal.

Remark 5 (Relation to the Universal1, Universal2 and Extracting
Properties). The 〈L0,L1〉-universal property of QAHPS generalizes the cur-
rently available universal and extracting properties of (traditional) HPS. With
different choices of L0 and L1, it will turn into the universal1, the universal2
and the extracting properties of HPS defined in [10,12], respectively.

More precisely, let L⊥ (or simply ⊥) denote a special empty language distri-
bution, which always outputs ρ⊥ defining the empty language Lρ⊥ = {}, and let
Lsing denote a special singleton language distribution, which samples x ←$ X
uniformly and outputs ρx defining a singleton language Lρx

= {x}. We assume
that αρ⊥(sk) = ⊥ and αρx

(sk) = Λsk(x) hold for any sk ∈ SK and x ∈ X , both
of which are very natural and are satisfied by our instantiations in Sect. 5. Then:
(i) 〈L ,⊥〉-universal corresponds to the average-case universal1 property; (ii)
〈L ,Lsing〉-universal corresponds to the average-case universal2 property; (iii)
Perfectly 〈⊥,⊥〉-universal corresponds to the extracting property.

The leakage-resilient ardency of QAHPS can be adapted to a weak version.

Definition 10 (Leakage-Resilient Weak-Ardent QAHPS). Let κ =
κ(λ) ∈ N, and let L0,L1 be a pair of language distributions. A QAHPS scheme
QAHPS for a language distribution L is called κ-leakage-resilient 〈L0,L1〉-
weak-ardent (κ-LR-〈L0,L1〉-weak-ardent), if QAHPS is 〈⊥,⊥〉-universal and
supports κ-LR-〈L0,L1〉-key-switching. Similarly, κ = 0 leads to weak-ardent
QAHPS.

3.4 Extension to the Tag-Based Setting

The notion of (traditional) HPS was generalized to extended HPS (a.k.a. labeled
HPS) in [10] and tag-based HPS in [35], respectively, by allowing the hash func-
tions Λ(·) to have an additional element called label/tag as input.

Similarly, in a tag-based QAHPS, the public parameter pp also implicitly
defines a tag space T . Meanwhile, the hash functions Λ(·), the public evaluation
algorithm Pub and the private evaluation algorithm Priv also take a tag τ ∈ T as
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input. Accordingly, perfect correctness requires Pub(pkρ, x, w, τ) = Λsk(x, τ) =
Priv(sk, x, τ) for all tags τ ∈ T . The formal definition of tag-based QAHPS can
be found in our full version [22].

The notion of LR-ardency is naturally adapted for tag-based QAHPS. A tag-
based QAHPS is κ-leakage-resilient 〈L0,L1〉-ardent (κ-LR-〈L0,L1〉-ardent), if
it is both κ-LR-〈L0,L1〉-universal and κ-LR-〈L0,L1〉-key-switching.

• (κ-LR-〈L0,L1〉-Universal for Tag-Based QAHPS). It takes tags into
account and considers two hash values with different tags. With overwhelming
probability 1− 2−Ω(λ) over pp ←$ Setup(1λ), (ρ0, td0) ←$ L0 and (ρ1, td1) ←
$ L1, for all x ∈ X \ (Lρ0 ∪ Lρ1), all x′ ∈ X , all τ, τ ′ ∈ T with τ �= τ ′and all
leakage functions L : SK −→ {0, 1}κ, if sk ←$ SK, then

˜H∞
(

Λsk(x, τ)
∣

∣ αρ0(sk), αρ1(sk), Λsk(x′, τ ′), L(sk)
)

≥ Ω(λ).

We require the inequality to hold for adaptive choices of x, x′, τ, τ ′ and L,
where they can arbitrarily depend on ρ0, ρ1, αρ0(sk), αρ1(sk).

• (κ-LR-〈L0,L1〉-Key-Switching for Tag-Based QAHPS). This property
remains the same as (4) for the non-tag-based QAHPS, since no tag is involved
in the projection algorithm α(·).

Similarly, the κ-LR-〈L0,L1〉-weak-ardency of tag-based QAHPS asks for
both 〈⊥,⊥〉-universal and κ-LR-〈L0,L1〉-key-switching properties.

• (〈⊥,⊥〉-Universal for Tag-Based QAHPS). With overwhelming proba-
bility 1−2−Ω(λ) over pp ←$ Setup(1λ), for all x, x′ ∈ X and all τ, τ ′ ∈ T with
τ �= τ ′, it holds that:

˜H∞
(

Λsk(x, τ)
∣

∣ Λsk(x′, τ ′)
)

≥ Ω(λ),

where the probability is over sk ←$ SK and x, τ can arbitrarily depend on
Λsk(x′, τ ′).

We also give (equivalent) game-based definitions for κ-LR-ardency of QAHPS
and tag-based QAHPS in the full version [22].

4 LR-CCA-Secure PKE via LR-Ardent QAHPS

We present a modular approach to tightly LR-CCA secure PKE from LR-ardent
QAHPS. Our approach employs an LR-weak-ardent QAHPS, an LR-ardent
Q̂AHPS and an LR-weak-ardent tag-based Q̃AHPS, all of which are associated
with the same language distribution L .

4.1 The Generic Construction of PKE

Our PKE construction makes use of the following building blocks.

• Three language distributions L ,L0 and L1, all of which have hard subset
membership problems.
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• An LR-weak-ardent QAHPS = (Setup, α(·),Pub,Priv) for L , whose hash value
space Π is an (additive) group.

• An LR-ardent Q̂AHPS = (Ŝetup, α̂(·), ̂Pub, ̂Priv) for L .

• An LR-weak-ardent tag-based Q̃AHPS = (S̃etup, α̃(·), ˜Pub, ˜Priv) for L , whose
tag space is ˜T .

• A collision-resistant function family H = {H : X × Π −→ ˜T }.

The LR-ardency requirements for the QAHPS schemes are listed in Table 2.

Table 2. Requirements on QAHPS, Q̂AHPS and tag-based Q̃AHPS for κ-LR-CCA

security of PKE. Here 〈L0,L1〉-key-switching for Q̂AHPS is not listed, since it is not
necessary in the κ-LR-CCA security proof. We stress that the 〈⊥, ⊥〉-universal property

of QAHPS, the 〈L0,L1〉-universal property of Q̂AHPS, and the 〈⊥, ⊥〉-universal and

〈L0,L1〉-key-switching properties of Q̃AHPS do not have to be leakage-resilient.

LR-weak-ardency of QAHPS LR-ardency of Q̂AHPS LR-weak-ardency of Q̃AHPS

universal 〈⊥, ⊥〉 κ-LR-〈L ,L0〉, 〈L0,L1〉 〈⊥, ⊥〉
key-switching κ-LR-〈L ,L0〉 κ-LR-〈L ,L0〉 κ-LR-〈L ,L0〉, 〈L0,L1〉

The proposed scheme PKE = (Param,Gen,Enc,Dec) with message space M =
Π is presented in Fig. 2. The perfect correctness of PKE follows from the perfect
correctness of QAHPS, Q̂AHPS and Q̃AHPS directly.

Fig. 2. Generic construction of PKE from QAHPS, Q̂AHPS and tag-based Q̃AHPS.
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Remark 6 (A More Efficient Variant). If Q̂AHPS and tag-based Q̃AHPS

share the same hash value space (i.e., ̂Π = ˜Π) and ̂Π (= ˜Π) is an (additive)
group7, the hash values π̂ and π̃ can be combined into π̂ + π̃, thus saving one
element from the ciphertext.

4.2 LR-CCA Security of PKE

In this subsection, we prove the LR-CCA security of our generic PKE construc-
tion in Fig. 2. The security proof and the concrete security bound also apply to
the more efficient variant PKE as shown in Remark 6.

Theorem 1 (LR-CCA Security of PKE). If (i) L , L0 and L1 have hard
subset membership problems, (ii) QAHPS is a κ-LR-weak-ardent QAHPS scheme
for L , Q̂AHPS is a κ-LR-ardent QAHPS scheme for L and Q̃AHPS is a κ-LR-
weak-ardent tag-based QAHPS scheme for L , which satisfy the properties listed
in Table 2, (iii) QAHPS is L0-multi-extracting, (iv) H is a collision-resistant
function family, then the proposed PKE scheme in Fig. 2 is κ-LR-CCA secure.

Concretely, for any adversary A who makes at most Qe times of Enc queries
and Qd times of Dec queries, there exist adversaries B1, · · · ,B5, such that
T(B1) ≈ T(B4) ≈ T(B5) ≈ T(A) + (Qe + Qd) · poly(λ), T(B2) ≈ T(B3) ≈
T(A) + (Qe + Qe · Qd) · poly(λ), with poly(λ) independent of T(A), and

Advκ-lr-cca
PKE,A (λ) ≤ AdvQe-msmp

L ,B1
(λ) + (2n + 1) · AdvQe-msmp

L0,B2
(λ) + 2n · AdvQe-msmp

L1,B3
(λ)

+ Advcr
H,B4

(λ) + AdvQe-L0-mext
QAHPS,B5

(λ)

+ (3 + Qd + QdQe + n(Qd + Qe + QdQe)) · 2−Ω(λ), for n = 
log Qe�.

Remark 7. The last term (. . .)·2−Ω(λ) in the above security bound encompasses
the statistical differences introduced by the LR-universal and LR-key-switching
properties of the three QAHPS schemes. We stress that only factors of compu-
tational reductions matter to the tightness of a security reduction.

Proof of Theorem 1. We prove the theorem by defining a sequence of games
G0 − G6 and showing adjacent games indistinguishable. A brief description of
differences between adjacent games is summarized in Table 3.

Game G0: This is the κ-lr-cca security game (cf. Fig. 1). Let Win denote the
event that β′ = β. By definition, Advκ-lr-cca

PKE,A (λ) =
∣

∣ Pr0[Win] − 1
2

∣

∣.
In this game, when answering an Enc query (M0,M1), the challenger samples

x∗ ←$ Lρ with witness w∗, computes d∗ := Pub(pkρ, x
∗, w∗) + Mβ ∈ Π, τ∗ :=

H(x∗, d∗) ∈ ˜T , π̂∗ := ̂Pub(̂pkρ, x
∗, w∗) ∈ ̂Π and π̃∗ := ˜Pub(˜pkρ, x

∗, w∗, τ∗) ∈ ˜Π.
Then, the challenger returns the challenge ciphertext C∗ = (x∗, d∗, π̂∗, π̃∗ ) to
the adversary A and puts C∗ to a set QENC. Upon a Dec query C = (x, d, π̂′, π̃′ ),

7 In fact, this condition can be weakened by only requiring Π̂ and Π̃ to be subsets of
an (additive) group.
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Table 3. Brief Description of Games G0 − G6 for the κ-LR-CCA security proof of
PKE. Here column “Enc” suggests how the challenge ciphertext C∗ = (x∗, d∗, π̂∗, π̃∗ )
is generated: sub-column “x∗ from” refers to the language from which x∗ is chosen;
sub-column “d∗ using” (resp. “π̂∗ using”, “π̃∗ using”) indicates the keys that are used
in the computation of d∗ (resp. π̂∗, π̃∗). Column “Dec checks” describes the additional
check made by Dec upon a decryption query C = (x, d, π̂′, π̃′ ), besides the routine
check C /∈ QENC ∧ π̂′ = π̂ ∧ π̃′ = π̃; Dec outputs ⊥ if the check fails.

Enc
Dec checks Remark/Assumption

x∗ from d∗ using π̂∗ using π̃∗ using

G0 Lρ pkρ p̂kρ p̃kρ κ-LR-CCA game

G1 Lρ sk ŝk s̃k
perfect correctness of

QAHPS, Q̂AHPS, Q̃AHPS

G2 Lρ sk ŝk s̃k τ /∈ QTAG collision-resistance of H
G3 Lρ0 sk ŝk s̃k τ /∈ QTAG multi-fold SMP of L and L0

G4 Lρ0 sk ŝk s̃k τ /∈ QTAG , x ∈ Lρ Lemma 2 (Rejection Lemma)

G5 Lρ0 sk′ ŝk s̃k τ /∈ QTAG , x ∈ Lρ LR-〈L ,L0〉-key-switching of QAHPS

G6 Lρ0 = rand ŝk s̃k τ /∈ QTAG , x ∈ Lρ L0-multi-extracting of QAHPS

the challenger answers A as follows. Compute M := d − Priv(sk, x) ∈ Π,
τ := H(x, d) ∈ ˜T , π̂ := ̂Priv(̂sk, x) ∈ ̂Π and π̃ := ˜Priv(˜sk, x, τ) ∈ ˜Π. If
C /∈ QENC ∧ π̂′ = π̂ ∧ π̃′ = π̃, return M ; otherwise return ⊥.

Game G1: It is the same as G0, except that, when answering Enc(M0,M1), the
challenger computes d∗, π̂∗ and π̃∗ directly using the secret key SK = (sk, ̂sk, ˜sk):

• d∗ := Priv(sk, x∗) + Mβ ∈ Π,
• π̂∗ := ̂Priv(̂sk, x∗) ∈ ̂Π and π̃∗ := ˜Priv(˜sk, x∗, τ∗) ∈ ˜Π.

Since x∗ ∈ Lρ with witness w∗, by the perfect correctness of QAHPS, Q̂AHPS
and Q̃AHPS, the changes are just conceptual. Consequently, Pr0[Win] = Pr1[Win].

Game G2: It is the same as G1, except that, when answering Enc(M0,M1),
the challenger also puts τ∗ to a set QTAG, and when answering Dec

(

C =
(x, d, π̂′, π̃′ )

)

, the challenger adds the following new rejection rule:

• If τ ∈ QTAG, return ⊥ directly.

Claim 1.
∣

∣ Pr1[Win] − Pr2[Win]
∣

∣ ≤ Advcr
H(λ).

Proof. By Coll denote the event that A ever queries Dec
(

C = (x, d, π̂′, π̃′ )
)

s.t.

∃ C∗ = (x∗, d∗, π̂∗, π̃∗ ) ∈ QENC, s.t. C = (x, d, π̂′, π̃′ ) �= (x∗, d∗, π̂∗, π̃∗ ) = C∗

∧ π̂′ = π̂ ∧ π̃′ = π̃ ∧ τ = H(x, d) = H(x∗, d∗) = τ∗ ∈ QTAG.

Clearly, G1 and G2 are the same until Coll occurs, therefore
∣

∣ Pr1[Win]−Pr2[Win]
∣

∣

≤ Pr2[Coll]. Note that (x, d) = (x∗, d∗) implies (π̂, π̃) = (π̂∗, π̃∗). Hence Coll
happens if and only if (x, d) �= (x∗, d∗), which suggests a collision.

Thus,
∣

∣ Pr1[Win] − Pr2[Win]
∣

∣ ≤ Pr2[Coll] ≤ Advcr
H(λ), and Claim 1 follows.
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Game G3: This game is the same as game G2, except that, in Initialize,
the challenger picks (ρ0, td0) ← $ L0 as well, and for all the Enc queries, the
challenger samples x∗ ←$ Lρ0 instead of x∗ ←$ Lρ.

Claim 2.
∣

∣ Pr2[Win] − Pr3[Win]
∣

∣ ≤ AdvQe-msmp
L (λ) + AdvQe-msmp

L0
(λ).

Proof. We introduce an intermediate game G2.5 between G2 and G3:

– Game G2.5: It is the same as game G2, except that x∗ ←$ X in Enc.

Since witness w∗ for x∗ is not used at all in games G2, G2.5 and G3, we can
directly construct two adversaries B and B′ for solving the multi-fold SMP related
to L and the multi-fold SMP related to L0 respectively, so that

∣

∣ Pr2[Win] −
Pr2.5[Win]

∣

∣ ≤ AdvQe−msmp
L ,B (λ) and

∣

∣ Pr2.5[Win] − Pr3[Win]
∣

∣ ≤ AdvQe−msmp
L0,B′ (λ).

Game G4: This game is the same as game G3, except that, when answering
Dec

(

C = (x, d, π̂′, π̃′ )
)

, the challenger adds another new rejection rule:

• If x /∈ Lρ, return ⊥ directly.

Lemma 2 (Rejection Lemma). For n = 
log Qe�,
∣

∣ Pr3[Win] − Pr4[Win]
∣

∣ ≤
2n ·

(

AdvQe-msmp
L0

(λ)+AdvQe-msmp
L1

(λ)
)

+(2+Qd+QdQe+n ·(Qd+Qe+QdQe)) ·
2−Ω(λ).

The proof of Lemma 2 appears in our full version [22] due to lack of space.
We stress that this proof is very modular and relies on the LR-ardency of the
three QAHPS schemes. Technically speaking, we modified and adapted the lat-
est partitioning techniques in [19] (which in turn built upon [17,18,24]) for our
strategy, so that the hash values π̃ = ˜Λ

˜sk
(x, τ) for x /∈ Lρ are fully random-

ized to π̃ = ˜ΛRF(ctr)(x, τ) by RF(ctr), where RF is a random function. This is
accomplished in only O(log Qe) = O(log λ) steps. Each step is moved forward
from RFi(ctr|i) to RFi+1(ctr|i+1), making use of the LR-universal and LR-key-

switching properties of QAHPS, Q̂AHPS and Q̃AHPS, together with language
switching among Lρ, Lρ0 and Lρ1 (cf. Subsect. 1.1).

Game G5: It is the same as G4, except that, in Initialize, the challenger picks
another sk′ ←$ SK besides sk, and when answering Enc(M0,M1), the challenger
computes d∗ using sk′ rather than sk:

• d∗ := Priv(sk′, x∗) + Mβ ∈ Π.

The challenger still uses sk to compute the public key in Initialize and to
answer Dec queries.

Claim 3. |Pr4[Win] − Pr5[Win]| ≤ 2−Ω(λ).

Proof. We analyze the information about sk (resp. sk and sk′ ) that A may
obtain in G4 (resp. G5 ).
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• In Initialize, A obtains pkρ = αρ(sk) from the public key PK.
• In Enc, since x∗ ←$ Lρ0 , the behavior of Enc is completely determined by

αρ0(sk) (resp. αρ0(sk
′) ).

• In Dec, the challenger will not output M unless x ∈ Lρ (due to the new
rejection rule added in G4), thus the behavior of Dec is completely determined
by αρ(sk).

• From oracle Leak(L), A obtains at most κ-bit information of sk.

Note that, L is indeed independent of ρ0. The reason is as follows: (1) ρ0 is
used only in Enc; (2) A is not allowed to query Leak as long as it has queried
Enc.

By the κ-LR-〈L ,L0〉-key-switching property of QAHPS (cf. (4)), we have

Δ
( (

ρ0,
∣

∣αρ0(sk)
)

,
(

ρ0,
∣

∣αρ0(sk
′)

) ∣

∣ αρ(sk), L(sk)
)

≤ 2−Ω(λ).

Thus, |Pr4[Win] − Pr5[Win]| ≤ 2−Ω(λ), and Claim 3 follows.

Game G6: This game is the same as game G5, except that, for all the Enc
queries, the challenger samples d∗ ←$ Π uniformly at random.

Claim 4.
∣

∣ Pr5[Win] − Pr6[Win]
∣

∣ ≤ AdvQe−L0−mext
QAHPS (λ).

Proof. The difference between G5 and G6 lies in Enc and can be characterized
by the following two distributions:

• G5:
(

x∗
j ←$ Lρ0 , d∗

j := Priv(sk′, x∗
j ) + Mβ,j ∈ Π

)

j∈[Qe]
,

• G6:
(

x∗
j ←$ Lρ0 , d∗

j ←$ Π
)

j∈[Qe]
,

where x∗
j , d∗

j , Mβ,j denote the x∗, d∗, Mβ in the j-th Enc query, respectively.
We note that sk′ is used only in the computations of d∗ in Enc. By the

L0-multi-extracting property of QAHPS, the above two distributions are com-
putationally indistinguishable. Consequently, Claim4 follows.

Finally in game G6, d∗ is uniformly chosen from Π regardless of the value
of β, thus the challenge bit β is completely hidden to A. Then Pr6[Win] = 1

2 .
Taking all things together, Theorem1 follows. ��

5 Instantiations over Asymmetric Pairing Groups

Now we instantiate our generic PKE construction in Sect. 4 based on the matrix
DDH assumptions over asymmetric pairing groups. Specifically, we present the
instantiations of the language distributions L ,L0,L1, the LR-weak-ardent
QAHPS, the LR-ardent Q̂AHPS, the LR-weak-ardent tag-based Q̃AHPS and the
resulting scheme PKElr

asym, in Subsects. 5.2, 5.3, 5.4, 5.5, and 5.6, respectively.
In the full version [22], we also show instantiations of L ,L0,L1,QAHPS,

Q̂AHPS, Q̃AHPS and PKElr
sym over symmetric pairing groups.
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5.1 The Language Distribution for Linear Subspaces

Let PG = (G1, G2, GT , p, e, P1, P2, PT ) be an asymmetric pairing group. For any
matrix distribution D�,k, which outputs matrices in Z

�×k
p , it naturally gives rise

to a language distribution LD�,k
for linear subspaces over groups G1 and G2:

– LD�,k
invokes A1,A2 ← $ D�,k, and outputs a language parameter ρ =

([A1]1, [A2]2) ∈ G
�×k
1 × G

�×k
2 together with a trapdoor td = (A1,A2).

The matrix ρ defines a linear subspace language Lρ on G
�
1 × G

�
2:

8

Lρ =
{

([c1]1, [c2]2)
∣

∣ ∃ w1,w2 ∈ Z
k
p \ {0}, s.t. [c1]1 = [A1w1]1 ∧ [c2]2 = [A2w2]2

}

= span([A1]1) × span([A2]2) ⊆ X =
(

G
�
1 \ {[0]1}

)

×
(

G
�
2 \ {[0]2}

)

.

The trapdoor td can be used to decide whether or not an instance ([c1]1, [c2]2)
is in Lρ efficiently: with td = (A1,A2), one can first compute a basis of the kernel
space of A�

1 (resp. A�
2 ), namely A⊥

1 ∈ Z
�×(�−k)
p satisfying A�

1 · A⊥
1 = 0 (resp.

A⊥
2 ∈ Z

�×(�−k)
p satisfying A�

2 · A⊥
2 = 0), then check whether [c�

1 ]1 · A⊥
1 =

[0]1 ∧ [c�
2 ]2 · A⊥

2 = [0]2 holds.
Clearly, the SMP related to LD�,k

corresponds to a hybrid of the D�,k-MDDH
assumptions over G1 and G2, and the multi-fold SMP related to LD�,k

corre-
sponds to a hybrid of the Q-fold D�,k-MDDH assumptions over G1 and G2 for
any Q = poly(λ). The same also holds for the uniform distribution U�,k. Formally,
we have the following lemma, which is a corollary of the random self-reducibility
of D�,k-MDDH and U�,k-MDDH.

Lemma 3 (D�,k /U�,k-MDDH ⇒Multi-fold SMP related to LD�,k
/

LU�,k
). Let Q > � − k. For any adversary A, there exist adversaries B1 and

B2 such that T(B1) ≈ T(B2) ≈ T(A) + Q · poly(λ) with poly(λ) independent of
T(A), and AdvQ-msmp

LD�,k
,A(λ) ≤ (�−k)·Advmddh

D�,k,G1,B1
(λ)+(�−k)·Advmddh

D�,k,G2,B2
(λ)+

2/(p − 1).
For any adversary A, there exist adversaries B1 and B2 such that T(B1) ≈

T(B2) ≈ T(A) + Q · poly(λ) with poly(λ) independent of T(A), and

AdvQ-msmp
LU�,k

,A (λ) ≤ Advmddh
U�,k,G1,B1

(λ) + Advmddh
U�,k,G2,B2

(λ) + 2/(p − 1).

5.2 The Instantiation of Language Distributions

To instantiate the generic PKE construction in Sect. 4, the first thing we need
to do is to determine three language distributions L , L0 and L1 carefully.

Let � ≥ 2k + 1. Let D�,k be an (arbitrary) matrix distribution, and U�,k, U ′
�,k

independent copies of the uniform distribution, all of which output matrices in
Z

�×k
p . Based on the previous subsection, we designate the language distributions

L , L0 and L1 as follows.
8 For technical reasons, the zero vector [0]1 (resp. [0]2) must be excluded from
span([A1]1) and G

�
1 (resp. span([A2]2) and G

�
2). For the sake of simplicity, we forgo

making this explicit in the sequel.
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• L := LD�,k
, which invokes A1,A2 ←$ D�,k and outputs (ρ = ([A1]1, [A2]2),

td = (A1,A2));
• L0 := LU�,k

, which invokes A0,1,A0,2 ←$ U�,k and outputs (ρ0 = ([A0,1]1,
[A0,2]2), td0 = (A0,1,A0,2));

• L1 := LU ′
�,k

, which invokes A1,1,A1,2 ←$ U ′
�,k and outputs (ρ1 = ([A1,1]1,

[A1,2]2), td1 = (A1,1,A1,2)).

5.3 The Instantiation of LR-Weak-Ardent QAHPS

We present the construction of QAHPS = (Setup, α(·),Pub,Priv) for the language
distribution L (= LD�,k

) in Fig. 3. It is straightforward to check the perfect
correctness of QAHPS.

Fig. 3. Construction of LR-weak-ardent QAHPS over asymmetric pairing groups.

Theorem 2 (L0-Multi-Extracting of QAHPS). If the Uk+1,k-MDDH
assumption holds over G2, then the proposed QAHPS in Fig. 3 is L0-multi-
extracting, where the language distribution L0 (= LU�,k

) is specified in Sub-
sect. 5.2.

Concretely, for any adversary A, any polynomial Q = poly(λ), there exists
an adversary B, such that T(B) ≈ T(A) + Q · poly(λ) with poly(λ) independent
of T(A), and AdvQ−L0−mext

QAHPS,A (λ) ≤ Advmddh
Uk+1,k,G2,B(λ) + 1/(p − 1).

The proof of Theorem2 is in the full version [22] due to the space limitation.
The LR-weak-ardency of QAHPS follows from the theorem below. The proof

of the theorem is quite similar to that for Theorem4 (to be described later),
thus we omit it here and put it in the full version [22].
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Theorem 3 (LR-weak-ardency of QAHPS). Let � ≥ 2k + 1 and κ ≤
log p − Ω(λ). The proposed QAHPS for L in Fig. 3 satisfies the properties
listed in Table 2, i.e., (1) it is perfectly 〈⊥,⊥〉-universal and (2) it supports
κ-LR-〈L ,L0〉-key-switching, where the language distributions L = LD�,k

and
L0 = LU�,k

are specified in Subsect. 5.2.

5.4 The Instantiation of LR-Ardent QAHPS

We present the construction of Q̂AHPS = (Ŝetup, α̂(·), ̂Pub, ̂Priv) for L (= LD�,k
)

in Fig. 4. It is straightforward to check the perfect correctness of Q̂AHPS. The
construction is inspired by the “OR-proof” proposed in [1] and the QA-NIZK
for linear subspaces proposed in [28].

Fig. 4. Construction of LR-ardent Q̂AHPS over asymmetric pairing groups.

The hash function ̂Λ
̂sk

([c1]1, [c2]2) multiplies ̂K with [c1]1 and [c2]2.

Theorem 4 (LR-ardency of Q̂AHPS). Let � ≥ 2k + 1 and κ ≤ log p − Ω(λ).
The proposed Q̂AHPS scheme for L in Fig. 4 satisfies the properties listed in
Table 2, more precisely, (1) it is κ-LR-〈L ,L0〉- and perfectly 〈L0,L1〉-universal
and (2) it supports κ-LR-〈L ,L0〉-key-switching, where the language distribu-
tions L = LD�,k

, L0 = LU�,k
and L1 = LU ′

�,k
are specified in Subsect. 5.2.

Proof of Theorem 4.

[Perfectly 〈L ,L0〉-Universal.] Let (ρ = ([A1]1, [A2]2) ∈ G
�×k
1 × G

�×k
2 , td) ←

$ L and (ρ0 = ([A0,1]1, [A0,2]2) ∈ G
�×k
1 × G

�×k
2 , td0) ← $ L0. With over-

whelming probability 1 − 2−Ω(λ), both (A1,A0,1) ∈ Z
�×2k
p and (A2,A0,2) ∈

Z
�×2k
p are of full column rank. For ̂sk = ̂K ←$ Z

�×�
p and any ([c1]1, [c2]2) ∈

X \ (Lρ ∪ Lρ0), we consider the distribution of ̂Λ
̂sk

([c1]1, [c2]2) conditioned
on ̂pkρ = α̂ρ(̂sk) and ̂pkρ0

= α̂ρ0(̂sk).
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Let a⊥
1 ∈ Z

�
p (resp. a⊥

2 ∈ Z
�
p, a⊥

0,1 ∈ Z
�
p, a⊥

0,2 ∈ Z
�
p) be an arbitrary

non-zero vector in the kernel space of A�
1 (resp. A�

2 , A�
0,1, A�

0,2) such that
A�

1 · a⊥
1 = 0 (resp. A�

2 · a⊥
2 = 0, A�

0,1 · a⊥
0,1 = 0, A�

0,2 · a⊥
0,2 = 0) holds. For

the convenience of our analysis, we sample ̂sk = ̂K ←$ Z
�×�
p equivalently via

̂sk = ̂K := ˜K + μ1 · a⊥
0,2 · (a⊥

1 )� + μ2 · a⊥
2 · (a⊥

0,1)
� ∈ Z

�×�
p , where ˜K ←$ Z

�×�
p

and μ1, μ2 ←$ Zp. Consequently, we have ̂pkρ = α̂ρ(̂sk) = [A2]�2 · ̂K · [A1]1 =
[A2]�2 · ˜K · [A1]1, ̂pkρ0

= α̂ρ0(̂sk) = [A0,2]�2 · ̂K · [A0,1]1 = [A0,2]�2 · ˜K · [A0,1]1,
which may leak ˜K, but μ1 and μ2 are completely hidden. Besides,

̂Λ
̂sk

([c1]1, [c2]2) = [c2]�2 · ̂K · [c1]1

= [c2]�2 · ˜K · [c1]1 + μ1 · [c�
2 a⊥

0,2]2 · [c�
1 a⊥

1 ]�1 + μ2 · [c�
2 a⊥

2 ]2 · [c�
1 a⊥

0,1]
�
1 .

We divide the condition ([c1]1, [c2]2) ∈ X \ (Lρ ∪ Lρ0) into three cases:
– Case I: [c1]1 ∈ span([A1]1).

It must hold that [c1]1 /∈ span([A0,1]1) and [c2]2 /∈ span([A2]2): the
former holds since span([A1]1) ∩ span([A0,1]1) = ∅ (recall that the zero
vector [0]1 is excluded from span spaces) and the latter is due to the fact
that ([c1]1, [c2]2) /∈ Lρ = span([A1]1) × span([A2]2).
Thus, we can always find an a⊥

2 ∈ Z
�
p such that [c�

2 a⊥
2 ]2 �= [0]2 holds and

find an a⊥
0,1 ∈ Z

�
p such that [c�

1 a⊥
0,1]1 �= [0]1 holds. Then, conditioned on

̂pkρ and ̂pkρ0
, μ2 · [c�

2 a⊥
2 ]2 · [c�

1 a⊥
0,1]

�
1 is uniformly distributed over GT

due to the randomness of μ2, so is ̂Λ
̂sk

([c1]1, [c2]2).
– Case II: [c2]2 ∈ span([A0,2]2).

It must hold that [c1]1 /∈ span([A0,1]1) and [c2]2 /∈ span([A2]2): the
former is due to the fact that ([c1]1, [c2]2) /∈ Lρ0 = span([A0,1]1) ×
span([A0,2]2) and the latter holds since span([A2]2) ∩ span([A0,2]2) = ∅
(recall that the zero vector [0]2 is excluded from span spaces).
Similar to the analysis of Case I, conditioned on ̂pkρ and ̂pkρ0

,
̂Λ

̂sk
([c1]1, [c2]2) is uniformly distributed over GT .

– Case III: [c1]1 /∈ span([A1]1) ∧ [c2]2 /∈ span([A0,2]2).
In this case, we can always find an a⊥

1 ∈ Z
�
p such that [c�

1 a⊥
1 ]1 �= [0]1 holds

and find an a⊥
0,2 ∈ Z

�
p such that [c�

2 a⊥
0,2]2 �= [0]2 holds. Then, conditioned

on ̂pkρ and ̂pkρ0
, μ1 · [c�

2 a⊥
0,2]2 · [c�

1 a⊥
1 ]�1 is uniformly distributed over GT

due to the randomness of μ1, so is ̂Λ
̂sk

([c1]1, [c2]2).
In summary, ̂Λ

̂sk
([c1]1, [c2]2) is uniformly distributed over GT conditioned

on ̂pkρ and ̂pkρ0
no matter which case it is.

This implies that Q̂AHPS is perfectly 〈L ,L0〉-universal.
[Perfectly 〈L0,L1〉-Universal.] It can be proved in a similar way as above.
[κ-LR-〈L ,L0〉-Universal. It follows from Lemma 1.
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[κ-LR-〈L ,L0〉-Key-Switching.] Let (ρ = ([A1]1, [A2]2), td) ← $ L and let
L : ̂SK −→ {0, 1}κ be an arbitrary leakage function. For ̂sk = ̂K ←$ Z

�×�
p ,

̂sk′ = ̂K′ ←$ Z
�×�
p and (ρ0 = ([A0,1]1, [A0,2]2), td0) ←$ L0, we aim to prove

Δ
( (

ρ0,
∣
∣[A0,2]

�
2 K̂[A0,1]1

︸ ︷︷ ︸
α̂ρ0 (̂sk)

)
,
(
ρ0,

∣
∣[A0,2]

�
2 K̂′[A0,1]1

︸ ︷︷ ︸
α̂ρ0 (̂sk′)

) ∣
∣ [A2]

�
2 K̂[A1]1︸ ︷︷ ︸

α̂ρ(̂sk)

, L(K̂)
) ≤ 2−Ω(λ).

(5)
Taking [A0,1]1 as a universal hash function and the � rows of ̂K as � inde-
pendent inputs, we have that

Δ
( (

[A0,1]1,
∣

∣̂K[A0,1]1
)

,
(

[A0,1]1,
∣

∣[U]1
) ∣

∣ ̂K[A1]1, L( ̂K)
)

≤ 2−Ω(λ), (6)

where U ← $ Z
�×k
p , by the multi-fold generalized leftover hash lemma (see

[13] and our full version [22]). Meanwhile, ̂K′ is uniform and independent of
A0,1,A1 and ̂K. So,

(

[A0,1]1,
∣

∣[U]1 , ̂K[A1]1, L( ̂K)
)

≡
(

[A0,1]1,
∣

∣̂K′[A0,1]1 , ̂K[A1]1, L( ̂K)
)

. (7)

(6) and (7) implies

Δ
( (

[A0,1]1,
∣

∣̂K[A0,1]1
)

,
(

[A0,1]1,
∣

∣̂K′[A0,1]1
) ∣

∣ ̂K[A1]1, L( ̂K)
)

≤ 2−Ω(λ). (8)

Note that the variables in Δ() of (5) can be regarded as outputs of certain
randomized function of the variables in Δ() of (8), therefore (5) holds.

This completes the proof of κ-LR-〈L ,L0〉-key-switching. ��

5.5 The Instantiation of LR-Weak-Ardent Tag-Based QAHPS

We present the construction of tag-based Q̃AHPS = (S̃etup, α̃(·), ˜Pub, ˜Priv) for
the language distribution L (= LD�,k

) in Fig. 5. It is straightforward to check

the perfect correctness of Q̃AHPS.

Fig. 5. Construction of LR-weak-ardent tag-based Q̃AHPS over asym. pairing groups.
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Theorem 5 (LR-weak-ardency of Tag-Based Q̃AHPS). Let � ≥ 2k+1 and
κ ≤ log p−Ω(λ). The proposed tag-based Q̃AHPS scheme for L in Fig. 5 satisfies
the properties listed in Table 2, i.e., (1) it is 〈⊥,⊥〉-universal and (2) it supports
κ-LR-〈L ,L0〉- and 〈L0,L1〉-key-switching, where L = LD�,k

, L0 = LU�,k
and

L1 = LU ′
�,k

are specified in Subsect. 5.2.

The proof of the theorem is quite similar to that of Theorem4, thus we omit
it here and put it in the full version [22].

5.6 Tightly LR-CCA-Secure PKE over Asymmetric Pairing Groups

We are able to instantiate (the more efficient variant of) our generic con-
struction of LR-CCA secure PKE in Sect. 4 (cf. Remark 6) with the LR-
weak-ardent QAHPS (cf. Fig. 3), the LR-ardent Q̂AHPS (cf. Fig. 4) and the
LR-weak-ardent tag-based Q̃AHPS (cf. Fig. 5) over asymmetric pairing groups
PG = (G1, G2, GT , p, e, P1, P2, PT ). Let H = {H : G

�
1 × G

�+1
2 −→ G2} be a

collision-resistant function family. We present the instantiation PKElr
asym with

message space M = G2 in Fig. 6. The scheme can be easily extended to encrypt
vectors over G2, by replacing the vector k in the secret key with a matrix.

Fig. 6. The instantiation PKElr
asym over asymmetric pairing groups. The message space

is M = G2. Here H = {H : G
�
1 × G

�+1
2 −→ G2} is a collision-resistant function family.

For � ≥ 2k + 1 and κ ≤ log p − Ω(λ), by combining Theorem 1, Lemma 3
and Theorems 2, 3, 4, 5 together, we obtain the following corollary regarding the
LR-CCA security of our instantiation PKElr

asym.

Corollary 1 (LR-CCA Security of PKElr
asym). Let � ≥ 2k + 1 and κ ≤

log p − Ω(λ). If (i) the D�,k-MDDH assumption holds over both G1 and G2,
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(ii) H is a collision-resistant function family, then the instantiation PKElr
asym in

Fig. 6 is κ-LR-CCA secure. Concretely, for any adversary A who makes at most
Qe times of Enc queries and Qd times of Dec queries, there exist adversaries
B1, B2 and B3, such that T(B3) ≈ T(A)+(Qe +Qd) ·poly(λ), T(B1) ≈ T(B2) ≈
T(A) + (Qe + Qe · Qd) · poly(λ), with poly(λ) independent of T(A), and

Advκ-lr-cca
PKElr

asym,A(λ) ≤ (4
log Qe� + � − k + 2) ·
(

Advmddh
D�,k,G1,B1

(λ) + Advmddh
D�,k,G2,B2

(λ)
)

+ Advcr
H,B3

(λ) + (4 + Qd + QdQe + 
log Qe�(Qd + Qe + QdQe)) · 2−Ω(λ).

Tight LR-CCA Security, Efficiency and Leakage-Rate of PKElr
asym. When

D�,k := U�,k, the LR-CCA security of PKElr
asym is tightly reduced to the standard

k-LIN assumption since k-LIN implies U�,k-MDDH. Let kG denote k elements
in G. By taking � = 2k + 1, we have PP : (2k2 + k)G1 + (2k2 + k)G2, PK :
2kG1+kG2+k2

GT , SK : (4k2+10k+4)Zp, and C : (2k+1)G1+(2k+2)G2+1GT .
See Table 1 for details. Furthermore, if we choose κ = log p − Ω(λ), then the
leakage-rate of the LR-CCA security is κ/BitLength(SK) = 1

4k2+10k+4 ·(1− Ω(λ)
log p ),

which is arbitrarily close to 1/(4k2 + 10k + 4) if we choose a sufficiently large p.
Particularly, in case k = 1, the tight LR-CCA security of PKElr

asym is based on
the SXDH assumption and it has PK : 2G1 + 1G2 + 1GT , C : 3G1 + 4G2 + 1GT

and leakage-rate = 1/18 − o(1).

Remark 8 (Tight LR-CCA Security in the Multi-User Setting). For
better readability, we merely considered the LR-CCA security in the single-user
setting so far. Our results extend naturally to the multi-user setting. (The defini-
tion of LR-CCA security in the multi-user setting is presented in the full version
[22].) In our single-user LR-CCA security proof (i.e., the proof of Theorem1),
most steps are statistical arguments (e.g., using the LR-universal or LR-key-
switching properties of the underlying QAHPS schemes), thus could be easily
carried over to the multi-user setting. The only points that are not statistical
and hence need to be adapted is the use of the SMP assumptions (e.g., the game
transition G2 → G3 in the proof of Theorem 1) and the multi-extracting property
(the game transition G5 → G6). The adaptions are straightforward: the former
is essentially unchanged, since the language parameter ρ that the SMP is w.r.t.
is part of the public parameters PP, shared by all users; the latter could be
tightly reduced to the MDDH assumptions for multiple users, by the random
self-reducibility of MDDH.
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Abstract. We revisit the concept of non-malleable secret sharing (Goyal
and Kumar, STOC 2018) in the computational setting. In particular,
under the assumption of one-to-one one-way functions, we exhibit a com-
putationally private, threshold secret sharing scheme satisfying all of the
following properties.

– Continuous non-malleability: No computationally-bounded adv-
ersary tampering independently with all the shares can produce
mauled shares that reconstruct to a value related to the original
secret. This holds even in case the adversary can tamper continu-
ously, for an unbounded polynomial number of times, with the same
target secret sharing, where the next sequence of tampering func-
tions, as well as the subset of shares used for reconstruction, can be
chosen adaptively based on the outcome of previous reconstructions.

– Resilience to noisy leakage: Non-malleability holds even if the
adversary can additionally leak information independently from all
the shares. There is no bound on the length of leaked information,
as long as the overall leakage does not decrease the min-entropy of
each share by too much.

– Improved rate: The information rate of our final scheme, defined
as the ratio between the size of the message and the maximal size of
a share, asymptotically approaches 1 when the message length goes
to infinity.

Previous constructions achieved information-theoretic security, some-
times even for arbitrary access structures, at the price of at least one
of the following limitations: (i) Non-malleability only holds against one-
time tampering attacks; (ii) Non-malleability holds against a bounded
number of tampering attacks, but both the choice of the tampering func-
tions and of the sets used for reconstruction is non-adaptive; (iii) Infor-
mation rate asymptotically approaching zero; (iv) No security guarantee
in the presence of leakage.
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1 Introduction

In a secret sharing (SS) scheme, a trusted dealer divides a secret message m into
shares that are distributed to n parties, in such a way that any authorized subset
of parties can efficiently determine the secret, whereas unauthorized subsets of
parties have (statistically) no information about the message. In this paper, we
focus on threshold secret sharing (TSS), where the unauthorized subsets are those
with at most τ − 1 players, for a parameter τ ≤ n.

The above type of SS is also known as τ -out-of-n TSS, and was originally
introduced by Shamir [56] and Blakey [14]. SS has found many applications to
cryptography, ranging from data storage [45] and threshold cryptography [28],
to secure message transmission [31], multi-party computation [12,20,40], and
private circuits [9,38,46].

An important parameter of an SS scheme is its information rate, defined as
the ratio between the size of the message and the maximal size of a share. It is
well-known that the best possible information rate for TSS satisfying statistical
privacy is 1, meaning that the size of each share must at least be equal to that
of the message being shared [11].

1.1 Non-malleable Secret Sharing

Classical SS offers no guarantee in the presence of a tampering adversary mod-
ifying (possibly all!) the shares. Motivated by this shortcoming, Goyal and
Kumar [42] introduced one-time non-malleable secret sharing (NMSS), which
intuitively guarantees that even if all of the shares are tampered once, the recon-
structed message is either equal to the original shared value or independent of
it. The only limitation is that the adversary is restricted to change the shares
independently, a model sometimes known under the name of individual tamper-
ing. As usual, in order to reconstruct the secret, only � ≤ n shares are required,
and typically the reconstruction threshold � equals the privacy threshold τ .

Recently, the topic of NMSS has received a lot of attention. We summarize
the state of the art below, and in Table 1.

– In their original paper, Goyal and Kumar [42] gave a construction of NMSS
with 1-time non-malleability against individual tampering. The rate of this
construction is Θ( 1

n log μ ), where μ is the size of the message. In the same
paper, the authors also propose a more complex construction that satisfies
1-time non-malleability in a stronger model where the adversary is allowed
to jointly tamper subsets of up to τ − 1 shares.
In [43], the same authors construct NMSS satisfying 1-time non-malleability
against individual and joint tampering, and further supporting arbitrary
monotone access structures. The rate of these constructions asymptotically
approaches zero when the length of the message goes to infinity.
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– Badrinarayanan and Srinivasan [10] construct NMSS with improved rate.
In particular, they put forward a stronger security model called p-time
non-malleability, in which the adversary can tamper with the same target
secret sharing s = (s1, . . . , sn) for p ≥ 1 times, by non-adaptively specifying
sequences of tampering functions

(f (1)
1 , . . . , f (1)

n ), . . . , (f (p)
1 , . . . , f (p)

n ) (1)

yielding mauled shares s̃(q) = (s̃(q)1 , . . . , s̃
(q)
n ), for each q ∈ [p]. Non-

malleability here means that for every reconstruction set T with size at
least τ , fixed before tampering takes place, the secrets reconstructed out of
s̃
(1)
T , . . . , s̃

(p)
T are independent of the original message.

The main result of [10] are NMSS schemes with p-time non-malleability, both
for threshold access structures (with � = τ ≥ 4), and for arbitrary 4-monotone
access structures, with rates, respectively, Θ

(
1

p3·τ ·log2 n

)
and Θ

(
1

p3·τmax·log2 n

)

(where τmax is the maximum size of a minimal authorized subset). Impor-
tantly, the maximal value of p is a priori fixed and, in fact, the shares’ size
can depend on it. Moreover, they proved that, in the information-theoretic
setting, it is impossible to construct NMSS achieving non-malleability against
an unbounded polynomial number of tampering attempts.

– Aggarwal et al. [2] consider a strengthening of p-time non-malleability, in
which the adversary tampers non-adaptively p times, as in Eq. (1), but addi-
tionally specifies p different sets T1, . . . , Tp for the reconstruction of each
mauled shares s̃(1), . . . , s̃(p). In other words, the requirement is now that
s̃
(1)
T1

, . . . , s̃
(p)
Tp

are independent of the original message. They dub their model
p-time non-malleability under non-adaptive concurrent reconstruction, since
the sets T1, . . . , Tp are specified in a non-adaptive fashion.
The main result of [2] is a construction of NMSS with rate Θ( 1

n log μ ), satisfying
p-time non-malleability under non-adaptive concurrent reconstruction.

– Srinivasan and Vasudevan [58] construct the first NMSS for 4-monotone access
structures, and satisfying 1-time non-malleability with rate Θ(1).

– Finally, Kumar, Meka, and Sahai [49] construct NMSS with 1-time non-
malleability, but where the adversary is additionally allowed to adaptively
leak information on the shares independently, i.e. they considered for the
first time leakage-resilient NMSS (LR-NMSS). Note that here, the choice of
the tampering functions can adaptively depend on the leakage. The rate of
this scheme asymptotically approaches zero.

1.2 Our Contributions

All the above mentioned works construct NMSS, with different characteris-
tics, in the information-theoretic setting, where both the privacy and the non-
malleability of the scheme holds even against unbounded adversaries. A natural
question is whether one can improve the state of the art in the computational
setting, where the adversary for privacy and non-malleability is computationally
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bounded. Note that this is particularly appealing, in view of the fact that fully-
fledged continuous non-malleability is impossible to achieve in the information-
theoretic setting [10]. Hence, the following question is open:

Can we construct NMSS where a computationally-bounded adversary
can tamper adaptively, with the same target shares, for an unbounded

polynomial number of times, and under adaptive concurrent
reconstruction?

In this work, we answer the above question affirmatively for the case of
threshold access structures and individual tampering, assuming 1-to-1 one-way
functions (OWFs). Our final scheme has rate asymptotically approaching 1, and
furthermore satisfies leakage resilience.

Theorem 1 (Main Theorem, Informal). Let τ, �, n ∈ N be such that τ, � ≤ n
and τ ≤ � − 1. Assuming 1-to-1 OWFs, there exists noisy-leakage-resilient, con-
tinuously non-malleable τ -out-of-n secret sharing (LR-CNMSS) under adaptive
concurrent reconstruction (where at least � parties are needed to reconstruct the
secret), with information rate (asymptotically) one.

We observe that leakage resilience holds in the so-called noisy-leakage model,
where the actual amount of information that can be leaked independently from
each share is unbounded, as long as the uncertainty of each share does not
decrease by too much. Also, notice that there is a minimal gap1 between the
reconstruction threshold � and the privacy threshold τ (i.e., τ ≤ � − 1). Inter-
estingly, as we explain in Sect. 4.2, CNMSS cannot exist unconditionally for
the optimal parameters τ = �, and thus our work leaves open the question
of constructing TSS where both privacy and continuous non-malleability hold
statistically, as long as τ < �.

A final remark is that the definition of continuous non-malleability uses a
special self-destruct feature, in which after the first invalid mauled secret sharing
is found (i.e., a collection of shares s̃

(q)
Tq

whose reconstruction equals an error
symbol ⊥), the answer to all future tampering queries is by default set to be ⊥.
As we show in Sect. 4.3, such a feature is necessary, in the sense that without it no
CNMSS exists (even without considering leakage and concurrent reconstruction).

1.3 Tamper-Resilient Threshold Signatures

As an application, we consider a generalization of the classical transformation
from standard security to tamper-proof security via non-malleable codes [33], in
the setting of threshold cryptography. For concreteness, we focus on threshold
signatures, which allow to secret share a signing key among n servers, in such
a way that any subset of at least � servers can interact in order to produce the
signature of a message. The standard security guarantee here is that an adversary

1 Secret sharing scheme with a gap between reconstruction and privacy are known in
literature as ramp secret sharing scheme.
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corrupting up to τ −1 servers cannot forge a valid signature, even after observing
several transcripts of the signing protocol with the honest servers.

Given any CNMSS, we show how to compile a non-interactive threshold
signature into an interactive (2-round) threshold signature that additionally is
secure in the presence of continuous tampering attacks. More precisely, we imag-
ine an external forger corrupting the memory of (possibly all!) the servers inde-
pendently (say via a malware installed on each of the servers), and observing
several signatures produced using arbitrarily modified secret-key shares.

A similar application was recently considered in [2]. The main advantage
of our model is that the attacker is allowed to tamper continuously with the
memory of the servers, and further can adaptively choose the subset of servers
participating in each invocation of the signature protocol; on the negative side,
our adversary is not allowed to fully corrupt any of the servers, whereas in the
model of [2] the forger, after tampering once, obtains the secret-key shares of
τ−1 servers. In our perspective, this difference stems from the fact that [2] makes
a non-black-box usage of the underlying NMSS, which allows to exploit a slightly
stronger form of non-malleability which, although not formalized by the authors,
seems to be met by their specific construction. (I.e., non-malleability still holds
even if the attacker learns a subset of the original shares, after tampering is over;
such a property is sometimes known as augmented non-malleability in the non-
malleable codes literature [1,25].) In contrast, our compiler only makes black-box
calls to the underlying primitives.

1.4 Further Related Works

Robust Secret Sharing. In robust SS (see, e.g. [13,16,54,55]), a monolithic adver-
sary can (non-adaptively) corrupt up to τ players, and thus jointly tamper their
shares. Robustness guarantees that given all the � = n shares, the reconstructed
message is identical to the original shared value.

While robustness is a strong form of non-malleability, it is clearly impossible
when more than n/2 shares are corrupted (even in the computational setting).

Non-malleable Codes. The concept of NMSS is intimately related to the notion of
non-malleable codes (NMCs) [33]. Intuitively, a NMC allows to encode a message
in such a way that tampering with the resulting codeword via a function f ∈ F ,
where F is a set of allowed tampering functions that is a parameter in the
definition, yields a modified codeword that either decodes to the original message
or to an unrelated value. Several constructions of NMCs exist in the literature, for
different families F ; one of the most popular choices is to think of the tampering
function as a sequence of n functions f = (f1, . . . , fn), where each function fi

modifies a different chunk of the codeword arbitrarily, yet independently. This
is often known as the n-split-state model [3,4,6,7,17–19,21,22,32,33,47,50,51],
the most general case being the case n = 2.

As shown by Aggarwal et al. [7], every NMC in the 2-split-state model is a 2-
out-of-2 NMSS in disguise. Similarly, it is easy to see that any (leakage-resilient)
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continuously NMC (LR-CNMC) in the 2-split-state model [25,34,37,53] is a 2-
out-of-2 LR-CNMSS as per our definition.

Leakage-Resilient Codes. When no tampering is considered, our definition of
LR-CNMSS collapses to that of leakage-resilient secret sharing, as originally
introduced by Dav̀ı, Dziembowski, and Venturi, for the case n = τ = � = 2 [27].
This topic recently received renewed attention, see, in particular, [2,49,58].

2 Technical Highlights

Intuitively, the proof of Theorem1 proceeds in two steps. In the first step, we
show how to obtain LR-CNMSS with information rate asymptotically approach-
ing 0, assuming 1-to-1 OWFs. In the second step, we show how to boost the
asymptotic rate generically, from 0 to 1, under the same assumption. Below, we
explain these two steps with some details, after presenting our security model
informally.

2.1 Security Model

Let Σ be an n-party TSS, with reconstruction threshold � (i.e., given at
least � shares we can efficiently reconstruct the message) and privacy thresh-
old τ (i.e., τ − 1 shares reveal no information on the message to the eyes
of a computationally-bounded adversary). In order to define continuous non-
malleability for TSS, we consider an efficient adversary interacting with a target
secret sharing s = (s1, . . . , sn) of some message m ∈ M, via the following queries.

– Tampering: The attacker can specify a sequence of efficiently-computable
functions (f (q)

1 , . . . , f
(q)
n ), yielding mauled shares

s̃(q) = (s̃(q)1 , . . . , s̃(q)n ) = (f (q)
1 (s1), . . . , f (q)

n (sn)),

along with a set Tq ⊆ [n], with size �̃ ≥ �. The answer to such a query is the
message m̃(q) which is reconstructed using the shares s̃

(q)
Tq

. The above queries
can be chosen in a fully-adaptive fashion for all q ∈ [p], where p is an arbitrary
polynomial in the security parameter; however, after the first tampering query
generating an invalid message ⊥ during reconstruction, the system switches
to a “self-destruct mode” in which the answer to future tampering queries is
automatically set to ⊥.

– Leakage: The attacker can specify an efficiently-computable function g, and
an index i ∈ [n], upon which it obtains g(si). These queries can be chosen in
a fully-adaptive fashion, as long as the uncertainty of each share conditioned
on the leakage (measured via conditional average min-entropy [30]) is reduced
at most by a value � ∈ N that is a parameter of the scheme.
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The formal definition of leakage-resilient continuous non-malleability essentially
says that for each pair of messages m0,m1 ∈ M, the adversary’s view in the
above experiment is computationally indistinguishable in the two cases where
m = m0 and m = m1. Note that when n = τ = � = 2, and further when � is
an upper bound on the total amount of leakage, our definition collapses to the
standard notion of a LR-CNMC in the split-state model [7,51].

One might observe that our definition is game based, whereas all previous
definitions of non-malleable secret sharing are simulation based. While it would
be possible to give a simulation-based definition for LR-CNMSS, it is not hard to
show that the two formulations are equivalent, as long as the length of the shared
value is super-logarithmic in the security parameter. The same equivalence, in
fact, holds true for the case of LR-CNMCs [33,53].

We also remark that the limitations of computational security and self-
destruct are somewhat inherent. First, as shown by [10], no TSS scheme with
� = τ , and satisfying statistical privacy, can achieve information-theoretic con-
tinuous non-malleability w.r.t. an arbitrary polynomial number of tampering
queries; as we explain in Sect. 4.2, however, the latter might still be possible
with a non-zero gap τ < �. Second, as we formally prove in Sect. 4.3, it is also
impossible to achieve continuous non-malleability without a self-destruct capa-
bility. The latter is reminiscent of similar impossibility results in the settings of
tamper-resilient cryptography and non-malleable codes [37,39]. Note that both
these impossibility results hold even without considering leakage and concurrent
reconstruction.

2.2 First Step: Achieving Continuous Non-malleability (Poor Rate)

A Scheme with Low Privacy. Consider the following simple idea, inspired by [42],
how to construct a 2-out-of-n CNMSS by leveraging any CNMC in the split-state
model (i.e., any 2-out-of-2 CNMSS). To share a message m ∈ M, we enumerate
over all the possible pairs of distinct indices smaller than n, and for each such
pair we compute a 2-out-of-2 CNMSS of the message. In other words, for each
subset H = {h1, h2} ∈

(
[n]
2

)
, we consider a non-malleable split-state encoding

sH := (sH,h1 , sH,h2) of the message m, which we assign to the indices h1 and h2.
The final share s∗

i for party i ∈ [n] is then defined to be the collection of all the
shares sH,i, where H is such that i ∈ H. Reconstruction is defined in the natural
way, i.e. given an authorized set H′ = {h′

1, h
′
2}, we simply ignore all the shares

but sH′ , and use (sH′,h′
1
, sH′,h′

2
) to reconstruct the message.

Intuitively, the above scheme is secure because the
(
n
2

)
shares of the mes-

sage m are independently sampled, and furthermore the reconstruction for an
authorized set H is independent of all the shares but one. In particular, the 2-
threshold privacy property follows easily by privacy of the underlying CNMC. As
for continuous non-malleability, consider a sequence of hybrid experiments, one
hybrid for each subset H in

(
[n]
2

)
in lexicographic order: In each hybrid step, we

change the distribution of the target secret sharing s∗ = (s∗
1, . . . , s

∗
n) by letting

(sH,h1 , sH,h2) be a 2-out-of-2 CNMSS of m0 for all sets in
(
[n]
2

)
up to H, whereas

we use m1 to define the remaining shares.
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For the proof, we can build a reduction to the continuous non-malleability
of the underlying split-state encoding. In particular, the simulation of a generic
tampering query of the form (T , (f1, . . . , fn)), proceeds as follows:

– If T and H do not share any index, then they cannot possibly interfere with
each other. In particular, the reduction knows all the shares for the positions
in T , and therefore it can simulate the answer without even querying the
underlying tampering oracle for the split-state CNMC.

– If T and H share (at least) an index, then we can use the target tampering
oracle to compute the mauled shares corresponding to T using the tampering
oracle corresponding to H. However, there is a catch. Let, e.g., be T = {t1, t2}
and H = {h1, h2}, and suppose t2 = h1. To compute the tampered share
s̃T ,t2 , we need to know the value sH,h1 , which is only accessible through the
tampering oracle; as a consequence, the reduction would only be able to obtain
the reconstructed message corresponding to (s̃T ,t2 , s̃T ,t1), which is possibly
different from the reconstructed message corresponding to (s̃T ,t1 , s̃T ,t2). We
bypass this problem by assuming that the underlying split-state CNMC has
symmetric decoding, namely the decoding output is invariant w.r.t. the order
of the two shares. As we explain later, this property is satisfied by known
schemes.

Amplifying the Privacy. Intuitively, the transformation above is based on the
fact that by composing a secret sharing for an access structure A with a secret
sharing for an access structure A′, we obtain a new secret sharing for access
structure A∪A′. Unfortunately, we cannot generalize this idea to go from �-out-
of-� to �-out-of-n secret sharing for any � ≤ n, as for efficiency we need

(
n
�

)
≈ n�

to be polynomial in n.
The key idea behind our main construction of CNMSS is to compose together(

n
2

)
secret sharing schemes with different access structures, such that their union

gives the desired �-threshold access structure. Specifically, consider the following
construction of a �-out-of-n TSS based on a split-state CNMC, on an authen-
ticated secret-key encryption (AE) scheme, and on an auxiliary (� − 3)-out-of-
(n − 2) TSS.

For a fixed pair of indices H = {h1, h2} ∈
(
[n]
2

)
, pick a uniformly random

key κH for the AE scheme, compute a split-state encoding of κH, and call the
resulting shares (sH,h1 , sH,h2); hence, encrypt the message m under the key κH
obtaining a ciphertext cH, and secret share cH using the auxiliary TSS, yielding
shares (sH,h3 , . . . , sH,hn

) where {h3, . . . , hn} = [n] \ H. Notice that this scheme
has access structure AH = {S ⊂ [n] : |S| ≥ �,H ⊂ S}. By repeating the above
procedure for each set H ∈

(
[n]
2

)
, we obtain that the final share s∗

i for party
i ∈ [n] is the collection of all the shares sH,i, so that

⋃
H∈([n]

2 ) AH yields the
�-threshold access structure, as desired. Moreover, the size of each share is still
polynomial in the number of parties.

The proof of threshold privacy is rather straightforward, at least if we set
the privacy threshold for the final scheme to be τ ≤ � − 2. However, in the
computational setting, we can even show privacy τ ≤ �− 1. The key idea is that
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either the adversary has enough shares to reconstruct the underlying ciphertext
(but in this case it does not have access to the secret key, and therefore it learns
nothing by semantic security of the encryption scheme), or, the adversary knows
at most � − 3 shares of the ciphertext (which by perfect privacy of the auxiliary
TSS reveal nothing about the ciphertext).

Proving Continuous Non-malleability. The intuition for non-malleability of the
secret sharing scheme with access structure AH is that by tampering the shares
corresponding to indices h1, h2, the adversary either obtains the original key or
a completely unrelated value: In the former case, by the authenticity of the AE
scheme, the adversary cannot produce a new ciphertext that decrypts correctly;
in the latter case, by the semantic security of the AE scheme, the adversary can-
not produce a ciphertext that decrypts to a related message (under the unrelated
key generated via tampering).

Next, we analyze how continuous non-malleability is preserved when we com-
pose together the different secret sharing schemes with access structure AH (for
H ∈

(
[n]
2

)
). In contrast to the simple composition for the 2-out-of-n CNMSS

construction hinted above, in the new composed scheme the share of party i
consists of both the shares of a split-state encoding of a key, and the shares
of a ciphertext under an auxiliary standard TSS. Hence, in a tampering query,
the adversary could swap these two kinds of shares, with the consequence that
the reconstruction procedure of the underlying (�− 3)-out-of-(n− 2) TSS would
depend on one of the two shares of the split-state CNMC. To resolve this problem
we rely on two different ideas: First, we additionally assume that the split-state
CNMC is resilient to noisy leakage; second, we make sure that the reconstruction
procedure of the auxiliary TSS does not leak information about single shares.

The second idea is the most important one. In fact, by simply assuming leak-
age resilience we could at most tolerate an a priori bounded number of tampering
queries. The reason for this is that, even if each reconstruction leaks just a single
bit of a share sH,i under the split-state CNMC, after |sH,i| consecutive tampering
queries this share could be leaked without provoking a self-destruct. The latter
is better understood by looking at Shamir’s TSS, where to share m ∈ M we pick
a random polynomial of degree � that evaluates to m at point 0, and distribute
to the i-th party the share si obtained by evaluating the polynomial at point
i ∈ [n]. The reconstruction algorithm, given any set of � shares si, interpolates
the corresponding points, thus obtaining a polynomial that is evaluated on the
origin. It is easy to see that such a reconstruction procedure, under tampering
attacks, potentially leaks a lot of information about the single points (without
the risk of self-destruct). In particular, the reconstruction algorithm is a linear
function of the shares, and thus perturbing one point by a multiplicative factor,
allows to recover the value of a share in full via a single tampering query.

We now show how to avoid the above leakage. Fix some index i ∈ [n] for the
i-th share. Given an authorized set of size �, we let our reconstruction proce-
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dure select two different subsets2 of size �− 3, such that one subset includes the
index i, whereas the second subset excludes it. Thus, we run the standard recon-
struction procedure twice, one for each subset, and we accept the reconstructed
message if and only if the two runs yield the same value, otherwise we return an
error message (which triggers a self-destruct). The main observation is that the
second run of the reconstruction algorithm is independent of sH,i, and thus, con-
ditioned on the returned message not being ⊥, the output of the reconstruction
is independent of sH,i. On the other hand, when the returned message is equal
to ⊥, the output of the reconstruction could indeed leak information about the
share with index i, but notice that this situation triggers a self-destruct, and
thus such leakage happens only once.

More in details, for the proof we perform a hybrid argument over all sets
H = {h1, h2} ∈

(
[n]
2

)
, where at each step we change the shared value of the

secret sharing relative to the access structure AH. To show that each pair of
adjacent hybrids are computationally indistinguishable, we consider a reduction
to the continuous non-malleability of the underlying split-state CNMC. Denote
by (sH,h1 , sH,h2) the target codeword. Note that the reduction can sample all
the randomness necessary to create the shares s∗

1, . . . , s
∗
n, except for the shares

s∗
h1

, s∗
h2

for which the values sH,h1 , sH,h2 are missing and will be defined through
the target tampering oracle. Now, suppose the adversary sends a tampering
query (T = {t1, . . . , t�}, (f1, . . . , fn)), and suppose that t1 = h1 and t3 = h2.3

While the reduction cannot simulate the tampered shares s̃∗
h1

and s̃∗
h2

locally,
it can use the tampering oracle to obtain the decoding relative to the split-
state codeword (s̃T ,t1 , s̃T ,t2); in fact, s̃T ,t2 can be computed by the reduction
itself—as it knows the share s∗

t2 in full—and hard-wired into the description of
the right tampering function, whereas the value s̃T ,t1 can be perfectly emulated
inside the tampering oracle by hard-wiring into the left tampering function all
the information known about s∗

h1
.

In order to complete the simulation, the reduction still needs to run twice
the reconstruction process of the underlying TSS, given the tampered shares
s̃T ,t3 , . . . , s̃T ,t�

. Note that since the values s̃T ,t4 , . . . , s̃T ,t�
can be computed

locally, the reduction can perform one reconstruction (yielding a first recon-
structed ciphertext c1). However, in order to run the second reconstruction, it
needs the value s̃T ,t3 which is not directly available, as it might depend on
sH,t3 = sH,h2 . The idea is then to get the second ciphertext c2 via a leakage
query. We claim that, as long as c1 = c2, such leakage does not decrease the
min-entropy of sH,h2 ; roughly speaking, the reason is that c2 = c1 can be also
computed as a function of s̃H,t4 , . . . , s̃H,t�

, which are known by the reduction
and independent of sH,t3 .

2 In retrospect, this is the reason why we set the reconstruction/privacy threshold of
the underlying TSS to � − 3 (i.e., 2 shares for decoding the non-malleable encoding
and � − 3 + 1 = � − 2 shares to run the reconstruction procedure of the TSS twice).

3 Clearly, the reduction needs to handle many other cases; however, this particular
case is enough to illustrate our technique.
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Notice that the double-reconstruction trick—i.e., running the reconstruction
procedure twice, in the above example one with t3 and one without—is sufficient
to prove that the reconstruction does not leak information about one specific
share. However, we need to ensure that no information about any of the shares
is leaked. One simple idea would be to lift the previous argument by repeating
the reconstruction for all subsets of size �−3. Nicely, in the case of, e.g. Shamir’s
TSS this is not necessary. In fact, we can have a more efficient reconstruction
procedure that only checks two subsets. This is because if two different subsets
of size � − 3 yield polynomials with identical evaluation in the origin, then they
must encode the same polynomial, and since these two subsets cover an entire
authorized set, then we are ensured that using any other subset would yield the
same reconstructed message.

Instantiating the Construction. All that remains is to construct a split-state
CNMC with the special symmetric decoding feature, and for which the non-
malleability property still holds even in the presence of noisy (independent)
leakage from the left and right shares.

We do this by revisiting the recent construction of Ostrovsky et al. [53], which
gives a split-state CNMC assuming non-interactive, perfectly binding commit-
ments (which in turn can be based on 1-to-1 OWFs). In their scheme, a split-
state encoding of a message m is a pair of values (L,R) = ((com, L′), (com, R′)),
where com is a non-interactive commitment to the message m using randomness
δ, and (L′, R′) is a split-state encoding of the string m||δ obtained by running
an auxiliary code satisfying leakage-resilient one-time non-malleability, in the
information-theoretic setting and in the bounded-leakage model. The decoding
algorithm first checks that the left and right share contain the same commit-
ment. If not, it returns ⊥. Else, it decodes (L′, R′) obtaining a string m′ = m||δ,
and returns m if and only if δ is a valid opening of com w.r.t. m.

Our first observation is that the above code satisfies symmetric decoding, as
long as the inner encoding (L′, R′) does. Additionally, we extend the security
proof of [53] to show that if the auxiliary split-state code is secure in the noisy-
leakage model, so is the final encoding. As a side result, and thanks to the power
of noisy leakage, we even obtain a simpler proof.

The missing piece of the puzzle is then to exhibit a split-state code satisfying
leakage-resilient one-time non-malleability, in the information-theoretic setting
and in the noisy-leakage model, and with symmetric decoding. Luckily, it turns
out that the coding scheme by Aggarwal et al. [7], based on the inner-product
extractor [23], already satisfies all these requirements. We refer the interested
reader to the full version of this paper [36] for the details.

2.3 Second Step: Amplifying the Rate

Next, we describe another generic transformation yielding LR-CNMSS with
information rate asymptotically approaching 1, starting from a LR-CNMSS with
asymptotic rate 0, and an AE scheme. Such transformations, in the setting of
non-malleable codes, are sometimes known as rate compilers [1,8,25].
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Our rate compiler generalizes a construction by Agrawal et al. [1] in the
setting of split-state NMCs, which has been very recently analyzed also in the
case of continuous tampering [25]. In order to secret share the message m ∈
M, we first sample a uniformly random key κ for the AE scheme, and then
we encrypt the message m under this key, yielding a ciphertext c. Hence, we
secret share the key κ using the underlying rate-0 secret sharing scheme, yielding
n shares (κ1, . . . , κn). Finally, we set the share of party i ∈ [n] to be si =
(κi, c). The reconstruction procedure, given � shares, first checks that all shares
contain the same ciphertext c. If not, an error is triggered. Else, the secret key
is reconstructed from the shares and used to decrypt the unique ciphertext c.

Note that the length of the secret key is independent of the size of the mes-
sage, and thus the above construction achieves information rate asymptotically
approaching 1. As for security, it is not hard to show that the compiled scheme
inherits the threshold privacy property from the underlying rate-0 secret sharing.
Here, we additionally need to rely on the semantic security of the AE scheme to
argue that the ciphertext c reveals nothing about the message.

Proving Continuous Non-malleability. Turning to continuous non-malleability,
the main step of the proof is a game hop in which the values (κ1, . . . , κn) result
from a secret sharing of an unrelated key κ′ 
= κ. In order to establish the indis-
tinguishability between this modified experiment and the original experiment,
we consider a reduction to the continuous non-malleability of the underlying LR-
CNMSS. Such a reduction can interact with a target secret sharing (κ1, . . . , κn)
that is either a secret sharing of κ or of κ′. The main obstacle, here, comes from
the simulation of tampering queries. In fact, although the reduction can perfectly
emulate the distribution of the individual shares si = (κi, c) inside the tampering
oracle, as the ciphertext c can be sampled locally, the difficulty is that to emulate
the output of the reconstruction w.r.t. a given subset T = {t1, . . . , t�̃} we need
to: (i) ensure that all of the mauled shares s̃tj

= (κ̃tj
, c̃tj

) actually contain the
same ciphertext, i.e. c̃t1 = . . . = c̃t�̃

= c̃, and (ii) use the mauled secret key κ̃
received by the reduction in response to a tampering query in order to obtain
the decryption of the unique ciphertext c̃ (if such a ciphertext exists).

We overcome both of the above obstacles by exploiting the fact that the
starting CNMSS is resilient to noisy leakage. This is crucial in our setting, since
the size of the ciphertext might very well exceed the maximal length of a share
of the secret key. Hence, generalizing a trick from [25,34], we proceed to check
equality of all the ciphertexts in a block-wise fashion, by leaking blocks of λ
bits from each share, where λ is the security parameter. This leakage routine
continues until eventually we obtain the entire ciphertext c̃, unless some of the
blocks leaked from each share differ, in which case we answer the tampering
query by ⊥ and trigger a self-destruct.

It remains to show that the above methodology does not result in too much
leakage. Intuitively, this holds because up to the point where the leaked blocks
of the ciphertexts are all the same, the leakage on each share can be thought
of as a function of the other shares, so that this leakage does not decrease the
min-entropy of each share more than conditioning on the other shares, which is
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fine since in known constructions the mutual information between the shares is
very low. On the other hand, when a self-destruct is triggered, we reveal only λ
bits of information; by a standard argument, this causes a min-entropy drop of
roughly λ bits, which again is tolerated by the underlying scheme.

3 Preliminaries

3.1 Standard Cryptographic Primitives

Threshold Secret Sharing. An n-party secret sharing scheme Σ consists of
a pair of polynomial-time algorithms (Share,Rec) specified as follows: (i) The
randomized sharing algorithm Share takes as input a message m ∈ M, and
outputs n shares s1, . . . , sn where each si ∈ Si; (ii) The deterministic algorithm
Rec takes as input a certain number of candidate shares and outputs a value in
M ∪ {⊥}. Given s = (s1, . . . , sn) and a subset I ⊆ [n], we often write sI to
denote the shares (si)i∈I .

Definition 1 (Threshold secret sharing). Let n, τ, � ∈ N, with τ ≤ � ≤ n.
We say that Σ = (Share,Rec) is an (n, τ, �)-threshold secret sharing scheme
((n, τ, �)-TSS for short) over message space M and share space S = S1×· · ·×Sn

if it is an n-party secret sharing with the following properties.

(i) �-Threshold Reconstruction: For all messages m ∈ M, and for all sub-
sets I ⊆ [n] such that |I| ≥ �, we have that Rec((Share(m))I) = m, with
overwhelming probability over the randomness of the sharing algorithm.

(ii) τ-Threshold Privacy: For all pairs of messages m0,m1 ∈ M, and for all
unqualified subsets U ⊆ [n] such that |U| < τ , we have that

{(Share(1λ,m0))U}λ∈N ≈c {(Share(1λ,m1))U}λ∈N.

If the ensembles {(Share(1λ,m0))U}λ∈N and {(Share(1λ,m1))U}λ∈N are sta-
tistically close (resp. identically distributed), we speak of statistical (resp.
perfect) τ -threshold privacy.

Typical TSS schemes achieve the optimal parameters � = τ . However, having
a small gap between the privacy and reconstruction threshold makes sense too,
and looking ahead our constructions will have minimal gap � − τ ≥ 1.

Special Reconstruction. We will need TSS schemes meeting an additional recon-
struction property, called special reconstruction. This means that for any subset
I ⊂ [n] of size at least � + 1, and for any m ∈ M which is secret shared as in
(s1, . . . , sn) ←$ Share(m), if there are two subsets I1, I2 ⊂ I of size � such that

Rec((si)i∈I1) = Rec((si)i∈I2),

then the above equation holds for all subsets I1, I2 ⊂ I of size �.
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Fig. 1. Experiments defining security of authenticated encryption.

Authenticated Encryption. A (secret-key) authenticated encryption (AE)
scheme is a tuple of polynomial-time algorithms Π = (KGen,AEnc,ADec) spec-
ified as follows: (i) The randomized algorithm KGen takes as input the security
parameter λ ∈ N, and outputs a uniform key κ ←$ K; (ii) The randomized algo-
rithm AEnc takes as input a key κ ∈ K and a message m ∈ M, and outputs
a ciphertext c ∈ C; (iii) The deterministic algorithm ADec takes as input a key
κ ∈ K and a ciphertext c ∈ {0, 1}∗, and outputs a value m ∈ M ∪ {⊥}, where ⊥
denotes an invalid ciphertext. We call K, M, C, respectively, the key, message,
and ciphertext space of Π.4

We say that Π meets correctness if for all κ ∈ K, and all messages m ∈ M, we
have that P [ADec(κ,AEnc(κ,m)) = m] = 1 (where the probability is taken over
the randomness of AEnc). As for security, we will need AE schemes that satisfy
two properties (see below for formal definitions). The first property, usually
known as semantic security, says that it is hard to distinguish the encryption
of any two (adversarially chosen) messages. The second property, usually called
authenticity, says that, without knowing the secret key, it is hard to produce a
valid ciphertext (i.e., a ciphertext that does not decrypt to ⊥).

Definition 2 (Security of AE). Let Π = (KGen,AEnc,ADec) be an AE
scheme. We say that Π is secure if the following holds for the games defined
in Fig. 1.

∀ PPT A :
{
Gsem

Π,A(λ, 0)
}

λ∈N
≈c

{
Gsem

Π,A(λ, 1)
}

λ∈N
,

P
[
Gauth

Π,A(λ) = 1
]

∈ negl(λ).

Note that since both authenticity and semantic security are one-time guaran-
tees, in principle, information-theoretic constructions with such properties are
possible when |K| ≥ |M|. However, we are interested in constructions where
|M|  |K|, for which the existence of one-way functions is necessary.

4 These sets typically depend on the security parameter, but we drop this dependency
to simplify notation.
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3.2 Non-malleable Codes

A split-state code Γ = (Enc,Dec) consists of a pair of polynomial-time algorithms
specified as follows: (i) The randomized encoding algorithm Enc takes as input
a message m ∈ M and returns a split-state codeword (L,R) ∈ L × R; (ii)
The (deterministic) decoding algorithm Dec takes as input a codeword (L,R) ∈
({0, 1}∗)2 and outputs a value in M∪{⊥}, where ⊥ denotes an invalid codeword.
A codeword (L,R) such that Dec(L,R) 
= ⊥ is called a valid codeword; we call
M the message space, and L,R the left and right codeword space.

We say that Γ satisfies correctness if, for all m ∈ M, we have that
Dec(Enc(m)) = m with overwhelming probability over the randomness of the
encoding.

Noisy Leakage. We will leverage codes where non-malleability (as defined below)
is satisfied even in the presence of adversaries that can obtain independent leakage
on the two shares of a target encoding (L,R).

Following a long tradition in leakage-resilient cryptography [29,35,52], we
model the leakage as an arbitrary function of its input. The only restriction is
that the overall leakage on L does not decrease the min-entropy of L more than a
fixed amount � ∈ N (that is a parameter of the scheme). Of course, an analogous
condition must be satisfied for the leakage on the right side R. We formalize this
restriction via a notion of admissibility, as defined below.

Definition 3 (Admissible adversaries for split-state codes). Let Γ =
(Enc,Dec) be a split-state code. We say that a PPT adversary A is �-admissible
if it outputs a sequences of leakage queries (chosen adaptively) (g(q)left , g

(q)
right)q∈[p],

with p(λ) ∈ poly(λ), such that for all messages m ∈ M:

H̃∞
(
L|R, g

(1)
left(L), · · · , g

(p)
left (L)

)
≥ H̃∞(L|R) − �

H̃∞
(
R|L, g

(1)
right(R), · · · , g

(p)
right(R)

)
≥ H̃∞(R|L) − �,

where (L,R) is the joint random variable corresponding to Enc(1λ,m).

Note that we measure the min-entropy drop due to the leakage w.r.t. the
conditional average min-entropy of L|R and R|L. We find this meaningful as it
allows to capture automatically the correlation between L and R. Alternatively,
we could define admissibility by conditioning only on the leakage (without fur-
ther considering the other share in the equations above); we observe, however,
that these two notions of admissibility are equivalent up to a small loss in the
leakage parameter. This is due to the fact that, in known instantiations [7,50],
the mutual information between L and R is small, a property sometimes known
as conditional independence [25,34,53].

Continuous Non-malleability. Intuitively, a split-state code is non-malleable [33,
51] if no adversary tampering independently (yet arbitrarily) with the two sides
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Fig. 2. Experiment defining continuously non-malleable codes in the split-state model.
The tampering oracle Onmc is implicitly parameterized by the flag stop.

of a given target encoding (L,R) of some value m, can generate a modi-
fied codeword (L̃, R̃) that decodes to a value related to m. Continuous non-
malleability [37] is a strengthening of this guarantee, where the attacker is
allowed to tamper continuously, and adaptively, with (L,R), until a decoding
error occurs, after which the system “self-destructs” and stops answering tam-
pering queries. Such a self-destruct capability, that in practice might be imple-
mented via a public write-once flag, is well known to be necessary for achieving
continuous non-malleability, as otherwise simple attacks are possible [39].

We formalize continuous non-malleability for split-state non-malleable codes
using a game-based definition. Simulation-based definitions also exist, but the
two formulations are known to be equivalent as long as the messages to be
encoded have super-logarithmic length in the security parameter [33,53]. In order
to model (split-state) tampering attacks, we use a stateless leakage oracle Oleak

and a stateful oracle Onmc that are initialized with a target encoding (L,R)
of either of two messages m0,m1 ∈ M. The goal of the attacker is to distin-
guish which message was encoded, while performing both leakage and tampering
attacks: The leakage oracle allows the adversary to obtain information from L
and R, while the tampering oracle allows the adversary to tamper with L and R
independently. In case the decoded message corresponding to a modified code-
word (L̃, R̃) is equal to one of the original messages m0,m1, the oracle returns a
special symbol , as otherwise it would be trivial to distinguish which message
was encoded by querying the oracle with, e.g., the identity function.

Definition 4 (Split-state continuously non-malleable codes). Let Γ =
(Enc,Dec) be a split-state code. We say that Γ is an �-noisy leakage-resilient
split-state continuously non-malleable code (�-LR-CNMC for short) if for all
m0,m1 ∈ M and for all PPT �-admissible adversaries A as per Definition 3, we
have that

{CNMCΓ,A(λ,m0,m1, 0)}λ∈N
≈c {CNMCΓ,A(λ,m0,m1, 1)}λ∈N

, (2)

where, for b ∈ {0, 1}, experiment CNMCΓ,A(λ,m0,m1, b) is depicted in Fig. 2.
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Message Uniqueness. An important property that must be satisfied by any split-
state continuously non-malleable code is that of message uniqueness (MU) [37,
53]. Informally, this means that if we fix the left side L of an encoding, there
are no5 two right sides R1, R2, such that both (L,R1) and (L,R2) are valid
codewords that decode to different messages m1 
= m2. (An analogous guarantee
must hold if we fix the right side.)

A simple observation, due to [53], is that both the left side L and the right
side R of a split-state non-malleable encoding constitute a perfectly binding
commitment to the message.

Lemma 1 ([53]). Let Γ be a split-state code satisfying MU. Then, for any string
L ∈ {0, 1}∗ (resp. R ∈ {0, 1}∗), there exists at most a single value m ∈ M such
that Dec(L,R) = m 
= ⊥ for some R ∈ {0, 1}∗ (resp. for some L ∈ {0, 1}∗).

Additional Properties. For our main construction, we will need CNMCs satisfy-
ing two additional properties as defined below. The first property, called sym-
metric decoding, says that for all possible inputs L,R, decoding (L,R) yields
the same as decoding (R,L). Note that this implies some (very weak) form of
resilience against tampering via permutations, in that any split-state continu-
ously non-malleable code with symmetric decoding is still secure w.r.t. attackers
that first tamper the two states (L,R) independently, and later swap L and R.

Definition 5 (Symmetric decoding). We say that a split-state code Γ =
(Enc,Dec) has symmetric decoding if for all L,R ∈ ({0, 1}∗)2, we have that
Dec(L,R) = Dec(R,L).

The second property, called codewords uniformity, requires that, for any mes-
sage, the encoder outputs codewords that are uniform over the set of all possible
encodings of the message.

Definition 6 (Codewords uniformity). We say that a split-state code Γ =
(Enc,Dec) has codewords uniformity if for all m ∈ M, we have that Enc(1λ,m) is
distributed uniformly over the set of all possible pairs (L,R) s.t. Dec(L,R) = m.

4 Continuously Non-malleable Secret Sharing

4.1 Non-malleability Under Adaptive Concurrent Reconstruction

We now give the definition of leakage-resilient continuously non-malleable secret
sharing (LR-CNMSS) under adaptive concurrent reconstruction. We focus on
the case of threshold secret sharing, where the adversary is allowed to tamper
(possibly all!) the shares arbitrarily, but independently. Non-malleability intu-
itively guarantees that the reconstructed message, where the indices T (with
|T | = �̃ ≥ �) used for reconstruction are also chosen by the adversary, is inde-
pendent of the original message.
5 Observe that “perfect” MU, as opposed to “computational” MU is wlog. in the plain

model.
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Importantly, in our model, the adversary is allowed to tamper continuously,
and adaptively, with the same target secret sharing; the set used for reconstruc-
tion in each tampering attempt is also adversarial, and moreover can be chosen
adaptively based on the outcome of previous queries. This feature, known as
concurrent reconstruction, was already considered in previous work [2], although
in a non-adaptive setting. There are only two limitations: (i) The adversary is
computationally bounded; (ii) After the first tampering query yielding a mauled
secret sharing that reconstructs to ⊥, the answer to all future tampering queries
will be ⊥ by default. The second limitation is sometimes known as “self-destruct
feature” in the literature of non-malleable codes [37]. Both of these limitations
are somewhat necessary (see below).

In order to make our model even stronger, we further allow the adversary
to leak information independently from all the shares. The only restriction here
is that the leakage does not decrease the amount of uncertainty contained in
each of the shares by too much. This leads to the notion of admissible adversary,
which is similar in spirit to the notion of admissible adversaries for codes (cf.
Sect. 3.2), as defined below.

Definition 7 (Admissible adversaries for secret sharing). Let Σ =
(Share,Rec) be an n-party secret sharing scheme. We say that a PPT adversary
A is �-admissible if it outputs a sequence of leakage queries (chosen adaptively)
(i, g(q)i )i∈[n],q∈[p], with p(λ) ∈ poly(λ), such that for all i ∈ [n], and for all
m ∈ M:

H̃∞
(
Si|(Sj)j �=i, g

(1)
i (Si), · · · , g

(p)
i (Si)

)
≥ H̃∞(Si|(Sj)j �=i) − �,

where (S1, . . . ,Sn) is the random variable corresponding to Share(1λ,m).

Fig. 3. Experiment defining leakage-resilient continuously non-malleable secret sharing
against individual tampering, under adaptive concurrent reconstruction. Note that the
oracle Onmss is implicitly parameterized by the flag stop.
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Definition 8 (Continuously non-malleable threshold secret sharing).
Let n, τ, �, � ∈ N. Let Σ = (Share,Rec) be an n-party secret sharing over mes-
sage space M and share space S = S1 × · · · × Sn. We say that Σ is an �-
noisy leakage-resilient continuously non-malleable (n, τ, �)-threshold secret shar-
ing scheme under adaptive concurrent reconstruction ((n, τ, �, �)-LR-CNMSS for
short) if it is an (n, τ, �)-TSS as per Definition 1, and additionally for all pairs
of messages m0,m1 ∈ M, and all PPT �-admissible adversaries A as per Defi-
nition 7, we have:

{CNMSSΣ,A(λ,m0,m1, 0)}λ∈N
≈c {CNMSSΣ,A(λ,m0,m1, 1)}λ∈N

,

where, for b ∈ {0, 1}, experiment CNMSSΣ,A(λ,m0,m1, b) is depicted in Fig. 3.

Remark 1 (On game-based security). Note that Definition 8 is game based in
spirit. This is in contrast with all previous definitions of non-malleable secret
sharing, which instead are simulation based. While, one could also formulate a
simulation-based definition for LR-CNMSS, it is not hard to show that the two
formulations are equivalent as long as the shared value has super-logarithmic
length in the security parameter. A similar equivalence holds for the case of
(continuously) non-malleable codes [33,53].

Remark 2 (On the relation with CNMCs). When � = 0, n = 2, and τ = � = 2,
one obtains the definition of split-state CNMCs as a special case. In fact, similar
to [7], one can show that any split-state CNMC satisfies 2-threshold privacy.

In the following subsections, we show that both limitations of computational
security and self-destruct are somewhat inherent in our model (even when no
leakage is allowed, i.e. � = 0). This is immediate for the case n = 2 = τ = � = 2,
as the same limitations hold for the case of split-state CNMCs [37]. The theorems
below6 generalize the impossibility results of [37] for certain values of n, τ, �.

4.2 Shared-Value Uniqueness

Consider the following natural generalization of the MU property for continu-
ously non-malleable codes (cf. Sect. 3.2) to the case of TSS schemes.7

Definition 9 (Shared-value uniqueness). Let Σ = (Share,Rec) be an n-
party TSS with reconstruction threshold � ≤ n. We say that Σ satisfies shared-
value uniqueness (SVU) if for all subsets I = {i1, . . . , i�} ⊆ [n], there exists j∗ ∈
[�] such that for all shares si1 , . . . , sij∗−1 , sij∗+1 , . . . , si�

, and for all sij∗ , s′
ij∗ , we

have that either

m = Rec(si1 , . . . , sij∗ , . . . , si�
) = Rec(si1 , . . . , s

′
ij∗ , . . . , si�

) = m′, (3)

where m,m′ ∈ M, or at least one of m,m′ equals ⊥.
6 We stress that the attacks described in the proof of Theorems 2 and 3 do not require

to change the reconstruction set T among different queries, and thus even hold
without considering concurrent reconstruction.

7 As for MU, “perfect” SVU, rather than “computational” SVU, is wlog. in the plain
model.
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Intuitively, the above property says that for every possible choice of an authorized
set I, there exists at least one index ij∗ ∈ I, such that if we fix arbitrarily all
the shares but the one in position ij∗ , the reconstruction process can possibly
output a single outcome within the space of all valid messages. The theorem
below (whose proof appears in the full version [36]) says that SVU is necessary
for achieving continuous non-malleability (without leakage) for threshold secret
sharing, in the computational setting.

Theorem 2. For any n, τ, � ∈ N, with τ ≤ � ≤ n, every (n, τ, �, 0)-LR-CNMSS
must also satisfy SVU.

Notice that in the information-theoretic setting, when the privacy threshold
τ equals the reconstruction threshold �, and when considering the authorized
set I = [�], statistical privacy implies that for each i∗ ∈ [�] there always exist
shares (s1, . . . , si∗−1, si∗ , si∗+1, . . . , s�) and (s1, . . . , si∗−1, s

′
i∗ , si∗+1, . . . , s�) that

violate SVU. Hence, CNMSS with the optimal parameters τ = � is impossible
in the information-theoretic setting, a fact recently established in [10].

Corollary 1 ([10]). For any n, τ, � ∈ N, with τ = � ≤ n, there is no (n, τ, �, 0)-
LR-CNMSS in the information-theoretic setting.

Fig. 4. Possible parameters �, τ of CNMSS.
Values on the red line require computa-
tional assumptions.

Mind the Gap. What if there is a
small gap between the reconstruction
threshold � and the privacy thresh-
old τ (e.g., τ ≤ � − 1)? In this
case, the above impossibility result
does not apply. For concreteness, let
Σ be an (n, � − 1, �)-TSS and con-
sider the reconstruction set I = [�].
By perfect privacy, since any collec-
tion of � − 2 shares reveals no infor-
mation on the shared value, for every
sequence of shares s1, . . . , s�−2, and
for every message m̂ ∈ M, there exist
at least two shares ŝ�−1, ŝ� such that
running the reconstruction algorithm
upon (s1, . . . , s�−2, ŝ�−1, ŝ�) yields m̂

as output. However, there is no guarantee that a pair of shares (ŝ′
�−1, ŝ

′
�) yielding

another message m̂′ 
= m̂, and such that, e.g., ŝ′
�−1 = ŝ�−1, actually exists. This

circumvents the attack described above. Put differently, whenever τ = � − 1,
given any collection of � − 1 shares, we can consider two cases (cf. also Fig. 4):

– There are at least two possible valid outcomes for the reconstruction pro-
cedure. In this case, a computationally unbounded attacker can still find
a sequence of shares violating SVU, and thus continuous non-malleability
requires computational assumptions.



Non-malleable Secret Sharing in the Computational Setting 469

– The shared value is information-theoretically determined, i.e. there exists an
inefficient algorithm which can reconstruct the message. In this case, SVU
is not violated, and thus it is plausible that TSS with perfect privacy and
statistical continuous non-malleability exists.

4.3 Necessity of Self-destruct

Finally, in the full version [36], we show that continuous non-malleability as per
Definition 8 is impossible without assuming self-destruct. This fact is reminiscent
of a similar impossibility result for continuously non-malleable codes [37], and
tamper-resilient cryptography [39].

Theorem 3. For any n, τ, � ∈ N, with τ ≤ � ≤ n, there is no (n, τ, �, 0)-LR-
CNMSS without assuming the self-destruct capability.

5 A Scheme with Poor Rate

Before describing our scheme, we introduce some useful notation. The shares will
be of the form s∗

i = (sH,i)H∈([n]
2 ) (see Fig. 5), where i ∈ [n]. Given a set A ⊆ [n],

we identify with Â the first two indices (according to the natural order) of A.

Fig. 5. A construction of leakage-resilient continuously non-malleable secret sharing
for threshold access structures, in the computational setting.
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Our threshold secret sharing Σ∗ = (Share∗,Rec∗), which is formally depicted
in Fig. 5, is based upon the following ingredients:

– An authenticated secret-key encryption (AE) scheme Π = (AEnc,ADec) (cf.
Sect. 3.1), with message space M, ciphertext space C, and key space K =
{0, 1}λ.

– An (n−2)-party secret sharing scheme Σ = (Share,Rec), with reconstruction
threshold equal to �−3, message space C, and share space Sn−2 (cf. Sect. 3.1).

– A split-state encoding Γ = (Enc,Dec), with message space K and codeword
space L × R (cf. Sect. 3.2).

The main intuition behind the construction has been already discussed in
Sect. 2. The formal proof of the theorem below can be found in the full ver-
sion [36].

Theorem 4. Let n, �, �, �∗ ∈ N be such that n ≥ � > 2. Assuming that Π
is a secure AE scheme, that Σ is a (n − 2, � − 3, � − 3)-TSS with perfect
threshold privacy and with the special reconstruction property, and that Γ is
an �-LR-CNMC with symmetric decoding and with codewords uniformity, the
secret sharing scheme Σ∗ of Fig. 3 is an (n, � − 1, �, �∗)-LR-CNMSS, as long as
� = �∗ + 2γ + O(log λ) where γ = log |C| is the size of a ciphertext under Π.

Instantiating the Construction. In the full version of this paper [36], we show
how to instantiate Theorem 4, under the assumption of 1-to-1 OWFs. It is well-
known that authenticated encryption can be constructed in a black-box way
from any OWF, whereas we can use the classical Shamir’s construction [56]
for the underlying TSS scheme. The latter is easily seen to meet the special
reconstruction property.

It remains to exhibit a split-state CNMC with the required properties, which
we do by revisiting the construction (and security analysis) of [53].

6 Boosting the Rate

6.1 Information Rate of Secret Sharing

An important measure of the efficiency of a secret sharing scheme is its informa-
tion rate, defined as the ratio between the size of the message and the maximum
size of a share as function of the size of the message and the number of shares.8

8 One can also define a more general notion of information rate for secret sharing
schemes [15], which depends on the entropy of the distribution M of the input mes-
sage. The above definition is obtained as a special case, by considering the uniform
distribution.
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Fig. 6. Boosting the rate of any leakage-resilient continuously non-malleable secret
sharing (in the computational setting).

Definition 10 (Rate of secret sharing). Let Σ = (Share,Rec) be an n-party
secret sharing over message space M and share space S = S1 × · · · × Sn. We
define the information rate of Σ to be the ratio

where μ = log |M| and σi(μ, n, λ) = log |Si| denote, respectively, the bit-length
of the message and of the i-th share under Σ. Moreover, we say that Σ has
asymptotic rate 0 (resp. 1) if is 0 (resp. 1).

In the full version [36], we show an instantiation of the TSS scheme from
Sect. 5 with shares of length O(n2 · max{λ8, μ + λ}). Hence, we have obtained:

Corollary 2. Let λ ∈ N be the security parameter. Under the assumption of
1-to-1 OWFs, there exists a noisy-leakage-resilient continuously non-malleable
n-party threshold secret sharing for μ-bit messages, with rate Ω

(
μ

n2·(λ8+μ)

)
.

6.2 A Rate-Optimizing Compiler

In this section, we show how to optimize the rate of any LR-CNMSS, under com-
putational assumptions. We will achieve this through a so-called rate compiler,
i.e. a black-box transformation that takes any LR-CNMSS with asymptotic rate
0 and returns a LR-CNMSS with asymptotic rate 1.

Our compiler is formally described in Fig. 6, and is inspired by a beautiful
idea of Aggarwal et al. [1], who considered a similar question for the case of (one-
time) non-malleable codes against split-state tampering; recently, their approach
was also analyzed in the case of continuous tampering [25]. Intuitively, the con-
struction works as follows. The sharing function samples a uniformly random
key κ for a symmetric encryption scheme, and secret shares κ using the underly-
ing rate-0 threshold secret sharing, obtaining shares κ1, . . . , κn. Next, the input
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message m is encrypted under the key κ, yielding a ciphertext c, and the final
share of each player is defined to be si = (κi, c). Importantly, the reconstruction
function, before obtaining the key κ and decrypting the ciphertext c, checks that
the ciphertext contained in every given share is the same.

Note that when the initial secret sharing scheme is a 2-out-of-2 TSS, i.e. Σ′

is actually a split-state LR-CNMC, we obtain as a special case one of the rate
compilers analyzed in [25]. A notable advantage of our result, however, is that
we can instantiate the construction in the plain model (whereas Coretti et al.
assume a CRS). In the full version [36], we establish the following result.

Theorem 5. Let n, τ, � ∈ N, with τ ≤ � ≤ n. Assuming that Σ′ is an
(n, τ, �, �′)-LR-CNMSS, and that Π is a secure AE scheme, the secret sharing
scheme Σ of Fig. 6 is an (n, τ, �, �)-LR-CNMSS as long as �′ = �+λ+O(log λ).

Note that since the key size is independent of the message size, the length of
a share is μ+poly(n, λ), thus yielding a rate of μ

μ+poly(n,λ) . This asymptotically
approaches 1 when the message size goes to infinity.

Corollary 3. Under the assumption of 1-to-1 OWFs, there exists a noisy-
leakage-resilient continuously non-malleable threshold secret sharing with asymp-
totic information rate 1.

7 Threshold Signatures Under Adaptive Memory
Corruptions

7.1 Syntax

An n-party threshold signature is a tuple Π = (KGen, Ξ,Vrfy) specified as fol-
lows. (i) The PPT algorithm KGen takes as input the security parameter, and
outputs a verification key vk ∈ VK, and n secret keys sk1, . . . , skn ∈ SK;
(ii) Ξ = (P1, . . . ,Pn) specifies a set of protocols which can be run by a sub-
set I of n interactive PPT Turing machines P1, . . . ,Pn, where each Pi takes
as input a message m ∈ M and secret key sk i, and where we denote by
(σ, ξ) Ξ←−$ 〈Pi(sk i,m)〉i∈I a run of Ξ by the parties (Pi)i∈I , yielding a signa-
ture σ and transcript ξ. (iii) The deterministic polynomial-time algorithm Vrfy
takes as input the verification key vk , and a pair (m,σ), and returns a bit.

For a parameter � ≤ n, we say that an n-party threshold signature is �-
correct if for all λ ∈ N, all (vk , sk1, . . . , skn) output by KGen(1λ), all messages
m ∈ M, and all subsets I such that |I| ≥ �, the following holds:

P

[
Vrfy(vk , (m,σ)) = 1 : (σ, ξ) Ξ←−$ 〈Pi(sk i,m)〉i∈I

]
= 1.

We also consider non-interactive threshold signature schemes. Such
schemes are fully specified by a tuple of polynomial-time algorithms
(KGen,TSign,Combine,Vrfy), such that KGen,Vrfy are as in the interactive case,
whereas the protocol Ξ, run by a subset I of the parties, has the following simple
structure:
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Fig. 7. Experiments defining privacy and continuous non-malleability for threshold
signatures. The vector �id contains the identity function (repeated n times).

– For each i ∈ I, party Pi computes locally σi ←$ TSign(sk i,m) and broadcasts
the resulting signature share σi;

– For each i ∈ I, party Pi locally computes σ ←$ Combine(vk , (σi)i∈I); most
notably, algorithm Combine only uses public information.

7.2 Security Model

We assume authenticated and private channels between each pair of parties.
The standard security notion for threshold signatures deals with an adversary A
statically corrupting a subset U of the players, with size below the reconstruction
threshold of the scheme. The guarantee is that the attacker should not be able to
forge a valid signature on a fresh message, even after seeing a polynomial number
of executions of the signature protocol on several messages and involving different
subsets of the players; note that, for each such subset I, the attacker learns the
transcript of the signature protocol relative to the players in U ∩ I. Below, we
formalize this guarantee in the honest-but-curious case.

Definition 11 (Privacy for threshold signatures). Let Π = (KGen, Ξ,Vrfy)
be an n-party threshold signature scheme. We say that Π is τ -private against
honest-but-curious adversaries if for all PPT attackers A, and all subsets U ⊂ [n]
such that |U| < τ :

P
[
Ghbc

Π,A,U (λ) = 1
]

∈ negl(λ).

where the game Ghbc
Π,A,U (λ) is described in Fig. 7.

Non-malleability. Next, we consider an adversary able to corrupt the memory
of each party independently. The security guarantee is still that of existential
unforgeability, except that the attacker can now see a polynomial number of
executions of the signature protocol under related secret-key shares, where both
the modified shares and the subset of parties used for each signature computa-
tion, can be chosen adaptively. However, since in this case no player is actually
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corrupted and the protocol’s messages are sent via private channels, for each
run of the signature protocol the attacker only learns the signature (but not the
transcript).

Definition 12 (Tamper-resilient threshold signatures). Let Π = (KGen,
Ξ,Vrfy) be an n-party threshold signature scheme. We say that Π is secure under
continuous memory tampering if for all PPT adversaries A:

P

[
Gnm-tsig

Π,A (λ) = 1
]

∈ negl(λ),

where the game Gnm-tsig
Π,A (λ) is described in Fig. 7.

7.3 The Compiler

Given an n-party threshold signature Π = (KGen, Ξ,Vrfy), and an n-party TSS
Σ = (Share,Rec), consider the following modified n-party threshold signature
Π∗ = (KGen∗, Ξ∗,Vrfy∗).

– Key generation KGen∗(1λ): Upon input the security parameter, run (vk ,
sk1, . . . , skn) ←$ KGen(1λ), compute (sk i,1, . . . , sk i,n) ←$ Share(sk i) for each
i ∈ [n], set sk∗

i = (sk i′,i)i′∈[n], and output (vk , sk∗
1, . . . , sk

∗
n).

– Signature protocol Ξ∗ = (P∗
1, . . . ,P

∗
n): For any subset I ⊂ [n], and any

message m ∈ M, the protocol 〈P∗
i (sk

∗
i ,m)〉i∈I proceeds as follows:

• Party P∗
i parses sk∗

i = (sk i′,i)i′∈[n] and sends sk i′,i to the i′-th party, for
every i′ ∈ I \ {i}.

• Party P∗
i waits to receive the messages sk i,i′′ for every i′′ ∈ I \ {i}, and

afterwards it computes sk i = Rec((sk i,i′′)i′′∈I).
• The players run (ξ, σ) Ξ←−$ 〈Pi(sk i,m)〉i∈I .

– Verification algorithm Vrfy∗: Return the same as Vrfy(vk , (m,σ)).

Intuitively, in the above protocol we first create a verification key vk and
secret-key shares (sk1, . . . , skn) under Π; hence, each value sk i is further divided
into n shares (sk i,1, . . . , sk i,n) via the secret sharing Σ. The final secret-key share
sk∗

i for the i-th party consists of the shares (sk1,i, . . . , skn,i), i.e. the collection
of all the i-th shares under Σ. In order to sign a message, each player first sends
to each other player the corresponding share. This way, party Pi can reconstruct
sk i, and the involved players can then run the original signature protocol Ξ.
The proof of the theorem below appears in the full version [36].

Theorem 6. For any n, �, τ ∈ N such that n ≥ � ≥ τ , assuming that Π is
non-interactive, �-correct, and τ -private against honest-but-curious adversaries,
and that Σ is an (n, τ, �, 0)-LR-CNMSS, then the above defined threshold signa-
ture Π∗ is �-correct, τ -private against honest-but-curious adversaries, and secure
under continuous memory tampering.

We give a sketch for the proof of Theorem6. We focus on showing security against
continuous tampering, as honest-but-curious security readily follows from the
privacy of the CNMSS Σ and the honest-but-curious security of Π.
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The proof is a classical hybrid argument where we switch step by step from
the real distribution to a distribution where all the tampering queries are applied
to shares which encode dummy secret keys. In this last experiment, the reduction
can simulate the tampering oracle Osign( �sk , ·, ·, ·) as a function of the dummy
shares only, and therefore the simulation is independent of the real secret keys.
Thus, we can rely on the unforgeability of the non-interactive threshold signature
scheme to conclude the proof.

However, there is a subtlety. In particular, in one of the intermediate hybrid
steps, the adversary might, for example, overwrite the shares relative to a secret
key sk i with shares that reconstruct to an unrelated secret key s̃k i, while keeping
all the other shares untouched. If the starting threshold signature scheme would
be interactive, we would need to be able to simulate a run of the signature
protocol where all the inputs are the same but the i-th input, which lies out of the
capability of an honest-but-curious adversary. On the other hand, if the threshold
signature scheme is non-interactive as we assume, this problem disappears, as
we can first run the signature protocol using the original secret-key shares, and
later simulate the (single) message of the i-th server thanks to the knowledge of
the mauled secret-key share s̃k i.

8 Conclusions and Open Problems

We have initiated the study of non-malleable, threshold secret sharing with-
standing a powerful adversary that can obtain both noisy leakage from each of
the shares independently, and an arbitrary polynomial number of reconstructed
messages corresponding to shares which can be arbitrarily related to the origi-
nal ones (as long as the shares are modified independently). Importantly, in our
model, both the tampering functions (mauling the original target secret sharing)
and the reconstruction subsets (specifying which shares contribute to the recon-
structed message) can be chosen adaptively by the attacker. Our main result
establishes the existence of such schemes in the computational setting, under the
minimal assumption of 1-to-1 OWFs, and with information rate asymptotically
approaching 1 (as the message length goes to infinity).

Our work leaves several interesting open problems. We mention some of them
below.

– Mind the gap: As we show, continuous non-malleability is impossible
to achieve in the information-theoretic setting whenever the reconstruction
threshold � (i.e., the minimal number of shares required to reconstruct the
message) is equal to the privacy threshold τ (i.e., any collection of τ − 1
shares computationally hides the message). Our schemes, however, have a
minimal gap � − τ ≥ 1. It remains open to construct CNMSS for the optimal
parameters � = τ , possibly with information-theoretic security (even without
considering leakage and adaptive concurrent reconstruction).

– Optimal rate: It is well known that, in the computational setting, there exist
robust threshold secret sharing schemes with optimal information rate n [48]
(i.e., the size of each share is μ/n where μ is the message size). It remains
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open whether continuously non-malleable threshold secret sharing schemes
with such rate exist, and under which assumptions.

– Arbitrary access structures: Can we construct continuously non-malleable
secret sharing beyond the threshold access structure, e.g. where the sets of
authorized players can be represented by an arbitrary polynomial-size mono-
tone span program, as in [43]?

– Joint tampering: Can we construct continuously non-malleable secret shar-
ing where the non-malleability property holds even if joint tampering with
the shares is allowed, as in [42,43]?

– Applications: Finally, it would be interesting to explore other applications
of continuously non-malleable secret sharing besides tamper resistance, e.g.
in the spirit of non-malleable cryptography, as in [24,26,41,42,44].
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Abstract. A secret sharing scheme allows a dealer to share a secret
among a set of n parties such that any authorized subset of the par-
ties can recover the secret, while any unauthorized subset learns no
information about the secret. A leakage-resilient secret sharing scheme
(introduced in independent works by Goyal and Kumar, STOC ’18 and
Benhamouda, Degwekar, Ishai and Rabin, CRYPTO ’18) additionally
requires the secrecy to hold against every unauthorized set of parties
even if they obtain some bounded leakage from every other share. The
leakage is said to be local if it is computed independently for each share.
So far, the only known constructions of local leakage resilient secret shar-
ing schemes are for threshold access structures for very low (O(1)) or very
high (n − o(log n)) thresholds.

In this work, we give a compiler that takes a secret sharing scheme
for any monotone access structure and produces a local leakage resilient
secret sharing scheme for the same access structure, with only a constant-
factor asymptotic blow-up in the sizes of the shares. Furthermore, the
resultant secret sharing scheme has optimal leakage-resilience rate, i.e.,
the ratio between the leakage tolerated and the size of each share can be
made arbitrarily close to 1. Using this secret sharing scheme as the main
building block, we obtain the following results:

– Rate Preserving Non-Malleable Secret Sharing. We give a
compiler that takes any secret sharing scheme for a 4-monotone
access structure (A 4-monotone access structure has the property
that any authorized set has size at least 4.) with rate R and con-
verts it into a non-malleable secret sharing scheme for the same
access structure with rate Ω(R). The previous such non-zero rate
construction (Badrinarayanan and Srinivasan, EUROCRYPT ’19)
achieved a rate of Θ(R/tmax log2 n), where tmax is the maximum size
of any minimal set in the access structure. As a special case, for any
threshold t ≥ 4 and an arbitrary n ≥ t, we get the first constant-rate
construction of t-out-of-n non-malleable secret sharing.

– Leakage-Tolerant Multiparty Computation for General
Interaction Patterns. For any function f , we give a reduction

Research supported in part from DARPA/ARL SAFEWARE Award W911NF15C0210,
AFOSR Award FA9550-15-1-0274, AFOSR YIP Award, a Hellman Award and research
grants by the Okawa Foundation, Visa Inc., and Center for LongTerm Cybersecurity
(CLTC, UC Berkeley).

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11693, pp. 480–509, 2019.
https://doi.org/10.1007/978-3-030-26951-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26951-7_17&domain=pdf
https://doi.org/10.1007/978-3-030-26951-7_17


Leakage Resilient Secret Sharing and Applications 481

from constructing a leakage-tolerant secure multi-party computation
protocol for computing f that obeys any given interaction pattern
to constructing a secure (but not necessarily leakage-tolerant) pro-
tocol for a related function that obeys the star interaction pattern.
Together with the known results for the star interaction pattern, this
gives leakage tolerant MPC for any interaction pattern with statisti-
cal/computational security. This improves upon the result of (Halevi
et al., ITCS 2016), who presented such a reduction in a leak-free
environment.

1 Introduction

Secret sharing [Sha79,Bla79] is a fundamental cryptographic primitive that
allows a secret to be shared among a set of parties in such a way that only cer-
tain authorized subsets of parties can recover the secret by pooling their shares
together; while any subset of parties that is not authorized do not learn any-
thing about the secret from their shares. Secret sharing has had widespread
applications across cryptography, ranging from secure multiparty computa-
tion [GMW87,BGW88,CCD88] and threshold cryptographic systems [DF90,
Fra90,DDFY94] to leakage resilient circuit compilers [ISW03,FRR+10,Rot12]

While sufficient in idealized settings, in several practically relevant scenarios
(as illustrated by the recent Meltdown and Spectre attacks [LSG+18,KGG+18],
for instance), it is not satisfactory to assume that the set of unauthorized parties
have no information at all about the remaining shares. They could, for instance,
have access to some side-channel on the devices storing the other shares that
leaks some information about them, and we would like for the secret to still
remain hidden in this case. Such leakage-resilience has been widely studied in
the past as a desirable property in various settings and cryptographic primi-
tives [MR04,DP08,AGV09,NS09, . . . ]. In this paper, we study leakage-resilience
in secret sharing – we ask that the secret remain hidden from unauthorized sub-
sets of parties even if they have access to some small amount of information
about the shares of the remaining parties.

The Leakage Model. A secret sharing scheme consist of a sharing algorithm,
which takes a secret and shares it into a set of shares, and a reconstruction
algorithm, which takes some subset of these shares and reconstructs the secret
from it. In this work, we do not deal with the leakage from the machines that run
these procedures. Instead, the leakage that we care about is that which could
happen from the machines that these shares are stored on after they have been
generated, and the sharing and reconstruction are assumed to be leak-free.

More specifically, we are interested in local leakage resilience, which means
that secrets are hidden from an adversary that works as follows. First, it speci-
fies an unauthorized subset of parties, and for each of the remaining parties, it
specifies a leakage function that takes its share as input, performs an arbitrary
(possibly inefficient) computation and outputs a small pre-determined number
of bits. Once the shares are generated, the adversary is given all the shares of
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the unauthorized subset, and the output of the corresponding leakage function
applied to each of the remaining shares. This form of leakage-resilience for secret
sharing was formalized in recent work by Goyal and Kumar [GK18a], and Ben-
hamouda, Degwekar, Ishai and Rabin [BDIR18].

This leakage model may be seen as an adaptation of the “memory attacks”
model introduced by Akavia, Goldwasser, and Vaikuntanathan [AGV09] to the
context of secret sharing. In this model, the basic axiom is that everything that
is stored in the memory is subject to leakage, and the only restriction is that the
leakage function must be shrinking. This model was introduced as an alternative
to the well-studied “Only Computational Leaks” (OCL) model [MR04] (which
we do not consider in this work) in order to capture known real-world attacks
that were not captured by the OCL model. A notable example of such an attack
is the cold-boot attack by Halderman et al. [HSH+09], which showed measures
to leak a significant fraction of the bits of a secret if it was ever stored in a part of
memory which could be accessed by an adversary (e.g. DRAM). The definition
of leakage-resilience for secret sharing that we work with is intended (as was the
memory attacks model) to protect against such attacks on the machines that
store the shares after they have been generated.

Goyal and Kumar, and Benhamouda et al., showed constructions of leakage-
resilient threshold secret sharing schemes (where subsets above a certain size are
authorized) for certain thresholds. They then showed how such schemes could
be used to construct leakage-resilient multi-party computation protocols and
non-malleable secret sharing schemes. Given the prevalence of secret-sharing in
cryptographic constructions and the importance of resilience to leakage, one may
reasonably expect many more applications of leakage-resilient secret sharing to
be discovered in the future.

In this work, we are interested in constructing local leakage resilient secret
sharing schemes for a larger class of access structures1 (and in particular for all
thresholds). Beyond showing feasibility, our focus is on optimizing the following
parameters of our schemes:

– the rate, which is the ratio of the size of the secret to the size of a share, and,
– the leakage-resilience rate, which is the ratio of the number of bits of leakage

tolerated per share to the size of a share.

We present a construction of leakage-resilient secret sharing that is near-
optimal in terms of the above parameters, and show applications of our con-
struction to constructing constant-rate non-malleable secret sharing schemes and
leakage-tolerant multi-party computation protocols.

1.1 Our Results and Techniques

Our primary result is a transformation that converts a secret sharing scheme for
any access structure A into a local leakage resilient secret sharing scheme for A
1 The access structure of a secret sharing scheme is what we call the set of authorized

subsets of parties.
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whose rate is only a small constant factor less than that of the original scheme,
and which has an optimal leakage-resilience rate of 1.

Informal Theorem 1. There is a compiler that, given a secret sharing scheme
for a monotone access structure A with rate R, produces a secret sharing scheme
for A that has rate R/3.01 and is local leakage resilient with leakage-resilience
rate tending to 1.

In particular, for any t ≤ n, starting from t-out-of-n Shamir secret shar-
ing [Sha79] gives us a t-out-of-n threshold secret sharing scheme with rate 1/3.01
and leakage-resilience rate 1. The only constructions of local leakage resilient
secret sharing known before our work were for threshold access structures with
either very small or very large thresholds. Goyal and Kumar [GK18a] presented
a construction for t = 2, which had both rate and leakage-resilience rate Θ(1/n).
This was extended to any constant t by Badrinarayanan and Srinivasan [BS19],
with rate Θ(1/ log(n)) and leakage-resilience rate Θ(1/n log(n)). Benhamouda
et al. [BDIR18] showed that t-out-of-n Shamir secret sharing over certain fields
is local leakage-resilient if t = n−o(n), and this has rate 1 and leakage-resilience
rate roughly 1/4.

Outline of Our Compiler. We will now briefly describe the functioning of our
compiler for the case of a t-out-of-n threshold secret sharing scheme, for sim-
plicity. It makes use of a strong seeded randomness extractor Ext, which is an
algorithm that takes two inputs – a seed s and a source w – and whose output
Ext(s, w) is close to being uniformly random if s is chosen at random and w
has sufficient min-entropy. The extractor being “strong” means that the output
remains close to uniform even if the seed is given.

We take any threshold secret sharing scheme (such as Shamir’s [Sha79]), and
share our secret m with it to obtain the set of shares (Sh1, . . . ,Shn). We first
choose a uniform seed s, and for each i ∈ [n], we choose a uniformly random
“source” wi (all of appropriate lengths), and mask Shi using Ext(s, wi). That is,
we compute Sh′

i = Shi ⊕ Ext(s, wi). We then secret share s using a 2-out-of-n
secret sharing scheme to get the set of shares S1, . . . , Sn. The share corresponding
to party i in our scheme is now set to (wi,Sh

′
i, Si).

Given t such shares, to recover the secret, we first reconstruct the seed from
any two Si’s and then unmask Sh′

i by XORing with Ext(s, wi) to obtain Shi.
We then use the reconstruction procedure of the underlying secret sharing to
recover the message.

The correctness and privacy of the constructed scheme are straightforward
to check. To argue the local leakage resilience of this construction, we go over a
set of n − t + 1 hybrids where in each hybrid, we will replace one Shi with the
all 0’s string. Once we have replaced n − t + 1 such shares with the 0’s string,
we can then rely on the secrecy of the underlying secret sharing scheme to show
that the message is perfectly hidden. Thus, it is now sufficient to show that any
two adjacent hybrids in the above argument are statistically close. To argue that
the adjacent hybrids, say Hybi and Hybi+1, are statistically close, we rely on the
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randomness property of the extractor. The key here is that as long as the leakage
from the source wi is much smaller than its length, it still has enough entropy for
the output of the extractor on wi to be statistically close to random. This allows
us to argue that Ext(s, wi) acts as a one-time pad and thus, we can replace Shi

with the all 0’s string without an adversary being able to tell.
However, in order to make the argument work, we must ensure that the

leakage from the source is independent of the seed (which is required for the
extractor to work). This is where we will be using the fact that the seed is secret
shared using a 2-out-of-n secret sharing scheme. Intuitively, this ensures that a
local leakage function has no idea what the seed is, and so cannot leak anything
about wi that depends on the seed. In our reduction, we fix the share Si to
be independent of the seed and then leak from the source wi. Once the seed is
known2, we can sample the other shares (S1, . . . , Si−1, Si+1, . . . , Sn) as a valid
2-out-of-n secret sharing of s that is consistent with the fixed share Si. This
allows us to argue that the leakage on wi is independent of the seed. There is
a small caveat here that the masked value Sh′

i is dependent on the seed and
hence we cannot argue independence of the leakage on the source and the seed.
However, we use a simple trick of masking Sh′

i by another one-time pad and then
secret share the one-time pad key along with the seed s and use this argue that
this masked value is independent of the seed.

This construction described above has several useful properties. The most
significant one is that the transformation is rather simple and only incurs a very
small overhead when compared to the original secret sharing scheme. In partic-
ular, the rate of the resultant leakage resilient secret sharing has only a small
constant factor loss when compared to the initial secret sharing scheme. Also,
we can sample the seed s of the extractor once and use it for sharing multi-
ple secrets.3 The second advantage is that it easily generalizes to all monotone
access structures, basically, the only difference is that we use a secret sharing
scheme for this access structure to obtain the set of shares (Sh1, . . . ,Shn), and
the rest of the steps are exactly the same as before. The third advantage is that
the resultant secret sharing scheme has optimal leakage-resilience rate, i.e., the
ratio between the number of bits of leakage tolerated and size of the share tends
to 1 as the amount of leakage that the scheme is designed to handle increases.
Finally, if we use the inner product two-source extractor of Chor and Goldre-
ich [CG88] as the underlying extractor and the Shamir secret sharing scheme,
then the sharing procedure is a linear function of the secret and a quadratic
function of the randomness, and this can be implemented very efficiently.

Stronger Leakage-Resilience. We also extend our construction to satisfy a
stronger notion of leakage resilience, which we describe next. In the earlier def-
inition of local leakage, the leakage functions that are applied on the shares of
2 As the extractor is a strong seeded extractor, Ext(s, wi) is statistically close to

uniform even given the seed.
3 For the security of this modification to go through, we need the adversary to specify

all the secrets and leakage functions upfront – it cannot adaptively choose the secrets
and leakage functions depending on the previous leakage.
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honest parties are required to be specified independently of the shares that are
completely revealed to the adversary. In our stronger definition, these leakage
functions are allowed to depend on some number of the adversary’s shares.

In particular, we construct t-out-of-n threshold secret sharing schemes that
are resilient to such stronger leakage where the adversary is given (t− 1) shares,
and the leakage functions applied on the honest party’s shares are allowed to
depend on (t − 2) of these shares. This construction, which is in fact a simple
modification of our earlier one, has worse rate, but still has optimal leakage-
resilience rate. Referring temporarily to the above as (t − 2, t − 1)-strong local
leakage, we have the following.

Informal Theorem 2. For any t ≤ n, there is a t-out-of-n threshold secret
sharing scheme that is resilient against (t−2, t−1)-strong local leakage, has rate
Ω(1/n), and leakage-resilience rate tending to 1.

It is easy to check that this definition is impossible to achieve for a t-out-of-
n threshold secret sharing scheme if we allow the leakage functions to depend
on all (t − 1) of the adversary’s shares, as the leakage function on any honest
party’s share can use the (t − 1) shares along with this share to reconstruct the
secret and leak a few bits of the secret. Later in this section, we will describe an
application of this strong leakage resilient secret sharing scheme in constructing
leakage tolerant MPC for general interaction patterns.

Application 1: Rate-Preserving Non-Malleable Secret Sharing. Non-
malleable secret sharing schemes, introduced by Goyal and Kumar [GK18a], are
secret sharing schemes where it is not possible to tamper with the shares of a
secret s (in certain limited ways) so as to convert them to shares corresponding
to a different secret s̃ that is related to s (such as s + 1 or s with the first bit
flipped). We are interested in security against an adversary that tampers each
share independent of the others (called individual tampering). Such an adversary
works as follows. Initially, it specifies n “tampering functions” f1, . . . , fn and an
authorized set. A secret s is then shared into (Sh1, . . . ,Shn) and the shares are
tampered to get ˜Shi ← fi(Shi). The requirement now is that if the above specified
authorized set of parties try to reconstruct the secret using the shares {˜Shi}, the
resulting secret s̃ is either the same as s or something completely independent.

In this setting, Goyal and Kumar presented a construction of a non-malleable
t-out-of-n threshold secret sharing scheme, and in a later paper [GK18b]
extended this to general access structures. Their constructions, however, had
an asymptotic rate of zero.

Badrinarayanan and Srinivasan [BS19] gave a rate-efficient compiler that
takes any secret sharing scheme for a 4-monotone4 access structure and outputs
a non-malleable secret sharing scheme for the same access structure. The main
tool used in their compiler was a local leakage resilient threshold secret sharing

4 k-monotone means that all authorized sets in the access structure are of size at
least k.
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scheme. The loss in the rate of the resulting non-malleable secret sharing scheme
depended on the parameters of the underlying local leakage resilient secret shar-
ing. In particular, to have only a constant loss in the rate, it was important to
have a local leakage resilient threshold secret sharing scheme that had a con-
stant rate and a constant leakage-resilience rate. We plug in our leakage resilient
secret sharing scheme that has both these features with the compiler of Badri-
narayanan and Srinivasan to obtain a rate-preserving compiler for non-malleable
secret sharing.

Informal Theorem 3. There is a compiler that, given a secret sharing scheme
for a 4-monotone access structure A with rate R, produces a secret sharing
scheme for A that has rate Ω(R) and is non-malleable against individual tam-
pering.

Application 2: Leakage-Tolerant MPC for General Interaction Pat-
terns. Next, we provide an application of our constructions to secure multi-
party computation (MPC), an area where secret sharing is rather pervasive. In
particular, we study MPC protocols obeying a specified interaction pattern.

Background. An interaction pattern (introduced by Halevi et al. [HIJ+16]) gen-
eralizes the communication graph of a standard MPC protocol. It is defined as a
directed graph which specifies the sequence of messages that have to be sent dur-
ing the execution of a MPC protocol – its vertices correspond to the messages,
and edges indicate dependencies between messages. We illustrate by example
with the ring interaction pattern. Here, the first message is sent by the party P1

to the party P2 and depending on this message, P2 sends a message to P3 and so
on. Finally, the party Pn sends a message to P1 who computes the output based
on this message. The directed graph corresponding to this has (n + 1) nodes,
one corresponding to each message and one for the output, and the graph is a
single directed path that goes from the first message to the last and then to the
output node. To give another example, a standard 2-round MPC protocol with
n parties can be represented by an interaction pattern graph with two sets of
(

n
2

)

nodes, representing the messages sent by each party to every other party in
the two rounds. The edges then go from the nodes corresponding to first-round
messages to second-round messages, according to the protocol.

Given an interaction pattern specified by such a directed graph, the main
goal is to understand which functions can be computed securely by a protocol
following this pattern. It is known that without any form of correlated random-
ness setup, even simple functions such as majority cannot be computed with
any meaningful form of security for certain interaction patterns [BGI+14]. It is
also known from a sequence of works [HLP11,GGG+14,BGI+14] that standard
notions of security in MPC that guarantee that only the output is leaked are
impossible to achieve for certain interaction patterns. To see this, consider the
star interaction pattern [FKN94] where there is a special party called the eval-
uator and every other party sends a single message to the evaluator who then
computes the output. In this interaction pattern, if the evaluator colludes with
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some subset of the parties, then it is easy to see that the colluding parties can
learn the entire residual function resulting from fixing the honest parties’ inputs
to the function being computed.

In other interaction patterns, the residual function that the colluding parties
are able to learn may be different. In general, Halevi et al. [HIJ+16] classify the
parties’ inputs into fixed and free – every honest party’s input is fixed, and so
is a corrupted party’s input if there exists a path from a message sent by the
corrupted party to the output that passes through at least one honest party’s
message. The inputs of the remaining corrupted parties are free. To capture
the inherent security loss in certain interaction patterns, Halevi et al. allow the
adversary to learn the residual function with the above set of fixed inputs, and
say a protocol that is compliant with an interaction pattern is secure if it hides
everything other than this residual function.

Defining Leakage Tolerance. We extend the above definition of security to also
account for possible leakage from the states of honest parties. Specifically, we
define the notion of leakage tolerance for an MPC protocol that is compliant
with an interaction pattern along the same lines as that of leakage tolerant
MPC [GJS11,BCH12]. In the setting of leakage tolerance, as in the standard
setting, we consider an adversary who corrupts an arbitrary subset of parties
and can see their entire views. But in addition to this, the adversary also obtains
bounded leakage on the complete internal state – that includes the correlated
randomness, the input, the secret randomness, and the entire view of the pro-
tocol – of every honest party. The only process that we assume happens in a
leak-free manner is the correlated randomness generation phase which is anyway
independent of the actual inputs of the parties. After this leak-free randomness
generation, every bit of an honest party’s secret state including its input is sub-
ject to leakage. Here, the adversary can potentially learn bounded information
about the honest party’s input since it has access to all of the honest parties’
secret state. We would like to guarantee that nothing beyond such bounded
information about the inputs and the residual function is actually leaked to the
adversary – note that this is the best possible security we can hope for in this
setting. Technically, we account for this leakage by allowing the simulator to
learn the same amount of information about the honest parties’ inputs.

What makes the task of providing such security non-trivial is that, unlike
a standard MPC simulator who is allowed to cheat in generating the protocol
messages, a simulator in the leakage tolerance setting cannot deviate from the
protocol specification. This is because any deviation can be caught by the adver-
sary by leveraging the leakage on the secret state of the honest party. At first
sight, the task of designing such a simulator seems impossible as we require the
simulator to generate the correct protocol messages based only the output (or
more generally, based on the residual function). However, notice that the leak-
age functions are local to the honest party’s view. Hence, the simulator must
follow the protocol correctly at the local level but must somehow cheat at the
global level, i.e., in generating the joint distribution of the protocol messages. To
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make this task even more demanding, we do not wish to use any computational
assumptions and only make use of information theoretic tools to achieve leakage
tolerance.

Our Results. In this setting, we upgrade one of the results of Halevi et al.
[HIJ+16] to have the additional guarantee of leakage tolerance. They showed
that the star interaction pattern described earlier is complete for obtaining MPC
for general interaction patterns – given a secure protocol for a function f that
is compliant with the star interaction pattern, they showed how to construct a
secure protocol for f compliant with any other interaction pattern. In this work,
we show that star interaction pattern is complete for obtaining leakage-tolerant
MPC for general interaction patterns. Specifically, we obtain the following.

Informal Theorem 4. There is a compiler that, given a function f : {0, 1}n →
{0, 1}, an interaction pattern I, and a secure protocol for f compliant with the
star interaction pattern, produces a secure protocol (with a leak-free setup phase
producing correlated randomness) for f compliant with I that is leakage tolerant.

Using the known protocols for the star interaction pattern [BGI+14,BKR17,
GGG+14], we obtain the following corollaries for any interaction pattern I and
function f : {0, 1}n → {0, 1}:

– An I-compliant protocol for f with statistical leakage tolerance against upto
(n − 1) passive corruptions, with communication exponential in n.

– An efficient I-compliant protocol for f ∈ NC1 with statistical leakage toler-
ance against a constant number of passive corruptions.

– Assuming the existence of one-way functions, and that f is computable by a
polynomial-sized circuit, an efficient I-compliant protocol for f with compu-
tational leakage tolerance against a constant number of passive corruptions.

– Assuming the existence of indistinguishability obfuscation and one-way func-
tions, and that f is computable by a polynomial-sized circuit, an efficient I-
compliant protocol for f with computational leakage tolerance against upto
(n − 1) passive corruptions.

Our actual construction also covers functions where each party has multiple
bits as input and the function can output multiple bits (see Theorem9). The
compiler we use is the same as that of Halevi et al., except for using a leakage-
resilient secret sharing scheme where theirs uses additive secret sharing. However,
the proof of leakage tolerance is quite involved and, in fact, it turns out that
standard local leakage resilience is insufficient for this purpose and we require
strong leakage resilience. We now provide some intuition on why this is the case.
In the Halevi et al.’s construction, some set of secrets are shared among all
the parties in the correlated randomness generation phase. The messages sent
during the execution of the protocol comprise of a subset of a party’s shares.
So, a party’s secret state not only includes its own shares, but also the shares
received from the other parties. Thus, the leakage function on an honest party’s
internal state is not local as it gets to see a subset of the other parties’ shares.
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Thus, we need a secret sharing scheme satisfying the stronger notion of leakage
resilience, where the leakage on the honest party’s share can potentially depend
on the shares of corrupted parties. For this purpose, we make use of the secret
sharing scheme described in Informal Theorem 2.

1.2 Related Work

In a concurrent and independent work, Aggarwal et al. [ADN+18] also construct
leakage-resilient secret sharing schemes for any access structure from any secret
sharing scheme for that access structure. Their transformation incurs a O(1/n)-
factor loss in the rate and achieves a leakage-resilience rate of (1− c) for a small
constant c. In comparison, our transformation has a constant-factor loss in the
rate and achieves a leakage-resilience rate of 1. They use their techniques and
results to construct non-malleable secret sharing for 3-monotone access struc-
tures with an asymptotic rate of 0, and threshold signatures that are resilient
to leakage and mauling attacks. In comparison, our compiler for non-malleable
secret sharing is rate-preserving, but works only for 4-monotone access struc-
tures. Their work also considers the stronger model of concurrent tampering
and gives positive results in this model as well.

In another concurrent and independent work, Kumar et al. [KMS18] also
consider the problem of obtaining leakage-resilient secret sharing schemes in a
stronger leakage model. In particular, they consider a leakage model where every
bit of the leakage can depend on an adaptively chosen set of O(log n) shares. They
give constructions of such secret sharing schemes for general access structures
via a connection to problems that have large communication complexity. The
rate and the leakage-resilience rate of the construction are both Θ(1/poly(n)).
As an application, they construct a leakage-resilient non-malleable secret sharing
scheme where the tampering function can obtain bounded, adaptive leakage from
each share. In comparison, our strong leakage-resilient secret sharing scheme
works against local leakage with a single level of adaptivity, where the leakage
on each honest party’s share could depend on at most (t − 2) shares in a t-out-
of-n threshold scheme; our scheme has rate Ω(1/n) and a leakage-resilience rate
of 1.

Apart from these, most closely related to our work are the papers by Goyal
and Kumar on non-malleable secret sharing [GK18a,GK18b], Benhamouda et al.
on leakage-resilient secret sharing and MPC [BDIR18], and Badrinarayanan and
Srinivasan on non-malleable secret sharing with non-zero rate [BS19].

Local leakage resilient secret sharing (in the sense in which we use this term)
was first studied by Goyal and Kumar [GK18a] and Benhamouda et al. [BDIR18]
(independently of each other). [GK18a] constructed a local leakage resilient 2-
out-of-n threshold secret sharing scheme with rate and leakage-resilience rate
both Θ(1/n). They used this as a building block to construct non-malleable
threshold secret sharing schemes secure against individual and joint tamper-
ing (where the adversary is allowed to jointly tamper sets of shares). A later
paper also by Goyal and Kumar [GK18b] extended this to a compiler that adds
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non-malleability to a secret sharing scheme for any access structure. The non-
malleable schemes resulting from both of these works, however, had rate tending
to 0. Badrinarayanan and Srinivasan [BS19] later presented a compiler that con-
verts any rate R secret sharing scheme to a non-malleable one for the same
access structure with rate Θ(R/tmax log2 n), where tmax is the maximum size of
any minimal set in the access structure. In the process, they constructed local
leakage resilient t-out-of-n secret sharing schemes for a constant t that had rate
Θ(1/ log(n)) and leakage-resilience rate Θ(1/n log(n)).

Benhamouda et al. [BDIR18] were interested in studying the leakage-
resilience of existing secret sharing schemes and MPC protocols. Inspired by
the results of Guruswami and Wootters [GW16] that implied the possibility of
recovering the secret from single-bit local leakage of Shamir shares over small
characteristic fields, they investigated the leakage resilience of Shamir secret
sharing over larger characteristic fields. They showed that, for large enough char-
acteristic and large enough number of parties n, this scheme is leakage-resilient
(with leakage-resilience rate close to 1/4) as long as the threshold is large (at
least n − o(log(n))). They used this fact to show leakage-resilience of the GMW
protocol [GMW87] (using Beaver’s triples), and to show an impossibility result
for multi-party share conversion.

Boyle et al. [BGK14] define and construct leakage-resilient verifiable secret
sharing schemes where the sharing and reconstruction are performed by interac-
tive protocols (as opposed to just algorithms). They also show that a modification
of the Shamir secret sharing scheme satisfies a weaker notion of leakage-resilience
than the one we consider here, where it is only required that a random secret
retain sufficient entropy given the leakage on the shares.

Dziembowski and Pietrzak [DP07] construct secret sharing schemes (that
they call intrusion-resilient) that are resilient to adaptive leakage where the
adversary is allowed to iteratively ask for leakage from different shares. Their
reconstruction procedure is also interactive, however, requiring as many rounds
of interaction as the adaptivity of the leakage tolerated.

Leakage-resilience of secure multiparty computation has been studied in
the past in various settings [BGJK12,GIM+16,DHP11]. More broadly, leakage-
resilience of various cryptographic primitives have been quite widely studied – we
refer the reader to the survey by Alwen et al. [ADW09] and the references therein.
The notion of leakage tolerance was introduced by Garg et al. [GJS11] and Bitan-
sky et al. [BCH12], and has been the subject of many papers since [BCG+11,
BGJ+13,BDL14].

Secure multiparty computation with general interaction patterns was first
studied by Halevi et al. [HIJ+16], who showed a reduction from general interac-
tion patterns to the star pattern (which is what we base our reduction on). For
any interaction pattern, they then showed an inefficient information-theoretically
secure protocol for general functions, and an efficient one for symmetric func-
tions; they also showed a computationally secure protocol for general functions
assuming the existence of indistinguishability obfuscation and one-way functions,
and for symmetric functions under an assumption about multilinear maps.
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Subsequent Work. Subsequent to our work, Nielsen and Simkin [NS19] showed
a lower bound on the share size of leakage resilient secret sharing schemes that
satisfies the property that t̂ shares completely determine the other n−t̂ shares. In
particular, they showed that the size of the shares of such schemes for threshold
access structures with threshold t must be at least �(n − t)/t̂ where � is the size
of the leakage tolerated. This in particular, shows that Shamir secret sharing
cannot be leakage resilient for thresholds o(n) when leaking, say, 1/4-th of the
share size. On the other hand, it does not apply to schemes like ours where
each share contains some randomness independent of the other shares and is not
determined even given all the other shares.

2 Preliminaries

Notation. We use capital letters to denote distributions and their support, and
corresponding lowercase letters to denote a sample from the same. Let [n] denote
the set {1, 2, . . . , n} and Ur denote the uniform distribution over {0, 1}r. For a

finite set S, we denote x
$← S as sampling x uniformly at random from the set

S. For any i ∈ [n], let xi denote the symbol at the i-th co-ordinate of x, and for
any T ⊆ [n], let xT ∈ {0, 1}|T | denote the projection of x to the co-ordinates
indexed by T . We write ◦ to denote concatenation. We assume the reader’s
familiarity with the standard definitions of min-entropy, statistical distance and
seeded extractors and for completeness give the definition in the full version.

We first give the definition of a k-monotone access structure, then define a
sharing function and finally define a secret sharing scheme.

Definition 1 (k-Monotone Access Structure). An access structure A is
said to be monotone if for any set S ∈ A, any superset of S is also in A. We
will call a monotone access structure A as k-monotone if for any S ∈ A, |S| ≥ k.

Definition 2 (Sharing Function [Bei11]). Let [n] = {1, 2, . . . , n} be a set of
identities of n parties. Let M be the domain of secrets. A sharing function Share
is a randomized mapping from M to S1 × S2 × . . . × Sn, where Si is called the
domain of shares of party with identity i. A dealer distributes a secret m ∈ M
by computing the vector Share(m) = (S1, . . . ,Sn), and privately communicating
each share Si to the party i. For a set T ⊆ [n], we denote Share(m)T to be a
restriction of Share(m) to its T entries.

Definition 3 ((A, n, εc, εs)-Secret Sharing Scheme [Bei11]). Let M be a
finite set of secrets, where |M| ≥ 2. Let [n] = {1, 2, . . . , n} be a set of iden-
tities (indices) of n parties. A sharing function Share with domain of secrets M
is a (A, n, εc, εs)-secret sharing scheme with respect to monotone access structure
A if the following two properties hold:

– Correctness: The secret can be reconstructed by any set of parties that are
part of the access structure A. That is, for any set T ∈ A, there exists a
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deterministic reconstruction function Rec : ⊗i∈T Si → M such that for every
m ∈ M,

Pr[Rec(Share(m)T ) = m] = 1 − εc

where the probability is over the randomness of the Share function. We will
slightly abuse the notation and denote Rec as the reconstruction procedure
that takes in T ∈ A and Share(m)T as input and outputs the secret.

– Statistical Privacy: Any collusion of parties not part of the access struc-
ture should have “almost” no information about the underlying secret. More
formally, for any unauthorized set U ⊆ [n] such that U /∈ A, and for every
pair of secrets m0,m1 ∈ M , for any distinguisher D with output in {0, 1},
the following holds:

|Pr[D(Share(m0)U ) = 1] − Pr[D(Share(m1)U ) = 1]| ≤ εs

We define the rate of the secret sharing scheme as lim|m|→∞
|m|

maxi∈[n] |Share(m)i| .

Remark 1 (Threshold Secret Sharing Scheme). For ease of notation, we will
denote a t-out-of-n threshold secret sharing scheme as (t, n, εc, εs)-secret sharing
scheme.

3 Leakage Resilient Secret Sharing Scheme

In this section, we will define and construct a leakage resilient secret sharing
scheme against a class of local leakage functions. We first recall the definition of
a leakage resilient secret sharing scheme from [GK18a].

Definition 4 (Leakage Resilient Secret Sharing [GK18a]). An (A, n, εc, εs)
secret sharing scheme (Share,Rec) for message space M is said to be ε-leakage
resilient against a leakage family F if for all functions f ∈ F and for any two
messages m0,m1 ∈ M:

|f(Share(m0)) − f(Share(m1))| ≤ ε

3.1 Local Leakage Resilience

In this subsection, we will transform any secret sharing scheme to a leakage
resilient secret sharing scheme against the local leakage function family. We first
recall the definition of this function family.

Local Leakage Function Family. Let (S1 × S2 . . . × Sn) be the domain of shares
for some secret sharing scheme, and A be an access structure. The corresponding
local leakage function family is given by FA,μ = {fK,−→τ : K ⊆ [n],K �∈ A, τi :
Si → {0, 1}μ} where fK,−→τ on input (share1, . . . , sharen) outputs sharei for each
i ∈ K in the clear and outputs τi(sharei) for every i ∈ [n] \ K.
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Following [BDIR18], we will call secret sharing schemes resilient to FA,−→τ as
local leakage resilient secret sharing. We will define the leakage-resilience rate of
such a secret sharing scheme to be limμ→∞ μ

maxi∈[n] log |Si| .

Remark 2. We remark that Definition 4 is satisfiable against the leakage func-
tion class FA,μ (for any μ > 0) only if the access structure is 2-monotone (see
Definition 1). Hence, in the rest of the paper, we will concentrate on 2-monotone
access structures.

Description of the Compiler. We will give a compiler that takes any
(A, n, εc, εs) secret sharing scheme for any 2-monotone A and outputs a local
leakage resilient secret sharing scheme for A. We give the description of the
compiler in Fig. 1.

Fig. 1. Local leakage-resilient secret sharing

Theorem 5. Consider any 2-monotone access structure A and μ ∈ N and a
secret domain M with secrets of length m. Suppose for some η, d, ρ ∈ N and
εc, εs, ε ∈ [0, 1), the following exist:

– A (A, n, εc, εs) secret sharing scheme for the secret domain M with share
length ρ.
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– A (η − μ, ε)-average-case strong seeded extractor Ext : {0, 1}η × {0, 1}d →
{0, 1}ρ.

Then, the construction in Fig. 1, when instantiated with these, is a (A, n, εc, εs)
secret sharing scheme for M that is 2(εs + n · ε)-leakage resilient against FA,μ.
It has share size (η + 2ρ + d).

We give the proof of this theorem in the full version of the paper.

Instantiation. Next we demonstrate an instantiation of Theorem5 with the
state-of-the-art explicit construction of strong seeded extractors from the work
of Guruswami, Umans and Vadhan [GUV09].

Theorem 6 ([GUV09]). For any constant α > 0, and all integers n, k > 0
there exists a polynomial time computable (k, ε)-strong seeded extractor Ext :
{0, 1}n × {0, 1}d → {0, 1}m with d = O(log n + log(1ε )) and m = (1 − α)k.

We now instantiate our scheme with the following building blocks:

– Let (Share,Rec) be a secret sharing scheme for a 2-monotone access structure
A for sharing m-bit messages with rate R.

– We use the Guruswami, Umans and Vadhan [GUV09] strong seeded extractor
(refer Theorem 6). We set n = 1.01m/R + log(1/ε) + μ and d = O(log n +
log(1/ε)) and from Theorem6 and from [DORS08], it follows that Ext is a
(1.01m/R + log(1/ε), 2ε) average-case, strong seeded extractor.

Thus, (using terminology from Fig. 1) we get |sharei| = |wi| + |Shi| + |Si| =
n + m/R + (m/R + d) = 3.01m/R + μ + O(log m + log μ + log 1/ε).

Corollary 1. If there exists a secret sharing scheme for a 2-monotone access
structure with rate R, then there exists an ε-local leakage resilient secret sharing
for A against FA,μ for some negligible ε with rate R/3.01 and leakage-resilience
rate 1.

For the special case of threshold secret sharing scheme for which we know con-
structions with rate 1 [Sha79], we obtain the following corollary, where F(t,n),μ

denotes the local leakage function family corresponding to the t-out-of-n thresh-
old access structure.

Corollary 2. For any n, t, μ ∈ N such that t ≤ n, and ε ∈ (0, 1), there is a
t-out-of-n threshold secret sharing scheme that is (2nε)-leakage resilient against
F(t,n),μ, and has rate Ω(1), and leakage-resilience rate 1.

3.2 Strong Local Leakage Resilience

In this subsection, we consider a stronger notion of leakage resilience for secret
sharing, in which the leakage on the “honest” shares is allowed to depend arbi-
trarily on the “corrupted” shares – this is meant to capture a scenario where an
adversary first learns the shares of t of the n parties, and then specifies leakage
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functions that are applied to the remaining (n − t) shares, the outputs of which
are then given to the adversary. This corresponds to leakage resilience against
the function family described below.

Our motivation for studying this specific strengthening of local leakage
resilience is an application to constructing leakage-tolerant MPC protocols where
local leakage resilience turns out to be insufficient (see Sect. 5). For simplicity, we
will describe our results (and definitions) in this subsection only for threshold
access structures (which suffices for our MPC construction), but they can be
generalized to all access structures in a straightforward manner.

Semi-local Leakage Function Family. Let (S1×· · ·×Sn) be the domain of shares
for some secret sharing scheme, and t, t′ ∈ [n] and μ be natural numbers. A semi-
local leakage function family is parametrized by three numbers t (the adaptivity
threshold), t′ (the corruption threshold), and μ (the amount of leakage), such
that t ≤ t′. The family Ht,t′,μ consists of functions {hT,T ′,−→τ }, where the subsets
T ⊆ T ′ ⊆ [n] are such that |T | = t and |T ′| = t′; and for i ∈ [n]\T ′, the function
τi takes inputs from (Si1 ×· · ·×Sit

)×Si (where T = {i1, . . . , it}), and outputs μ
bits. The function hT,T ′,−→τ , when given input (share1, . . . , sharen), outputs sharei

for each i ∈ T ′, and τi((sharei1 , . . . , shareit
), sharei) for i �∈ T ′.

A secret sharing scheme resilient to leakage by such function families is said
to be strongly local leakage resilient.

Game-Based Definition. Strong local leakage resilience of a secret sharing scheme
(LRShare, LRRec) may alternatively, and perhaps more naturally, be defined as
the inability of the adversary to guess the bit b correctly in the following game:

1. The adversary selects the sets T ⊆ T ′ ⊆ [n] such that |T | = t and |T ′| = t′.
It then picks messages m0,m1 ∈ M, and sends all of these to the challenger.

2. The challenger picks a random bit b and computes (share1, . . . , sharen) ←
LRShare(mb). It sends shareT to the adversary.

3. The adversary now chooses a local leakage function f(T ′\T ),μ that operates
on the (n − t) shares (sharei)i�∈T . It sends this to the challenger.

4. The challenger sends the leakage f(T ′\T ),μ((sharei)i�∈T ).
5. The adversary outputs a guess b′ for b.

We require that Pr[b = b′] = 1/2 + negl(m). To see that these two definitions
are equivalent, note that the task of the adversary in the game is essentially to
specify a function from Ht,t′,μ – any function hT,T ′,−→τ in this class is specified by
sets T ⊆ T ′, outputs the shares in T ′ in the clear and also leaks some information
about the honest parties’ shares depending on the shares in T . And what the
adversary gets from the challenger is precisely the output of this function applied
to the shares.

We show that a modification of the construction from Sect. 3.1 can achieve
strong local leakage resilience. This is presented in Fig. 2.
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Fig. 2. Strongly local leakage-resilient secret sharing

Theorem 7. Consider any n, t, μ ∈ N such that t ≤ n and a secret domain M.
Suppose for some η, d,R ∈ N and ε ∈ [0, 1), the following exist:

– A perfect t-out-of-n threshold secret sharing scheme with share size ρ for
secrets in M.

– A (η − μ, ε)-average-case strong seeded extractor Ext : {0, 1}η × {0, 1}d →
{0, 1}ρ.

Then, the construction in Fig. 2, when instantiated with these, is a t-out-of-n
threshold secret sharing scheme for M that is (2nε)-leakage resilient against
H(t−2),(t−1),μ. It has share size (η + ρ + d + nρ).

Using the same instantiations as in Sect. 3.1, we get the following.

Corollary 3. For any n, t, μ ∈ N such that t ≤ n, and ε ∈ [0, 1], there is a
t-out-of-n threshold secret sharing scheme that is (2nε)-leakage resilient against
H(t−2),(t−1),μ, and has rate Ω(1/n), and leakage-resilience rate 1.
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We prove Theorem 7 along the same lines as Theorem 5, and we give the
details in the full version.

4 Rate Preserving Non-Malleable Secret Sharing

In this section, we will use the leakage resilient secret sharing scheme in Sect. 3 to
construct a non-malleable secret sharing scheme. Specifically, we give a compiler
that takes any secret sharing scheme for a 4-monotone access structure (see
Definition 1) with rate R and converts it into a non-malleable secret sharing
scheme for the same access structure with rate Ω(R).

In the full version, we give some background on non-malleable codes and
below we recall the definition of non-malleable secret sharing for a monotone
access structure A.

Definition 5 (Non-Malleable Secret Sharing for General Access Struc-
tures [GK18b]). Let (Share,Rec) be a (A, n, εc, εs)-secret sharing scheme for
message space M and access structure A. Let F be a family of tampering func-
tions. For each f ∈ F , m ∈ M and authorized set T ∈ A, define the tam-
pered distribution Tamperf,T

m as Rec(f(Share(m))T ) where the randomness is over
the sharing function Share. We say that the (A, n, εc, εs)-secret sharing scheme,
(Share,Rec) is ε′-non-malleable w.r.t. F if for each f ∈ F and any authorized
set T ∈ A, there exists a distribution Df,T over M ∪ {same�} such that for any
m,

|Tamperf,T
m − copy(Df,T ,m)| ≤ ε′

where copy is defined by copy(x, y) =

{

x if x �= same�

y if x = same�
. We call ε′ as the

simulation error.

4.1 Construction

We give a construction of a non-malleable secret sharing scheme for a 4-monotone
access structures against the individual tampering function family Find (see
below).
Individual Tampering Family Find. Let Share be the sharing function of the secret
sharing scheme that outputs n-shares in S1 × S2 . . . × Sn. The function family
Find is composed of tuples of functions (f1, . . . , fn) where each fi : Si → Si.

Construction. The construction is same as the one given in [BS19] but we instan-
tiate the leakage-resilient secret sharing scheme with the one constructed in the
previous section. We now give the description of the building blocks and then
give the construction. In the following, we will denote a t-out-of-n monotone
access structure as (t, n).
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Building Blocks. The construction uses the following building blocks. We instan-
tiate them with concrete schemes later:

– A 3-split-state non-malleable code (Enc,Dec) where Enc : M → L × C × R
and the simulation error of the scheme is ε1. Furthermore, we assume that for
any two messages m,m′ ∈ M, (C,R) ≈ε2 (C′,R′) where (L,C,R) ← Enc(m)
and (L′,C′,R′) ← Enc(m′).

– A (A, n, εc, εs) (where A is 4-monotone) secret sharing scheme (SecShare(A,n),
SecRec(A,n)) with statistical privacy (with error εs) for message space L. We
will assume that the size of each share is m1.

– A (3, n, 0, 0) secret sharing scheme (LRShare(3,n), LRRec(3,n)) that is ε3-leakage
resilient against leakage functions F(3,n),m1 for message space C. We assume
that the size of each share is m2.

– A (2, n, 0, 0) secret sharing scheme (LRShare(2,n), LRRec(2,n)) for message
space R that is ε4-leakage resilient against leakage functions F(2,n),μ where
μ = m1 + m2. We assume that the size of each share is m3.

We give the formal description of the construction in Fig. 3 (taken verbatim from
[BS19]).

Imported Theorem 8 ([BS19]). For any arbitrary n ∈ N and any 4-monotone
access structure A, the construction given in Fig. 3 is a (A, n, εc, εs + ε2) secret
sharing scheme. Furthermore, it is (ε1 + ε3 + ε4)-non-malleable against Find.

We defer the rate analysis to the full version of the paper and only state the
corollary below.

Corollary 4. For any n ∈ N, ρ > 0 and 4-monotone access structure A, if
there exists a statistically private (with privacy error ε) secret sharing scheme
for A that can share m-bit secrets with rate R, there exists a non-malleable secret
sharing scheme for sharing m-bit secrets for the same access structure A against
Find with rate Ω(R) and simulation error ε + 2−Ω(m/ log1+ρ(m)).

5 Leakage Tolerant MPC for General Interaction
Patterns

In this section, we will construct a leakage tolerant secure multiparty compu-
tation protocol for any interaction pattern (defined below). We will first recall
some basic definitions from [HIJ+16].
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Fig. 3. Construction of non-malleable secret sharing scheme for 4-monotone access
structure taken verbatim from [BS19]

5.1 Basic Definitions

This subsection consists of definitions and some associated exposition, all taken
verbatim from [HIJ+16].

We begin by defining the syntax for specifying a communication pattern I
and a protocol Π that complies with it. In all the definitions below, we let
P = {P1, . . . , Pn} denote a fixed set of parties who would participate in the
protocol. When we want to stress the difference between a protocol message
as an entity by itself (e.g., “the 3rd message of party P1”) and the content of
that message in a specific run of the protocol, we sometime refer to the former
as a “message slot” and the latter as the “message content.” To define an N -
message interaction pattern for the parties in P, we assign a unique identifier
to each message slot. Without loss of generality, the identifiers are the indices
1 through N . An interaction pattern is then defined via a set of constraints on
these message slots, specifying the sender and receiver of each message, as well
as the other messages that it depends on. These constraints are specified by a
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message dependency graph, where the vertices are the message slots and the
edges specify the dependencies.

Definition 6 (Interaction pattern [HIJ+16]). An N -message interaction
pattern for the set of parties P is specified by a message dependency directed
acyclic labeled graph,

I = ([N ],D, L : V → P × (P ∪ Out))

The vertices are the message indices [N ], each vertex i ∈ [N ] is labeled by a
sender-receiver pair L(i) = (Si, Ri), with Ri = Out meaning that this message
is output by party Si rather than sent to another party. The directed edges in D
specify message dependencies, where an edge i → j means that message j in the
protocol may depend on message i. The message-dependency graph must satisfy
two requirements:

– I is acyclic. We assume without loss of generality that the message indices
are given in topological order, so i < j for every (i → j) ∈ D.

– If message j depends on message i, then the sender of message j is the receiver
of message i. That is, for every (i → j) ∈ D, we have Sj = Ri (where
L(i) = (Si, Ri) and L(j) = (Sj , Rj)).

We assume without loss of generality that each party P ∈ P has at most one
output, namely at most one i ∈ [N ] such that L(i) = (P,Out). For a message j ∈
[N ], we denote its incoming neighborhood, i.e. all the messages that it depends
on, by DepOn(j) := {i : (i → j) ∈ D}.

An n-party, N -message interaction pattern, is an N -message pattern for P =
[n]. We will interchangeably denote the i-th party as either using i or Pi.

A well known example of an interaction pattern is the star pattern which we
define below.

Star Interaction Pattern. A n + 1-party, n + 1-message interaction pattern is
called a star interaction pattern, if for each i ∈ [n], L(i) = (Pi, Pn+1), (i →
n + 1) ∈ D and L(n + 1) = (Pn+1,Out). In other words, for every i ∈ [n], Pi

sends a single message to Pn+1 who computes the output from all the messages
received.

I-compliant MPC. We next define the syntax of an MPC protocol complying
with a restricted fixed interaction pattern. Importantly, our model includes gen-
eral correlated randomness set-up, making protocols with limited interaction
much more powerful.

Definition 7 (I compliant protocol [HIJ+16]). Let I = ([N ],D, L) be an
n-party N -message interaction pattern. An n-party protocol complying with I is
specified by a pair of algorithms Π = (Gen,Msg) of the following syntax:

– Gen is a randomized sampling algorithm that outputs an n-tuple of correlated
random strings (r1, . . . , rn).
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– Msg is a deterministic algorithm specifying how each message is computed
from the messages on which it depends. Concretely, the input of Msg consists
of the index i ∈ [N ] of a vertex in the dependency graph, the randomness
rSi

and input xSi
for the sender Si corresponding to that vertex, and an

assignment of message-content to all the messages that message i depends
on, M : DepOn(i) → {0, 1}∗. The output of Msg is an outgoing message in
{0, 1}∗, namely the string that the sender Si should send to the receiver Ri.

The execution of such a protocol Π with pattern I proceeds as follows.
During an offline set-up phase, before the inputs are known, Gen is used to
generate the correlated randomness (r1, ..., rn) and distribute ri to party Pi.
In the online phase, on inputs (x1, . . . , xn), the parties repeatedly invoke Msg
on vertices (message-slots) in I to compute the message-content they should
send. The execution of Π goes over the message slots in a topological order,
where each message is sent after all messages on which it depends have been
received. We do not impose any restriction on the order in which messages are
sent, other than complying with the depend-on relation as specified by I. Once
all messages (including outputs) are computed, the parties have local outputs
(y1, . . . , yn), where we use yi = ⊥ to indicate that Pi does not have an output.

For a set T ⊂ [n] of corrupted parties, let viewT denote the entire view of
T during the protocol execution. This view includes the inputs xT , correlated
randomness rT , and messages received by T . (Sent messages and outputs are
determined by this information.) The view does not include messages exchanged
between honest parties. Security of a protocol with communication pattern I
requires that for any subset of corrupted parties T ⊂ P, the view viewT reveals
as little about the inputs xT of honest parties as is possible with the interaction
pattern I. We formulate this notion of “as little as possible” via the notion of
fixed vs. free inputs: If parties Pi, Pj are corrupted and no path of messages
from Pi to Pj passes through any honest party, then the adversary can learn
the output of Pj on every possible value of xi. However, if there is some honest
party on some communication path from Pi to Pj , then having to send a message
through that party may be used to “fix” the input of Pi that was used to generate
that message, so the adversary can only learn the value of the function on that
one input.

Definition 8 (Fixed vs. free inputs). For an interaction pattern I, parties
Pi, Pj ∈ P (input and output parties), and a set T ⊂ P of corrupted parties, we
say that Pi has fixed input with respect to I, T and Pj if either

– Pi �∈ T (the input party is honest), or
– there is a directed path in I starting with some message sent by Pi, ending

with some message received by Pj, and containing at least one message sent
by some honest party Ph �∈ T .

We say that Pi has free input (with respect to I, T, Pj) if Pi ∈ T and its input
is not fixed. We let Free(I, T, Pj) ⊆ T denote the set of parties with free inputs,
and Fixed(I, T, Pj) = P\Free(I, T, Pj) is the complement set of parties with fixed
input (all with respect to I, T and Pj).
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Using the notion of fixed inputs, we can now capture the minimum informa-
tion available to the adversary by defining a suitable restriction of the function
f that the protocol needs to compute.

Definition 9. For an n-party functionality f , interaction pattern I, corrupted
set T ⊂ P , input x = (x1, . . . , xn) and output party Pj ∈ P , the residual func-
tion fI,T,x,Pj

is the function obtained from fj by restricting the input variables
indexed by F = Fixed(I, T, Pj) to their values in x. That is, for input variables
x′

F
= {x′

i}i�∈F , we define fI,T,x,Pj
(x′

F
) = fj(x′

1, . . . , x
′
n), where x′

i = xi for all
i ∈ F .

We formalize our notion of security in the semi-honest model below. To get
around general impossibility results for security with polynomial-time simulation
[HLP11,GGG+14,BGI+14], we will allow by default simulators to be unbounded
(but will also consider bounded simulation variants). We start by considering
perfectly/statistically/computationally secure protocols.

Definition 10 (Security with semi-honest adversaries). Let f be a determinis-
tic n-party functionality, I be an n-party, N -message interaction pattern, and
Π = (Gen,Msg) be an n-party protocol complying with I. We say that Π is a
perfectly T -secure protocol for f in the semi-honest model for a fixed set T ⊂ P
of corrupted parties if the following requirements are met:

– Correctness: For every input x = (x1, . . . , xn), the outputs at the end of the
protocol execution are always equal to f(x) (namely, with probability 1 over
the randomness of Gen).

– Semi-honest security: There is an unbounded simulator S that for
any input x is given xT and the truth tables of the residual functions
fI,T,x,Pj

for all Pj ∈ T , and its output is distributed identically/statistically
close/computationally indistinguishable to viewT (x).

Remark 3 (Efficient Simulation). For the case where we require the simulator to
be efficient, we provide the simulator with oracle access to the residual function
fI,T,x,Pj

.

5.2 Definition: Leakage Tolerant MPC for an Interaction Pattern

We now define what it means for an MPC protocol compliant with an interaction
pattern I to be leakage-tolerant.

We consider an (n + 1)-party P = {P1, . . . , Pn, Pn+1} protocol Π =
(Gen,Msg) that is compliant with an interaction pattern I with a single output
party, namely, Pn+1 (that does not have any inputs)5 that computes a function
f : ({0, 1}m)n → {0, 1}∗, where the party Pi gets input xi ∈ {0, 1}m for each
i ∈ [n]. The execution of Π proceeds along an identical fashion as in the standard

5 The case of multiple output parties reduces to the case of single output party by
considering each output party computing a specific function of the other parties
input.
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MPC for general interaction pattern (see Definition 7) and we recall this once
again. In the offline phase before the parties get to know their actual inputs, the
algorithm Gen is run and this outputs the correlated randomness (r1, . . . , rn+1)
where ri is given to party Pi. In the online phase, on inputs (x1, . . . , xn), the
parties repeatedly invoke Msg on vertices (message-slots) in I to compute the
message-content they should send. The execution of Π goes over the message
slots in a topological order, where each message is sent after all messages on
which it depends have been received. Once all messages are sent, the output
party Pn+1 computes the output.

Let us say that at the end of a protocol Π, the party Pi’s view viewi is from
a domain Vi. Recall that viewi includes the correlated randomness output by
Gen, party Pi’s input xi as well as the messages that it has received during the
execution of the protocol. Let us denote Π(x) as the joint distribution of the
views of every party during the execution of the protocol. We are interested in
adversaries that statically corrupt t (<n) of the parties, obtaining their entire
states, and also obtain some leakage on the states of the other uncorrupted
parties. More formally, we represent the view of such adversaries as families
of functions of the form Gt,μ = {gT,−→τ : T ⊆ [n], |T | ≤ t, τi : Vi → {0, 1}μ};
where gT,−→τ (Π(x)) outputs viewi for every i ∈ T , and τi(viewi) for i �∈ T ,
when the protocol Π is run with input x – we refer to such a function as a
(T, μ)-leakage function. Informally, we assume that the algorithm Gen runs in
a leak-free manner and from then on, the honest party’s entire secret state is
subject to leakage.

Definition 11 (Leakage Tolerance against Semi-honest Adversaries).
Let f be a deterministic n-party functionality, I be an n-party, N -message

interaction pattern, and Π = (Gen,Msg) be an n-party protocol complying with
I. We say that Π is a (T, μ)–leakage tolerant protocol for f in the semi-honest
model for a set T ⊆ P if it satisfies the following properties:

– Correctness: The protocol Π computes f(x) correctly for any input x =
(x1, . . . , xn).

– Leakage Tolerance: For any (T, μ)-leakage function gT,−→τ , there is an
unbounded simulator S satisfying the following.

• For any input x = (x1, . . . , xn), the simulator S is given the inputs of the
corrupted parties xT and the truth tables of the residual functions fI,T,x,Pj

for all Pj ∈ T as input. It is allowed a single query to an oracle O[xT ],
which takes as input a tuple of functions (σi)i∈T , where each function is
of the form σi : {0, 1}m → {0, 1}μ, and outputs (σi(xi))i∈T .

• We require that:

gT,−→τ (Π(x)) ≈ SO[xT ](fI,T,x,Pj
, xT )

where ≈ might indicate identical/statistically close/computationally indis-
tinguishable.

We say that Π is a (t, μ)-leakage tolerant protocol for f if it is (T, μ)-leakage
tolerant for all T ⊆ P and |T | ≤ t.
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5.3 Construction

In this subsection, we give a construction of a leakage-tolerant semi-honest MPC
for any interaction pattern I. Specifically, we give a reduction from a leakage-
tolerant semi-honest MPC for any interaction pattern I to constructing a (pos-
sible leakage intolerant) MPC protocol for the star interaction pattern. The
construction we give is the same as the one given in [HIJ+16] with the only
change being that we use our strong local leakage-resilient scheme instead of any
secret sharing scheme.

Before we describe the construction, we introduce the following notation. For
a function f : ({0, 1}m)n → {0, 1}∗, we denote by f bit : {0, 1}mn → {0, 1}∗ the
function that takes mn bits as inputs, groups them together in order into n
strings of length m each, and applies f on them.

Building Blocks. The construction uses the following building blocks:

– A star compliant, semi-honest protocol Π∗ = (Gen∗,Msg∗,Eval∗) that
securely (either perfect/statistical/computational) computes the function
f bit. Here, Msg∗ denotes the next message function of the parties P1, . . . , Pmn

and Eval∗ is the function computed by the evaluator (or in other words, party
Pmn+1).

– A (n + 1, n + 1, 0, 0) threshold secret sharing scheme (LRShare, LRRec) that
is ε-strong leakage resilient for some negligible ε against the function family
Hn−1,n,μ (where H function class is defined in Sect. 3.2).

Construction. Let f : ({0, 1}m)n → {0, 1}∗ be a n-party functionality that
depends on all its inputs and I be an interaction pattern with a single sink. Let
P = {P1, . . . , Pn+1} be the set of parties with Pn+1 being the evaluator who
does not have any inputs. We give the construction of an I compliant protocol
in Fig. 4.

Theorem 9. If Π∗ computes f bit with statistical/computational security and
(LRShare, LRRec) is an ε-strong leakage resilient secret sharing scheme against
Hn−1,n,μ for some negligible ε, then the construction in Fig. 4 is a semi-
honest, I-compliant protocol for f that is (n, μ)-leakage tolerant with statisti-
cal/computational security. Furthermore, if each party uses R bits of correlated
randomness and sends M bits in the protocol Π∗, then each party in the protocol
in Fig. 4 uses O(m(R + n2M + nμ)) bits of correlated randomness and sends
O((n2M + nμ)m) bits.

We give the proof of this theorem in the full version. Using the known protocols
for the star interaction pattern from the works of [BGI+14,BKR17,GGG+14],
we obtain the following corollary.

Corollary 5 ([BGI+14,BKR17,GGG+14]). Let I be a n-party interaction pat-
tern with a single sink and let be f : ({0, 1}m)n → {0, 1}∗ be a function which
depends on all its inputs. Then,
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Fig. 4. A I compliant protocol computing f . The construction is same as the one in
[HIJ+16] except that we use our leakage resilient secret sharing.

– There is a statistical I-compliant leakage tolerant protocol that securely com-
putes f against upto n−1 passive corruptions. The communication complexity
is exponential in n,m.

– If f is computable by a circuit in NC1 and m = O(log n), then there exists an
efficient I-compliant leakage tolerant protocol that computes f with statistical
security upto a constant number of corruptions. Assuming one-way functions,
every f that is computable by polynomial-sized circuits has a computationally
secure, efficient, I-compliant leakage tolerant protocol upto a constant number
of corruptions.

– Assuming indistinguishability obfuscation and one-way functions, every func-
tion computable by polynomial-sized circuits has a computationally secure,
efficient, I-compliant leakage tolerant protocol against upto n−1 passive cor-
ruptions.
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Abstract. In this work we present a collection of compilers that take
secret sharing schemes for an arbitrary access structure as input and
produce either leakage-resilient or non-malleable secret sharing schemes
for the same access structure. A leakage-resilient secret sharing scheme
hides the secret from an adversary, who has access to an unqualified set of
shares, even if the adversary additionally obtains some size-bounded leak-
age from all other secret shares. A non-malleable secret sharing scheme
guarantees that a secret that is reconstructed from a set of tampered
shares is either equal to the original secret or completely unrelated.
To the best of our knowledge we present the first generic compiler for
leakage-resilient secret sharing for general access structures. In the case
of non-malleable secret sharing, we strengthen previous definitions, pro-
vide separations between them, and construct a non-malleable secret
sharing scheme for general access structures that fulfills the strongest
definition with respect to independent share tampering functions. More
precisely, our scheme is secure against concurrent tampering : The adver-
sary is allowed to (non-adaptively) tamper the shares multiple times, and
in each tampering attempt can freely choose the qualified set of shares
to be used by the reconstruction algorithm to reconstruct the tampered
secret. This is a strong analogue of the multiple-tampering setting for
split-state non-malleable codes and extractors.

We show how to use leakage-resilient and non-malleable secret shar-
ing schemes to construct leakage-resilient and non-malleable threshold
signatures. Classical threshold signatures allow to distribute the secret
key of a signature scheme among a set of parties, such that certain quali-
fied subsets can sign messages. We construct threshold signature schemes
that remain secure even if an adversary leaks from or tampers with all
secret shares.
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1 Introduction

In a secret sharing scheme, a dealer who holds a secret s chosen from a domain
M can compute a set of shares by evaluating a randomized function on s which
we write as Share(s) = (s1, . . . , sn).

A secret sharing comes with an access structure A, which is a family of
subsets of the indices 1, . . . , n, such that if one is given a subset of the shares of s
corresponding to a set A ∈ A (a qualified set), then one can compute s efficiently,
whereas any subset of shares corresponding to a set not in A (an unqualified set)
contains no, or almost no information about the secret. An important special
case is threshold secret sharing, where the access structure contains all set of size
at least some threshold value.

Secret-sharing is one of the most basic and oldest primitives in cryptography,
introduced by Blakley and Shamir in the late seventies [6,22]. It allows to strike a
meaningful balance between availability and confidentiality of secret information.
Namely, we can store the n shares in n different servers and ensure that (i) as
long as a qualified set of servers is alive, the secret is available, and (ii) even if
an unqualified set of shares is stolen, the secret remains confidential.

After its introduction, several variants of secret sharing have been suggested
that address the problem of authenticity of the secret: we want to guarantee that
we reconstruct the original value, even if not all players are honest. One such
variant is robust secret sharing, where the dealer is honest but some unqualified
set of share holders are malicious and may return incorrect shares. It is required
that the secret is still correctly reconstructed from the set of all shares in such
a case. In verifiable secret sharing, the dealer may be dishonest as well, but
via interaction in the sharing phase we can enforce that a unique secret is still
determined and that this is the value that will be reconstructed later.

In all these older settings, the adversary is of the classic type that completely
corrupts a certain subset of the players in the protocol, either to steal information
or to corrupt data, whereas the players who are not corrupted are “completely
honest”. In many scenarios, however, this may not be the most realistic model
of attacks. Instead, it may make more sense to assume that the adversary will
try to attack all share holders, and will have some partial success in all or most
of the cases.

For the case of attacks against confidentiality, we can model this as leak-
age resilient secret sharing, where the adversary is allowed to specify a leak-
age function Leak and will be told the value Leak(s1, ..., sn). Then, under cer-
tain restrictions on Leak, we want that the adversary learns essentially nothing
about s. Typically, so called local leakage is considered, where Leak(s1, ..., sn) =
(Leak1(s1), ..., Leakn(sn)) for local leakage functions Leaki with bounded output
size. This makes sense in a scenario where shares are stored in physically sep-
arated locations. It is known that some secret sharing schemes are naturally
leakage-resilient against local leakage whereas others are not [5]. Boyle et al. [8]
showed how to construct (locally) leakage-resilient verifiable secret sharing for
threshold access structures. Goyal and Kumar [16] construct a specific type of
leakage-resilient 2-out-of-n secret sharing as part of non-malleable secret sharing
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construction. To the best of our knowledge, it is not known how to construct
leakage-resilient schemes from regular secret sharing schemes in general.

The case of attacks that try to corrupt the secret has been considered only
recently, and for this purpose the notion of non-malleable secret sharing was
introduced by Goyal and Kumar [16]. In this model, the adversary specifies a
tampering function f which acts on the shares, and then the reconstruction algo-
rithm is applied to a qualified subset of f(s1, ..., sn). The demand, simplistically
speaking, is that either the original secret is reconstructed or it is destroyed, i.e.,
the reconstruction result is unrelated to the original secret. Note that since f is
allowed to touch all shares, we cannot avoid the case where an unrelated secret
is reconstructed, as f could always replace all shares by shares of a different
secret. In line with all previous works, we consider local tampering functions,
which individually tamper with each share. This is a sensible assumption if, for
example, each share is stored in a different server. Of course, such a tampering
is closely related to the earlier notion of non-malleable codes against split-state
tampering [14]. The main difference between non-malleable codes and secret
sharing schemes is that, in addition to non-malleability, we also insist that the
correctness and privacy properties of the secret sharing scheme are satisfied.
Interestingly, some non-malleable codes can also be seen as primitive versions
of general non-malleable secret sharing schemes. In fact, non-malleable codes in
the 2-split-state model (where each codeword is split into two halfs which are
tampered independently) are 2-out-of-2 non-malleable secret sharing schemes [2].

The first non-malleable secret sharing schemes were constructed in [16] for
threshold access structures, and, in a follow-up work [17], for general access
structures, where an adversary is allowed to independently tamper with each
share in a minimal reconstruction set. In the latter work, a general compiler was
given that builds a non-malleable secret sharing scheme from a regular secret
sharing scheme.

An application of non-malleable secret sharing to secure message transmis-
sion was given in [16], but another very natural application, which does not seem
to have been considered before, is to threshold cryptography. Let us consider,
for instance, a threshold signature scheme. In such an application, the secret key
is secret-shared among n servers, who then collaborate to generate a signature
such that the signature itself is the only new information released.

Some threshold signature schemes have “built-in” protection against tam-
pering. Namely, they establish a public commitment to each share of the secret
key, and when a server contributes to a new signature, it must prove in zero-
knowledge that it is behaving consistently with the commitment. If the com-
mitment cannot be tampered, this will imply that tampered shares cannot con-
tribute to a signature. However, in many protocols for signature generation, one
can avoid zero-knowledge proofs by optimistically generating a signature assum-
ing that all players behave correctly. The observation is that one can always
verify the signature in the end and take some alternative action if it fails. This
will be very efficient if players behave honestly almost always. Such a protocol
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is not secure if executed on tampered shares, and adding zero-knowledge proofs
does not make sense in this case.

It therefore seems natural to try to use a non-malleable secret sharing scheme
instead. This of course raises the question of how we can generate signatures effi-
ciently and securely – existing threshold signatures assume regular secret shar-
ing, and it is not clear how we can use existing non-malleable schemes without
resorting to generic multiparty computation.

However, suppose for a moment that we could solve this issue. Now, if the
shares have in fact been tampered with, this tampering will become clear once
it is found out that the signature does not verify, and one can then take action
(e.g., stop the system and restore the secret key from a back-up). The intuition is
that we have managed to make the tampering harmless, because non-malleability
implies that the faulty signature is generated from an unrelated secret.

Unfortunately, however, the original definition is unlikely to be sufficient to
prove this intuition for a realistic system. The problem is that a real-life system
will most likely have to serve many different signature requests that arrive in an
uncoordinated fashion over an asynchronous network like the Internet. Therefore,
once the first faulty signature has been detected and action has been taken,
we should assume that in the mean time several other signature requests have
already been served, possibly by different qualified sets of servers.

The standard definition of non-malleable secret sharing [16,17] is not suffi-
cient to prove security in this case because it only talks about one invocation
of the reconstruction algorithm. What we need is a stronger definition, namely
non-malleability with concurrent reconstruction. In this model, we consider an
experiment where, after the tamperings have been done, the reconstruction algo-
rithm is run (in parallel) on several qualified subsets. We require that all the
instances of the reconstruction return either the original secret or something
unrelated. It is not known how to construct secret sharing schemes with this
stronger property.

1.1 Our Contributions

In this paper, we resolve all of the above open questions:

– We present a general compiler that transforms any secret sharing scheme
into a leakage-resilient one for the same access structure and preserves the
efficiency of the original scheme. The compiled scheme withstands bounded
size local leakage from all shares. The result extends to attacks that are
strictly stronger than previously considered: the adversary can be told com-
plete information on an unqualified set of shares and can in addition be given
local leakage from all the other shares, and still will not learn the secret. To
the best of our knowledge, this is the first result of its kind.
If the share length of the underlying secret sharing scheme is �, then the
compiler can yield a leakage-resilient scheme with shares of length O(�) and
leakage rate 1 − c for an arbitrarily small constant c > 0. Moreover, if we
allow a blow-up of the share length in the compiled scheme from � to ω(�),
then we can achieve a leakage rate of 1 − o(1).
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– We present another compiler that transforms any secret sharing scheme real-
izing an access structure A where every qualified set T has size at least 3 into
a scheme for the same access structure that is non-malleable with concurrent
reconstruction with respect to individual share tampering. More precisely,
the adversary chooses a polynomial (in the number of parties) number of
qualified sets T1, T2, . . . , where it may be the case that Ti = Tj for some i
and j, along with associated tampering functions f (1), f (2), . . . , where f (i)

tampers each share independently. We may think of this setting as a strong
analogue of the multiple-tampering paradigm for non-malleable codes and
extractors: The adversary is allowed to (non-adaptively) tamper the shares
multiple times, and in each tampering attempt is further allowed to freely
choose the qualified set to be used by the reconstruction algorithm in the
tampering experiment.

– We present a compiler that turns any threshold signature scheme into one
that is secure against tampering, assuming the original scheme is secure in
the standard sense. In particular, the compiled scheme is secure even if faulty
signatures are constructed from several qualified sets after tampering. We
allow the adversary to either tamper with all shares of the secret key, or
to maliciously corrupt an unqualified subset of the signature servers. The
compiler adds two rounds to the signing protocol of the original scheme. The
computational complexity is essentially that of the original signature protocol
plus that of the reconstruction in a non-malleable secret sharing scheme. The
overhead is actually only necessary each time the system is initialized from
storage that may have been tampered, and therefore its cost amortizes over
all signatures generated while the system is on-line.

– We present a compiler that turns any threshold signature scheme into one that
is secure in the standard sense even if the adversary, additionally, obtains
size-bounded leakage from all secret key shares. The compiler follows the
same blueprint and is as efficient as our compiler for non-malleable threshold
signatures.

1.2 Independent Work

In the late stages of this work, it came to our knowledge that other independent,
concurrent works obtained results similar to ours. Srinivasan and Vasudevan [24]
give a compiler that transforms a secret sharing scheme for any access structure
into a leakage-resilient secret sharing scheme for the same access structure. Their
compiler is rate-preserving and has leakage rate approaching 1. In comparison,
if the underlying secret sharing scheme has constant rate, our leakage-resilient
secret sharing compiler achieves rate Ω(1/n) and leakage rate 1 − c for an arbi-
trarily small constant c > 0, and must have rate 0 if we require leakage rate
1 − o(1). They also construct leakage resilient schemes in a stronger leakage
model, where leakage functions may be chosen adaptively.

Srinivasan and Vasudevan use the results obtained to construct positive rate
non-malleable threshold secret sharing schemes against a single tampering that
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modifies each share independently for 4-monotone access structures1. In com-
parison, the non-malleable secret sharing compiler that we obtain for a single
tampering works for all 3-monotone access structures but has rate Θ( 1

n log m ) in
the same setting, where m denotes the length of the secret and n denotes the
number of parties, and so converges to 0. Finally, they consider applications to
leakage-resilient secure multiparty computation.

Badrinarayanan and Srinivasan [3] construct non-malleable secret sharing
schemes with respect to independent share tampering, both against a single tam-
pering and against multiple tamperings. They are able to realize all 4-monotone
access structures. Moreover, they optimize the rates of their constructions to
obtain schemes with positive rate and a concretely efficient scheme. However,
their tampering model is weaker than ours: While in our model, named con-
current reconstruction, the adversary is allowed to (non-adaptively) tamper the
shares multiple times and in each tampering can choose a potentially different
reconstruction set for the tampering experiment, the model studied in [3] forces
the adversary to always choose the same reconstruction set for all tamperings.
Their schemes are not secure in the stronger concurrent reconstruction model,
and the authors explicitly mention the concurrent reconstruction model as a
natural strengthening of their tampering model. In contrast, our compiler trans-
forms any secret sharing scheme realizing a 3-monotone access structure into a
(rate-0) non-malleable secret sharing scheme secure against multiple tamperings
in the concurrent reconstruction model.

Kumar, Meka, and Sahai [20] also study leakage-resilient and non-malleable
secret sharing. They consider a stronger leakage model than ours, where each
leaked bit may depend on up to p shares which can be chosen adaptively by
the adversary. They give a compiler that transforms a standard secret sharing
scheme into a leakage-resilient one in the model just described, for p logarithmic
in the number of parties. It is also shown that noticeably improving the depen-
dence of the share length on p obtained there would lead to non-trivial progress
on important open questions related to communication complexity. Finally, they
consider the notion of leakage-resilient non-malleable secret sharing with respect
to independent share tampering. Here, the adversary has access to leakage from
the shares, which he can then make use of to choose tampering functions. They
construct schemes in this model for the case of a single tampering. For compar-
ison, our non-malleable secret sharing schemes cannot withstand leakage, but,
as already mentioned in the previous paragraph, allow the adversary to tamper
the shares multiple times, each time with a potentially different reconstruction
set in the associated tampering experiment.

1.3 Technical Overview

In this section, we give a high-level overview of the proof ideas and techniques
used to construct each one of our compilers.

1 An access structure A is said to be k-monotone if |T | ≥ k for all T ∈ A.
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All of our secret sharing scheme compilers are based on the same key idea: Let
s1, . . . , sn denote the shares obtained via the underlying secret sharing scheme.
We encode each share si using some (randomized) coding scheme (Enc,Dec)
to obtain two values Li and Ri. Then, the new compiled shares are obtained by,
for each i = 1, . . . , n, giving Li to the i-th party, and Ri to every other party.
At the end of this procedure, the i-th party has a compiled share, denoted Si,
of the form Si = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn).

Reconstruction of the underlying secret is possible from any qualified set
of parties, as they will learn the corresponding pairs (Li, Ri), and hence the
underlying share si. The different compilers arise by instantiating the idea above
with coding schemes satisfying different properties. One basic property that is
required from all coding schemes is that one half of the codeword (Li, Ri) reveals
almost nothing about si.

Leakage-Resilient Secret-Sharing Scheme. In order to obtain a leakage-
resilient secret-sharing scheme via the idea above, we instantiate the coding
scheme (Enc,Dec) as follows: Let Ext be a strong seeded extractor. Roughly
speaking, a strong seeded extractor is a deterministic function that produces
a close-to-uniform output when given a sample from a source with high min-
entropy along with a short, independent, and uniform seed, even when the seed
is known to the distinguisher. Then, Enc(m) samples (L,R) from the preimage
Ext−1(m) close to uniformly at random. Here, L corresponds to the weak source,
while R corresponds to the uniform, independent seed. To recover m from a code-
word c, we simply set Dec(L,R) := Ext(L,R). This coding scheme is efficient
if Ext is itself efficient, and furthermore Ext supports efficient close-to-uniform
preimage sampling. More precisely, this means that, given m, there exists an
efficient algorithm that samples an element of Ext−1(m) close to uniformly at
random. The idea behind this coding scheme is the same as the one used by
Cheraghchi and Guruswami [11] in order to obtain split-state non-malleable
codes from non-malleable extractors (variations of these objects are defined in
Sect. 2, but are not important for this discussion).

We instantiate our compiler with linear strong seeded extractors coupled with
a careful choice of parameters in order to obtain a leakage-resilient scheme with
good leakage rate. A result of [9] ensures that we can efficiently sample close to
uniformly from the preimage of any linear strong seeded extractor, provided the
error of the extractor is small enough.

We now discuss why this construction is leakage-resilient. For simplicity,
assume that Li and Ri are independent and uniform for i = 1, . . . , n. This is not
true in practice, and a little more care is needed to show that leakage-resilience
holds in Sect. 4. However, it lets us present the main idea behind the proof in a
clearer way.

Suppose the adversary holds shares from a set of unqualified parties T . With-
out loss of generality, let T = {1, . . . , t}. Furthermore, we also assume the adver-
sary learns some limited information about all shares, i.e., he learns Leaki(Si)
for some function Leaki and all i = 1, . . . , n. Note that the adversary knows the
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pairs (Li, Ri) for i = 1, . . . , t, and hence the shares s1, . . . , st obtained via the
underlying secret sharing scheme. Furthermore, he knows Ri (the seeds of the
extractor) for i = t + 1, . . . , n. The goal of the adversary is now to obtain extra
knowledge about Lt+1,, . . . , Ln from the leaked information. Since, by hypothe-
sis, the leaked information about Li is only a small linear fraction of its length,
and is independent of Ri, we can condition Li on the output of Leaki(Si). As
a result, Li conditioned on Leaki(Si) is still independent of Ri, and still has
high min-entropy. This means that the output of Ext(Li, Ri) still looks close-
to-uniform to the adversary, even when Ri is given (recall that we use a strong
extractor). It follows that the leaked information gives almost no information
about the shares outside T , and hence we can use the statistical privacy of the
underlying secret sharing scheme to conclude the proof.

Non-Malleable Secret-Sharing Scheme with Concurrent Reconstruc-
tion. In order to obtain a non-malleable scheme, we use the same basic idea
as before, but with a few modifications. To begin, we require the following
primitives:

– A secret sharing scheme (Share,Rec) for an access structure in which every
qualified set has size at least 3;

– A strong two-source non-malleable extractor nmExt secure against multiple
tamperings which supports efficient preimage sampling, in the sense that we
can sample uniformly from its preimages nmExt−1(z).

A non-malleable extractor is a stronger notion of an extractor introduced in [11].
More precisely, its output must still be close to uniform even conditioned on the
output of the extractor on a tampered version of the original input. Similarly
as before, such an extractor is said to be strong if the property above still holds
when the distinguisher is also given the value of one of the input sources. Since
their introduction, non-malleable extractors have received a lot of attention due
to their connection to split-state non-malleable codes [9–11,21]. We note that
constructions of such strong non-malleable extractors handling a sublinear (in
the input length) number of tamperings and supporting efficient preimage sam-
pling are known [9,18].

The coding scheme (Enc,Dec) is obtained from nmExt analogously to the
leakage-resilient scheme. Namely, Enc(m) samples (L,R) uniformly at random
from nmExt−1(m), and we set Dec(L′, R′) := nmExt(L′, R′).

To encode the shares (s1, . . . , sn) into (S1, . . . , Sn), we proceed as follows:

1. Sample P ← {0, 1}p;
2. Set (Li, Ri) ← Enc(P ||si) for i = 1, . . . , n, where || denotes string concate-

nation;
3. Set Si = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn) for i = 1, . . . , n.

We will now briefly walk through the proof of statistical privacy and non-
malleability for a single reconstruction set. Statistical privacy follows from the
statistical privacy properties of the underlying secret sharing scheme and the
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fact that (Enc,Dec) as defined above can be seen as a 2-out-of-2 secret sharing
scheme.

In order to show statistical privacy, fix an unqualified set of parties T , which
we may assume is T = {1, . . . , t}. First, the fact that a split-state non-malleable
code is also a 2-out-of-2 secret sharing scheme implies that we can replace the
values Rt+1, . . . , Rn in all shares by independent and uniformly random values.
Second, the pairs (L1, R1), . . . , (Lt, Rt) encode shares s1, . . . , st, respectively,
belonging to an unqualified set of the underlying secret sharing scheme. As a
result, the statistical privacy of that scheme implies we can replace these encod-
ings by those induced by a different secret.

In order to show non-malleability, fix a qualified set of parties T , with t =
|T | ≥ 3. For simplicity, assume again T = {1, . . . , t}. An adversary that wishes
to tamper the shares in T chooses tampering functions f1, . . . , ft, one per share.
Write a tampered share S′

i = fi(Si) as S′
i = (R′(i)

1 , . . . , R
′(i)
i−1, L

′
i, R

′(i)
i+1, . . . , R

′(i)
n )

for i = 1, . . . , t. We now have the following reconstruction procedure, which may
output a special symbol ⊥ if it detects tampering:

1. For each i = 1, . . . , n, check that R
′(j1)
i = R

′(j2)
i for all j1, j2 �= i. If this is not

the case, then output ⊥;
2. If the check holds, set R′

1 = R
′(2)
1 and R′

i = R
′(1)
i for i = 2, . . . , t. Then,

decode and parse P ′
i ||s′

i ← Dec(L′
i, R

′
i) for i = 1, . . . , t;

3. If P ′
i �= P ′

j for some i, j ≤ t, output ⊥. Else, output RecT (s′
1, . . . , s

′
t).

Note that the consistency checks in Steps 1 and 3 correspond to properties that
must be satisfied if (S′

1, . . . , S
′
t) is a valid set of shares. Roughly speaking, in

order to show non-malleability we must be able to simulate the reconstruction
of tampered shares without knowledge of the encoded secret m (except if the
adversary does not modify any share, in which case we may output m).

We prove non-malleability in two steps. First, we consider the following inter-
mediate tampering experiment on (S1, . . . , St):

– For each i = 1, . . . , n, check that R
′(j1)
i = R

′(j2)
i for all j1, j2 �= i. If this is not

the case, then output ⊥;
– If the check holds, set R′

1 = R
′(2)
1 and R′

i = R
′(1)
i for i = 2, . . . , t. For each

i = 1, . . . , t, set outputi = same∗ if L′
i = Li and R′

i = Ri. Otherwise, set
outputi ← Dec(L′

i, R
′
i);

– If outputi = same∗ for all i = 1, . . . , t, output same∗. Else, output (output1,
. . . , outputt).

This is an intermediate tampering experiment in the sense that it corresponds to
a stage of the reconstruction procedure on the tampered shares where the values
of the shares that remain the same have not yet been revealed. A key result
we show is that the output of the intermediate tampering experiment described
above has almost no correlation with the initial values P ||si for i = 1, . . . , n.
In particular, we can replace each such value by an independent and uniformly
random one, and hence by a set of uniform values independent of the secret m
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encoded by the shares s1, . . . , sn. We leverage a novel property of strong non-
malleable extractors (Lemmas 24 and 28) to prove this result, which may be of
independent interest.

By the result just described, we now know how to simulate the intermedi-
ate tampering experiment for any secret m without any knowledge of m itself.
However, to be able to simulate the behavior of the real reconstruction proce-
dure on the tampered shares, we must know what the simulator must output
when outputi = same∗ and outputj �= same∗ for some i, j ≤ t. In the second
step, we show that the reconstruction procedure will output ⊥ (i.e., tampering
is detected, and hence the procedure is aborted) with high probability in this
situation. This is because, with high probability, the decoded prefixes will not
match among all parties in this case. As a result, we can simply have our sim-
ulator output ⊥ in such a case, and it will coincide with the output of the real
reconstruction procedure with high probability.

The argument above implies that our secret sharing scheme is non-malleable
against a single tampering of a reconstruction set. This result extends to the
concurrent reconstruction setting, where the adversary is allowed to tamper the
shares multiple times with different tampering functions and qualified sets. We
refer to the later sections for details on the proof for the general case.

Threshold Signature Scheme Secure Against Tampering. Finally, our
threshold signature compiler starts from the assumption that the secret key is
to be secret-shared among a set of servers. We assume that we have protocols
for generating n signature shares as well as a protocol for computing the final
signature from these shares. Further, we assume that these protocols are secure
even if an adversary maliciously corrupts an unqualified subset of size t of the
n ≥ 2t + 1 servers.

To construct the compiled protocol, we first apply our second compiler from
above, such that we now share the secret key using non-malleable secret sharing.
Recall that this scheme involves encoding the original share si to get a pair
(Li, Ri) where the i-th server holds Li and all other servers hold Ri. If now the
i-th server wants to generate a signature share, it requests Ri from all other
servers and waits until it gets back n − t responses. If all received Ri are the
same, it accepts the value and decodes (Li, Ri) to obtain key share si. Note that
since n ≥ 2t + 1 and the server gets n − t responses, we ensure that it gets back
at least one honest response. At this point the server generates a signature share
as it would do in the original protocol.

A rough intuition on why this is secure follows: Recall that our model says
that the adversary can either tamper with the shares, or corrupt t of servers. If
he tampers, he is not allowed to corrupt anyone, and this means that the servers
are executing the non-malleable reconstruction protocol securely, and will either
get the correct original shares (and thus create correct signatures) or will get
something unrelated, in which case the output cannot compromise any secret
key share. In the other case, the adversary has chosen to corrupt a set of servers.
However, then we know that the shares we start from are correct. This means
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that sending the required Ri’s in the clear to i-th server does not leak any extra
information than it should. In fact, it merely enables the server to get his original
share. The checks we enforce ensure that an honest player get its correct original
share, and hence security follows from the threshold signature scheme we started
with.

1.4 Open Questions

Several exciting questions remain open. The first natural direction is to improve
the rates of our constructions. This can be achieved indirectly by coming up with
better explicit constructions of strong seeded extractors and strong seedless non-
malleable extractors. Another possibility is to improve the relationship between
the share length of the compiled scheme and the number of parties. All of our
constructions, as well as the constructions of Goyal and Kumar [16,17], have
share sizes which are at least linear in the number of parties, and it would be
interesting to see whether one can obtain a weaker dependence.

Our work introduces stronger definitions for non-malleable secret sharing
schemes. However, our new notions, as well as the previous ones, are fundamen-
tally non-adaptive in the sense that the tampering functions and reconstruction
sets have to be chosen without seeing any of the shares a priori. We believe it
would be more in the spirit of secret sharing if the tampering functions and
reconstruction sets could be chosen after seeing some unqualified set of shares.
On a similar note, a logical next step would be to define and attempt to con-
struct continuous non-malleable secret sharing schemes (in the spirit of [15]),
where the adversary is allowed to choose the tampering function and qualified
set to be reconstructed adaptively.

Our definition of leakage-resilient secret sharing schemes is also non-adaptive.
It would be interesting to construct schemes which remain leakage resilient even
if the adversary has access to an unqualified set of shares prior to choosing
the leakage functions. Moreover, we obtain leakage rate 1 − c for an arbitrarily
small constant c > 0 while preserving the share length (up to a multiplicative
constant). However, our share length suffers a polynomial blow-up if we want
to achieve leakage rate 1 − o(1). It would be interesting to give constructions of
leakage-resilient schemes (even in the non-adaptive setting) with an improved
tradeoff between leakage rate and share length.

1.5 Organization

The rest of the paper is organized as follows: We present notation, relevant
definitions, and known lemmas that we use throughout the paper in Sect. 2. We
present and study our compiler for non-malleable secret sharing in Sect. 3. In
Sect. 4, we present our compiler for leakage-resilient secret sharing. Finally, in
Sect. 5, we discuss our compiler for non-malleable and leakage-resilient threshold
signatures. Most detailed arguments have been deferred to the full version of
this work [1].



Stronger Leakage-Resilient and NMS Sharing Schemes 521

2 Preliminaries

We denote the set {1, . . . , n} by [n]. Random variables are usually denoted by
uppercase letters such as X, Y , and Z. We denote sets by calligraphic letters
such as A and M. We may denote the probability that a random variable X
belongs to a set S by X(S). We use the notation z ← Z to denote that z is
sampled according to distribution Z. If instead we write, say, s ← S, this means
that s is sampled uniformly at random from the set S. Given an n-tuple x and
a set S ⊆ [n] with S = {i1, . . . , is} and ij < ij+1 for j = 1, . . . , s − 1, we define
xS = (xi1 , . . . , xis

). By an efficient algorithm, we mean an algorithm that runs
in time polynomial in the length of the input.

2.1 Statistical Distance and Min-Entropy

In this section, we introduce statistical distance and min-entropy, along with
related results.

Definition 1 (Statistical Distance). Let X and Y be two distributions over
a set S. The statistical distance between X and Y , denoted by Δ(X;Y ), is given
by

Δ(X;Y ) := max
T⊆S

(|X(T ) − Y (T )|) =
1
2

∑

s∈S

|X(s) − Y (s)|.

We say X is ε-close to Y , denoted X ≈ε Y , if Δ(X;Y ) ≤ ε, and we write
Δ(X;Y |Z) as shorthand for Δ((X,Z); (Y,Z)).

The following known properties of the statistical distance are useful through-
out the paper.

Lemma 2. For any two random variables X and Y , and any randomized func-
tion f , we have that

Δ(f(X); f(Y )) ≤ Δ(X;Y ).

Lemma 3 ([11]). Fix random variables X and Y such that

X ≈ε Y.

Let X ′ and Y ′ denote X and Y conditioned on an event E, respectively. If
X(E) = p (i.e., the probability of event E under X is p), then

X ′ ≈ε/p Y ′.

Definition 4 (Min-Entropy and Conditional Min-Entropy). Fix a dis-
tribution X over X . The min-entropy of X, denoted by H∞(X), is given by

H∞(X) := − log
(

max
x∈X

X(x)
)

.



522 D. Aggarwal et al.

Moreover, the conditional min-entropy of X given Z, denoted by H∞(X|Z), is
given by

H∞(X|Z) := − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
,

where Ez←Z denotes the expected value over Z.

The following property of the conditional min-entropy is also fundamental.

Lemma 5 ([13]). Let (X,Z) be some joint probability distribution. Then, if Z
is supported on at most 2� values, we have

H∞(X|Z) ≥ H∞(X) − �.

2.2 Non-Malleable Codes and Extractors

In order to design our compilers, we will need to use some variants of extractors
and non-malleable codes. We present the relevant definitions and results in this
section.

Non-malleable codes are coding schemes with strong robustness guarantees
against adversarial errors. We begin by defining coding schemes.

Definition 6 (Coding Scheme). A tuple of functions (Enc,Dec) where Enc :
M → C may be randomized but Dec : C → M ∪ {⊥} is deterministic is said to
be a coding scheme if the correctness property

Pr(Dec(Enc(m)) = m) = 1

holds for every m ∈ M, where the probability is taken over the randomness of
the encoder Enc.

Definition 7 (Non-Malleable Code [14]). We say that a coding scheme
(Enc : M → X × X , Dec : X × X → M ∪ {⊥}) is ε-non-malleable in the
split-state model if for all functions F,G : X → X there exists a distribution
SDF,G over M ∪ {same∗,⊥} such that

TamperF,G
m ≈ε SimF,G

m

for all m ∈ M, where

TamperF,G
m =

{
(L,R) ← Enc(m)
Output Dec(F (L), G(R))

}
,

and

SimF,G
m =

⎧
⎪⎨

⎪⎩

d ← SDF,G

If d = same∗, output m

Else, output d

⎫
⎪⎬

⎪⎭
.

Additionally, SDF,G should be efficiently samplable given oracle access to F (·)
and G(·).
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We will also require a few variants of randomness extractors. We begin with
the basic definition.

Definition 8 (Extractor). An efficient function Ext : X × {0, 1}d → Z is a
strong (k, ε)-extractor if for all X,W such that X is distributed over X and
H∞(X|W ) ≥ k we have

Ext(X,Ud),W,Ud ≈ε UZ ,W,Ud.

Moreover, we say Ext supports efficient preimage sampling if, given z ∈ Z, there
exists an efficient algorithm that samples an element of Ext−1(z) uniformly at
random.

We describe some known explicit constructions of linear strong extractors
that we will need to instantiate our leakage-resilient secret sharing compiler
of Sect. 4 in [1]. We will also need a stronger notion of an (independent-source)
extractor, for which the output still looks uniform even conditioned on the output
of the extractor on a tampered version of the original input.

Definition 9 (Strong Two-Source Non-Malleable Extractor). A func-
tion nmExt : X 2 → Z is said to be a (k, ε, τ) strong two-source non-malleable
extractor if the following property holds: For independent distributions X,Y over
X and W independent of Y such that H∞(X|W ),H∞(Y ) ≥ k, and for all tam-
pering functions (f1, g1), . . . , (fτ , gτ ) it holds that

nmExt(X,Y ),W, Y, {Dfi,gi
(X,Y )}i∈[τ ] ≈ε UZ ,W, Y, {Dfi,gi

(X,Y )}i∈[τ ],

where Df,g(X,Y ) is defined as

Df,g(X,Y ) :=

{
same∗, if f(X) = X and g(Y ) = Y,

nmExt(f(X), g(Y )), otherwise.

The function nmExt is said to support efficient preimage sampling if, given
z ∈ Z, there is an efficient algorithm that samples an element of the preimage
nmExt−1(z) uniformly at random.

There exist explicit constructions of strong two-source non-malleable extrac-
tors with good parameters, supporting efficient preimage sampling, both against
single and multiple tamperings [9,21]. Although it is not stated in [9] that the
extractor found there is strong, it is known that this property holds [19]. A
statement and proof of this result appears in [18]. We will use the following two
explicit non-malleable extractors.

Lemma 10 ([21]). For any field F of cardinality 2N , there exists a constant
δ ∈ (0, 1) and a function nmExt : F2 → {0, 1}� such that nmExt is an efficient
((1 − δ)N, ε, 1) strong two-source non-malleable extractor with � = Ω(N) and
ε = 2−Ω(N/ log N). Moreover, nmExt supports efficient preimage sampling and
it is a balanced function, i.e., the preimage sets nmExt−1(z) have the same size
for all z ∈ {0, 1}�.
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Lemma 11 ([9,18]). For any field F of cardinality 2N , there exists a constant
δ ∈ (0, 1) and a function nmExt : F2 → {0, 1}� such that nmExt is an efficient
(N − N δ, ε, τ) strong two-source non-malleable extractor with � = NΩ(1), τ =
NΩ(1), and ε = 2−NΩ(1)

. Moreover, nmExt supports efficient preimage sampling
and it is a balanced function, i.e., the preimage sets nmExt−1(z) have the same
size for all z ∈ {0, 1}�.

The connection between non-malleable extractors with efficient preimage
sampling and split-state non-malleable codes is made clear by the following
result.

Lemma 12 ([11]). Fix an explicit two-source (n, ε, 1)-non-malleable extractor
nmExt : F

2 → {0, 1}� that supports efficient preimage sampling. The coding
scheme (NMEnc,NMDec) is defined as follows:

– NMEnc(m): Sample (L,R) ← nmExt−1(m), and output (L,R);
– NMDec(L′, R′): Output nmExt(L′, R′).

Then, (NMEnc,NMDec) is an efficient split-state ε′-non-malleable code for
ε′ = ε(2� + 1).

Combining Li’s non-malleable extractor [21] and Lemma 12 immediately
leads to the following result, also found in [21].

Corollary 13 ([21]). For any field F of cardinality 2N , there exists an efficient
split-state ε-non-malleable code (NMEnc,NMDec) with NMEnc : {0, 1}� →
F
2, NMDec : F2 → {0, 1}� ∪ {⊥}, � = Θ(N/ log N), and ε = 2−Ω(N/ log N).

2.3 Secret-Sharing Schemes

In this section, we introduce our definitions of leakage-resilient and non-malleable
secret sharing schemes. We begin by defining basic secret sharing concepts.

Definition 14 (Access Structure). We say A is an access structure for n
parties if A is a monotone class of subsets of [n], i.e., if A ∈ A and A ⊆ B,
then B ∈ A. We call sets T ∈ A authorized or qualified, and unauthorized or
unqualified otherwise.

Definition 15 (Secret Sharing Scheme [4]). Let M be a finite set of secrets,
where |M| ≥ 2. A (randomized) sharing function Share : M → S1 × · · · × Sn is
an (n, ε)-Secret Sharing Scheme for secret space M realizing access structure A
if the following two properties hold:

1. Correctness. The secret can be reconstructed by any authorized set of par-
ties. That is, for any set T ∈ A, where T = {i1, . . . , it}, there exists a deter-
ministic reconstruction function RecT : ⊗i∈T Si → M such that for every
m ∈ M,

Pr[RecT (Share(m)T ) = m] = 1,

where the probability is taken over the randomness of Share.
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2. Statistical Privacy. Any collusion of unauthorized parties should have
“almost” no information about the underlying secret. More formally, for all
unauthorized sets T /∈ A and for every pair of secrets a, b ∈ M, we have

Share(a)T ≈ε Share(b)T .

Besides the usual secret sharing properties, we can additionally require that
the unauthorized parties do not learn anything about the underlying secret, even
if given some leakage from all the shares. This leads to the notion of leakage-
resilient secret sharing.
Definition 16 (Leakage-Resilient Secret-Sharing Scheme). A secret
sharing scheme (Share,Rec) realizing access structure A is said to be an
(n, ε, ρ)-leakage-resilient secret sharing scheme if the following property addi-
tionally holds:

– Leakage-Resilient Statistical Privacy. For all unauthorized sets T /∈ A,
functions Leaki : Si → {0, 1}	ρ log |Si|
 for i = 1, . . . , n, and for every pair of
secrets a, b ∈ M, we have

Share(a)T , {Leaki(Share(a)i)}i∈[n] ≈ε Share(b)T , {Leaki(Share(b)i)}i∈[n].

Alternatively, we can require some security against tampering attacks on the
shares produced by the secret sharing scheme: Either the secret reconstructed
from the tampered shares is the same as the original secret, or it is almost
independent of it. The notion of non-malleable secret sharing was first considered
in [16,17], but only with respect to tampering attacks on qualified sets belonging
to the minimal access structure.
Definition 17 (Non-Malleable Secret Sharing Scheme). Let (Share,
Rec) be an (n, ε)-secret sharing scheme for secret space M realizing access struc-
ture A. Let F be some family of tampering functions. For each f ∈ F , m ∈ M
and authorized set T ∈ A, define the tampering experiment

STamperf,T
m =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s ← Share(m)
s̃ ← f(s)
m̃ ← Rec(s̃T )
Output m̃

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

which is a random variable over the randomness of the sharing function Share.
We say that (Share,Rec) is ε′-non-malleable with respect to F if for each f ∈ F
and authorized set T ∈ A, there exists a distribution SDf,T (corresponding to
the simulator) over M ∪ {same∗,⊥} such that we have

STamperf,T
m ≈ε′ SSimf,T

m ,

for all m ∈ M and authorized sets T ∈ A, where

SSimf,T
m =

⎧
⎪⎨

⎪⎩

m̃ ← SDf,T

If m̃ = same∗, output m

Else, output m̃

⎫
⎪⎬

⎪⎭
.

Additionally, SDf,T should be efficiently samplable given oracle access to f(·).
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We also consider a stronger notion of non-malleable secret sharing, where the
adversary is allowed to tamper the shares multiple times, and in each tampering
attempt is free to choose the qualified set to be used by the reconstruction
algorithm in the tampering experiment.
Definition 18 (Non-Malleability with Concurrent Reconstruction).
Let (Share,Rec) be an (n, ε)-secret sharing scheme for secret space M realizing
access structure A. Let τ be a fixed constant. Let F be some family of tampering
functions. For m ∈ M, f = (f (1), . . . , f (τ)) ∈ Fτ , and T = (T1, . . . , Tτ ) ∈ Aτ ,
define the tampering experiment

SCRTamperf ,Tm =
(
STamperf

(1),T1
m ,STamperf

(2),T2
m , . . . ,STamperf

(τ ),Tτ
m

)
,

where each STamperf
(i ),Ti

m is defined as in Definition 17. We say that
(Share,Rec) is (ε′, τ)-concurrent-reconstruction-non-malleable with respect to
F if for each tuple f ∈ Fτ and tuple of authorized sets T ∈ Aτ , there exists a
distribution SDf ,T over (M ∪ {⊥, same∗})τ such that

SCRTamperf ,Tm ≈ε′ SCRSimf ,T
m

for all m ∈ M, where

SCRSimf ,T
m =

⎧
⎪⎨

⎪⎩

(m̃1, . . . , m̃τ ) ← SDf ,T

Output (m̃′
1, . . . , m̃

′
τ ), where m̃′

i = m if m̃i = same∗,
and m̃′

i = m̃i otherwise

⎫
⎪⎬

⎪⎭
.

Additionally, SDf ,T should be efficiently samplable given oracle access to f (i)(·)
for i = 1, . . . , τ .

In this work, we will focus on the case where each share is tampered indepen-
dently. With this in mind, we define the family of so-called t-split-state tampering
functions, which we denote by F split

t .
Definition 19 (t-Split-State Tampering Functions). The family of t-split-
state tampering functions over a domain X , denoted by Fsplit

t (the domain is
omitted for brevity), consists of all functions f : X t → X t for which there exist
functions fi : X → X with i ∈ [t] such that f(x) = (f1(x1), . . . , ft(xt)), where
x = (x1, . . . , xt) and xi ∈ X for i ∈ [t].
We show separations between Definitions 17, 18, and the definition of non-
malleable secret sharing from [17] under split-state tampering in [1].

Observe that split-state tampering of non-malleable codes and extractors
as in Definitions 7 and 9 corresponds to considering the family of tampering
functions F split

2 .
The following result states that split-state non-malleable codes are 2-out-of-2

non-malleable secret sharing schemes.
Lemma 20 ([2]). Suppose (NMEnc,NMDec) is an ε-non-malleable code in
the split-state model. Fix messages m and m′, and let (L,R) ← NMEnc(m)
and (L′, R′) ← NMEnc(m′). Then, we have

L ≈2ε L′ and R ≈2ε R′.
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3 Non-Malleable Secret-Sharing

3.1 Non-Malleable Secret-Sharing Scheme Against Individual
Tamperings

Before proceeding to the more general case of non-malleability with concurrent
reconstruction, we describe our candidate secret sharing scheme and prove it is
non-malleable against a single tampering with respect to functions which tamper
the shares independently.

Theorem 21. Fix a number of parties n and an integer p. Furthermore, assume
we have access to the following primitives:
1. For ε1 ≥ 0, let (AShare,ARec) be an (n, ε1)-secret sharing scheme realizing

an access structure A such that |T | ≥ 3 holds whenever T ∈ A. Suppose the
corresponding shares lie in {0, 1}r and the secrets in some set M;

2. Let nmExt : {0, 1}N × {0, 1}N → {0, 1}� be the ((1 − δ)N, ε2, 1) strong
two-source non-malleable extractor from Lemma10, where � = r + p. Hence,
� ≤ Ω(N) and ε2 = 2−Ω(N/ log N).

Then, there exists an (n, ε1 + 4nε2(2�+1))-secret sharing scheme realizing access
structure A that is n(2�+1(ε2 + 2−δN/2+1) + 2−p)-non-malleable w.r.t. Fsplit

n . The
resulting scheme (NMShare,NMRec) shares an element of M into n shares,
where each share contains n elements of {0, 1}N . Finally, if the two primitives
are efficient and the access structure A supports efficient membership queries,
then the constructed scheme (NMShare,NMRec) is also efficient.

We describe our construction of the non-malleable secret sharing scheme
(NMShare,NMRec).
NMShare: Our sharing function takes as input a secret m ∈ M and proceeds

as follows:
1. Share m using AShare to obtain s1, . . . , sn ← AShare(m);
2. Pick P ← {0, 1}p;
3. For each i ∈ [n], encode the share si to obtain

(Li, Ri) ← nmExt−1(P ||si);

4. For each i ∈ [n], construct sharei = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn);
5. Output (share1, . . . , sharen).

NMRec: Our reconstruction function takes as input shares {sharei : i ∈ T}
corresponding to an authorized set T ∈ A and proceeds as follows:
1. Sort T so that T = {i1, . . . , it}, where t = |T |, and ij < ij+1;
2. For each j ∈ [t], parse the shares in T to obtain

(R(ij)
1 , . . . , R

(ij)
ij−1, Lij

, R
(ij)
ij+1, . . . , R

(ij)
n ) ← shareij

;

3. For every � ∈ [n], check that the R
(ij)
� have the same value for all j such

that ij �= �. If this is not the case, output ⊥;
4. For every j ∈ [t], decode and parse Pij

||sij
← nmExt(Lij

, R
(ik)
ij

), where
ik is the smallest element of T − {ij};

5. If there exist j, j′ ∈ [t] such that Pij
�= Pij′ , output ⊥;

6. Else, reconstruct m ← ARec(si1 , . . . , sit
), and output m.
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Correctness and Efficiency: Follows in a straightforward manner from the con-
struction.

Statistical Privacy: Fix two secrets a and b, and let T be an unauthorized set of
size t. Without loss of generality, we may assume that T = {1, 2, . . . , t}. Set

aST ← NMShare(a)T ,

bST ← NMShare(b)T .

Furthermore, let as1, . . . , asn and bs1, . . . , bsn be the shares obtained from
AShare(a) and AShare(b), respectively, in Step 1 of the NMShare proce-
dure.

Our goal is to show that the distributions of these two sets of shares, aST

and bST , are close in statistical distance. More precisely, we will show that

aST ≈ε1+4nε2(2�+1) bST

for all unauthorized sets T and secrets a, b.
We have aST = (aS1, . . . , aSt) and bST = (bS1, . . . , bSt), with

aSi = (aR1, . . . , aRi−1, aLi, aRi+1, . . . , aRn),
bSi = (bR1, . . . , bRi−1, bLi, bRi+1, . . . , bRn).

As a result, we can write

aST = [(aLi, aRi)i≤t, aRt+1, . . . , aRn],
bST = [(bLi, bRi)i≤t, bRt+1, . . . , bRn].

Our first claim is that we can replace aRt+1, . . . , aRn by encodings of indepen-
dent, uniformly random messages with small penalty in statistical distance by
invoking Lemma 20.

Lemma 22. Let R∗
t+1, . . . , R

∗
n ∈ F be sampled as follows: For each j = t +

1, . . . , n, independently sample a uniformly random message m∗, encode and
parse (L∗, R∗) ← nmExt−1(m∗), and set R∗

j = R∗. Then,

(aLi, aRi)i≤t, aRt+1, . . . , aRn ≈2nε2(2�+1) (aLi, aRi)i≤t, R
∗
t+1, . . . , R

∗
n.

Proof. The proof can be found in [1]. �
Observe that, by the statistical privacy of the underlying secret sharing

scheme, we have

Δ((aLi, aRi)i≤t; (bLi, bRi)i≤t)
≤ Δ((aLi, aRi)i≤t; (bLi, bRi)i≤t|P )
≤ ε1, (1)



Stronger Leakage-Resilient and NMS Sharing Schemes 529

where P is the prefix used when encoding the shares with nmExt−1. This is
because T is an unauthorized set, and each (aLi, aRi) (resp. (bLi, bRi)) depends
on (aLj , aRj) (resp. (bLj , bRj)) for j �= i only through the share asi or bsi

it encodes, when the prefix P is fixed. Combining Lemma 22 with (1) and a
repeated application of the triangle inequality yields

Δ(aST ; bST )
= Δ([(aLi, aRi)i≤t, aRt+1, . . . , aRn]; [(bLi, bRi)i≤t, bRt+1, . . . , bRn])
≤ Δ([(aLi, aRi)i≤t, aRt+1, . . . , aRn]; [(aLi, aRi)i≤t, R

∗
t+1, . . . , R

∗
n])

+ Δ([(aLi, aRi)i≤t, R
∗
t+1, . . . , R

∗
n]; [(bLi, bRi)i≤t, R

∗
t+1, . . . , R

∗
n])

+ Δ([(bLi, bRi)i≤t, R
∗
t+1, . . . , R

∗
n]; [(bLi, bRi)i≤t, bRt+1, . . . , bRn])

≤ 2nε2(2� + 1) + ε1 + 2nε2(2� + 1)

= ε1 + 4nε2(2� + 1),

which concludes the proof of statistical privacy.

Statistical Non-Malleability: Let T be an authorized set of size t ≥ 3. With-
out loss of generality, we may assume that T = {1, 2, . . . , t}. Let f1, . . . , ft be
the corresponding tampering functions. Let s1, . . . , sn ∈ {0, 1}k+p be arbitrary
strings, and let s = (s1, . . . , sn).

Definition 23. We define the following partial tampering experiment
IntTampT,f

s .

1. For each i ∈ [n], (Li, Ri) ← nmExt−1(si).
2. For each i ∈ [n], let Si = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn).
3. For each j ∈ [t], let fj be a function that maps Sj to

R̃
(j)
1 , . . . , R̃

(j)
j−1, L̃j , R̃

(j)
j+1, . . . , R̃

(j)
n .

4. Check whether R̃
(j1)
i = R̃

(j2)
i for all distinct i, j1, j2 where i ∈ [n], and

j1, j2 ∈ T . If any of them is not true, then IntTampT,f
s = ⊥.

5. For each i ≥ 2, let R̃i = R̃
(1)
i , and let R̃1 = R̃

(2)
1 .

6. For each i ∈ [t], if Li = L̃i and Ri = R̃i, then outputi = same∗, else outputi =
nmExt(L̃i, R̃i).

7. IntTampT,f
s = (output1, output2, . . . , outputt).

We require the following auxiliary lemma.

Lemma 24. Let nmExt : {0, 1}N ×{0, 1}N → {0, 1}� be a (k, ε, τ) strong non-
malleable two-source extractor. Also, let h1 : {0, 1}N → Z, h2 : {0, 1}N → Z,
and h3 : {0, 1}N → {0, 1} be functions for some set Z. For functions F,G :
{0, 1}N → {0, 1}N , let AF,G be an algorithm that takes as input x, y ∈ {0, 1}N ,
and does the following: If h1(x) �= h2(y), or if h3(y) = 1, then output ⊥, else if
F (x) = x, and Gj(y) = y, output same∗, else output nmExt(F (x), G(y)). For
X,Y uniform and independent in {0, 1}N , we have that

Δ := Δ(nmExt(X,Y ) ; U� | Y, AF,G(X,Y )) ≤ ε + 2− N−k
2 +1.
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Proof. The proof can be found in [1]. �
Lemma 24 can be used to prove the following key component of our non-
malleability proof.

Lemma 25. For any s, s′ ∈ {0, 1}n� we have that

IntTampT,f
s ≈n2�+1γ IntTampT,f

s′ ,

where γ = ε + 2−δN/2+1.

Proof. We show that, for s = (s1, s2 . . . , sn), and s′ = (s′
1, s2, . . . , sn), we have

IntTampT,f
s ≈2�+1γ IntTampT,f

s′ .

The general result then follows by a hybrid argument using an analogous rea-
soning.

For i = 2, . . . , n, let (Li, Ri) ← nmExt−1(si), and let L∗
1, R

∗
1 be chosen inde-

pendently and uniformly at random from {0, 1}N . Fix L2, . . . , Ln, R2, . . . , Rn.
Assume that we run Steps 3 to 7 of the IntTampT,f

s experiment described above,
with L1, R1 replaced by L∗

1, R
∗
1. We replace Step 5 by the following:

– For each i �= 2, let R̃i = R̃
(2)
i , and let R̃2 = R̃

(3)
2 ,

i.e., we ensure that R̃2, . . . , R̃n are not a function of L∗
1. Notice that due to the

consistency check in Step 4, the output of the tampering experiment remains the
same. Then, recalling the variables we have fixed, it follows that L̃1 is a deter-
ministic functions of L∗

1, and R̃1, . . . , R̃n, L̃2, . . . , L̃n are deterministic functions
of R∗

1. Define

h1(L∗
1) := (R̃(1)

2 , . . . , R̃(1)
n ),

h2(R∗
1) := (R̃(3)

2 , R̃
(2)
3 , . . . , R̃(2)

n ),

F (L∗
1) := L̃1,

G(R∗
1) := R̃

(2)
1 .

Also, let h3(R∗
1) = 1 if and only if any of the checks in Step 4 with j1, j2 �= 1

(i.e., the checks that are not dependent on L∗
1) fail. We can now instantiate

Lemma 24 with h1, h2, h3, F,G and the strong two-source non-malleable extrac-
tor from Lemma 10 to obtain

Δ(nmExt(L∗
1, R

∗
1);U� | AF,G(L∗

1, R
∗
1), L2, . . . , Ln, R2, . . . , Rn, R∗

1) ≤ γ . (2)

Let (L′
1, R

′
1) ← nmExt−1(s′

1), and observe that Pr[U� = s] = 2−� for all s.
We now apply Lemma 3 to (2) by conditioning the right hand side of the sta-

tistical distance term in (2) on U� = s1. Since the remaining random variables
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on the right hand side are independent of U�, they are unaffected by this condi-
tioning. The corresponding conditioning on the left hand side of the statistical
distance term in (2) is nmExt(L∗

1, R
∗
1) = s1. Under this fixing, the tuple

(L∗
1, R

∗
1), (L2, R2), . . . , (Ln, Rn)

is jointly distributed exactly as (Li, Ri)i=1,...,n. Therefore, we can replace all
occurrences of L∗

1 and R∗
1 by L1 and R1, respectively, on the left hand side

of the statistical distance term in (2). Combining these observations with (2),
Lemma 3, and the fact that Pr[U� = s1] = 2−�, we conclude that

Δ(AF,G(L1, R1), R1;AF,G(L∗
1, R

∗
1), R

∗
1|L2, . . . , Ln, R2, . . . , Rn) ≤ 2�γ.

Letting (L′
1, R

′
1) ← nmExt−1(s′

1), the same reasoning with s′
1 in place of s1 and

(L′
1, R

′
1) in place of (L1, R1) leads to

Δ(AF,G(L∗
1, R

∗
1), R

∗
1;AF,G(L′

1, R
′
1), R

′
1|L2, . . . , Ln, R2, . . . , Rn) ≤ 2�γ.

Applying the triangle inequality yields

Δ(AF,G(L1, R1), R1;AF,G(L′
1, R

′
1), R

′
1|L2, . . . , Ln, R2, . . . , Rn) ≤ 2�+1γ, (3)

Observe that IntTampT,f
s and IntTampT,f

s′ are deterministic functions of the left
hand side and right hand side of (3), respectively. As a result, we conclude that

IntTampT,f
s ≈2�+1γ IntTampT,f

s′ ,

as desired. �
We prove statistical non-malleability of our proposed construction with

recourse to Lemma 25.

Theorem 26. The secret sharing scheme (NMShare,NMRec) defined above
is ε-non-malleable with respect to Fsplit

n for ε = n(2�+1γ + 2−p), where γ =
ε2 + 2−δN/2+1.

Proof. The proof can be found in [1]. �
To conclude this section, we remark that we can instantiate Theorem 26 with

concrete parameters to obtain a compiler that transforms regular secret sharing
schemes into non-malleable ones. The blowup in the share length is logarithmic in
the original share length and at most quasilinear in the number of parties n. The
error for statistical privacy suffers an exponentially small additive blowup, while
the error for non-malleability is exponentially small. Concrete instantiations can
be found in [1].
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3.2 Non-Malleability with Concurrent Reconstruction

In this section, we show that the secret sharing scheme described in Sect. 3.1
also satisfies the stronger notion of non-malleability with concurrent reconstruc-
tion as in Definition 18. Recall that in the concurrent reconstruction setting,
the adversary is allowed to choose qualified sets T1, . . . , Tτ along with associ-
ated tampering functions f (1), . . . , f (τ), and can observe the outcomes of the
experiments STamperf

(i ),Ti
m for i ∈ [τ ]. We have the following result.

Theorem 27. Fix a number of parties n and an integer p. Furthermore, assume
we have access to the following primitives:

1. For ε1 ≥ 0, let (AShare,ARec) be an (n, ε1)-secret sharing scheme realizing
an access structure A such that |T | ≥ 3 holds whenever T ∈ A. Suppose the
corresponding shares lie in {0, 1}r and the secrets in some set M;

2. Let nmExt : {0, 1}N × {0, 1}N → {0, 1}� be the (N − N δ, ε2, τ) strong two-
source non-malleable extractor from Lemma11, where � = r + p. Hence, τ =
N δ, � ≤ NΩ(1), and ε2 = 2−NΩ(1)

.

Then, there exists an (n, ε1+4nε2(2� +1))-secret sharing scheme realizing access
structure A that is (ε, τ)-concurrent-reconstruction-non-malleable w.r.t. Fsplit

n ,
where

ε = n(2�+1(ε2 + 4τ2τ2−Nδ/4τ ) + τ · 2−p).

The resulting scheme (NMShare,NMRec) shares an element of M into n
shares, where each share contains n elements of {0, 1}N . Finally, if the two
primitives are efficient and the access structure A supports efficient membership
queries, then the constructed scheme (NMShare,NMRec) is also efficient.

The candidate scheme for Theorem 27 has been defined in Sect. 3.1, and
statistical privacy is already proved there. We now present the proof of non-
malleability, beginning with an auxiliary lemma which generalizes Lemma24 to
the case of multiple tamperings.

Lemma 28. Let nmExt : {0, 1}N × {0, 1}N → {0, 1}� be an (N − N δ, ε, τ)
strong non-malleable two-source extractor. Also, let h1j : {0, 1}N → Z, h2j :
{0, 1}N → Z, and h3j : {0, 1}N → {0, 1} for 1 ≤ j ≤ τ be functions mapping
to some set Z. For functions F1, . . . , Fτ , G1, . . . , Gτ : {0, 1}N → {0, 1}N , let
AFj ,Gj

be an algorithm that takes as input x, y ∈ {0, 1}N and does the following:
If h1j(x) �= h2j(y), or if h3j(y) = 1, then output ⊥, else if Fj(x) = x, and
Gj(y) = y, output same∗, else output nmExt(Fj(x), Gj(y)). For X,Y uniform
and independent in {0, 1}N , we have that

Δ := Δ(nmExt(X,Y ) ; U� | Y, AF1,G1(X,Y ), . . . ,AFτ ,Gτ
(X,Y ))

≤ ε + 4τ2τ2−Nδ/4τ .

Proof. The proof can be found in [1]. �
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Given a tuple of qualified sets T = (T1, . . . , Tτ ) and a tuple of associated
tampering functions f = (f (1), . . . , f (τ)), we define the intermediate tampering
experiment for T as follows:

IntTampT,f
s := IntTampT1,f(1)

s , . . . , IntTampTτ ,f(τ)

s .

We may also denote the tampering function f associated to a reconstruction
set T ∈ T by f (T ). The following lemma is the main component of our proof
of non-malleability with concurrent reconstruction. Its proof follows similarly to
that of Lemma 25, but using Lemma 28 instead of Lemma 24.

Lemma 29. For any s, s′ ∈ {0, 1}n� we have that

IntTampT,f
s ≈n2�+1γ IntTampT,f

s′ ,

where γ = ε2 + 4τ2τ2−Nδ/4τ .

Proof. The proof can be found in [1]. �
The following result states that statistical non-malleability holds for our pro-

posed construction. The proof is similar to that of Theorem 26.

Theorem 30. The secret sharing scheme (NMShare,NMRec) is (ε, τ) con-
current reconstruction non-malleable with respect to Fsplit

n for ε = n(2�+1γ +
τ2−p), where γ = ε2 + 4τ2τ2−Nδ/4τ .

Proof. The proof can be found in [1]. �
Similarly to Sect. 3.1, we can instantiate Theorem 27 with concrete param-

eters to obtain a compiler that transforms regular secret sharing schemes into
ones satisfying non-malleability with concurrent reconstruction. The blowup in
the share length is now polynomial in the original share length and the number
of parties n. As before, the error for statistical privacy suffers an exponentially
small additive blowup, while the error for non-malleability is exponentially small.
Concrete instantiations can be found in [1].

4 Leakage-Resilient Secret-Sharing Scheme

In this section, we give a construction of a compiler that turns any secret sharing
scheme into a leakage-resilient one. More precisely, we have the following result.

Theorem 31. Fix a number of parties n and ρ ∈ (0, 1). Furthermore, suppose
we have access to the following primitives:

1. For any ε1 ≥ 0, let (AShare,ARec) be any (n, ε1)-secret sharing scheme
which shares an element of the set M into n shares of length �, and
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2. Let Ext : {0, 1}N × {0, 1}d → {0, 1}� be a strong (k, ε2)-extractor such that

ρ ≤ N − k

(n − 1)d + N
. (4)

Moreover, assume that Ext supports close-to-uniform preimage sampling, i.e.,
there is an efficient algorithm S such that the output of S on input z, denoted
S(z), satisfies

S(z) ≈ε3 Dz (5)

for every z ∈ {0, 1}�, where Dz is uniformly distributed over Ext−1(z).

Then, there exists an (n, ε1 + 2ε2 · n · 2�n + 2n · ε3, ρ)-leakage resilient secret
sharing scheme realizing access structure A.

Remark 1. Note that, in general, the preimage sampling algorithm S considered
in Theorem 31 may fail to return an element of Ext−1(z). In such a case, we say
that S fails.

We describe our construction of the non-malleable secret sharing scheme
(LRShare,LRRec).

LRShare: Our sharing function takes as input a secret m ∈ M and proceeds as
follows:
1. Share m using AShare to obtain s1, . . . , sn ← AShare(m);
2. For each i ∈ [n], sample (Li, Ri) ← S(si);
3. If S(si) fails for some i, set sharei = (⊥, si) for all i ∈ [n];
4. Else, for each i ∈ [n] construct sharei = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn);
5. Output (share1, . . . , sharen).

LRRec: Our reconstruction function takes as input shares {sharei : i ∈ T}
corresponding to an authorized set T ∈ A and proceeds as follows:
1. Sort T so that T = {i1, . . . , it}, where t = |T |, and ij < ij+1;
2. If sharei contains ⊥, then recover si1 , . . . , sit

directly from sharei1 , . . . ,
shareit

and reconstruct m ← ARec(si1 , . . . , sit
);

3. Else, for each j ∈ [t] obtain Lj from sharej and Rj from sharek for
some k ∈ T \ {j}, and compute sj = Ext(Lj , Rj). Reconstruct m ←
ARec(si1 , . . . , sit

);
4. Output m.

The proof of Theorem 31 has a similar structure to the proof of statistical
privacy in Sect. 3.1, but some additional care must be taken to deal with the
leakage. It can be found in [1]. We also study the tradeoff between share-length
and leakage rate we can achieve via the compiler using linear strong extractors
in [1].
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5 Threshold Signatures

(n, t)-Threshold signatures, introduced by Desmedt [12], allow to distribute the
secret key of a signature scheme among n players such that any subset of t
players can sign messages. Threshold signatures exist based on the RSA [23]
and discrete logarithm [7] problems.

Definition 32. (Threshold Signature Scheme [23]). An (n, t)-threshold
signatures scheme is defined by a tuple of algorithms (TGen,TSign,TRec,
TVerify). The key generation algorithm TGen takes the security parameter 1λ

as input and outputs a verification key vk and secret keys sk1, . . . , skn. The (pos-
sibly interactive) signing algorithm TSign takes a secret key ski and a message
m ∈ M as input and after potentially interacting with the other parties it outputs
a signature share σi. The reconstruction algorithm TRec takes the verification
key vk, any t signature shares, and outputs a signature σ. The verification algo-
rithm TVerify takes a signature σ, a message m, and a verification key vk as
input and outputs a bit b ∈ {0, 1}. We call a threshold signature scheme secure
if the following holds:

1. Correctness. Any authorized set of parties can generate a valid signature.
That is, for any set T = {i1, . . . , it} of size at least t and for any m ∈ M, it
holds that

Pr[TVerify(vk,TRec(vk, σi1 , . . . , σit
),m) = 1] = 1,

where σi ← TSign(ski,m) and (vk, sk1, . . . , skn) ← TGen(1λ).
2. Unforgeability. No collusion of unauthorized parties can forge a signature.

More formally, we consider a probabilistic polynomial time adversary A, who
can corrupt up to t − 1 parties to learn their secret keys. The adversary may,
on behalf of the corrupt parties, engage in a polynomial number of (possibly
interactive) signature share generations with the honest parties for messages
of its choice. Let Q be the set of messages that the adversary signs in this fash-
ion. We require that the probability of A outputting a valid message signature
pair (m∗, σ∗) with m∗ �∈ Q is negligible in λ.

In this work we extend the notion of threshold signatures in two directions.
We propose non-malleable as well as leakage-resilient threshold signatures. These
two separate notions require that a threshold signature scheme remains secure
even if tampering or leakage on the secret keys of each player occurs. Throughout
this section we assume a asynchronous communication network with eventual
delivery. In such a network each message can be delayed arbitrarily, but it is
guaranteed that any sent message eventually arrives at its destination. We also
assume that any pair of parties is connected by a secure point-to-point channel.

5.1 Non-Malleable Threshold Signatures

A non-malleable threshold signature scheme requires that even an adversary,
who obtains a polynomial number of signature shares under tampered keys for
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messages of its choice, may not produce a valid forgery. We model this security
guarantee as follows:

Definition 33 (Non-Malleable Threshold Signature Scheme). Let

S = (NMTGen,NMTSign,NMTRec,NMTVerify)

be a secure threshold signature scheme according to Definition 32. Let F be some
family of tampering functions. For each f ∈ F , and any probabilistic polynomial
time adversary A, define the tampering experiment

SigTamperfλ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(vk, sk1, . . . , skn) ← NMTGen(1λ)

(s̃k1, . . . , s̃kn) ← f(sk1, . . . , skn)

(i1, . . . , it−1) ← A(1λ)

(m∗, σ∗) ← A
˜O(vk, s̃ki1 , . . . , s̃kit−1)

Output (m∗, σ∗)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

where the oracle Õ(·) = (NMTSign(s̃k1, ·), . . . ,NMTSign(s̃kn, ·)) allows the
adversary to obtain a polynomial number of (honestly generated) signature shares
generation for messages of its choice. Let Q be the set of messages that A queries
to Õ. We say S is non-malleable w.r.t. F if for all f ∈ F

Pr[NMTVerify(vk,TRec(vk, σ∗,m∗) = 1 ∧ m∗ �∈ Q] ≤ negl(λ).

Our construction follows the same blueprint as our non-malleable secret shar-
ing schemes.

Theorem 34. For any number of parties n ≥ 2t + 1 and threshold t, if we have
the following primitives:

1. A non-interactive2 secure (n, t)-threshold signatures scheme (TGen,TSign,
TRec,TVerify).

2. A coding scheme (NMEnc,NMDec) that is ε-non-malleable w.r.t Fsplit
2 ,

where ε ≤ negl(λ).

then there exists a non-malleable threshold signature scheme w.r.t. Fsplit
n .

We construct a non-malleable threshold signature scheme S = (NMTGen,
NMTSign,NMTRec,NMTVerify) as follows.

NMTGen: Our key generation function takes the security parameter 1λ as its
input and proceeds as follows:
1. (vk, sk′

1, . . . , sk
′
n) ← TGen(1λ)

2. For each i ∈ [n], encode the key sk′
i to obtain (Li, Ri) ← NMEnc(sk′

i);
2 We call a threshold signature scheme non-interactive if every party can generate a

signature share without interacting with the other parties. Many existing schemes
are of this form, see for example [7,23].
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3. For each i ∈ [n], construct ski = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn);
4. Output (vk, sk1, . . . , skn).

NMTSign: Party i with secret ski = (R1, . . . , Ri−1, Li, Ri+1, . . . , Rn) con-
structs its signature share as follows:
1. Request Ri from all other parties and wait for the first n − t responses

(R1
i , . . . , R

n−t
i ).

2. Check whether R1
i = · · · = Rn−t

i and output ⊥ if not.
3. Reconstruct the secret key sk′ ← NMDec(Li, R

1
i ) and output ⊥ if

sk′ = ⊥.
4. Compute signature share σi ← TSign(sk′

i,m).
5. Output σi.

NMTRec: Given verification key vk and signature shares σi1 , . . . , σit
, we con-

struct a signature as follows:
1. σ ← TRec(vk, σi1 , . . . , σit

).
2. Output σ.

NMTVerify: Given verification key vk, signature σ, and message m, we do the
following:
1. b ← TVerify(vk, σ,m).
2. Output b.

Notice that the way NMTSign is formulated now, a single tampered share
can make the protocol output ⊥. If this is undesirable, the two first steps in
NMTSign: can be replaced by

1. Request Ri from all other parties and collect responses R1
i , R

2
i , . . ..

2. If and when a subset of the responses of size n − t are all identical to some
Ri, use this Ri in the following steps.

In an asynchronous network with eventual delivery, all n − t honest parties
will eventually get the request for Ri and send their value. Therefore party i
eventually receive all these n − t shares (and possibly some corrupted shares
too). Therefore, if there is no tampering, then party i will eventually receive
n − t copies of the correct share. In all cases party i will hear from at least one
honest party as in the original scheme, so security follows along the lines of the
security for the original scheme. We present the analysis for the original scheme
in [1], which yields Theorem 34.

5.2 Leakage-Resilient Threshold Signatures

In a leakage-resilient threshold signature scheme, the adversary may obtain an
unqualified subset of secret keys and a bounded amount of leakage from all other
secret keys. Even given this information, we require that the adversary may not
be able to output a valid forgery.

Definition 35 (Leakage-Resilient Threshold Signature Scheme). Let
S = (LTGen,LTSign,LTRec,LTVerify) be a tuple of probabilistic polynomial
time algorithms. Let F be a family of leakage functions. For each f ∈ F , and
any probabilistic polynomial time adversary A, define the following experiment
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SigLeakf
λ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(vk, sk1, . . . , skn) ← LTGen(1λ)

(i1, . . . , it−1) ← A(1λ)
(�1, . . . , �n) ← f(sk1, . . . , skn)

(m∗, σ∗) ← AO(vk, (ski1 , . . . , skit−1), (�1, . . . , �n))
Output (m∗, σ∗)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

where the oracle O(·) allows the adversary, on behalf of the corrupted parties, to
engage in a polynomial number of (possibly interactive) signature shares gener-
ation for messages of its choice. Let Q be the set of messages that A queries to
O. We say S is leakage-resilient w.r.t. F if for all f ∈ F

Pr[NMTVerify(vk,TRec(vk, σ∗,m∗) = 1 ∧ m∗ �∈ Q] ≤ negl(λ).

Building upon our previous results, we construct a leakage-resilient threshold
signature scheme.

Theorem 36. For any number of parties n ≥ 2t + 1 and threshold t, if we have
the following primitives:

1. A non-interactive secure (n, t)-threshold signatures scheme (TGen,TSign,
TRec,TVerify).

2. A two-source (n − � − log 1/ε, 2ε)-extractor nmExt with efficient preimage
sampling from the space X = {0, 1}n, where ε ≤ negl(λ).

then the construction from Theorem34, where we replace each call to NMEnc
with nmExt−1 and each call to NMDec with nmExt, is a leakage-resilient
threshold signature scheme w.r.t. Fsplit

�,n , where Fsplit
�,n is the set of leakage func-

tions that tamper with each share independently and the output of each tampering
function is bounded in size by � bits.

Proof. The proof can be found in [1]. �
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Abstract. Memory-hard functions (MHFs) are moderately-hard func-
tions which enforce evaluation costs both in terms of time and memory
(often, in form of a trade-off). They are used e.g. for password protec-
tion, password-based key-derivation, and within cryptocurrencies, and
have received a considerable amount of theoretical scrutiny over the last
few years. However, analyses see MHFs as modes of operation of some
underlying hash function H, modeled as a monolithic random oracle.
This is however a very strong assumption, as such hash functions are
built from much simpler primitives, following somewhat ad-hoc design
paradigms.

This paper initiates the study of how to securely instantiate H within
MHF designs using common cryptographic primitives like block ciphers,
compression functions, and permutations. Security here will be in a
model in which the adversary has parallel access to an idealized ver-
sion of the underlying primitive. We will provide provably memory-hard
constructions from all the aforementioned primitives. Our results are
generic, in that we will rely on hard-to-pebble graphs designed in prior
works to obtain our constructions.

One particular challenge we encounter is that H is usually required to
have large outputs (to increase memory hardness without changing the
description size of MHFs), whereas the underlying primitives generally
have small output sizes.

Keywords: Memory-hard functions · Provable security · Ideal models

1 Introduction

Memory-hard functions (MHFs) are functions which are moderately hard to
compute both in terms of time and memory, in the sense that their computation
is subject to a time-memory trade-off – relatively fast computation requires mem-
ory, whereas low-memory implies slow (or even very slow) computation. This
ensures for example that the area-time complexity of custom-made hardware
(e.g., ASICs) needed to evaluate MHFs is large (and thus, the dollar cost of this

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11693, pp. 543–572, 2019.
https://doi.org/10.1007/978-3-030-26951-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26951-7_19&domain=pdf
https://doi.org/10.1007/978-3-030-26951-7_19


544 B. Chen and S. Tessaro

hardware), and this fact makes them suitable for password hashing, password-
based key derivation, and proof of work in cryptocurrencies, where attackers may
leverage such hardware. The first practical MHF, Scrypt, was proposed by Per-
cival [19,20]. Starting with Alwen and Serbinenko [7], several works have been
devoted to the theoretical analysis of MHFs (cf. e.g. [1–8,12–14]), also exposing
weaknesses in practical designs like Argon2 [10] (the winner of the password-
hashing competition), Catena [17], and Balloon hashing [13].

The starting point of our work is the observation that theoretical works
describe MHFs as modes of operation of an underlying primitive, usually a
(hash) function H : {0, 1}M → {0, 1}W (where M ≥ W ), modeled as a random
oracle [9] within security proofs. However, this completely ignores the implemen-
tation details behind H which may make it far from an ideal random oracle –
often, such designs are completely ad-hoc and based on much simpler objects
(e.g., Scrypt’s resembles a permutation-based stream-cipher design), in particu-
lar because W is much larger than for conventional hash functions (e.g., a few
thousand bits).

Therefore, we would like to study MHFs at a finer level of granularity that
considers the inner structure of H, and we would like to understand how such an
H is meant to be built in a sound way. We stress that it is not enough for H to
be a random oracle in the sense of indifferentiability [18], since memory-hardness
definitions are multi-stage games to which indifferentiability does not apply [22].
Therefore, such analyses would call for completely new theory.

We also note that the primitive on which an MHF is based matters – Ren
and Devadas [21] pointed out the advantages of building MHFs from AES, as the
availability of on-chip hardware implementations (AES-NI) significantly reduces
the efficiency speed-up of dedicated hardware by ensuring a conventional CPU
can evaluate the function already at a cost similar to that of dedicated hardware.

Our contributions – a high-level view. This paper initiates the study of
provably-secure MHFs built from basic symmetric primitives, which we model
as ideal – we consider block ciphers, permutations and compression functions.
We prove general results that will enable us to obtain MHFs based on them, in
a model where these primitives are ideal and the adversary is allowed to make
multiple calls in parallel. (This naturally adapts the parallel random-oracle model
from previous MHF analyses to primitives.)

As our first contribution, we provide one-call efficient instantiations of H
from such primitives. We will adapt previous lemmas based on “ex-post-facto
arguments” (dating back to [15]) to reduce the security of a large class of MHFs
based on directed acyclic graphs (DAGs) to the pebbling complexity of the
underlying DAG. (These are usually called data-independent MHFs, or iMHFs
for short, and are favored designs due to their resilience to side-channel attacks.)

This will already give us iMHFs from all aforementioned primitives. However,
a DAG G of N vertice yields a function whose computation operates on N
memory blocks of size L bits, where L is the output length of the primitive
(e.g., L = 128 bits for AES). In this case, a good choice of G would ensure that
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product of time and memory1 to evaluate the function is (nearly) Ω(N2L) –
increasing memory hardness means increasing N , which leads to a larger function
description. A better option (consistent with practice) is to keep the same graph,
but operate on larger blocks of size W � L, to ensure the time-memory product
is now Ω(N2W ).

To do this, we will provide a generic construction of an H with W -bit output
using an underlying primitive with a shorter output. We will refer to H as a
wide-block labeling function (as opposed to a small-block one like those we gave
above), and the resulting MHF will be called a wide-block MHF. (Our design
will have the added benefit of allowing for a variable W .) Our construction will
guarantee the final MHF is memory hard as long as the graph G is sufficiently
depth-robust, a notion we review below.

We stress that all practical constructions implicitly design wide-block labeling
functions, for which existing analyses provide no guarantees, as they abstract
them away as random oracles, which they are not. While we failed to provide
either proofs or attacks on practical designs, initiating the study of provably
secure constructions in the more realistic primitive-based setting is an important
step.

The remainder of this section will provide a more in-detail overview of our
results, as well as a concise introduction to the formalism.

1.1 Overview of Our Results

Before highlighting our result in more detail, we briefly review some notions at
an informal level.

Graph-based iMHFs. This paper deals with graph-based data-independent
MHFs (which we refer to as iMHFs, for short), defined by a DAG G = (V,E)
on N vertices. For simplicity, we assume V = {v1, . . . , vN}, and each edge has
the form (vi, vj) where i < j, i.e., vertices are topologically order – vertex v1 is
the source, vN is the (unique) sink. Previous works [3,7] use G and a labeling
function H : {0, 1}≤δW+log N → {0, 1}W (we refer to W as the block length of
the MHF and δ the maximal indegree of G) to instantiate an MHF FG,H. On
input M , we first assign the label �1 = H(〈1〉‖M) to the source, where 〈i〉 is a
O(logN)-bit encoding of i, and then each vertex vi is assigned a label

�i = H(〈i〉‖�j1‖ . . . ‖�jd
) ,

where vj1 , . . . , vjd
are the predecessor vertices of vi. Finally, we output �N .

CMC and pebbling. To capture the evaluation costs for FG,H, following [7]
we adopt the cumulative memory complexity (CMC). We model the labeling
function H as a random oracle, and assume the adversary proceeds in steps. In

1 We will use the more fine-grained metric of cumulative memory complexity (CMC),
but for now the product of time and memory will suffice for an informal understand-
ing.
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each step i, the adversary holds state σi−1 (where σ0 = M), and can compute a
vector of queries to H, as well as next state σi, which it will receive in the next
step, together with the outputs of the evaluations of H on the query vector. The
CMC of the adversary is defined as the sum of the sizes of states, and CMC(FG,H)
denotes the best-possible (expected) CMC of an adversary to evaluate FG,H.

The evaluation of FG,H is tightly related to a (parallel) pebbling game for the
graph G. Initially, the graph has no pebble on it, but in each step i, the player
can (i) remove any subset of the pebbles, and (ii) put a pebble on a vertex v ∈ V

if all parents of v have been pebbled at the previous step. (This is vacuously
true for the source.) Multiple legal moves can be taken in one single step. (This
differs from traditional black pebbling games, where each step allows one single
legal move.) The player wins the game if the sink node has been pebbled. The
cumulative complexity (CC) of the pebbling is defined as the cumulative sum of
the number of pebbles on the graph in each step, and the CC of the graph cc(G)
is the minimal CC over all pebbling strategies.

Intuitively, a pebbling strategy is equivalent to an evaluation strategy for
FG,H which only remembers labels in its memory. In [7] it was shown that such
strategies are essentially optimal, i.e., CMC(FG,H) ≈ cc(G) · W .

Depth-robust graphs. Depth-robust graphs are class of graphs with high CC:
Specifically, we say a graph G = (V,E) is (e, d)-depth-robust if, after remov-
ing any nodes set S ⊆ V where |S| ≤ e, the subgraph G − S still has a path
with length d. Previous work [3] proved that any (e, d)-depth-robust graph G

has cumulative complexity cc(G) ≥ e · d. Also, they show that constructions of
(constant indegree) depth-robust graphs with de = Ω(N2/log(N)) exist, which
gives best-possible CC [1]. Later on, Alwen, Blocki, and Harsha [2] gave a proce-
dure that samples with high probability a graph with the same depth-robustness
guarantees, with a much simpler description.

Our contributions. Our two main contributions provide generic methods to
devise constructions of MHFs from a simple primitive, like a block cipher, a
permutation (that can be instantiated from a fixed-key block cipher), or a com-
pression function. We consider a natural extension of the above model where the
adversary queries an ideal version of the primitive.

1. We first define a simple class of so-called small-block labeling functions Hfix

which make one call to an underlying primitive. They transform a hard-
to-pebble graph G (with maximal indegree 2) into a memory hard function
FG,Hfix

as described above, but where H is now instantiated from the underly-
ing primitive via Hfix, and the resulting block length is L, the output length
of the primitive. (E.g., if we used AES, then L = 128 bits.) Moreover, we
prove that the CMC of FG,Hfix

is approximately cc(G) · L.
2. We then consider the problem of extending the block length of an iMHF

to increase memory hardness without changing the underlying graph G. To
this end, from Hfix with output length L, we define and construct a class
of wide-block labeling functions, which in fact support variable block length.
For any tunable parameters δ,W = 2w ∈ N, the wide-block hash function
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Hδ,w : {0, 1}δW → {0, 1}W turns any depth-robust graph G (with maximal
indegree δ) into a memory hard function FG,Hδ,w

via graph labeling. The
CMC of FG,Hδ,w

is approximately

CMC(FG,Hδ,w
) ≈ cc(G) · δW 3/L2 .

Note that this is larger than cc(G) · W because, intuitively, we need to make
multiple calls to the primitive to evaluate H, and use extra memory. In par-
ticular, we prove that the evaluation of FG,Hδ,w

can be done sequentially with
time Nδ(W/L)2 and memory N · W , i.e., the resulting CMC is N2δW 3/L2,
via a naive strategy which runs N times the best-possible algorithm to eval-
uate H, and keeps all W -bit labels in memory, in addition to internal states.
Hence, if cc(G) = Θ(N2/logN) and δ = O(1), this means that the best pos-
sible CMC can have a gain of a factor at most O(logN) over the “naive”
sequential strategy. This is the same upper bound on the speed-up we could
establish for iMHFs from monolithic random oracles.2

We stress that because these results are generic, constructions can be obtained by
using any graph G (or distribution over graphs) with sufficient depth-robustness
guarantees.3 We give some more details about these results next.

Small-Block Labeling Function: Constructions and Intuition. The
small-block labeling functions Hfix takes an input4 x ∈ {0, 1}L ∪ {0, 1}2L and
outputs an L-bit label. For a compression function cf, the resulting output is
cf(x); for an ideal cipher ic, we split the input into a key part k ∈ {0, 1}L ∪ {⊥}
(where ⊥ is a designated key separate from the L-bit strings, which as with
compression functions, will be necessary to implement variable input length)
and an input part x ∈ {0, 1}L, the resulting output is ic(k, x) ⊕ x; for a random
permutation rp, we denote as x∗ the exclusive-or sum of L-bit input blocks and
the output is rp(x∗) ⊕ x∗.

For any graph G = (V,E), the memory hardness of FG,Hfix
is argued similarly

as in previous work [7]. The high level idea is to transform the execution of any
algorithm A that computes the MHF into an ex-post-facto pebbling for the graph
G, and argue that the cumulative memory complexity of A is proportional to the
cumulative complexity of the pebbling. Here we generalize the technique of [7]
– which relies on a compression argument – so that it works even if:

1. The ideal-primitive input contains no explicit information of the node v. (This
was not the case in prior work.)

2 Actually for certain graphs, we prove that the efficiency gap can be reduced to the
optimal bound O(1), by giving a more memory-efficient sequential algorithm.

3 Our first result in fact only requires a lower bound on cc(G). It is an interesting
open question to provide a wide-block labeling function which only relies on a lower
bound for cc(G), rather than the (stronger) depth-robustness requirement.

4 We assume the compression function allows both L- and 2L-bit inputs, though most
compression functions do not allow this by design. This could however be easily
achieved by reserving one bit of the input to implement domain separation, and
then padding short inputs.
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2. The adversary can make inverse queries to the ideal primitive (as we also
consider block ciphers now).

3. The input length of the primitive is fixed, and usually shorter than the actual
input length of the labeling function.

Remark 1. Note that Blocki et al. [11] independently proposed a proof that
addressed the first and the third challenge. But to the best of our knowledge,
our technique is the only one that works even if the adversary makes inverse
queries.

Succinct MHFs from Wide-Block Labeling Functions. Given a small-
block labeling function Hfix and tunable parameters δ,W = 2w ∈ N, the wide-
block labeling function Hδ,w : {0, 1}δW → {0, 1}W is essentially a graph labeling
function built upon Hfix and a gadget graph Gδ,W . Gδ,W is the composition of
two subgraphs, namely, a MIX graph Gmix, and a source-to-sink depth robust
graph Gssdr = (V

′
,E

′
) that satisfies for any subset S ⊆ V

′
(with bounded size),

Gssdr − S has a long path starting from a source node of Gssdr and ending at a
sink node of Gssdr.

For any (e, d)-depth-robust graph G = (V,E), the CMC of FG,Hδ,w
is argued

by opening the graph structure underlying Hδ,w, and consider FG,Hδ,w
as a graph

function built upon Hfix and a bootstrapped graph Extδ,W (G). We show that the
graph Extδ,W (G) is extremely depth-robust and thus has pebbling complexity
Ω(δW 3/L3) · ed. Then by the property of Hfix, we can build the connection
between the CMC of FG,Hδ,w

and the CC of Extδ,W (G).

Depth-robustness of Extδ,W (G). Given any (bounded-size) nodes subset S

of Extδ,W (G), we show the existence of an extremely long path in Extδ,W (G)−S

in three steps: First, S is transformed into a small set S
′
in G, and we obtain a

long path P in G−S
′
by depth-robustness of G; second, by source-to-sink depth-

robustness of the SSDR graph, each vertex v in P is transformed into a path
P ∗

v in Extδ,W (G) − S; finally, the structure of the MIX graph helps to elegantly
connect the paths in {P ∗

v }v∈P into an extremely long path in Extδ,W (G) − S.

Remark 2. Note that our wide-block labeling functions can only turn depth-
robust graphs (instead of arbitrary graphs with high CC) into memory hard
functions. It is hard to link CMC and cc(G) directly using our extension frame-
work. The hardness lies in linking cc(Extδ,W (G)) and cc(G). In particular, even
if the gadget graph Gδ,W has high CC, we do not know how to prove that
cc(Extδ,W (G)) ≥ cc(G) · cc(Gδ,W ). This is because we do not know how to trans-
form a pebbling P1 (of Extδ,W (G)) into a legal pebbling P2 (of G), and argue
that cc(P1) is at least cc(P2) times cc(Gδ,W ).

2 Preliminaries

Notation. Let N and R denote the sets of natural numbers and real numbers
respectively. Denote by [n] the set of integers {1, . . . , n}. By log(·) we always
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refer to binary logarithm. For strings x and y, |x| is the length of x and we use
x‖y or (x, y) to denote the concatenation of x and y. For a set X, x

$← X is the
process of assigning to x an element picked uniformly from X, and |X| denotes
the number of elements in X. For a distribution D, we use x ← D to denote the
sampling of x from distribution D. For an algorithm A, we use A(x; r) to denote
the output of the algorithm on input x and random coins r.

2.1 Memory-Hard Functions in the Parallel Ideal Primitive Model

Ideal Primitives. In this paper, we consider three ideal primitives, namely,
compression functions, ideal ciphers, and random permutations. All primitives
will have an understood block length L = 2�, which is assumed to be a power of
two. In the following context, we will omit L in the ideal-primitive notation if
there is no ambiguity.

Denote by CF the set of functions5 with domain {0, 1}L ∪{0, 1}2L and image
{0, 1}L. Denote by IC the set of keyed permutations with domain K × {0, 1}L

and image {0, 1}L. For simplicity, the key space is set as K := {⊥} ∪ {0, 1}L

in the following context. Finally, we let RP be the set of permutations with
input/output length L.

Parallel Ideal Primitive Model. Towards modeling the computation of
memory-hard functions, we generalize the Parallel Random Oracle Model defined
by Alwen and Serbinenko [7] to Parallel Ideal Primitive Model. Let IP =
CF/IC/RP be a type of ideal primitive set. For any oracle-aided algorithm A,
input x and internal randomness r, the execution A(x; r) works as follows. First,
a function ip (with block length L) is uniformly chosen from the set IP. The
oracle-aided algorithm A can make oracle query to ip as follows: If ip = cf
is a randomly sampled compression function, the algorithm can make queries
with form (“CF”, x) and receive value cf(x). If ip = ic is a randomly sampled
ideal cipher, the algorithm can make forward queries with form (“IC”,+, k, x)
and receive value ic(k, x), or make inverse queries with form (“IC”,−, k, y) and
receive value ic−1(k, y). Similarly, if ip = rp is a randomly sampled permutation,
the algorithm can make forward queries with form (“RP”,+, x) and receive value
rp(x), or make inverse queries with form (“RP”,−, y) and receive value rp−1(y).

Let σ0 = (x, ∅) denote the initial input state. For each round i ∈ N, A(x; r)
takes input state σi−1, performs unbounded computation, and generates an out-
put state σ̄i = (δi,qi,outi), where δi is a binary string, qi is a vector of queries
to the ideal primitive ip, and each element of outi is with form (v, �v) where
v and �v are L-bit output labels. We define σi = (δi,ans(qi)) to be the input
state for round i + 1, where ans(qi) is the vector of ideal primitive answers to
qi. The execution terminates after round T ∈ N if |qT | = 0. We use Aip(x; r)

5 We assume the compression function allows both L- and 2L-bit inputs, though most
compression functions do not allow this by design. This could however be easily
achieved by reserving one bit of the input to implement domain separation, and
then padding short inputs.
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to indicate both the execution output (i.e., the concatenation of output labels)
and the execution trace (i.e., all of the input and output states (σ0, σ̄1, σ1, . . . )).
We also assume an upper bound q on the total number of output labels/ideal
primitive queries that an algorithm makes, i.e.,

∑
i≥1 |qi| + |outi| ≤ q. We call

A a sequential algorithm if |qi| = 1 for every 1 ≤ i < T , otherwise A is a parallel
algorithm.

Complexity Measures. Given the trace Aip(x; r) on input x, randomness r
and ideal primitive ip, we define as time complexity Tm(Aip(x; r)) the number
of rounds ran by A, and space complexity Spc(Aip(x; r)) the size of the maximal
input state. Moreover, we define Tm(A) (and Spc(A)) to be the maximal time
(and space) complexity of A over all choices of x, r and ip.6 We define cumulative
memory complexity (CMC) [7] in the parallel ideal primitive model.

Definition 1 (Cumulative Memory Complexity). Given trace Aip(x; r)
(with input states (σ0, σ1, . . . )). we define cumulative memory complexity

CMC(Aip(x; r)) :=
Tm(Aip(x;r))∑

i=0

|σi|

to be the sum of input states’ size over time. For a real value ε ∈ [0, 1], and a
family of functions F =

{
f ip : X → Y}

ip∈IP
, we define the ε-cumulative memory

complexity of F to be

CMCε(F) := min
x∈X ,A∈Ax,ε

E[CMC(Aip(x; r))],

where the expectation is taken over the uniform choices of ip and r. Ax,ε is the
set of parallel algorithms7 that satisfy the following: with probability at least ε
(over the uniform choices of ip and r), the algorithm on input x and oracle ip
outputs f ip(x).

Memory-Hard Functions. We now define memory hard functions in the par-
allel ideal primitive model. Intuitively, there exists a relatively efficient sequential
algorithm that computes the MHFs, and any parallel algorithm that evaluates
the functions incurs high CMC cost.

Definition 2 (Memory Hard Functions). For an ideal primitive set IP =
CF/IC/RP, a family of functions F =

{
f ip : X → Y}

ip∈IP
is (C‖

F ,ΔF , TF )-

memory hard if and only if the following properties hold. (C‖
F ,ΔF are functions

that take as input a real value in (0, 1] and output a real value, TF is an integer.)

6 Tm(A) (and Spc(A)) measure worst-case sequential efficiency by providing upper
bounds on time/memory.

7 Recall that the total number of output labels/ideal primitive queries that the algo-
rithm makes is at most q.
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Memory-hardness: For any ε ∈ (0, 1], we have CMCε(F) ≥ C
‖
F (ε).

Efficiency-gap: For any ε ∈ (0, 1], it holds that

minA∈AF,TF (ε · Tm(A) · Spc(A))
CMCε(F)

≤ ΔF (ε),

where AF,TF is the set of deterministic sequential algorithms that run in at
most TF steps and correctly output f ip(x) for any ip and x.

2.2 Graphs and Pebbling Models

Graph Notations. We use G = (V,E) to denote a directed acyclic graph
(DAG) with N = 2n nodes, where V = {1, . . . , N}. Let src(G) ⊆ V be
the set of source nodes and sink(G) ⊆ V be the set of sink nodes. For
a node v ∈ V, pred(v) := {u : (u, v) ∈ E} are the predecessor nodes of v,
succ(v) := {w : (v, w) ∈ E} is the set of v’s successors. We use indeg(v) := |pred(v)|
to denote the indegree of v, and indeg(G) := maxv∈V indeg(v) is the indegree of
G. For a directed acyclic path P , the length of P is the number of nodes it tra-
verses. depth(G) is the length of the longest path in G. For a nodes set S ⊆ V,
G− S is the DAG obtained from G by removing S and incident edges. Next, we
review a useful graph-theoretic property called depth-robustness.

Definition 3 (Depth-Robustness [3]). A DAG G = (V,E) is (e, d)-depth-
robust if and only if depth(G − S) ≥ d for any S ⊆ V where |S| ≤ e.

Next, we define a stronger notion of depth-robustness called source-to-sink-depth-
robustness. Intuitively, it means that after removing any nodes set with certain
size, there still exists a long path from a source node to a sink node.

Definition 4 (Source-to-Sink-Depth-Robustness). A DAG G = (V,E) is
(e, d)-source-to-sink-depth-robust if and only if for any S ⊆ V where |S| ≤ e,
G−S has a path (with length at least d) that starts from a source node of G and
ends up in a sink node of G.

Graph Pebbling. We consider a pebbling game played on a DAG (G = V,E)
[7]. We denote by a parallel pebbling on G as a sequence of pebbling configura-
tions P = (P0, . . . ,Ptpeb) where P0 = ∅ and Pi ⊆ V (1 ≤ i ≤ tpeb). We define two
properties for P.

– Legality: We say P is legal if it satisfies follows: A pebble can be put on a
node v ∈ V only if v is a source node or v’s predecessors were all pebbled at
the end of the previous step, that is, for any i ∈ [tpeb] and any v ∈ Pi \ Pi−1,
it holds that pred(v) ⊆ Pi−1.8

– Successfulness: We say P is successful if it satisfies follows: Every sink node
has been pebbled at least once, that is, for any v ∈ sink(G), there exists
i ∈ [tpeb] such that v ∈ Pi.

8 pred(v) = ∅ for v ∈ src(G).
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We say P is a sequential pebbling if it further satisfies that |Pi \ Pi−1| = 1 for
every i ∈ [tpeb]. Next we define pebbling complexities of graphs.

Definition 5 (Complexity Measures [7]). For a pebbling strategy P = (P0 =
∅, . . . ,Ptpeb), we define the cumulative complexity (and ST-complexity) of P to be

cc(P) :=
tpeb∑

i=0

|Pi|, st(P) := tpeb · max
i∈[tpeb]

(|Pi|).

For a DAG G = (V,E), let P‖(G) be the set of parallel pebblings of G (that are
legal and successful); for any t ∈ N, let Pt(G) be the set of sequential pebblings
of G that (are legal and successful) and takes at most t steps. We define the
cumulative complexity (and ST-complexity) of G to be

cc(G) := min
P∈P‖(G)

cc(P), st(G, t) := min
P∈Pt(G)

st(P).

There is a tight relation between depth-robustness and cumulative complexity.

Lemma 1 ([3]). Let G be an (e, d)-depth-robust DAG, then cc(G) ≥ e · d.

2.3 Graph-Based iMHFs from Labeling Functions

For a DAG G = (V,E) with N = 2n nodes, we index the nodes set V =
{1, . . . , N} by a topological order so that src(G) = {1, . . . , ns} and sink(G) =
{N − nt + 1, . . . , N}. Fix W = 2w, δ := indeg(G) and let IP = CF/IC/RP be the
set of ideal primitives. Denote by

H = Hδ,w =
{
labipγ : {0, 1}γW → {0, 1}W

}

γ∈[δ],ip∈IP

a family of labeling functions. We define a family of graph functions FG,H =
{Fip

G,H : {0, 1}nsW → {0, 1}ntW }ip∈IP based on G and H: For an input x =
(x1, . . . , xns

) ∈ {0, 1}nsW , denote �i := labip1 (xi) as the label of the ith source
(1 ≤ i ≤ ns), we recursively define the label of v ∈ [N ] as

�v := labipγ (�v1 , . . . , �vγ
)

where (v1, . . . , vγ) are the predecessors of v. The output Fip
G,H(x) is defined as

the concatenation of sinks’ labels, that is, (�N−nt+1‖ . . . ‖�N ).

Preprocessing the Inputs. If ns = |src(G)| > 1, we implicitly assume that
the input vector x = (x1, . . . , xns

) has no overlapping blocks (and we call it a
non-colliding input vector), that is, for any i, j ∈ N such that i �= j, we have
xi �= xj . This constraint is necessary for preventing the adversary from easily
saving memory. For example, if the blocks in the input vector are identical, the
adversary only needs to store a single block instead of the entire input vector.
The constraint/assumption is also reasonable as we can re-randomize the original
input using a random oracle RO : {0, 1}nsW → {0, 1}nsW , and the output blocks
will be distinct with overwhelming probability when ns � 2W/2.
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Remark 3 (Graph constraint). In the following context, the graphs we are con-
cerned with should satisfy certain properties. In particular, each 2-indegree DAG
G = (V,E) considered in Sect. 3 should be predecessors-distinct, that is, for any
two distinct vertices u, v ∈ V\src(G), we have pred(u) �= pred(v). Looking ahead,
this constraint is used to prevent non-source nodes label collisions. Additionally,
each δ-indegree DAG G = (V,E) considered in Sect. 4 satisfies a property called
first-predecessor-distinctness, that is, there exists a map from each non-source
node v ∈ V\src(G) to a single node fpre(v) ∈ pred(v), so that for any two distinct
vertices u, v ∈ V \ src(G), we have fpre(u) �= fpre(v). Looking ahead, this con-
straint is used to guarantee that the 2-indegree bootstrapped graph Extδ,W (G)
built upon G is predecessors-distinct. We stress that practical DAG constructions
usually contain a subpath that traverses all of the vertices, and thus are both
first-predecessor-distinct and predecessors-distinct.9

3 MHFs from Small-Block Labeling Functions

In this section, we construct a family of graph-based iMHFs based on what
we refer to as a small-block labeling function, i.e., a simple hash function based
on an ideal primitive, which preserves its block length. (Note that this notion
is introduced for modularity reason – we could define our designs directly as
depending on a primitive.) In Sect. 3.1, we define and construct of efficient small-
block labeling functions from primitives, and in Sect. 3.2, we prove that the
constructions satisfies the required properties. Finally, in Sect. 3.3, we construct
iMHFs from small-block labeling functions.

3.1 Small-Block Labeling Functions: Definition and Construction

Definition 6 (Small-Block Labeling Functions). For an ideal primitive
IP = CF/IC/RP with block length L = 2�, we say

Hfix =
{
flabip :

{
{0, 1}L ∪ {0, 1}2L

}
→ {0, 1}L

}

ip∈IP

is a family of β-small-block labeling functions if it has the following property.

β(·, ·)-pebbling reducibility: For any ε ∈ (0, 1] and 2-indegree (predece
ssors-distinct10) DAG G = (V,E),11 let FG,Hfix

be the graph function built
upon G and Hfix. We have

CMCε(FG,Hfix
) ≥ β(ε, log |V|) · cc(G),

where cc(G) is the cumulative complexity of G (Definition 5).
9 First-predecessor-distinctness holds as each non-source node v can pick her previous

node in the subpath (that traverses all of the vertices) as their first predecessor;
predecessors-distinctness holds as otherwise a cycle would exist.

10 See Remark 3 for definition of predecessors-distinct graphs.
11

G can have multiple source/sink nodes.
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Construction. Next, we show how to construct small-block labeling functions
from ideal primitives. Our main contribution is a construction from a random
permutation, which can be instantiated from fixed-key AES. For completeness,
we also present constructions from ideal ciphers and compression functions. We
fix the input domain to be {0, 1}L ∪{0, 1}2L and the output space to be {0, 1}L,
and denote as RP, IC, CF the random permutations, ideal ciphers, and compres-
sion functions, respectively.

1. Given any rp ∈ RP, we define the labeling function flabrp(·) as follows:
For any input x ∈ {0, 1}L, the output is flabrp(x) := rp(x) ⊕ x; for any
input (x1, x2) ∈ {0, 1}2L, denote as x∗ := x1 ⊕ x2 ∈ {0, 1}L, the output is
flabrp(x1, x2) := rp(x∗) ⊕ x∗.

2. Given any ic ∈ IC, we define the labeling function flabic(·) as follows: For
any input x ∈ {0, 1}L, the output is flabic(x) := ic(⊥, x) ⊕ x; for any input
(k, x) ∈ {0, 1}2L, the output is flabic(k, x) := ic(k, x) ⊕ x.

3. Given any cf ∈ CF, we define the labeling function flabcf(·) as follows: For
any input x ∈ {0, 1}L ∪ {0, 1}2L, the output is flabcf(x) := cf(x).

Note that all of the above constructions are highly efficient as they call the
ideal-primitive only once. Next we show that the constructions are pebbling
reducible.

Remark 4. The construction for compression functions is interesting, even in
view of prior work, because of the fact that prior work included the node identity
into the hash-function input, thus effectively requiring 2L + log N -bit inputs,
whereas here we can get away with 2L.

3.2 Small-Block Labeling Functions: Pebbling Reducibility

In this section, we show that the labeling functions constructed in Sect. 3.1 satisfy
pebbling reducibility, via the following three theorems.

Theorem 1. Assume an adversary can make no more than q1 oracle calls and
q2 output calls such that q1 + q2 = q = 2L/4. Hfix = {flabcf}cf∈CF built upon
compression function CF is β(·, ·)-pebbling reducible, where for all ε ≥ 3 · 2−L/8

and N ≤ 2L/8, it holds that β(ε, log N) ≥ εL
8 .

Theorem 2. Assume an adversary can make no more than q1 oracle calls and
q2 output calls such that q1 + q2 = q = 2L/4. Hfix = {flabic}ic∈IC built upon ideal
cipher IC is β(·, ·)-pebbling reducible, where for all ε ≥ 3 · 2−L/8 and N ≤ 2L/8,
it holds that β(ε, log N) ≥ εL

8 .

Theorem 3. Assume an adversary can make no more than q1 oracle calls and
q2 output calls such that q1 + q2 = q = 2L/8. Hfix = {flabrp}rp∈RP built upon
random permutation RP is β(·, ·)-pebbling reducible, where for all ε ≥ 3 · 2−L/10

and N ≤ 2L/10, it holds that β(ε, log N) ≥ εL
40 .
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Next we present the proofs for Theorems 1, 2 and 3. First, we introduce some
notation for graph labeling, then we highlight the proof techniques and introduce
the notion of ex-post-facto pebbling in the ideal primitive model. Finally, we
provide the formal proof.

Graph Label Notations. Fix ideal primitive IP = CF/IC/RP,12 input vector
x and any graph G = (V,E). For a primitive ip ∈ IP and any node v ∈ V, we
denote as �v the graph label of v. If v is a source, prelab(v) is the corresponding
input label xv. If v is a non-source node, we define prelab(v) based on the type
of the ideal primitive:

– If IP = RP, we define prelab(v) as the exclusive-or sum of v’s parents’ �-labels.
– If IP = IC/CF, we define prelab(v) as the concatenation of v’s parents’ �-

labels.

Similarly, for every node v ∈ V, we define aftlab(v) based on the type of the ideal
primitive:

– If IP = RP/CF, we define aftlab(v) = ip(prelab(v)).
– If IP = IC and v has only one parent, we define aftlab(v) = ip(⊥, prelab(v)).

Otherwise if v has two parents, denote as prelab(v) = (y1, y2) (where y1, y2 ∈
{0, 1}L are �-labels of v’s parents), we define aftlab(v) as (y1, ip(y1, y2)).

In the following context, we abuse the notation a bit in that if prelab(v) (or
aftlab(v)) is an L-bit string and ip is an ideal cipher, we use ip(prelab(v)) (or
ip−1(aftlab(v))) to denote ip(⊥, prelab(v)) (or ip−1(⊥, aftlab(v))). Moreover, for
an ideal cipher query with input xc = (⊥, x), we say xc = prelab(v) (or xc =
aftlab(v)) if and only if x = prelab(v) (or x = aftlab(v)), respectively.

We remark that prelab(v) (and aftlab(v)) are more than just single labels,
they are used to identify the node from a query input to the ideal primitive.

Proof Highlight. Similar as in [7], the proof idea is to transform any algo-
rithm execution A into an ex-post-facto pebbling, and argue that the cumulative
memory complexity of A is proportional to the cumulative complexity of the peb-
bling. This is proved by mapping each node v ∈ V to an ideal-primitive entry
(prelab(v), ip(prelab(v))), and argue that for each round i ∈ N, the input state σi

should have large size as it is an encoding for many ideal-primitive entries. In
particular, for every node v in the ith pebbling configuration, ip(prelab(v)) (and
�v) can be decoded from an oracle-call input in the partial execution A(σi). Here
we generalize the technique of [7] so that it works even if:

1. The ideal-primitive input prelab(v) contains no explicit information of the
node index v. (Note that in previous work [7], prelab(v) has v as a prefix.)

2. The adversary can make inverse queries to the ideal primitive.
3. The input length of the primitive is much shorter than the actual input length

of the labeling function.

12
CF denotes the compression function, IC denotes the ideal cipher, and RP denotes
the random permutation.
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Ex-post-facto Pebbling. Similar as in [7], we define a notion called ex-post-
facto pebbling in the ideal primitive model. Fix ideal primitive IP = CF/IC/RP,
input vector x, DAG G = (V,E). For any ip ∈ IP, randomness r, and the
execution trace Aip(x; r) (that runs for tpeb + 1 rounds), we turn the trace into
an ex-post-facto pebbling

P(Aip(x, r)) = (P0 = ∅, . . . ,Ptpeb).

For each oracle call/query that asks for the ideal-primitive value on input xc,
we say that the call is a correct call for a node v ∈ V if and only if xc matches
prelab(v) and the call is forward, or xc matches aftlab(v) and the call is an inverse
call. We define the ex-post-facto pebbling configurations in reverse order. For i
from tpeb to 1, denote as σi the input state of round i + 1 and A(σi) the partial
execution of Aip(x; r) after round i, the pebbling configuration Pi is defined as
follows. (In the following context, by round γ, we always mean the γ-th round
in the execution Aip(x, r).)

1. Critical Calls: We sort the output/ideal primitive calls of A(σi) in chronolog-
ical order13 and determine whether they are critical calls.

– An output call (in round γ > i) with label (v, �v) is a critical call for
v ∈ V if and only if v is a sink and in the trace A(σi), no correct call for
v appeared before round γ.

– An ideal-primitive call (in round γ > i) is a critical call for a node u ∈ V

if and only if the following conditions both hold: (i) the ideal-primitive
call is a correct call for a successor node v ∈ succ(u) and in the trace
A(σi), no correct call for u appeared before round γ; (ii) v is in Pγ .

2. Pebbling Configuration: A node v ∈ V is included into the pebbling configu-
ration Pi if and only if both of the following conditions hold:

– There is at least one critical call for v in the trace A(σi).
– There is at least one correct call for v between round 1 and round i

(inclusively).14

In a critical call, the algorithm provides the information of a graph label without
recomputing, hence the call is useful in extracting ideal-primitive entries. On a
side note, by definition of critical call and ex-post-facto pebbling, for any round
i, we might possibly put a node u into Pi only if u is a sink or one of its successor
v ∈ succ(u) is in Pγ for some γ > i.

Proof (of Theorems 1, 2 and 3). Fix ideal primitive type IP = CF/IC/RP, input
vector x, adversary A, and any graph G = (V,E), the proof consists of the
following four steps.

Label Collisions. First, we show that with probability at least 1 − εcoll(IP)
(over the choice of the ideal primitive), the pre-labels {prelab(v)}v∈V are all
distinct.15

13 We assume an implicit order for the calls in the same round.
14 Note that the existence of a correct call for v in round i does not imply v ∈ Pi,

because v may not have a critical call in the future.
15 If IP = IC/RP, this also implies that {aftlab(v)}v∈V are distinct.
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Lemma 2. Fix ideal primitive IP = CF/IC/RP (with block length L),
predecessors-distinct DAG G = (V,E) (with ns source nodes), non-colliding
input vector x ∈ {0, 1}nsL,16 and Hfix = {flabip}ip∈IP constructed in Sect. 3.
With probability at least 1 − εcoll(IP) (over the uniformly random choice of ip),
the graph labeling satisfies that the pre-labels {prelab(v)}v∈V are all distinct. Here
εcoll(CF) = |V|2/2L+1 and εcoll(IC) = εcoll(RP) = |V|2/2L.

Proof. The proof is deferred to full version. ��
The property in Lemma 2 is useful in determining the node index v when one
sees an ideal-primitive query related to v. Moreover, it guarantees that each node
v maps to a unique ideal-primitive input entry prelab(v).

Pebbling Legality. Next, we show that with high probability (over the uni-
form choices of the ideal primitive ip and random coins r), the ex-post-facto
pebbling P(Aip(x, r)) = (P0 = ∅, . . . ,Ptpeb) for Aip(x; r) is legal, and thus

tpeb∑

i=0

|Pi| ≥ cc(G)

as long as the pebbling is successful.
Before presenting the lemma, we prove a claim that will be useful in many

places.

Claim 1. Fix any execution Aip(x; r) (with input states σ0, σ1, . . . ) whose ex-
post-facto pebbling is P(A) = (P0, . . . ,Ptpeb). For any i ∈ [tpeb] and any vertex
v ∈ Pi \ Pi−1, it holds that there is a correct call for v in round i.

Proof. The proof is deferred to full version. ��
Lemma 3. Fix IP = CF/IC/RP (with block length L), predecessors-distinct
DAG G = (V,E) (with ns source nodes), non-colliding input vector x ∈
{0, 1}nsL, algorithm A, and Hfix = {flabip}ip∈IP constructed in Sect. 3. With prob-
ability at least 1 − εcoll(IP) − εlegal(IP) (over the uniformly random choices of
ip and A’s internal coins r), the pre-labels are distinct and the ex-post-facto
pebbling for Aip(x; r) is legal. Here εcoll(IP) is the same as in Lemma 2 and
εlegal(CF) = q · |V|/2L−1, εlegal(IC) = εlegal(RP) = q · |V|/2L−2, where q is an
upper bound on the number of calls made by A.

Proof. The proof is deferred to full version. ��
Pebbling Reduction. Next, we build the connection between the state size
and the size of the pebbling configuration. In particular, we show that with high
probability, the input state size |σi| is proportional to |Pi| for all i ∈ N.

16 By non-colliding, we mean x = (x1, . . . , xns) where xi �= xj for every i �= j.
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Lemma 4. Fix L = 2�, predecessors-distinct DAG G = (V,E) (with ns source
nodes), non-colliding input vector x ∈ {0, 1}nsL, algorithm A (that makes at most
q−1 calls), and Hfix = {flabip}ip∈IP constructed in Sect. 3. Set values βCF := �L−
2 log q− log |V|− log 3�, βIC := �L− 1− 2 log q− log |V|− log 3�, and βRP := �L

2 −
1 − 2 log q − log |V| − log 3�. For any IP = CF/IC/RP and λ ∈ N, define Eλ,IP

pred

as the event where the following three conditions all hold:

1. The pre-labels are distinct from each other.
2. The ex-post-facto pebbling (P0,P1, . . . ,Ptpeb) for Aip(x; r) is legal.
3. There exists i ∈ N such that |σi| < |Pi| · βIP − λ, where σi denotes the input

state for round i + 1 and Pi denotes the pebbling configuration in round i.

It holds that Pr[Eλ,IP
pred ] ≤ 2−λ for all λ ∈ N, where the probability is taken over

the choice of ip $← IP and random coins of A.

Proof. Without loss of generality we fix r to be the optimal random coins of
A that maximizes Pr[Eλ,IP

pred ]. We will show a predictor P (that hardwires r and
has oracle access to ip), such that if Eλ,IP

pred happens (which implies |σi| < |Pi| ·
βIP − λ for some i ∈ N), there will be a hint h with no more than |Pi| · L − λ
(and |Pi| · (L − 1) − λ when IP = IC/RP) bits, where P (h) can predict |Pi|
ideal primitive entries correctly. Thus by the compression arguments that ideal
primitives cannot be compressed (i.e., Lemmas 9 and 10), Eλ,IP

pred happens with
probability no more than 2−λ and the lemma holds. Next we describe the hint
h and the predictor P .

The Hint. For any choice of ip ∈ IP, if event Eλ,IP
pred happens, there exists a round

i ∈ N such that |σi| < |Pi| · βIP − λ, where σi is the input state of round i + 1
and Pi = (v1, v2, . . . , v|Pi|) is the ex-post-facto pebbling configuration. The hint
consists of the state σi and the following helper information. (In the following
context, if not describe explicitly, by critical call, we always mean a critical call
in the trace A(σi).)

– A sequence Qi = (id1, id2, . . . , id|Pi|) ∈ [q − 1]|Pi|, where idj (1 ≤ j ≤ |Pi|) is
the index of the first critical call for vj ∈ Pi in the trace A(σi). (Recall that
we sort the calls in chronological order, and assume an implicit order for the
calls in the same round.)

– A nodes sequence Wi = (w1, w2, . . . , w|Pi|), where wj = vj (1 ≤ j ≤ |Pi|) if
the idj-th call is an output call; otherwise, if the idj-th call is a correct call
for some successor of vj , then wj is assigned as the corresponding successor
node.

– A sequence Bi = (b1, b2, . . . , b|Pi|), where bj ∈ {0, 1, 2} is used to indicate the
relation between wj and vj . In particular, wj = vj if bj = 0, otherwise vj is
the bj-th predecessor of wj .

– A sequence Ci = (cid1, cid2, . . . , cid|Pi|), where cidj = 0 (1 ≤ j ≤ |Pi|) if there
is no correct call for vj ∈ Pi in the trace A(σi), otherwise cidj is the query
index of the first correct call for vj .
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– If IP = RP, the hint includes an extra sequence Hi = (h1, h2, . . . , h|Pi|), where
hj (1 ≤ j ≤ |Pi|) is the label �vj

if there exists some k > j such that idj = idk

(i.e., another node vk ∈ Pi has the same first critical call), otherwise hj is
set as empty17. We see that there are at most �|Pi|/2� non-empty values in
the sequence, as any ideal-primitive call can be a critical call for at most two
vertices.

Note that we can easily recover the configuration Pi from the hint Wi and Bi.
The size of the hint is no more than lenIP := |Pi|·L−λ (and lenIP := |Pi|·(L−1)−λ
when IP = IC/RP) bits given the setting of βIP.

The Predictor P . Given any input the predictor P parses the input into σi,
Qi, Wi, Bi, Ci and Hi as mentioned before18, and recovers the pebbling con-
figuration Pi. Then P runs the partial execution A(σi) and attempts to predict
(prelab(v), ip(prelab(v))) for every v ∈ Pi without querying ip(prelab(v)). In the
following context, if not describe explicitly, by critical call, we always mean a
critical call in the trace A(σi).

When simulating A(σi), the predictor uses the following approach to deter-
mine if an ideal-primitive call is a correct call for a node v: The predictor keeps
track of the labels prelab(v), aftlab(v) and �v for every v ∈ V. Moreover, after
knowing the labels of v’s predecessors, the predictor updates prelab(v) accord-
ingly. Given an ideal-primitive call from A, P determines call correctness by
checking the following cases sequentially:

– If P knows from hint Qi that the call is the first critical call for some node
v ∈ Pi, then the predictor knows that it is also a correct call for some node
w, where w can be extracted from the hint Wi.

– If the call is the first correct call19 for some node v ∈ Pi, then P will know it
from the hint Ci.

– The call is a forward call. Then the predictor checks if there exists a node
v ∈ V where prelab(v) was updated and prelab(v) matches the call input xc.
If so, P asserts that it is a correct call for v.

– IP = IC/RP and the call is an inverse call. Then the predictor first checks
if there is a node v ∈ V where aftlab(v) was updated and aftlab(v) matches
the call input xc. If no such v exists, P queries the oracle, and checks if the
answer is consistent with some updated prelab(v) (v ∈ V).

– If one of the above checks succeed, then after recognizing the correct call for
v, P updates prelab(v), aftlab(v) and �v accordingly.

Claim 2. Fix execution Aip(x; r) and round i, suppose the pre-labels are distinct,
and the ex-post-facto pebbling (P0, . . . ,Ptpeb) is legal. For any round γ > i, assume
the predictor successfully extracted �-labels for all (first) critical calls (in A(σi))
between round i and round γ. Then for any vertex v ∈ Pi ∪ · · · ∪ Pγ , and any

17 Note that we don’t need an indicator (e.g., hj = ⊥) to tell if hj is empty or not, as
we can know it from the sequence Qi. This enables us to have a shorter Hi.

18 We assume that the encoding of the hint is unambiguous.
19 Recall that there is an implicit chronological order for the calls.
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correct call for v in round γ (denote the call as C(v)), the predictor will correctly
recognize the call C(v) when simulating A(σi).

Proof. The proof is deferred to full version. ��
Next we show how to simulate A(σi) and predict ideal-primitive entries.
The predictor simulates A(σi) (which corresponds to the partial execution

of A after round i) and keeps track of the labels prelab(v), aftlab(v) and �v for
every v ∈ V. For each round γ > i, after receiving the calls from A, the predictor
P does follows sequentially.

1. Handling critical calls: P first enumerates node vj ∈ Pi according to reverse
topological order20 and checks the following: If the idj-th call (i.e. vj ’s first
critical call) is in round γ and �vj

is unknown yet, the predictor uses the hint to
extract the label �vj

. The extraction from a critical output call is trivial, thus
we assume that the call is an ideal-primitive call. From the hint, the predictor
knows that it is a correct ideal primitive call for a node wj ∈ succ(vj) where wj

can be extracted from the hint Wi. (Note that wj ∈ Pγ by definition of critical
calls.) The predictor first extracts prelab(wj) from the call input/output:

– If the call is forward, prelab(wj) can be identified from the call input.
– If wj ∈ Pi and the call is an inverse call, since P chooses nodes in Pi

according to reverse topological order, and in A(σi) the first critical call
for wj appears no later than any correct call for wj , P must have already
extracted �wj

, and thus the predictor can extract prelab(wj) from �wj
and

the call input without querying the oracle.
– If wj /∈ Pi and the call is an inverse call, P can query the oracle and

extract the information of prelab(wj) from the oracle answer.
Given wj and prelab(wj), if IP = CF or IP = IC, P can directly extract the
label �vj

from prelab(wj) and bj ; if IP = RP and vj is the only predecessor of
wj , P can extract �vj

= prelab(wj); if IP = RP and wj has another predecessor
u, we argue that �u was already known and thus the predictor can obtain the
label �vj

= prelab(wj) ⊕ �u.
– If u /∈ Pi, since the ex-post-facto pebbling is legal and wj ∈ Pγ , there

exists a round γ′ (i < γ′ < r) such that u ∈ Pγ′ \ Pγ′−1. By Claim 1,
there is a correct call C(u) for u in round γ′. Then by Claim 2, P will
recognize the call C(u) and update the label �u.

– If u is in Pi but the first critical call for u is before round γ (but after
round i), then �u was already known before round γ.

– If u equals some node vk ∈ Pi such that vk and vj have the same first
critical call, since �vj

was unknown, it must be the case that k < j and
hk = �vk

, hence the predictors knew �u initially from the hint Hi.
2. Handling correct calls for Pi: For each node vj ∈ Pi and each correct ideal-

primitive call for vj (note that by Claim 2, P correctly recognizes the call,
as the �-labels of (first) critical calls upto round γ were correctly extracted),

20 v|Pi| is picked first, then v|Pi|−1,..., and finally v1.
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since the predictor already knew �vj
after handling the first critical call for

vj ,21 she can answer the call without querying the ideal primitive:
– If IP = CF, then �vj

is the query answer.
– If IP = IC and the call input has the value (k, x) where k ∈ {0, 1}L ∪{⊥}

and x ∈ {0, 1}L, the answer is �vj
⊕ x because �vj

= x ⊕ ip(k, x) for a
forward call and �vj

= x ⊕ ip−1(k, x) for an inverse call.
– If IP = RP and the call input has the value x, the answer is �vj

⊕ x

because �vj
= x ⊕ ip(x) for a forward call and �vj

= x ⊕ ip−1(x) for an
inverse call.

For each round γ > i, after checking correct/critical calls for all nodes in
Pi, the predictor answers the other unanswered calls by making queries to the
ideal primitive. Note that in round γ, for every node v ∈ Pi ∪ · · · ∪ Pγ , if there
is a correct ideal-primitive call for v, since P already extracted �-labels for all
(first) critical calls upto round γ, by Claim 2, P will recognize the call, get the
call answer, then update the labels prelab(v), aftlab(v), �v and the pre-labels of
v’s successors.

After executing A(σi), the predictor will compute prelab(v) for every v ∈ V

according to topological order, and predict ip(prelab(v)) for every v ∈ Pi. In
particular, if IP = CF, ip(prelab(v)) = �v; if IP = IC, let x be the last L-bit
string of prelab(v), then ip(prelab(v)) = x ⊕ �v; if IP = RP, then ip(prelab(v)) =
prelab(v) ⊕ �v. Note that if Eλ,IP

pred happens and the input is the hint h mentioned
above, the predictor does not need to query ip(prelab(v)) for any v ∈ Pi as the
answer can be computed from prelab(v) and the extracted label �v.

Correctness of the Predictor. If Eλ,IP
pred happens and P ’s input is the hint

mentioned above, the predictor will correctly predict (prelab(v), ip(prelab(v))) for
every v ∈ Pi without querying ip(prelab(v)). Recall that {prelab(v)} are distinct
so that P also predicts |Pi| ideal-primitive entries.

First, we note that the labels being updated (including prelab(v), aftlab(v)
and �v for v ∈ V) are correct by induction on the time order of updating. Initially,
only the pre-labels of source vertices were updated which are correct. Assume
all the labels being updated are correct up to now. A new label prelab(v) (or
aftlab(v)) will be updated because one of the following possibilities:

1. P recognizes the first correct call for v ∈ Pi from the hint Ci (and thus correct
by the hint).

2. P recognizes a correct call for v by finding out that the call input/output
matches the previously updated aftlab(v) (or prelab(v)) which is correct by
inductive hypothesis.

3. P computes the label according to topological order (at the end).
4. prelab(v) is updated because the �-labels of v’s predecessors were all updated

previously (which are correct by inductive hypothesis).

Similarly, a new label �v will be updated either because the possibility 2 as above,
or because P extracts �v from the first critical call for v (and thus correct by
21 Recall that in A(σi), there was no correct call for v before the round of the first

critical call for v.
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the hint). Note that the argument above also implies that P will not output an
incorrect prediction.

It remains to prove that P will never query ip(prelab(v)) for any v ∈ Pi. First,
when simulating A(σσi

), P will recognize the first correct call of v from the hint
Ci and answer the call using the extracted label �v. Then prelab(v), aftlab(v) and
�v will all be updated. For the following correct calls, since prelab(v), aftlab(v)
and �v have been updated, P will recognize and answer the call without querying
ip. Lastly, when computing prelab(v) for v ∈ V according to topological order, P
will not query ip(prelab(v)) for any v ∈ Pi as the answer will be computed from
prelab(v) and the extracted label �v.

In summary, with probability at least Pr[Eλ,IP
pred ], there exists a short hint h

where P (h) correctly guesses |Pi| ideal-primitive entries, thus by Lemmas 9 and
10, we have Pr[Eλ,IP

pred ] ≤ 2−λ and the lemma holds. ��
Putting All Things Together. For an execution Aip(x, r), we say Aip(x, r)
is correct if the algorithm generates the correct graph function output at the
end; we say Aip(x, r) is lucky if it is correct but there is a vertex v ∈ sink
where A did not make any correct call for v before outputting the label �v.
Note that if Aip(x, r) is correct but not lucky, the ex-post-facto pebbling will
be successful. Moreover, with similar compression argument as in Lemmas 2 and
3, the probability (over the uniform choice of ip and A’s internal coins) that
A is lucky is no more than εluck(IP), where εluck(CF) = |V|/2L and εluck(IC) =
εluck(RP) = |V|/2L−1.

In summary, for any algorithm A that correctly computes the graph function
with probability εA > 2 · (εcoll(IP) + εlegal(IP) + εluck(IP)), we set λ ∈ N as the
minimal integer such that ε(λ) = εcoll(IP) + εlegal(IP) + εluck(IP) + 2−λ ≤ εA/2.
Then the following conditions hold with probability more than εA − ε(λ) ≥ εA/2:

1. The pre-labels are distinct from each other.
2. The ex-post-facto pebbling is legal and successful, hence

tpeb∑

i=1

|Pi| ≥ cc(G).

3. For every i ∈ [tpeb], it holds that |σi| ≥ |Pi| ·βIP −λ. Here Aip(x; r) terminates
at round tpeb + 1, σi is the input state for round i + 1, and Pi is the pebbling
configuration in round i.
Thus we have

CMC(Aip(x; r)) ≥
tpeb∑

i=1

|σi| ≥
tpeb∑

i=1

(|Pi| · βIP − λ)

≥
( tpeb∑

i=1

|Pi|
)

· βIP − tpeb · λ

≥ cc(G) · βIP − tpeb · λ ≥ cc(G) · βIP,λ,

where βIP,λ = βIP − λ as cc(G) ≥ tpeb.
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Therefore we have

E[CMC(Aip(x; r))] ≥ εA
2

· βIP,λ · cc(G).

By plugging in the corresponding εcoll(IP), εlegal(IP), εluck(IP) and βIP for the
ideal primitive IP, we can find the optimal parameter λIP, and compute

β(εA, log |V|) =
εA
2

· (βIP − λIP),

which leads to Theorems 1, 2 and 3.
��

3.3 iMHFs from Small-Block Labeling Functions

In this section, from any graph, we construct graph-based iMHFs from the small-
block labeling functions built in Sect. 3.1.

Proposition 1. Fix L = 2� and let Hfix be the β-small-block labeling function
built in Sect. 3.1. For any 2-indegree (predecessors-distinct) DAG G = (V,E)
with N = 2n vertices and single source/sink, the graph labeling functions FG,Hfix

is (C‖
F ,ΔF , N)-memory hard, where for all ε ∈ [3 · 2−L/10, 1], it holds that

C
‖
F (ε) ≥ Ω(ε · cc(G) · L), ΔF (ε) ≤ O

(
st(G, N)
cc(G)

)

.

Proof. The proof is deferred to full version. ��
The graph G in [3] has pebbling complexities cc(G) = Ω(N2/logN) and

st(G, N) = O(N2/logN), thus we obtain the following corollary.

Corollary 1. Fix L = 2� and let Hfix be the β-small-block labeling function built
in Sect. 3.1. Let G = (V,E) be the 2-indegree (predecessors-distinct) DAG in [3]
(with N = 2n vertices). The graph labeling functions FG,Hfix

is (C‖
F ,ΔF , N)-

memory hard, where for all ε ∈ [3 · 2−L/10, 1], it holds that

C
‖
F (ε) ≥ Ω

(
ε · N2 · L

log N

)

, ΔF (ε) ≤ O(1).

4 MHFs from Wide-Block Labeling Functions

Ideally, we target a CMC which is as high as possible, while keeping the evalua-
tion of the function within a feasible margin for the legitimate users. An option
is to use a bigger graph with high CC and small-block labeling functions. How-
ever, this can lead to large description size. A way out here is to choose a graph
family that has succinct description. Unfortunately, as far as we know, prac-
tical hard-to-pebble graphs are randomly sampled and do not have a succinct



564 B. Chen and S. Tessaro

description of the actual graph, only of the sampling process. To reduce descrip-
tion complexity of MHFs, in this section, we construct a family of graph-based
iMHFs based on an abstraction called wide-block labeling functions. In Sect. 4.1,
we define and construct a family of wide-block labeling functions from small-
block labeling functions. In Sect. 4.2, we prove that the construction satisfies
pebbling reducibility with respect to depth-robust graphs. Finally in Sect. 4.3,
we construct succinct iMHFs from wide-block labeling functions.

4.1 Wide-Block Labeling Functions: Definition and Construction

Definition 7 (Wide-Block Labeling Functions). For any ideal primitive
IP = CF/IC/RP, δ ∈ N and W = 2w, we say

Hδ,w =
{
vlabipγ,w : {0, 1}γW → {0, 1}W

}

ip∈IP,1≤γ≤δ

is a family of βδ,w-wide-block labeling functions if it satisfies the following prop-
erty.

βδ,w-pebbling reducibility w.r.t. depth-robust graphs: For any ε ∈
[0, 1] and any δ-indegree (e, d)-depth robust (first-predecessor-distinct) DAG
G = (V,E)22, the graph functions FG,Hδ,w

satisfies

CMCε(FG,Hδ,w
) ≥ e · (d − 1) · βδ,w(ε, log |V|),

where CMCε(·) is ε-cumulative-memory-complexity (Definition 1).

Construction. Next we show how to construct wide-block labeling functions
from small-block labeling functions. The construction is the composition of two
graph functions MIX and SSDR, which can be built from any small-block labeling
functions.

Remark 5. There are tailored-made variable-length hash functions available in
the real-world, for example within Scrypt [19,20] and Argon2 [10]. However, even
by modeling the underlying block/stream cipher as an ideal primitive, we do not
know how to prove the pebbling-reducibility of the hash functions. Hence we
seek another construction of labeling functions.

In the following context, we fix the indegree parameter δ ∈ N, ideal primitive
length L = 2�, output length W = 2w of the wide-block labeling functions,
and denote as K = 2k :=W/L the ratio between W and L. We will omit these
variables in notation when it is clear in the context.

We show how to construct the family of labeling functions Hδ,w. For any
1 ≤ γ ≤ δ, and any ideal primitive ip ∈ IP, we define the labeling function
vlabipγ,w : {0, 1}γW → {0, 1}W as the composition of two functions, namely,

22
G has a single source/sink vertex.
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mixipγ : {0, 1}γW → {0, 1}W and ssdripδ : {0, 1}W → {0, 1}W . More precisely,
for an input vector x ∈ {0, 1}γW , we define the W -bit function output as

vlabipγ,w(x) := ssdripδ (mixipγ (x)).

Next, we specify the functions mixipγ and ssdripδ .

Component: MIX Functions. Denote as flabip : {0, 1}L ∪ {0, 1}2L → {0, 1}L

a small-block labeling function (Definition 6), and let K := W/L be the ratio
between W and L. We define

mixipγ :=Fip

G
γ,K
mix

: {0, 1}γW → {0, 1}W=KL

as the graph function (Sect. 2.3) built upon a DAG G
γ,K
mix and the labeling func-

tion flabip. (Note that we can use flabip as the labeling function since the maximal
indegree of Gγ,K

mix is 2.) The graph G
γ,K
mix = (Vγ,K

mix ,Eγ,K
mix ) is defined as follows.

Nodes set: The set V
γ,K
mix has γK source nodes (which represent the γK input

blocks), and we use 〈0, j〉 (1 ≤ j ≤ γK) to denote the jth source node.
Besides, there are γK columns each with K nodes. We use 〈i, j〉 (1 ≤ i ≤ γK,
1 ≤ j ≤ K) to denote the node at the ith column and jth row. The K nodes
at the last column are the sink nodes (which represent the K output blocks).

Edges set:The set E
γ,K
mix has γK2 + γ(K − 1)K + K − 1 edges. Each source

node 〈0, i〉 (1 ≤ i ≤ γK) has K outgoing edges to the K nodes of column
i, namely, {〈i, j〉}j∈[K]. For each column i (1 ≤ i < γK) and each row j
(1 ≤ j ≤ K), the node 〈i, j〉 has an outgoing edge to 〈i + 1, j〉 at the next
column. Finally, each source node 〈0, j〉 (2 ≤ j ≤ K) has an outgoing edge
to 〈1, j〉23 (Fig. 1).

Fig. 1. The graph G
γ,K
mix for K = 4. We omitted the edges from 〈0, j〉 to 〈1, j〉 (2 ≤ j ≤

K) for clarity of the figure.

23 The last K − 1 edges make sure that the K nodes at column 1 have distinct sets of
predecessors (Sect. 2.3).
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Component: SSDR Functions. Denote as flabip : {0, 1}L ∪ {0, 1}2L → {0, 1}L

a small-block labeling function (Definition 6), and let K := W/L be the ratio
between W and L. Fix δ ∈ N, we define

ssdripδ :=Fip

G
δ,K
ssdr

: {0, 1}W → {0, 1}W

as the graph function built upon the labeling function flabip and a DAG G
δ,K
ssdr .

(Note that we can use flabip as the labeling function since the maximal indegree of
G

δ,K
ssdr is 2.) Gδ,K

ssdr = (Vδ,K
ssdr ,E

δ,K
ssdr ) is a source-to-sink-depth-robust graph (Definition

4) defined as follows.

Nodes set: The set V
δ,K
ssdr has K(1 + δK) vertices distributing across 1 + δK

columns and K rows. For every i ∈ {0, . . . , δK} and every j ∈ {1, . . . , K}, we
use 〈i, j〉 to denote the node at column i and row j. The K nodes at column
0 are the source nodes and the K nodes at column δK are the sink nodes.

Edges set: The set E
δ,K
ssdr consists of 3 types of edges. The first type is called

horizontal edges: For every i (0 ≤ i < δK) and every j (1 ≤ j ≤ K), there is
an edge from node 〈i, j〉 to node 〈i + 1, j〉. The second type is called vertical
edges: For every i (2 ≤ i ≤ δK) and every j (1 ≤ j < K), there is an edge
from node 〈i, j〉 to node 〈i, j + 1〉. The third type is called backward edges: For
every j (1 ≤ j < K), there is an edge from node 〈δK, j〉 to node 〈1, j + 1〉.
In total, there are δK2 + δK · (K − 1) < 2δK2 edges (Fig. 2).

Fig. 2. The graph G
δ,K
ssdr for K = 4

We prove a useful lemma showing that G
δ,K
ssdr is source-to-sink-depth-robust.

Lemma 5. Fix any K = 2k ≥ 4 and δ ∈ N, the graph G
δ,K
ssdr is (K

4 , δK2

2 )-source-
to-sink-depth-robust.

Proof. The proof is deferred to full version. ��

4.2 Wide-Block Labeling Functions: Pebbling Reducibility

In this section, we show that the labeling functions constructed in Sect. 4.1
satisfy pebbling reducibility with respect to (first-predecessor-distinct) depth-
robust graphs. We will make use of the following notation.
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Graph Composition: Given a graph G1 (with n1 source nodes and n2 sink
nodes), and a graph G2 (with n2 source nodes and n3 sink nodes), we define
G1 ◦ G2 as the composition of G1 and G2, namely, we merge the ith sink node
of G1 with the ith source node of G2 for each i ∈ [n2]24, and take the union of
the rest parts of the graphs.

Theorem 4. Fix L = 2�, W = 2w ≥ L, and set K := W/L. Let Hfix be any βfix-
small-block labeling functions. For any δ ∈ N, the labeling functions Hδ,w con-
structed in Sect. 4.1 is βδ,w-pebbling-reducible w.r.t. (first-predecessor-distinct25)
depth-robust graphs (with single source/sink) where

βδ,w(ε, log |V|) ≥ δK3

8
· βfix(ε, log |V|).

Here ε ∈ (0, 1] and |V| is the number of vertices in the graph.

Remark 6 (Generalization). For the wide-block labeling functions constructed
in Sect. 4.1, we make use of a specific graph G

δ,K
ssdr that is source-to-sink depth

robust. We emphasize, however, that any source-to-sink depth robust graphs
suffice. In particular, by replacing G

δ,K
ssdr with any 2-indegree DAG G

∗ where i)
G

∗ has K source/sink nodes and ii) G∗ is (e∗, d∗)-source-to-sink depth robust, the
corresponding wide-block labeling functions is still β-pebbling-reducible, where

β(ε, log |V|) ≥ e∗ · d∗ · βfix(ε, log |V|).
We leave finding new source-to-sink depth-robust graphs as an interesting direc-
tion for future work.

Remark 7. Note that in Theorem 4, the pebbling reducibility only holds for
depth-robust graphs. It is hard to directly link CMC and cc(G). More discussions
can be found at Remark 2.

Proof (of Theorem 4). Let G = (V,E) be any (first-predecessor-distinct) (e, d)-
depth-robust DAG with δ-indegree and single source/sink, let FG,Hδ,w

be the
graph functions built upon G and Hδ,w. It is sufficient to show that for every
ε ∈ (0, 1],

CMCε(FG,Hδ,w
) ≥ βfix(ε, log |V|) · δK3

8
· e · (d − 1).

By opening the underlying graph structure of Hδ,w, we see that FG,Hδ,w
is

also a graph function built upon functions Hfix and an extension graph Extδ,K(G)
that has the following properties.

– Nodes Expansion: Every node v ∈ V in the original graph G = (V,E) is
expanded into K nodes, that is,

copy(v) :=
(
v(1), . . . , v(K)

)
.

24 We assume an implicit order for nodes in G1 and G2.
25 See Remark 3 for definition of first-predecessor-distinctness.
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– Neighborhood Connection: For every non-source node v ∈ V − src(G),
denote as pred(v) := (u1, . . . , uγ) the predecessors of v in G. In Extδ,K(G),
there is a subgraph G

γ,K
mix (v) ◦ G

δ,K
ssdr (v) that connects

neighbor(v) := {copy(u1), . . . , copy(uγ)}

to the set copy(v), where neighbor(v) (and copy(v)) are the source nodes (and
the sink nodes) of G

γ,K
mix (v) ◦ G

δ,K
ssdr (v), respectively. Note G

γ,K
mix (v) ◦ G

δ,K
ssdr (v)

has the identical graph structure with the composition of Gγ,K
mix and G

δ,K
ssdr .

By first-predecessor-distinctness of G and by the graph structure of the MIX
graph, it holds that Extδ,K(G) is a predecessors-distinct graph with 2-indegree.
Next, we will show that the extension graph Extδ,K(G) is (e, (d−1) · δK)-depth-
robust for K ∈ {1, 2} and (eK/4, (d − 1) · δK2/2)-depth-robust for K ≥ 4. By
Lemma 1, for any K = 2k ≥ 1, we have

cc(Extδ,K(G)) ≥ δK3

8
· e · (d − 1).

Thus by βfix-pebbling reducibility of Hfix
26, we obtain Theorem 4.

Before proving the depth-robustness of the extension graph, we introduce a
useful notation called meta-node [3]. Intuitively, meta-node maps each vertex of
the original graph G to a set of vertices in Extδ,K(G).

Meta-Node: We define meta-node nodes(v) for every node v ∈ V: For every
non-source node v ∈ V − src(G), we define nodes(v) as the set of vertices in the
graph G

γ,K
mix (v) ◦ G

δ,K
ssdr (v) − neighbor(v); for every source node v ∈ src(G), we

define nodes(v) := copy(v). Note that for any u, v ∈ V such that u �= v, the sets
nodes(u) and nodes(v) are disjoint.

Depth-robustness of the Extension Graph: Next we show the depth
robustness of the extension graph. We first consider the simpler case where
K ∈ {1, 2}. (In the following context, for a graph G = (V,E), we sometimes
think G = V ∪ E as the union of set V and E if there is no ambiguity.)

Lemma 6. For any K = 2k ∈ {1, 2} and (e, d)-depth robust DAG G = (V,E)
that has maximal indegree δ ∈ N, the corresponding extension graph Extδ,K(G)
is (e, (d − 1) · δK)-depth-robust.

Proof. The proof is deferred to full version. ��
Next, we consider the more general case where K ≥ 4.

Lemma 7. For any K = 2k ≥ 4 and any (e, d)-depth robust DAG G = (V,E)
with maximal indegree δ ∈ N, the corresponding extension graph Extδ,K(G) is
(K
4 · e, δK2

2 · (d − 1))-depth-robust.

26 Note that βfix-pebbling reducibility holds for multi-sources graphs.
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Proof. For any nodes subset Sext ⊆ Extδ,K(G) such that |Sext| ≤ K
4 · e, we show

that depth(Extδ,K(G) − Sext) ≥ δK2

2 · (d − 1), which finishes the proof.

Step 1: From Sext, we first derive a set of nodes S ⊆ V in the graph G, and find
a long path in G − S.

Claim 3. Define a set

S :=
{

v ∈ V : |nodes(v) ∩ Sext| ≥ K

4

}

,

there exists a d-path27 P = (v1, . . . , vd) in the graph G − S.

Proof. The proof is deferred to full version. ��
Step 2: Given the path P = (v1, . . . , vd) ⊆ G − S, next in Lemma 8 we show
that for every i ∈ [d − 1], there exists a long path from copy(vi) to copy(vi+1) in
the graph Extδ,K(G)−Sext, then by connecting the d−1 paths, we obtain a path
with length at least δK2

2 · (d − 1), hence finish the proof of Lemma 7. Note that
the path extraction from copy(vi) to copy(vi+1) consists of two steps: First we
exploit the structure of SSDR graphs and obtain a long path ending at a node
in copy(vi+1), then we exploit the structure of MIX graphs and connect copy(vi)
to the source node of the obtained path.

Lemma 8. Given the path P = (v1, . . . , vd) ⊆ G − S (obtained in Claim 3)
and the graph Extδ,K(G)−Sext, there exists a nodes sequence (u1, . . . , ud) (where
ui ∈ copy(vi) − Sext for every i ∈ [d]), such that for every i ∈ [d − 1], there is a
path (with length at least δK2

2 ) that connects ui and ui+1 in Extδ,K(G) − Sext.

Proof. We first show that there exists a path (with length at least δK2

2 ) from
some node u1 ∈ copy(v1)−Sext to some node u2 ∈ copy(v2)−Sext. (The arguments
for u2, . . . , ud will be similar.) The idea consists of two steps: First, we find a
long source-to-sink path in G

δ,K
ssdr (v2); second, we connect u1 to the starting node

of the source-to-sink path. We stress that the path we obtain has no intersection
with Sext.

Finding the Source-to-Sink Path: We first define a set Sssdr and find a
source-to-sink path in G

δ,K
ssdr (v2) − Sssdr.

Claim 4. Define row ⊆ [K] as the set of row indices where j is in row if and
only if the jth row of Gγ,K

mix (v2) − neighbor(v2) has intersection with Sext. Define
a set

Sssdr := {〈0, j〉ssdr}j∈row ∪ (Sext ∩ G
δ,K
ssdr (v2)),

where 〈0, j〉ssdr is the source node of Gδ,K
ssdr (v2) at row j. The graph G

δ,K
ssdr (v2)−Sssdr

has a source-to-sink path of Gδ,K
ssdr (v2) with length at least δK2

2 .

27 A d-path is a path with d vertices.
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Proof. The proof is deferred to full version. ��
Paths Connection: Next, we show how to connect copy(v1)−Sext to the start-
ing node of the source-to-sink path. Here we exploit the structure of MIX graphs.

Claim 5. Denote as u1 an arbitrary node in the non-empty set28 copy(v1)−Sext

and Pssdr(v2) the source-to-sink path obtained in Claim 4. The graph G
γ,K
mix (v2)−

Sext has a path from u1 to the starting node of Pssdr(v2).

Proof. The proof is deferred to full version. ��
Finally, using identical arguments, we can show that for every i ∈ {2, . . . , d−

1}, there exists a path (with length at least δK2

2 ) from the node ui ∈ copy(vi) −
Sext to some node ui+1 ∈ copy(vi+1) − Sext. Hence we finish the proof of
Lemma 8. ��

From Lemma 8, we obtain Lemma 7. ��
From Lemmas 6 and 7, we obtain Theorem 4. ��

4.3 iMHFs from Wide-Block Labeling Functions

In this section, from a relatively small depth-robust graph, we construct a graph-
based iMHF with strong memory hardness based on the wide-block labeling
functions built in Sect. 4.1.

Theorem 5. Fix L = 2�, W = 2w and set K := W/L. Let Hδ,w be the wide-
block labeling functions built in Sect. 4.1. For any (first-predecessor-distinct29)
(e, d)-depth-robust DAG G = (V,E)30 with δ-indegree and N = 2n vertices, the
graph-based iMHFs family FG,Hδ,w

is (C‖
F ,ΔF , 2δNK2)-memory hard, where for

sufficiently large ε ≤ 1, it holds that

C
‖
F (ε) ≥ Ω(ε · e · d · δ · K2 · W ), ΔF (ε) ≤ O

(
st(G, N)

e · d

)

.

The graph G in [3] is (Ω(N/logN), Ω(N))-depth-robust and satisfies
st(G, N) = O(N2/logN), thus we obtain the following corollary.

Corollary 2. Fix L = 2�, W = 2w and set K := W/L. Let H2,w be the labeling
functions built in Sect. 4.1 and G = (V,E) be the 2-indegree DAG in [3] (with
N = 2n vertices). The graph labeling functions FG,H2,w

is (C‖
F ,ΔF , O(NK2))-

memory hard, where for sufficiently large ε ≤ 1, it holds that

C
‖
F (ε) ≥ Ω

(
ε · N2 · K2 · W

log N

)

, ΔF (ε) ≤ O(1).

Proof (of Theorem 5). The proof is deferred to full version. ��
28 Note that copy(v1)−Sext is non-empty because |copy(v1)∩Sext| ≤ |nodes(v1)∩Sext| <

K
4

< K = |copy(v1)| . The first inequality holds as copy(v1) ⊆ nodes(v1), the second
inequality holds because v1 /∈ S.

29 See Remark 3 for definition of first-predecessor-distinctness.
30

G has single source/sink.
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5 Instantiations and Open Problems

We defer instantiations and discussions of future work in full version.

Acknowledgments. The authors were partially supported by NSF grants CNS-
1553758 (CAREER), CNS-1719146, CNS-1528178, and IIS-1528041, and by a Sloan
Research Fellowship.

A Compression Arguments

Lemma 9 ([16]). Fix an algorithm A, let B be a sequence of random bits. A on
input a hint h ∈ H adaptively queries specific bits of B and outputs p indices
of B that were not queried before, along with guesses for each of the bits. The
probability (over the choice of B and randomness of A) that there exists an h ∈ H
where A(h) guesses all bits correctly is at most |H|/2p.

Lemma 10. Fix L ∈ N and an algorithm A that can make no more than q =
2L−2 oracle queries. Let ic be an ideal cipher uniformly chosen from the set IC
with domain K×{0, 1}L and image {0, 1}L.31 A on input a hint h ∈ H adaptively
makes forward/inverse queries to ic, and outputs p ≤ 2L−2 ideal primitive entries
(as well as guesses for each of the entry values) that were not queried before. The
probability (over the choice of ic and randomness of A) that there exists an h ∈ H
where A(h) guesses all permutation entries correctly is at most |H|/2p(L−1).

Proof. The proof is deferred to full version. ��

References

1. Alwen, J., Blocki, J.: Efficiently computing data-independent memory-hard func-
tions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol.
9815, pp. 241–271. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 9

2. Alwen, J., Blocki, J., Harsha, B.: Practical graphs for optimal side-channel resistant
memory-hard functions. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D.
(eds.), ACM CCS 17, pp. 1001–1017. ACM Press, October/November 2017

3. Alwen, J., Blocki, J., Pietrzak, K.: Depth-robust graphs and their cumulative mem-
ory complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III.
LNCS, vol. 10212, pp. 3–32. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-56617-7 1

4. Alwen, J., Blocki, J., Pietrzak, K.: Sustained space complexity. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 99–130.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 4

5. Alwen, J., Chen, B., Kamath, C., Kolmogorov, V., Pietrzak, K., Tessaro, S.: On the
complexity of scrypt and proofs of space in the parallel random oracle model. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp.
358–387. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 13

31 A random permutation can be viewed as an ideal cipher with a fixed key.

https://doi.org/10.1007/978-3-662-53008-5_9
https://doi.org/10.1007/978-3-662-53008-5_9
https://doi.org/10.1007/978-3-319-56617-7_1
https://doi.org/10.1007/978-3-319-56617-7_1
https://doi.org/10.1007/978-3-319-78375-8_4
https://doi.org/10.1007/978-3-662-49896-5_13
https://doi.org/10.1007/978-3-662-49896-5_13


572 B. Chen and S. Tessaro

6. Alwen, J., Chen, B., Pietrzak, K., Reyzin, L., Tessaro, S.: Scrypt is maximally
memory-hard. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III.
LNCS, vol. 10212, pp. 33–62. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-56617-7 2

7. Alwen, J., Serbinenko, V.: High parallel complexity graphs and memory-hard func-
tions. In: Servedio, R.A. Rubinfeld, R. (eds.), 47th ACM STOC, pp. 595–603. ACM
Press, June 2015

8. Alwen, J., Tackmann, B.: Moderately hard functions: definition, instantiations, and
applications. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp.
493–526. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 17

9. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Ashby, V. (ed.), ACM CCS 93, pp. 62–73. ACM Press,
November 1993

10. Biryukov, A., Dinu, D., Khovratovich, D.: Argon2 password hash. Version 1.3
(2016). https://www.cryptolux.org/images/0/0d/Argon2.pdf

11. Blocki, J., Harsha, B., Kang, S., Lee, S., Xing, L., Zhou, S.: Data-independent
memory hard functions: new attacks and stronger constructions. Cryptology ePrint
Archive, Report 2018/944 (2018). http://eprint.iacr.org/2018/944

12. Blocki, J., Zhou, S.: On the depth-robustness and cumulative pebbling cost of
Argon2i. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp.
445–465. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 15

13. Boneh, D., Corrigan-Gibbs, H., Schechter, S.: Balloon hashing: a memory-hard
function providing provable protection against sequential attacks. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 220–248.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 8

14. Dryja, T., Liu, Q.C., Park, S.: Static-memory-hard functions, and modeling the
cost of space vs. time. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part
I. LNCS, vol. 11239, pp. 33–66. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03807-6 2

15. Dwork, C., Naor, M., Wee, H.: Pebbling and proofs of work. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 37–54. Springer, Heidelberg (2005). https://
doi.org/10.1007/11535218 3

16. Dziembowski, S., Kazana, T., Wichs, D.: One-time computable self-erasing func-
tions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 125–143. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-19571-6 9

17. Forler, C., Lucks, S., Wenzel, J.: Catena: a memory-consuming password scrambler.
IACR Cryptology ePrint Archive 2013/525 (2013)

18. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1 2

19. Percival, C.: Stronger key derivation via sequential memory-hard functions. In:
BSDCan 2009 (2009)

20. Percival, C., Josefsson, S.: The scrypt password-based key derivation function
(2012)

21. Ren, L., Devadas, S.: Bandwidth hard functions for ASIC resistance. In: Kalai,
Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 466–492. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 16

22. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 27

https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/978-3-319-70500-2_17
https://www.cryptolux.org/images/0/0d/Argon2.pdf
http://eprint.iacr.org/2018/944
https://doi.org/10.1007/978-3-319-70500-2_15
https://doi.org/10.1007/978-3-662-53887-6_8
https://doi.org/10.1007/978-3-030-03807-6_2
https://doi.org/10.1007/978-3-030-03807-6_2
https://doi.org/10.1007/11535218_3
https://doi.org/10.1007/11535218_3
https://doi.org/10.1007/978-3-642-19571-6_9
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-319-70500-2_16
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-642-20465-4_27


Data-Independent Memory Hard
Functions: New Attacks and Stronger

Constructions

Jeremiah Blocki1(B), Ben Harsha1, Siteng Kang2,
Seunghoon Lee1, Lu Xing1, and Samson Zhou3

1 Purdue University, West Lafayette, USA
jblocki@purdue.edu

2 Penn State University, State College, USA
3 Indiana University, Bloomington, USA

Abstract. Memory-hard functions (MHFs) are a key cryptographic
primitive underlying the design of moderately expensive password hash-
ing algorithms and egalitarian proofs of work. Over the past few years
several increasingly stringent goals for an MHF have been proposed
including the requirement that the MHF have high sequential space-time
(ST) complexity, parallel space-time complexity, amortized area-time
(aAT) complexity and sustained space complexity. Data-Independent
Memory Hard Functions (iMHFs) are of special interest in the con-
text of password hashing as they naturally resist side-channel attacks.
iMHFs can be specified using a directed acyclic graph (DAG) G with
N = 2n nodes and low indegree and the complexity of the iMHF can
be analyzed using a pebbling game. Recently, Alwen et al. [ABH17]
constructed a DAG called DRSample that has aAT complexity at least
Ω

(
N2/logN

)
. Asymptotically DRSample outperformed all prior iMHF

constructions including Argon2i, winner of the password hashing com-
petition (aAT cost O(

N1.767
)
), though the constants in these bounds

are poorly understood. We show that the greedy pebbling strategy of
Boneh et al. [BCS16] is particularly effective against DRSample e.g.,
the aAT cost is O(N2/logN). In fact, our empirical analysis reverses
the prior conclusion of Alwen et al. that DRSample provides stronger
resistance to known pebbling attacks for practical values of N ≤ 224.
We construct a new iMHF candidate (DRSample+BRG) by using the
bit-reversal graph to extend DRSample. We then prove that the con-
struction is asymptotically optimal under every MHF criteria, and we
empirically demonstrate that our iMHF provides the best resistance to
known pebbling attacks. For example, we show that any parallel peb-
bling attack either has aAT cost ω(N2) or requires at least Ω(N) steps
with Ω(N/logN) pebbles on the DAG. This makes our construction the
first practical iMHF with a strong sustained space-complexity guarantee
and immediately implies that any parallel pebbling has aAT complexity
Ω(N2/logN). We also prove that any sequential pebbling (including the
greedy pebbling attack) has aAT cost Ω

(
N2

)
and, if a plausible conjec-

ture holds, any parallel pebbling has aAT cost Ω(N2 log log N/logN)—
the best possible bound for an iMHF. We implement our new iMHF and
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demonstrate that it is just as fast as Argon2. Along the way we propose
a simple modification to the Argon2 round function that increases an
attacker’s aAT cost by nearly an order of magnitude without increasing
running time on a CPU. Finally, we give a pebbling reduction that proves
that in the parallel random oracle model (PROM) the cost of evaluat-
ing an iMHF like Argon2i or DRSample+BRG is given by the pebbling
cost of the underlying DAG. Prior pebbling reductions assumed that the
iMHF round function concatenates input labels before hashing and did
not apply to practical iMHFs such as Argon2i, DRSample or DRSam-
ple+BRG where input labels are instead XORed together.

1 Introduction

Memory Hard Functions (MHFs) are a key cryptographic primitive in the design
of password hashing, algorithms and egalitarian proof of work puzzles [Lee11].
In the context of password hashing we want to ensure that the function can be
computed reasonably quickly on standard hardware, but that it is prohibitively
expensive to evaluate the function millions or billions of times. The first property
ensures that legitimate users can authenticate reasonably quickly, while the pur-
pose of the latter goal is to protect low-entropy secrets (e.g., passwords, PINs,
biometrics) against brute-force offline guessing attacks. One of the challenges
is that the attacker might attempt to reduce computation costs by employ-
ing customized hardware such as a Field Programmable Gate Array (FPGA)
or an Application Specific Integrated Circuit (ASIC). MHFs were of particular
interest in the 2015 Password Hashing Competition [PHC16], where the win-
ner, Argon2 [BDK16], and all but one finalists [FLW14,SAA+15,Pes14] claimed
some form of memory hardness.

Wiener [Wie04] defined the full cost of an algorithm’s execution to be the
number of hardware components multiplied by the duration of their usage e.g.,
if the algorithm needs to allocate Ω(N) blocks of memory for Ω(N) time steps
then full evaluation costs would scale quadratically. At an intuitive level, a strong
MHF f(·) should have the property that the full cost [Wie04] of evaluation
grows as fast as possible in the running time parameter N . Towards this end,
a number of increasingly stringent security criteria have been proposed for a
MHF including sequential space-time complexity, parallel space-time complex-
ity, amortized area-time complexity (aAT) and sustained space-complexity. The
sequential (resp. parallel) space-time complexity of a function f(·) measures the
space-time cost of the best sequential (resp. parallel) algorithm evaluating f(·)
i.e., if a computation runs in time t and requires space s then the space-time
cost is given by the product st. The requirement that a hash function has high
space-time complexity rules out traditional hash iteration based key-derivation
functions like PBKDF2 and bcrypt as both of these functions be computed in
linear time O(N) and constant space O(1). Blocki et al. [BHZ18] recently pre-
sented an economic argument that algorithms with low space-time complexity
such as bcrypt and PBKDF2 are no longer suitable to protect low-entropy secrets
like passwords i.e., one cannot provide meaningful protection against a rational
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attacker with customized hardware (FPGA, ASIC) without introducing an unac-
ceptably long authentication delay. By contrast, they argued that MHFs with
true cost Ω(N2) can ensure that a rational attacker will quickly give up since
marginal guessing costs are substantially higher.

The Catena-Bit Reversal MHF [FLW14] has provably optimal sequential
space-time complexity Ω(N2)—the space-time complexity of any sequential algo-
rithm running in time N is at most O(N2) since at most N blocks of memory
can be allocated in time N . However, Alwen and Serbinenko [AS15] showed that
the parallel space-time complexity of this MHF is just O(N1.5). Even parallel
space-time complexity has limitations in that it does not amortize nicely. The
stronger notion of Amortized Area-Time (aAT) complexity (and the asymp-
totically equivalent notion of cumulative memory complexity (cmc)) measures
the amortized cost of any parallel algorithm evaluating the function f(·) on m
distinct inputs. Alwen and Serbinenko [AS15] gave a theoretical example of a
function f(·) with the property that the amortized space-time cost of evaluat-
ing the function on m =

√
N distinct inputs is approximately m times cheaper

than the parallel space-time cost i.e., evaluating the function on the last m − 1
inputs is essentially free. This is problematic in the context of password hashing
where the attacker wants to compute the function f(·) multiple times i.e., on
each password in a cracking dictionary. The amortization issue is not merely
theoretical. Indeed, the aAT complexity of many MHF candidates is signifi-
cantly lower than O(N2) e.g., the aAT complexity of Balloon Hash [BCS16]
is just O(N5/3) [AB16,ABP17] and for password hashing competition winner
Argon2i [BDK16] the aAT cost is at most O(N1.767) [AB16,AB17,ABP17,BZ17].

The scrypt MHF, introduced by Percival in 2009 [Per09], was proven to have
cmc/aAT complexity Ω

(
N2

)
in the random oracle model [ACP+17]. However,

it is possible for an scrypt attacker to achieve any space-time trade-off subject to
the constraint that st = Ω(N2) without penalty e.g., an attacker could evaluate
scrypt in time t = Ω(N2) with space s = O(1). Alwen et al. [ABP18] argued
that this flexibility potentially makes it easier to develop ASICs for scrypt, and
proposed the even stricter MHF requirement of sustained space complexity, which
demands that any (parallel) algorithm evaluating the function f(·) requires at
least t time steps in which the space usage is ≥s—this implies that aAT ≥ st.
Alwen et al. [ABP18] provided a theoretical construction of a MHF with maximal
sustained space complexity i.e., evaluation requires space s = Ω(N/logN) for
time t = Ω(N). However, there are no practical constructions of MHFs that
provide strong guarantees with respect to sustained space complexity.

Data-Independent vs Data-Dependent Memory Hard Functions. Mem-
ory Hard Functions can be divided into two categories: Data-Independent
Memory Hard Functions (iMHFs) and Data-Dependent Memory Hard Func-
tions (dMHFs). Examples of dMHFs include scrypt [Per09], Argon2d [BDK16]
and Boyen’s halting puzzles [Boy07]. Examples of iMHFs include Password
Hashing Competition (PHC) [PHC16] winner Argon2i [BDK16], Balloon Hash-
ing [BCS16] and DRSample [ABH17]. In this work we primarily focus on the
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design and analysis of secure iMHFs. iMHFs are designed to resist certain side-
channel attacks e.g., cache timing [Ber05] by requiring that the induced memory
access pattern does not depend on the (sensitive) input e.g., the user’s password.
By contrast, the induced memory access for a dMHFs is allowed to depend on
the function input.

Alwen and Blocki [AB16] proved that any iMHF has aAT complexity at most
O(N2 log log N/logN), while the dMHF scrypt provably has aAT complexity
Ω(N2) in the random oracle model—a result which cannot be matched by any
iMHF. However, the aAT complexity of a dMHF may be greatly reduced after a
side-channel attack. If a brute-force attacker is trying to find x ≤ m s.t. f(x) = y
and the attacker also has learned the correct memory access pattern induced by
the real input x∗ (e.g., via a side-channel attack) then the attacker can quit
evaluation f(x) immediately once it is clear that the induced memory access
pattern on input x �= x∗ is different. For example, the aAT complexity of scrypt
(resp. [Boy07]) after a side-channel attack is just O(N) (resp. O(1)).

Hybrid Modes. Alwen and Blocki [AB16,AB17] showed that the aAT com-
plexity of most iMHFs was significantly lower than one would hope, but their
techniques do not extend to MHFs. In response, the Argon2 spec [KDBJ17]
was updated to list Argon2id as the recommended mode of operation for pass-
word hashing instead of the purely data-independent mode Argon2i. Hybrid
independent-dependent (id) modes, such as Argon2id [KDBJ17], balance side-
channel resistance with high aAT complexity by running the MHF in data-
independent mode for N/2 steps before switching to data-dependent mode for
the final N/2 steps. If there is a side-channel attack then security reduces to
that of the underlying iMHF (e.g., Argon2i), and if there is no side-channel
attack then the function is expected to have optimal aAT complexity Ω(N2).
We remark that, even for a hybrid mode, it is important to ensure that the
underlying iMHF is as strong as possible a side-channel attack on a hybrid “id”
mode of operation will reduce security to that of the underlying iMHF.

1.1 Related Work

MHF Goals. Dwork et al. and Abadi et al. [DGN03,ABMW05] introduced
the notion of a memory-bound function where we require that any evaluation
algorithm results in a large number of cache-misses. Ren and Devadas recently
introduced a refinement to this notion called bandwidth-hardness [RD17]. To
the best of our knowledge Percival was the first to propose the goal that a
MHF should have high space-time complexity [Per09] though Boyen’s dMHF
construction appears to achieve this goal [Boy07] and the notion of space-
time complexity is closely related to the notion of “full cost” proposed by
Wiener [Wie04]. Metrics like space-time complexity and Amortized Area-Time
Complexity [AS15,ABH17] aim to capture the cost of the hardware (e.g., DRAM
chips) the attacker must purchase to compute an MHF—amortized by the num-
ber of MHF instances computed over the lifetime of the hardware components.
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By contrast, bandwidth hardness [RD17] aims to capture the energy cost of the
electricity required to compute the MHF once. If the attacker uses an ASIC to
compute the function then the energy expended during computation will typ-
ically be small in comparison with the energy expended during a cache-miss.
Thus, a bandwidth hard function aims to ensure that any evaluation strategy
either results in Ω(N) cache-misses or ω(N) evaluations of the hash function.

In the full version [BHK+18] we argue that, in the context of password hash-
ing, aAT complexity is more relevant than bandwidth hardness because the “full
cost” [Wie04] can scale quadratically in the running time parameter N . However,
one would ideally want to design a MHF that has high aAT complexity and is
also maximally bandwidth hard. Blocki et al. [BRZ18] recently showed that any
MHF with high aAT complexity is at least somewhat bandwidth hard. Further-
more, all practical iMHFs (including Catena-Bit Reversal [FLW14], Argon2i and
DRSample) are maximally bandwidth hard [RD17,BRZ18], including our new
construction DRS+BRG.

Graph Pebbling and iMHFs. An iMHF fG,H can be viewed as a mode
of operation over a directed acyclic graph (DAG) G = (V = [N ], E) that
encodes data-dependencies (because the DAG is static the memory access pat-
tern will be identical for all inputs) and a compression function H(·). Alwen
and Serbinenko [AS15] defined fG,H(x) = labG,H,x(N) to be the label of
the last node in the graph G on input x. Here, the label of the first node
labG,H,x(1) = H(1, x) is computed using the input x and for each internal node
v with parents(v) = v1, . . . , vδ we have

labG,H,x(v) = H(v, labG,H,x(v1), . . . , labG,H,x(vδ)).

In practice, one requires that the maximum indegree is constant δ = O(1) so
that the function fG,H can be evaluated in sequential time O(N). Alwen and
Serbinenko [AS15] proved that the cmc complexity (asymptotically equivalent
to aAT complexity) of the function fG,H can be fully described in terms of the
black pebbling game—defined later in Sect. 2.2. The result is significant in that it
reduces the complex task of building an iMHF with high aAT complexity to the
(potentially easier) task of constructing a DAG with maximum pebbling cost.
In particular, Alwen and Serbinenko showed that any algorithm evaluating the
function fG,H in the parallel random oracle model must have cumulative memory

cost at least Ω
(
w × Π

‖
cc(G)

)
, where Π

‖
cc(G) is the cumulative pebbling cost of

G (defined in Sect. 2.2), H : {0, 1}∗ → {0, 1}w is modeled as a random oracle and
w = |H(z)| is the number of output bits in a single hash value. Similar, pebbling
reductions have been given for bandwidth hardness [BRZ18] and sustained space
complexity [ABP18] using the same labeling rule.

While these pebbling reductions are useful in theory, practical iMHF imple-
mentations do not use the labeling rule proposed in [AS15]. In particular,
Argon2i, DRSample and our own iMHF implementation (DRSample+BRG) all
use the following labeling rule

labG,H,x(v) = H(labG,H,x(v1) ⊕ . . . ⊕ labG,H,x(vδ)),
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where v1, . . . , vδ = parents(v) and the DAGs have indegree δ = 2. The XOR label-
ing rule allows one to work with a faster round function H : {0, 1}w → {0, 1}w

e.g., Argon2i builds H : {0, 1}8192 → {0, 1}8192 using the Blake2b permutation
function and DRSample(+BRG) uses the same labeling rule as Argon2i. When
we define fG,H using the above, the pebbling reduction of [AS15] no longer
applies. Thus, while we know that the pebbling cost of DRSample (resp. Argon2i)
is Ω(N2/logN) [ABH17] (resp. Ω̃(N1.75) [BZ17]), technically it had never been
proven that DRSample (resp. Argon2i) has aAT complexity Ω(wN2/logN) (resp.
Ω̃(wN1.75) in the parallel random oracle model.

Argon2i and DRSample. Arguably, two of the most significant iMHFs can-
didates are Argon2i [BDK16] and DRSample [ABH17]. Argon2i was the winner
of the recently completed password hashing competition [PHC16] and DRSam-
ple [ABH17] was the first practical construction of an iMHF with aAT com-
plexity proven to be at least Ω(N2/logN) in the random oracle model. In an
asymptotic sense this upper bound almost matches the general upper bound
O(N2 log log N/logN) on the aAT cost of any iMHF established by Alwen and
Blocki [AB16]. A recent line of research [AB16,AB17,ABP17,BZ17] has devel-
oped theoretical depth-reducing attacks on Argon2i showing that the iMHF has
aAT complexity at most O(N1.767)1. The DRSample [ABH17] iMHF modifies
the edge distribution of the Argon2i graph to ensure that the underlying directed
acyclic graph (DAG) satisfies a combinatorial property called depth-robustness,
which is known to be necessary [AB16] and sufficient [ABP17] for developing an
MHF with high aAT complexity.

While the aAT complexity of DRSample is at least c1N
2/logN for some

constant c1, the constant c in this lower bound is poorly understood—Alwen et
al. [ABH17] only proved the lower bound when c1 ≈ 7×10−6. Similarly, Argon2i
has aAT complexity at least c2N

1.75/logN [BZ17] though the constants from
this lower bound are also poorly understood2. On the negative side the asymp-
totic lower bounds do not absolutely rule out the possibility of an attack that
reduces aAT complexity by several orders of magnitude. Alwen et al. [ABH17]
also presented an empirical analysis of the aAT cost of DRSample and Argon2i
by measuring the aAT cost of these functions against a wide battery of pebbling
attacks [AB16,ABP17,AB17]. The results of this empirical analysis were quite
positive for DRSample and indicated that DRSample was not only stronger in an
asymptotic sense, but that it also provided greater resistance to other pebbling
attacks than other iMHF candidates like Argon2i in practice.

Boneh et al. [BCS16] previously presented a greedy pebbling attack that
reduced the pebbling cost of Argon2i by a moderate constant factor of 4 to 5. The
greedy pebbling attack does not appear to have been included in the empirical
analysis of Alwen et al. [ABH17]. In a strict asymptotic sense the depth-reducing

1 This latest attack almost matches the lower bound of Ω̃
(
N1.75

)
on the aAT com-

plexity of Argon2i.
2 Blocki and Zhou did not explicitly work out the constants in their lower bound, but

it appears that c2 ≈ 5 × 10−7 [ABH17].
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attacks of Alwen and Blocki [AB16,AB17] achieved more substantial Ω(N0.2+)-
factor reductions in pebbling cost, which may help to explain the omission of the
greedy algorithm in [ABH17]. Nevertheless, it is worth noting that the greedy
pebbling strategy is a simple sequential pebbling strategy that would be easy to
implement in practice. By contrast, there has been debate about the practical
feasibility of implementing the more complicated pebbling attacks of Alwen and
Blocki [AB16] (Alwen and Blocki [AB17] argued that the attacks do not require
unrealistic parallelism or memory bandwidth, but to the best of our knowledge
the attacks have yet to be implemented on an ASIC).

1.2 Contributions

Stronger Attacks. We present a theoretical and empirical analysis of the
greedy pebbling attack [BCS16] finding that DRSample has aAT complexity
at most �N2/logN . The greedy pebbling attack that achieves this bound is
sequential, easy to implement and achieves high attack quality even for practical
values of N . In fact, for practical values of N ≤ 224 we show that DRSample is
more vulnerable to known pebbling attacks than Argon2i, which reverses previ-
ous conclusions about the practical security of Argon2i and DRSample [ABH17].
We next consider a defense proposed by Biryukov et al. [BDK16] against the
greedy pebbling attack, which we call the XOR-extension gadget. While this
defense defeats the original greedy pebbling attack [BCS16], we found a simple
generalization of the greedy pebbling attack that thwarts this defense. We also
use the greedy pebbling attack to prove that any DAG with indegree two has a
sequential pebbling with aAT cost �N2

4 .
We also develop a novel greedy algorithm for constructing depth-reducing

sets, which is the critical first step in the parallel pebbling attacks of Alwen and
Blocki [AB16,AB17]. Empirical analysis demonstrates that this greedy algorithm
constructs significantly smaller depth-reducing sets than previous state of the art
techniques [AB16,AB17,ABH17], which leads to higher quality attacks [AB16]
and leaving us in an uncomfortable situation where there high quality pebbling
attacks against all iMHF candidates e.g., DRSample is susceptible to the greedy
pebbling attack while Argon2i is susceptible to depth-reducing attacks [AB16,
AB17,ABH17].

New iMHF Candidate with Optimal Security. We next develop a new
iMHF candidate DRSample+BRG by overlaying a bit-reversal graph [LT82,
FLW14] on top of DRSample, and analyze the new DAG empirically and theoret-
ically. Interestingly, while neither DAG (DRSample or BRG) is known to have
strong sustained space complexity guarantees, we can prove that any parallel
pebbling either has maximal sustained space complexity (meaning that there
are at least Ω(N) steps with Ω(N/logN) pebbles on the DAG) or has aAT
cost at least ω(N2). This makes our construction the first practical construction
with strong guarantees on the sustained space-complexity—prior constructions
of Alwen et al. [ABP18] were theoretical. DRSample+BRG is asymptotically
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optimal with respect to all proposed MHF metrics including bandwidth hard-
ness (both BRG and DRSample are bandwidth hard [RD17,BRZ18]) and aAT
complexity (inherited from DRSample [ABH17]). We also show that our con-
struction optimally resists the greedy attack and any extensions. In particular,
we prove sequential pebbling of the bit-reversal graph has cumulative memory
cost (cmc) and aAT cost at least Ω(N2). This result generalizes a well-known
result that the bit-reversal graph has sequential space-time cost Ω(N2) and may
be of independent interest e.g., it demonstrates that Password Hashing Compe-
tition Finalist Catena-BRG [FLW14] is secure against all sequential attacks.

Our empirical analysis indicates that DRSample+BRG offers strong resis-
tance to all known attacks, including the greedy pebbling attack, depth-reducing
attacks and several other novel attacks introduced in this paper. In particular,
even for very large N = 224 (224 1 KB blocks = 16 GB) the best attack had aAT
cost over N2

11 —for comparison any DAG with indegree two has aAT cost �N2

4 .
We also show that the aAT/cmc of DRSample+BRG is at least

Ω(N2log log N/logN) under a plausible conjecture about the depth-robustness
of DRSample. As evidence for our conjecture we analyze three state-of-the-
art approaches for constructing a depth-reducing set, including the layered
attack [AB16], Valiant’s Lemma [AB16,Val77] and the reduction of Alwen et
al. [ABP17], which can transform any pebbling with low aAT cost (e.g., the
Greedy Pebbling Attack) into a depth-reducing set. We show that each attack
fails to refute our conjecture. Thus, even if the conjecture is false we would
require significant improvements to state-of-the art to refute it.

Black Pebbling Reduction for XOR Labeling Rule. While Alwen and
Serbinenko showed that any algorithm evaluating the graph labeling func-
tion fG,H in the parallel random oracle model must have cumulative mem-

ory cost at least Ω
(
w × Π

‖
cc(G)

)
, their proof made the restrictive assump-

tion that labels are computed using the concatenation rule labG,H,x(v) =
H(v, labG,H,x(v1), . . . , labG,H,x(vδ)). However, most practical iMHF implemen-
tations (e.g., Argon2i and DRSample(+BRG)) all follow the more efficient
XOR labeling rule labG,H,x(v) = H(labG,H,x(v1) ⊕ . . . ⊕ labG,H,x(vδ)) where
v1, . . . , vδ = parents(v) and the DAGs have indegree δ = O(1). The XOR label-
ing rule allows one to work with a faster round function H : {0, 1}w → {0, 1}w,
e.g., Argon2i builds H : {0, 1}8192 → {0, 1}8192, to speed up computation so that
we fill more memory.

We extend the results of Alwen and Serbinenko to show that, for suitable
DAGs, fG,H has cumulative memory cost at least Ω

(
w × Π

‖
cc(G)/δ

)
when using

the XOR labeling rule. The loss of δ is necessary as the pebbling complexity of
the complete DAG KN is Π

‖
cc(Kn) = Ω(N2), but fKN ,H has cmc/aAT cost at

most O(N) when defined using the XOR labeling rule. In practice, all of the
graphs we consider have δ = O(1) so this loss is not significant.

One challenge we face in the reduction is that it is more difficult to extract
labels from the random oracle query labG,H,x(v1) ⊕ . . . ⊕ labG,H,x(vδ) than
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from the query labG,H,x(v1), . . . , labG,H,x(vδ). Another challenge we face is that
the labeling function H ′(x, y) = H(x ⊕ y) is not even collision resistant e.g.,
H ′(y, x) = H ′(x, y). In fact, one can exploit this property to find graphs G on
N nodes where the function fG,H is a constant function: Suppose we start with
a DAG G′ = (V ′ = [N − 3], E′) on N − 3 nodes that has high pebbling cost
Π

‖
cc(G′) and define G = (V = [N ], E = E′ ∪ {(N − 3, N − 2), (N − 3, N − 1),

(N −4, N −2), (N −4, N −1), (N −2, N), (N −1, N)}) by adding directed edges
from node N − 3 and N − 4 to nodes N − 2, N − 1 and then adding directed
edges from N − 2 and N − 1 to node N . Note that for any input x we have
labG,H,x(N − 2) = H(labG,H,x(N − 3) ⊕ labG,H,x(N − 3)) = labG,H,x(N − 1). It
follows that

fG,H(x) = labG,H,x(N) = H(labG,H,x(N − 2) ⊕ labG,H,x(N − 1)) = H(0w)

is a constant function. Thus, the claim that fG,H has cumulative memory cost

at least Ω
(
w × Π

‖
cc(G)/δ

)
cannot hold for arbitrary graphs.

The above example exploited the absence of the explicit term v in labG,H,x(v)
to produce two nodes that always have the same label. However, we can prove
that if the DAG G = (V = [N ], E) contains all edges of the form (i, i + 1) for
i < N then any algorithm evaluating the function fG,H in the parallel random

oracle model must have cumulative memory cost at least Ω
(
w × Π

‖
cc(G)/δ

)
.

Furthermore, the cumulative memory cost of an algorithm computing fG,H on

m distinct inputs must be at least Ω
(
mw × Π

‖
cc(G)

)
. We stress that all of the

practical iMHFs we consider, including Argon2i and DRSample(+BRG), satisfy
this condition.

Sequential Round Function. We show how a parallel attacker could reduce
aAT costs by nearly an order of magnitude by computation of the Argon2i
round function in parallel. For example, the first step to evaluate the Argon2
round function H(X,Y ) is to divide the input R = X ⊕ Y ∈ {0, 1}8192
into 64 groups of 16-byte values R0, . . . , R63 ∈ {0, 1}128 and then compute
(Q0, Q1, . . . , Q7)←BP(R0, . . . , R7),. . ., (Q56, Q56, . . . , Q63)←BP(R56, . . . , R63).
Each call to the Blake2b permutation BP can be trivially evaluated in par-
allel, which means that the attacker can easily reduce the depth of the circuit
evaluating Argon2 by a factor of 8 without increasing the area of the circuit i.e.,
memory usage remains constant. The issue affects all Argon2 modes of opera-
tion (including data-dependent modes like Argon2d and Argon2id) and could
potentially be used in combination with other pebbling attacks [AB16,AB17]
for an even more dramatic decrease in aAT complexity. We also stress that this
gain is independent of any other optimizations that an ASIC attacker might
make to speed up computation of BP e.g., if the attacker can evaluate BP four-
times faster than the honest party then the attacker will be able to evaluate the
round function H 8 × 4 = 32-times faster than the honest party. We propose a
simple modification to the Argon2 round function by injecting a few additional
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data-dependencies to ensure that evaluation is inherently sequential. While the
modification is simple we show it increases a parallel attacker’s aAT costs by
nearly an order of magnitude. Furthermore, empirical analysis indicates that
our modifications have negligible impact on the running time on a CPU.

Implementation of Our iMHF. We develop an implementation of our
new iMHF candidate DRSample+BRG, which also uses the improved sequen-
tial Argon2 round function. The source code is available on Github at
https://github.com/antiparallel-drsbrg-argon/Antiparallel-DRS-BRG. Empiri-
cal tests indicate that the running time of DRSample+BRG is equivalent to
that of Argon2 for the honest party, while our prior analysis indicates the aAT
costs, energy costs and sustained space complexity are all higher for DRSam-
ple+BRG.

2 Preliminaries

In this section we will lay out notation and important definitions required for
the following sections.

2.1 Graph Notation and Definitions

We use G = (V,E) to denote a directed acyclic graph and we use N = 2n to
denote the number of nodes in V = {1, . . . , N}. Given a node v ∈ V , we use
parents(v) = {u : (u, v) ∈ E} to denote the immediate parents of node v in G. In
general, we use ancestorsG(v) =

⋃
i≥1 parents

i
G(v) to denote the set of all ances-

tors of v—here, parents2G(v) = parentsG(parentsG(v)) denotes the grandparents
of v and parentsi+1

G (v) = parentsG(parentsiG(v)). When G is clear from context
we will simply write parents (ancestors). We use indeg(G) = maxv |parents(v)|
to denote the maximum indegree of any node in G. All of the practical graphs
we consider will contain each of the edges (i, i + 1) for i < N . Thus, there is a
single source node 1 and a single sink node N . Most of the graphs we consider
will have indeg(G) = 2 and in this case we will use r(i) < i to denote the other
parent of node i besides i − 1. Given a subset of nodes S ⊆ V we use G − S to
refer to the graph with all nodes in S deleted and we use G[S] = G − (V \ S)
to refer to the graph obtained by deleting all nodes except S. Finally, we use
G≤k = G[{1, . . . , k}] to refer to the graph induced by the first k nodes.

Block Depth-Robustness: Block depth-robustness is a stronger variant of depth-
robustness. First, we define N(v, b) = {v − b+1, v − b+2, . . . , v} to be the set of
b contiguous nodes ending at node v. For a set of vertices S ⊆ V, we also define
N(S, b) =

⋃
v∈S N(v, b). We say that a graph is (e, d, b) block depth-robust if,

for every set S ⊆ V of size |S| ≤ e, depth(G − N(S, b)) ≥ d. When b = 1 we
simply say that the graph is (e, d) depth-robust. It is known that highly depth-
robust DAGs G have high pebbling complexity, and can be used to construct
strong iMHFs with high aAT complexity in the random oracle model [ABP17].

https://github.com/antiparallel-drsbrg-argon/Antiparallel-DRS-BRG
https://github.com/antiparallel-drsbrg-argon/Antiparallel-DRS-BRG
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In certain cases, block depth-robustness can be used to establish even stronger
lower bounds on the pebbling complexity of a graph [ABH17,BZ17]. Alwen et
al. gave an algorithm DRSample that (whp) outputs a DAG G that is (e, d, b)
block depth-robust with e = Ω(N/logN), d = Ω(N) and b = Ω(logN) [ABH17].

Graph Labeling Functions. As mentioned in the introduction, an iMHF fG,H

can be described as a mode of operation over a directed acyclic graph using a
round function H. Intuitively, the graph represents data dependencies between
the memory blocks that are generated as computation progresses and each vertex
represents a value being computed based on some dependencies. The function
fG,H(x) can typically be defined as a labeling function i.e., given a set of vertices
V = [N ] = {1, 2, 3, . . . , N}, a compression function H = {0, 1}∗ → {0, 1}m

(often modeled as a Random Oracle in security analysis), and an input x, we
“label” the nodes in V as follows. All source vertices (those with no parents)
are labeled as �v(x) = H(v, x) and all other nodes with parents v1, v2, . . . , vδ

are labeled �v(x) = Fv,H(�v1(x), �v2(x), . . . , �vδ
(x)) for a function Fv,H(·) that

depends on H(·). The output fG,H(x) is then defined to be the label(s) of the
sink node(s) in G.

In theoretical constructions (e.g., [AS15]) we often have Fv,H(�v1(x), �v2(x),
. . . , �vδ

(x)) = H(v, �v1(x), �v2(x), . . . , �vδ
(x)) while in most real world con-

structions (e.g., Argon2i [BDK16]) we have Fv,H(�v1(x), �v2(x), . . . , �vδ
(x)) =

H(�v1(x)⊕�v2(x) . . .⊕�vδ
(x)). To ensure that the function fG,H can be computed

in O(N) steps, we require that G is an N -node DAG with constant indegree δ.

2.2 iMHFs and the Parallel Black Pebbling Game

Alwen and Serbinenko [AS15] and Alwen and Tackmann [AT17] provided reduc-
tions proving that in the parallel random oracle model (PROM) the amortized
area time complexity of the function fG,H is completely captured by the (par-
allel) black pebbling game on the DAG G when we instantiate the round func-
tion as Fv,H(�v1(x), �v2(x), . . . , �vδ

(x)) = H(v, �v1(x), �v2(x), . . . , �vδ
(x)). How-

ever, practical constructions such as Argon2i use a different round function
F⊕

v,H(�v1(x), �v2(x), . . . , �vδ
(x)) = H

(⊕δ
j=1 �vj

(x)
)
. In Sect. 6 we extend prior

pebbling reductions to handle the round function F⊕
v,H , which justifies the use

of pebbling games to analyze practical constructions of iMHFs such as Argon2i
or DRSample.

Intuitively, placing a pebble on a node represents computing the correspond-
ing memory block and storing it in memory. The rules of the black pebbling
game state that we cannot place a pebble on a node v until we have pebbles
on the parents of node v i.e., we cannot compute a new memory block until
we have access to all of the memory blocks on which the computation depends.
More formally, in the black pebbling game on a directed graph G = (V,E), we
place pebbles on certain vertices of G over a series of t rounds. A valid peb-
bling P is a sequence P0, P1, . . . , Pt of sets of vertices satisfying the following
properties: (1) P0 = ∅, (2) ∀v ∈ Pi \ Pi−1 we have parents(v) ⊆ Pi−1, and (3)
∀v ∈ V,∃i s.t. v ∈ Pi.
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Intuitively, Pi denotes the subset of data-labels stored in memory at time i
and Pi\Pi−1 denotes the new data-labels that are computed during round i—
the second constraint states that we can only compute these new data-labels if
all of the necessary dependent data values were already in memory. The final
constraint says that we must eventually pebble all nodes (otherwise we would
never compute the output labels for fG,H). We say that a pebbling is sequential
if ∀i > 0 we have |Pi \ Pi−1| ≤ 1 i.e., in every round at most one new pebble is
placed on the graph. We use P‖(G) (resp. P(G)) to denote the set of all valid
parallel (resp. sequential) black pebblings of the DAG G. We define the space-
time cost of a pebbling P = (P1, . . . , Pt) ∈ P‖

G to be st(P ) = t × max1≤i≤t |Pi|
and the sequential space-time pebbling cost, denoted Πst(G) = minP∈PG

st(P ),
to be the space-time cost of the best legal pebbling of G.

There are many other pebbling games one can define on a DAG including
the red-blue pebbling game [JWK81] and the black-white pebbling game [Len81].
Red-blue pebbling games can be used to analyze the bandwidth-hardness of an
iMHF [RD17,BRZ18]. In this work, we primarily focus on the (parallel) black
pebbling game to analyze the amortized Area-Time complexity and the sustained
space complexity of a memory-hard function.

Definition 1 (Time/Space/Cumulative Pebbling Complexity). The
time, space, space-time and cumulative complexity of a pebbling P = {P0, . . . , Pt}
∈ P‖

G are defined to be:

Πt(P ) = t Πs(P ) = max
i∈[t]

|Pi| Πst(P ) = Πt(P )·Πs(P ) Πcc(P ) =
∑

i∈[t]

|Pi|.

For α ∈ {s, t, st, cc} the sequential and parallel pebbling complexities of G are
defined as

Πα(G) = min
P∈PG

Πα(P ) and Π‖
α(G) = min

P∈P‖
G

Πα(P ).

It follows from the definition that for α ∈ {s, t, st, cc} and any G, the parallel
pebbling complexity is always at most as high as the sequential, i.e., Πα(G) ≥
Π

‖
α(G), and cumulative complexity is at most as high as space-time complex-

ity, i.e., Πst(G) ≥ Πcc(G) and Π
‖
st(G) ≥ Π

‖
cc(G). Thus, we have Πst(G) ≥

Πcc(G) ≥ Π
‖
cc(G) and Πst(G) ≥ Π

‖
st(G) ≥ Π

‖
cc(G). However, the relation-

ship between Π
‖
st(G) and Πcc(G) is less clear. It is easy to provide examples of

graphs for which Πcc(G) � Π
‖
st(G) 3. Alwen and Serbinenko showed that for the

3 One such graph G would be to start with the pyramid graph
�

k, which has O(k2)
nodes, a single sink node t and append a path W of length k3 starting at this
sink node t. The pyramid graph requires Π

‖
s

(�
k

)
= Θ(k) space to pebble and has

Πcc

(�
k

) ≤ Πst

(�
k

) ≤ k3. Similarly, the path W requires at least Π
‖
t (W ) = Πt(W )

= k3 steps to pebble the path (even in parallel). Thus, Π
‖
st(G) ≥ k4. By contrast,

we have Πcc(G) ≤ Πcc

(�
k

)
+ k3 ≤ k3 + k3 � k4 since we can place a pebble on

node t with cost Πcc(
�

k), discard all other pebbles from the graph, and then walk
this pebble across the path.
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bit-reversal graph G = BRGn with O(N = 2n) nodes we have Π
‖
st(G) = O(n

√
n).

In Sect. 4.2 we show that Πcc(G) = Ω
(
N2

)
. Thus, for some DAGs we have

Πcc(G) � Π
‖
st(G).

Definition 2 (Sustained Space Complexity [ABP18]). For s ∈ N the s-
sustained-space (s-ss) complexity of a pebbling P = {P0, . . . , Pt} ∈ P‖

G is:
Πss(P, s) = |{i ∈ [t] : |Pi| ≥ s}|. More generally, the sequential and parallel
s-sustained space complexities of G are defined as

Πss(G, s) = min
P∈PG

Πss(P, s) and Π‖
ss(G, s) = min

P∈P‖
G

Πss(P, s) .

We remark that for any s we have Πcc(G) ≥ Πss(G, s) × s and Π
‖
cc(G) ≥

Π
‖
ss(G, s) × s.

2.3 Amortized Area-Time Cost (aAT)

Amortized Area-Time (aAT) cost is a way of viewing the cost to compute an
iMHF, and it is closely related to the cost of pebbling a graph. Essentially,
aAT cost represents the cost to keep pebbles in memory and adds in a factor
representing the cost to compute the pebble. Here we require an additional
factor, the core-memory ratio R, a multiplicative factor representing the ratio
between computation cost vs memory cost. In this paper we are mainly focused
on analysis of Argon2, which has previous calculations showing R = 3000 [BK15].
It can be assumed that this value is being used for R unless otherwise specified.
The formal definition of the aAT complexity of a pebbling P = (P0, . . . , PT ) of
the graph G is as follows:

aATR(P ) =
T∑

i=1

|Pi| + R
T∑

i=1

|Pi \ Pi−1|

The (sequential) aAT complexity of a graph G is defined to be the aAT
complexity of the optimal (sequential) pebbling strategy. Formally,

aATR(G) = min
P∈P(G)

aATR(G), and aAT‖
R(G) = min

P∈P‖(G)
aATR(P ).

One of the nice properties of aAT‖ and Π
‖
cc complexity is that both cost

metrics amortize nicely i.e., if Gm consists of m independent copies of the DAG
G then aAT‖

R(Gm) = m × aAT‖
R(G). We remark that aAT‖

R(G) ≥ Π
‖
cc(G),

but that in most cases we will have aAT‖
R(G) ≈ Π

‖
cc(G) since the number of

queries to the random oracle is typically o
(
Π

‖
cc(G)

)
. We will work with Π

‖
cc(G)

when conducting theoretical analysis and we will use aAT‖
R(G) when conducting

empirical experiments, as the constant factor R is important in practice. This
also makes it easier to compare our empirical results with prior work [AB17,
ABH17].
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2.4 Attack Quality

In many cases we will care about how efficient certain pebbling strategies are
compared to others. When we work with an iMHF, we have a näıve sequential
algorithm N for evaluation e.g., the algorithm described in the Argon2 specifi-
cations [BDK16]. Typically, the näıve algorithm N is relatively expensive e.g.,
aATR(N ) = N2/2 + RN . We say that an attacker A is successful at reducing
evaluation costs if aATR(A) < aATR(N ). Following [AB16] we define the quality
of the attack as

AT-quality(A) =
aATR(N )
aATR(A)

,

which describes how much more efficiently A evaluates the function compared
to N .

3 Analysis of the Greedy Pebbling Algorithm

In this section we present a theoretical and empirical analysis of the greedy
pebbling attack [BCS16] that reverses previous conclusions about the practical
security of Argon2i vs DRSample [ABH17]. We prove two main results using the
greedy algorithm. First, we show that for any N node DAG G with indegree
2 and a unique topological ordering, we have aATR(G) ≤ N2 +2N

4 + RN—
see Theorem 1. Second, we prove that for any constant η > 0 and a random
DRSample DAG G on N nodes, we have Πst(G) ≤ (1 + η)2N2/logN with high
probability—see Theorem 2. We stress that in both cases the bounds are explicit
not asymptotic, and that the pebbling attacks are simple and sequential.

Alwen and Blocki [AB16] previously had shown that any DAG G with con-
stant indegree has aAT‖

R(G) ∈ O(N2 log log N/logN), but the constants from
this bound were not well understood and did not rule out the existence of an N
node DAG G with aAT‖

R(G) ≥ N2/2 + RN for practical values of N e.g., unless
we use more than 16 GB of RAM we have N ≤ 224 for Argon2i or DRSample4.
By contrast, Theorem 1 immediately implies that aAT‖

R(G) ≤ N2 +2N
4 + RN .

Similarly, Alwen et al. [ABH17] previously showed that with high probability a
DRSample DAG G has aAT‖

R(G) ∈ Ω(N2/logN), but the constants in this lower
bound were not well understood. On a theoretical side, our analysis shows that
this bound is tight i.e., aAT‖

R(G) ∈ Θ(N2/logN). It also proves that DRSample
does not quite match the generic upper bound of Alwen and Blocki [AB16].

Extension of the Greedy Pebbling Attack. Our analysis leaves us in an uncom-
fortable position where every practical iMHF candidate has high-quality peb-
bling attacks i.e., greedy pebble for DRSample and depth-reducing attacks for
Argon2i. We would like to develop a practical iMHF candidate that provides
4 In Argon2, the block-size is 1KB so when we use N = 224 nodes the honest party

would require 16 GB (= N× KB) of RAM to evaluate the MHF. Thus, we view 224

as a reasonable upper bound on the number of blocks that would be used in practical
applications.
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strong resistance against all known pebbling attacks for all practical values of
N ≤ 224. We first consider a defense proposed by Biryukov et al. [BDK16]
against the greedy pebbling attack. While this defense provides optimal protec-
tion against the greedy pebbling attack, we introduce an extension of the greedy
pebbling attack that we call the staggered greedy pebbling attack and show that
the trick of Biryukov et al. [BDK16] fails to protect against the extended attack.

3.1 The Greedy Pebbling Algorithm

We first review the greedy pebbling algorithm. We first introduce some notation.

gc(v): For each node v < N we let gc(v) = max{w| (v, w) ∈ E} denote the
maximum child of node v—if v < N then the set {w| (v, w) ∈ E} is non-
empty as it contains the node v + 1. If node v has no children then set
gc(v) := v.

χ(i): This represents what we call the crossing set of the ith node. It is defined
as χ(i) = {v|v ≤ i ∧ gc(v) > i}. Intuitively this represents the set of nodes
v ≤ i incident to a directed edge (v, u) that “crosses over” node i i.e. u > i.

Greedy Pebbling Strategy: Set GP(G) = P = (P1, . . . , PN ) where Pi = χ(i)
for each i ≤ N . Intuitively, the pebbling strategy can be described follows: In
round i we place a pebble on node i and we then discard any pebbles on nodes v
that are no longer needed in any future round i.e., for all future nodes w > i we
have v /∈ parents(w) (equivalently, the greatest-child of node v is gc(v) ≤ i). We
refer the reader to the full version [BHK+18] for a formal algorithmic description.

We first prove the following general lower bound for any N node DAG with
indeg(G) ≤ 2 that has a unique topological ordering i.e., G contains each of
the edges (i, i + 1). In particular, Theorem1 shows that for any such DAG G

we have Πst(G) � N2

2 and Πcc(G) � N2/4. We stress that this is twice as
efficient as the naive pebbling algorithm N , which set Pi = {1, . . . , i} for each
i ≤ N and has cumulative cost Π

‖
cc(N ) = N2

2 . Previously, the gold standard
was to find constructions of DAGs G with N nodes such that Π

‖
cc(G) � N2

2
for practical values of N—asymptotic results did not rule out this possibility
even for N ≤ 240. Theorem 1 demonstrates that the best we could hope for is to
ensure Π

‖
cc(G) � N2

4 for practical values of N .

Theorem 1. Let r : N>0 → N be any function with the property that r(i) < i−1
for all i ∈ N>0. Then the DAG G = (V,E) with N nodes V = {1, . . . , N}
and edges E = {(i − 1, i) : 1 < i ≤ N} ∪ {(r(i), i) : 2 < i ≤ N} has
Πst(G) ≤ N2 +2N

2 and Πcc(G) ≤ N2 +2N
4 and aATR(G) ≤ N2 +2N

4 + RN.

The full proof of Theorem1 is in the full version [BHK+18] of this paper.
Intuitively, Theorem 1 follows from the observation that in any pebbling we have
|Pi| ≤ i, and in the greedy pebbling we also have |Pi| ≤ N − i since there can be
at most N − i nodes w such that w = r(v) for some v > i and other pebbles on
any other node would have been discarded by the greedy pebbling algorithm.
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3.2 Analysis of the Greedy Pebble Attack on DRSample

We now turn our attention to the specific case of the iMHF DRSample. A DAG G
sampled from this distribution has edges of the form (i, i+1) and (r(i), i) where
each r(i) < i is independently selected from some distribution. It is not necessary
to understand all of the details of this distribution to follow our analysis in this
section as the crucial property that we require is given in Claim 1. The proof
of Claim 1 (along with a description of DRSample [ABH17]) is found in the full
version [BHK+18] of this paper. Intuitively, Claim 1 follows because we have
Pr[r(j) = i] ∼ 1

log j × 1
|j−i| for each node i < j in DRSample.

Claim 1. Let G be a randomly sampled DRSample DAG with N nodes and
let Yi,j be an indicator random variable for the event that r(j) < i for nodes
i < j ≤ N . Then we have E[Yi,j ] = Pr[r(j) < i] ≤ 1 − log(j − i − 1)

log j .

If P = (P1, . . . , PN ) = GP(G), then we remark that χ(i) can be viewed as an
alternate characterization of the set Pi = χ(i) of pebbles on the graph at time i.
Lemma 1 now implies that with high probability, we will have |Pi| ≤ (1+ δ)N/n
during all pebbling rounds.

Lemma 1. Given a DAG G on N = 2n nodes sampled using the randomized
DRSample algorithm for any η > 0, we have

Pr
[
max

i
|χ(i)| > (1 + η)

(
2N

n

)]
≤ exp

(−2η2N

3n
+ nln2

)
.

Lemma 1, which bounds the size of maxi |χ(i)|, is proved in the full ver-
sion [BHK+18]. Intuitively, the proof uses the observation that |χ(i)| ≤∑N

j=i+1 Yi,j where Yi,j is an indicator random variable for the event that r(j) ≤ i.
This is because |χ(i)| is upper bounded by the number of edges that “cross” over
the node i. We can then use Claim 1 and standard concentration bounds to obtain
Lemma 1.

Theorem 2, our main result in this section, now follows immediately from
Lemma 1. Theorem 2 states that, except with negligibly small probability, the
sequential pebbling cost of a DRSample DAG is at most (1 + η)

(
2N2

n

)
+ RN .

Theorem 2. Let G be a randomly sampled DRSample DAG with N = 2n nodes.
Then for all η > 0 we have

Pr
[
Πst(GP(G)) > (1 + η)

(
2N2

n

)]
≤ exp

(−2η2N

3n
+ nln2

)
.

Proof. Fix η > 0 and consider a randomly sampled N -node DRSample DAG
G. Recall that |Pi| = χ(i) where P = GP(G). It follows that Πst(GP(G)) ≤
N maxi∈[N ] |χ(i)|. By Lemma 1, except with probability exp

(
−η2N/n

3 + nln2
)
,

we have

Πst(GP(G)) ≤ N × max
i∈[N ]

|χ(i)| ≤ (1 + η)
(

2N2

n

)
.

�
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Discussion. Theorem 2 implies that the (sequential) aAT complexity of DRSam-
ple is aATR(G) � 2N2/logN ∈ O(N2/logN), which asymptotically matches the
lower bound of Ω(N2/logN) [ABH17]. More significant from a practical stand-
point is that the constant factors in the upper bound are given explicitly. Theo-
rem 2 implies attack quality at least �log N

4 since the cost of the näıve pebbling
algorithm is N2/2. Thus, for practical values of N ≤ 224 we will get high-quality
attacks and our empirical analysis suggests that attack quality actually scales
with logN . On a positive note, the pebbling attack is sequential, which means
that we could adjust the näıve (honest) evaluation algorithm to simply use N
to use GP(G) instead because the greedy pebbling strategy is sequential. While
this would lead to an egalitarian function, the outcome is still undesirable from
the standpoint of password hashing where we want to ensure that the attacker’s
absolute aAT costs are as high as possible given a fixed running time N .

3.3 Empirical Analysis of the GP Attack

We ran the greedy pebbling attack against several iMHF DAGs including
Argon2i, DRSample and our new construction DRSample+BRG (see Sect. 4)
and compare the attack quality of the greedy pebbling attack with prior
depth-reducing attacks. The results, seen in Fig. 2 (left), show that the GP
attack was especially effective against the DRSample DAG, improving attack
quality by a factor of up to 7 (at n = 24) when compared to previous
state-of-the-art depth-reducing attacks (Valiant, Layered, and various hybrid
approaches) [Val77,AB16,ABH17].

The most important observation about Fig. 2 (left) is simply how effective
the greedy pebbling attack is against DRSample. We remark that attack quality
for DRSample with N = 2n nodes seems to be approximately n—slightly better
than the theoretical guarantees from Theorem 2. While DRSample may have the
strongest asymptotic guarantees (i.e. aAT‖(G) = Ω(N2/logN) for DRSample vs.
aAT‖(G) = O(N1.767) for Argon2i) Argon2i seems to provide better resistance
to known pebbling attacks for practical parameter ranges.

Our tests found that while the Greedy Pebbling attack does sometimes
outperform depth-reducing attacks at smaller values of n, the depth-reducing
attacks appear to be superior once we reach graph sizes that would likely be
used in practice. As an example, when n = 20 we find that the attack quality
of the greedy pebbling attack is just 2.99, while the best depth-reducing attack
achieved attack quality 6.25 [ABH17].

3.4 Defense Against Greedy Pebbling Attack: Attempt 1 XOR
Extension

Biryukov et al. [BDK16] introduced a simple defense against the greedy pebbling
attack of Boneh et al. [BCS16] for iMHFs that make two passes over memory.
Normally during computation the block Bi+N/2 would be stored at memory
location i overwriting block Bi. The idea of the defense is to XOR the two blocks
Bi+N/2 and Bi before overwriting block Bi in memory. Biryukov et al. [BDK16]
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observed that this defense does not significantly slow down computation because
block Bi would have been loaded into cache before it is overwritten in either case.
The effect of performing this extra computation is effectively to add each edge
of the form (i − N

2 , i) to the DAG G. In particular, this means that the greedy
pebbling algorithm will not discard the pebble on node i − N

2 until round i,
which is when the honest pebbling algorithm would have discarded the pebble
anyway. Given a graph G = (V,E) we use G⊕ = (V,E⊕) to denote the XOR-
extension graph of G where E⊕ = E ∪ {(i − N

2 , i) | i > N
2 }. It is easy to see

that Π
‖
cc(GP(G⊕)) ≥ N2 +2N

4 , which would make it tempting to conclude that
the XOR-extension defeats the greedy pebbling attack.

Greedy Pebble Extension: Given a graph G on N nodes, let P =
(P1, . . . , PN ) = GP(G) and let Q = (Q1, . . . , QN/2) = GP(G≤N/2). Define
GPE(G⊕) =

(
P⊕
1 , . . . , P⊕

N

)
where P⊕

i+N/2−1 = Qi ∪ Pi+N/2−1 and P⊕
i = Pi

for i < N/2. Intuitively, the attack exploits the fact that we always ensure that
we have a pebble on the extra node v ∈ parents(N/2 + v) at time N/2 + v − 1
by using the greedy pebble algorithm to synchronously re-pebble the nodes
1, . . . , N/2 a second time.

Theorem 3 demonstrates that the new generalized greedy pebble algorithm
is effective against the XOR-extension gadget. In particular, Corollary 2 states
that we still obtain high-quality attacks against DRSample⊕ so the XOR-gadget
does not significantly improve the aAT cost of DRSample.

Theorem 3. Let r : N>0 → N be any function with the property that r(i) < i
for all i ∈ N>0 and let G = (V,E) be a graph with N nodes V = {1, . . . , N} and
directed edges E = {(i, i + 1) | i < N} ∪ {r(i), i | 1 < i ≤ N}. If P = GP(G) ∈
P(G) and Q ∈ P(G≤N/2) then the XOR-extension graph G⊕ of G has amortized
Area-Time complexity at most

aAT‖
R(G⊕) ≤

N/2∑

i=1

|Pi| +
N∑

i=1

|Qi| +
3RN

2
.

Corollary 1. Let r : N>0 → N be any function with the property that r(i) < i
for all i ∈ N>0 and let G = (V,E) be a graph with N nodes V = {1, . . . , N}
and directed edges E = {(i, i + 1) | i < N} ∪ {r(i), i | 1 < i ≤ N}. Then for the
XOR-extension graph G⊕ we have aAT‖

R(G⊕) ≤ 5N2+12N
16 + 3RN

2 .

The proof of Theorem3 can be found in the full version [BHK+18]. One
consequence of Theorem 3 is that the XOR-extension gadget does not rescue
DRSample from the greedy pebble attack—see Corollary 2.

Corollary 2. Fix η > 0 be a fixed constant and let G = (V,E) be a randomly
sampled DRSample DAG with N = 2n nodes V = {1, . . . , N} and directed edges
E = {(i, i + 1) | i < N} ∪ {r(i), i | 1 < i ≤ N}. Then

Pr

[
aAT‖

R(G⊕) > (1 + η)

(
3N2

n
− N2

n(n − 1)

)
+

3RN

2

]
≤ exp

( −η2N

3(n − 1)
+ 1 + nln2

)
.
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Proof. Fix η > 0 and let P = GP(G) where G is a randomly sampled DRSam-
ple DAG. By Lemma 1, except with probability exp

(
−2η2N

3n + nln2
)
, we have

maxi |Pi| = maxi |χ(i)| ≤ (1 + η) 2N
n , which means that

∑N
i=1 |Pi| ≤ (1 + η) 2N2

n .
Similarly, let Q = GP(G≤N/2) be a greedy pebbling of the subgraph formed
by the first N/2 nodes in G. We remark that G≤N/2 can be viewed as a ran-
domly DRSample DAG with N/2 = 2n−1 nodes. Thus except with probability
exp

(
−η2N
3(n−1) + (n − 1)ln2

)
, we have maxi≤N/2 |Qi| = maxi |χ(i)| ≤ (1 + η) N

n−1

since the first N/2 nodes of G form a random DRSample DAG with N/2 = 2n−1

nodes. This would imply that
∑N/2

i=1 |Qi| ≤ (1 + η) N
n−1 . Putting both bounds

together Theorem 3 implies that aAT‖(G⊕) ≤ (1 + η)
(

3N2

n − N2

n(n−1)

)
+ 3RN

2 . �

4 New iMHF Construction with Optimal Security

In this section, we introduce a new iMHF construction called DRSample+BRG.
The new construction is obtained by overlaying a bit-reversal graph BRGn [LT82]
on top of a random DRSample DAG. If G denotes a random DRSample DAG
with N/2 nodes then we will use BRG(G) to denote the bit-reversal overlay
with N nodes. Intuitively, the result is a graph that resists both the greedy
pebble attack (which is effective against DRSample alone) and depth-reducing
attacks (which DRSample was designed to resist). An even more exciting result
is that we can show that DRSample+BRG is the first practical construction
to provide strong sustained space complexity guarantees. Interestingly, neither
graph (DRSample or BRG) is individually known to provide strong sustained
space guarantees. Instead, several of our proofs exploit the synergistic properties
of both graphs. We elaborate on the desirable properties of DRSample+BRG
below.

First, our new construction inherits desirable properties from both the
bit-reversal graph and DRSample. For example, Π

‖
cc(BRG(G)) ≥ Π

‖
cc(G) =

Ω(N2/logN). Similarly, it immediately follows that BRG(G) is maximally band-
width hard. In particular, Ren and Devadas [RD17] showed that BRGn is max-
imally bandwidth hard, and Blocki et al. [BRZ18] showed that DRSample is
maximally bandwidth hard.

Second, BRG(G) provides optimal resistance to the greedy pebbling attack—
Π

‖
cc(GP(BRG(G))) ≈ N2/4. Furthermore, we can show that any c-parallel peb-

bling attack P = (P1, . . . , Pt) in which |Pi+1 \Pi| ≤ c has cost Πcc(P ) = Ω(N2).
This rules out any extension of the greedy pebble attack e.g., GPE is 2-parallel.
In fact, we prove that this property already holds for any c-parallel pebbling of
the bit reversal graph BRGn. Our proof that Πcc(BRGn) = Ω(N2) generalizes
the well-known result that Πst(BRGn) = Ω(N2) and may be of independent
interest.

Third, we can show that any parallel pebbling P of BRG(G) either has
Πcc(P ) = Ω(N2) or has maximal sustained space complexity Πss(P, s) = Ω(N)
for space s = Ω(N/logN) i.e., there are at least Ω(N) steps with at least
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Ω(N/logN) pebbles on the graph. To prove this last property we must rely
on properties of both graphs G and BRGn i.e., the fact that DRSample is highly
block depth-robust and the fact that edges BRGn are evenly distributed over
every interval. This makes BRG(G) the first practical construction of a DAG
with provably strong sustained space complexity guarantees.

Finally, we can show that Π
‖
cc(G) = Ω(N2 log log N/logN), matching the

general upper bound of Alwen and Blocki [AB16], under a plausible conjecture
about the block-depth-robustness of G. In particular, we conjecture that G is
(e, d, b)-block depth-robust for e = Ω

(
N log log N

log N

)
, d = Ω

(
N log log N

log N

)
and b =

Ω
(

log N
log log N

)
. In the full version [BHK+18], we also show how to construct

a constant indegree DAG G′ with Π
‖
cc(G′) = Ω(N2 log log N/logN) from any

(e, d)-depth robust graph by overlaying a superconcentrator on top of G [Pip77].
However, the resulting construction is not practically efficient. Thus we show the
bit reversal overlay G′ = BRG(G) satisfies the same complexity bounds under
the slightly stronger assumption that G is block-depth-robust. As evidence for
the conjecture we show that known attacks require the removal of a set S of
e = Ω

(
N log log N

log N

)
to achieve depth(G − S) ≤ N√

log N
. Thus, we would need to

find substantially improved depth-reducing attacks to refute the conjectures.

Bit-Reversal Graph Background. The bit reversal graph was originally pro-
posed by Lenguer and Tarjan [LT82] who showed that any sequential pebbling
has maximal space-time complexity. Forler et al. [FLW14] previously incorpo-
rated this graph into the design of their iMHF candidate Catena, which received
special recognition at the password hashing competition [PHC16]. While we are
not focused on sequential space-time complexity, the bit reversal graph has sev-
eral other useful properties that we exploit in our analysis (see Lemma 2).

Local Samplable. We note that one benefit of DRS+BRG is that it is locally
samplable, a notion mentioned as desirable in [ABH17]. Specifically, we want to
be able to compute the parent blocks with time and space O(log |V |) with small
constants. DRS+BRG meets this requirement. Edges sampled from DRSample
were shown to be locally navigable in [ABH17], and each bit-reversal edge a
simple operation called requires one bit reversal operation, which can easily be
computed in time O(log |V |). The formal description of the bit-reversal overlay
graph BRG(G) is presented in Definition 4.

The Bit-Reversal DAG. Given a sequence of bits X = x1 ◦ x2 ◦ · · · xn, let
ReverseBits(X) = xn◦xn−1◦· · ·◦x1. Let integer(X) be the integer representation
of bit-string X starting at 1 so that integer({0, 1}n) = [2n] i.e., integer(0n) = 1
and integer(1n) = 2n. Similarly, let bits(v, n) be the length n binary encoding of
(v − 1) mod 2n e.g., bits(1, n) = 0n and bits(2n, n) = 1n so that for all v ∈ [2n]
we have integer(bits(v, n)) = v.
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Definition 3. We use the notation BRGn to denote the bit reversal graph
with 2n+1 nodes. In particular, BRGn =

(
V = [2n+1], E = E1 ∪ E2

)
where

E1 := {(i, i + 1) : 1 ≤ i < 2n+1} and E2 := {(x, 2n + y) : x =
integer(ReverseBits(bits(y, n)))}. That is, E2 contains an edge from node x ≤ 2n

to node 2n + y in BRGn if and only if x = integer(ReverseBits(bits(y, n))).

Claim 2 states that the cumulative memory cost of the greedy pebbling strategy
GP(BRGn) is at least N2 + N .

Claim 2. Πcc(GP(BRGn)) ≥ N2 + N

Proof. Let P = (P1, . . . , P2N ) = GP(BRGn). We first note that for all i ≤ N we
have Pi = {1, . . . , i} since gc(i) > N—every node on the bottom layer [N ] has
an edge to some node on the top layer [N +1, 2N ]. Second, observe that for any
round i > N we have |(Pi \ Pi+1) ∩ [N ]| ≤ 1 since the only pebble in [N ] that
might be discarded is the (unique) parent of node i. Thus,

2N∑

i=1

|Pi| ≥
N∑

i=1

i +
N∑

i=1

(N − i + 1) = N(N + 1).

�
Thus, we now define the bit-reversal overlay of the bit reversal graph on a

graph G1. If the graph G1 has N nodes then BRG(G1) has 2N nodes, and the
subgraph induced by the first N nodes of BRG(G1) is simply G1.

Definition 4. Let G1 = (V1 = [N ], E1) be a fixed DAG with N = 2n nodes and
BRGn = (V = [2N ], E) denote the bit-reversal graph. Then we use BRG(G1) =
(V,E ∪ E1) to denote the bit-reversal overlay of G1.

In our analysis, we will rely heavily on the following key-property of the
bit-reversal graph from Lemma 2.

Lemma 2. Let G = BRGn and N = 2n so that G has 2N nodes. For a given
b, partition [N ] into N

2n−b = 2b intervals Ik =
[
(k − 1)2n−b, k2n−b − 1

]
, each

having length 2n−b, for 1 ≤ k ≤ 2b. Then for any interval I of length 2b+1, with
I ⊆ [N + 1, 2N ], there exists an edge from each Ik to I, for 1 ≤ k ≤ 2b.

Proof of Lemma 2. Let I be any interval of length 2b, with I ⊆ [N + 1, 2N ].
Note that every 2b length bitstring appears as a suffix in I. Thus, there exists
an edge from each interval containing a unique 2b length bitstring as a prefix. It
follows that there exists an edge from each Ik to I, for 1 ≤ k ≤ 2b. �

As we will see, the consequences of Lemma 2 will have powerful implications
for the pebbling complexity of G = BRG(G1) whenever the underlying DAG G1

is (e, d, b)-block-depth-robust. In particular, Lemma3 states that if we start with
pebbles on a set |Pi| < e/2 then for any initially empty interval I of O(N/b)
consecutive nodes in the top-half of G we have the property that H := G −⋃

x∈Pi
[x− b+1, x] is an (e/2, d, b)-block-depth-robust graph that will need to be

completely re-pebbled (at cost at least Π
‖
cc(H) ≥ ed/2) just to advance a pebble

across the interval I. See the full version [BHK+18] for the proof of Lemma3.



594 J. Blocki et al.

Lemma 3. Let G1 = (V1 = [N ], E) be a (e, d, b)-block depth-robust graph with
N = 2n nodes and let G = BRG(G1) denote the bit-reversal extension of G1 with
2N nodes V (G) = [2N ]. For any interval I =

[
N + i + 1, N + i + 1 + 4N

b

] ⊆
[2N ] and any S ⊆ [1, N + i] with |S| < e

2 , ancestorsG−S(I) is
(

e
2 , d, b

)
-block

depth-robust.

Lemma 4. Let G be a (e, d, b)-block depth-robust DAG with N = 2n and let
G′ = BRG(G) be the bit reversal overlay of G. Let P ∈ P‖(G′) be a legal pebbling
of G′ and let tv be the first time where v ∈ Ptv

. Then for all v ≥ 1 such that
e′ := |Ptv+N

| ≤ e
4 and v ≤ N − 32Ne′

be , we have

t
v+N+32Ne

be′ −1∑

j=tv+N

|Pj | ≥ ed

2
.

Proof of Lemma 4. Let v ≤ N − 32Ne
be′ be given such that the set S = PtN+v

has size at most e′ = |S| ≤ e/4 and set b′ = eb
4e′ . Consider the ancestors of the

interval I = [N + v + 1, N + v + 8N
b′ ] in the graph G′ − S. Note that I ∩ S = ∅

since v is the maximum node that has been pebbled at time tN+v. We have

H := G −
⋃

x∈S

[x − b′ + 1, x] ⊆ ancestorG′−S(I)

because for any node u ∈ V (G) if u �∈ ⋃
x∈S [x − b′ + 1, x] then [u, u + b′ − 1] ∩

S = ∅ which implies that there exists an “S-free path” from u to I by Lemma 2.
Thus, H will have to be repebbled completely at some point during the time
interval

[
tv+N , tv+N+ 32Ne′

be −1

]
since 32Ne′

be ≥ 8N
b .

Since b′ = eb
4e′ ≥ b we note that the e′ intervals of length b′ we are removing

can be covered by at most �b′/b�e′ = �e/(4e′)�e′ ≤ (e/4) + e′ ≤ e/2 intervals of
length e. Hence, Lemma 3 implies that H is still (e/2, d, b)-block depth-robust
and, consequently, we have that Π

‖
cc(H) ≥ ed/2 by [ABP17]. We can conclude

that
t
v+N+32Ne′

be
−1∑

j=tv+N

|Pj | ≥ Π‖
cc(H) ≥ ed/2.

�

4.1 Sustained Space Complexity (Tradeoff Theorem)

We prove that for any parameter e = O
(

N
log N

)
, either the cumulative pebbling

cost of any parallel (legal) pebbling P is at least Π(P ) = Ω(N3/(e log N)), or
there are at least Ω(N) steps with at least e pebbles on the graph i.e., Πss,e(P ) =
Ω(N). Note that the cumulative pebbling cost rapidly increases as e decreases
e.g., if e =

√
N/logN then any pebbling P for which Πss(P, e) = o(N) must

have Π(P ) = Ω(N2.5).
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Fig. 1. Intervals
⋃

x∈S [x − b′ + 1, x] and
⋃

x∈S′ [x − b + 1, x] when b′ = 10 and b = 3.
Observe that

⋃
x∈S′ [x − b + 1, x] ⊃ ⋃

x∈S [x − b′ + 1, x] over the integers.

To begin we start with the known result that (with high probability)
a randomly sampled DRSample DAG G is (e, d, b)-block depth-robust with
e = Ω(N/logN), b = Ω(log N), and d = Ω(N) [ABH17]. Lemma 5 now implies
that the DAG is also (e′, d, b′)-block depth-robust for any suitable parameters e′

and b′. Intuitively, if we delete e′ intervals of length b′ > b then we can cover these
deleted intervals with at most e′

(
b′
b + 1

)
intervals of length b, as illustrated in

Fig. 1. The formal proof of Lemma 5 is in the full version [BHK+18].

Lemma 5. Suppose that a DAG G is (e, d, b)-block depth-robust and that param-
eters e′ and b′ satisfy the condition that e′

(
b′
b

)
+ e′ ≤ e

2 . Then G is (e′, d, b′)-
block depth-robust, and for all S with size |S| ≤ e′ the graph H = G − ⋃

x∈S [x −
b′ + 1, x] is

(
e
2 , d, b

)
-block depth-robust.

Together Lemmas 4 and 5 imply that we must incur pebbling cost Ω(ed) to
pebble any interval of Ω

(
Ne′
be

)
consecutive nodes in the top half of BRG(G),

starting from any configuration with at most e′ ≤ e/4 pebbles on the graph.
Theorem 4, our main result in this subsection, now follows because for any

pebbling P ∈ Π‖(BRG(G)) and any interval I of Ω
(

Ne′
be

)
nodes in the top-half

of G we must either (1) keep at least e′ pebbles on the graph while we walk a
pebble across the first half of the interval I, or (2) pay cost Ω(ed) to re-pebble a
depth-robust graph. Since there are Ω

(
eb
e′

)
such disjoint intervals we must either

keep |Pi| ≥ e′ pebbles on the graph for Ω(N) rounds, or pay cost Π
‖
cc(P ) ≥ e2db

64e′ .

Theorem 4. Let G be any (e, d, b)-block depth-robust DAG on N = 2n nodes,
and G′ = BRG(G) be the bit reversal overlay of G. Then for any pebbling P ∈
Π‖(G) and all e′ ≤ e

4 , we have either Π
‖
cc(P ) ≥ e2db

64e′ , or Πss(P, e′) ≥ N
4 − o(N)

i.e., at least N
4 − o(N) rounds i in which |Pi| ≥ e′.

Corollary 3 follows immediately from Theorem4.

Corollary 3. Let G be any
(

c1N
log N , c2N, c3 log N

)
-block depth-robust DAG on

N = 2n nodes for some constants c1, c2, c3 > 0 and let G′ = BRG(G) be the bit
reversal overlay of G. Then for any e′ < c1N

4 log N and any pebbling P ∈ P‖(G′)
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we have either Π
‖
cc(P ) ≥ c21c2c3N3

64e′ log N , or Πss(P, e′) ≥ N
4 − o(N) i.e., there are at

least N
4 − o(N) rounds j in which |Pj | ≥ e′.

Remark 1. Alwen et al. previously proved that for constants c1 = 2.4 × 10−4,
c2 = 0.03 and c3 = 160, a randomly sampled DAG G from DRSample will
be

(
c1N
log N , c2N, c3 log N

)
-block depth-robust except with negligible probabil-

ity [ABH17]. Thus, with high probability Corollary 3 can be applied to the bit
reversal overlay BRG(G). Notice also that as e′ decreases, the lower bound on
Π

‖
cc(P ) increases rapidly e.g., if a pebbling does not have at least Ω(N) steps

with at least e′ = Ω
(√

N
)

pebbles on the graph, then Π
‖
cc(P ) = Ω̃

(
N2.5

)
.

A Conjectured (Tight) Lower Bound on Π
‖
cc(BRG(G)). The idea

behind the proof of Theorem5 in the full version [BHK+18] is very sim-
ilar to the proof of Theorem 4—an attacker must either keep e/2 peb-
bles on the graph most of the time or the attacker must pay Ω(edb)
to repebble an (e, d)-depth Ω(b) times. In fact, a slightly weaker version
(worse constants) of Theorem 5 follows as a corollary of Theorem 4 since
Π

‖
cc(P ) ≥ e′ × Πss(P, e′). Under our conjecture that DRSample DAGs are

(c1N log log N/logN, c2N log log N/logN, c3 log N/ log log N)-block depth-robust
graph, Theorem 5 implies that Π

‖
cc(BRG(G)) = Ω(N2 log log N/logN). In fact,

any pebbling must either keep Ω(N log log N/logN) pebbles on the graph for
≈N/4 steps or the pebbling has cost Ω(N2 log log N).

Theorem 5. Let G1 be an (e, d, b)-block depth-robust graph with N = 2n nodes.
Then Π

‖
cc(BRG(G1)) ≥ min

(
eN
2 , edb

32

)
.

Evidence for Conjecture. In the full version [BHK+18] we present evidence
for our conjecture on the (block) depth-robustness of DRSample. We show that
all known techniques for constructing depth-reducing sets fail to refute our
conjecture. Along the way we introduce a general technique for bounding the
size of a set S produced by Valiant’s Lemma5. In this attack we partition the
5 In the full version [BHK+18] we also analyze the performance of Valiant’s Lemma

attack against Argon2i. Previously, the best known upper bound was that Valiant’s

Lemma yields a depth-reducing set of size e = O
(

N log(N/d)
log N

)
for any DAG G with

constant indegree. For the specific case of Argon2i this upper bound on e was sig-

nificantly larger than the upper bound—e = Õ
(

N

d1/3

)
—obtained by running the

layered attack [AB17,BZ17]. Nevertheless, empirical analysis of both attacks sur-
prisingly indicated that Valiant’s Lemma yields smaller depth-reducing sets than
the layered attack for Argon2i. We show how to customize the analysis of Valiant’s
Lemma attack to a specific DAG such as DRSample or Argon2i. Our theoretical
analysis of Valiant’s Lemma explains these surprising empirical results. By focusing
on Argon2i specifically we can show that, for a target depth d, the attacker yields

a depth-reducing set of size e = Õ
(

N

d1/3

)
� O

(
N log(N/d)

log N

)
, which is optimal and

matches the performance of the layered attack [BZ17].
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edges into sets E1, . . . , En where Ei contains the set of all edges (u, v) such that
the most significant different bit of (the binary encoding of) u and v is i. By
deleting j of these edge sets (e.g., by removing one node incident to each edge)
we can reduce the depth of the graph to N/2j . In the full version [BHK+18] we
show that for any edge distribution function r(v) < v we have

E[|Ei|] =
N

2i
+

N

2i −1∑

j=0

2i−1−1∑

m=0

Pr
[
2i−1 + m ≥ v − r(v) > m

]

where the value of the random variable |Ei| will be tightly concentrated around
its mean since for each node v the edge distribution function r(v) is independent.

4.2 (Nearly) Sequential Pebblings of BRGn Have Maximum Cost

In this section, we show that for any constant c ≥ 1 any c-parallel pebbling P of
BRGn must have cost Πcc(P ) = Ω

(
N2

)
. A pebbling P =(P1, . . . , Pt) is said to

be c-parallel if we have |Pi+1 \ Pi| ≤ c for all round i < t. We remark that this
rules out any natural extension of the greedy pebbling attack e.g., the extension
from the previous section that defeated the XOR extension graph G⊕ was a
c = 2-parallel pebbling. We also remark that our proof generalizes a well-known
result of [LT82] that implied that Πst(BRGn) = Ω

(
N2

)
for any sequential

pebbling. For parallel pebblings it is known that Π
‖
st = O(

N1.5
)

[AS15] though
this pebbling attack requires parallelism c =

√
N .

It is easy to show (e.g., from Lemma 2) that starting from a configuration with
|Pi| ≤ e pebbles on the graph, it will take Ω(N) steps to advance a pebble O(e)
steps on the top of the graph. It follows that Πst(BRGn) = Ω

(
N2

)
. The challenge

in lower bounding Πcc(G) as in Theorem 6 is that space usage might not remain
constant throughout the pebbling. Once we have proved that Πcc(G) = Ω

(
N2

)

we then note that any c-parallel pebbling P can be transformed into a sequential
pebbling Q s.t. Πcc(Q) ≤ c×Πcc(P ) by dividing each transition Pi → Pi+1 into c
transitions to ensure that |Qj \Qj−1| ≤ 1. Thus, it follows that Πcc(P ) = Ω

(
N2

)

for any c-parallel pebbling.

Theorem 6. Let G = BRGn and N = 2n. Then Πcc(G) = Ω
(
N2

)
.

The full proof of Theorem6 can be found in the full version [BHK+18]. Briefly,
we introduce a potential function Φ and then argue that, beginning with a con-
figuration with at most O(e) pebbles on the graph, advancing the pebble e steps
on the top of the graph either costs Ω(Ne) (i.e., we keep Ω(e) pebbles on the
graph for the Ω(N) steps required to advance the pebble e steps) or increases the
potential function by Ω(Ne) i.e., we significantly reduce the number of pebbles
on the graph during the interval. Note that the cost Ω(Ne) to advance a pebble
e steps on the top of the graph corresponds to an average cost of Ω(N) per node
on the top of the graph. Thus, the total cost is Ω(N2). Lemma 6, which states
that it is expensive to transition from a configuration with few pebbles on the
graph to a configuration with many well-spread pebbles on the graph, is a core
piece of the potential function argument.
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Lemma 6. Let G = BRGn for some integer n > 0 and N = 2n. Let P =
(P1, . . . , Pt) ∈ P(G) be some legal sequential pebbling of G. For a given b, parti-
tion [N ] into N

2b = 2n−b intervals Ix =
[
(x − 1)2b + 1, x × 2b

]
, each having length

2b, for 1 ≤ x ≤ 2n−b. Suppose that at time i, at most N
2b′+3 of the intervals con-

tain a pebble with b′ ≥ b and at time j, at least N
2b′+1 of the intervals contain a

pebble. Then |Pi| + . . . + |Pj | ≥ N2

2b′+5 and (j − i) ≥ 2b−b′
N

4 .

5 Empirical Analysis

We empirically analyze the quality of DRS+BRG by subjecting it to a vari-
ety of known depth-reducing pebbling attacks [AB16,AB17] as well as the
“new” greedy pebbling attack. We additionally present a new heuristic algo-
rithm for constructing smaller depth-reducing sets, which we call greedy depth
reduce. We extend the pebbling attack library of Alwen et al. [ABH17] to
include the greedy pebbling algorithm [BCS16] as well as our new heuris-
tic algorithm. The source code is available on Github at https://github.com/
NewAttacksAndStrongerConstructions/PebblingAndDepthReductionAttacks.

5.1 Greedy Depth Reduce

We introduce a novel greedy algorithm for constructing a depth-reducing set S
such that depth(G − S) ≤ dtgt. Intuitively, the idea is to repeatedly find the
node v ∈ V (G) \ S that is incident to the largest number of paths of length
dtgt in G − S and add v to S until depth(G − S) ≤ dtgt. While we can compute
incident(v, dtgt), the number of length dtgt paths incident to v, in polynomial
time using dynamic programming, it will take O(Ndtgt) time and space to fill
in the dynamic programming table. Thus, a näıve implementation would run
in total time O(Ndtgte) since we would need to recompute the array after each
iteration. This proves not to be feasible in many instances we encountered e.g.
N = 224, dtgt = 216 and e ≈ 6.4 × 105 and we would need to run the algorithm
multiple times in our experiments. Thus, we adopt two key heuristics to reduce
the running time. The first heuristic is to fix some parameter d′ ≤ dtgt (we used
d′ = 16 whenever dtgt ≥ 16) and repeatedly delete nodes incident to the largest
number of paths of length d′ until depth(G − S) ≤ dtgt. The second heuristic is
to select a larger set T ⊆ V (G) \ S of k nodes (we set k = 400 × 2(18−n)/2 in
our experiments) to delete in each round so that we can reduce the number of
times we need to re-compute incident(v, dtgt). We select T in a greedy fashion:
repeatedly select a node v (with maximum value incident(v, d′)) subject to the
constraint dist(v, T ) ≤ r for some radius r (we used r = 8 in our experiments)
until |T | ≥ k or there are no nodes left to add—here dist(v, T ) denotes the length
of the shortest directed path connecting v to T in G − S. In our experiments
we also minimized the number of times we need to run the greedy heuristic
algorithm for each DAG G by first identifying the target depth value d∗

tgt = 2j

with j ∈ [n] which resulted in the highest quality attack against G when using

https://github.com/NewAttacksAndStrongerConstructions/PebblingAndDepthReductionAttacks
https://github.com/NewAttacksAndStrongerConstructions/PebblingAndDepthReductionAttacks
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other algorithms (Valiant’s Lemma/Layered Attack) to build the depth-reducing
set S. For each DAG G we then ran our heuristic algorithm with target depths
dtgt = 2j ×d∗

tgt for each j ∈ {−1, 0, 1}. A more formal description of the heuristic
algorithm can be found in the full version [BHK+18].

Figure 3 explicitly compares the performance of our greedy heuristic algo-
rithm with prior state-of-the-art algorithms for constructing depth-reducing sets.
Given a DAG G (either Argon2i, DRSample or DRS+BRG) on N = 2n nodes
and a target depth dtgt we run each algorithm to find a (small) set S such
that depth(G − S) ≤ dtgt. The figure on the left (resp. right) plots the size
of the depth-reducing set e = |S| vs. the size of the graph N (logscale) when
the target depth dtgt = 8 (resp. dtgt = 16). Our analysis indicates that our
greedy heuristic algorithm outperforms all prior state-of-the-art algorithms for
constructing depth-reducing sets including Valiant’s Lemma [Val77] and the lay-
ered attack [AB16]. In particular, the greedy algorithm consistently outputs a
depth-reducing that is 2.5 to 5 times smaller than the best depth-reducing set
found by any other approach—the improvement is strongest for the DRSample
graph.

5.2 Comparing Attack Quality

We ran each DAG G (either Argon2i, DRSample or DRS+BRG) with N =
2n nodes against a battery of pebbling attacks including both depth-reducing
attacks [AB16,AB17] and the greedy pebble attack. In our analysis we focused
on graphs of size N = 2n with n ranging from n ∈ [14, 24], representing memory
ranging from 16 MB to 16 GB. Our results are shown in Fig. 2. While DRSample
provided strong resistance to depth-reducing attacks (right), the greedy pebbling
attack (left) yields a very high-quality attack (for n ≥ 20 the attack quality is
≈n) against DRSample. Similarly, as we can see in Fig. 2, Argon2i provides
reasonably strong resistance to the greedy pebble attack (left), but is vulnerable
to depth-reducing attacks (right). DRS+BRG strikes a healthy middle ground
as it provides good resistance to both attacks. In particular, even if we use our
new greedy heuristic algorithm to construct the depth-reducing sets (right), the
attack quality never exceeds 6 for DRS+BRG. In summary, DRS+BRG provides
the strongest resistance to known pebbling attacks for practical parameter ranges
n ∈ [14, 24].

As Fig. 2 (right) demonstrates attack quality almost always improves when
we use the new greedy algorithm to construct depth-reducing sets. The one
exception was that for larger Argon2i DAGs prior techniques (i.e., Valiant’s
Lemma) outperform greedy. We conjecture that this is because we had to select
the parameter d′ � d∗

tgt for efficiency reasons. For DRSample and DRS+BRG
the value d∗

tgt was reasonably small i.e., for DRSample we always had d∗
tgt ≤ 16

allowing us to set d′ = d∗
tgt. We believe that the greedy heuristic algorithm

would outperform prior techniques if we were able to set d′ ∼ d∗
tgt and that this

would lead to even higher quality attacks against Argon2i. However, the time to
pre-compute the depth-reducing set will increase linearly with d′.
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Fig. 2. Attack quality for greedy pebble and greedy depth reduce

Fig. 3. Greedy depth-reduce vs prior state of the art

6 Pebbling Reduction

Alwen and Serbinenko [AS15] previously showed that, in the parallel random
oracle model, the cumulative memory complexity (cmc) of an iMHFs fG,H can
be characterized by the black pebbling cost Π

‖
cc(G) of the underlying DAG.

However, their reduction assumed that the output of fG,H(x) := labG,H,x(N)
is the label of the last node N of G where labels are defined recursively using
the concatenation rule labG,H,x(v) := H(v, labG,H,x(v1), . . . , labG,H,x(vδ)) where
v1, . . . , vδ = parentsG(v). I To improve performance, real world implementa-
tions of iMHFs such as Argon2i, DRSample and our own implementation of
BRG(DRSample) use the XOR labeling rule labG,H,x(v) := H(labG,H,x(v1) ⊕
labG,H,x(v2) ⊕ . . . ⊕ labG,H,x(vδ)) so that we can avoid Merkle-Damgard and
work with a faster round function H : {0, 1}w → {0, 1}w instead of requiring
H : {0, 1}(δ+1)w → {0, 1}w.
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We prove that in the parallel random oracle model, the cumulative memory
complexity of fG,H is still captured by Π

‖
cc(G) when using the XOR labeling

rule (under certain restrictions discussed below that will hold for all of the
iMHF constructions we consider in this paper). We postpone a fully formal
definition of cumulative memory complexity cmc to the full version [BHK+18]
as it is identical to [AS15]. Intuitively, one can consider the execution trace
TraceA,R,H(x) = {(σi, Qi)}t

i=1 of an attacker AH(.)(x;R) on input value x with
internal randomness R. Here, Qi denotes the set of random oracle queries made
in parallel during round i and σi denotes the state of the attacker immediately
before the queries Qi are answered. In this case, cmc(TraceA,R,H(x)) :=

∑
i |σi|

sums the memory required during each round in the parallel random oracle
model6. For a list of distinct inputs X = (x1, x2, . . . , xm), let f×m

G,H(X) be the
ordered tuple f×m

G,H(X) = (fG,H(x1), fG,H(x2), . . . , fG,H(xm)). Then the mem-
ory cost of a f×m

G,H is defined by

cmcq,ε(f×m
G,H) = min

A,x
E [cmc(TraceA,R,H(x))],

where the expectation is taken over the selection of the random oracle H(·) as
well as the internal randomness R of the algorithm A. The minimum is taken over
all valid inputs X = (x1, x2, . . . , xm) with xi �= xj for i < j and all algorithms
AH(.) that compute f×m

G,H(X) correctly with probability at least ε and make at
most q queries for each computation of fG,H(xi). Let G×m be a DAG with mN
nodes, including m sources and m sinks.

Theorem 7, our main result, states that cmcq,ε(f×m
G,H) ≥ εwm

8δ · Π‖
cc(G). Thus,

the cost of computing fG,H on m distinct inputs and constant indegree graphs G

is at least Ω
(
m × w × Π

‖
cc(G)

)
—here, we assume that H : {0, 1}w → {0, 1}w.

We remark that for practical iMHF constructions we will have indegree δ ∈ {2, 3}
so that cmcq,ε(f×m

G,H) = Ω
(
Π

‖
cc(G)

)
. The δ-factor loss is necessary. For example,

the complete DAG KN has maximum pebbling cost Π
‖
cc(KN ) ≥ N(N − 1)/2,

but cmcq,ε(f×m
KN ,H) = O(Nw) when we use the XOR labeling rule7.

Theorem 7. Let G be a DAG with N nodes, indegree δ ≥ 2, and parents(u) �=
parents(v) for all pairs u �= v ∈ V , and let fG,H be a function that follows
the XOR labeling rule, with label size w. Let H be a family of random oracle
functions with outputs of label length w and H = (H1,H2), where H1,H2 ∈ H.

6 Given a constant R that represents the core/memory area ratio we can define
aAT‖

R(TraceA,R,H(x)) = cmc(TraceA,R,H(x)) + R
∑

i |Qi|. We will focus on lower
bounds on cmc since the notions are asymptotically equivalent and lower bounds on
aAT complexity.

7 In particular, if we let Lv = labKN ,H,x(v) = H(Lv−1 ⊕ . . . ⊕ L1) denotes the label
of node v given input x then the prelabel of node v is Yv = prelabKN ,H,x(v) =
Li−1 ⊕ . . . ⊕ L1. Given only Yv we can obtain Lv = H(Yv) and Yv+1 = Yv ⊕ Lv.
Thus, cmcq,ε(fKN ,H) = O(Nw) since we can compute fKN ,H(x) = LN in linear time
with space O(w).
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Let m be a number of parallel instances such that mN < 2w/32, q < 2w/32 be
the maximum number of queries to a random oracle, and let ε

4 > 2−w/2+2 >
qmN +1

2w − m2N2 − mN + 2m2N2

2w − mN . Then cmcq,ε(f×m
G,H) ≥ εmw

8δ · Π
‖
cc(G).

As in [AS15] the pebbling reduction relies on an extractor argument to show
that we can find a black pebbling P = (P1, . . . , Pt) s.t. |Pi| = O(|σi|/w). The
extractor takes a hint h of length |h| = |σi|+h2 and then extracts � distinct ran-
dom oracle pairs (x1,H(x1)), . . . , (x�,H(x�)) by simulating the attacker. Here,
one can show that � ≥ h2/w + Ω(|Pi|), which implies that |σi| = Ω(w|Pi|) since
a random oracle cannot be compressed.

There are several additional challenges we must handle when using the XOR
labeling rule. First, in [AS15] we effectively use an independent random oracle
Hv(·) = H(v, ·) to compute the label of each node v—a property that does
not hold for the XOR labeling rule we consider. Second, when we use the XOR
labeling it is more challenging for the extractor to extract the value of labels
from random oracle queries made by the (simulated) attacker. For example,
the random oracle query the attacker must submit to compute labG,H,x(v) is
now

⊕δ
i=1 labG,H,x(vi) instead of (v, labG,H,x(v1), . . . , labG,H,x(vδ))—in the lat-

ter case it is trivial to read each of the labels for nodes v1, . . . , vδ. Third,
even if H is a random oracle the XOR labeling rule uses a round function
F (x, y) = H(x ⊕ y) that is not even collision resistant e.g., F (x, y) = F (y, x).
Because of this, we will not be able to prove a pebbling reduction for arbitrary
DAGs G.

In fact, one can easily find examples of DAGs G where cmc(fG,H) � Π
‖
cc(G)

i.e., the cumulative memory complexity is much less than the cumulative peb-
bling cost by exploiting the fact that labG,H,x(u) = labG,H,x(v) whenever
parents(u) = parents(v). For example, observe that if parents(N) = {u, v} and
parents(u) = parents(v) then

fG,H(x) = labG,H,x(N) = H(labG,H,x(u) ⊕ labG,H,x(v)) = H(0w),

so that fG,H(x) becomes a constant function and any attempt to extract a
pebbling from an execution trace computing fG,H would be a fruitless exercise!

For this reason, we only prove that cmc(fG,H) = Ω
(
Π

‖
cc(G) × w

)
when

G = (V = [N ], E) satisfies the unique parents property i.e., for any pair of
vertices u �= v we have parents(v) �= parents(u). We remark that any DAG that
contains all edges of the form (i, i+1) with i < N will satisfy this property since
v − 1 /∈ parents(u). Thus, Argon2i, DRSample and DRSample+BRG all satisfy
the unique parents property.

Extractor: We argue that, except with negligible probability, a successful exe-
cution trace must have the property that |σi| = Ω(w|Pi|) for each round of some
legal pebbling P . Our extractor takes a hint, which include σi (to simulate the
attacker), the set Pi and some (short) additional information e.g., to identify the
index of the next random oracle query qv where the label for node v will appear
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as input. To address the challenge that the query qv = labG,H,x(v) ⊕ labG,H,x(u)
we increase both the size of the hint and the number of labels being extracted
e.g., our hint might additionally include the pair (u, labG,H,x(u)), which allows us
to extract both labG,H,x(v) and labG,H,x(u) from qv. Our extractor will attempt
to extract labels for each node v ∈ Pi as well as for a few extra sibling nodes
such as u, which means that we must take care to ensure that we never ruin the
extracted label labG,H,x(u) by submitting the random oracle query

⊕δ
i=1 ui to

H(·). If G satisfies the unique parents property then we can prove that with high
probability our extractor will be successful. It follows that |σi| = Ω(w|Pi|) since
the hint must be long enough to encode all of the labels that we extract.

7 An Improved Argon2 Round Function

In this section we show how a parallel attacker could reduce aAT costs by nearly
an order of magnitude by computing the Argon2i round function in parallel.
We then present a tweaked round function to ensure that the function must be
computed sequentially. Empirical analysis indicates that our modifications have
negligible impact on the running time performance of Argon2 for the honest
party (sequential), while the modifications will increase the attackers aAT costs
by nearly an order of magnitude.

Review of the Argon2 Compression Function. We begin by briefly review-
ing the Argon2 round function G : {0, 1}8192 → {0, 1}8192, which takes two 1 KB
blocks X and Y as input and outputs the next block G(X,Y ). G builds upon a
second function BP : {0, 1}1024 → {0, 1}1024, which is the Blake2b round func-
tion [SAA+15]. In our analysis we treat BP as a blackbox. For a more detailed
explanation including the specific definition of BP, we refer the readers to the
Argon2 specification [BDK16].

To begin, G takes the intermediate block R = X ⊕ Y (which is being treated
as an 8 × 8 array of 16-byte values R0, . . . , R63), and runs BP on each row to
create a second intermediate stage Q. We then apply BP to Q column-wise to
obtain one more intermediate value Z: Specifically:

(Q0, Q1, . . . , Q7)←BP(R0, R1, . . . , R7) (Z0, Z8, . . . , Z56)←BP(Q0, Q8, . . . , Q56)

(Q8, Q9, . . . , Q15)←BP(R8, R9, . . . , R15) (Z1, Z9, . . . , Z57)←BP(Q1, Q9, . . . , Q57)

. . .

(Q56, Q57, . . . , Q63)←BP(R56, R57, . . . , R63) (Z7, Z15, . . . , Z63)←BP(Q7, Q15, . . . , Q63)

To finish, we have one last XOR, giving the result G(X,Y ) = R ⊕ Z.

ASIC vs CPU AT Cost. From the above description, it is clear that computa-
tion of the round function can be parallelized. In particular, the first (resp. last)
eight calls to the permutation BP are all independent and could easily be eval-
uated in parallel i.e., compute BP(R0, R1, . . . , R7), . . . ,BP(R56, R57, . . . , R64)
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then compute BP(Q0, Q8, . . . , Q56), . . . ,BP(Q7, Q15, . . . , Q63) in parallel. Simi-
larly, XORing the 1 KB blocks in the first (R = X ⊕ Y ) and last (G(X,Y ) =
R ⊕ Z) steps can be done in parallel. Thus if we let tASIC

BP (resp. tCPU
BP ) denote

the time to compute BP on an ASIC (resp. CPU) we have tASIC
G ≈ 2tASIC

BP
whereas tCPU

G ≈ 16 × tCPU
BP since the honest party (CPU) must evaluate each

call to BP sequentially. Suppose that the MHF uses the round function G to fill
N blocks of size 1 KB e.g., N = 220 is 1 GB. Then the total area-time product
on an ASIC (resp. CPU) would approximately be

(
AASIC

mem N
) × (

tASIC
G N

) ≈
2N2 × AASIC

mem tASIC
BP (resp.

(
ACPU

memN
) × (

16tCP
BP N

)
where AASIC

mem (resp. AASIC
mem )

is the area required to store a 1 KB block in memory on an ASIC (resp.
CPU). Since memory is egalitarian we have AASIC

mem ≈ ACPU
mem whereas we

may have tASIC
BP � tCPU

BP . If we can make G inherently sequential then we
have tASIC

G ≈ 16tASIC
BP , which means that the new AT cost on an ASIC is

16N2×AASIC
mem tASIC

BP which is eight times higher than before. We remark that the
change would not necessarily increase the running time N×tCPU

G on a CPU since
evaluation is already sequential. We stress that the improvement (resp. attack)
applies to all modes of Argon2 both data-dependent (Argon2d, Argon2id) and
data-independent (Argon2i), and that the attack could potentially be combined
with other pebbling attacks [AB16,BCS16].

Remark 2. We remark that the implementation of BP in Argon2 is heavily opti-
mized using SIMD instructions so that the function BP would be computed
in parallel on most computer architectures. Thus, we avoid trying to make BP
sequential as this would slow down both the attacker and the honest party i.e.,
both tCPU

BP and tASIC
BP would increase.

Inherently Sequential Round Function. We present a small modification
to the Argon2 compression function that prevents the above attack. The idea is
simply to inject extra data-dependencies between calls to BP to ensure that an
attacker must evaluate each call to BP sequentially just like the honest party
would. In short, we require the first output byte from the i − 1th call to BP to
be XORed with the ith input byte for the current (ith) call.

In particular, we now compute G(X,Y ) as:
(Q0, Q1, . . . , Q7)←BP(R0, R1, . . . , R7) (Z0, Z8, . . . , Z56)←BP(Q0, Q8, . . . , Q56)

(Q8, Q9, . . . , Q15)←BP(R8, R9 ⊕ Q0, . . . , R15) (Z1, Z9, . . . , Z57)←BP(Q1, Q9 ⊕ Z0, . . . , Q57)

. . . . . .

(Q56, Q57, . . . , Q63)←BP(R56, R57, . . . , R64 ⊕ Q48) (Z7, Z15, . . . , Z63)←BP(Q7, Q15, . . . , Q63 ⊕ Z6)

where, as before, R = X ⊕ Y and the output is G(X,Y ) = Z ⊕ R.
We welcome cryptanalysis of both this round function and the original

Argon2 round function. We stress that the primary threat to passwords is brute-
force attacks (not hash inversions/collisions etc.) so increasing evaluation costs
is arguably the primary goal.

Implementation and Empirical Evaluation. To determine the performance
impact this would have on Argon2, we modified the publicly available code to
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include this new compression function. The source code is available on Github
at https://github.com/antiparallel-drsbrg-argon/Antiparallel-DRS-BRG. We
then ran experiments using both the Argon2 and DRS+BRG edge distributions,
and further split these groupings to include/exclude the new round function for
a total of four conditions. For each condition, we evaluated 1000 instances of
the memory hard function in single-pass mode with memory parameter N = 220

blocks (i.e., 1 GB = N× 1 KB). In our experiments, we interleave instances from
different conditions to ensure that any incidental interference from system pro-
cesses affects each condition equally. The experiments were run on a desktop
with an Intel Core 15-6600K CPU capable of running at 3.5 GHz with 4 cores.
After 1000 runs of each instance, we observed only small differences in runtimes,
(3%) at most. The exact results can be seen in Table 1 along with 99% confidence
intervals. The evidence suggests that there is no large difference between any of
these versions and that the anti-parallel modification would not cause a large
increase in running time for legitimate users.

Table 1. Anti-parallel runtimes with 99% confidence

Argon2i DRS+BRG

Current 1405.541 ± 1.036 ms 1445.275 ± 1.076 ms

Anti-parallel 1405.278 ± 1.121 ms 1445.017 ± 0.895 ms
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Abstract. In this work, we explore the question of simultaneous privacy
and soundness amplification for non-interactive zero-knowledge argument
systems (NIZK). We show that any δs−sound and δz−zero-knowledge
NIZK candidate satisfying δs + δz = 1 − ε, for any constant ε > 0, can
be turned into a computationally sound and zero-knowledge candidate
with the only extra assumption of a subexponentially secure public-key
encryption.

We develop novel techniques to leverage the use of leakage simulation
lemma (Jetchev-Peitzrak TCC 2014) to argue amplification. A crucial
component of our result is a new notion for secret sharing NP instances.
We believe that this may be of independent interest.

To achieve this result we analyze following two transformations:
– Parallel Repetition: We show that using parallel repetition any

δs−sound and δz−zero-knowledge NIZK candidate can be turned into
(roughly) δns −sound and 1 − (1 − δz)

n−zero-knowledge candidate.
Here n is the repetition parameter.

– MPC based Repetition: We propose a new transformation that
amplifies zero-knowledge in the same way that parallel repetition
amplifies soundness. We show that using this any δs−sound and
δz−zero-knowledge NIZK candidate can be turned into (roughly) 1−
(1 − δs)

n−sound and 2 · δnz −zero-knowledge candidate.
Then we show that using these transformations in a zig-zag fashion
we can obtain our result. Finally, we also present a simple transfor-
mation which directly turns any NIZK candidate satisfying δs, δz <
1/3 − 1/poly(λ) to a secure one.

1 Introduction

Amplification techniques are central to cryptography and complexity theory.
The basic approach is to first obtain a construction which achieves the desired
property but “with some error”. In the next step, the initial construction is
compiled into a final one which achieves a much smaller error parameter. This is
often done by having the final construction invoke the initial construction several
times. Thus, we say that the compiler is used to “amplify” the desired security
property by reducing or eliminating the error.
c© International Association for Cryptologic Research 2019
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Amplification techniques have served as a gateway towards significant
progress in cryptography (as well as complexity theory). As an example, all
the initial constructions of zero-knowledge proofs were obtained via soundness
amplification. First a zero-knowledge proof with a significant soundness error was
obtained, and then, either sequential or parallel repetition was used to reduce the
soundness error to negligible. Within the area of complexity theory, soundness
amplification of interactive protocols has played a central role in various impor-
tant advances such as in probabilistically checkable proofs (PCPs) and hardness
of approximation. Another rich line of research studies hardness amplifications
and its various connections to coding theory [23]. Not only does amplification
help us develop our understanding of the assumptions that the primitives can be
based upon, it is an invaluable tool to construct complex primitives. A notable
recent success is that of [1], where, a security amplification theorem for functional
encryption was pivotal to constructing first obfuscation scheme from succinctly
stated and instance-independent assumptions.

Simultaneous Amplification. The problem of amplification is known to be espe-
cially challenging if one tries to amplify multiple properties simultaneously. A
well-known example of this concerns oblivious transfer (OT). Weak oblivious
transfer considers a situation where the security of both the sender and the
receiver is prone to failure: a malicious sender might have advantage ε1 in guess-
ing the choice bit of the receiver, while, a malicious receiver might have advantage
ε2 in guessing the input bit of the sender which it did not select. A rich body of
literature has studied amplification techniques to obtain a full-fledged OT given
a weak OT [11,36,37]. These amplification techniques have proven to be useful
in a variety of problem including cryptography from noisy channels [10,24], and,
multi-party differentially private protocols [16].

Our Focus: Amplification for Non-interactive Zero-Knowledge Arguments. In
this work, we study simultaneous amplification of soundness and zero-knowledge.
As discussed before, a number of works have studied amplifying soundness for
interactive proofs (and arguments), and as such, some of these results apply
even to zero-knowledge protocols. However what if the zero-knowledge property
had an error to start with?1 More concretely, we are interested in the following
question.
Suppose one is given a non-interactive zero-knowledge (NIZK) argument with
soundness error δs and zero-knowledge error δz, is it possible to compile it into
a full-fledged secure non-interactive zero-knowledge argument system?
In more detail, consider (δs, δz) − NIZK, where δs is the probability with which
any efficient adversary can win in the soundness experiment. Similarly δz is the
advantage with which any efficient adversary can distinguish between simulated
and honest proofs. (Please see next Section for more formal definitions.)
1 The most important reason to consider this is that it may be easier to construct

NIZK with relaxed soundness and zero knowledge requirements. Indeed, in the past,
even slight relaxations of zero knowledge, such as ε-zero knowledge [12], have led to
simpler protocols.
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We first observe that it is trivial to construct a NIZK candidate where δs+δz =
1. This can be constructed by sampling a crs as a bit which is set to 1 with
probability δs and 0 otherwise. If crs = 1, the verification algorithm is supposed
to verify the string ⊥ as a valid proof, and otherwise it should only verify a valid
NP witness of the given instance as a valid proof. This system is trivially δs-
sound, and a simulator that just outputs ⊥ achieves (1−δs) = δz-zero knowledge.
Of course, we cannot expect this trivial system to be amplifiable.
Thus the above question can be rewritten as:

Is it possible to amplify (δs, δz)−non-interactive zero-knowledge, where
δs + δz = 1 − ε for any constant ε > 0, to full-fledged non-interactive

zero-knowledge under standard cryptographic assumptions?

To our knowledge, this question has not been studied before. We believe the
question of amplifying soundness and zero-knowledge simultaneously is a basic
one which is interesting in its own right.

We answer this in the affirmative, by giving such a transformation assuming
that subexponentially secure public-key encryption exists. Formally, we prove
the following theorem:

Theorem 1. Assume a subexponentially secure PKE scheme, and a NIZK can-
didate Π with δs−soundness and δz−zero-knowledge where δz, δs are in (0, 1)
with δs + δz < 1 for all polynomial time adversaries, then there exists a fully
secure NIZK candidate against all polynomial time adversaries.

NIZK is a basic primitive in cryptography which is widely used to obtain the
constructions of other basic and advanced primitives. Yet, despite much effort,
NIZK is unfortunately known from very few assumptions: [5,6,8,13,17–19,32,
35]. E.g., we do not yet know a NIZK system that is proven secure under the
assumption of (even subexponentially secure) DDH or LWE. Given this state
of the art our work gives an alternative easier path to construct NIZKs since
now one only needs to obtain constructions satisfying δs + δz < 1 (as opposed
to constructions achieving the standard notion where δs and δz are negligible).

We develop several novel techniques to prove our result. An interesting prim-
itive we introduce is the notion of secret sharing NP instances.

Secret Sharing of NP Instances. Towards constructing a NIZK amplification
theorem, our main technical tool is what we call secret sharing of NP Instances.
Very roughly, this allows breaking a (statement, witness) pair into n different
(statement, witness) pairs such that each pair can then be verified individually
while no single pair (or upto a threshold t of pairs) reveals any information
about the original witness. Additionally it allows that if more than some other
threshold t′ of instances are satisfiable then x itself should be satisfiable. We
believe secret sharing of NP instances to be a novel conceptual tool which is of
independent interest. Please see Sect. 2 for more details and a technical overview.
Inspired by [1], to prove our result, we use and build upon the ideas used to prove
the dense model theorem [33].
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Related Works. We are not aware of any prior works on amplifying zero-
knowledge and soundness simultaneously. However there have been a number
of prior works on amplification in general. Soundness amplification of interac-
tive proofs has been studied in a rich line of works [3,7,21,31]. As mentioned
before, another line of research studies amplification and combiners for oblivious
transfer [20,30]. Another related result concerns “polarization” (which is a type
of simultaneous amplification) of complete problems for SZK [34].

2 Technical Overview

Suppose we have been given a NIZK candidate where δs + δz = 1 − ε for any
constant ε > 0, how do we construct one where δs + δz < negl?
We study three basic transformations and analyze their effects on the parameters
(δs, δz).

– Parallel Repetition: We show that this transformation converts a NIZK
candidate with parameters (δs, δz) to roughly (δn

s , 1 − (1 − δz)n), where n
is some parameter which can be set to be any polynomial in λ. Thus, this
transformation boosts soundness but worsens zero-knowledge property.

– MPC-based Repetition: We show that this transformation converts a
NIZK candidate with parameters (δs, δz) to roughly (1 − (1 − δs)n, 2 · δn

z ),
where n is some parameter which can be set to be any polynomial in λ. Thus,
this transformation boosts zero-knowledge but worsens soundness property.

– MPC-based Amplification: This transformation converts a NIZK candi-
date with parameters (δs, δz) satisfying δs, δz < 1/3 − 1/poly(λ) to a fully
secure NIZK candidate.

Then, we show using these three transformation how to take any (δS , δz) NIZK
satisfying δs + δz = 1 − ε for any constant ε > 0, and output a fully secure NIZK
candidate.

2.1 Parallel Repetition

As a warm up that is useful to introduce some of the ideas we will use, let us
first consider the standard parallel repetition transformation. The construction
is as follows. Let Π be the underlying candidate. The setup algorithm of the
transformed candidate Π‖ does the following. It computes Π.Setup(1λ) → crsi
for i ∈ [n], where n is some repetition parameter. It sets crs = (crs1, ..., crsn).
The prover then proves x ∈ L using the given witness w, employing each crsi
independently to form n proofs π = (π1, ..., πn). Finally, the verification succeeds
if each πi verifies with respect to crsi. We discuss at a high level various properties
associated with this scheme.

(δn
s + negl) -Soundness: This is already known from many of the previous works

(such as [7]) that soundness is amplified this way for any non-interactive argu-
ment system upon parallel repetition. The (overly simplified) intuition is the



612 V. Goyal et al.

following. If the soundness error is δs, then there exists a hardcore set S of size
(1 − δs) · |R| where R is the space of randomness for the coins of Π.Setup. This
hardcore set has the property that if crs is generated using randomness from this
set, then any adversary A of some large bounded size, will only break soundness
with a small probability εs. Then, if we have n parallel systems, the probability
that no crsi is sampled using randomness from this set S falls as δn

s . In order to
prove this formally, in spirit of [7], we prove the following lemma. The details
can be found in the full version.

Lemma 1. Let F : {0, 1}λ → {0, 1}l be a function where l = poly(λ) and
E : {0, 1}λ+l+r(λ) → {0, 1} be a circuit of size e. Let δ ≥ ε ∈ (0, 1) and s, s′ > 0
be functions of λ. If for all circuits C : {0, 1}l(λ) → {0, 1}r(λ) of size s we have

Pr
u

$←−{0,1}λ

[E(u, F (u), C(F (u))) = 1] ≤ δ

Then there exists a set S of size |S| = (1 − δ)2λ and a polynomial soverhead(λ)
(independent of s, s′ and e) such that: For all circuits C ′ : {0, 1}l(λ) → {0, 1}r(λ)

of size less than s′ = sε(1−δ)
δ − e − soverhead

Pr
u

$←−S

[E(u, F (u), C ′(F (u))) = 1] ≤ ε

Roughly F is the algorithm Π.Setup, C is the adversary and E is the algorithm
that tests if soundness is broken. Since the size of E is a factor that determines
the size of the adversary that can be handled, we want to keep it small. Thus, we
work with a NIZK argument of knowledge candidate instead of a NIZK candidate.
This is done by using a public key of a public key encryption scheme (generated
at setup) to encrypt the witness, and the NIZK system is used to prove that this
encrypted witness is valid. Then, it becomes possible to check if the soundness
of Π was broken by simply decrypting the witness and testing its validity for
the instance x. This ensures that size of E is polynomially bounded.

1 − (1 − δz)n−Zero-Knowledge: Since parameters are very crucial to achieve our
result, we also have to show that zero-knowledge is not completely destroyed by
parallel repetition. This is so that we can tolerate some amount of degradation.
To achieve this theorem, we prove and rely on the following lemma:

Theorem 2. Fix 1λ, x ∈ SAT with |x| = poly(λ) and corresponding witness u.
Define two functions Eb for b ∈ {0, 1}, that takes as input {0, 1}�b . Here �b is
the length of randomness required to compute the following.
Consider the following process:

1. Sample r1, r2 ← {0, 1}�0 .
2. Run Π.Setup(1λ; r1) → crs.
3. Run Π.Prove(crs, x, u) → π.
4. Sample r̃ ← {0, 1}�1

5. Compute (c̃rs, π̃) ← Π.Sim(1λ, x; r̃).
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6. E0 on input (r1, r2) ∈ {0, 1}�0 outputs (crs, π).
7. E1 on input r̃ ∈ {0, 1}�1 outputs (c̃rs, π̃).

If Π satisfies δ−zero knowledge for all adversaries of size s, then, there exists
two computable (not necessarily efficient) measures M0 and M1 (Mb defined
over {0, 1}�b for b ∈ {0, 1}) of density exactly 1 − δ such that, for all circuits A
of size s′ < sε2/128(�0 + �1 + 1),

∣

∣

∣

∣

Pr
(r1,r2)←DM0

[A(E0(r1, r2)) = 1] − Pr
r̃←DM1

[A(E1(r̃)) = 1]
∣

∣

∣

∣

< ε

Here both measures may depend on (x, u)

This theorem roughly says that there exists two measures S0 and S1 of density
exactly 1− δz such that the when the proof and setup is done using randomness
from S0 then for a bounded adversary it is computationally indistinguishable
from the case when the crs and the proof is simulated using randomness from
S1. Thus, using this one can show that if randomness from for all n parallel
systems is generated from this measure S0, then it is computationally close to
the case when the proofs for all n systems are simulated using randomness from
S1. Since the densities of S0 and S1 is exactly equal to 1 − δz, this allows to
(informally) argue that the zero-knowledge parameter of the resulting candidate
is (very roughly) bounded by 1 − (1 − δz)n + negl. Here is the formal theorem
statement:

Theorem 3. Assuming Π is δz−zero-knowledge against adversaries of size s,
Π‖ is (1 − (1 − δz)n) + O(n · ε)−zero-knowledge against adversaries of size s′ =
s · ε2/poly(λ) for some fixed polynomial poly.

The details can be found in the full version. Given that we have a way to reduce
soundness error while not letting zero-knowledge degrade too much, we turn to
the next question:

Is there a natural transformation that amplifies zero-knowledge, while
not degrading soundness too much?

We consider this question and propose a very natural transformation to achieve
this. We call it MPC-based repetition because it achieves parameters similar to
parallel repetition where the roles of zero-knowledge error and soundness error
are switched, but it is based on secure multi-party computation (MPC) protocols
instead of simple parallel invocation of the NIZK candidate. In another words,
it is a natural dual of the construction above.

2.2 MPC-Based Repetition

A First Idea: Before we describe our approach, we first describe a seemingly more
natural approach that we do not know how to analyze: Specifically, consider
the new candidate which runs Π.Setup → crsi for i ∈ [2]. The prover first
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computes π1 with respect to crs1 for the given NP relation. The prover then
considers the NP relation that is satisfied with a “witness” that is any valid
proof with respect to the verification procedure of the NIZK candidate. Then,
the prover can use π1 as a witness to satisfy this new relation, and thus compute
π2 with respect to crs2. The output is then set as π2. For this construction
it may seem reasonable to expect that soundness should fall as 1 − (1 − δs)2,
because if both crs1, crs2 are sampled using randomness from the hardcore set,
then the soundness should hold. It may also seem reasonable to expect that zero-
knowledge should be amplified as δ2z as it appears that zero-knowledge should
be retained as long as either π1 or π2 is computed from the hardcore set. We do
not know how to formally convert this intuition into a proof. In fact, as far as we
know, this intuition may be false, and we leave it as an interesting open problem
to analyse this construction. We now summarize the difficulties in turning the
intuition above into a proof:

– Arguing soundness is hard because the NIZK candidate is only required to
have computational soundness. Therefore, with respect to crs2 there may
always exist a valid witness π1 for an instance x, crs1 even when x /∈ L. As
a result, we do not know how to analyze how soundness is affected by this
construction.

– Arguing zero-knowledge is also hard for important technical reasons related
to hard core sets, that we also have to keep in mind when we try to repair
this state of affairs. When randomness is sampled from the hardcore measure
to prove instance x, crs1, it may already leak information about the witness
for x, as the hardcore measure now can depend on w.

For the reasons above we consider a completely different approach. Crucial to our
approach is the following primitive, which we call verifiable sharing scheme for
NP statements (denoted by NPSS). We believe this notion may be of independent
interest to other interesting applications.

Secret Sharing NP Instances: Informally speaking2, an NPSS scheme consists
of three algorithms Share,Verify, and Sim. Given any instance x ∈ SAT and
its witness w, we have that Share(n, x,w) outputs n instances along with wit-
nesses {xi, wi}i∈[n] such that the following guarantees are met. The scheme is
parameterized by two thresholds t1, t2.

1. If x ∈ SAT with w being a valid witness, then the output of Share(n, x,w)
will have the property that wi is a valid witness of the statement xi ∈ SAT
for all i ∈ [n].

2. Robustness for threshold t1. There exists a verification algorithm Verify
such that if Verify(n, x, x1, ..., xn) = 1, then if there is a set S ⊂ [n] of size
greater than or equal to t1 such that xi ∈ SAT for i ∈ S, then we have that
x ∈ SAT. Furthermore there is an efficient algorithm that recovers the witness
to x given witnesses for the statements xi where i ∈ S.

2 Formal details can be found in Sect. 5.
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3. Simulatability for threshold t2. Consider any set Z ⊂ [n] of size less than
or equal to t2. Then, informally, we want that the instances x1, .., xn and wit-
nesses {wi}i∈Z should not “reveal any knowledge” about membership of x in
SAT. That is, the output of Sim(n, x, Z) is computationally indistinguishable
from the output of Share(n, x,w) restricted to all instances x1, . . . , xn and
witnesses {wi}i∈Z .

Our actual notion of NPSS also includes a setup algorithm Setup(1λ) that outputs
public parameters pp, that is also input to constituent NPSS algorithms. We will
describe how to construct such a sharing scheme for various choices of t1, t2 later.
Assuming we have such a notion, we now describe how to achieve our goal. The
following is our construction of Π⊥ with repetition parameter n. Here is our
construction. In the following set t1 = n and t2 = n − 1 for the NPSS scheme.

– Π⊥.Setup(1λ) :
• Run Π.Setup(1λ) → crsi for i ∈ [n].
• Run NPSS.Setup(1λ) → pp.
• Output crs = (pp, crs1, ...., crsn).

– Π⊥.Prove(crs, x, w) :
• Run NPSS.Share(pp, n, x, w) → (x1, ..., xn, w1, ..., wn)
• Run Π.Prove(crsi, xi, wi) → πi for i ∈ [n].
• Output π = (x1, ..., xn, π1, ...., πn).

– Π⊥.Verify(crs, x, π) :
• Parse π = (x1, ..., xn, π1, ...., πn).
• Run NPSS.Verify(pp, n, x, x1, ..., xn).
• Run Π.Verify(xi, wi) for i ∈ [n].
• Output 1 if all these steps pass. Output 0 otherwise.

We now revisit both the soundness and zero-knowledge property to observe the
change in the parameters.

(1 − (1 − δs))n−Soundness: The idea here is that since the size of the hardcore
measure is (1−δs)|R|, where R is the set from which the randomness for Π.Setup
is chosen, with probability (1−δs)n all crsi for i ∈ [n] will behave nicely. In such a
case, if crsi is used to prove xi ∈ SAT, then any efficient adversary can produce a
false proof only with some tiny probability εs. Thus, by the robustness property
and the lemmas described above we can argue soundness. A PKE scheme plays
an important role because the associated secret key is used by our reduction
to verify in polynomial time if the adversary has indeed succeeded in breaking
soundness. Note that this is a highly simplified description and the proof requires
a very careful analysis of the structure of the adversary. This proof can be found
in Sect. 8. Here is the formal theorem:

Theorem 4. Assuming PKE is perfectly correct and Π is δs−sound against
adversaries of size s, then for every 1 > ε > 0, Π⊥ is (1−(1−δs)n)+O(ε)−sound
against adversaries of size s′ = O(s·ε·δs/(1−δs))−poly(λ) for a fixed polynomial
poly.
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2 ·δn
z −zero-knowledge: Proving zero-knowledge for this construction turns out to

be highly nontrivial. Let us understand why is this the case. Consider an honest
sharing of instance x and witness y, denoted by x1, ..., xn with corresponding
witnesses w1, ...., wn. As noted above, Theorem 2 says that there exist two hard-
core measures S0,i and S1,i of density 1−δz such that the distribution of honestly
generated pair (crsi, πi) for xi generated using randomness from S0,i is compu-
tationally close to the simulated distribution generated by choosing randomness
from S1,i. Thus it seems that with probability at least 1− δn

z , we should have at
least one index i ∈ [n], where we can shift to simulating proofs for one index i∗.
Then, it seems plausible that we can use the security of NPSS scheme to simulate
sharing x1, ..., xn, {wi}i	=i∗ . But unfortunately, this intuition fails to materialize
as these measures S0,i,S1,i are inefficient and may depend on wi itself. In fact,
this has been a major hurdle in various amplification scenarios, and that is why
amplifying security for complex cryptographic primitives is considered a hard
problem.
In order to fix this issue, we rely on the techniques building the dense model
theorem. We overcome this issue by using the following idea, which can be made
formal via the work on simulating auxiliary input [9,27]. Because the hardcore
measure has reasonable probability mass 1− δz, it cannot verifiably contain use-
ful information to the adversary. For example, even if the hardcore distribution
revealed the first few bits of the wi, the adversary could not know for sure that
these bits were in fact the correct bits. Indeed, we use the works of [9,27] to make
this idea precise, and show that the hardcore measures can be simulated in a way
that fools all efficient adversaries, with a simulation that runs in subexponen-
tial time. This allows us to argue witness indistinguishability. Finally, as witness
indistinguishability is enough to get zero-knowledge the result holds. Similar
techniques were also used in [1], to give an amplification theorem for any func-
tional encryption scheme. Let us now go over the steps of the argument carefully.
We will prove witness indistinguishability first. Consider an instance x and two
witnesses (y0, y1). For all indices i ∈ [n] let us output crs = (pp, crs1, ..., crsn),
instance x1, ..., xn and proofs π1, ..., πn. We construct a series of hybrids from
Hybrid0 to Hybridm where Hybrid0 is the hybrid where witness yb for a ran-
dom b ∈ {0, 1} is used to prove honestly and Hybridm is independent of the
witness. We prove that |Pr[A(Hybrid0) = 1]−Pr[A(Hybridm) = 1]| ≤ δn

z +negl
for any efficient adversary A. Thus, this gives us the required result. Before delv-
ing slightly in the details, we recall the following two theorems. First theorem
describes how sampling an element from measures of high density is compu-
tationally indistinguishable to sampling an element uniformly from a large set
constructed using the measure.

Theorem 5 (Imported Theorem [22]). Let M be any measure on {0, 1}n

of density μ(M) ≥ 1 − ρ(n) Let γ(n) ∈ (0, 1/2) be any function. Then, for a
random set S chosen according to the measure M the following two holds with
probability at least 1 − 2(2−2nγ2(1−ρ)4/64):

– (1 − γ(1−ρ)
4 )(1 − ρ)2n ≤ |S| ≤ (1 + γ(1−ρ)

4 )(1 − ρ)2n
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– For such a random set S, for any distinguisher A with size |A| ≤ 2n(γ2(1−ρ)4

64n )
satisfying

| Pr
x←S

[A(x) = 1] − Pr
x←DM

[A(x) = 1]| ≤ γ

The following theorem from [9] says that for every distribution X and every
potentially inefficient function g : X → {0, 1}�X , there exists a relatively effi-
cient function h such that (X, g(X)) is computationally close to (X,h(X)). The
complexity of h is roughly O(sε−22�X ). Here s is the size of adversaries that h
wants to fool and ε is the maximum distinguishing advantage against adversaries
of size s.

We also import a theorem from [9] that will be used by our security proofs.

Theorem 6 (Imported Theorem [9]). Let n, � ∈ N, ε > 0 and Cleak be a
family of distinguisher circuits from {0, 1}n×{0, 1}� → {0, 1} of size s(n). Then,
for every distribution (X,Z) over {0, 1}n × {0, 1}�, there exists a simulator h :
{0, 1}n → {0, 1}� such that:

– h has size bounded by s′ = O(s2�ε−2).
– (X,Z) and (X,h(X)) are indistinguishable by Cleak. That is for every C ∈

Cleak,

| Pr
(x,z)←(X,Z)

[C(x, z) = 1] − Pr
x←X,h

[C(x, h(x)) = 1]| ≤ ε

Now we define our hybrids:

1. We define the first hybrid as the hybrid where each index i ∈ [n] uses hardcore
measure S0,i to generate πi with probability 1−δz, and its complement 1−S0,i

otherwise. This is done by maintaining a string z ∈ {0, 1}n which sets zi = 1
with probability 1 − δz and zi = 0 otherwise. This string describes how
randomness for various indices are chosen. Note that this hybrid is identical
to Hybrid0.

2. Next we define Hybrid2 where we abort if z = 0n. This occurs with probabil-
ity bounded by δn

z . Thus |Pr[A(Hybrid1) = 1] − Pr[A(Hybrid2) = 1]| ≤ δn
z

3. Next, for all indices where zi = 1, generate πi using Π.Sim algorithm where
the randomness is sampled from S1,i whose density is also equal to 1−δz. This
hybrid is computationally close for an efficient adversary due to Theorem2.

4. Now we consider the following inefficient machine Machine that takes as input
(z, x, x1, ..., xn, {wi}i|zi=0) and outputs (R1, .., Rn) where Ri is the random-
ness sampled to generate proof for the index i. This may involve the machine
to potentially brute force break x1, .., xn and sample from various measures
involved. This hybrid is identical to the previous hybrid as its just a repre-
sentation change. At this point, ideally we would like to use Theorem6 from
[9,27], recalled above. We would like to “fake” the output of Machine using
an efficient simulator h constructed using Theorem 6. However since the size
of h grows exponentially with the length of the randomness used to prove,
there is no hope to argue any security.
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5. To fix this, we observe that the density of hardcore measure as well as its
complement is quite large. In other words, suppose, δz, 1− δz > 2−λ/10. Thus
we can rely on Theorem 5 and have Machine to sample a large enough sets
Seti for i ∈ [n] from the measures and use that set to generate the proofs.
This hybrid is indistinguishable because of Theorem5. By large enough, we
mean that they will at least have about 2−λ/10 · |R| elements.

6. Now for each index i ∈ [n], sample uniformly a set SetRi from the space
of randomness of Π by choosing q = λ2λ/10 inputs. Thus the probability
of SetRi ∩ Seti = φ is bounded by e−λ. Then, change Machine to take as
input z,SetR1, ..,SetRn, x1, ..., xn and output indices (j1, ..., jn). Each index
ji denotes the index of the randomness in SetRi used for generating (crsi, πi)
pair for system i. This is picked by sampling randomness uniformly from
Seti ∩SetRi. These hybrids are statistically close with the statistical distance
being bounded by the probability that the intersection of SetRi and Seti is
empty.

7. Now since Machine always outputs indices of length bounded by λ2, we can
use theorem 6 to simulate it. This ensure that size of h grows as s′ ·2nλ2 ·ε′−2.
Here ε′ is the advantage with which we want to fool the adversary of size s′.

8. Finally we use complexity leveraging and a super-strong PKE to instantiate
NPSS to argue that even for adversaries of the same size as that of h, cannot
distinguish the case when x1, ..., xn, {wi}i|zi=0 are generated using yb, or they
are simulated. This makes the hybrid independent of b.

This leaves us with the following question:

How to Construct NPSS? Our constructions of NPSS are inspired by the MPC-
in-the-head paradigm [25]. The idea is to visualise n parties P1, .., Pn in an MPC
protocol where each party Pi has an additive secret sharing yi of the witness
w. What they do is, they run MPC protocol to compute the relation function
R(x,Σiyi). In an honest behavior this should output 1. Thus when the MPC
protocol, such as [4], is run each party Pi receives an output outi and it has
its view viewi (which contains its randomness, input yi and messages sent and
received by it). Then there is also a transcript T which is the collection of
messages sent and received by each party. We define xi to be the circuit that has
a PKE encryption of the commitment of T , inputs yi and party’s randomness
hardwired and it takes as input a set of corresponding commitment openings
and checks:

1. viewi is a valid view for this MPC protocol corresponding to the transcript
T . That is each message in the view is computed correctly using incoming
messages and a fixed valid input and randomness. This step only takes as
input the openings corresponding to commitments of viewi.

2. The output in the viewi is 1.

This allows us to secret share instances. We can prove security we rely on prop-
erties of underlying MPC protocol. For example, [4] has two properties (other
than correctness):
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1. Upto n/3 semi-honest views are simulatable.
2. Even if at most n/3 parties behave arbitrarily, they can’t force honest parties

to receive an incorrect output. This property is called perfect robustness.

This allows us to give an instantiation for t1 = 
n/3� and t2 = 
n/3�. We rely
on the protocol of [14] in the OT-hybrid model [26] to get an instantiation for
t1 = n and t2 = n = 1. The details can be found in Sect. 6.3 and the full version.

Thus, this is the formal theorem:

Theorem 7. Assume that there exists a subexponentially secure public key
encryption and a NIZK candidate Π satisfying δz−zero-knowledge against adver-
saries of size SizeΠ where δz, 1 − δz > 2−λ/5. If SizeΠ > Size1ε

−2poly(λ) for
any 1 > ε > 0 and 0 < Size1 < 2λ/5 then the construction Π⊥ satisfies
2δn

z +O(nε+2−λc

)−witness indistinguishability against adversaries of size Size1.
Here poly is some fixed polynomial. c > 0 is a fixed constant.

2.3 The General Case: δs + δz < 1

This is perhaps best understood using an example. Consider δs = 0.3 and δz =
0.60. Consider the following steps:

– Run parallel repetition using the repetition parameter n1 = log2 λ. Thus
the new parameters are (upto negligible additive factors) δ′

s = 0.3n1 and
δ′
z = 1 − 0.4n1 . Observe that δ′

s = λ− log2 10/3 and δ′
z = 1 − λ− log2 10/4.

– On the resulting candidate, perform sequential repetition with parameter
n2 = λlog2 10/3. Thus, we observe that the soundness parameter changes as
δ′′
s = 1 − (1 − δ′

s)
n2 . Note that this is roughly 1 − e−1 (e is the base of

natural logarithm). As for the zero-knowledge, δ′′
z = 2 · (1−λ=log2 10/4)n2 . As

log2 10/3 > log2 10/4 > 0, we have that δ′′
z = negl for some negligible. Thus,

finally we made progress.
– Apply parallel repetition with parameter λ to get a fully secure NIZK!

The idea above can be used to handle any parameters satisfying δs + δz = 1 − ε
for any constant ε > 0. Details can be found in Sect. 9.

Simultaneous Amplification: We observe that the transformation described
above is highly inefficient as we have to compose one transformation on top
of other. When δs, δz ≤ 1/3 − 1/poly then one can provide a single transfor-
mation which yields a fully secure NIZK. The details can be found in the full
version.

2.4 Reader’s Guide

In Sect. 3, we recall some preliminaries useful for the rest of the paper. In Sect. 4
we define the notion of a NIZK candidate. In Sect. 5 we define the notion of NPSS.
In full version [15], we construct the notion of NPSS. In Sect. 7 we prove a lemma
useful for arguing soundness amplification. In Sect. 8, we analyse our MPC based
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repetition transformation. We analyse the parallel repetition construction in the
full version. In Sect. 9 we show how to convert a candidate satisfying δs + δz =
1 − ε for any constant ε > 0 to a fully secure candidate. Finally, in full version,
we present our direct transformation that transforms any candidate with δs, δz <
1/3 − 1/poly(λ) to a fully secure one.

3 Preliminaries

We denote by λ the security parameter. We say that a function ε(λ) is negligible
in λ if ε(λ) = o(1/λc) for every c ∈ N, and we write negl(λ) to denote a negligible
function in λ. For a distribution X, we denote by x ← X the process of sampling
a value of x from the distribution X. For a set S, we denote by s

$←− S the process
of sampling uniformly from S.

For two sequence of random variable X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we
say that X and Y are computationally indistinguishable if for any probabilistic
polynomial time distinguisher D,

∣

∣

∣

∣

Pr[D(1λ, x ← Xλ) = 1] − Pr[D(1λ, y ← Yλ) = 1]
∣

∣

∣

∣

≤ negl(λ)

for any sufficiently large λ ∈ N. We say that the distributions are subexponen-
tially indistinguishable if this negl is 2−λε

for some constant ε > 0. We now
define the notion of statistical distance.

Definition 1 (Statistical Distance). Let E be a finite set, Ω a probabil-
ity space, and X,Y : Ω → E random variables. We define the statistical
distance between X and Y to be the function Dist defined by Dist(X,Y ) =
1
2Σe∈E |PrX(X = e) − PrY (Y = e)|.

3.1 Amplification Preliminaries

Now we recall some notions and theorems that will be useful for the rest of the
paper.

Definition 2 (Distinguishing Gap). For any adversary A and two distribu-
tions X = {Xλ}λ∈N and Y = {Yλ}λ∈N, define A’s distinguishing gap in distin-
guishing these distributions to be |Prx←Xλ

[A(1λ, x) = 1]−Pry←Yλ
[A(1λ, y) = 1]|.

Now we recall the definition of a measure.

Definition 3. A measure is a function M : {0, 1}k → [0, 1]. The size of a
measure is |M| = Σx∈{0,1}kM(x). The density of a measure, μ(M) = |M|2−k.

Each measure M induces a probability distribution DM.

Definition 4. Let M : {0, 1}k → [0, 1] be a measure. The distribution defined
by measure M (denoted by DM) is a distribution over {0, 1}k, where for every
x ∈ {0, 1}k, PrX←DM [X = x] = M(x)/|M|.
We will consider a scaled version Mc of a measure M for a constant 0 < c < 1
defined as Mc = cM. Note that Mc induces the same distribution as M.
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3.2 Useful Lemmas

We first import the following theorem from [29].

Theorem 8 (Imported Theorem [29]). Let E : {0, 1}n → X and F :
{0, 1}m → X be two functions, and let ε, γ ∈ (0, 1) and s > 0 be given. If
for all distinguishers A with size s we have

| Pr
x←{0,1}n

[A(E(x)) = 1] − Pr
y←{0,1}m

[A(F (y)) = 1]| ≤ ε

Then there exist two measures M0 (on {0, 1}n) and M1 (on {0, 1}n) that depend
on γ, s such that:

– μ(Mb) ≥ 1 − ε for b ∈ {0, 1}
– For all distinguishers A′ of size s′ = sγ2

128(m+n+1)

| Pr
x←DM0

[A(E(x)) = 1] − Pr
y←DM1

[A(F (y)) = 1]| ≤ γ

Now we describe a lemma from [22], that shows that if we sample a set S from
any measure M by choosing each element i in the support with probability
M(i), then no circuit of (some) bounded size can distinguish a sample x chosen
randomly from the set S from an element sampled from distribution given by
M. Formally,

Theorem 9 (Imported Theorem [22]). Let M be any measure on {0, 1}n

of density μ(M) ≥ 1 − ρ(n). Let γ(n) ∈ (0, 1/2) be any function. Then, for a
random set S chosen according to the measure M the following two holds with
probability at least 1 − 2(2−2nγ2(1−ρ)4/64):

– (1 − γ(1−ρ)
4 )(1 − ρ)2n ≤ |S| ≤ (1 + γ(1−ρ)

4 )(1 − ρ)2n

– For such a random set S, for any distinguisher A with size |A| ≤ 2n(γ2(1−ρ)4

64n )
satisfying

| Pr
x←S

[A(x) = 1] − Pr
x←DM

[A(x) = 1]| ≤ γ

We also import a theorem from [9] that will be used by our security proofs.
This lemma would be useful to simulate the randomness used to encrypt in an
inefficient hybrid.

Theorem 10 (Imported Theorem [9]). Let n, � ∈ N, ε > 0 and Cleak be
a family of distinguisher circuits from {0, 1}n × {0, 1}� → {0, 1} of size s(n).
Then, for every distribution (X,Z) over {0, 1}n×{0, 1}�, there exists a simulator
h : {0, 1}n → {0, 1}� such that:

– h has size bounded by s′ = O(s2�ε−2).
– (X,Z) and (X,h(X)) are indistinguishable by Cleak. That is for every C ∈

Cleak,

| Pr
(x,z)←(X,Z)

[C(x, z) = 1] − Pr
x←X,h

[C(x, h(x)) = 1]| ≤ ε
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4 Definitions

Let SAT denote the language of satisfiable circuits. Let R denote the correspond-
ing relation for SAT. For any instance x in SAT such that w is a witness of x,
we write R(x,w) = 1 and x(w) = 1 to mean the same thing. Any candidate
for an NP-complete language can be used to build a candidate for SAT (via NP
reductions) and that is why we focus on that.

4.1 Non-interactive Zero-Knowledge Candidates

A NIZK candidate Π = (Setup,Prove,Verify,Sim) is composed of the following
p.p.t. algorithms:

– Setup(1λ) → crs: The setup algorithm is a randomized algorithm that takes
as input the security parameter and outputs a common reference string crs.

– Prove(crs, x, w) → π: The proving algorithm is a randomized algorithm that
takes as input a common reference string crs, an instance x in the language
SAT and a witness w such that R(x,w) = 1. The algorithm outputs a proof
string π.

– Verify(crs, x, π) → {0, 1}: The deterministic verification algorithm takes as
input a common reference string crs, an instance x and a string π and it
outputs from the set {0, 1}.

– Sim(1λ, x) → (c̃rs, π̃): The randomized Sim algorithm (short for simulator)
takes as an input an instance x and outputs a common reference string c̃rs
along with a simulated proof string π̃.

Remark 1. Wherever unspecified, the strings such as crs, π e.t.c. lie in {0, 1}∗.

Completeness. We say that a NIZK candidate Π is complete if the following
property is satisfied. For any instance x in SAT and its witness w such that
R(x,w) = 1 it holds that:

Pr[crs ← Setup(1λ), π ← Prove(crs, x, w),Verify(crs, x, π) = 1] ≥ 1 − negl(λ)

Here the probability is taken over coins of the algorithms of Π

δs–Soundness. We define two notion of soundness:

Adaptive Soundness: For any non-uniform p.p.t adversary A consider the fol-
lowing experiment:

1. Run crs ← Setup(1λ).
2. Adversary outputs (x, π) ← A(1λ, crs).
3. Output 1 if x /∈ SAT and Verify(crs, x, π) = 1.

We say that the candidate Π is (adaptive) δs−sound if the probability that
the above experiment (over coins of all algorithms of the candidate and the
adversary) outputs 1 is at most δs.



Simultaneous Amplification 623

Non-adaptive Soundness: For any non uniform p.p.t adversary A and any
instance x /∈ SAT with |x| = poly(λ), consider the following experiment:

1. Run crs ← Setup(1λ).
2. Adversary outputs π ← A(1λ, crs).
3. Output 1 if Verify(crs, x, π) = 1.

We say that the candidate Π is (non-adaptive)-δs sound if the probability that
the above experiment (over coins of all algorithms of the candidate and the
adversary) outputs 1 is at most δs.

Remark 2. Wherever unspecified we will refer to the adaptive soundness of any
candidate.

δz−Zero Knowledge. We say that a NIZK candidate Π is δz−zero knowledge
if the following property is satisfied. For any instance x and a witness w such
that R(x,w) = 1, and all p.p.t adversaries A

|Pr[crs ← Setup(1λ),A(crs, x, π ← Prove(crs, x, w)) = 1]−

Pr[(crs, π) ← Sim(1λ, x),A(crs, x, π) = 1]| ≤ δz(λ)

Here the probability is taken over coins of the algorithms of Π and the
adversary A.

Remark 3. In general, a NIZK candidate is not required to satisfy soundness or
zero knowledge. So, for example a candidate that outputs the witness in the
clear is also a valid candidate. We will specify soundness and zero-knowledge
properties when referring to them.

Remark 4. We say that a NIZK candidate is secure if it is negl(λ)−sound and
negl(λ)−zero knowledge for some negligible function negl.

Remark 5. (Length of Instance). We could also consider a definition where length
of instance is given as input to the Setup algorithm so that the argument system
can only be used for statements of that fixed length. In particular, it can also
be set as the security parameter. Our analysis can be easily extended for such a
definition. We omit introducing this parameter for simplicity.

NIWI Candidate. A non-interactive witness indistinguishable argument (NIWI)
candidate Π consists of three algorithms Setup, Prove and Verify with the same
syntax as for a NIZK candidate. It has same completeness and δs−soundness
property. Instead of δz−zero-knowledge property it has δw−witness indistin-
guishability requirement which is defined below.

δw–Witness Indistinguishability. We say that a NIWI candidate Π is
δw−witness indistinguishability if the following property is satisfied. For any
instance x and any valid witness w0, w1 such that R(x,wb) = 1 for b ∈ {0, 1},
and all (non-uniform) p.p.t adversaries A
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|Pr[crs ← Setup(1λ),A(crs, x, π ← Prove(crs, x, w0), w0, w1) = 1]−
Pr[crs ← Setup(1λ),A(crs, x, π ← Prove(crs, x, w1), w0, w1) = 1]| ≤ δw(λ)

Here the probability is taken over coins of the algorithms of Π and the adver-
sary A.

5 Verifiable Sharing for Statements

In this section, we define a new notion of sharing for SAT statements. We will
denote it with NPSS. A verifiable sharing scheme for statements NPSS consists
of the following p.p.t. algorithms:

– Setup(1λ) → pp: The setup algorithm takes as input the security parameter
and outputs public parameters pp.

– Share(pp, n, x, w) → (x1, ..., xn, w1, .., wn): The sharing algorithm takes as
input an instance x and a witness w such that R(x,w) = 1 along with number
of parties n and the public parameter pp. It outputs n instances (x1, .., xn)
along with valid corresponding witnesses {wi}i∈[n].

– Verify(pp, n, x, x1, .., xn) :→ {1, 0}: The Verify algorithm is a deterministic
algorithm that takes as input public parameter pp, any instance x, a number
n and a set of n instances xi for i ∈ [n]. It outputs from {0, 1}.

We require that a NPSS satisfy the following properties.

Correctness: We say a verifiable sharing scheme for statements in SAT is correct
if it happens for any satisfiable instance x in SAT having a witness w and n ∈ N,

Pr

⎡

⎢

⎢

⎣

Setup(1λ) → pp
Share(pp, n, x, w) → (x1, ..., xn, w1, .., wn)

R(xi, wi) = 1∀i ∈ [n]
Verify(pp, n, x, x1, ..., xn) = 1

⎤

⎥

⎥

⎦

≥ 1 − 2−λ (1)

Here the probability is only over the coins of Setup.
Next important property is of robustness for a threshold tNPSS,r. This prop-

erty says that if (x1, .., xn) be shared instances associated with x. Then if there
exists any set T of size tNPSS,r such that xi is in SAT for all i ∈ T , this implies
that x itself is satisfiable.

Robustness: This property says that for any instance x, number n ∈ N, any
sharing (x1, .., xn) and any T ⊆ [n] of size at least tNPSS,r: If ∃{wi}i∈T such that
Verify(pp, x, n, x1, .., xn) = 1 and R(xi, wi) = 1 for all i ∈ T , then there exists w
such that w is a witness of x. Formally, for any (even unbounded adversary A),
the following holds:

Pr

⎡

⎢

⎢

⎢

⎢

⎣

Setup(1λ) → pp
A(pp) → (x, x1, ..., xn)

Verify(pp, n, x, x1, ..., xn) = 1
∃wi, R(xi, wi) = 1∀i ∈ [T ]

�w,R(x,w) = 1

⎤

⎥

⎥

⎥

⎥

⎦

≤ 2−λ (2)
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Here the probability is over the coins of the Setup.
Finally, last property is that of simulatability for a threshold tNPSS,sim. In

layman terms it says that for any instance x, a set of tNPSS,sim witnesses do not
reveal anything about membership of x in the language SAT.

Simulatability: This property says that there exists a polynomial time simulator
Sim that takes as input any x ∈ SAT, n, and a set T ⊆ [n] of size less than
or equal to tNPSS,sim. It outputs simulated instance-shares Sim(pp, n, x, T ) →
(x1, .., xn, {wi}i∈T ). Then consider the following distributions:

Distribution 1.

– Run Setup(1λ) → pp
– Compute Share(pp, n, x, w) → (x1, ..., xn, w1, ..., xn)
– Output {pp, x, x1, ..., xn, {wi}i∈[T ]}

Distribution 2.

– Run Setup(1λ) → pp
– Compute Sim(pp, n, x, T ) → (x1, ..., xn, {wi}i∈T )
– Output {pp, x, x1, ..., xn, {wi}i∈[T ]}
Then it holds that for any polynomial time adversary A, the distinguishing gap
between these two distributions is negl(λ) for some negligible function negl.

Remark: In general, we ask Robustness and Simulatability property to hold
with respect to thresholds tNPSS,r and tNPSS,sim. Whenever required, we will
instantiate these values once and omit explicitly mentioning them for simplicity.

6 Instantiating Verifiable Sharing of Statements

This section is organized as follows. In Sect. 6.1 we describe an MPC Framework
that will be used to construct verifiable sharing scheme. In Sect. 6.2 we describe
how to instantiate the framework. Then in Sect. 6.3 we describe the construction.

6.1 Σ-Pre-processing MPC

In this section we define an MPC framework associated with a protocol Σ,
which we call Σ−pre-processing MPC. This framework will be used to instantiate
verifiable sharing of statements. Let F = {Fλ}λ∈N be a class of polynomial sized
circuits. Here the security parameter λ is the length of inputs to this family. Our
MPC framework consists of the following algorithms

– Preproc(y, n, 1�) → (y1, r1, ..., yn, rn): This randomized algorithm takes as
input the number of parties n, size of the function � and the input y. It
outputs pre-processed inputs and randomness y1, r1, ..., yn, rn. Here yi, ri is
viewed as input and randomness of the party Pi participating in the proto-
col Σ.
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– Eval(f, y1, r1, ..., yn, rn) → T : The deterministic Eval algorithm takes as
input the function f ∈ F|y| and n input-randomness pairs (yi, ri) for
i ∈ [n]. It outputs the entire emulated transcript of the protocol Σ
(run by n parties P1, .., Pn) to compute f using the inputs (y1, .., yn)
and the randomness (r1, .., rn). Let us represent the transcript as T =
{(i, j, k, Ti,j,k),Outi}i∈[n],j∈[n],k∈φ|f|,. Here Ti,j,k represents the message sent
by party Pi to Pj in round k. Here φ|f | denotes the number of rounds in Σ
and Outi denotes the output of Pi.

Notation: We now give some notation. Let T denote the transcript of the protocol
Σ run between n parties to compute any function f on the inputs {yi}i∈[n] using
randomness {ri}i∈[n]. We define by viewi the set containing the input yi, random-
ness ri and messages sent and received by the party i along with its output Outi.
More formally, we let viewi = {yi, ri, {Ti,j,k}j∈[n],k∈φ|f| ,Outi, {Tj,i,k}j∈[n],k∈φ|f|}.
Further, we say that for any party i, viewi is consistent with the transcript T if
the messages sent and received by party i are exactly equal to ones described in
the transcript T and Outi is also the output that occurs in the transcript.
Second, by VΣ,f,n() we denote a circuit that takes as input (i, viewi) for i ∈ [n]
and checks if the viewi is consistent with the protocol Σ computing f . If the
check passes it outputs 1 and 0 otherwise. That is, it internally emulates the
next message function and checks if all the outgoing messages of Pi are correctly
computed using the input and previous messages. We say that viewi is consistent
if VΣ,f,n(i, viewi) = 1.

Now we require the following properties from this framework.

Perfect Correctness:

Definition 5 (Perfect Correctness). For any input y ∈ {0, 1}∗, n ∈ N and
function f ∈ F|y|, consider the following experiment:

– Run Preproc(y, n, 1|f |) → (y1, r1, ..., yn, rn).
– Run Eval(f, y1, r1, ..., yn, rn) → T .
– Output 1 if Outi = f(y) for all i ∈ [n] and 0 otherwise.

We say that a Σ−preprocessing MPC is perfectly correct if Pr[Expt(y, n, f) =
1] = 1. Here the probability is taken over the coins of all the algorithms.

Perfect Privacy:

Definition 6 (Privacy for a threshold tΣ,sim). We say that the a
Σ−preprocessing MPC satisfies perfect privacy for a threshold tΣ,sim if there
exists a simulator Sim such that for any y ∈ {0, 1}∗, any f ∈ F|y| and any set
S of size less than or equal to tΣ,sim the following two experiments are compu-
tationally close.

Expt1

– Run Preproc(y, n, 1|y|) → (y1, r1, ..., yn, rn)
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– Run Eval(f, y1, r1, .., yn, rn) → T
– Output {viewi}i∈S

Expt2

– Output Sim(1|y|, f(y), n, S) → {viewi}i∈S

Robustness:

Definition 7 (Robustness for a threshold tΣ,r). We say that a Σ−preprocessing
MPC is robust if the following happens: Let f ∈ Fλ for any λ ∈ N be a function
such that f(y) �= 1 for all y ∈ {0, 1}λ. Then, given any number of parties n,
candidate transcript T and its consistent views {viewi}i∈S corresponding to some
set S ⊆ [n] of size tΣ,r, it holds that if VΣ,f,n(i, viewi) = 1 for all i ∈ S then,

Outi �= 1

for some i ∈ S

This intuitively means that a collusion of at most n − tΣ,r parties can’t force an
incorrect output onto honest parties.

6.2 Instantiating MPC Framework for tΣ,sim = �n/3�
and tΣ,r = �2n/3�

We cite [4] as the protocol. This protocol satisfies these three properties [2]:

1. Perfect correctness for 0 corruptions.
2. Perfect security for up to n/3 semi-honest corruptions.
3. Perfect robustness for up to n/3 corruptions.

The framework then works as follows. The Preproc algorithm takes as input the
witness w and secret shares it using additive secret sharing scheme to get shares
y1, .., yn. It also samples randomness for the parties (r1, .., rn) to participate in
a protocol computing f(Σiyi). The Eval algorithm emulates the protocol and
outputs the transcript.

Thus using [4] we can achieve robustness and perfect privacy properties.

6.3 Construction of Verifiable Sharing Scheme for Statements

In this section we construct Verifiable Sharing Scheme for Statements from
a Σ−pre-processing MPC ΔΣ with thresholds tΣ,r, tΣ,sim and a statistically
binding non-interactive commitment scheme Com. We describe the construction
below.

– Setup(1λ) : Run the setup of the commitment scheme Com.Setup(1λ) → pp.
– Share(pp, n, x, w) : The algorithm takes as input the number of parties n,

instance x and witness w along with commitment parameters pp. It runs the
algorithm described in Fig. 1 to output (x1, ..., xn, w1, .., wn).



628 V. Goyal et al.

Fig. 1. Description of Share algorithm

Fig. 2. Description of circuit xi

– Verify(pp, n, x, x1, ..., xn) : The Verify algorithm takes as input the instance
x and shares x1, .., xn and does the following (Fig. 2):

• Let f = R(x, ·) be the relation function hardwired with x. Check that
there exists strings ZT = {Zi, ZOut,i, Zi,j,k, Zj,i,k}i∈[n],j∈[n],k∈[φ|f|] in the
circuit descriptions.
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• Check that these commitments to the views Zview,i for i ∈ [n] are
consistent to a single commitment to a transcript ZT = {Zi, ZOut,i,
Zi,j,k, Zj,i,k}i∈[n],j∈[n],k∈[φ|f|]. Here each Zview,i = {Zi, ZOut,i, Zi,j,k,
Zj,i,k}j∈[n],k∈[φ|f|] for all i ∈ [n].

• If all the above checks pass output 1 otherwise output 0.

We prove the associated properties in the full version.

7 Technical Lemmas

Now we prove some technical lemmas useful for the rest of the paper.
We now present a hardcore set lemma that represents the soundness experi-

ment.

Lemma 2. Let F : {0, 1}λ → {0, 1}l be a function where l = poly(λ) and
E : {0, 1}λ+l+r(λ) → {0, 1} be a circuit of size e. Let δ ≥ ε ∈ (0, 1) and s, s′ > 0
be functions of λ. If for all circuits C : {0, 1}l(λ) → {0, 1}r(λ) of size s we have

Pr
u

$←−{0,1}λ

[E(u, F (u), C(F (u))) = 1] ≤ δ

Then there exists a set S of size |S| = (1 − δ)2λ and a polynomial soverhead(λ)
(independent of s, s′ and e) such that: For all circuits C ′ : {0, 1}l(λ) → {0, 1}r(λ)

of size less than s′ = sε(1−δ)
δ − e − soverhead

Pr
u

$←−S

[E(u, F (u), C ′(F (u))) = 1] ≤ ε

Proof. The proof strategy can be described as follows: we assume that there does
not exist a hardcore set of size (1 − δ)2λ for circuits of size less than s′. We use
this fact to construct a circuit of size s which contradicts the assumption made
in the theorem statement.

Formally, let us assume that the following happens: for every set S ⊂ {0, 1}λ

such that |S| = (1 − δ)2λ there exists a circuit CS of size s′,

Pr
u

$←−S

[E(u, F (u), CS(F (u))) = 1] ≥ ε

We now define two collections:

1. Collection of inputs X ⊆ {0, 1}λ. This collection is initialised to be empty
and stores the list of “solved inputs”. Here, we say that x ∈ {0, 1}λ is solved
by C, if E(F (x), C(F (x))) = 1.

2. Collection of circuits C which stores circuits of size s′. This collection is also
initialised to be empty and stores circuits that “solve” at least δ(1−ε) fraction
of input points.
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This collection C will later be used to build a circuit C[C] of size s such that
it will solve at least X. Contradiction will come from the fact |X| is greater
than 2λδ.
Both X and C are build iteratively as follows. Pick any set S1 of size (1− δ) · 2λ.
There exists a circuit C1 of size s′ such that Pr

u
$←−S1

[E(u, F (u), C1(F (u))) =

1] ≥ ε as per the hypothesis. Let X1 be the maximal subset of S1 of size at
least (1 − δ)ε2λ such that Pr

u
$←−X1

[E(u, F (u), C1(F (u))) = 1] = 1. The size

|X1| ≥ ε(1 − δ)2λ.
We now update X = X ∪ X1 and C = C ∪ C1.
This process is repeated t times (defined later) as follows.

1. Select a set Si of size at least (1 − δ)2λ ⊆ {0, 1}λ \ X.
2. Let Ci be a circuit of size s′ such that Pr

u
$←−Si

[E(u, F (u), Ci(F (u))) = 1] ≥ ε.

3. Let Xi be a maximal set of cardinality at least (1−δ)ε2λ, Pr
u

$←−Xi

[E(u, F (u),

Ci(F (u))) = 1] = 1.
4. Update C = C ∪ Ci and X = X ∪ Xi.

Define a circuit C[C] for C = (C1, .., Ct). On any input F (x) ∈ {0, 1}l(λ), it
checks if there exist i such that E(x, F (x), Ci(F (x))) = 1. If this is the case
it outputs Ci(F (x)), otherwise it outputs C1(F (x)). We now claim this process
cannot continue indefinitely. Observe the following:

1. |X| > t · ε · (1 − δ) · 2λ

2. |C[C]| ≤ ts′ + t · e + t · soverhead(λ), for some fixed polynomial soverhead

independent of s, s′ and e.

Thus we can achieve a contradiction if the following holds simultaneously.

1. |X| ≥ t · ε · (1 − δ) · 2λ ≥ δ2λ.
2. |C[C]| ≤ t · s′ + t · e + t · sovehead(λ) ≤ s.

This is because these conditions ensure that C[C] is a required circuit that
violates the hypothesis. For these conditions to happen we can set any s′ and t

satisfying, t ≥ 1−δ
δ·ε and s′ ≤ s−p(λ)

t − e − soverhead.

8 Sequential Repetition

In this section, we construct Π⊥ which is an analogue of parallel repetition.
It starts from δz-zero knowledge candidate, δs sound NIZK candidate and con-
structs (roughly) δn

z −zero knowledge and 1 − (1 − δs)n sound NIZK candidate
Π⊥. Note that these are the parameters for parallel repetition where soundness
and zero knowledge errors (parameters) are interchanged and that is why we call
it sequential repetition.
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Ingredient: We require a verifiable sharing scheme NPSS with the following prop-
erties:

– Perfect Correctness.
– Robustness holds if T = [n].
– Computational Simulatability as long as at most n−1 witnesses are revealed.

Such a scheme can be constructed by instantiating Σ−preprocessing MPC frame-
work with perfectly correct, information theoretically secure GMW protocol [14]
in the OT hybrid model [28]. This protocol satisfies information theoretic secu-
rity for n − 1 corruptions. More details can be found in the full version. We also
assume that the commitment scheme used in constructing NPSS uses perfectly
correct a public key encryption scheme PKE. We now describe our construction.

– Π⊥.Setup(1λ) :
• Run Π.Setup(1λ) → crsi for i ∈ [n].
• Run NPSS.Setup(1λ) → pp.
• Output crs = (pp, crs1, ...., crsn).

– Π⊥.Prove(crs, x, w) :
• Run NPSS.Share(pp, n, x, w) → (x1, ..., xn, w1, ..., wn)
• Run Π.Prove(crsi, xi, wi) → πi for i ∈ [n].
• Output π = (x1, ..., xn, π1, ...., πn).

– Π⊥.Verify(crs, x, π) :
• Parse π = (x1, ..., xn, π1, ...., πn).
• Run NPSS.Verify(pp, n, x, x1, ..., xn).
• Run Π.Verify(xi, wi) for i ∈ [n].
• Output 1 if all these steps pass. Output 0 otherwise.

Completeness. Completeness follows immediately from the completeness of Π.
(1 − (1 − δs)n)−soundness:

Theorem 11. Assuming PKE is perfectly correct and Π is δs−sound against
adversaries of size s, then for every 1 > ε > 0, Π⊥ is (1−(1−δs)n)+O(ε)−sound
against adversaries of size s′ = O(s·ε·δs/(1−δs))−poly(λ) for a fixed polynomial
poly.

Proof. Let C = (C1, ..., Cn) be the circuit attacking the soundness experiment.
First define a function:
F (r)

– Compute Π.Setup(1λ; r) → crs.
– Output crs.

Let pp ← NPSS.Setup(1λ). We fix pp, and we claim that soundness
holds with overwhelming probability over the coins for generating pp. Now,
C(F (u1), ..., F (un)) = x, x1, ..., xn, π1, ..., πn. Define the output of Ci as x, xi, πi.
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Denote c = δs. Let us recall the soundness experiment in detail.

– The challenger samples Π.Setup(1λ) → crsi for i ∈ [t]. Then it hands over
crs⊥ = (pp, crs1, .., crst)

– The adversary on input crs⊥ comes up with a proof π = (x1, .., xn, π1,
.., πn) and an instance x such that NPSS.Verify(pp, x, x1, .., xn) = 1,
Π.Verify(crsi, xi, πi) = 1 for i ∈ [n]. The adversary wins if x is unsatisfiable.

We begin by setting some notation for the rest of the proof.

– Define F (·) = Π.Setup(1λ, ·) : {0, 1}�rand(λ) → {0, 1}�crs(λ). Note that both
�crs, �rand are some polynomials.

– Let C = (C1, .., Cn) be the polynomial sized-circuit attacking the soundness
experiment. Each Ci : {0, 1}n�crs → {0, 1}�π+2·�x . Each Ci is thought to
output x, xi, πi. They have pp hardwired.

– Let E denote the circuit that on input (crsi, xi, πi) ∈ {0, 1}�crs+�pi does the
following. It checks that xi = xi[Zview,i, R(x, ·)] (as in the construction of
NPSS) and Π.Verify(crsi, xi, πi) = 1. Then it opens the commitment Zview,i

(using the secret-key corresponding to pp) and checks if the circuit xi /∈ SAT.
It outputs 1 if all these checks pass. Since the commitment can be opened in
poly(λ) time using the decryption algorithm, size of E is poly(n, λ).

Since Π is c−sound against adversaries of size s, for all circuits D of size s,

Pr
u

$←−{0,1}�rand

[E(u, F (u),D(F (u)) = 1] ≤ c

Thus there exists a hardcore set by Lemma 2 H of size (1 − c)2r(λ) such that
for any polynomial-sized circuit D′ with size s′ ≤ O(sεs′(1 − c)/c − soverhead −
poly(λ)),

Pr
u

$←−H

[E(u, F (u),D′(F (u)) = 1] ≤ εs′ (3)

for any 0 < εs′ < 1.
Define V to be the set {0, 1}r(λ)×....{0, 1}r(λ) (i.e. the set of randomness used

to sample all crsi for i ∈ [n]). For every set S ⊆ [n], define VS = A1 ×A2...×At,
where Ai = H if i ∈ S and Ai = {0, 1}r \ H otherwise. Note that V is a disjoint
union of {VS}S⊆[n].

For any set W , we define by BreakW the following event that is satisfied if
the following conditions are satisfied.

1. (u1, .., un) $←− W
2. Ci(F (u1), ..., F (un)) = (x, xi, πi) for all i ∈ [n].
3. Π.Verify(F (ui), xi, πi) = 1 for all i ∈ [n].
4. NPSS.Verify(pp, t, x, x1, .., xn) = 1
5. x /∈ SAT

Let,
Pr[BreakV ] = q

Then, note that,

Pr[BreakV ] = ΣS⊆[n] Pr[BreakVS
]|VS |/|V |
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We make the following two claims now.

Claim. ΣS⊆[n],|S|<n|VS |/|V | ≤ (1 − (1 − c)n).

Proof. Consider n independent random variables yi for i ∈ [n] where yi = 0
with probability c and 1 with probability 1 − c. The probability that y �= 1n is
= 1 − Pr[y = 1n]. Since each bit is independently chosen, the claim follows as
Pr[y = 1n] = (1 − c)n

Thus, S∗ = [n]. Pr[BreakV ] ≤ (1 − c)n · Pr[BreakVS∗ ] + (1 − (1 − c)n) Now we
claim that Pr[BreakVS∗ ] ≤ nεs′

Observe that Pr[BreakV ] = q ≤ (1 − c)n · Pr[BreakVS∗ ] + (1 − (1 − c)n)
Thus Pr[BreakVS∗ ] ≥ q − (1 − (1 − c)n) We now define another event Soundi.

1. (u1, .., un) $←− VS∗

2. Ci(F (u1), ..., F (un)) = (x, xi, πi) for all i ∈ [n].
3. Π.Verify(F (ui), xi, πi) = 1 for all i ∈ [n].
4. NPSS.Verify(pp, n, x, x1, .., xn) = 1
5. x /∈ SAT
6. xi /∈ SAT

Note that Pr[∪i∈S∗Soundi] ≥ Pr[BreakVS∗ ] due to robustness of NPSS scheme.
Thus by the union bound,

Σi∈S∗ Pr[Soundi] ≥ q − (1 − (1 − c)n)

as |S∗| = n, there exist i∗ such that,

Pr[Soundi∗ ] ≥ q − (1 − (1 − c)n)
n

Finally, define the event Finali∗

1. (u1, .., un) $←− VS∗

2. C∗
i (F (u1), ..., F (un)) = (x, x∗, π∗).

3. Π.Verify(F (ui∗), x∗, π∗) = 1.
4. Instance x∗ is of the form x∗ = x∗[Zview,i∗ , f ].
5. x∗ /∈ SAT.

As Finali is true whenever Soundi is, Pr[Finali] ≥ (q − (1 − (1 − c)n))/n.
This translates to the following

Pr
u1,..,un

$←−VS∗

[E(ui∗ , F (ui∗), Ci∗(F (u1), ..., F (un))) = 1] ≥ q − (1 − (1 − c)n)
n

This implies that there exists {ui}i	=i∗ such that:

Pr
ui∗

$←−VS∗

[E(u∗
i , F (ui∗), Ci∗(F (u1), ..., F (un))) = 1] ≥ q − (1 − (1 − c)n)

n
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The circuit Ci∗(u1, ..., ui∗−1, ·, ui∗+1, .., un) violates Eq. 3 if q > nεs′ + 1 −
(1 − c)n.
2 · δn

s −zero-knowledge.

Theorem 12. Assume that there exists a subexponentially secure public key
encryption and a NIZK candidate Π satisfying δz−zero-knowledge against adver-
saries of size SizeΠ where δz, 1 − δz > 2−λ/5. If SizeΠ > Size1ε

−2poly(λ) for
any 1 > ε > 0 and 0 < Size1 < 2λ/5 then the construction Π⊥ satisfies
2δn

z +O(nε+2−λc

)−witness indistinguishability against adversaries of size Size1.
Here poly is some fixed polynomial. c > 0 is a fixed constant.

We present the proof in the full version.

9 Amplifying Security When δs + δz < 1

Now we show the following theorem:

Theorem 13. Assume a subexponentially secure PKE scheme, and a NIZK can-
didate Π with δs−soundness and δz−zero-knowledge where δz, δs are any con-
stants in (0, 1) with δs + δz < 1 for all polynomial time adversaries, then there
exists a fully secure NIZK candidate against all polynomial time adversaries.

We prove this is as follows:

1. First we use parallel repetition with repetition parameter n1 = log λ. Note
that in that case, we get δs,1 = δn1

s + O(n1ε1) soundness and δz,1 = 1 −
(1 − δz)n

1 + O(n1ε1) from the theorems on parallel repetition. This holds for
all adversaries of size Size1 = Size · ε2/poly(λ) where Size is the size of the
adversaries for which Π is secure and ε is chosen and poly is fixed.

2. Then we apply sequential repetition on the new parameters. Let a =
log2(1/δs) and b = log2(1/(1 − δz)). Note that as δs + δz < 1, b < a. Then
δs,1 = 1/λa + O(ε log λ) and δz,1 = 1 − 1/λb + O(ε log λ). We now apply
sequential repetition with parameter n2 = λa. Once we do this, following
happens.

– δs,2, which is the soundness of the resulting candidate, becomes δs,2 =
1 − (1 − δs,1)n2 + O(n2ε2). It holds against all adversaries of size Size2 =
Size1 ·ε22/poly(λ), where ε2 is chosen. Thus this is 1−e−1+O(poly(λ)ε+ε2)
if ε, ε2 are sufficiently small. Here poly is some fixed polynomial.

– On the other hand zero-knowledge becomes δz,2 = 2 · δn2
z,1 +O(n2ε2). This

is equal to δn2
z,1 = (1−1/λb+log λε)λb . This is equal to e−λa−b

+poly(λ)ε if ε

is sufficiently small. Thus this results in δz,2 = 2·e−λa−b

+O(poly(λ)ε+ε3).
Here poly is some fixed polynomial.

Finally, we apply parallel repetition once again with parameter n3 = λ to
obtain the result.
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– δs,3, which is the soundness of the resulting candidate, becomes δs,3 =
δn3
s,2 + O(n3ε3). It holds against all adversaries of size Size3 = Size2 ·

ε23/poly(λ), where ε3 is chosen. This is 2−cλ + O(poly(λ)(ε + ε2 + ε3)) if
ε2, ε is chosen sufficiently small. Here poly is some fixed polynomial and
c > 0 is some constant.

– On the other hand zero-knowledge becomes δz,3 = 1−(1−δz,2)λ+O(λε3).
This is bounded by λ·δz,2+O(λε3) = O(2−λc

1 +poly(λ)ε+ε2+ε3) by union
bound. Here poly is some fixed polynomial and c1 > 0 is some constant.

This proves the result.

Acknowledgements. Aayush Jain would like to thank Ashutosh Kumar and Alain
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1 The Alan Turing Institute, London, UK
jbell@posteo.com, agascon@turing.ac.uk

2 University of Warwick, Coventry, UK
3 Georgetown University, Washington, D.C., USA

Abstract. This work studies differential privacy in the context of the
recently proposed shuffle model. Unlike in the local model, where the
server collecting privatized data from users can track back an input to
a specific user, in the shuffle model users submit their privatized inputs
to a server anonymously. This setup yields a trust model which sits in
between the classical curator and local models for differential privacy.
The shuffle model is the core idea in the Encode, Shuffle, Analyze (ESA)
model introduced by Bittau et al. (SOPS 2017). Recent work by Cheu et
al. (EUROCRYPT 2019) analyzes the differential privacy properties of
the shuffle model and shows that in some cases shuffled protocols provide
strictly better accuracy than local protocols. Additionally, Erlingsson et
al. (SODA 2019) provide a privacy amplification bound quantifying the
level of curator differential privacy achieved by the shuffle model in terms
of the local differential privacy of the randomizer used by each user.

In this context, we make three contributions. First, we provide an opti-
mal single message protocol for summation of real numbers in the shuffle
model. Our protocol is very simple and has better accuracy and commu-
nication than the protocols for this same problem proposed by Cheu et
al. Optimality of this protocol follows from our second contribution, a
new lower bound for the accuracy of private protocols for summation of
real numbers in the shuffle model. The third contribution is a new ampli-
fication bound for analyzing the privacy of protocols in the shuffle model
in terms of the privacy provided by the corresponding local randomizer.
Our amplification bound generalizes the results by Erlingsson et al. to a
wider range of parameters, and provides a whole family of methods to
analyze privacy amplification in the shuffle model.
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1 Introduction

Most of the research in differential privacy focuses on one of two extreme mod-
els of distribution. In the curator model, a trusted data collector assembles
users’ sensitive personal information and analyses it while injecting random noise
strategically designed to provide both differential privacy and data utility. In the
local model, each user i with input xi applies a local randomizer R on her data to
obtain a message yi, which is then submitted to an untrusted analyzer. Crucially,
the randomizer R guarantees differential privacy independently of the analyzer
and the other users, even if they collude. Separation results between the local
and curator models are well-known since the early research in differential pri-
vacy: certain learning tasks that can be performed in the curator model cannot
be performed in the local model [23] and, furthermore, for those tasks that can
be performed in the local model there are provable large gaps in accuracy when
compared with the curator model. An important example is the summation of
binary or (bounded) real-valued inputs among n users, which can be performed
with O(1) noise in the curator model [14] whereas in the local model the noise
level is Ω(

√
n) [7,11]. Nevertheless, the local model has been the model of choice

for recent implementations of differentially private protocols by Google [16],
Apple [25], and Microsoft [13]. Not surprisingly, these implementations require
a huge user base to overcome the high error level.

The high level of noise required in the local model has motivated a recent
search for alternative models. For example, the Encode, Shuffle, Analyze (ESA)
model introduces a trusted shuffler that receives user messages and permutes
them before they are handled to an untrusted analyzer [9]. A recent work by
Cheu et al. [12] provides a formal analytical model for studying the shuffle model
and protocols for summation of binary and real-valued inputs, essentially recov-
ering the accuracy of the trusted curator model. The protocol for real-valued
inputs requires users to send multiple messages, with a total of O(

√
n) single bit

messages sent by each user. Also of relevance is the work of Ishai et al. [18] show-
ing how to combine secret sharing with secure shuffling to implement distributed
summation, as it allows to simulate the Laplace mechanism of the curator model.
Instead we focus on the single-message shuffle model.

Another recent work by Erlingsson et al. [15] shows that the shuffling prim-
itive provides privacy amplification, as introducing random shuffling in local
model protocols reduces ε to ε/

√
n.

A word of caution is in place with respect to the shuffle model, as it differs
significantly from the local model in terms of the assumed trust. In particular, the
privacy guarantee provided by protocols in the shuffle model degrades with the
fraction of users who deviate from the protocol. This is because, besides relying
on a trusted shuffling step, the shuffle model requires users to provide messages
carefully crafted to protect each other’s privacy. This is in contrast with the
curator model, where this responsibility is entirely held by the trusted curator.
Nevertheless, we believe that this model is of interest both for theoretical and
practical reasons. On the one hand it allows to explore the space in between the
local and curator model, and on the other hand it leads to mechanisms that are
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easy to explain, verify, and implement; with limited accuracy loss with respect
to the curator model.

In this work we do not assume any particular implementation of the shuffling
step. Naturally, alternative implementations will lead to different computational
trade-offs and trust assumptions. The shuffle model allows to disentangle these
aspects from the precise computation at hand, as the result of shuffling the
randomized inputs submitted by each user is required to be differentially private,
and therefore any subsequent analysis performed by the analyzer will be private
due to the postprocessing property of differential privacy.

1.1 Overview of Our Results

In this work we focus on single-message shuffle model protocols. In such proto-
cols (i) each user i applies a local randomizer R on her input xi to obtain a single
message yi; (ii) the messages (y1, . . . , yn) are shuffled to obtain (yσ(1), . . . , yσ(n))
where σ is a randomly selected permutation; and (iii) an analyzer post-processes
(yσ(1), . . . , yσ(n)) to produce an outcome. It is required that the mechanism
resulting from the combination of the local randomizer R and the random shuffle
should provide differential privacy.

A Protocol for Private Summation. Our first contribution is a single-
message shuffle model protocol for private summation of (real) numbers xi ∈
[0, 1]. The resulting estimator is unbiased and has standard deviation Oε,δ(n1/6).

To reduce the domain size, our protocol uses a fixed-point representation,
where users apply randomized rounding to snap their input xi to a multiple x̄i

of 1/k (where k = Oε,δ(n1/3)). We then apply on x̄i a local randomizer RPH for
computing private histograms over a finite domain of size k +1. The randomizer
RPH is simply a randomized response mechanism: with (small) probability γ
it ignores x̄i and outputs a uniformly random domain element, otherwise it
reports its input x̄i truthfully. There are hence about γn instances of RPH

whose report is independent to their input, and whose role is to create what we
call a privacy blanket, which masks the outputs which are reported truthfully.
Combining RPH with a random shuffle, we get the equivalent of a histogram
of the sent messages, which, in turn, is the pointwise sum of the histogram of
approximately (1 − γ)n values x̄i sent truthfully and the privacy blanket, which
is a histogram of approximately γn random values.

To see the benefit of creating a privacy blanket, consider the recent shuffle
model summation protocol by Cheu et al. [12]. This protocol also applies ran-
domized rounding. However, for privacy reasons, the rounded value needs to be
represented in unary across multiple 1-bit messages, which are then fed into a
summation protocol for binary values. The resulting error of this protocol is O(1)
(as is achieved in the curator model). However, the use of unary representation
requires each user to send Oε(

√
n) 1-bit messages (whereas in our protocol every

user sends a single O(log n)-bit message). We note that Cheu et al. also present
a single message protocol for real summation with O(

√
n) error.
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A Lower Bound for Private Summation. We also provide a matching
lower bound showing that any single-message shuffled protocol for summation
must exhibit mean squared error of order Ω(n1/3). In our lower bound argument
we consider i.i.d. input distributions, for which we show that without loss of
generality the local randomizer’s image is the interval [0, 1], and the analyzer is
a simple summation of messages. With this view, we can contrast the privacy and
accuracy of the protocol. On the one hand, the randomizer may need to output
y ∈ [0, 1] on input x ∈ [0, 1] such that |x − y| is small, to promote accuracy.
However, this interferes with privacy as it may enable distinguishing between
the input x and a potential input x′ for which |x′ − y| is large.

Together with our upper bound, this result shows that the single-message
shuffle model sits strictly between the curator and the local models of differen-
tial privacy. This had been shown by Cheu et al. [12] in a less direct way by
showing that (i) the private selection problem can be solved more accurately
in the curator model than the shuffle model, and (ii) the private summation
problem can be solved more accurately in the shuffle model than in the local
model. For (i) they rely on a generic translation from the shuffle to the local
model and known lower bounds for private selection in the local model, while
our lower bound operates directly in the shuffle model. For (ii) they propose a
single-message protocol that is less accurate than ours.

Privacy Amplification by Shuffling. Lastly, we prove a new privacy ampli-
fication result for shuffled mechanisms. We show that shuffling n copies of an
ε0-LDP local randomizer with ε0 = O(log(n/ log(1/δ))) yields an (ε, δ)-DP
mechanism with ε = O((ε0 ∧ 1)eε0

√
log(1/δ)/n), where a ∧ b = min{a, b}. The

proof formalizes the notion of a privacy blanket that we use informally in the pri-
vacy analysis of our summation protocol. In particular, we show that the output
distribution of local randomizers (for any local differentially private protocol)
can be decomposed as a convex combination of an input-independent blanket
distribution and an input-dependent distribution.

Privacy amplification plays a major role in the design of differentially pri-
vate mechanisms. These include amplification by subsampling [23] and by itera-
tion [17], and the recent seminal work on amplification via shuffling by Erlingsson
et al. [15]. In particular, Erlingsson et al. considered a setting more general than
ours which allows for interactive protocols in the shuffle model by first generat-
ing a random permutation of the users’ inputs and then sequentially applying
a (possibly different) local randomizer to each element in the permuted vector.
Moreover, each local randomizer is chosen depending on the output of previous
local randomizers. To distinguish this setting from ours, we shall call the setting
of Erlingsson et al. shuffle-then-randomize and ours randomize-then-shuffle. We
also note that both settings are equivalent when there is a single local randomizer
that will be applied to all the inputs. Throughout this paper, unless we explic-
itly say otherwise, the term shuffle model refers to the randomize-then-shuffle
setting.
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Fig. 1. The local (left) and shuffle (right) models of Differential Privacy. Dotted lines
indicate differentially private values with respect to the dataset �x = (x1, . . . , xn), where
user i holds xi.

In the shuffle-then-randomize setting, Erlingsson et al. provide an amplifi-
cation bound with ε = O(ε0

√
log(1/δ)/n) for ε0 = O(1). Our result in the

randomize-then-shuffle setting recovers this bound for the case of one random-
izer, and extends it to ε0 which is logarithmic in n. For example, using the new
bound, it is possible to shuffle a local randomizer with ε0 = O(log(ε2n/ log(1/δ)))
to obtain a (ε, δ)-DP mechanism with ε = Θ(1). Cheu et al. [12] also proved that
a level of LDP ε0 = O(log(ε2n/ log(1/δ))) suffices to achieve (ε, δ)-DP mecha-
nisms through shuffling, though only for binary randomized response in the
randomize-then-shuffle setting. Our amplification bound captures the regimes
from both [15] and [12], thus providing a unified analysis of privacy amplifica-
tion by shuffling for arbitrary local randomizers in the randomize-then-shuffle
setting. Our proofs are also conceptually simpler than those in [12,15] since we
do not rely on privacy amplification by subsampling to obtain our results.

2 Preliminaries

Our notation is standard. We denote domains as X, Y, Z and randomized mech-
anism as M, P, R, S. For denoting sets and multisets we will use uppercase
letters A, B, etc., and denote their elements as a, b, etc., while we will denote
tuples as �x, �y, etc. Random variables, tuples and sets are denoted by X, �X and
X respectively. We also use greek letters μ, ν, ω for distributions. Finally, we
write [k] = {1, . . . , k}, a∧ b = min{a, b}, [u]+ = max{u, 0} and N for the natural
numbers.

2.1 The Curator and Local Models of Differential Privacy

Differential privacy is a formal approach to privacy-preserving data disclosure
that prevents attempts to learn private information about specific to individuals
in a data release [14]. The definition of differential privacy requires that the
contribution xi of an individual to a dataset �x = (x1, . . . , xn) has not much
effect on what the adversary sees. This is formalized by considering a dataset
�x′ that differs from �x only in one element, denoted �x � �x′, and requiring that
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the views of a potential adversary when running a mechanism on inputs �x and
�x′ are “indistinguishable”. Let ε ≥ 0 and δ ∈ [0, 1]. We say that a randomized
mechanism M : Xn → Y is (ε, δ)-DP if

∀�x � �x′,∀E ⊆ Y : P[M(�x) ∈ E] ≤ eε
P[M(�x′) ∈ E] + δ.

As mentioned above, different models of differential privacy arise depend-
ing on whether one can assume the availability of a trusted party (a curator)
that has access to the information from all users in a centralized location. This
setup is the one considered in the definition above. The other extreme scenario
is when each user privatizes their data locally and submits the private values
to a (potentially untrusted) server for aggregation. This is the domain of local
differential privacy1 (see Fig. 1, left), where a user owns a data record x ∈ X and
uses a local randomizer R : X → Y to submit the privatized value R(x). In this
case we say that the local randomizer is (ε, δ)-LDP if

∀x, x′,∀E ⊆ Y : P[R(x) ∈ E] ≤ eε
P[R(x′) ∈ E] + δ.

The key difference is that in this case we must protect each user’s data, and
therefore the definition considers changing a user’s value x to another arbitrary
value x′.

Moving from curator DP to local DP can be seen as effectively redefining the
view that an adversary has on the data during the execution of a mechanism. In
particular, if R is an (ε, δ)-LDP local randomizer, then the mechanism M : Xn →
Y

n given by M(x1, . . . , xn) = (R(x1), . . . ,R(xn)) is (ε, δ)-DP in the curator
sense. The single-message shuffle model sits in between these two settings.

2.2 The Single-Message Shuffle Model

The single-message shuffle model of differential privacy considers a data collector
that receives one message yi from each of the n users as in the local model of
differential privacy. The crucial difference with the local model is that the shuffle
model assumes that a mechanism is in place to provide anonymity to each of the
messages, i.e. the data collector is unable to associate messages to users. This is
equivalent to assuming that, in the view of the adversary, these messages have
been shuffled by a random permutation unknown to the adversary (see Fig. 1,
right).

Following the notation in [12], we define a single-message protocol P in the
shuffle model to be a pair of algorithms P = (R,A), where R : X → Y, and
A : Yn → Z. We call R the local randomizer, Y the message space of the protocol,
A the analyzer of P, and Z the output space. The overall protocol implements a
mechanism P : Xn → Z as follows. Each user i holds a data record xi, to which
she applies the local randomizer to obtain a message yi = R(xi). The messages
yi are then shuffled and submitted to the analyzer. We write S(y1, . . . , yn) to
denote the random shuffling step, where S : Yn → Y

n is a shuffler that applies
1 Of which, in this paper, we only consider the non-interactive version for simplicity.



644 B. Balle et al.

a random permutation to its inputs. In summary, the output of P(x1, . . . , xn) is
given by A ◦ S ◦ Rn(�x) = A(S(R(x1), . . . ,R(xn))).

From a privacy point of view, our threat model assumes that the analyzer
A is applied to the shuffled messages by an untrusted data collector. Therefore,
when analyzing the privacy of a protocol in the shuffle model we are interested
in the indistinguishability between the shuffles S ◦ Rn(�x) and S ◦ Rn(�x′) for
datasets �x � �x′. In this sense, the analyzer’s role is to provide utility for the
output of the protocol P, whose privacy guarantees follow from those of the
shuffled mechanism M = S ◦ Rn : Xn → Y

n by the post-processing property of
differential privacy. That is, the protocol P is (ε, δ)-DP whenever the shuffled
mechanism M is (ε, δ)-DP.

When analyzing the privacy of a shuffled mechanism we assume the shuffler
S is a perfectly secure primitive. This implies that a data collector observing
the shuffled messages S(y1, . . . , yn) obtains no information about which user
generated each of the messages. An equivalent way to state this fact, which
will sometimes be useful in our analysis of shuffled mechanisms, is to say that
the output of the shuffler is a multiset instead of a tuple. Formally, this means
that we can also think of the shuffler as a deterministic map S : Y

n → N
Y
n

which takes a tuple �y = (y1, . . . , yn) with n elements from Y and returns the
multiset Y = {y1, . . . , yn} of its coordinates, where N

Y
n denotes the collection of

all multisets over Y with cardinality n. Sometimes we will refer to such multisets
Y ∈ N

Y
n as histograms to emphasize the fact that they can be regarded functions

Y : Y → N counting the number of occurrences of each element of Y in Y .

2.3 Mean Square Error

When analyzing the utility of shuffled protocols for real summation we will use
the mean square error (MSE) as accuracy measure. The mean squared error of
a randomized protocol P(�x) for approximating a deterministic quantity f(�x) is
given by MSE(P, �x) = E[(P(�x)−f(�x))2], where the expectation is taken over the
randomness of P. Note that when the protocol is unbiased the MSE is equivalent
to the variance, since in this case we have E[P(�x)] = f(�x) and therefore

MSE(P, �x) = E[(P(�x) − E[P(�x)])2] = V[P(�x)].

In addition to the MSE for a fixed input, we also consider the worst-case
MSE over all possible inputs MSE(P), and the expected MSE on a distribution
over inputs MSE(P, �X). These quantities are defined as follows:

MSE(P) = sup
�x

MSE(P, �x),

MSE(P, �X) = E�x∼�X[MSE(P, �x)].

3 The Privacy of Shuffled Randomized Response

In this section we show a protocol for n parties to compute a private histogram
over the domain [k] in the single-message shuffle model. The local randomizer of
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Algorithm 1. Private Histogram: Local Randomizer RPH
γ,k,n

Public Parameters: γ ∈ [0, 1], domain size k, and number of parties n
Input: x ∈ [k]
Output: y ∈ [k]

Sample b ← Ber(γ)
if b = 0 then

Let y ← x
else

Sample y ← Unif([k])

return y

our protocol is shown in Algorithm 1, and the analyzer simply builds a histogram
of the received messages. The randomizer is parameterized by a probability γ,
and consists of a k-ary randomized response mechanism that returns the true
value x with probability 1 − γ, and a uniformly random value with probability
γ. This randomizer has been studied and used (in the local model) in several
previous works [8,21,22]. We discuss how to set γ to satisfy differential privacy
next.

3.1 The Blanket Intuition

In each execution of Algorithm 1 a subset B of approximately γn parties will
submit a random value, while the remaining parties will submit their true value.
The values sent by parties in B form a histogram Y1 of uniformly random values
and the values sent by the parties not in B correspond to the true histogram
Y2 of their data. An important observation is that in the shuffle model the
information obtained by the server is equivalent to the histogram Y1 ∪ Y2. This
observation is a simple generalization of the observation made by Cheu et al. [12]
that shuffling of binary data corresponds to secure addition. When k > 2, shuf-
fling of categorical data corresponds to a secure histogram computation, and in
particular secure addition of histograms. In summary, the information collected
by the server in an execution corresponds to a histogram Y with approximately
γn random entries and (1 − γ)n truthful entries, which as mentioned above we
decompose as Y = Y1 ∪ Y2.

To achieve differential privacy we need to set the value γ of Algorithm 1
so that Y changes by an appropriately bounded amount when computed on
neighboring datasets where only a certain party’s data (say party n) changes.
Our privacy argument does not rely on the anonymity of the set B and thus
we can assume, for the privacy analysis, that the server knows B. We further
assume in the analysis that the server knows the inputs from all parties except
the nth one, which gives her the ability to remove from Y the values submitted
by any party who responded truthfully among the first n − 1.

Now consider two datasets of size n that differ on the input from the nth
party. In an execution where party n is in B we trivially get privacy since the
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value submitted by this party is independent of its input. Otherwise, party n
will be submitting their true value xn, in which case the server can determine Y2

up to the value xn using that she knows (x1, . . . , xn−1). Hence, a server trying
to break the privacy of party n observes Y1 ∪ {xn}, the union of a random
histogram with the input of this party. Intuitively, the privacy of the protocol
boils down to setting γ so that Y1, which we call the random blanket of the local
randomizer RPH

γ,k,n, appropriately “hides” xn.
As we will see in Sect. 5, the intuitive notion of the blanket of a local random-

izer can be formally defined for arbitrary local randomizers using a generalization
of the notion of total variation distance from pairs to sets of distributions. This
will allow us to represent the output distribution of any local randomizer R(x)
as a mixture of the form (1 − γ)νx + γω, for some 0 < γ < 1 and probabil-
ity distributions νx and ω, of which we call ω the privacy blanket of the local
randomizer R.

3.2 Privacy Analysis of Algorithm 1

Let us now formalize the above intuition, and prove privacy for our protocol for
an appropriate choice of γ. In particular, we prove the following theorem, where
the assumption ε ≤ 1 is only for technical convenience. A more general approach
to obtain privacy guarantees for shuffled mechanisms is provided in Sect. 5.

Theorem 1. The shuffled mechanism M = S ◦ RPH
γ,k,n is (ε, δ)-DP for any

k, n ∈ N, ε ≤ 1 and δ ∈ (0, 1] such that γ = max{14k log(2/δ)
(n−1)ε2 , 27k

(n−1)ε} < 1.

Proof. Let �x, �x′ ∈ [k]n be neighboring databases of the form �x = (x1, x2, . . . , xn)
and �x′ = (x1, x2, . . . , x

′
n). We assume that the server knows the set B of users

who submit random values, which is equivalent to revealing to the server a
vector �b = (b1, . . . , bn) of the bits b sampled in the execution of each of the local
randomizers. We also assume the server knows the inputs from the first n − 1
parties.

Hence, we define the view ViewM of the server on a realization of the protocol
as the tuple ViewM(�x) = (Y, �x∩,�b) containing:

1. A multiset Y = M(�x) = {y1, . . . , yn} with the outputs yi of each local ran-
domizer.

2. A tuple �x∩ = (x1, . . . , xn−1) with the inputs from the first n − 1 users.
3. The tuple �b = (b1, . . . , bn) of binary values indicating which users submitted

their true values.

Proving that the protocol is (ε, δ)-DP when the server has access to all this
information will imply the same level of privacy for the shuffled mechanism
S ◦ RPH

γ,k,n by the post-processing property of differential privacy.
To show that ViewM satisfies (ε, δ)-DP it is enough to prove

PV∼ViewM(�x)

[
P[ViewM(�x) = V]
P[ViewM(�x′) = V]

≥ eε

]
≤ δ.
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We start by fixing a value V in the range of ViewM and computing the
probability ratio above conditioned on V = V .

Consider first the case where V is such that bn = 1, i.e. party n submits a
random value independent of her input. In this case privacy holds trivially since
P[ViewM(�x) = V ] = P[ViewM(�x′) = V ]. Hence, we focus on the case where
party n submits her true value (bn = 0). For j ∈ [k], let nj be the number of
messages received by the server with value j after removing from Y any truthful
answers submitted by the first n − 1 users. With our notation above, we have
nj = Y1(j) + I[xn = j] and

∑k
j=1 nj = |B| + 1 for the execution with input �x.

Now assume, without loss of generality, that xn = 1 and x′
n = 2. As xn = 1, we

have that

P[ViewM(�x) = V ] =
( |B|

n1 − 1, n2, ..., nk

)
γ|B|(1 − γ)n−|B|

k|B| ,

corresponding to the probability of a particular pattern �b of users sampling from
the blanket times the probability of obtaining a particular histogram Y1 when
sampling |B| elements uniformly at random from [k]. Similarly, using that x′

n = 2
we have

P[ViewM(�x′) = V ] =
( |B|

n1, n2 − 1, ..., nk

)
γ|B|(1 − γ)n−|B|

k|B| .

Therefore, taking the ratio between the last two probabilities we find that, in
the case bn = 0,

P[ViewM(�x) = V ]
P[ViewM(�x′) = V ]

=
n1

n2
.

Now note that for V ∼ ViewM(�x) the count n2 = n2(V) follows a binomial
distribution N2 with n − 1 trials and success probability γ/k, and n1(V) − 1 =
N1 − 1 follows the same distribution. Thus, we have

PV∼ViewM(�x)

[
P[ViewM(�x) = V]
P[ViewM(�x′) = V]

≥ eε

]
= P

[
N1

N2
≥ eε

]
,

where N1 ∼ Bin
(
n − 1, γ

k

)
+ 1 and N2 ∼ Bin

(
n − 1, γ

k

)
.

We now bound the probability above using a union bound and the multi-
plicative Chernoff bound. Let c = E[N2] = γ(n−1)

k . Since N1/N2 ≥ eε implies
that either N1 ≥ ceε/2 or N2 ≤ ce−ε/2, we have

P

[
N1

N2
≥ eε

]
≤ P

[
N1 ≥ ceε/2

]
+ P

[
N2 ≤ ce−ε/2

]

= P

[
N2 ≥ ceε/2 − 1

]
+ P

[
N2 ≤ ce−ε/2

]

= P

[
N2 − E[N1] ≥ c

(
eε/2 − 1 − 1

c

)]

+ P

[
N2 − E[N2] ≤ c(e−ε/2 − 1)

]
.
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Applying the multiplicative Chernoff bound to each of these probabilities then
gives that

P

[
N1

N2
≥ eε

]
≤ exp

(

− c

3

(
eε/2 − 1 − 1

c

)2
)

+ exp
(
− c

2
(1 − e−ε/2)2

)
.

Assuming ε ≤ 1, both of the right hand summands are less than or equal to δ
2 if

c =
γ(n − 1)

k
≥ max

{
14 log

(
2
δ

)

ε2
,
27
ε

}

.

Indeed, for the second term this follows from 1 − e−ε/2 ≥ (1 − e−1/2)ε ≥ ε/
√

7
for ε ≤ 1. For the first term we use that c ≥ 27

ε implies eε/2 − 1 − 1
c ≥ 25

54ε and
14 ≥ 3·542

252 .

Two remarks about this result are in order. First, we should emphasize that
the assumption of ε ≤ 1 is only required for simplicity when using Chernoff’s
inequality to bound the probability that the privacy loss random variable is
large. Without any restriction on ε, a similar result can be achieved by replacing
Chernoff’s inequality with Bennett’s inequality [10, Theorem 2.9] to account
for the variance of the privacy loss random variable in the tail bound. Here we
decide not to pursue this route because the ad-hoc privacy analysis of Theorem 1
is superseded by the results in Sect. 5 anyway. The second observation about
this result is that, with the choice of γ made above, the local randomizer RPH

γ,k,n

satisfies ε0-LDP with

ε0 = O

(
log

(
nε2

log(1/δ)
− k

))
= O

(
log

(
nε2

log(1/δ)

(
1 − γ

14

)))
.

This is obtained according to the formula provided by Lemma6 in Sect. 5.1.
Thus, we see that Theorem 1 can be regarded as a privacy amplification state-
ment showing that shuffling n copies of an ε0-LDP local randomized with
ε0 = Oδ(log(nε2)) yields a mechanism satisfying (ε, δ)-DP. In Sect. 5.1 we will
show that this is not coincidence, but rather an instance of a general privacy
amplification result.

4 Optimal Summation in the Shuffle Model

4.1 Upper Bound

In this section we present a protocol for the problem of computing the sum of
real values xi ∈ [0, 1] in the single-message shuffle model. Our protocol is param-
eterized by values c, k, and the number of parties n, and its local randomizer
and analyzer are shown in Algorithms 2 and 3, respectively.
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Algorithm 2. Local Randomizer Rc,k,n

Public Parameters: c, k, and number of parties n
Input: x ∈ [0, 1]
Output: y ∈ {0, 1, . . . , k}
Let x̄ ← �xk� + Ber(xk − �xk�) � x̄ is the encoding of x with precision k

Sample b ← Ber
(

c(k+1)
n

)

if b = 0 then
Let y ← x̄

else
Sample y ← Unif({0, 1, . . . , k})

return y

Algorithm 3. Analyzer Ac,k,n

Public Parameters: c, k, and number of parties n
Input: Multiset {yi}i∈[n], with yi ∈ {0, 1, . . . , k}
Output: z ∈ [0, 1]

Let ẑ ← 1
k

∑n
i=1 yi

Let z ← DeBias(ẑ), where DeBias(w) =
(
w − c(k+1)

2

)
/

(
1 − c(k+1)

n

)

return z

The protocol uses the protocol depicted in Algorithm 1 in a black-box man-
ner. To compute a differentially private approximation of

∑
i xi, we fix a value k.

Then we operate on the fixed-point encoding of each input xi, which is an integer
x̄i ∈ {0, . . . , k}. That is, we replace xi with its fixed-point approximation x̄i/k.
The protocol then applies the randomized response mechanism in Algorithm1
to each x̄i to submit a value yi to compute a differentially private histogram
of the (y1, . . . , yn) as in the previous section. From these values the server can
approximate

∑
i xi by post processing, which includes a debiasing standard step.

The privacy of the protocol described in Algorithms 2 and 3 follows directly from
the privacy analysis of Algorithm1 given in Sect. 3.

Regarding accuracy, a crucial point in this reduction is that the encoding x̄i

of xi is via randomized rounding and hence unbiased. In more detail, as shown
in Algorithm 2, the value x is encoded as x̄ = �xk� + Ber(xk − �xk�). This
ensures that E[x̄/k] = E[x] and that the mean squared error due to rounding
(which equals the variance) is at most 1

4k2 . The local randomizer either sends
this fixed-point encoding or a random value in {0, 1, . . . , k} with probabilities
1 − γ and γ, respectively, where (following the analysis in the previous section)
we set γ = k+1

n c. Note that the mean squared error when the local randomizer
submits a random value is at most 1

2 . This observations lead to the following
accuracy bound.
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Theorem 2. For any ε ≤ 1, δ ∈ (0, 1] and n ∈ N, there exist parameters c, k
such that Pc,k,n is (ε, δ)-DP and

MSE(Pc,k,n) = O

(

n1/3 · log2/3(1/δ)
ε4/3

)

.

Proof. The following bound on MSE(Pc,k,n) follows from the observations above:
unbiasedness of the estimator computed by the analyzer and randomized round-
ing, and the bounds on the variance of our randomized response.

MSE(Pc,k,n) = sup
�x

E[(DeBias(ẑ) −
∑

i

xi)2]

= sup
�x

E

⎡

⎣
(
∑

i

(DeBias(yi/k) − xi)

)2
⎤

⎦

= sup
�x

∑

i

E

[
(DeBias(yi/k) − xi)

2
]

= sup
�x

∑

i

V [DeBias(yi/k)]

=
n

(1 − γ)2
sup
x1

V[y1/k]

≤ n

(1 − γ)2

(
1 − γ

4k2
+

γ

2

)

≤ n

(1 − γ)2

(
1

4k2
+

c(k + 1)
2n

)
.

Choosing the parameter k = (n/c)1/3 minimizes the sum in the above expression
and provides a bound on the MSE of the form O(c2/3n1/3). Plugging in c =
γ n

k+1 = O
(

log(1/δ)
ε2

)
from our analysis in the previous section (Theorem 1) yields

the bound in the statement of the theorem.

Note that as our protocol corresponds to an unbiased estimator, the MSE is
equal to the variance in this case. Using this observation we immediately obtain
the following corollary for estimation of statistical queries in the single-message
shuffle model.

Corollary 1. For every statistical query q : X �→ [0, 1], ε ≤ 1, δ ∈ (0, 1] and
n ∈ N, there is an (ε, δ)-DP n-party unbiased protocol for estimating 1

n

∑
i q(xi)

in the single-message shuffle model with standard deviation O
(

log1/3(1/δ)
n5/6ε2/3

)
.

4.2 Lower Bound

In this section we show that any differentially private protocol P for the problem
of estimating

∑
i xi in the single-message shuffle model must have MSE(P) =
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Ω(n1/3) This shows that our protocol from the previous section is optimal, and
gives a separation result for the single-message shuffle model, showing that its
accuracy lies between the curator and local models of differential privacy.

Reduction in the i.i.d. Setting. We first show that when the inputs to the
protocol P are sampled i.i.d. one can assume, for the purpose of showing a lower
bound, that the protocol P for estimating

∑
i xi is of a simplified form. Namely,

we show that the local randomizer can be taken to have output values in [0, 1],
and its analyzer simply adds up all received messages.

Lemma 1. Let P = (R,A) be an n-party protocol for real summation in the
single-message shuffle model. Let X be a random variable on [0, 1] and suppose
that users sample their inputs from the distribution �X = (X1, . . . ,Xn), where each
Xi is an independent copy of X. Then, there exists a protocol P ′ = (R′,A′) such
that:

1. A′(y1, . . . , yn) =
∑n

i=1 yi and2 Im(R′) ⊆ [0, 1].
2. MSE(P ′, �X) ≤ MSE(P, �X).
3. If the shuffled mechanism S ◦ Rn is (ε, δ)-DP, then S ◦ R′n is also (ε, δ)-DP.

Proof. Consider the post-processed local randomizer R′ = f ◦ R where f(y) =
E[X|R(X) = y]. In Bayesian estimation, f is called the posterior mean estimator,
and is known to be a minimum MSE estimator [19]. Since Im(R′) ⊆ [0, 1], we
have a protocol P ′ satisfying claim 1.

Next we show that MSE(P ′, �X) ≤ MSE(P, �X). Note that the analyzer A in
protocol P can be seen as an estimator of Z =

∑
i Xi given observations from

�Y = (Y1, . . . ,Yn), where Yi = R(Xi). Now consider an arbitrary estimator h of
Z given the observation �Y = �y. We have

MSE(h, �y) = E[(h(�y) − Z)2|�Y = �y]

= E[Z2|�Y = �y] − 2h(�y)E[Z|�Y = �y] + h(�y)2.

It follows from minimizing MSE(h, �y) with respect to h that the minimum MSE
estimator of Z given �Y is h(�y) = E[Z|�Y = �y]. Hence, by linearity of expectation,
and the fact that the Yi are independent,

E[Z|�Y = �y] =
n∑

i=1

E[Xi|�Y = �y] =
n∑

i=1

E[Xi|Yi = yi] =
n∑

i=1

f(yi).

Therefore, we have shown that P ′ = (R′,A′) implements a minimum MSE
estimator for Z given (R(X1), . . . ,R(Xn)), and in particular MSE(P ′, �X) ≤
MSE(P, �X).

Part 3 of the lemma follows from the standard post-processing property of
differential privacy by observing that the output of S ◦ R′n(�x) can be obtained
by applying f to each element in the output of S ◦ Rn(�x).
2 Here we use Im(R′) to denote the image of the local randomizer R′.
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Proof of the Lower Bound. It remains to show that, for any protocol P =
(R,A) satisfying the conditions of Lemma1, we can find a tuple of i.i.d. random
variables �X such that MSE(P, �X) = Ω(n1/3). Recall that by virtue of Lemma 1
we can assume, without loss of generality, that R is a mapping from [0, 1] into
itself, A sums its inputs, and �X = (X1, . . . ,Xn) where the Xi are i.i.d. copies of
some random variable X. We first show that under these assumptions we can
reduce the search for a lower bound on MSE(P, �X) to consider only the expected
square error of an individual run of the local randomizer.

Lemma 2. Let P = (R,A) be an n-party protocol for real summation in the
single-message shuffle model such that R : [0, 1] → [0, 1] and A is summation.
Suppose �X = (X1, . . . ,Xn), where the Xi are i.i.d. copies of some random variable
X. Then,

MSE(P, �X) ≥ nE[(R(X) − X)2].

Proof. The result follows from an elementary calculation:

MSE(P, �X) = E

⎡

⎢
⎣

⎛

⎝
∑

i∈[n]

R(Xi) − Xi

⎞

⎠

2
⎤

⎥
⎦

=
∑

i

E[(R(Xi) − Xi)2] +
∑

i�=j

E[(R(Xi) − Xi)(R(Xj) − Xj)]

=
∑

i

E[(R(Xi) − Xi)2] +
∑

i�=j

E[R(Xi) − Xi]2

≥ nE[(R(X) − X)2].

Therefore, to obtain our lower bound it will suffice to find a distribution on
[0, 1] such that if R : [0, 1] → [0, 1] is a local randomizer for which the protocol
P = (R,A) is differentially private, then R has expected square error Ω(n−2/3)
under that distribution. We start by constructing such distribution and then
show that it satisfies the desired properties.

Consider the partition of the unit interval [0, 1] into k disjoint subintervals of
size 1/k, where k ∈ N is a parameter to be determined later. We will take inputs
from the set I = {m/k − 1/2k | m ∈ [k]} of midpoints of these intervals. For
any a ∈ I we denote by I(x) the subinterval of [0, 1] containing a. Given a local
randomizer R : [0, 1] → [0, 1] we define the probability pa,b = P[R(a) ∈ I(b)]
that the local randomizer maps an input a to the subinterval centered at b for
any a, b ∈ I.

Now let X ∼ Unif(I) be a random variable sampled uniformly from I. The
following observations are central to the proof of our lower bound. First observe
that R maps X to a value outside of its interval with probability 1

k

∑
b∈I(1−pb,b).

If this event occurs, then R(X) incurs a squared error of at least 1/(2k)2, as the
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absolute error will be at least half the width of an interval. Similarly, when R
maps an input a to a point inside an interval I(b) with a �= b, the squared error
incurred is at least (|b−a|−1/2k)2, as the error is at least the distance between
the two interval midpoints minus half the width of an interval. The next lemma
encapsulates a useful calculation related to this observation.

Lemma 3. For any b ∈ I = {m/k − 1/2k | m ∈ [k]} we have

1
k

∑

a∈I\{b}

(
|a − b| − 1

2k

)2

≥ 1
48

(
1 − 1

k2

)
.

Proof. Let b = m/k − 1/2k for some m ∈ [k]. Then,

1
k

∑

a∈I\{b}

(
|a − b| − 1

2k

)2

=
1
k3

∑

i∈[k]\{m}

(
|i − m| − 1

2

)2

≥ 1
4k3

∑

i∈[k]\{m}
(i − m)2 =

1
4k3

∑

i∈[k]

(i − m)2,

where we used (u − 1/2)2 ≥ u2/4 for u ≥ 1. Now let U ∼ Unif([k]) and observe
that for any m ∈ [k] we have

∑

i∈[k]

(i − m)2 ≥
∑

i∈[k]

(i − E[U])2 = kV[U] =
k3 − k

12
.

Now we can combine the two observations about the error of R under X
into a lower bound for its expected square error. Subsequently we will show how
the output probabilities occurring in this bound are related under differential
privacy.

Lemma 4. Let R : [0, 1] → [0, 1] be a local randomizer and X ∼ Unif(I) with
I = {m/k − 1/2k | m ∈ [k]}. Then,

E[(R(X) − X)2] ≥
∑

b∈I

min
{

1 − pb,b

4k3
,

1
48

(
1 − 1

k2

)
min
a∈I

pa,b

}
.

Proof. The bound in obtained by formalizing the two observations made above
to obtain two different lower bounds for E[(R(X) − X)2] and then taking their
minimum. Our first bound follows directly from the discussion above:

E[(R(X) − X)2] =
∑

b∈I

E[(R(b) − b)2]P[X = b] =
1
k

∑

b∈I

E[(R(b) − b)2]

≥ 1
k

∑

b∈I

(1 − pb,b) · 1
(2k)2

=
∑

b∈I

1 − pb,b

4k3
.
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Our second bound follows from the fact that the squared error is at least (|b −
a| − 1

2k )2 if X = a and R(a) ∈ I(b), for a, b ∈ I such that a �= b:

E[(R(X) − X)2] =
1
k

∑

b∈I

E[(R(b) − b)2]

≥ 1
k

∑

b∈I

∑

a∈I\{b}
pa,b

(
|b − a| − 1

2k

)2

≥ 1
k

∑

b∈I

(min
a∈I

pa,b)
∑

a∈I\{b}

(
|b − a| − 1

2k

)2

≥
∑

b∈I

(min
a∈I

pa,b)
1
48

(
1 − 1

k2

)
,

where the last inequality uses Lemma 3. Finally, we get

E[(R(X) − X)2] ≥ min

{
∑

b∈I

1 − pb,b

4k3
,
∑

b∈I

(min
a∈I

pa,b)
1
48

(
1 − 1

k2

)}

≥
∑

b∈I

min
{

1 − pb,b

4k3
,

1
48

(
1 − 1

k2

)
min
a∈I

pa,b

}
.

Lemma 5. Let R : [0, 1] → [0, 1] be a local randomizer such that the shuffled
protocol M = S ◦ Rn is (ε, δ)-DP with δ < 1/2. Then, for any a, b ∈ I, a �= b,
either pb,b < 1 − e−ε/2 or pa,b ≥ (1/2 − δ)/n.

Proof. If pb,b < 1− e−ε/2 then the proof is done. Otherwise, consider the neigh-
boring datasets �x = (a, . . . , a) and �x′ = (b, a, . . . , a). Recall that the output
of M(�x) is the multiset obtained from the coordinates of (R(x1), . . . ,R(xn)).
By considering the event that this multiset contains no elements from I(b), the
definition of differential privacy gives

P[M(�x) ∩ I(b) = ∅] ≤ eε
P[M(�x′) ∩ I(b) = ∅] + δ. (1)

As P[M(�x) ∩ I(b) = ∅] = (1 − pa,b)n and P[M(�x′) ∩ I(b) = ∅] = (1 − pb,b)(1 −
pa,b)n−1 ≤ (1 − pb,b), we get from (1) that

(1 − pa,b)n ≤ (1 − pb,b)eε + δ.

As pb,b ≥ 1 − e−ε/2 we get that pa,b ≥ 1 − (1/2 + δ)1/n holds. Finally, pa,b ≥
(1/2 − δ)/n follows from the fact that

(
1 − 1

n

(
1
2

− δ

))n

= 1 −
(

1
2

− δ

)
+

n − 1
2n

(
1
2

− δ

)2

− · · ·

≥ 1 −
(

1
2

− δ

)
=

1
2

+ δ,
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which uses that the terms in the binomial expansion are alternating in sign and
decreasing in magnitude.

We can now choose k = �n1/3� and combine Lemmas 2, 4 and 5 to obtain
our lower bound.

Theorem 3. Let P be an (ε, δ)-DP n-party protocol for real summation on [0, 1]
in the one-message shuffle model with δ < 1/2. Then, MSE(P) = Ω(n1/3).

Proof. By the previous lemmas, taking �X = (X1, . . . ,Xn) with independent Xi ∼
Unif(I) we have

MSE(P, �X) ≥ n
∑

b∈I

min
{

1 − pb,b

4k3
,

1
48

(
1 − 1

k2

)
min
a∈I

pa,b

}

≥ n
∑

b∈I

min
{

e−ε

8k3
,

1
48n

(
1 − 1

k2

)(
1
2

− δ

)}

= nk min
{

e−ε

8k3
,

1
48n

(
1 − 1

k2

)(
1
2

− δ

)}
.

Therefore, taking k = �n1/3� yields MSE(P, �X) = Ω(n1/3). Finally, the result
follows from observing that a lower bound for the expected MSE implies a lower
bound for worst-case MSE:

MSE(P) = sup
�x∈[0,1]n

MSE(P, �x) ≥ sup
�x∈In

MSE(P, �x) ≥ MSE(P, �X) = Ω(n1/3).

5 Privacy Amplification by Shuffling

In this section we prove a new privacy amplification result for shuffled mech-
anisms. In particular, we will show that shuffling n copies of an ε0-LDP local
randomizer with ε0 = O(log(n/ log(1/δ))) yields an (ε, δ)-DP mechanism with
ε = O((ε0 ∧1)eε0

√
log(1/δ)/n), where a∧ b = min{a, b}. For this same problem,

the following privacy amplification bound was obtained by Erlingsson et al. in
[15], which we state here for the randomize-then-shuffle setting (cf. Sect. 1.1).

Theorem 4 ([15]). If R is a ε0-LDP local randomizer with ε0 < 1/2, then the
shuffled protocol S ◦ Rn is (ε, δ)-DP with

ε = 12ε0

√
log(1/δ)

n

for any n ≥ 1000 and δ < 1/100.
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Note that our result recovers the same dependencies on ε0, δ and n in
the regime ε0 = O(1). However, our bound also shows that privacy ampli-
fication can be extended to a wider range of parameters. In particular, this
allows us to show that in order to design a shuffled (ε, δ)-DP mechanism
with ε = Θ(1) it suffices to take any ε0-LDP local randomizer with ε0 =
O(log(ε2n/ log(1/δ))). For shuffled binary randomized response, a dependence
of the type ε0 = O(log(ε2n/ log(1/δ))) between the local and central privacy
parameters was obtained in [12] using an ad-hoc privacy analysis. Our results
show that this amplification phenomenon is not intrinsic to binary randomized
response, and in fact holds for any pure LDP local randomizer. Thus, our bound
captures the privacy amplification regimes from both [15] and [12], thus provid-
ing a unified analysis of privacy amplification by shuffling.

To prove our bound, we first generalize the key idea behind the analysis of
shuffled randomized response given in Sect. 3. This idea was to ignore any users
who respond truthfully, and then show that the responses of users who respond
randomly provide privacy for the response submitted by a target individual. To
generalize this approach beyond randomized response we introduce the notions of
total variation similarity γR and blanket distribution ωR of a local randomizer
R. The similarity γR measures the probability that the local randomizer will
produce an output that is independent of the input data. When this happens,
the mechanism submits a sample from the blanket probability distribution ωR.
In the case of Algorithm 1 in Sect. 3, the parameter γRP H is the probability
γ of ignoring the input and submitting a sample from ωRP H = Unif([k]), the
uniform distribution on [k]. We define these objects formally in Sect. 5.1, then
give further examples and also study the relation between γR and the privacy
guarantees of R.

The second step of the proof is to extend the argument that allows us to ignore
the users who submit truthful responses in the privacy analysis of randomized
response. In the general case, with probability 1 − γR the local randomizer’s
outcome depends on the data but is not necessarily deterministic. Analyzing
this step in full generality – where the randomizer is arbitrary and the domain
might be uncountable – is technically challenging. We address this challenge
by leveraging a characterization of differential privacy in terms of hockey-stick
divergences that originated in the formal methods community to address the
verification for differentially private programs [4–6] and has also been used to
prove tight results on privacy amplification by subsampling [1]. As a result of
this step we obtain a privacy amplification bound in terms of the expectation of
a function of a sum of i.i.d. random variables. Our final bound is obtained by
using a concentration inequality to bound this expectation.

The bound we obtain with this method provides a relation of the form
F (ε, ε0, γ, n) ≤ δ, where F is a complicated non-linear function. By simplifying
this function F further we obtain the asymptotic amplification bounds sketched
above, where a bound for γ in terms of ε0 is used. One can also obtain better
mechanism-dependent bounds by computing the exact γ for a given mechanism.
In addition, fixing all but one of the parameters of the problem we can numer-
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ically solve the inequality F (ε, ε0, γ, n) ≤ δ to obtain exact relations between
the parameters without having to provide appropriate constants for the asymp-
totic bounds in closed-form. We experimentally showcase the advantages of this
approach to privacy calibration in Sect. 6.

Due to space constraints, mathematical proofs from this section are omitted
from the present version of the paper. All missing proofs can be found in the
extended technical report [2].

5.1 Blanket Decomposition

The goal of this section is to provide a canonical way of decomposing any local
randomizer R : X → Y as a mixture between an input-dependent and an input-
independent mechanism. More specifically, let μx denote the output distribution
of R(x). Given a collection of distributions {μx}x∈X we will show how to find a
probability γ, a distribution ω and a collection of distribution {νx}x∈X such that
for every x ∈ X we have the mixture decomposition μx = (1 − γ)νx + γω. Since
the component ω does not depend on x, this decomposition shows that R(x) is
input oblivious with probability γ. Furthermore, our construction provides the
largest possible γ for which this decomposition can be attained.

To motivate the construction sketched above it will be useful to recall a well-
known property of the total variation distance. Given probability distributions
μ, μ′ over Y, this distance is defined as

T(μ‖μ′) = sup
E⊆Y

(μ(E) − μ′(E)) =
1
2

∫
|μ(y) − μ′(y)|dy.

Note how here we use the notation μ(y) to denote the “probability” of an indi-
vidual outcome, which formally is only valid when the space Y is discrete so
that every singleton is an atom. Thus, in the case where Y is a continuous space
we take μ(y) to denote the density of μ at y, where the density is computed
with respect to some base measure on Y. We note that this abuse of notation is
introduced for convenience and does not restrict the generality of our results.

The total variation distance admits a number of alternative characterizations.
The following one is particularly useful:

T(μ‖μ′) = 1 −
∫

min{μ(y), μ′(y)}dy. (2)

This shows that T(μ‖μ′) can be computed in terms of the total probability
mass that is simultaneously under μ and μ′. Equation 2 can be derived from the
interpretation of the total variation distance in terms of couplings [24]. Using
this characterization it is easy to construct mixture decompositions of the form
μ = (1 − γ)ν + γω, μ′ = (1 − γ)ν′ + γω, where γ = 1 − T(μ‖μ′) and ω(y) =
min{μ(y), μ′(y)}/γ. These decompositions are optimal in the sense that γ is
maximal and ν and ν′ have disjoint support.

Extending the ideas above to the case with more than two distributions will
provide the desired decomposition for any local randomizer. In particular, we
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Fig. 2. Illustration of the blanket distribution ω and the data-dependent distributions
νx corresponding to a 1-LDP Laplace mechanism with inputs on [0, 1].

define the total variation similarity of a set of distributions Λ = {μx}x∈X over
Y as

γΛ =
∫

inf
x

μx(y)dy.

We also define the blanket distribution of Λ as the distribution given by ωΛ(y) =
infx μx(y)/γΛ. In this way, given a set of distributions Λ = {μx}x∈X with total
variation similarity γ and blanket distribution ω, we obtain a mixture decom-
position μx = (1 − γ)νx + γω for each distribution in Λ, where it is immediate
to check that νx = (μx − γω)/(1 − γ) is indeed a probability distribution. It
follows from this construction that γ is maximal since one can show that, by the
definition of ω, for each y there exists an x such that νx(y) = 0. Thus, it is not
possible to increase γ while ensuring that νx are probability distributions.

Accordingly, we can identify a local randomizer R with the set of distributions
{R(x)}x∈X and define the total variation similarity γR and the blanket distri-
butions ωR of the mechanism. As usual, we shall just write γ and ω when the
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randomizer is clear from the context. Figure 2 plots the blanket distribution and
the data-dependent distributions corresponding to the local randomizer obtained
by the Laplace mechanism with inputs on [0, 1].

The next result provides expressions for the total variation similarity of three
important randomizers: k-ary randomized response, the Laplace mechanism on
[0, 1] and the Gaussian mechanism on [0, 1]. Note that two of these randomiz-
ers offer pure LDP while the third one only offers approximate LDP, showing
that the notion of total variation similarity and blanket distribution are widely
applicable.

Lemma 6. The following hold:

1. γ = k/(eε0 + k − 1) for ε0-LDP randomized response on [k],
2. γ = e−ε0/2 for ε0-LDP Laplace on [0, 1],
3. γ = 2P[N(0, σ2) ≤ −1/2] for a Gaussian mechanism with variance σ2 on

[0, 1].

This lemma illustrates how the privacy parameters of a local randomizer
and its total variation similarity are related in concrete instances. As expected,
the probability of sampling from the input-independent blanket grows as the
mechanisms become more private. For arbitrary ε0-LDP local randomizers we
are able to show that the probability γ of ignoring the input is at least e−ε0 .

Lemma 7. The total variation similarity of any ε0-LDP local randomizer sat-
isfies γ ≥ e−ε0 .

5.2 Privacy Amplification Bounds

Now we proceed to prove the amplification bound stated at the beginning of
Sect. 5. The key ingredient in this proof is to reduce the analysis of the privacy
of a shuffled mechanism to the problem of bounding a function of i.i.d. ran-
dom variables. This reduction is obtained by leveraging the characterization of
differential privacy in terms of hockey-stick divergences.

Let μ, μ′ be distributions over Y. The hockey-stick divergence of order eε

between μ and μ′ is defined as

Deε(μ‖μ′) =
∫

[μ(y) − eεμ′(y)]+dy,

where [u]+ = max{0, u}. Using these divergences one obtains the following useful
characterization of differential privacy.

Theorem 5 ([6]). A mechanism M : X
n → Y is (ε, δ)-DP if and only if

Deε(M(�x)‖M(�x′)) ≤ δ for any �x � �x′.

This result is straightforward once one observes the identity
∫

[μ(y) − eεμ′(y)]+dy = sup
E⊆Y

(μ(E) − eεμ′(E)) .
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An important advantage of the integral formulation is that enables one to
reason over individual outputs as opposed to sets of outputs for the case of (ε, δ)-
DP. This is also the case for the usual sufficient condition for (ε, δ)-DP in terms
of a high probability bound for the privacy loss random variable. However, this
sufficient condition is not tight for small values of ε [3], so here we prefer to work
with the divergence-based characterization.

The first step in our proof of privacy amplification by shuffling is to provide
a bound for the divergence Deε(M(�x)‖M(�x′)) for a shuffled mechanism M =
S ◦ Rn in terms of a random variable that depends on the blanket of the local
randomizer. Let R : X → Y be a local randomizer with blanket ω. Suppose
W ∼ ω is a Y-valued random variable sampled from the blanket. For any ε ≥ 0
and x, x′ ∈ X we define the privacy amplification random variable as

Lx,x′
ε =

μx(W) − eεμx′(W)
ω(W)

,

where μx (resp. μx′) is the output distribution of R(x) (resp. R(x′)). This defi-
nition allows us to obtain the following result.

Lemma 8. Let R : X → Y be a local randomizer and let M = S ◦ Rn be the
shuffling of R. Fix ε ≥ 0 and inputs �x � �x′ with xn �= x′

n. Suppose L1, L2, . . . are
i.i.d. copies of Lx,x′

ε and γ is the total variation similarity of R. Then we have
the following:

Deε(M(�x)‖M(�x′)) ≤ 1
γn

n∑

m=1

(
n

m

)
γm(1 − γ)n−m

E

[
m∑

i=1

Li

]

+

. (3)

The bound above can also be given a more probabilistic formulation as fol-
lows. Let M ∼ Bin(n, γ) be the random variable counting the number of users
who sample from the blanket of R. Then we can re-write (3) as

Deε(M(�x)‖M(�x′)) ≤ 1
γn

E

[
M∑

i=1

Li

]

+

,

where we use the convention
∑m

i=1 Li = 0 when m = 0.
Leveraging this bound to analyze the privacy of a shuffled mechanism requires

some information about the privacy amplification random variables of an arbi-
trary local randomizer. The main observation here is that Lx,x′

ε has negative
expectation. This means we can expect E[

∑m
i=1 Li]+ to decrease with m since

adding more variables will shift the expectation of
∑m

i=1 Li towards −∞, thus
making it less likely to be above 0. Since m represents the number of users who
sample from the blanket, this reinforces the intuition that having more users
sample from the blanket makes it easier for the data of the nth user to be hid-
den among these samples. The following lemma will help us make this precise
by providing the expectation of Lx,x′

ε as well as its range and second moment.



The Privacy Blanket of the Shuffle Model 661

Lemma 9. Let R : X → Y be an ε0-LDP local randomizer with total variation
similarity γ. For any ε ≥ 0 and x, x′ ∈ X the privacy amplification random
variable L = Lx,x′

ε satisfies:

1. EL = 1 − eε,
2. γe−ε0(1 − eε+2ε0) ≤ L ≤ γeε0(1 − eε−2ε0),
3. EL2 ≤ γeε0(e2ε + 1) − 2γ2eε−2ε0 .

Now we can use the information about the privacy amplification random
variables of an ε0-LDP local randomizer provided by the previous lemma to
give upper bounds for E[

∑m
i=1 Li]+. This can be achieved by using concentration

inequalities to bound the tails of
∑m

i=1 Li. Based on the information provided
by Lemma 9 there are multiple ways to achieve this. In this section we unfold
a simple strategy based on Hoeffding’s inequality that only uses points (1) and
(2) above. In Sect. 5.3 we discuss how to improve these bounds. For now, the
following result will suffice to obtain a privacy amplification bound for generic
ε0-LDP local randomizers.

Lemma 10. Let L1, . . . , Lm be i.i.d. bounded random variables with ELi = −a ≤
0. Suppose b− ≤ Li ≤ b+ and let b = b+ − b−. Then the following holds:

E

[
m∑

i=1

Li

]

+

≤ b2

4a
e− 2ma2

b2 .

By combining Lemmas 8, 9 and 10 we immediately obtain the main theorem
of this section.

Theorem 6. Let R : X → Y be an ε0-LDP local randomizer and let M = S◦Rn

be the corresponding shuffled mechanism. Then M is (ε, δ)-DP for any ε and δ
satisfying

(eε + 1)2(eε0 − e−ε0)2

4n(eε − 1)
e
−Cn

(
1

eε0 ∧ (eε−1)2

(eε+1)2(eε0−e−ε0 )2

)
≤ δ, (4)

where C = 1 − e−2 ≈ 0.86.

While it is easy to numerically test or solve (4), extracting manageable
asymptotics from this bound is less straightforward. The following corollary mas-
sages this expression to distill insights about privacy amplification by shuffling
for generic ε0-LDP local randomizers.

Corollary 2. Let R : X → Y be an ε0-LDP local randomizer and let M = S◦Rn

be the corresponding shuffled mechanism. If ε0 ≤ log(n/ log(1/δ))/2, then M is
(ε, δ)-DP with ε = O((1 ∧ ε0)eε0

√
log(1/δ)/n).
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5.3 Improved Amplification Bounds

There are at least two ways in which we can improve upon the privacy amplifica-
tion bound in Theorem 6. One is to leverage the moment information about the
privacy amplification random variables provided by point (3) in Lemma 9. The
other is to compute more precise information about the privacy amplification
random variables for specific mechanisms instead of using the generic bounds
provided by Lemma 9. In this section we give the necessary tools to obtain these
improvements, which we then evaluate numerically in Sect. 6.

Hoeffding’s inequality provides concentration for sums of bounded random
variables. As such, it is easy to apply because it requires little information on
the behavior of the individual random variables. On the other hand, this sim-
plicity can sometimes provide sub-optimal results, especially when the random
variables being added have standard deviation which is smaller than their range.
In this case one can obtain better results by applying one of the many concen-
tration inequalities that take the variance of the summands into account. The
following lemma takes this approach by applying Bennett’s inequality to bound
the quantity E[

∑m
i=1 Li]+.

Lemma 11. Let L1, . . . , Lm be i.i.d. bounded random variables with ELi = −a ≤
0. Suppose Li ≤ b+ and EL2i ≤ c. Then the following holds:

E

[
m∑

i=1

Li

]

+

≤ b+

am log
(
1 + ab+

c

)e
− mc

b2+
φ

(
ab+

c

)
,

where φ(u) = (1 + u) log(1 + u) − u.

This results can be combined with Lemmas 7, 8 and 9 to obtain an alternative
privacy amplification bound for generic ε0-LDP local randomizers to the one
provided in Theorem6. However, the resulting bound is cumbersome and does
not have a nice closed-form like the one in Theorem 6. Thus, instead of stating
the bound explicitly we will evaluate it numerically in the following section.

The other way in which we can provide better privacy bounds is by making
them mechanism specific. Lemma 6 already gives exact expression for the total
variation similarity γ of three local randomizers. To be able to apply Hoeffding’s
(Lemma 10) and Bennett’s (Lemma 11) inequalities to these local randomizers we
need information about the range and the second moment of the corresponding
privacy amplification random variables. The following results provide this type
of information for randomized response and the Laplace mechanism.

Lemma 12. Let R : [k] → [k] be the k-ary ε0-LDP randomized response mecha-
nism. Let γ = k/(eε0 +k−1) be the total variation similarity of R (cf. Lemma 6).
For any ε ≥ 0 and x, x′ ∈ X, x �= x′, the privacy amplification random variable
L = Lx,x′

ε satisfies:

1. −(1 − γ)keε ≤ L − γ(1 − eε) ≤ (1 − γ)k,
2. EL2 = γ(2 − γ)(1 − eε)2 + (1 − γ)2k(1 + e2ε).
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Lemma 13. Let R : [0, 1] → R be the ε0-LDP Laplace mechanism R(x) =
x + Lap(1/ε0). For any ε ≥ 0 and x, x′ ∈ X the privacy amplification random
variable L = Lx,x′

ε satisfies:

1. e−ε0/2(1 − eε+ε0) ≤ L ≤ eε0/2(1 − eε−ε0),
2. EL2 ≤ e2ε+1

3 (2eε0/2 + e−ε0) − 2eε(2e−ε0/2 − e−ε0).

Again, instead of deriving a closed-form expression like (4) specialized to
these two mechanisms, we will numerically evaluate the advantage of using
mechanism-specific information in the bounds in the next section. Note that
we did not provide a version of these results for the Gaussian mechanism for
which we showed how to compute γ in Sect. 5.1. The reason for this is that in
this case the resulting privacy amplification random variables are not bounded.
This precludes us from using the Hoeffding and Bennett bounds to analyze the
privacy amplification in this case. Approaches using concentration bounds that
do not rely on boundedness will be explored in future work.

6 Experimental Evaluation

In this section we provide a numerical evaluation of the privacy amplification
bounds derived in Sect. 5. We also compare the results obtained with our tech-
niques to the privacy amplification bound of Erlingsson et al. [15].

To obtain values of ε and ε0 from bounds on δ of the form given in Theo-
rem 6 we use a numeric procedure. In particular, we implemented the bounds
for δ in Python and then used SciPy’s numeric root finding routines to solve
for the desired parameter up to a precision of 10−12. This leads to a simple and
efficient implementation which can be employed in practical applications for the
calibration of privacy parameters of local randomizers in shuffled protocols. The
resulting code is available at https://github.com/BorjaBalle/amplification-by-
shuffling.

The results of our evaluation are given in Fig. 3. The bounds plotted in this
figure are obtained as follows:

1. (EFMRTT’19) is the bound in [15] (see Theorem 4).
2. (Hoeffding, Generic) is the bound from Theorem6.
3. (Bennett, Generic) is obtained by combining Lemmas 7, 8, 9 and 11.
4. (Hoeffding, RR) is obtained by combining Lemmas 6, 8, 12 and 10.
5. (Bennett, RR) is obtained by combining Lemmas 6, 8, 12 and 11.
6. (Hoeffding, Laplace) is obtained by combining Lemmas 6, 8, 13 and 10.
7. (Bennett, Laplace) is obtained by combining Lemmas 6, 8, 13 and 11.

In panel (i) we observe that our two bounds for generic randomizers give
significantly smaller values of ε than the bound from [15] where the constants
where not optimized. Additionally, we see that for generic local randomizers,
Hoeffding is better for small values of n, while Bennet is better for large values
of n. In panel (ii) we observe the advantage of incorporating information in

https://github.com/BorjaBalle/amplification-by-shuffling
https://github.com/BorjaBalle/amplification-by-shuffling
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Fig. 3. (i) Comparison of ε(n) for fixed ε0 and δ of the bounds obtained for generic ε0-
DP local randomizers using the bound in [15] and our Hoeffding and Bennett bounds.
(ii) Comparison of ε0(n) for fixed ε and δ for generic and specific local randomizers
using the Hoeffding bounds. (iii) Comparison of ε0(n) for fixed ε and δ for specific local
randomizers using the Hoeffding and Bennett bound. (iv) Comparison of ε0(n) for fixed
ε and δ = n−2 for a randomized response mechanism with domain size k = n1/3 using
the Hoeffding and Bennett bounds.

the Hoeffding bound about the specific local randomizer. Additionally, this plot
allows us to see that for the same level of local DP, binary randomized response
has better amplification properties than Laplace, which in turn is better the
randomizer response over a domain of size k = 100. In panel (iii) we compare
the amplification bounds obtained for specific randomizers with the Hoeffding
and Bennett bounds. We observe that for every mechanism the Bennett bound
is better than the Hoeffding bound, especially for large values of n. Additionally,
the gain of using Bennett instead of Hoeffding is greater for randomized response
with k = 100 than for other mechanisms. The reason for this is that for fixed
ε0 and large k, the total variation similarity of randomized response is close to
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1 (cf. Lemma 6). Finally, in panel (iv) we compare the values of ε0 obtained for
a randomized response with domain size growing with the number of users as
k = n1/3. This is in line with our optimal protocol for real summation in the
single-message shuffle model presented in Sect. 4. We observe that also in this
case the Bennett bounds provides a significant advantage over Hoeffding.

To summarize, we showed that our generic bounds outperform the previous
amplification bounds developed in [15]. Additionally, we showed that incorpo-
rating both information about the variance of the privacy amplification ran-
dom variable via the use of Bennett’s bound, as well as information about the
behavior of this random variable for specific mechanisms, leads to significant
improvements in the privacy parameters obtained for shuffled protocols. This is
important in practice because being able to maximize the ε0 parameter for the
local randomizer – while satisfying a prescribed level of differential privacy in
the shuffled protocol – leads to more accurate protocols.

7 Conclusion

We have shown a separation result for the single-message shuffle model, showing
that it can not achieve the level of accuracy of the curator model of differential
privacy, but that it can yield protocols that are significantly more accurate than
the ones from the local model. More specifically, we provided a single message
protocol for private n-party summation of real values in [0, 1] with O(log n)-
bit communication and O(n1/6) standard deviation. We also showed that our
protocol is optimal in terms of accuracy by providing a lower bound for this
problem. In previous work, Cheu et al. [12] had shown that the selection problem
can be solved more accurately in the central model than in the shuffle model, and
that the real summation problem can be solved more accurately in the shuffle
model than in the local model. For the former, they rely on lower bounds for
selection in the local model by means of a generic reduction from the shuffle to
the local model, while our lower bound is directly in the shuffle model, offering
additional insight. On the other hand, our single-message protocol for summation
is more accurate than theirs.

Moreover, we introduced the notion of the privacy blanket of a local ran-
domizer, and show how it allows us to give a generic treatment to the problem
of obtaining privacy amplification bounds in the shuffle model that improves on
recent work by Erlingsson et al. [15] and Cheu et al. [12]. Crucially, unlike the
proofs in [12,15], our proof does not rely on privacy amplification by subsam-
pling. We believe that the notion of the privacy blanket is of interest beyond
the shuffle model, as it leads to a canonical decomposition of local randomizers
that might be useful also in the study of the local model of differential privacy.
For example, Joseph et al. [20] already used a generalization of our blanket
decomposition in their study of the role of interactivity in local DP protocols.
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Abstract. We provide generic and black box transformations from any
chosen plaintext secure Attribute-Based Encryption (ABE) or One-sided
Predicate Encryption system into a chosen ciphertext secure system. Our
transformation requires only the IND-CPA security of the original ABE
scheme coupled with a pseudorandom generator (PRG) with a special
security property.

In particular, we consider a PRG with an n bit input s ∈ {0, 1}n and
n · � bit output y1, . . . , yn where each yi is an � bit string. Then for a
randomly chosen s the following two distributions should be computa-
tionally indistinguishable. In the first distribution rsi,i = yi and rs̄i,i is
chosen randomly for i ∈ [n]. In the second distribution all rb,i are chosen
randomly for i ∈ [n], b ∈ {0, 1}.

We show that such PRGs can be built from either the computational
Diffie-Hellman assumption (in non-bilinear groups) or the Learning with
Errors (LWE) assumption (and potentially other assumptions). Thus,
one can transform any IND-CPA secure system into a chosen cipher-
text secure one by adding either assumption. (Or by simply assuming an
existing PRG is hinting secure.) In addition, our work provides a new
approach and perspective for obtaining chosen ciphertext security in the
basic case of public key encryption.

1 Introduction

In Attribute-Based Encryption [42] (ABE) every ciphertext CT that encrypts a
message m is associated with an attribute string x, while each secret, as issued by
an authority, will be associated with a predicate function C. A user with a secret
key sk that is associated with function C will be able to decrypt a ciphertext
associated with x and recover the message if and only if C(x) = 1. Additionally,
security of ABE systems guarantees that an attacker with access to several keys
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cannot learn the contents of an encrypted message so long as none of them are
so authorized.

Since the introduction of Attribute-Based Encryption and early construc-
tions [26] over a decade ago, there have been many advances in the field ranging
from supporting expressive functionality [6,23], to techniques for adaptive secu-
rity [1,12,30,32,37,44,45], short sized ciphertexts [2], multi-authority [10,11,31]
and partially hiding attributes [24,25,46] to name just a few. In almost all of
these cases and in most other papers, the treatment of ABE focused on the cho-
sen plaintext (IND-CPA) definition of ABE. This is despite the fact that chosen
ciphertext security [13,36,40]—where the attacker can make oracle decryption
queries to keys it does not have—is arguably the right definition of security for
the same reasons it is the right definition for standard public key cryptogra-
phy [43]. Likely, most of these works target IND-CPA security since the authors
already have their hands full with putting forth new concepts and techniques
in manuscripts that often run for many pages. In these circumstances it seems
reasonable for such works to initially target chosen plaintext definitions and then
for later works to circle back and build toward chosen ciphertext security.

Unfortunately, closing the loop to chosen ciphertext security can be tricky
in practice. First, there are a rather large and growing number of ABE con-
structions. Writing papers to address moving each of these to chosen ciphertext
security seems burdensome to authors and program committees alike. One line
of work [4,26,34,47] to mediate this problem is to identify features in ABE
constructions, which if present mean that CPA security implies chosen cipher-
text security. Yamada et al. [47] showed that certain delegability or verifiability
properties in ABE systems imply chosen ciphertext security by the Canetti-
Halevi-Katz [9] transformation.

Their generality, however, is limited by the need to manually inspect and
prove that each construction has such a property. In fact, many schemes might
not have these properties. Recent trends for both functionality and proofs tech-
niques might actually work against these properties. For example, an ABE
scheme has the verification property roughly if it is possible to inspect a cipher-
text and determine if it is well formed and what keys can decrypt it. This prop-
erty emerged naturally in many of the pairing-based schemes prominent at the
time, but is less obvious to prove in LWE-based constructions and actually can
run contrary to the predicate encryption goal of hiding an attribute string x from
users that cannot decrypt. See for example the one-sided predicate encryption
constructions of [24,25,46].

If we desire a truly generic transformation to chosen ciphertext security, then
there are essentially two pathways available. The first option is to apply some
variant of the Fujisaki-Okamoto [20] transformation (first given for transforming
from IND-CPA to IND-CCA security in public key encryption). Roughly, the
encryption algorithm will encrypt as its message the true message m appended
with a random bitstring r using the random coins H(r) where H is a hash func-
tion modeled as a random oracle. The CCA-secure decryption algorithm will
apply the original decryption algorithm to a ciphertext CT and recover m′|r′.
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Next, it re-encrypts the ciphertext under H(r′) to get a ciphertext CT′ and out-
puts the message if CT = CT′; otherwise it rejects. The upside of this approach
is that the added overhead is fairly low as it just adds one additional call to
encryption as part of the decryption routine. On the downside the security anal-
ysis of this technique appears intrinsically tied to the random oracle model [3].

The second option is to augment encryption by appending a non-interactive
zero knowledge proof [5] that a ciphertext was well formed. This approach has
been well studied and explored in the context of standard public key encryp-
tion [36] and should translate to the ABE context. Additionally, there are stan-
dard model NIZK proof assumptions under factoring and pairing-based and lat-
tice based [38] assumptions.1 A drawback of this approach is that applying any
generic gate by gate NIZK to an encryption system will be quite expensive in
terms of computational overhead—this will be needed for any generic conversion.

1.1 Our Contribution

In this work we provide a black box transformation for chosen ciphertext security
of any ABE or one-sided predicate encryption system.2

Our transformation requires only the existence of a IND-CPA secure ABE
system as well as a pseudorandom generator (PRG) with a special security prop-
erty which we call the hinting property. This special security property can either
be assumed for an “ordinary” (e.g., AES-based) PRG or provably obtained from
either the Computational Diffie-Hellman assumption or the Learning with Errors
assumption. Our transformation increases ciphertext size by roughly a factor of
the security parameter—it requires 2 · n sub-ciphertexts for a parameter n.
Additionally, it requires about 2n additional encryptions of the original system
for both the new encryption and decryption routines. While this overhead is an
increase over the original CPA system and will likely incur more overhead than
hand-tailored CCA systems, it is a significant performance improvement over
NIZKs that operate gate by gate over the original encryption circuit.

We also wish to emphasize that our transformation applies to ordinary pub-
lic key encryption as well as ABE. While chosen ciphertext security for PKE
has been known for sometime from the CDH and LWE assumptions, we believe
that our work provides new insights into the problem and might lead to further-
ing the understanding of whether IND-CPA security ultimately implies chosen
ciphertext security.

1 The realization of NIZKs from the Learning with Errors assumption is a very recent
and exciting development [38] and occured after the initial posting of this work.

2 The original definition of predicate encryption [7,27] required hiding whether an
attribute string of a challenge ciphertext was x0 or x1 from an attacker that had a
key C where C(x0) = C(x1). A weaker form of predicate encryption is where this
guarantee is given only if C(x0) = C(x1) = 0, but not when C(x0) = C(x1) = 1.
This weaker form has been called predicate encryption with one-sided security and
anonymous Attribute-Based Encryption. For this paper we will use the term one-
sided predicate encryption.
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Hinting Property for PRGs: Let PRG be a function that maps n bits to (n + 1)·n
bits (output to be parsed as n + 1 strings, each of length n). Consider the
following experiment between a challenger and an adversary. The challenger
chooses an n bit string s, computes PRG(s) = z0z1z2 . . . zn (each zi ∈ {0, 1}n).
Next, it chooses n uniformly random strings v1, v2, . . . , vn each from {0, 1}n.
It then constructs a 2 × n matrix M as follows: if the ith bit of s is 0, then
M0,i = zi,M1,i = vi, else M0,i = vi,M1,i = zi.3 Finally, the challenger either
outputs z0 together with M , or it outputs 2n + 1 uniformly random strings.
A pseudorandom generator is said to satisfy the hinting property if any poly-
nomial time adversary has negligible advantage in this experiment. Note that
the seed s is used at two places: first to compute the strings z0, z1, z2, . . . , zn,
and then to decide where to place each zi in the matrix M . Hence, the second
piece of information (i.e. the position of zi strings serves as an extra hint on
the PRG). One could simply assume this property of a particular pseudo ran-
dom generator. Indeed, this seems rather plausible that ordinary types of PRGs
would have it. Alternately, we show how to construct PRGs that provably have
this property under either the Computational Diffie-Hellman assumption or the
LWE assumption. Our constructions of these PRGs use techniques that closely
follow previous works [8,14–16,22] for a related group of primitives going under
a variety of names: Chameleon Encryption, One-Time Signature with Encryp-
tion, Batch Encryption, One Way Function with Encryption. We note that while
the technical innards for the CDH and LWE realizations of our PRG are similar
to the above works, (unlike the above examples) our definition itself does not
attach any new functionality requirements to PRG; it simply demands a stronger
security property.

Next, we present an overview of our CCA construction. As a warm-up, we
will first show how to use any CPA-secure public key encryption (PKE) scheme,
together with hinting PRGs to construct a CCA-1 secure PKE scheme. Recall,
CCA-1 security is a weaker variant of the CCA security game where the adver-
sary is allowed decryption queries only before sending the challenge messages.
After sending the challenge messages, the adversary receives the challenge cipher-
text, and must send its guess.

CCA-1 secure PKE from CPA-secure PKE and hinting PRGs. The construction
also uses a (standard) pseudorandom generator G with sufficiently long stretch.
Let (Setup,Enc,Dec) be any CPA secure scheme, and H : {0, 1}n → {0, 1}(n+1)·n

a hinting PRG. We require the CPA scheme to have two properties which can
be obtained ‘for free’. First, we require that the scheme should have perfect
decryption correctness for most public/secret keys. This can be obtained via the
transformation of [17]. Next, we require that any ciphertext can be decrypted
given the encryption randomness. This is also easily obtained by choosing a
random string r during encryption, and appending a one-time pad of the message
using r.

3 More compactly, Msi,i = zi and Msi,i = vi.
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The setup of our CCA-1 scheme runs the PKE setup 2n times, obtaining 2n
public key/secret key pairs

{
pkb,i, skb,i

}
i∈[n],b∈{0,1}. It also chooses a uniformly

random tag t = t1t2 . . . tn, where each ti is a sufficiently long string. The new
public key consists of the 2n public keys

{
pkb,i

}
i∈[n],b∈{0,1} and tag t, while the

new secret key includes only of n out of the 2n secret keys, namely {sk0,i}i∈[n]

(this secret hiding principle [18] has been used in many CCA constructions,
including the initial CCA systems [13,36]). To encrypt a message m, the encryp-
tion algorithm first chooses a seed s ← {0, 1}n and computes H(s) = z0z1 . . . zn.
It uses z0 to mask the message m; that is, it computes c = m⊕z0. The remaining
ciphertext will contain n ‘signals’ that help the decryption algorithm to recover
s bit by bit, which in turn will allow it to compute z0 and hence unmask c.

The ith signal (for each i ∈ [n]) has three components c0,i, c1,i, c2,i. If the ith

bit of s is 0, then c0,i is an encryption of a random string xi using the public
key pk0,i and randomness zi, c1,i is an encryption of 0n using pk1,i (encrypted
using true randomness), and c2,i = G(xi). If the ith bit of s is 1, then c0,i is an
encryption of 0n using public key pk0,i (encrypted using true randomness), c1,i is
an encryption of a random string xi using public key pk1,i and randomness zi, and
c2,i = G(xi)+ti (recall ti is the ith component in the tag). So half the ciphertexts
are encryptions of zero, while the remaining are encryptions of random strings
(with blocks of the hinting PRG output being used as randomness), and the
positioning of the zero/random encryptions reveals the seed s.

The final ciphertext includes the ‘main’ component c, and n signals
(c0,i, c1,i, c2,i). A noteworthy point about the ciphertext: first, the components
{c2,i}i serve as a perfectly-binding commitment to the seed s.

To decrypt, the decryption algorithm first decrypts each c0,i (recall the secret
key is {sk0,i}i∈[n]) to obtain y1y2 . . . yn. It then checks if G(yi) = c2,i. If so, it
guesses that si = 0, else it guesses that si = 1. With this estimate for s, the
decryption algorithm can compute H(s) = z0z1 . . . zn and then compute c ⊕ z0
to learn the message m. While this decryption procedure works correctly, we
would like to prevent malicious decryption queries (made during the CCA/CCA-
1 experiment), and hence the decryption algorithm needs to enforce additional
checks. In particular, the decryption algorithm therefore needs to check that
the guess for s is indeed correct. If the ith bit of s is guessed to be 0, then
the decryption algorithm checks that c0,i is a valid ciphertext - it simply re-
encrypts yi and checks if this equals c0,i. If the ith bit of s is guessed to be 1,
then the decryption algorithm first recovers the message underlying ciphertext
c1,i. Note that c1,i should be encrypted using randomness zi, hence using zi, one
can recover message ỹi from c1,i (using the randomness recovery property of the
PKE scheme). It then re-encrypts ỹi and checks if it is equal to c1,i, and also
checks that c2,i = G(ỹi) + ti. Finally, if all these checks pass, the decryption
algorithm outputs z0 ⊕ c.

To summarize, at a very high level, we build a partial trapdoor where the
decryption algorithm will recover some of the coins used for encryption. These are
then used to partially re-encrypt the ciphertext and test for validity. Influenced
by Garg and Hajiabadi [22], we will prove security not by removing the signals
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for each bit position, but by adding misinformation that drowns out the original
signal. Note that to prove security, we need to remove the information of z0 (and
hence information of s) from two places - first, from the commitment {c2,i}i;
second, from the positions where the zi values are used for encrypting. For
the first one, in the proof, we set the challenge tag t∗ such that the signal is
ambiguous at each index. More formally, in the challenge ciphertext c∗

0,i is an
encryption of yi, c∗

1,i is encryption of ỹi, and G(yi) = G(ỹi) + t∗i . Replacing the
encryptions of zeroes with encryptions of these carefully chosen strings involves a
delicate argument, which crucially relies on the perfect correctness of our scheme
(see discussion in Sect. 4 for more details).

When this is done for all indices, all information about s will be lost from
the message space and we are almost done; however, one loose end remains.
Each ciphertext at position (si, i) will be encrypted under randomness ri which
came from running the pseudorandom generator on s; whereas each ciphertext
at position (s̄i, i) will be encrypted under fresh random coins. To complete the
proof we need a computational assumption that will allow us to change all the
encryption coins to being chosen freshly at random. Here, we use the security of
hinting PRGs, and that completes our proof.

CCA Security. To achieve CCA security, we need to make a few tweaks to the
above scheme. The setup algorithm also chooses n pairwise independent hash
functions h1, h2, . . . , hn. The encryption algorithm chooses a signing/verification
key for a (one-time) signature scheme. Next, instead of using the tag t from
the public key, it sets ti = hi(vk) (where vk is the verification key). Finally, the
encryption algorithm computes a signature on all the ciphertext components, and
the final ciphertext consists of all these components together with the signature
and the verification key. This idea of using signatures to go from ‘tag-based’
security to CCA security has been used in several previous CCA constructions,
starting with the work of [28]. To prove security, we first ensure that none of the
decryption queries correspond to the challenge ciphertext’s verification key (this
follows from the security of the signature scheme). After this point, the proof
follows along the lines of the CCA-1 scheme.

Moving to Attribute Based Encryption/Predicate Encryption - For ABE/PE,
the scheme is altered as follows. First, the public key consists of n ABE/PE
public keys and n PKE public keys. Let pk0,i denote the ith ABE/PE public
key, and pk1,i the ith PKE public key. The master secret key only consists of the
n ABE/PE master secret keys. The main difference in the encryption algorithm
is that the ciphertexts c0,i are now ABE/PE ciphertexts. Suppose we want to
encrypt message m for attribute x. Then m is masked using z0 as before, and the
c0,i component is an encryption of zero/random message for attribute x using
public key pk0,i and randomness being truly random/zi, depending on the ith

bit of seed s.
We conclude by remarking that while this work focuses on Attribute-Based

Encryption and One-sided Predicate Encryption, we believe our transformation
could apply to other specialized forms of encryption. For example, we believe
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it should immediately translate to any secure broadcast encryption [19] sys-
tem. As another example, we believe our technique should also apply to ABE
systems that are IND-CPA secure under a bounded number of key generation
queries. Our technique, however, does not appear to apply to standard predi-
cate encryption as defined in [7,27] (notions very similar to full blown functional
encryption). The core issue is that to test the validity of a ciphertext our decryp-
tion algorithm needs to obtain the attribute string x to perform re-encryption.
In one-sided predicate encryption, if a user has a secret key for C and C(x) = 1
we essentially give up on hiding x and allow this to be recovered; whereas for
full hiding we might want to still hide information about x even if C(x) = 1.

Finally, we note that even if we cast the notions of ABE aside our work might
provide another path to exploring the longstanding open problem of achieving
chosen ciphertext security from chosen plaintext security. The primary barrier
is in how to achieve a PRG with this hinting security.

1.2 Constructions of Hinting PRGs

Our realizations of hinting PRG largely follow in line with recent works [8,
14–16,22]. In particular, our CDH realization follows closely to [15] and our
LWE realization to [8,16]. It may have been possible to build our hinting PRG
from one of the previous abstractions, but we chose to provide direct number
theoretic realizations. We believe that one important distinction is that our
hinting PRG is simply a PRG with stronger security properties; unlike the above
abstractions our definition in of itself does not ask for expanded functionality.
An intriguing open question is if this can be leveraged to obtain further instances
with provable security. Below, we provide a high level description of our hinting
PRG construction based on the DDH assumption.

In this work, we construct hinting PRG with setup. The setup algorithm
outputs public parameters, which are then used for evaluating the PRG. For
simplicity, here we assume the PRG maps n bits to n2 bits. Let p be an n bit
prime, and G a group of order p. The setup algorithm first chooses 2n random
group elements {gi,b} and 2n random integers {ρi,b} from Zp. Next, it uses these
group elements and integers to publish 2n tables, and each table has 2n entries.
Let us consider the (i, b) − th table. In this table, the (i, b) − th entry is ⊥; and
for all (k, β) �= (i, b), the (k, b)th entry is g

ρi,b

k,β .
Let us now consider the evaluation procedure. The PRG evaluation on input

x = x1x2 . . . xn wil output n group elements, where the ith one is derived from the
(i, xi)th table as follows - compute product of elements (in table (i, xi)) at posi-
tion (k, xk). More formally, the ith group element in the output is (

∏
gk,xk

)ρi,b .
To prove security, we use the DDH assumption to argue that given all the

2n tables in the public parameters, it will still be hard to learn g
ρi,b

i,b , for all
(i, b). There are a few subtleties though; in particular, we also need a ‘lossiness’
argument for the proof to work. We refer the reader to the full version of our
paper.
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1.3 Additional Comparisons

It is instructive to take a closer look at how our work relates to and builds upon
the trapdoor function construction of Garg and Hajiabadi [22]. Briefly and in
our terminology, Garg and Hajiabadi gave a framework where the evaluation
algorithm chooses an input s ∈ {0, 1}n and use this to first produces a value y
that produces part of the output. Next, for each position (si, i) the evaluation
algorithm produces a signal using s and the public parameters of the TDF using
a primitive called “one way function with encryption”. At the opposite position
(s̄i, i) the evaluation algorithm outputs a random string ri of sufficient length.
With very high probability the random string zi will not correspond to the
valid signal for y at position (s̄i, i). The inversion algorithm will use knowledge
of the TDF secret key plus y to go recover the input s bit by bit. At each
position i if a signal is present at (0, i) it records si = 0 and sets si = 1 if
the signal is at (1, i). If the signal is at both 0 and 1, then recovery fails. One
can observe that for almost all choices of public parameters there exist some
valid inputs that will cause failure on inversion. To prove security the reduction
algorithm at each position change the string zi from random to a signal under
y. The security properties of the one way function with encryption make this
undetectable. Once, this is done the only information about s will be contained
in y. Since many choices of s will map to y, inverting to the chosen s at this
point will be statistically infeasible.

Our work as described above follows a similar approach in that a seed s is
signaled bit by bit. And that a step of proving security is to add misinformation
in by adding a counter signal in at positions (s̄i, i). An important distinction is
that in the work of Garg and Hajiabadi the signaling and inversion process is very
tightly coupled in the one way function with encryption primitive. One could
imagine trying to build an Attribute-Based version of one way function with
encryption and then try to yield a CCA encryption from the resulting trapdoor.
This runs into two problems. First, it would require a tailored construction for
each type of ABE scheme that we want and then we are back to hacking CCA
into each type of ABE variant. Second, since the GH scheme allows for ambiguous
inputs, it can be difficult for mapping into chosen ciphertext secure schemes. In
particular, this issue caused GH to need an adaptive version of one way function
with encryption to bridge from TDFs to CCA security and this adaptive version
was not realizable from the CDH assumption.

In our work the signaling strategy is decoupled from the recovery of the
signals. In particular, the form of the signals comes from our computation of
the (non-hinting) PRG, while recovery is realized from simply invoking the ABE
decryption algorithm. We also get perfect correctness since a non-signal will be
an encryption of the all 0’s string. Also, with high probability our setup algorithm
will choose parameters for which it is (information theoretically) impossible to
create ambiguous signals. So once the ABE parameters are setup by an honest
party (and with overwhelming probability, land in a good spot), there will be no
further opportunity to take advantage of conflicting signals by an attacker via a
decryption query.
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We also believe that it might be interesting to swing some of our techniques
back to the trapdoor function regime. For example, consider the GH TDF, but
where we added values a1, . . . , an to the public parameters. We could modify
the evaluation algorithm such that at position i, the algorithm gives the one-
way function with encryption output ei if si = 0 and gives ei ⊕ ai if si = 1.
This modification would allow us to drop the additional zi values from the GH
construction and make the output of the TDF shorter. In addition, while there
would still be a negligible correctness error, it could be possible to rest this error
solely in the choice of public parameters and for a “good” choice of parameters
there would be no further error from evaluation. This last claim would require
making sure that the ai values were sufficiently long relative to y. We believe
the techniques from [41] can be used here to achieve CCA security.

Independent Work. Independently, Garg, Gay and Hajiabadi [21] recently built
upon the work of [22] to build trapdoors from one way function with encryption
that has improved correctness properties. In particular, the base construction of
[21] generates parameters that with high probability will allow inversion on all
inputs, whereas any parameters generated from the [22] construction will always
have inversion failure on some small fraction of inputs. They then build upon
using erasure codes and a “smoothness” property to get CCA secure determinstic
encryption with shorter ciphertexts. In addition, they show a modification to the
Peikert-Waters [39] DDH-based Lossy TDF that gets a better ciphertext rate.
The initial direction of getting better correctness in TDFs is similar to our
“swinging techniques back” comment above, but otherwise the works pursue
separate goals and techniques.

Subsequent Work. Subsequent to our work Kitagawa, Matsuda and Tanaka [29]
proposed a variant of our CCA transformation for public key encryption. Their
transformation had two significant differences (along with some minor ones) from
ours. The first is that they showed how to execute the transformation with using
just two public/private key pairs as opposed to the 2n public/private key pairs in
our transformation. In our construction setup we generate (cpa.skb,i, cpa.pkb,i) ←
CPA.Setup(1λ) for each b ∈ {0, 1}, i ∈ [n]. They essentially show that one can
replace this with a pair of calls to generate (cpa.skb, cpa.pkb) ← CPA.Setup(1λ)
for each b ∈ {0, 1} where the ‘i’ subscript can be dropped in the construction
and the keys essentially reused. Doing this requires a modified analysis where
the hybrids are reordered. One will first change about half of the ciphertext
components using IND-CPA security of the PKE scheme. Next, the decryption
algorithm will be (undetectably) modified. Finally, IND-CPA security will be
invoked a second time to change the other half of the ciphertexts.

The second major difference is that for the final “tie-off” step in the proof
they will use a symmetric key encryption scheme with key-dependent mes-
sage security as opposed to a hinting PRG. Like hinting PRGs these encryp-
tion schemes are also realizable from DDH, CDH and LWE, but also contain
realizations from the Learning Parity with Noise (LPN) assumption for certain
parameters. We remark that these two modifications (shorter keys and using
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key-dependent message security) appear to be orthogonal and one could choose
adopt one without the other.

In other work Lombardi, Quach, Rothblum, Wichs and Wu [33] showed how
to adapt our transformation to achieve a single key secure Attribute-Based
Encryption scheme with a function hiding property. Suppose that a user has
a secret key for a function f in an ABE system. The function hiding property
roughly states that an attacker with access to decryption oracle cannot learn any
more about what that user’s function f is beyond what must be inherently learn-
able. The authors show that this property is sufficient for achieving designated
verifier non-interactive zero knowledge proofs.

1.4 Toward Bridging Chosen Ciphertext Security in PKE

One classical open problem in cryptography is whether chosen plaintext security
implies chosen ciphertext security in standard public key encryption. From a
cursory glance one can see that it is easy to swap out the ABE system from our
construction for a plain old public key encryption system and the same proof
will go through—this time for obtaining chosen ciphertext secure public key
encryption. Thus the “only” barrier for moving from IND-CPA to IND-CCA
security is in the hinting PRG.

An interesting open question is just how strong this barrier is. From our
viewpoint, the hinting security is something that most natural PRGs would
likely have. In trying to understand whether it or something similar could be
built from general assumptions (e.g. PKE or one way functions) it could be useful
to first try to build a separation from our hinting PRG and a standard one. Do
there exist PRGs that do not meet the security definition of hinting PRG?

As a first stab at the problem, one might consider PRGs where there is an
initial trusted setup algorithm that produces a set of public parameters, which
are then used for every subsequent evaluation. In this setting one could imagine
a counterexample where the public parameters produced by the setup algorithm
include an obfuscated program which will assist in breaking the hinting security,
but not be helpful enough to break standard security. Using obfuscation in a
similar manner has been useful for achieving other separation results. If we
consider PRGs that do not allow for such setup, the task appears to be more
challenging. One could try to embed such an obfuscated program in the first
block of the PRG output, but this block would need to still look random for
standard PRG security.

However, as it turns out there is a much simpler way to achieve a separation.
Consider the case where � = 1 then the identity function on the seed will be a
pseudorandom function for the trivial reason that it does not expand. However,
this function will not be hinting secure. To get a separation with expansion
one can consider a PRG G that takes as input an n bit seed s and outputs
z0z1 . . . zn . . . z2n. Now, let G′ be a function that takes 2n bits as input, and
maps (s′, s) to (z0, s′

1z1, . . . , s
′
nzn, zn+1, . . . , z2n. One can check that G′ is a secure

PRG, but is not a hinting PRG.
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Altogether we believe that our work opens up a new avenue for exploring the
connection of chosen plaintext and ciphertext security.

2 One-Sided Predicate Encryption

A predicate encryption (PE) scheme PE , for set of attribute spaces X =
{Xλ}λ∈N

, predicate classes C = {Cλ}λ∈N
and message spaces M = {Mλ}λ∈N

,
consists of four polytime algorithms (Setup,Enc,KeyGen,Dec) with the following
syntax.

Setup(1λ) → (pp,msk). The setup algorithm takes as input the security parame-
ter λ and a description of attribute space Xλ, predicate class Cλ and message
space Mλ, and outputs the public parameters pp and the master secret key
msk.

Enc(pp,m, x) → ct. The encryption algorithm takes as input public parameters
pp, a message m ∈ Mλ and an attribute x ∈ Xλ. It outputs a ciphertext ct.

KeyGen(msk, C) → skC . The key generation algorithm takes as input master
secret key msk and a predicate C ∈ Cλ. It outputs a secret key skC .

Dec(skC , ct) → m or ⊥. The decryption algorithm takes as input a secret key
skC and a ciphertext ct. It outputs either a message m ∈ Mλ or a special
symbol ⊥.

Correctness. A key-policy predicate encryption scheme is said to be correct if
for all λ ∈ N, (pp,msk) ← Setup(1λ), for all x ∈ Xλ, C ∈ Cλ, m ∈ Mλ,
skC ← KeyGen(msk, C), ct ← Enc(pp,m, x), the following holds

Correctness for decryptable ciphertexts : C(x) = 1 ⇒ Pr [Dec(skC , ct) = m] = 1,

Correctness for non-decryptable ciphertexts : C(x) = 0 ⇒ Pr [Dec(skC , ct) = ⊥] ≥ 1 − negl(λ),

where negl(·) are negligible functions, and the probabilities are taken over the
random coins used during key generation and encryption procedures.

Recovery from Randomness Property. A key-policy predicate encryption scheme
is said to have recovery from randomness property if there is an additional
algorithm Recover that takes as input public parameters pp, ciphertext ct,
string r and outputs y ∈ (Mλ × Xλ) ∪ {⊥} and satisfies the following con-
dition: for all λ ∈ N, (pp,msk) ← Setup(1λ), for all x ∈ Xλ, m ∈ Mλ,
ct = Enc(pp,m, x; r), Recover(pp, ct, r) = (m,x). If there is no (m,x, r) tuple
such that ct = Enc(pp,m, x; r), then Recover(pp, ct, r) =⊥.

Security. In this work, we will be considering predicate encryption systems
with one-sided security. One can consider both security against chosen plaintext
attacks and chosen ciphertext attacks. First, we will present one-sided security
against chosen plaintext attacks.
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Definition 1 (One-Sided Security against Chosen Plaintext Attacks).
A predicate encryption scheme PE = (Setup,Enc,KeyGen,Dec) is said to be one-
sided secure against chosen plaintext attacks if for every stateful PPT adversary
A, there exists a negligible function negl(·), such that the following holds:

∣
∣
∣
∣
∣
∣

Pr

⎡

⎣AKeyGen(msk,·)(ct) = b :
(pp,msk) ← Setup(1λ)

((m0, x0), (m1, x1)) ← AKeyGen(msk,·)(pp)
b ← {0, 1}; ct ← Enc(pp, mb, xb)

⎤

⎦ − 1

2

∣
∣
∣
∣
∣
∣

≤ negl(λ)

where every predicate query C, made by adversary A to the KeyGen(msk, ·) ora-
cle, must satisfy the condition that C(x0) = C(x1) = 0.

The notion of one-sided security against chosen plaintext attacks could alter-
natively be captured by a simulation based definition [24]. Goyal et al. [25]
showed that if a PE scheme satisfies Definition 1, then it also satisfies the simu-
lation based definition of [24].

Next, we present the definition for capturing chosen ciphertext attacks on
predicate encryption schemes. Here, we will assume that the key generation
algorithm is deterministic.

Definition 2 (One-Sided Security against Chosen Ciphertext
Attacks). A predicate encryption scheme PE = (Setup,Enc,KeyGen,Dec) with
deterministic key generation is said to be one-sided secure against chosen cipher-
text attacks if for every stateful PPT adversary A, there exists a negligible func-
tion negl(·), such that the following event’s probability is at most 1/2 + negl(λ):

⎡
⎣AKeyGen(msk,·),ODec(msk,·,·)(ct∗) = b :

(pp,msk) ← Setup(1λ)

((m0, x0), (m1, x1)) ← AKeyGen(msk,·),ODec(msk,·,·)(pp)
b ← {0, 1}; ct∗ ← Enc(pp, mb, xb)

⎤
⎦ .

– the oracle ODec(msk, ·, ·) takes as input a ciphertext ct and a circuit C. It
computes skC = KeyGen(msk, C) and outputs Dec(skC , ct).

– every predicate query C, made by adversary A to the KeyGen(msk, ·) oracle,
must satisfy the condition that C(x0) = C(x1) = 0.

– every post-challenge query (C, ct) made by the adversary A to ODec must sat-
isfy the condition that either ct �= ct∗ or if ct = ct∗, then C(x0) = C(x1) = 0.

Remark 1. Note that the above definition addresses chosen ciphertext attacks
against systems with deterministic key generation. An analogous definition for
general schemes (that is, with randomized key generation) would involve main-
taining key handles and allowing the adversary to choose the key to be used
for the decryption queries. We choose the simpler definition since any scheme’s
key generation can be made deterministic by using a pseudorandom function.
In particular, the setup algorithm chooses a PRF key K which is included as
part of the master secret key. To derive a key for circuit C, the algorithm first
computes r = PRF(K,C) and then uses r as randomness for the randomized
key generation algorithm.



Realizing Chosen Ciphertext Security Generically in ABE 683

2.1 PE Schemes with ‘Recovery from Randomness’ Property

Any PE scheme satisfying one-sided CPA security can be transformed into
another PE scheme that is also one-sided CPA secure, and has the ‘recovery from
randomness’ property. The encryption algorithm simply uses part of the random-
ness to compute a symmetric key encryption of the message and attribute, with
part of the randomness as the encryption key.

More formally, let E = (Setup,Enc,KeyGen,Dec) be a PE scheme that sat-
isfies one-sided CPA security (see Definition 1), and let (SKE.Setup,SKE.Enc,
SKE.Dec) be a symmetric key CPA secure encryption scheme. consider the fol-
lowing scheme E′ = (Setup′,Enc′,KeyGen′,Dec′,Recover), where Setup′ = Setup
and KeyGen′ = KeyGen.

Enc′(pk,m, x): The encryption algorithm first samples three random strings
r1, r2, r3. It computes ct1 = Enc(pk,m, x; r1). Next, it computes ske.sk =
SKE.Setup(1λ; r2). Finally, it computes ct2 = SKE.Enc(ske.sk, (m,x); r3) and
outputs (ct1, ct2).

Dec′(sk, (ct1, ct2)): The decryption algorithm simply decrypts ct1 using sk, and
ignores ct2. It outputs Dec(sk, ct1).

Recover((ct1, ct2), r = (r1, r2, r3)): The recovery algorithm first computes
ske.sk = SKE.Setup(1λ; r2). It outputs y ← SKE.Dec(ske.sk, ct2).

Assuming the symmetric key encryption scheme satisfies perfect correctness,
this PE scheme has perfect recovery from randomness property. To argue CPA
security, we can first use the security of the SKE scheme to switch ct2 to an
encryption of 0|m|+|x|. Then, we can use the one-sided CPA security.

3 Hinting PRGs

A hinting PRG scheme is a PRG with a stronger security guarantee than stan-
dard PRGs. A hinting PRG takes n bits as input, and outputs n · � output bits.
In this security game, the challenger outputs 2n strings, each of � bits. In one
scenario, all these 2n strings are uniformly random. In the other case, half the
strings are obtained from the PRG evaluation, and the remaining half are uni-
formly random. Moreover, these 2n strings are output as a 2 × n matrix, where
in the ith column, the top entry is pseudorandom if the ith bit of the seed is 0,
else the bottom entry is pseudorandom. As a result, these 2n strings give a ‘hint’
about the seed, and hence this property is stronger than regular PRGs. Note,
if this hint is removed and the top entries in each column were pseudorandom
(and the rest uniformly random), then this can be achieved using regular PRGs.

Below, we define this primitive formally. The informal description above
had two simplifications. First, the definition below considers PRGs with setup
(although one can analogously define such a primitive without setup). Second,
we assume the PRG outputs (n+1) · � bits, where the first � bits do not contain
any extra hint about the seed. Finally, for our CCA application, we introduce
some notation in order to represent the n+1 blocks of the PRG output. Instead
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of describing the PRG as a function that outputs (n + 1) · � bits, we have an
evaluation algorithm that takes as input an index i ∈ {0, 1, . . . , n}, and outputs
the ith block of the PRG output.

Let n(·, ·) be a polynomial. A n-hinting PRG scheme consists of two PPT
algorithms Setup,Eval with the following syntax.

Setup(1λ, 1�): The setup algorithm takes as input the security parameter λ, and
length parameter �, and outputs public parameters pp and input length n =
n(λ, �).

Eval (pp, s ∈ {0, 1}n, i ∈ [n] ∪ {0}): The evaluation algorithm takes as input the
public parameters pp, an n bit string s, an index i ∈ [n] ∪ {0} and outputs
an � bit string y.

Definition 3. A hinting PRG scheme (Setup,Eval) is said to be secure if for
any PPT adversary A, polynomial �(·) there exists a negligible function negl(·)
such that for all λ ∈ N, the following event’s probability is at most 1/2+negl(λ):

⎡
⎢⎢⎣β ← A

(
pp,

(
yβ
0 ,

{
yβ

i,b

}
i∈[n],b∈{0,1}

))
:

(pp, n) ← Setup(1λ, 1�(λ)), s ← {0, 1}n,
β ← {0, 1}, y0

0 ← {0, 1}�, y1
0 = Eval(pp, s, 0),

y0
i,b ← {0, 1}� ∀ i ∈ [n], b ∈ {0, 1},

y1
i,si

= Eval(pp, s, i), y1
i,si

← {0, 1}� ∀ i ∈ [n]

⎤
⎥⎥⎦

4 CCA Secure Public Key Encryption Scheme

Let PKECPA = (CPA.Setup, CPA.Enc, CPA.Dec) be a IND-CPA secure public key
encryption scheme with randomness-decryptable ciphertexts and perfect decryp-
tion correctness, S = (ss.Setup, ss.Sign, ss.Verify) a strongly unforgeable one time
signature scheme and HPRG = (HPRG.Setup,HPRG.Eval) a hinting PRG scheme.
We will assume that our encryption scheme has message space {0, 1}λ+1. Let
�PKE(·) be a polynomial representing the number of bits of randomness used by
CPA.Enc, and �vk(·) the size of verification keys output by ss.Setup. For sim-
plicity of notation, we will assume �(·) = �PKE(·), �out(λ) = �vk(λ) + 3λ and
PRGλ : {0, 1}λ → {0, 1}�out(λ) a family of secure pseudorandom generators.

We will now describe our CCA secure public key encryption scheme PKECCA

= (CCA.Setup, CCA.Enc, CCA.Dec) with message space Mλ = {0, 1}�(λ). For
simplicity of notation, we will skip the dependence of � and �out on λ.

CCA.Setup(1λ): The setup algorithm performs the following steps.
1. It chooses (HPRG.pp, 1n) ← HPRG.Setup(1λ, 1�).
2. It chooses 2n different PKECPA keys. Let (cpa.skb,i, cpa.pkb,i) ←

CPA.Setup(1λ) for each b ∈ {0, 1}, i ∈ [n].
3. It then chooses ai ← {0, 1}�out for each i ∈ [n] and B ← {0, 1}�out .
4. It sets cca.pk =

(
HPRG.pp, B,

(
ai, cpa.pkb,i

)
b∈{0,1},i∈[n]

)
and cca.sk =

(cpa.sk0,i)i∈[n].
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CCA.Enc(cca.pk,m, x): Let cca.pk =
(
HPRG.pp, B,

(
ai, cpa.pkb,i

)
b∈{0,1},i∈[n]

)
.

The encryption algorithm does the following:
1. It first chooses s ← {0, 1}n. It sets c = HPRG.Eval(HPRG.pp, s, 0) ⊕ m.
2. Next, it chooses signature keys (ss.sk, ss.vk) ← ss.Setup(1λ).
3. For each i ∈ [n], it chooses vi ← {0, 1}λ and ri ← {0, 1}�, sets r̃i =

HPRG.Eval(HPRG.pp, s, i).
4. Next, for each i ∈ [n], it does the following:

– If si = 0, it sets c0,i = CPA.Enc(cpa.pk0,i, 1|vi; r̃i), c1,i = CPA.Enc

(cpa.pk1,i, 0λ+1; ri) and c2,i = PRG(vi).
– If si = 1, it sets c0,i = CPA.Enc(cpa.pk0,i, 0λ+1; ri), c1,i = CPA.Enc

(cpa.pk1,i, 1|vi; r̃i) and c2,i = PRG(vi) + ai + B · ss.vk.4
5. Finally, it sets M =

(
c, (c0,i, c1,i, c2,i)i∈[n]

)
, computes σ ← ss.Sign

(ss.sk,M) and outputs (ss.vk,M, σ) as the ciphertext.
CCA.Dec(cca.sk, cca.pk, cca.ct): Let the ciphertext cca.ct be parsed as(

ss.vk,M =
(
c, (c0,i, c1,i, c2,i)i∈[n]

)
, σ

)
and cca.sk =

(
(cpa.sk0,i)i∈[n]

)
. The

decryption algorithm does the following:
1. It first verifies the signature σ. It checks if ss.Verify(ss.vk,M, σ) = 1, else

it outputs ⊥.
2. Next, the decryption algorithm computes d = PKE.Find(cca.pk, cca.sk,

cca.ct) (where PKE.Find is defined in Fig. 1), and outputs PKE.Check
(cca.pk, cca.ct, d) (where PKE.Check is defined in Fig. 2).

Fig. 1. Routine PKE.Find

4 Here, we assume the verification key is embedded in F2�out , and the addition and
multiplication are performed in F2�out . Also, the function h(x) = ai + B · x serves as
a pairwise independent hash function.
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Fig. 2. Routine PKE.Check

4.1 Discussion

We will now make a few observations about our construction and then proceed
to give a brief overview our proof that appears in the next subsection.

First, for each i ∈ [n] if si = 0 the encryption algorithm will choose a random
vi and ‘signal’5 that this bit is a 0 by encrypting 1|vi to the position (0, i) and
giving c2,i = PRG(vi) in the clear. In the opposite position of (1, i) it will encrypt
the all 0’s string. Likewise, if si = 1 it will signal a 1 by encrypting 1|vi to the
position (1, i) and giving c2,i = PRG(vi) + ai + B · ss.vk in the clear. With all
but negligible probability it is impossible to signal both 0 and 1 simultaneously
for an index i. This follows from the fact that ai is chosen randomly and that
the space of verification keys is much smaller than 2�out(λ). We observe that this
argument has some flavor of Naor’s bit commitment scheme [35].

Second, we observe that even though one is supposed to encrypt the all
0’s string to position (s̄i, i) the PKE.Find routine will not immediately quit if
discovers something else. Instead it simply sets di = 0 if decryption outputs 1|vi

5 By signaling, we mean that any party that has the secret key for decryption can learn
the bits of s one after another, by using the ciphertext components c0,i, c1,i, c2,i.
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and c2,i = PRG(vi); otherwise it sets di = 1. Thus, the decryption routine may
refrain from immediately aborting even though when it “knows” the ciphertext
was not formed entirely correctly. This will be critical to a proof step.

Our proof of security will be organized as a sequence of security games which
we show to be indistinguishable. In the first proof step we apply a standard
argument using strongly unforgeable signatures to change the decryption oracle
to reject all ciphertexts corresponding to ss.vk∗ where ss.vk∗ is the verification
key used by the challenge ciphertext.

Next, for each i we choose the public parameter values ai such that it is
possible for one to signal both 0 and 1 at index i, but that this ambiguity is only
possible for a ciphertext corresponding to ss.vk∗. To do this it chooses uniformly
random wi ← {0, 1}λ, and sets ai = PRG(v∗

i ) − PRG(wi) − ss.vk∗ · B if s∗
i = 0,

else ai = PRG(wi) − PRG(v∗
i ) − ss.vk∗ · B. This change can be shown to be

undetectable by a standard pseudorandom generator argument. The effect of
this change is that it allows the possibility of ambiguous signaling at both 0 and
1 in the challenge ciphertext. However, for all possible decryption queries where
ss.vk �= ss.vk∗ this remains impossible.

Our next goal will be to use the IND-CPA security of the underlying PKE
scheme to introduce signals on the opposite path s∗. To do this, however, for all
i where s∗

i = 1 we must first change the decryption routine to use cpa.sk1,i to
decrypt the sub-ciphertext at position (1, i) instead of using cpa.sk0,i (at position
(0, i)). Consider a particular ciphertext query and let di be the bit reported by
the original find algorithm on that ciphertext query and d′

i be the bit reported
by a the new decryption procedure on that same ciphertext. We want to argue
that if di �= d′

i then the PKE.Check procedure will abort and output ⊥ on both
encryptions. The first possibility is that di = 0 and d′

i = 1; however, that should
be information theoretically impossible as it would entail signaling both a 0
and 1 for a query with ss.vk �= ss.vk∗. The other possibility is that di = 1 and
d′

i = 0; i.e. that there is not a signal present at either side. In this case the first
decryption routine will have di = 1, but then when running PKE.Check it will
fail to find a signal at position (1, i) and abort. Likewise, the second decryption
routine will have d′

i = 0, but then fail to find a signal at position (0, i), so both
routines will behave identically in this case as well.

Once the oracle decryption is set to follow the seed s∗ we can straightfor-
wardly use CPA security to introduce ambiguous signals in the messages for all
positions (s∗

i, i). Once this change is made we can change the oracle decryption
routine again. This time it will only decrypt at positions (1, i) for all i ∈ [n]
and only use cpa.sk1,i. A similar argument to before can be applied to make this
change.

All information about s is gone except to the lingering amount in the random
coins used to encrypt. We can immediately apply the hinting PRG to change
to a game where these values can be moved to be uniformly at random. At this
point the message will be hidden.
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4.2 Security Proof

We will now show that the above construction satisfies the CCA security defi-
nition. Our proof proceeds via a sequence of hybrids. First, we will describe all
hybrids, and then show that the hybrids are computationally indistinguishable.

Hybrids

Hybrid H0: This corresponds to the original security game.

– Setup Phase
1. The challenger first chooses (HPRG.pp, 1n) ← HPRG.Setup(1λ, 1�).
2. Next it chooses 2n different PKECPA keys. Let (cpa.skb,i, cpa.pkb,i) ←

CPA.Setup(1λ) for each i ∈ [n], b ∈ {0, 1}.
3. The challenger chooses s∗ ← {0, 1}n, v∗

i ← {0, 1}λ for each i ∈ [n], and
(ss.sk∗, ss.vk∗) ← ss.Setup(1λ). It sets r̃i

∗ = HPRG.Eval(HPRG.pp, s∗, i).
(These components will be used during the challenge phase.)

4. It then chooses ai ← {0, 1}�out for each i ∈ [n] and B ← {0, 1}�out .
5. It sends cca.pk =

(
HPRG.pp, B,

(
ai, cpa.pkb,i

)
b∈{0,1},i∈[n]

)
to A, and sets

the secret key cca.sk = (cpa.sk0,i)i∈[n].
– Pre-challenge Query Phase

• Decryption Queries
1. For each query

(
ct =

(
ss.vk,M =

(
c, (c0,i, c1,i, c2,i)i

)
, σ

))
, the chal-

lenger first checks the signature σ.
2. Next, the challenger first computes d = PKE.Find (cca.pk, cca.sk,

cca.ct).
3. It outputs PKE.Check (cca.pk, cca.ct, d).

– Challenge Phase
1. The adversary sends two challenge messages (m∗

0,m
∗
1).

2. The challenger chooses a bit β ∈ {0, 1}.
3. It sets c∗ = HPRG.Eval(HPRG.pp, s, 0) ⊕ m∗

β .
4. It sets (c∗

0,i, c
∗
1,i, c

∗
2,i) as follows.

• If s∗
i = 0, it sets c∗

0,i = CPA.Enc(cpa.pk0,i, 1|v∗
i ; r̃i

∗), c∗
1,i ← CPA.Enc

(cpa.pk1,i, 0λ+1) and c∗
2,i = PRG(v∗

i ).
• If s∗

i = 1, it sets c∗
0,i ← CPA.Enc(cpa.pk0,i, 0λ+1), c∗

1,i = CPA.Enc
(cpa.pk1,i, 1|v∗

i ; r̃i
∗) and c∗

2,i = PRG(v∗
i ) + ai + B · ss.vk∗.

5. Finally, it computes a signature σ∗ on M∗ =
(
c∗,

(
c∗
0,i, c

∗
1,i, c

∗
2,i

))
using

ss.sk∗ and sends (ss.vk∗,M∗, σ∗) to A.
– Post-challenge Query Phase

• Decryption Queries. These are handled as in the pre-challenge phase, with
the restriction that all queries (ct, C) must satisfy that ct �= ct∗.

– Finally, the adversary sends its guess b.

Hybrid H1: This hybrid is similar to the previous one, except that during the
decryption queries, the challenger checks if ss.vk = ss.vk∗. If so, it rejects. ***
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Hybrid H2: In this hybrid, the challenger changes Step 4 of the setup phase. It
chooses uniformly random wi ← {0, 1}λ, and sets ai = PRG(v∗

i ) − PRG(wi) −
ss.vk∗ · B if s∗

i = 0, else ai = PRG(wi) − PRG(v∗
i ) − ss.vk∗ · B.

Hybrid H3: This hybrid is similar to the previous one, except that the challenger
modifies the way decryption queries are handled. Instead of using PKE.Find, the
challenger uses PKE.Find-1 (defined in Fig. 3). The PKE.Find routine decrypts
only the c0,i values. If decryption works, it guesses di = 0, else it guesses di = 1.
The PKE.Find-1 routine decrypts either c0,i or c1,i, depending on the ith bit of
s∗. Note that the PKE.Check routine is identical in both experiments.

Fig. 3. Routine PKE.Find-1

Hybrid H4: In this step, the challenger modifies the challenge ciphertext. For all
i ∈ [n] such that s∗

i = 0, the challenger sets c∗
1,i ← CPA.Enc(cpa.pk1,i, 1|wi).

Hybrid H5: In this step, the challenger modifies the challenge ciphertext. For all
i ∈ [n] such that s∗

i = 1, the challenger sets c∗
0,i ← CPA.Enc(cpa.pk0,i, 1|wi).6

6 Note that hybrids H4 and H5 could have been clubbed into a single hybrid. We
chose this distinction so that the hybrids for the PKE CCA proof are similar to the
hybrids for our Predicate Encryption security proof.
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Hybrid H6: This step is similar to the previous one, except for the decryption
queries in the pre-challenge/post-challenge phase. Instead of using PKE.Find-1,
the challenger uses PKE.Find-2 (defined in Fig. 4).7

Fig. 4. Routine PKE.Find-2

Hybrid H7: This hybrid is identical to the previous one, and the only difference
here is change of variable names. In particular, we will swap the variable names
v∗

i and wi if s∗
i = 1. This change affects the setup phase (where the ai values are

set), and the challenge phase (where we set c∗
0,i and c∗

1,i). Also, we rename the
r̃i

∗ and r∗
i variables to r∗

i,0 and r∗
i,1, depending on s∗

i . For clarity, we present the
entire setup and challenge phase in the full version of our paper.

Hybrid H8: In this hybrid, the challenger chooses both r∗
i,b uniformly at random

from {0, 1}�. It also chooses c∗ uniformly at random.

Analysis. Let advx
A denote the advantage of an adversary A in Hybrid Hx.

Lemma 1. Assuming ss is a strongly unforgeable one-time signature scheme,
for any PPT adversary A, there exists a negligible function negl(·) such that for
all λ ∈ N, |adv0A − adv1A| ≤ negl(λ).

Proof. This proof follows from the security of ss. The only difference between
these two hybrids is that the challenger, on receiving a decryption query,

7 We could have simplified this step by using PKE.Find instead of using PKE.Find-2.
However, looking ahead, our proof for ABE/PE systems will require an analogous
PKE.Find-2 routine. Hence, we chose to add this minor additional complication here
as well.
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rejects if it contains ss.vk∗. Suppose there exists a PPT adversary A such that
|adv0A − adv1A| is non-negligible. We can use A to break the security of ss. The
reduction algorithm B receives a verification key vk∗ from the signature scheme’s
challenger. The reduction algorithm chooses all other components by itself. Next,
during the pre-challenge decryption queries, if any decryption query has vk∗ in
it and the signature verification passes, then the reduction algorithm outputs
this as a forgery.

During the challenge phase, the reduction algorithm receives (m∗
0,m

∗
1). It

chooses β, and computes M∗ =
(
c∗
0,

(
c∗
0,i, c

∗
1,i, c

∗
2,i

))
as in H0. Finally, it sends

M∗ to the challenger, and receives signature σ∗. It sends (vk∗,M∗, σ∗) to A.
The adversary then makes polynomially many decryption/key generation

queries. If there exists some decryption query with verification key vk∗ that
verifies, then the reduction algorithm outputs the corresponding message and
signature as a forgery.

Clearly, B′s advantage is at least adv1A − adv2A.

Lemma 2. Assuming PRG is a secure pseudorandom generator, for any PPT
adversary A, there exists a negligible function negl(·) such that for all λ ∈ N,
|adv1A − adv2A| ≤ negl(λ).

Proof. The proof of this lemma follows from the security of PRG. The only
difference between the two hybrids is the choice of ai. In H1, all ai are chosen
uniformly at random. In H2, the challenger chooses wi ← {0, 1}λ for each i, and
sets ai as either PRG(v∗

i )−PRG(wi)− ss.vk∗ ·B or PRG(wi)−PRG(v∗
i )− ss.vk∗ ·

B, depending on si. Since wi is not used anywhere else in both these hybrid
experiments, we can use PRG security to argue that any PPT adversary has
nearly identical advantage in H1 and H2.

Lemma 3. Assuming correctness for decryptable ciphertexts for PKE scheme,
for any adversary A, there exists a negligible function negl(·) such that for all
λ ∈ N, |adv2A − adv3A| ≤ negl(λ).

Proof. This is an information-theoretic step, and holds for all adversaries (not
necessarily polynomial time). The only difference between these two hybrids is
with respect to the decryption queries. In H2, the challenger uses the routine
PKE.Find to get a string d, and then checks if d is valid (using PKE.Check). In H3,
the challenger uses PKE.Find-1 to compute the string d. In fact, one can prove a
more general statement: note that PKE.Find corresponds to PKE.Find-1 with last
input set to be 0n. We can show that for any two strings s∗ and s′, decryption
using PKE.Find-1(·, ·, ·, s∗) is statistically indistinguishable from decryption using
PKE.Find-1(·, ·, ·, s′). For simplicity, we will present indistinguishability of H2 and
H3, where in H2, the challenger uses PKE.Find for decryption queries.

We will argue that with overwhelming probability, for any decryption query
ct, either PKE.Find and PKE.Find-1 output the same d, or they output d and d′

respectively but PKE.Check rejects both. In particular, it suffices to show that
there exists a negligible function negl(·) such that for all λ ∈ N, s∗ ∈ [n] and
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ss.vk∗, the following event’s probability (denoted by p, parameterized by s∗ and
ss.vk∗) is at most negl(λ):

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∃ct s.t.

ct =
(
ss.vk,

(
c0,

(
c0,i, c1,i, c2,i

))
, σ

)
, ss.vk �= ss.vk∗

PKE.Find(pk, sk, ct) = d

PKE.Find-1(pk, sk′, ct, s∗) = d′
PKE.Check(pk, ct, d) �= PKE.Check(pk, ct, d′)

HPRG.pp ← HPRG.Setup(1λ, 1�), B ← {0, 1}�out

v∗
i , wi ← {0, 1}λ,

ai = (PRG(v∗
i ) − PRG(wi)) · (−1)s∗

i − B · ss.vk∗,

(cpa.pkb,i, cpa.skb,i) ← CPA.Setup(1λ)

sk =
(
cpa.sk0,i

)
i

, sk′ =

(
cpa.sks∗

i
,i

)

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where the probability is over the random coins used in CCA.Setup. Now, p ≤
p0 + p1, where pb is defined as the following event’s probability:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∃ct s.t.

ct =
(
ss.vk,

(
c0,

(
c0,i, c1,i, c2,i

))
, σ

)
, ss.vk �= ss.vk∗

PKE.Find(pk, sk, ct) = d

PKE.Find-1(pk, sk′, ct, s∗) = d′
i : first index s.t. s∗

i = 1, di = b, d′
i = b

PKE.Check(pk, ct, d) �= PKE.Check(pk, ct, d′)

HPRG.pp ← HPRG.Setup(1λ, 1�), B ← {0, 1}�out

v∗
i , wi ← {0, 1}λ,

ai = (PRG(v∗
i ) − PRG(wi)) · (−1)s∗

i − B · ss.vk∗,

(cpa.pkb,i, cpa.skb,i) ← CPA.Setup(1λ)

sk =
(
cpa.sk0,i

)
i

, sk′ =

(
cpa.sks∗

i
,i

)

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

We will show that pb ≤ negl(·) for both b ∈ {0, 1}. To prove this, let us first
consider the following event:

pPRG = Pr
[

∃ α1, α2 ∈ {0, 1}λ, i ∈ [n], ss.vk s.t. PRG(α1) = PRG(α2) + ai + B · ss.vk
]

where the probability is over the choice of B ← {0, 1}�out and v∗
i , wi ← {0, 1}λ.

Then pb ≤ pPRG + p′
b, where p′

b is like p′
b, except for an additional condition that

∀γ, δ,PRG(γ) �= PRG(δ) + ai + B · ss.vk. It is formally defined as the following
event’s probability:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∃ct s.t.

ct =
(
ss.vk,

(
c0,

(
c0,i, c1,i, c2,i

))
, σ

)
, ss.vk �= ss.vk∗

PKE.Find(pk, sk, ct) = d

PKE.Find-1(pk, sk′, ct, s∗) = d′
i : first index s.t. s∗

i = 1, di = b, d′
i = b

∀γ, δ, PRG(γ) �= PRG(δ) + ai + B · ss.vk
PKE.Check(pk, ct, d) �= PKE.Check(pk, ct, d′)

HPRG.pp ← HPRG.Setup(1λ, 1�), B ← {0, 1}�out

v∗
i , wi ← {0, 1}λ,

ai = (PRG(v∗
i ) − PRG(wi)) · (−1)s∗

i − B · ss.vk∗,

(cpa.pkb,i, cpa.skb,i) ← CPA.Setup(1λ)

sk =
(
cpa.sk0,i

)
i

, sk′ =

(
cpa.sks∗

i
,i

)

i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence, it suffices to show that pPRG ≤ negl(λ), p′
0 ≤ negl(λ) and p′

1 ≤ negl(λ).

Claim 1. pPRG ≤ negl(λ).

Proof. We will prove a stronger statement: for all ss.vk∗,s∗ and {vi, wi}i∈[n], the
following probability is at most n · 2−λ:

Pr
[∃ γ, δ ∈ {0, 1}λ, i ∈ [n], ss.vk �= ss.vk∗ s.t.
PRG(γ) = PRG(δ) + (PRG(vi) − PRG(wi)) · (−1)s∗

i + B · ss.vk
]

where the probability is over the choice of B. Fix any integer i ∈ [n]. Consider
the following sets.

S =
{
PRG(x) : x ∈ {0, 1}λ

}

S− =
{
PRG(x) − PRG(y) − (PRG(vi) − PRG(wi)) · (−1)s∗

i : x, y ∈ {0, 1}λ
}

S−
vk = {(

PRG(x) − PRG(y) − (PRG(vi) − PRG(wi)) · (−1)s∗
i

)
/(ss.vk − ss.vk∗) :

x, y ∈ {0, 1}λ, ss.vk ∈ {0, 1}�vk}
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The set S has size at most 2λ. As a result, the set S− has size at most 22λ. Finally,
the set S−

vk has size at most 22λ+�vk . If we choose a uniformly random element
from {0, 1}�out ≡ {0, 1}3λ+�vk , then this element falls in S−

vk with probability at
most 2−λ. This concludes our proof.

Claim 2. p′
0 = 0.

Proof. This follows from the definitions of PKE.Find, PKE.Find-1 and p′
0. Note

that PKE.Find sets di = 0 only if the decrypted value 1|vi satisfies PRG(vi) = c2,i,
and PKE.Find-1 sets di = 1 only if the decrypted value 1|wi satisfies PRG(wi) +
ai + B · ss.vk = c2,i. This, together with the requirement in p′

0 that ∀ γ, δ,
PRG(γ) �= PRG(δ) + ai + B · ss.vk, implies that p′

0 = 0.

Claim 3. Assuming correctness for decryptable ciphertexts , p′
1 = 0.

Proof Intuition. We will first present an overview of the proof, and discuss a
subtle but important point in the construction/proof.

Let E′
1 denote the event corresponding to p′

1. For this event to happen, there
exists an index i such that s∗

i = 1, and the ith iteration of both PKE.Find
and PKE.Find-1 fail to find a signal (that is, either the decryption fails, or the
PRG check fails). Let d be the string output by PKE.Find, and d′ the string
output by PKE.Find-1 (therefore di = d′

i = 1). We need to show that PKE.Check
outputs ⊥ for both d and d′. Suppose PKE.Check does not output ⊥ for d. Then,
this means that there exists a v such that c1,i is a PKE encryption of 1|v and
PRG(v)+ai +B · ss.vk = c2,i. In this case, the ith iteration of PKE.Find-1 should
set d′

i = 1, which is a contradiction.
The other case, where PKE.Check does not output ⊥ for d′, is similar. This

means there exists v, x such that c0,i is an encryption of 1|v for attribute x,
C(x) = 1 and PRG(v) = c2,i. Using perfect correctness of the PKE scheme, we
can argue that PKE.Find should have set di = 0, which is a contradiction.

Proof. Suppose s∗
i = 1, di = 1, d′

i = 0, and PKE.Check outputs different
value for both d and d′. Let r̃i = HPRG.Eval(HPRG.pp, d, i), r̃i

′ = HPRG.Eval
(HPRG.pp, d′, i), m ← CPA.Recover(cpa.pk1,i, c1,i, r̃i), m′ ← CPA.Recover

(cpa.pk0,i, c0,i, r̃i
′). Since PKE.Check outputs different values for d and d′, it

does not output ⊥ for at least one of them in the ith iteration. We will consider
two cases.

Case 1: PKE.Check does not output ⊥ for d in the ith iteration: As a result,
m = 1|v, c1,i = CPA.Enc(cpa.pk1,i, m; r̃i) and PRG(v) + ai + B · ss.vk = c2,i.
This means that CPA.Dec(sk1,i, c1,i) = 1|v (by perfect correctness of the PKE
decryption algorithm). However, this means d′

i = 1 (by definition of PKE.Find-1).
Hence Case 1 cannot occur.

Case 2: PKE.Check does not output ⊥ for d′ in the ith iteration: As a result,
m = 1|v, c0,i = CPA.Enc(cpa.pk0,i, m; r̃i), and PRG(v) = c2,i. This means
that CPA.Dec(cpa.sk0,i, c0,i) = 1|v (since we have perfect correctness for PKE



694 V. Koppula and B. Waters

decryption). However, by definition of PKE.Find, di = 0. Hence Case 2 cannot
occur.

Lemma 4. Assuming PKE is IND-CPA secure, for any PPT adversary A, there
exists a negligible function negl(·) such that for all λ ∈ N, |adv3A − adv4A| ≤
negl(λ).

Proof. The only difference in the two hybrids is with respect to the challenge
ciphertext. In H3, the challenger sets c∗

1,i to be encryption of 0λ+1 for all i ∈ [n]
such that s∗

i = 0. In H4, the challenger sets c∗
1,i to be encryption of 1|wi. Note

that the decryption queries require cpa.sk1,i only if s∗
i = 1. As a result, using the

IND-CPA security of PKE, it follows that the two hybrids are computationally
indistinguishable.

Lemma 5. Assuming PKE is IND-CPA secure, for any PPT adversary A, there
exists a negligible function negl(·) such that for all λ ∈ N, |adv4A − adv5A| ≤
negl(λ).

Proof. The proof of this lemma is similar to the proof of the previous lemma
(Lemma 4). In H4, the challenger sets c∗

0,i to be encryption of 0λ+1 for all i ∈ [n]
such that s∗

i = 1. In H5, the challenger sets c∗
0,i to be encryption of 1|wi. Note

that the decryption queries require cpa.sk0,i only if s∗
i = 0. As a result, using the

IND-CPA security of PKE, it follows that the two hybrids are computationally
indistinguishable.

Lemma 6. Assuming correctness for decryptable ciphertexts for PKE scheme,
for any adversary A, there exists a negligible function negl(·) such that for all
λ ∈ N, |adv5A − adv6A| ≤ negl(λ).

Proof. This proof is similar to the proof of Lemma3. In particular, recall that
the proof of Lemma 3 works for any s∗, s′, and note that PKE.Find-2 simply
corresponds to PKE.Find-1(·, ·, ·, 1n).

Lemma 7. adv6A = adv7A.

Proof. This follows from the definition of the two hybrids. The only difference
between H6 and H7 is that the variable names v∗

i and wi are swapped if s∗
i = 1.

As a result, any adversary has identical advantage in both hybrids.

Lemma 8. Assuming HPRG satisfies Definition 3, for any PPT adversary A,
there exists a negligible function negl(·) such that for all λ ∈ N, |adv7A − adv8A| ≤
negl(λ).

Proof. Suppose there exists a PPT adversary A such that |adv7A − adv8A| = ε.
We will use A to build a PPT reduction algorithm B that breaks the security of
HPRG.

The reduction algorithm first receives HPRG.pp and
(

r∗
0 ,

(
r∗
b,i

)

i∈[n],b∈{0,1}

)

from the challenger. It chooses {v∗
i , wi}, (ss.sk∗, ss.vk∗), sets {ai}, chooses B ←
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{0, 1}�out ,
{
(cpa.pkb,i, cpa.skb,i) ← CPA.Setup(1λ)

}
and sends (HPRG.pp, B,(

ai, cpa.pkb,i

))
to A. Next, it receives decryption queries, which can be han-

dled using {cpa.sk1,i} (as in H6/H7). For the challenge ciphertext, it chooses
β ← {0, 1}, sets c∗

0 = m∗
b ⊕ r∗

0 , computes c∗
0,i = CPA.Enc(cpa.pk0,i, 1|v∗

i ; r∗
0,i),

c∗
1,i = CPA.Enc(cpa.pk1,i, 1|wi; r∗

1,i), c∗
2,i = PRG(v∗

i ) = PRG(w∗
i ) + ai + B · ss.vk∗

and finally computes a signature on
(
c∗,

(
c∗
0,i, c

∗
1,i, c

∗
2,i

))
. It sends the ciphertext

to the adversary. The post-challenge queries are handled as the pre-challenge
queries. Finally, the adversary sends its guess β′. If β �= β′, the reduction algo-
rithm guesses that all r∗

b,i are uniformly random. This reduction algorithm has
advantage ε in the hinting PRG security game.

Lemma 9. For any adversary A, adv8A = 0.

Proof. Note that in hybrid H8, there is no information about mβ in the challenge
ciphertext, since c∗

0 is uniformly random.

5 CCA Secure Predicate Encryption Scheme

Let PredE = (PredE.Setup, PredE.Enc, PredE.KeyGen, PredE.Dec) be a predicate
encryption scheme with randomness-decryptable ciphertexts and one-sided secu-
rity against chosen plaintext attacks, PKE = (CPA.Setup, CPA.Enc, CPA.Dec)
an IND-CPA secure public key encryption scheme with randomness-decryptable
ciphertexts, S = (ss.Setup, ss.Sign, ss.Verify) a strongly unforgeable one time sig-
nature scheme and HPRG = (HPRG.Setup,HPRG.Eval) a hinting PRG scheme.
We will assume both our encryption schemes have message space {0, 1}λ+1.
Let �PredE(·) be a polynomial representing the number of bits of randomness
used by PredE.Enc, �PKE(·) the number of random bits used by CPA.Enc, and
�vk(·) the size of verification keys output by ss.Setup. For simplicity of nota-
tion, we will assume �(·) = �PredE(·) = �PKE(·),8 �out(λ) = �vk(λ) + 3λ and
PRGλ : {0, 1}λ → {0, 1}�out(λ) a family of secure pseudorandom generators.

We will now describe our CCA-one-sided secure predicate encryption scheme
PredECCA = (PredECCA.Setup, PredECCA.Enc, PredECCA.KeyGen, PredECCA.Dec)
with message space Mλ = {0, 1}�(λ). For simplicity of notation, we will skip the
dependence of � and �out on λ.

PredECCA.Setup(1λ): The setup algorithm first chooses (HPRG.pp, 1n) ←
HPRG.Setup(1λ, 1�). Next it chooses n different PredE keys and PKE keys. Let
(pred.mski, pred.pki) ← PredE.Setup(1λ), (cpa.ski, cpa.pki) ← CPA.Setup(1λ)
for each i ∈ [n]. It then chooses ai ← {0, 1}�out for each i ∈ [n] and
B ← {0, 1}�out . It sets pe.cca.pk =

(
HPRG.pp, B, (ai, pred.pki, cpa.pki)i∈[n]

)

and pe.cca.msk = (pred.mski, cpa.ski)i∈[n].

8 Alternatively, we could set � to be max of these two polynomials.
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PredECCA.Enc(pe.cca.pk,m, x): Let pe.cca.pk = (HPRG.pp, B, (ai, pred.pki,

cpa.pki)i∈[n]

)
. The encryption algorithm first chooses s ← {0, 1}n. It

sets c0 = HPRG.Eval(HPRG.pp, s, 0) ⊕ m. Next, it chooses signature keys
(ss.sk, ss.vk) ← ss.Setup(1λ). For each i ∈ [n], it chooses vi ← {0, 1}λ and
ri ← {0, 1}�, sets r̃i = HPRG.Eval(HPRG.pp, s, i) and does the following:
– If si = 0, it sets c0,i = PredE.Enc(pred.pki, 1|vi, x; r̃i), c1,i = CPA.Enc

(cpa.pki, 0λ+1; ri) and c2,i = PRG(vi).
– If si = 1, it sets c0,i = PredE.Enc(pred.pki, 0λ+1, x; ri), c1,i = CPA.Enc

(cpa.pki, 1|vi; r̃i) and c2,i = PRG(vi) + ai + B · ss.vk.9.
Finally, it sets M =

(
c0, (c0,i, c1,i, c2,i)i∈[n]

)
, computes σ ← ss.Sign(ss.sk,M)

and outputs (ss.vk,M, σ) as the ciphertext.
PredECCA.KeyGen(pe.cca.msk, C): Let pe.cca.msk = (pred.mski, cpa.ski)i∈[n]. The

key generation algorithm computes pred.ski ← PredE.KeyGen(pred.mski, C)
and outputs pe.cca.sk =

(
C, (pred.ski)i∈[n]

)
.

PredECCA.Dec(pe.cca.sk, pe.cca.pk, pe.cca.ct): Let the ciphertext pe.cca.ct be
parsed as

(
ss.vk,M =

(
c0, (c0,i, c1,i, c2,i)i∈[n]

)
, σ

)
and pe.cca.sk =

(
C, (pred.ski)i∈[n]

)
. The decryption algorithm first verifies the signature σ.

It checks if ss.Verify(ss.vk,M, σ) = 1, else it outputs ⊥.

Next, the decryption algorithm computes d = Find(pe.cca.pk, pe.cca.sk,
pe.cca.ct) (where Find is defined in Fig. 5), and outputs Check(pe.cca.pk,
pe.cca.ct, C, d) (where Check is defined in Fig. 6).

Fig. 5. Routine Find

9 Here, we assume the verification key is embedded in F2�out , and the addition and
multiplication are performed in F2�out .
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Fig. 6. Routine Check

5.1 Security Proof

The security proof works via a sequence of hybrid experiments, and the hybrid
experiments are very similar to the ones used for the PKE construction. Due
to space constraints, the proof of security is included in the full version of our
paper.
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Abstract. We introduce a new form of encryption that we name match-
making encryption (ME). Using ME, sender S and receiver R (each with
its own attributes) can both specify policies the other party must satisfy
in order for the message to be revealed. The main security guarantee is
that of privacy-preserving policy matching: During decryption nothing
is leaked beyond the fact that a match occurred/did not occur.

ME opens up new ways of secretly communicating, and enables sev-
eral new applications where both participants can specify fine-grained
access policies to encrypted data. For instance, in social matchmaking,
S can encrypt a file containing his/her personal details and specify a
policy so that the file can be decrypted only by his/her ideal partner.
On the other end, a receiver R will be able to decrypt the file only if S
corresponds to his/her ideal partner defined through a policy.

On the theoretical side, we define security for ME, as well as provide
generic frameworks for constructing ME from functional encryption.

These constructions need to face the technical challenge of simultane-
ously checking the policies chosen by S and R, to avoid any leakage.

On the practical side, we construct an efficient identity-based scheme
for equality policies, with provable security in the random oracle model
under the standard BDH assumption. We implement and evaluate our
scheme and provide experimental evidence that our construction is prac-
tical. We also apply identity-based ME to a concrete use case, in partic-
ular for creating an anonymous bulletin board over a Tor network.

Keywords: Secret handshake · Attribute-based encryption ·
Social matchmaking · Tor

1 Introduction

Intelligence operations often require secret agents to communicate with other
agents from different organizations. When two spies meet to exchange secrets,
they use a type of secret handshake to ensure that the parties participating in the
exchange are the ones intended. For example, an FBI agent may want to com-
municate only with CIA agents, and if this is not the case, the communication
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should drop without revealing membership information and why the communi-
cation failed. This form of live drop communication,1 when parties are online and
interact, has been implemented in cryptography and it is referred to as secret
handshake (SH) protocol [9]. In SH, two parties agree on the same secret key
only if they are both from the same group. Privacy is preserved in the sense
that, if the handshake fails, nobody learns anything relevant other than the par-
ticipants are not in the same group. In SH with dynamic matching [6], groups
and roles can even be determined just before the protocol execution.

SH can be thought of as an evolution of traditional key exchange protocols,
where protecting privacy of the participants assumes an essential role. As any
other key agreement protocol, SH is inherently interactive and its purpose is for
the parties to converge on a secret key. A natural question is whether there exists
a non-interactive version of SH, in a similar way as ElGamal public-key encryp-
tion can be interpreted as a non-interactive version of the classical Diffie-Hellman
key exchange. This new cryptographic primitive would allow senders to encrypt
messages offline given only the public key of the receiver, thus getting rid of
real-time interactions, while at the same time providing strong privacy guaran-
tees for time-delayed communications such as email. Non-interactivity mitigates
or prevents traffic analysis which affects all SH protocols when deployed within
a network environment (see, e.g., [6]). In particular, increased traffic between
nodes may signal to an adversary that the SH protocol was successful, even
though the nodes’ group affiliations and roles remain private.

Non-interactive SH is even more relevant if we consider that the most com-
mon method of espionage tradecraft is the dead drop one, (See footnote 1) which
maintains operational security by using a secret location for the exchange of
information, thus relieving the agents from meeting in person. Unfortunately,
dead-drop communication cannot be captured by any existing cryptographic
primitive, since it requires a form of expressiveness that is not currently pro-
vided by encryption and its more advanced forms.

Matchmaking Encryption. In this paper, we are revamping the encryption prim-
itive and introducing a new concept termed “Matchmaking Encryption”, or ME.
In ME, a trusted authority generates encryption and decryption keys associated,
respectively, to attributes of the sender and the receiver. The authority also gen-
erates an additional decryption key for the receiver, associated to an arbitrary
policy of its choice. The sender of the message can specify on the fly an arbi-
trary policy the receiver must satisfy in order for the message to be revealed. The
guarantee is now that the receiver will obtain the message if and only if a match
occurs (i.e., the sender’s attributes match the receiver’s policy and vice-versa).
Nothing beyond that is leaked; furthermore, the sender’s attributes are certified
by the authority, so that no malicious sender can forge a valid ciphertext which
embeds fake attributes.

For instance, the sender, during encryption, can specify that the message is
intended for an FBI agent that lives in NYC. The receiver, during decryption,

1 See https://en.wikipedia.org/wiki/Dead drop.
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can also specify that he wants to read messages only if they come from CIA
agents. If any of these two policies is not satisfied, the message remains secret,
but nobody learns which policy failed. In this vein, ME can be seen as a non-
interactive version of SH, but with much more enhanced functionality. Indeed, an
SH works only for groups and roles, while attribute-based key agreements [25] do
not consider privacy. We refer the reader to Sect. 1.3 for a comparison between
ME and other primitives in the realm of attribute-based cryptography.

Other killer applications of ME are those where the receiver must be sheltered
from the actual content of messages to avoid liability, inconvenience or inap-
propriateness. ME naturally tackles social matchmaking confidentiality, where
potential partners open files intended for them but only if they contain the traits
of the desired person; if decryption fails, nobody learns why, so that privacy is
preserved. Encrypting bids (or votes) under ME provides an exciting twist to
well-studied problems. Bidders send private bids to a collector and specify the
conditions under which the encryption should be opened. The collector opens
only the bids that match specific requirements. If decryption fails, the collec-
tor does not learn why, and the actual bid (or vote) remain sealed. ME avoids
exposing information connected to unlooked-for bids which could influence the
receiver and adversely affect the bidding process outcome.

ME also supports marginalized and dissident communities in authoritarian
countries. It can act as an enabler for journalists, political activists and minori-
ties in free-speech technical applications such as SecurePost [35] that provides
verified group anonymity. Indeed, in their thorough study [35], the authors reveal
that, in authoritarian countries, anonymous communication may not be credible
and cannot be trusted since sources are unknown.2 ME provides a comprehensive
technical solution for censorship-resistant communication while providing source
authenticity and strong privacy guarantees that cannot be obtained with exist-
ing tools. For instance, the ability to check ciphertexts against a policy before
decryption allows journalists or activists to vet messages and avoid exposure to
unwanted information that would make them liable. To this end, in Sect. 6, we
introduce and implement a privacy-preserving bulletin board that combines Tor
hidden services with ME to allow parties to collect information from anonymous
but authentic sources.

1.1 Our Contributions

We initiate a systematic study of ME, both in terms of definitions and construc-
tions. Our main contributions are summarized below.

Syntax of ME. In ME, a trusted authority publishes a master public key mpk,
associated to a master secret key msk. The master secret key msk is used by the
authority to generate three types of keys: (i) An encryption key ekσ, associated
with attributes σ for the sender (created using an algorithm SKGen); (ii) A
decryption key dkρ, associated with attributes ρ for the receiver (created using

2 See https://www.news.ucsb.edu/2019/019308/anonymous-yet-trustworthy.
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an algorithm RKGen); (iii) A decryption key dkS, associated to a policy S that
the sender’s attributes should satisfy, but that is chosen by the receiver (created
using an algorithm PolGen).

A sender with attributes σ, and corresponding encryption key ekσ obtained
from the authority, can encrypt a plaintext m by additionally specifying a policy
R (chosen on the fly), thus yielding a ciphertext c that is associated with both
σ and R. Finally, the receiver can attempt to decrypt c using keys dkρ and dkS:
In case of a match (i.e., the attributes of both parties satisfy the counterparty’s
policy), the receiver obtains the plaintext, and otherwise an error occurs.

Security of ME. We consider two properties termed privacy, and authenticity.
On rough terms, privacy looks at the secrecy of the sender w.r.t. the plaintext
m, the chosen policy R, and its attributes σ, whenever a malicious receiver,
possessing decryption keys for several attributes ρ and policies S:

– Can’t decrypt the ciphertext (“mismatch condition”), i.e., either the sender’s
attributes do not satisfy the policies held by the receiver (S(σ) = 0), or
the receiver’s attributes do not satisfy the policy specified by the sender
(R(ρ) = 0).

– Can decrypt the ciphertext (“match condition”), i.e., both the sender’s and
the receiver’s attributes satisfy the corresponding policy specified by the coun-
terpart (R(ρ) = 1 and S(σ) = 1). Of course, in such a case the receiver is
allowed to learn the plaintext.

On the other hand, authenticity says that an attacker not possessing
attributes σ should not be able to create a valid ciphertext (i.e., a ciphertext
not decrypting to ⊥) w.r.t. any access policy that is satisfied by σ.

Black-Box Constructions. It turned out that building matchmaking encryption
is quite difficult. While a compiler turning key agreement into public-key encryp-
tion exists (e.g., Diffie-Hellman key exchange into ElGamal public-key encryp-
tion), there is no obvious way of building ME from SH, even by extending the
model of SH to include attributes and policies in order to achieve something akin
to attribute-based key agreement protocols. The main technical challenge is to
ensure that the policies established by the sender and receiver are simultaneously
checked to avoid any leakage. This simultaneity requirement is so elusive that
even constructions combining attribute-based encryption (ABE) with authenti-
cation mechanisms fail to achieve it (more on this later).

Our first technical contribution is a construction of an ME for arbitrary policies
based on three tools: (i) an FE scheme for randomized functionalities [1] (rFE),
(ii) digital signatures, and (iii) non-interactive zero-knowledge (NIZK) proofs.
When using the rFE scheme from [1], we can instantiate our scheme assuming
the existence of either semantically secure public-key encryption schemes and low-
depth pseudorandom generators, or concrete assumptions on multi-linear maps,
or polynomially-secure indistinguishability obfuscation (iO).

This construction satisfies only security against bounded collusions, where
there is an a-priori upper bound on the number of queries a malicious receiver
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can make to oracles RKGen and PolGen. We additionally give a simpler construc-
tion of ME for arbitrary policies that even achieves full security (i.e., security
against unbounded collusions), albeit under stronger assumptions. In particular,
we replace rFE with 2-input functional encryption (2FE) [24]. When using the
2FE scheme by Goldwasser et al. [24], we can instantiate this construction based
on sub-exponentially secure iO.

Being based on strong assumptions, the above constructions should be mainly
understood as feasibility results showing the possibility of constructing ME for
arbitrary policies. It is nevertheless worth pointing out a recent construction
of iO based on LWE, bilinear maps, and weak pseudorandomness [4], which
avoids multi-linear maps. Additionally, Fisch et al. [20] show how to imple-
ment efficiently FE and 2FE using Intel’s Software Guard Extensions (SGX),
a set of processors allowing for the creation of isolated execution environments
called enclaves. At a high level, in their practical implementation, a functional
decryption key skf consists of a signature on the function f , while messages
are encrypted using standard PKE. In order to run the decryption algorithm, a
client sends skf together with ciphertext c to a decryption enclave, which first
checks if the signature is valid (i.e., the function evaluation has been authorized
by the authority), and if so it decrypts c by using the corresponding secret key,
and outputs the function f evaluated on the plaintext. Lastly, the enclave erases
its memory. This approach can be applied directly to FE, 2FE, and even rFE for
arbitrary functionalities, which, thanks to our results, makes ME for arbitrary
policies practical in the trusted hardware setting.

The Identity-Based Setting. Next, we turn to the natural question of obtaining
efficient ME in restricted settings. In particular, we focus on the identity-based
setting where access policies are simply bit-strings representing identities (as for
standard identity-based encryption). This yields identity-based ME (IB-ME).
For this setting, we provide an efficient construction that we prove secure in
the random oracle model (ROM), based on the standard bilinear Diffie-Hellman
assumption (BDH) over bilinear groups.

Recall that in ME the receiver needs to obtain from the authority a different
key for each access policy S. While this requirement is perfectly reasonable in
the general case, where the policy might consist of the conjunction of several
attributes, in the identity-based setting a receiver that wants to receive messages
from several sources must obtain one key for each source. As this would not
scale well in practice, we change the syntax of IB-ME and remove the PolGen
algorithm. In particular, the receiver can now specify on the fly an identity
string snd (playing the role of the access policy S) that is directly input to the
decryption algorithm (together with the secret key associated to the receiver’s
identity).

While the above modification yields much more efficient IB-ME schemes,
it comes with the drawback that an adversary in the privacy game can try
to unlock a given ciphertext using different target identities snd chosen on the
fly. The latter yields simple attacks that required us to tweak the definition of
privacy in the identity-based setting slightly. We refer the reader to Sect. 5 for
more details.
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Table 1. Results achieved in this work ([5] is the full version of this paper). † Security
only holds in the identity-based setting. ‡ Security only holds in case of bounded
collusions.

Type Privacy Authenticity Assumptions

Section 4 ME �‡ �‡ rFE + Signatures + NIZK

Section 5 IB-ME �† �† BDH (RO model)

[5] ME � � 2FE + Signatures + NIZK

[5] A-ME � � FE + Signatures + NIZK

Concrete Use Case and Implementation. We give evidence of the practical via-
bility of our IB-ME construction by providing a prototype implementation in
Python. Our experimental evaluation can be found in Sect. 6. There, we also
detail a concrete use case where IB-ME is used in order to realize a prototype of
a new privacy-preserving bulletin board that is run on the Tor network [43]. Our
system allows parties to communicate privately, or entities such as newspapers
or organizations to collect information from anonymous sources.

A public bulletin board is essentially a broadcast channel with memory. Mes-
sages can be encrypted under ME so that their content is revealed only in case
of a policy match. The privacy-preserving feature of ME ensures that, if decryp-
tion fails, nobody learns which policies were not satisfied. This effectively creates
secure and private virtual rooms or sub-channels.

Arranged ME. In ME a receiver can obtain independent decryption keys for its
attributes and policies. Note that these keys can be arbitrarily combined during
decryption. For this reason, we also consider an alternative flavor of ME, called
arranged matchmaking encryption (A-ME), where there is a single decryption
key dkρ,S that describes simultaneously the receiver’s attributes ρ and the policy
S chosen by the receiver. Thus, an A-ME scheme does not come with a PolGen
algorithm. This feature makes sense in applications where a receiver has many
attributes, each bearing different restrictions in terms of access policies. A-ME is
simpler to construct, in fact we show how to obtain A-ME for arbitrary policies
from FE for deterministic functionalities, digital signatures, and NIZK proofs.

See Table 1 for a summary of our constructions in terms of assumptions and
for different flavors of ME.

1.2 Technical Approach

Below, we describe the main ideas behind our constructions of ME. We start
by presenting two unsuccessful attempts, naturally leading to our secure con-
structions. Both attempts are based on FE. Recall that FE allows us to generate
decryption keys dkf associated to a functionality f , in such a way that decrypting
a ciphertext c, with underlying plaintext x, under dkf , yields f(x) (and nothing
more). Note that FE implies both ciphertext-policy ABE [12] (CP-ABE) and
key-policy ABE [28] (KP-ABE).
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First Attempt. A first natural approach would be to construct an ME scheme
by combining two distinct FE schemes. The idea is to apply sequentially two
functionalities f1 and f2, where the first functionality checks whether the
sender’s policy R is satisfied, whereas the second functionality checks whether
the receiver’s policy S is satisfied. More in details, let f1 and f2 be the following
functions:

f1
ρ (R, c) =

{
c, if R(ρ) = 1
⊥, otherwise f2

S
(σ,m) =

{
m, if S(σ) = 1
⊥, otherwise

where R(ρ) = 1 (resp. S(σ) = 1) means that receiver’s attributes ρ (resp. sender’s
attributes σ) satisfy the sender’s policy R (resp. receiver’s policy S). A sender
now encrypts a message m under attributes σ by first encrypting (σ,m) under the
second FE scheme, and thus it encrypts the corresponding ciphertext concate-
nated with the policy R under the first FE scheme. The receiver first decrypts a
ciphertext using secret key dkρ associated with function f1

ρ , and then it decrypts
the obtained value using secret key dkS associated with function f2

S
.

While “semantic security” of the underlying FE schemes computationally
hides the plaintext of the resulting ME scheme, privacy is not guaranteed com-
pletely: In fact, when the first encrypted layer decrypts correctly (resp. does not
decrypt correctly), a receiver infers that the sender’s attributes σ match (resp.
do not match) the policy S.

Second Attempt. One could think to salvage the above construction as follows.
Each function f i returns a random key ri in case the corresponding policy (i.e.,
the policy checked by function f i) is satisfied, and otherwise it returns a random
value generated by running a secure PRF F . Both partial keys r1, r2 are then
needed to unmask the string r1 ⊕ r2 ⊕ m, which is included in the ciphertext.

More precisely, consider functions f1
ρ (R, r1, k1) and f2

S
(σ, r2, k2), such that

f1
ρ (R, r1, k1) (resp. f2

S
(σ, r2, k2)) returns r1 (resp. r2) if ρ satisfies R (resp. σ

satisfies S); otherwise, it returns Fk1(ρ) (resp. Fk2(S)), where k1 (resp. k2) is a
key for the PRF F . An encryption of message m w.r.t. attributes σ and policy
R would now consist of three values (c1, c2, c3), where c1 is an encryption of
(R, r1, k1) under the first FE scheme, c2 is an encryption of (σ, r2, k2) under the
second FE scheme, and finally c3 = r1 ⊕ r2 ⊕ m. A receiver (with keys dkρ and
dkS associated to functions f1

ρ and f2
S

as before) would decrypt c1 and c2 using
dkρ and dkS, and finally xor the outputs between them and with c3.

As before, “semantic security” still follows from the security of the two FE
schemes. Furthermore, it might seem that privacy is also satisfied because, by
security of the PRF, it is hard to distinguish whether the decryption of each ci

yields the random string ri (i.e., there was a match) or an output of Fki
(i.e.,

there was no match). However, a malicious receiver possessing distinct attributes
ρ and ρ′, such that both satisfy the policy R, is able to figure out whether the
sender’s policy is matched by simply decrypting c1 twice (using attributes ρ and
ρ′) and comparing if the decryption returns twice the same value (i.e., r1). A
similar attack can be carried out using two different keys for distinct policies S

and S
′, such that both policies are satisfied by the attributes σ.
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ME from 2FE. Intuitively, in order to avoid the above attacks, we need to check
simultaneously that S(σ) = 1 and R(ρ) = 1. 2FE comes handy to solve this
problem, at least if one is willing to give up on authenticity. Recall that in
a 2FE scheme we can associate secret keys with 2-ary functionalities, in such a
way that decrypting ciphertexts c0, c1 computed using independent keys ek0, ek1,
and corresponding to plaintexts x0, x1, yields f(x0, x1) (and nothing more).

Wlog., we reserve the 1st slot to the sender, while the 2nd slot is reserved
to the receiver; the administrator gives the key ek0 to the sender. The sender
now encrypts a message m under attributes σ and policy R by computing
Enc(ek0, (σ,R,m)), which yields a ciphertext c0 for the first input of the function
f . The receiver, as usual, has a pair of decryption keys dkρ, dkS obtained from the
administrator; here, dkS = Enc(ek1,S) = c1 is an encryption of S under key ek1.
Hence, the receiver runs Dec(dkρ, c0, c1), where dkρ is associated to the function
fρ((m,σ,R),S) that returns m if and only if both R(ρ) = 1 and S(σ) = 1 (i.e.,
a match occurs).

On rough terms, privacy follows by the security of the underlying 2FE
scheme, which guarantees that the receiver learns nothing more than the output
of f . Unfortunately, this construction does not immediately satisfy authentic-
ity. To overcome this limitation, we tweak it as follows. First, we let the sender
obtain from the authority a signature s on its own attributes σ; the signature is
computed w.r.t. a verification key that is included in the public parameters of
the scheme. Second, during encryption, the sender computes the ciphertext c0
as above, but now additionally proves in zero knowledge that it knows a valid
signature for the attributes that are hidden in the ciphertext. As we show, this
modification allows us to prove authenticity, while at the same time preserving
privacy. We refer the reader to the full version [5] for the formal proof.

ME from rFE. In Sect. 4, we give an alternative solution that combines rFE and
FE (and thus can be instantiated from weaker assumptions). Recall that rFE is
a generalization of FE that supports randomized functionalities. In what follows,
we write f1 for the randomized functionality supported by the rFE scheme, and
f2 for the deterministic functionality supported by the plain FE scheme. The
main idea is to let the sender encrypt (m,σ,R) under the rFE scheme. We then
consider the randomized function f1

ρ that checks if ρ satisfies R: In case a match
occurs (resp. does not occur), it returns an encryption of (m,σ) (resp. of (⊥,⊥),
where ⊥ denotes garbage) for the second function f2

S
that simply checks whether

the policy S is satisfied or not. The receiver decryption keys are the keys dkρ, dkS
associated to the functions f1

ρ and f2
S
.

Roughly speaking, since the randomized function f1 passes encrypted data
to f2, a malicious receiver infers nothing about the satisfiability of policy R. On
the other hand, the satisfiability of S remains hidden, as long as the FE scheme
for the function f2 is secure.

While the above construction does not directly satisfy authenticity, we can
show that the same trick explained above for the 2FE-based scheme works here
as well.
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A-ME from FE. Recall that the difference between ME and A-ME lies in the
number of decryption keys: While in ME there are two distinct keys (one for the
policy S, and one for the attributes ρ), in A-ME there is a single decryption key
dkρ,S that represents both the receiver’s attributes ρ and the policy S.

As a result, looking at our construction of ME from 2FE, we can now hard-
code the policy S (together with the attributes ρ) into the function, which allows
us to replace 2FE with plain FE. This way, each A-ME decryption key dkρ,S is
the secret key corresponding to the function fρ,S for the FE scheme. The security
proof, which appears in the full version [5], only requires FE with game-based
security [12], which in turn can be instantiated under much weaker assumptions.

IB-ME. Above, we mentioned that the natural construction of ME where a
ciphertext masks the plaintext m with two distinct pads r1, r2—where r1, r2 are
re-computable by the receiver as long as a match occurs—is insecure. This is
because the expressiveness of ME allows us to have two distinct attributes ρ and
ρ′ (resp. two distinct policies S and S

′) such that both satisfy the sender’s policy
R (resp. both are satisfied by the sender’s attributes σ).

The main idea behind our construction of IB-ME (cf. Sect. 5) under the BDH
assumption is that the above attack does not work in the identity-based setting,
where each receiver’s policy S (resp. receiver’s policy R) is satisfied only by the
attribute σ = S (resp. ρ = R). This means that an encryption m⊕ r1 ⊕ r2 yields
an efficient IB-ME as long as the random pad r2 (resp. r1) can be re-computed by
the receiver if and only if its policy S is satisfied (resp. its attributes ρ satisfy the
sender’s policy). On the other hand, if S is not satisfied (resp. ρ does not satisfy
the sender’s policy), the receiver obtains a pad r′

2 (resp. r′
1) that is completely

unrelated to the real r2 (resp. r1). In our scheme, we achieve the latter by
following a similar strategy as in the Boneh-Franklin IBE construction [11].

1.3 Related Work

Secret Handshakes. Introduced by Balfanz et al. [9], an SH allows two members of
the same group to secretly authenticate to each other and agree on a symmetric
key. During the protocol, a party can additionally specify the precise group
identity (e.g., role) that the other party should have.

SH preserves the privacy of the participants, meaning that when the hand-
shake is successful they only learn that they both belong to the same group (yet,
their identities remain secret), whereas they learn nothing if the handshake fails.
Subsequent work in the area [6,13,29–32,41,42,46,47,49] focused on improving
on various aspects of SH, including members’ privacy and expressiveness of the
matching policies (i.e., attribute-based SH).

In this vein, ME can be thought of as a non-interactive SH. Indeed, ME gives
privacy guarantees similar to that of SH, but it provides a more efficient way to
communicate (being non-interactive) and, at the same time, it is more flexible
since a party is not constrained to a group.
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Attribute-Based Encryption. The concept of ABE was first proposed by Sahai
and Waters [40] in the setting of fuzzy identity-based encryption, where users
are identified by a single attribute (or identity string), and policies consist of a
single threshold gate. Afterwards, Bethencourt et al. [10] generalized this idea to
the case where users are described by multiple attributes. Their ABE scheme is
a CP-ABE, i.e., a policy is embedded into the ciphertext, whereas the attributes
are embedded into the receiver’s decryption keys. The first CP-ABE with non-
monotonic access structures was proposed by Ostrovsky et al. [37]. Goyal et
al. [28], instead, introduced KP-ABE, where ciphertexts contain the attributes,
whereas the policy is embedded in the decryption keys. Several other CP-ABE
and KP-ABE schemes have been proposed in the litterature, see, among oth-
ers, [8,14–16,27,36,38,48,50–53].

In ABE, only one party can specify a policy, and thus only one entity has
the power to select the source (or the destination) of an encrypted message.
Motivated by this limitation, Attrapadung and Imai [7] introduced dual-policy
ABE. Here, the sender encrypts a message by choosing both a policy and a set
of attributes. The receiver can decrypt the ciphertext using a single decryption
key that describes both the receiver’s policy and attributes. Similarly to ME, if
both policies are satisfied by the respective counterpart, the message is revealed.

Dual-policy ABE and ME differ in several aspects. First, on the syntactical
level, in ME there are two distinct decryption keys: One for the attributes and
one for the policy specified by the receiver. This yields improved flexibility, as
receivers are allowed to choose attributes and policies independently. (Indeed,
the syntax of dual-policy ABE is more similar to that of A-ME.) Second, on the
security level, both ME and A-ME provide much stronger privacy guarantees
than dual-policy ABE. In fact, the security definition for dual-policy ABE only
protects the secrecy of the plaintext. Additionally, the actual constructions in [7,
8] are easily seen not to preserve privacy w.r.t. the sender’s attributes/policy
whenever a match does not occur. Intuitively, this is because the procedure that
checks, during decryption, whether a match occurred or not, is not an atomic
operation. Also note that dual-policy ABE does not directly provide authenticity,
which instead is a crucial property for ME and A-ME (those being a type of non-
interactive SH).

Attribute-Based Key Exchange. Gorantla et al. [25] introduced attribute-based
authenticated key exchange (AB-AKE). This is essentially an interactive proto-
col which allows sharing a secret key between parties whose attributes satisfy a
fixed access policy. Note that the policy must be the same for all the parties,
and thus it must, e.g., be negotiated before running the protocol.

In a different work, Kolesnikov et al. [34] built a different AB-KE without
bilateral authentication. In their setting, a client with some attributes (certifi-
cated by an authority) wants to authenticate himself to a server according to a
fixed policy. The server will share a secret key with the client if and only if the
client’s attributes satisfy the server’s policy.

Note that in ME both senders and receivers can choose their own policies, a
feature not present in attribute-based key exchange protocols.
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Access Control Encryption. Access control encryption (ACE) [19,21,33,44] is a
novel type of encryption that allows fine-grained control over information flow.
The actors are a set of senders, a set of receivers, and a sanitizer. The goal is to
enforce no-read and no-write rules (described by a policy) over the communica-
tion, according to the sender’s and receiver’s identities.

The flow enforcement is done by the sanitizer, that applies a randomized
algorithm to the incoming ciphertexts. The result is that only receivers allowed
to communicate with the source will be able to decrypt the sanitized ciphertext
correctly, obtaining the original message (no-read rule). On the other hand, if
the source has not the rights to communicate with a target receiver (e.g., the
sender is malicious), then the latter will receive a sanitized ciphertext that looks
like an encryption of a random message (no-write rule).

ACE and ME accomplish orthogonal needs: The former enables crypto-
graphic control over information flow within a system, whereas the latter enables
both the sender and the receiver to specify fine-grained access rights on encrypted
data. Furthermore, ACE inherently requires the presence of a trusted sanitizer,
whereas ME involves no additional actor (besides the sender and the receiver).

2 Preliminaries

2.1 Notation

We use the notation [n] def= {1, . . . , n}. Capital boldface letters (such as X) are
used to denote random variables, small letters (such as x) to denote concrete
values, calligraphic letters (such as X ) to denote sets, and serif letters (such as A)
to denote algorithms. All of our algorithms are modeled as (possibly interactive)
Turing machines; if algorithm A has oracle access to some oracle O, we often
implicitly write QO for the set of queries asked by A to O.

For a string x ∈ {0, 1}∗, we let |x| be its length; if X is a set, |X | represents
the cardinality of X . When x is chosen randomly in X , we write x ←$ X . If A is
an algorithm, we write y ←$ A(x) to denote a run of A on input x and output y; if
A is randomized, y is a random variable and A(x; r) denotes a run of A on input
x and (uniform) randomness r. An algorithm A is probabilistic polynomial-time
(PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the computation of
A(x; r) terminates in a polynomial number of steps (in the input size).

Negligible Functions. Throughout the paper, we denote by λ ∈ N the security
parameter and we implicitly assume that every algorithm takes as input the
security parameter. A function ν : N → [0, 1] is called negligible in the secu-
rity parameter λ if it vanishes faster than the inverse of any polynomial in λ,
i.e. ν(λ) ∈ O (() 1/p(λ)) for all positive polynomials p(λ). We sometimes write
negl(λ) (resp., poly(λ)) to denote an unspecified negligible function (resp., poly-
nomial function) in the security parameter.



712 G. Ateniese et al.

2.2 Signature Schemes

A signature scheme is made of the following polynomial-time algorithms.

KGen(1λ): The randomized key generation algorithm takes the security param-
eter and outputs a secret and a public key (sk, pk).

Sign(sk,m): The randomized signing algorithm takes as input the secret key sk
and a message m ∈ M, and produces a signature s.

Ver(pk,m, s): The deterministic verification algorithm takes as input the public
key pk, a message m, and a signature s, and it returns a decision bit.

A signature scheme should satisfy two properties. The first property says
that honestly generated signatures always verify correctly. The second property,
called unforgeability, says that it should be hard to forge a signature on a fresh
message, even after seeing signatures on polynomially many messages. See the
full version [5] for formal definitions.

2.3 Functional Encryption

Functional Encryption for Randomized Functionalities. A functional
encryption scheme for randomized functionalities [26] (rFE) f : K ×X ×R → Y
consists of the following polynomial-time algorithms.3

Setup(1λ): Upon input the security parameter, the randomized setup algorithm
outputs a master public key mpk and a master secret key msk.

KGen(msk, k): The randomized key generation algorithm takes as input the mas-
ter secret key msk and an index k ∈ K, and outputs a secret key skk for fk.

Enc(mpk, x): The randomized encryption algorithm takes as input the master
public key mpk, an input x ∈ X , and returns a ciphertext cx.

Dec(skk, cx): The deterministic decryption algorithm takes as input a secret key
skk and a ciphertext cx, and returns a value y ∈ Y.

Correctness of rFE intuitively says that decrypting an encryption of x ∈ X
using a secret key skk for function fk yields fk(x; r), where r ←$ R. Since fk(x)
is a random variable, the actual definition requires that whenever the decryption
algorithm is invoked on a fresh encryption of a message x under a fresh key for
fk, the resulting output is computationally indistinguishable to fk(x).

Definition 1 (Correctness of rFE). A rFE scheme Π = (Setup,KGen,
Enc,Dec) for a randomized functionality f : K × X × R → Y is correct if the
following distributions are computationally indistinguishable:

{Dec(skkj
, ci)}kj∈K,xi∈X {fkj

(xi; ri,j)}kj∈K,xi∈X

where (mpk,msk) ←$ Setup(1λ), skkj
←$ KGen(msk, kj) for kj ∈ K, ci ←$ Enc

(mpk, xi) for xi ∈ X , and ri,j ←$ R.
3 Often, and equivalently, FE schemes are parameterized by a function ensemble F =

{fk : X × R → Y}k∈K.
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As for security, the setting of rFE tackles malicious encryptors. However, for
our purpose, it will be sufficient to consider a weaker security guarantee that
only holds for honest encryptors. In this spirit, the definition below is adapted
from [1, Definition 3.3] for the special case of honest encryptors.

Definition 2 ((q1, qc, q2)-NA-SIM-security of rFE). A rFE scheme Π =
(Setup,KGen,Enc,Dec) for a randomized functionality f : K × X × R → Y
is (q1, qc, q2)-NA-SIM-secure if there exists an efficient (stateful) simulator S =
(S1,S2,S3,S4) such that for all PPT adversaries A = (A1,A2) where A1 makes at
most q1 key generation queries and A2 makes at most q2 key generation query, the
output of the following two experiments are computationally indistinguishable:

REALΠ,A(λ)

(mpk,msk) ←$ Setup(1λ
)

(x
∗
, α) ←$ A

O1(msk,·)
1 (1

λ
,mpk)

where x
∗
= (x0, . . . , xqc )

ci ←$ Enc(mpk, xi) for i ∈ [qc]

out ←$ A
O2(msk,·)
2 (1

λ
, {ci}, α)

return (x, {k}, out)

IDEALΠ,A(λ)

(mpk, α
′
) ←$ S1(1

λ
)

(x
∗
, α) ←$ A

O′
1(α′,·)

1 (1
λ

,mpk)

where x
∗
= (x0, . . . , xqc )

Let {k1, . . . , kq1} = QO′
1

For i ∈ [qc], j ∈ [q1]

yi,j = fkj
(xi; ri,j), where ri,j ←$ R

({ci}, α
′
) ←$ S3(α

′
, {yi,j})

out ←$ A
O′
2(α′,·)

2 (1
λ

, {ci}, α)

return (x, {k
′}, out)

where the key generation oracles are defined in the following way:

O1(msk, ·) and O2(msk, ·): Are implemented with the algorithm KGen(msk, ·).
The ordered set {k} is composed of the queries made to oracles O1 and O2.

O′
1(st

′, ·) and O′
2(st

′, ·): Are implemented with two simulators S2(α′, ·), S4(α′, ·).
The simulator S4 is given oracle access to KeyIdeal(x∗, ·), which, on input k,
outputs fk(xi; r), where r ←$ R for every xi ∈ x∗. The ordered set {k′} is
composed of the queries made to oracles O′

1 and the queries made by S4 to
KeyIdeal.

Functional Encryption for Deterministic Functionalities. Functional
encryption (FE) for deterministic functionalities f : K × X → Y can be cast
as a special case of rFE. Since f is a deterministic functionality, correctness
now simply says that whenever the decryption algorithm is invoked on a fresh
encryption of a message x under a fresh key for f , the resulting output equals
fk(x). The definition of security is also a simple adaptation of Definition 2, with
the twist that the ideal functionality in the ideal experiment is deterministic.
We refer the reader to the full version [5] for the details.

2.4 Bilinear Diffie-Hellman Assumption

Our practical implementation of IB-ME is provably secure under the BDH
assumption, which we recall below.
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Definition 3 (BDH assumption). Let G and GT be two groups of prime order
q. Let e : G × G → GT be an admissible bilinear map, and let P be a generator
of G. The BDH problem is hard in (G,GT , e) if for every PPT adversary A:

P
[
A(q,G,GT , e, P, P a, P b, P c) = e(P, P )abc

] ≤ negl(λ) ,

where P ←$ G
∗, and a, b, c ←$ Z

∗
q .

2.5 Non-interactive Zero Knowledge

Let R be a relation, corresponding to an NP language L. A non-interactive zero-
knowledge (NIZK) proof system for R is a tuple of polynomial-time algorithms
Π = (I,P,V) specified as follows. (i) The randomized algorithm I takes as input
the security parameter and outputs a common reference string ω; (ii) The ran-
domized algorithm P(ω, (y, x)), given (y, x) ∈ R outputs a proof π; (iii) The
deterministic algorithm V(ω, (y, π)), given an instance y and a proof π outputs
either 0 (for “reject”) or 1 (for “accept”). We say that a NIZK for relation R is
correct if for all λ ∈ N, every ω output by I(1λ), and any (y, x) ∈ R, we have
that V(ω, (y,P(ω, (y, x)))) = 1.

We define two properties of a NIZK proof system. The first property, called
adaptive multi-theorem zero knowledge, says that honest proofs do not reveal
anything beyond the fact that y ∈ L. The second property, called knowledge
soundness, requires that every adversary creating a valid proof for some state-
ment, must know the corresponding witness. We defer the formal definitions to
the full version [5].

3 Matchmaking Encryption

As explained in the introduction, an ME allows both the sender and the receiver,
characterized by their attributes, to choose fined-grained access policies that
together describe the access rights both parties must satisfy in order for the
decryption of a given ciphertext to be successful.

We present two flavors of ME. In the first, which is the standard one, the
receiver’s attributes and policy are independent of each other (i.e., a receiver
with some given attributes can choose different policies). In the second flavor,
dubbed A-ME, the receiver’s attributes and policy are tighten together. For
space reasons, we defer the formal definitions for A-ME to the full version [5].

3.1 Security Model

Formally, an ME is composed of the following polynomial-time algorithms:

Setup(1λ): Upon input the security parameter 1λ the randomized setup algo-
rithm outputs the master public key mpk, the master policy key kpol, and
the master secret key msk. We implicitly assume that all other algorithms
take mpk as input.
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SKGen(msk, σ): The randomized sender-key generator takes as input the master
secret key msk, and attributes σ ∈ {0, 1}∗. The algorithm outputs a secret
encryption key ekσ for attributes σ.

RKGen(msk, ρ): The randomized receiver-key generator takes as input the master
secret key msk, and attributes ρ ∈ {0, 1}∗. The algorithm outputs a secret
decryption key dkρ for attributes ρ.

PolGen(kpol,S): The randomized receiver policy generator takes as input the
master policy key kpol, and a policy S : {0, 1}∗ → {0, 1} represented as a
circuit. The algorithm outputs a secret decryption key dkS for the circuit S.

Enc(ekσ,R,m): The randomized encryption algorithm takes as input a secret
encryption key ekσ for attributes σ ∈ {0, 1}∗, a policy R : {0, 1}∗ → {0, 1}
represented as a circuit, and a message m ∈ M. The algorithm produces a
ciphertext c linked to both σ and R.

Dec(dkρ, dkS, c): The deterministic decryption algorithm takes as input a secret
decryption key dkρ for attributes ρ ∈ {0, 1}∗, a secret decryption key dkS
for a circuit S : {0, 1}∗ → {0, 1}, and a ciphertext c. The algorithm outputs
either a message m or ⊥ (denoting an error).

Note that the decryption keys dkρ and dkS are independent, thus allowing a
receiver with attributes ρ to obtain decryption keys for different policies S. We
also remark that the master policy key kpol could be considered as part of the
master secret key msk, but we preferred to use distinct keys for clarity.

Correctness. The intuition for correctness is that the output of the decryption
algorithm using decryption keys for receiver’s attributes ρ and access policy S,
when decrypting an honestly generated ciphertext which encrypts a message
m using sender’s attributes σ and policy R, should equal m if and only if the
receiver’s attributes ρ match the policy R specified by the sender, and at the
same time the sender’s attributes σ match the policy S specified by the receiver.
On the other hand, in case of mismatch, the decryption algorithm returns ⊥.
More formally:

Definition 4 (Correctness of ME). An ME with message space M is correct
if ∀λ ∈ N, ∀(mpk, kpol,msk) output by Setup(1λ), ∀m ∈ M, ∀σ, ρ ∈ {0, 1}∗,
∀R,S : {0, 1}∗ → {0, 1}:

P [Dec(dkρ, dkS,Enc(ekσ,R,m)) = m] ≥ 1 − negl(λ) ,

whenever S(σ) = 1 and R(ρ) = 1, and otherwise

P [Dec(dkρ, dkS,Enc(ekσ,R,m)) = ⊥] ≥ 1 − negl(λ) ,

where ekσ ←$ SKGen(msk, σ), dkρ ←$ RKGen(msk, ρ), dkS ←$ PolGen(kpol,S).

Security. We now turn to defining security of an ME via two properties, that we
dub privacy and authenticity. Intuitively, privacy aims at capturing secrecy of
the sender’s inputs (i.e., the attributes σ, the policy for the receiver R, and the
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plaintext m), in two different conditions: In case of a match between the sender’s
and receiver’s attributes/policy, and in case of mismatch. This is formalized
by requiring that the distributions Enc(ekσ0 ,R0,m0) and Enc(ekσ1 ,R1,m1) be
computationally indistinguishable to the eyes of an attacker with oracle access to
SKGen,RKGen,PolGen, where the values (m0,m1,R0,R1, σ0, σ1) are all chosen
by the adversary. The actual definition requires some care, as the adversary
could, e.g., obtain a decryption key for attributes ρ and policy S such that
R0(ρ) = 0 ∨ S(σ0) = 0 but R1(ρ) = 1 ∧ S(σ1) = 1, which clearly allows him
to distinguish by evaluating the decryption algorithm. In order to exclude such
“trivial attacks”, we quantify privacy over all valid adversaries, as explained
below:

– In case of a mismatch, i.e., when the adversary cannot decrypt the challenge
ciphertext, it must be the case that for each attribute ρ and policy S for
which the adversary knows a valid decryption key: (i) Either ρ does not
satisfy policies R0 and R1; (ii) or σ0 and σ1 do not satisfy policy S; (iii) or
ρ does not satisfy R0 and σ1 does not satisfy S; (iv) or ρ does not satisfy R1

and σ0 does not satisfy S.
– In case of match, i.e., when the adversary can decrypt the challenge cipher-

text, it must be the case that m0 = m1, and additionally, for each attribute
ρ and policy S for which the adversary knows a valid decryption key, it holds
that both: (i) R0 and R1 have the same evaluation on attributes ρ (i.e.,
R0(ρ) = R1(ρ)); and (ii) S has the same evaluation on attributes σ0 and σ1

(i.e., S(σ0) = S(σ1)).

Fig. 1. Games defining privacy and authenticity of ME. Oracles O1, O2, O3 are imple-
mented by SKGen(msk, ·), RKGen(msk, ·), PolGen(kpol, ·).

Definition 5 (Privacy of ME). We say that an ME Π satisfies privacy if for
all valid PPT adversaries A:∣∣∣∣P

[
Gpriv

Π,A(λ) = 1
]

− 1
2

∣∣∣∣ ≤ negl(λ) ,

where game Gpriv
Π,A(λ) is depicted in Fig. 1. Adversary A is called valid if ∀ρ ∈

QO2 ,∀S ∈ QO3 it satisfies the following invariant:
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– (Mismatch condition). Either

(R0(ρ) = R1(ρ) = 0) ∨ (S(σ0) = S(σ1) = 0)
∨ (R0(ρ) = S(σ1) = 0) ∨ (R1(ρ) = S(σ0) = 0); (1)

– (Match condition). Or (if ∃ρ̂ ∈ QO2 , Ŝ ∈ QO3 s.t. Eq. (1) does not hold)

(m0 = m1) ∧ (R0(ρ) = R1(ρ)) ∧ (S(σ0) = S(σ1)).

Note that in the above definition the challenge ciphertext is honestly com-
puted. This is because privacy captures security against malicious receivers.
Authenticity, on the other hand, demands that the only way to produce a valid
ciphertext under attributes σ is to obtain an encryption key ekσ from the author-
ity, thus guaranteeing that if a ciphertext decrypts correctly, then it has been cre-
ated by a sender with the proper encryption key. This captures security against
malicious senders.

The latter is modeled by a game in which the attacker has oracle access to
SKGen, RKGen, and PolGen. The attacker’s goal is to output a tuple (ρ,S, c) such
that Dec(dkρ, dkS, c) = ⊥, and none of the encryption keys ekσ for attributes σ
(obtained by the adversary via oracle queries) satisfies the policy S. Observe
that the adversary is not given access to an encryption oracle. The reason for
this is that we only consider security in the presence of chosen-plaintext attacks,
and thus ciphertexts might be malleable,4 which makes it possible to forge in
the authenticity game.

Definition 6 (Authenticity of ME). We say that an ME Π satisfies authen-
ticity if for all PPT adversaries A:

P
[
Gauth

Π,A(λ) = 1
] ≤ negl(λ) ,

where game Gauth
Π,A(λ) is depicted in Fig. 1.

Finally, a secure ME is an ME satisfying all the properties.

Definition 7 (Secure ME). We say that an ME Π is secure, if Π satisfies
privacy (Definition 5) and authenticity (Definition 6).

Sometimes, we will also consider a weaker definition where there is an a priori
upper bound on the number of queries an attacker can make to oracles RKGen
and PolGen. We refer to this variant as security against bounded collusions. In
particular, we say that an ME is (q1, q′

1, q2, q
′
2)-secure if it has (q1, q′

1, q2, q
′
2)-

privacy and authenticity, where q1, q
′
1 (resp. q2, q

′
2) denote the number of queries

to RKGen and PolGen allowed by A1 (resp. A2) in the privacy game.

4 Note that malleability (and thus the authenticity property considered in our paper)
might be a desirable feature in some scenarios, as it implies a form of deniability.
It could also be useful in future extensions of ME (e.g., in the spirit of proxy re-
encryption).
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Relation to ABE. An ME for arbitrary policies can be used as a CP-ABE with
the same expressiveness. The idea is to ignore the attributes of the sender and
the policy of the receiver. It is sufficient to set the ABE master public key to
(mpk, ekσ) and an ABE receiver’s decryption key to (dkρ, dkφ), where ekσ is
the encryption key generated for attributes σ = 0λ, dkφ is the policy key for
a tautology φ (i.e., a circuit whose output is always 1 regardless of the input),
and dkρ is the decryption key for attributes ρ. The encryption of a message m
under a policy R works by running the ME encryption algorithm Enc(ekσ,R,m).
The receiver will decrypt the ciphertext by using the keys (dkρ, dkφ). Since φ is
a tautology, it does not matter under which attributes the message has been
encrypted. Thus, the scheme will work as a normal CP-ABE.

Following a similar reasoning, ME implies KP-ABE. This is achieved by
setting ekσ = σ, and by using the same approach described above (i.e., set the
sender’s policy circuit R to a tautology φ which ignores the receiver’s attributes).
Note that for this implication authenticity is not required, which is reminiscent
of the fact that in ABE the attributes are not explicitly certified by an authority.

4 Black-Box Construction

We explore black-box constructions of ME and A-ME from several types of
FE schemes. In particular, in Sect. 4.1 we give a construction of ME based on
rFE and FE. As discussed in the introduction, such a construction allows us
to obtain ME from weaker assumptions, at the price of achieving only security
against bounded collusions. In the full version of the paper [5], we describe and
analyze two additional schemes: (i) A construction of ME that is secure against
unbounded collusions, based on 2FE (and thus on stronger assumptions); (ii)
A construction of A-ME based on FE. All schemes additionally rely on digital
signatures and on NIZK proofs.

4.1 ME from rFE

Our construction is based on the following two functionalities fFE and f rFE:

fFE
S

(σ,m) =
{

m, if σ = ⊥ ∧ S(σ) = 1
⊥, otherwise

and

f rFE
(ρ,mpkFE)

(R, σ,m; r) =
{
Enc(mpkFE, (σ,m); r), if R(ρ) = 1
Enc(mpkFE, (⊥,⊥); r), otherwise.

Construction 1 (ME for Arbitrary Policies). Let FE, rFE, SS, NIZK be
respectively an FE scheme for the deterministic functionality fFE, a rFE scheme
for the randomized functionality f rFE, a signature scheme, and a NIZK proof
system for the NP relation:

R1
def=

⎧⎨
⎩((c, pk,mpkrFE), (σ, s)) :

∃r,m,R s.t.
c = EncrFE(mpkrFE, (R, σ,m); r)∧

Ver(pk, s, σ) = 1

⎫⎬
⎭ .
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We construct an ME scheme in the following way:

Setup(1λ): On input the security parameter 1λ, the setup algorithm computes
(mpkFE,mskFE) ←$ SetupFE(1λ), (sk, pk) ←$ KGenSS(1λ), (mpkrFE,mskrFE) ←$

SetuprFE(1λ), and ω ←$ I(1λ). Finally, it outputs the master secret key msk =
(mskrFE, sk), the master policy key kpol = mskFE, and the master public key
mpk = (pk, ω,mpkFE,mpkrFE). Recall that all other algorithms are implicitly
given mpk as input.

SKGen(msk, σ): On input the master secret key msk = (mskrFE, sk), and attributes
σ ∈ {0, 1}∗, the algorithm returns the encryption key ekσ = (σ, s) where
s ←$ Sign(sk, σ) (i.e., s is a signature on attributes σ ∈ {0, 1}∗).

RKGen(msk, ρ): On input the master secret key msk = (mskrFE, sk), and attributes
ρ ∈ {0, 1}∗, the algorithm computes the decryption key sk(ρ,mpkFE)

←$

KGenrFE(mskrFE, (ρ,mpkFE)). Then, it outputs the decryption key dkρ =
sk(ρ,mpkFE)

.
PolGen(kpol,S): On input the master policy key kpol = mskFE, and policy S rep-

resented as a circuit, the algorithm computes the function key skS by running
KGenFE(mskFE,S). Then, it outputs the decryption key dkS = skS.

Enc(ekσ,R,m): On input an encryption key ekσ = (σ, s), a policy R represented
as a circuit, and a message m, the algorithm encrypt the message by comput-
ing c ←$ EncrFE(mpkrFE, (R, σ,m)). Finally, it returns the ciphertext ĉ = (c, π)
where π ←$ P(ω, (pk, c,mpkrFE), (σ, s)).

Dec(dkρ, dkS, c): On input two keys dkρ = sk(ρ,mpkFE)
, dkS = skS, and a cipher-

text ĉ = (c, π), the algorithm first checks whether V(ω, (pk, c,mpkrFE), π)
= 1. If that is not the case, it returns ⊥, and else it returns DecFE
(skS,DecrFE(sk(ρ,mpkFE)

, c)).

Correctness of the scheme follows directly by the correctness of the underlying
primitives. As for security, we establish the following result, whose proof appears
in the full version [5].

Theorem 1. Let rFE, FE, SS, NIZK be as above. If rFE is (q1, 1, q2)-NA-SIM-
secure (Definition 2), FE is (q′

1, q1, q
′
2)-SIM-secure, SS is EUF-CMA, and NIZK

satisfied adaptive multi-theorem zero knowledge and knowledge soundness, then
the ME scheme Π from Construction 1 is (q1, q′

1, q2, q
′
2)-secure.

5 Identity-Based Matchmaking Encryption

In this section, we present a practical ME for the identity-based setting (i.e.,
equality policies). As in ME, attributes are encoded by bit strings, but now
each attribute x ∈ {0, 1}∗ satisfies only the access policy A = x, which means
that both the sender and the receiver specify a single identity instead of general
policies (represented as a circuit). We will denote by snd and rcv, respectively,
the target identities (i.e., the access policies) specified by the receiver and by the
sender.

While any ME as defined in Sect. 3 perfectly works for this restricted setting,
the problem is that in order to select the identity snd of the source, a receiver



720 G. Ateniese et al.

must ask to the administrator the corresponding key dksnd such that S = snd.
(Recall that the sender, instead, can already specify the target identity R =
rcv on the fly, during encryption.) In particular, if the receiver is interested
in decrypting ciphertexts from several distinct sources, it must ask for several
decryption keys dksnd, which is impractical.5

We resolve this issue by removing algorithm PolGen from the syntax of an IB-
ME, so that the decryption algorithm takes directly as input the description of
the target identity snd (i.e., Dec(dkρ, snd, c)). This way, the receiver can specify
the target identity the source must satisfy on the fly, without talking to the
authority.

5.1 Security of IB-ME

The choice of removing the PolGen algorithm has an impact on the security prop-
erties for IB-ME. Below, we revisit each security guarantee in the identity-based
setting and explain how (and why) the security definition has to be adapted. We
refer the reader to Fig. 2 for the formal definitions.

Privacy of IB-ME. We cannot require that the sender’s identity remains hidden
in case of a decryption failure due to a mismatch condition. In particular, a
malicious receiver can always change the sender’s target identity in order to
infer under which identity a ciphertext has been encrypted.

More formally, consider the adversary that chooses a tuple (m,m, rcv, rcv, σ0,
σ1), and receives a ciphertext c such that c ←$ Enc(ekσb

, rcv,m), where the
encryption key ekσb

corresponds to identity σb; the attacker can simply pick
a target identity snd′ such that, say, σ0 = snd′ (whereas σ1 = snd′), and thus
distinguish σ0 from σ1 by decrypting c with dkρ and target identity snd′.6 On the
other hand, privacy might still hold in case of mismatch, as long as the keys dkρ

held by the receiver correspond to identities ρ that do not match the receiver’s
target identity. Thus, in the security game, an attacker is now valid if for every
decryption key dkρ obtained from the oracle, it holds that ρ = rcv0 and ρ = rcv1,
where the target identities rcv0, rcv1 are chosen by the adversary. Lastly, note
that in case of a match, if a receiver has identity ρ and specifies a policy snd, it
can automatically infer that σ = snd and rcv = ρ. For this reason, the privacy
game does not consider any match condition.

This relaxed form of privacy is enough and desirable in many scenarios.
Intuitively, it guarantees that nothing is leaked to an unintended receiver who
doesn’t match the sender’s policy; on the other hand, an intended receiver can
choose which ciphertexts to decrypt by trying different policies. This feature is
essential in our bulletin board application (Sect. 6) because it allows parties, e.g.,

5 This is not an issue for an ME that supports arbitrary policies, as in that case, a
single policy encodes a large number of attributes.

6 This attack can be generalized to show that privacy does not hold if the PolGen
algorithm (and thus the policy key kpol) is made public.
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journalists and political activists, to select which type of messages to read. IB-
ME works well in this scenario since it provides enough flexibility to the intended
receivers while protecting senders from possible attackers.

Finally, we note that the above security definition does not guarantee that
the message m remains secret with respect to an honest receiver that chooses
the “wrong” target identity snd. The latter is, however, a desirable feature that
our practical scheme will satisfy (cf. Remark 1).

Authenticity of IB-ME. Turning to unforgeability in the identity-based setting,
the forgery (c, ρ, snd) is considered valid if for all encryption keys ekσ obtained
by the adversary it holds that σ = snd, and moreover the identity ρ is not held
by the adversary (i.e., the adversary cannot “forge to itself”).

Fig. 2. Games defining privacy and authenticity security of IB-ME. Oracles O1, O2 are
implemented by SKGen(msk, ·), RKGen(msk, ·).

Security Definitions. The definitions below capture the very same correctness
and security requirements of an ME, but translated to the identity-based case.

Definition 8 (Correctness of IB-ME). An IB-ME Π = (Setup,SKGen,
RKGen,Enc,Dec) is correct if ∀λ ∈ N, ∀(mpk,msk) output by Setup(1λ), ∀m ∈
M, ∀σ, ρ, rcv, snd ∈ {0, 1}∗:

P [Dec(dkρ, snd,Enc(ekσ, rcv,m)) = m] ≥ 1 − negl(λ) ,

whenever σ = snd and ρ = rcv, and otherwise

P [Dec(dkρ, snd,Enc(ekσ, rcv,m)) = ⊥] ≥ 1 − negl(λ) ,

where ekσ, dkρ are generated by SKGen(msk, σ), and RKGen(msk, ρ).

Definition 9 (Privacy of IB-ME). We say that an IB-ME Π satisfies privacy
if for all valid PPT adversaries A:∣∣∣∣P

[
Gib-priv

Π,A (λ) = 1
]

− 1
2

∣∣∣∣ ≤ negl(λ) ,

where game Gib-priv
Π,A (λ) is depicted in Fig. 2. Adversary A is called valid if ∀ρ ∈

QO2 it satisfies the following invariant:
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– (Mismatch condition). ρ = rcv0 ∧ ρ = rcv1.

Definition 10 (Authenticity of IB-ME). We say that an IB-ME Π satisfies
authenticity if for all PPT adversaries A:

P
[
Gib-auth

Π,A (λ) = 1
] ≤ negl(λ) ,

where game Gib-auth
Π,A (λ) is depicted in Fig. 2.

Definition 11 (Secure IB-ME). We say that an IB-ME Π is secure if it
satisfies privacy (Definition 9) and authenticity (Definition 10).

5.2 The Scheme

We are now ready to present our practical IB-ME scheme.

Construction 2 (IB-ME). The construction works as follows.

Setup(1λ): Let e : G × G → GT be a symmetric pairing, and P a generator of
G, with G, and GT of an order q that depends on λ. We also have three
hash functions H : {0, 1}∗ → G, H ′ : {0, 1}∗ → G, Ĥ : GT → {0, 1}�, mod-
eled as random oracles, and a polynomial-time computable padding function
Φ : {0, 1}n → {0, 1}�. We require that for all m ∈ {0, 1}n one can verify
in polynomial time if m has been padded correctly, and moreover that Φ(m)
is efficiently invertible. On input the security parameter 1λ, the setup algo-
rithm samples two random r, s ∈ Zq, and sets P0 = P r. Finally, it outputs
the master public key mpk = (e,G,GT , q, P, P0,H,H ′, Ĥ, Φ) and the master
secret key is msk = (r, s). Recall that all other algorithms are implicitly given
mpk as input.

SKGen(msk, σ): On input the master secret key msk, and identity σ, the algorithm
outputs ekσ = H ′(σ)s.

RKGen(mpk,msk, ρ): On input the master secret key msk, and identity ρ, the
algorithm outputs dkρ = (dk1ρ, dk

2
ρ, dk

3
ρ) = (H(ρ)r,H(ρ)s,H(ρ)).

Enc(mpk, ekσ, rcv,m): On input an encryption key ekσ, a target identity rcv = ρ,
and a message m ∈ {0, 1}n, the algorithm proceeds as follows:
1. Sample random u, t ∈ Zq.
2. Compute T = P t and U = Pu.
3. Compute kR = e(H(ρ), Pu

0 ) and kS = e(H(ρ), T · ekσ).
4. Compute V = Φ(m) ⊕ Ĥ(kR) ⊕ Ĥ(kS).
5. Output ciphertext C = (T,U, V ).

Dec(mpk, dkρ, snd, c): On input the master public key mpk, a decryption key dkρ,
a target identity snd = σ, and a message m, the algorithm proceeds as follows:
1. Parse c as (T,U, V ).
2. Compute kR = e(dk1ρ, U) and kS = e(dk2ρ,H

′(σ)) · e(dk3ρ, T ).
3. Compute Φ(m) = V ⊕ Ĥ(kR) ⊕ Ĥ(kS)
4. If the padding is valid, return m. Otherwise, return ⊥.
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Correctness. The correctness of the scheme only depends on the computation
of kR and kS as evaluated by the decryption algorithm. Here, we require that
the padding function Φ satisfies the property that a random string in {0, 1}�

has only a negligible probability to form a valid padding w.r.t. the function
Φ.7 Let kR, kS be the keys computed during encryption, and k′

R, k′
S the ones

computed during decryption. The scheme is correct since ∀σ, ρ, rcv, snd ∈ {0, 1}∗,
ekσ ←$ SKGen(msk, σ), dkρ ←$ RKGen(msk, ρ):

1. If σ = snd and ρ = rcv:

kR = e(H(ρ), Pu
0 ) = e(H(ρ)r, Pu)

= e(dk1ρ, U) = k′
R, and

kS = e(H(ρ), T · ekσ) = e(H(ρ), T · H ′(σ)s)
= e(H(ρ), T ) · e(H(ρ)s,H ′(σ)) =

= e(dk3ρ, T ) · e(dk2ρ,H
′(σ)) = k′

S

2. Otherwise, if ρ = rcv = ρ′ or σ = snd = σ

kR = e(H(ρ′), Pu
0 ) = e(H(ρ)r, Pu)

= e(dk1ρ, U) = k′
R, or

kS = e(H(ρ), T · ekσ) = e(H(ρ), T · H ′(σ)s)

= e(dk3ρ, T ) · e(dk2ρ,H
′(σ)) =

= e(dk3ρ, T ) · e(dk2ρ,H
′(σ′)) = k′

S .

Since k′
R (resp. k′

S) is hashed by the random oracle Ĥ, then Ĥ(k′
R) (resp. Ĥ(k′

S))
is statistically close to a random string of length �. Hence, with overwhelming
probability, V ⊕ Ĥ(kR)⊕ Ĥ(k′

S), where either kR = k′
R or kS = k′

S , will produce
an invalid padding, and the decryption algorithm returns ⊥.

Remark 1 (Plaintext secrecy w.r.t. unauthorized-but-honest receivers). We note
that the plaintext is information-theoretically hidden from the point of view of an
honest receiver which specifies a target identity that does not match the sender’s
identity. Moreover, the latter holds even given the internal state of the receiver
at the end of the decryption procedure. In fact, since Ĥ(kS) is statistically close
to uniform, and |Ĥ(kS)| = |Φ(m)| = �, the decryption algorithm will compute a
symmetric key kS different to the one generated during encryption.8

7 This can be achieved, e.g., by setting � = n + λ + 1, and by appending to each
message the string 1||0λ.

8 It is important to recall that a similar guarantee does not hold in the identity-based
setting, when the receiver is semi-honest (cf. Sect. 5.1).



724 G. Ateniese et al.

Security. As for security, we establish the following result, whose proof appears
in the full version [5].

Theorem 2. Let G, GT be two groups of prime order q, and let e : G×G → GT

be an admissible bilinear map. If the BDH problem is hard in (G,GT , e) (Defini-
tion 3), then the IB-ME scheme Π from Construction 2 is secure (Definition 11)
in the random oracle model.

6 IB-ME Performance Evaluation and Application to Tor

In this section, we demonstrate that our IB-ME is practical and we use it to
implement a novel system for anonymous but authentic communication. We first
show in Sect. 6.1 the performance evaluation of our IB-ME implementation. We
then describe in Sect. 6.2 an application for IB-ME built on top of our implemen-
tation. The proposed application is a bulletin board hidden service that allows
parties to collect or exchange anonymous messages that have an expected format
and come from authentic sources. It allows users to exchange IB-ME messages
over the Tor network, specifically, using the Tor Hidden Services feature (cf.
Sect. 6.2). Our bulletin board prototype can be used for covert communication
by journalists or activists under authoritarian governments. It improves upon
systems such as SecurePost [35] for verified group anonymity by providing much
stronger privacy guarantees since ciphertexts can be vetted before decryption.

6.1 Implementation and Evaluation of the IB-ME Cryptosystem

We provide an experimental evaluation of the IB-ME cryptosystem. To this end,
we implemented a proof of concept in Python 3.6.5 using Charm 0.50 [2], a
framework for prototyping pairing-based cryptosystems (among others). Since
our IB-ME is defined using symmetric pairings (also called Type-I pairings), we
instantiate it with a supersingular curve with a 512-bit base field (curve SS512 in
Charm), which gives approximately 80 bits of security [39]. The execution envi-
ronment is an Intel NUC7i7BNH with an Intel Core i7-7567U CPU @ 3.50 GHz
and 16 GB of RAM, running Ubuntu 18.04 LTS.

Table 2. Performance of high- and low-level cryptographic operations of IB-ME

Operation Minimum (ms) Average (ms)

Setup 2.197 2.213

RKGen 2.200 2.225

SKGen 3.400 3.429

Encryption 6.942 7.012

Decryption 4.344 4.385
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Table 2 shows the cost in milliseconds associated to the main high- and low-
level cryptographic operations of IB-ME. We executed these experiments in 50
different runs of 10 times each and both the minimum and average timing was
taken for each operation; we use the Python module timeit for these measure-
ments. It can be seen that the average timings for the main high-level opera-
tions of IB-ME, namely Encryption and Decryption, are 7.012 ms and 4.385 ms,
respectively. These results show that the scheme is highly practical.

It is worth mentioning that there is room for improvement in the implementa-
tion if we use optimizations such as pre-computation of some pairing operations
when one of the arguments is fixed (which occurs in the two pairings during
decryption since one argument is a decryption key) or is reused (the two pair-
ings in the encryption function have H(ρ) as an argument), which can lead to
speeds-up around 30%, as reported in [18]. Another potential optimization is the
use of multipairings in the decryption operation. A promising direction would
be to redefine the scheme in a Type-III pairing setting, which allows for more
performant curves [22].

Finally, Table 3 shows a summary of the space costs associated to different
elements of our IB-ME. We analyze both the theoretical cost and the actual
values with the parameters of the experiment. In addition to the use of Charm’s
curve SS512 (which implies that the size of |G| = 512 bits and |GT | = 1024), we
use for the size of identity bitstrings |G|, for the size of messages n = |GT |, and
for the padding output size � = n + λ + 1 = 1105.

Table 3. Space costs of IB-ME elements.

Element Theoretical cost Size (in bits)

Encryption key |G| 512

Decryption key 3|G| 1536

Message n 1024

Ciphertext 2|G| + � 2129

Ciphertext expansion �
n

+ 2|G|
n

≈2

6.2 An Anonymous Bulletin Board

Here, we describe the implementation of a bulletin board hidden service that is
powered by our IB-ME scheme (cf. Sect. 5). In a nutshell, our application allows
senders to post encrypted messages to an anonymous bulletin board, hosted by a
Tor hidden service [45]. To this end, senders specify a target identity string that
acts as the receiver’s access policy, as well as the encryption key corresponding
to their own identity. Conversely, receivers can fetch encrypted messages from
the bulletin board, and try to decrypt them with their own decryption keys
(associated with their identity) and the expected identity of the sender. Only
those encrypted messages where there is a match between sender and receiver
can be decrypted correctly.
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Our system protects every party’s privacy in several aspects. First of all,
thanks to the nature of Tor hidden services, the IP addresses of each party and
the connection between the client and the server remain hidden. Secondly, if
decryption fails nothing is revealed to the parties.

Next, we will give a brief overview of Tor Hidden Services.

Tor and Hidden Services. Tor [43] is the most prominent P2P anonymous
system, totaling more than 2 million users and 6,000 relays. It allows clients to
access the Internet anonymously by hiding the final destination of their connec-
tions. It achieves this by creating random circuits between the client and the
destination (e.g., web server), where every relay is aware only of its incoming
and outgoing links.

Various services can be set up so that they are accessible only within the Tor
network. These Tor Hidden Services [45], or HS, are run without revealing their
IP addresses and can be reached with no prior information. In order to deploy
an HS, the owner needs to initialize the service by choosing some relays that
will act as introduction points (IPs). The service will keep an open Tor circuit
to each IP that will be used as the entry points to access the HS. The IPs’
identities are communicated to Tor by creating a service descriptor entry. This
entry contains all the information needed to access the service (e.g., description
ID, list of IPs, etc.). Then, the entry is uploaded to the hidden service directory
(HSDir) which stores the description entries of all available HSs. A node that
wants to connect to an HS will (1) retrieve from HSDirs the correct description
entry, (2) establish a Tor circuit to a random relay known as the rendezvous
point, RP in short, and (3) reveal to one of the hidden service’s IP (contained in
the description entry) the address of the RP. The HS can now open a Tor circuit
to the RP, so that the node and the HS can communicate without revealing their
respective IP addresses.

Our Anonymous Bulletin Board. Our application is composed of two parts:
a web server implemented as a Tor hidden service, and a command line client
that is used to upload and download data from the server.

A user that wants to post a message to the bulletin board can use the client to
encrypt it (using their IB-ME encryption key ekσ and an identity string policy rcv
for the intended receiver), and upload the ciphertext to the web server through
the Tor network. These ciphertexts are publicly available.

A receiver can now use the client to download all the ciphertexts and try to
decrypt each of them, using the receiver’s decryption key dkρ and the sender’s
identity policy snd (given as input to the client). The client will report to the
user the outcome of the decryption phase, showing all the successfully decrypted
messages. The role of the web server is to store encrypted messages and to offer
a simple REST API that allows clients to post and read these messages. In our
prototype, we do not include any additional security measure, but in a real-world
deployment, specific countermeasures should be taken in order to protect against
potential denial of service attacks from clients (e.g., by requiring a proof-of-work
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along with the request) and/or include some authentication mechanisms. We
refer the reader to Fig. 3 for an overview of the system.

Fig. 3. Example of interaction between three clients C1, C2, C3 and the anonymous
bulletin board (http://bjopwtc2f3umlark.onion) using Tor. The relays RP1, RP2, and
RP3 are the rendezvous points shared between the service and the respective clients.
Each party communicates with the respective RP using a Tor circuit.

As in any identity-based cryptosystem, key management requires a key gen-
eration service that generates and distributes encryption and decryption keys.
This service could be implemented as another Tor hidden service, or even inte-
grated with an existing HSDir (already assumed to be trusted because down-
loaded from legitimate servers), that automatically converts email addresses or
phone numbers into keys. Another possibility is to assume the existence of an
off-line authority so that users of the application obtain their keys through an
out-of-band channel. In our prototype, we assume the latter option for simplicity.

Finally, note that the performance cost of our Tor application is dominated
by the network latency of the Tor relays. Since the main focus of the paper is
the new cryptographic primitive, we report only the performance evaluation of
our IB-ME scheme (cf. Sect. 6.1).

7 Conclusions

We have proposed a new form of encryption, dubbed matchmaking encryption
(ME), where both the sender and the receiver, described by their own attributes,
can specify fine-grained access policies to encrypted data. ME enables several
applications, e.g., communication between spies, social matchmaking, and more.

On the theoretical side, we put forward formal security definitions for ME
and established the feasibility of ME supporting arbitrary policies by leveraging

http://bjopwtc2f3umlark.onion
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FE for randomized functionalities in conjunction with other more standard cryp-
tographic tools. On the practical side, we constructed and implemented practical
ME for the identity-based setting, with provable security in the random oracle
model under the BDH assumption. We also showcased the utility of IB-ME to
realize an anonymous bulletin board using the Tor network.

Our work leaves open several important questions. First, it would be inter-
esting to construct ME from simpler assumptions. Second, it is conceivable that
our black-box construction could be instantiated based on better assumptions
since we only need secure rFE w.r.t. honest encryptors; unfortunately, the only
definition that is specifically tailored for this setting [3] has some circularity prob-
lems [1,26]. Third, a natural direction is to come up with efficient ME schemes
for the identity-based setting without relying on random oracles, or to extend
our scheme to the case of fuzzy matching [6]. Further extensions include the
setting of chosen-ciphertext security, ME with multiple authorities, mitigating
key escrow [17,23], and creating an efficient infrastructure for key management
and revocation.
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Abstract. We present the first attribute-based encryption (ABE)
scheme for deterministic finite automaton (DFA) based on static assump-
tions in bilinear groups; this resolves an open problem posed by Waters
(CRYPTO 2012). Our main construction achieves selective security
against unbounded collusions under the standard k-linear assumption
in prime-order bilinear groups, whereas previous constructions all rely
on q-type assumptions.

1 Introduction

Attribute-based encryption (ABE) [10,18] is a generalization of public-key
encryption to support fine-grained access control for encrypted data. Here,
ciphertexts are associated with a description value x and keys with a policy
f , and decryption is possible when f(x) = 1. In many prior ABE schemes, the
policy f is specified using a boolean formula, but there are many applications
where we want the policy f to operate over arbitrary sized input data. For
example, we could imagine a network logging application where x represents an
arbitrary number of events logged. Another example is where x is a database of
patient data that includes disease history paired with gene sequences where the
number of participants is not apriori bounded or known.

Following the work of Waters in 2012 [20], we consider ABE for regular
languages, where the policies f are specified using deterministic finite automata
(DFA). This allows us to capture applications such as tax returns and virus
scanners. In spite of the substantial progress made in the design and analysis
of ABE schemes over the past decade, all known constructions of ABE for DFA
rely on q-type assumptions in bilinear groups [1–3,20], where the complexity of
the assumption grows with the length of the string x. In this work, we address
the following open problem posed in the original work of Waters [20]:
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Can we build an ABE for DFA based on static assumptions in bilin-
ear groups, notably the k-linear assumption in prime-order bilinear
groups?

From both a practical and theoretical stand-point, we would like to base cryp-
tography on weaker and better understood assumptions, as is the case with the
k-linear assumption. This is also an intriguing problem from a conceptual stand-
point because prior approaches exploit q-type assumptions in a fairly inherent
manner. Waters’ ABE for DFA was based on an “embedding paradigm” where
the arbitrary-length challenge string was programmed into the public parame-
ters, and embedding an arbitrary length string into fixed-size parameters seems
to require a q-type assumption. The dual system encryption methodology devel-
oped in the context of ABE for boolean formula [6,14,15,17,19] allows us to
overcome the latter limitation, provided the ciphertext or key size is allowed to
grow with the size of the formula; this does not work in the DFA setting, since
formula size roughly corresponds to � · Q, where � is the length of the string x
and Q is the number of states in the DFA. Indeed, a key challenge that distin-
guishes ABE for DFA from ABE for boolean formula is that both the size of
public parameters and the secret keys are independent of �, which means that
we cannot afford to unroll and embed the entire DFA computation path into the
secret key.

This Work. We present the first ABE for DFA based on static assumptions
in bilinear groups, thereby providing an affirmative answer to the above open
problem. Our main construction achieves selective security against unbounded
collusions under the standard k-linear assumption in prime-order bilinear groups.
Our proof strategy departs significantly from prior ABEs for DFA in that we
design a series of hybrids that traces through the computation. Our proof of
security carefully combines a “nested, two-slot” dual system argument [6,11,14,
15,17,19] along with a novel combinatorial mechanism for propagating entropy
along the computation path of a DFA.

We note that our high-level approach of tracing the computation path across
hybrids is similar to that used in the recent ABE for boolean formula from static
assumptions in [13], but we have to deal with the afore-mentioned challenge
specific to DFAs. In a bit more detail, in our ABE for DFA, the secret keys
contain random shares “in the exponent” corresponding to each state of the
DFA; this is analogous to ABE for boolean formula where the random shares
correspond to wires in a formula. Roughly speaking, in the i’th hybrid, we modify
the distribution of the share corresponding to the state ui reached upon reading
the first i bits of the input string. In a DFA, a state could be reached many times
throughout the DFA computation on a fixed input, which means that we need
to modify the share corresponding to ui (along with the challenge ciphertext) in
such a way that it does not affect the functionality of the DFA. This difficulty
does not arise in ABE for boolean formula, because each wire is only used once
during the computation.
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1.1 Technical Overview – Warm-Up

We present an overview of our ABE scheme for DFAs. Recall that a DFA is
specified by a tuple (Q,Σ, δ, F ) where the state space is [Q] := {1, 2, . . . , Q}; 1 is
the unique start state; F ⊆ [Q] is the set of accept states, and δ : [Q] × Σ → [Q]
is the state transition function.

Warm-Up Construction. The starting point of our construction is Waters’
ABE scheme for DFA [20] over asymmetric composite-order bilinear groups
(GN ,HN , GT , e) whose order N is the product of three primes p1, p2, p3. (The
original scheme is instantiated over prime-order bilinear groups, but relies on
q-type assumptions.) Let gi, hi denote generators of order pi in GN and HN , for
i = 1, 2, 3, and let h be a generator for HN . The scheme is as follows:

msk =
(
h, α,wstart, wend, z, {wσ}σ∈Σ

)
(1)

mpk =
(
g1, g

wstart
1 , gwend

1 , gz
1 , {gwσ

1 }σ∈Σ , e(g1, h)α
)

ctx =

⎛

⎝
gs0
1 , gs0wstart

1 ,

{gsi
1 , g

si−1z+siwxi
1 }i∈[�],

gs�
1 , gs�wend

1 , e(g1, h)s�α · m

⎞

⎠

skf =

⎛

⎝
hd1+wstartr1 , hr1 ,

{h−du+zru , hdv+wσru , hru}u∈[Q],σ∈Σ,v=δ(u,σ),
{hα−du+wendru , hru}u∈F

⎞

⎠

Decryption proceeds as follows:

(i) compute e(gs0
1 , hd1);

(ii) for i = 1, . . . , �, compute e(gsi
1 , hdui ), where ui denotes the state reached

upon reading x1, . . . , xi.
(iii) compute e(g1, h)s�α and thus m.

To go from e(gsi−1
1 , hdui−1 ) to e(gsi

1 , hdui ) in step (ii), we rely on the identity: for
all u ∈ [Q], σ ∈ Σ,

sidδ(u,σ) − si−1du = si · (dδ(u,σ) +wσru)+ si−1 · (−du + zru)− (si−1z + siwσ) · ru

We note that our scheme differs from Waters’ scheme in that we reuse ru for
all the transitions starting from u instead of a fresh ru,σ for each (u, σ). This
modification yields a smaller secret key (roughly Q · |Σ| + 2Q vs 3Q · |Σ| group
elements), and also simplifies the notation.

Proof Strategy. At a very high level, the proof follows Waters’ dual system
encryption methodology [14,19]. This means that throughout the proof, we mod-
ify the ciphertext and key distributions but not mpk, and only in the p2-subgroup
generated by g2, h2 (which we also refer to as the p2-components). In fact, we
will rely on the “nested two-slot” variant of dual system encryption introduced
in [6,11,15,17] for settings where the ciphertext uses independent randomness
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s0, s1, . . ., as is the case for our DFA scheme. Here, “nested” refers to the fact that
the security proof interweaves a computational argument over ciphertexts with
another over secret keys, whereas “two-slot” refers to the use of the p3-subgroup
to carry out this delicate interweaving. In contrast, the basic dual system encryp-
tion framework [2,21] applies a single computational argument over ciphertexts
at the beginning and can be instantiated in asymmetric composite-order groups
whose order is the product of two primes.

Proof – First Idea. For this proof overview, we will focus on the selective
setting where the adversary first picks a challenge x∗ before seeing mpk and
making secret key queries. In addition, we consider a further simplification where
the adversary only makes a single key query for some DFA f where f(x∗) = 0
(i.e. rejecting). Let u0 = 1 denote the start state, and let u1, . . . , u� denote the
state in f reached upon reading x∗

1, . . . , x
∗
� . In particular, u� /∈ F .

Recall that decryption computes e(gsi
1 , hdui ) for each i = 0, . . . , �. A natural

proof strategy would be design a series of games G0, . . . ,G� such that in Gi, the
quantity e(gsi

1 , hdu) is pseudorandom for each u �= ui. In particular, since u� /∈ F ,
this means that e(gs�

1 , hdu) is pseudorandom for all u ∈ F , which should imply
that e(gs�

1 , hα) is pseudorandom.
Towards carrying out this strategy, we pick Δ ← ZN and define:

Δi,u :=

{
Δ if u �= ui

0 otherwise

In Gi, we switch the ciphertext-key distributions from (ctx∗ , skf ) to (ctix∗ , ski
f )

where

– ctix∗ is the same as ctx∗ except we replace gsi
1 with (g1g2)si ;

– ski
f is the same as skf except we add a h

Δi,v

2 term to hdv+wσru for every u, σ.

Roughly speaking, this means that in Gi, the quantity e(gsi
1 , hdu) would be

masked by e(gsi
2 , h

Δi,u

2 ) = e(gsi
2 , hΔ

2 ) whenever u �= ui. In particular, the quantity
e(gs�

1 , hα) would be masked by e(gs�
2 , hΔ

2 ).

Proof – Second Idea. As it turns out, we cannot hope to show that the
quantity e(gsi

1 , hdu) is pseudorandom for each u �= ui. Consider a DFA with
Q = 3, Σ = {0} and δ(1, 0) = 2, δ(3, 0) = 2. Then, given an encryption of x = 0,
an adversary can compute

e(gs0
1 , hd3)

by first computing e(gs1
1 , hd2) using the transition 1 0→ 2, and then “back-

tracking” along the transition 3 0→ 2; these are so-called “back-tracking attacks”
in [20].

Instead, we will only argue that e(gsi
1 , hdu) is pseudorandom, for u ∈ Fi,x∗

for some family of sets Fi,x∗ ⊆ [Q]. (Our first attempt corresponds to setting
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Fi,x∗ = [Q] \ {ui}.) In order to argue that e(gs�
1 , hα) is pseudorandom, we want

F�,x∗ = F . For i = 0, . . . , � − 1, we will define

Fi,x∗ := {u ∈ [Q] : δ(u, x∗
i+1, . . . , x

∗
� ) ∈ F }.

Here, we use δ to also denote the “extended transition” function, namely

δ(u, σ1, σ2, . . . , σ�′) = δ(δ(δ(u, σ1), σ2), . . . , σ�′).

That is, Fi,x∗ is the set of states that are reachable from the accept states in F
by back-tracking along x∗

� , . . . , x
∗
i+1. In particular, if f(x∗) = 0, then 1 /∈ F0,x∗

(recall that 1 denotes the start state) and more generally, ui /∈ Fi,x∗ (recall that
ui = δ(1, x∗

1, . . . , x
∗
i )). Finally, we modify Δi,u to be

Δi,u :=

{
Δ if u ∈ Fi,x∗

0 otherwise

Intuitively, the proof starts by introducing a unit of entropy captured by Δ to
each state in F0,x∗ in G0, and then propagates that entropy to the states in F1,x∗

in G1, then F2,x∗ in G2, and finally to F�,x∗ = F in G�. We can then use Δ to
mask α, upon which we can argue that the plaintext is perfectly hidden via an
information-theoretic argument. Looking ahead, (5) captures precisely how we
computationally propagate entropy from Fi−1,x∗ in Gi−1 to Fi,x∗ in Gi. The key
insight here is that these sets Fi,x∗ are the states that are reachable by back-
tracking from the accept states, and not the ones that are reachable from the
start state.

Proof – Interlude. Now, we are ready to describe how to carry out the hybrid
argument from G0 to G�. As mentioned earlier, we focus on the setting with a
single key query f . This means that we need to show that for each i = 1, . . . , �,
we have:

Gi−1 = (mpk, cti−1
x∗ , ski−1

f ) ≈c (mpk, ctix∗ , ski
f ) = Gi

To prove this, we will introduce an additional ciphertext distribution cti−1,i
x∗ ,

where:

– cti−1,i
x∗ is the same as ctx∗ except we replace g

si−1
1 , gsi

1 with (g1g2)si−1 , (g1g2)si

and move from Gi−1 to Gi via the following hybrid arguments:

Gi−1 = (mpk, cti−1
x∗ , ski−1

f )

≈c (mpk, cti−1,i
x∗ , ski−1

f )

≈c (mpk, cti−1,i
x∗ , ski

f )

≈c (mpk, ctix∗ , ski
f ) = Gi

(2)

Note that the proof interweaves a computational argument over ciphertexts with
another over secret keys. In the proof, we will rely on the following computational
assumptions in composite-order bilinear groups:
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– SDGN
p1 �→p1p2

subgroup assumption in GN , which says that gs
1 ≈c (g1g2)s;

– DDHHN
p2

in HN (w.r.t. w), which implies that (hr
2, h

wr
2 ) ≈c (hr

2, h
Δ+wr
2 ) given

(h2, h
w
2 ) for all Δ.

Later on, we will describe how to instantiate the scheme and these assumptions
using the k-linear assumption in prime-order bilinear groups.

Proof – Third Idea. We begin with the first computational transition in (2),
namely:

(mpk, cti−1
x∗ , ski−1

f ) ≈c (mpk, cti−1,i
x∗ , ski−1

f )

The only difference between cti−1
x∗ and cti−1,i

x∗ is that we have gsi
1 in the for-

mer, and (g1g2)si in the latter. Unfortunately, we cannot directly invoke the
SDGN

p1 �→p1p2
assumption to carry out this transition, because we need h2 to simu-

late the extra h
Δi−1,v

2 terms in ski−1
f , and the SDGN

p1 �→p1p2
assumption is trivially

broken in the presence of h2. Instead, we crucially rely on the fact that the
h

Δi−1,v

2 terms appear in ski−1
f as:

h
Δi−1,v

2 · hwσru , hru

where Δi−1,v ∈ {0,Δ}. In particular, we will prove a statement of the form:

gs
1 ≈c (g1g2)s given g1, g

w
1 , g2, g

w
2 , h, hw, hΔ

2 · hwr, hr (3)

where s, w, r,Δ ← ZN . We refer to this as the (s, w)-switching lemma. Note
the presence of the term gw

2 , which we need in the reduction to simulate the
g

si−1wx∗
i−1

2 term in cti−1,i
x∗ , and which means that (hΔ

2 ·hwx∗
i−1

ru
, hru) is not pseu-

dorandom. We will prove the (s, w)-switching lemma by exploiting the third
p3-subgroup, using a “two slot” dual system argument:

LHS = gs
1, hwr · hΔ

2 , hr

p1 �→p1p3≈c gs
1 · gs

3 , hwr · hΔ
2 , hr

DDH≈c gs
1 · gs

3, hwr · hΔ
2 · hΔ

3 , hr

p3 �→p2≈c gs
1 · gs

2 , hwr · hΔ
2 · hΔ

3 , hr

DDH≈c gs
1 · gs

2, hwr · hΔ
2 , hr = RHS

(4)

We now clarify that there is in fact a catch here, namely that the (s, w)-switching
lemma breaks down if the adversary is also given gsw

1 , which could indeed be the
case due to the g

siwx∗
i

2 term in cti−1,i
x∗ . We will circumvent this issue by modifying

scheme (1) in the next section.
Looking ahead, we note that the same argument (once we fix the catch)

would allow us to handle the third computational transition in (2), namely

(mpk, cti−1,i
x∗ , ski

f ) ≈c (mpk, ctix∗ , ski
f ).
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Proof – Fourth Idea. Next, we handle the remaining computational transition
in (2), namely

(mpk, cti−1,i
x∗ , ski−1

f ) ≈c (mpk, cti−1,i
x∗ , ski

f )

By a standard argument based on the Chinese Remainder Theorem, it suffices
to prove the statement for the p2-components of the above expression, and since
mpk has no p2-components, this leaves us with:

(cti−1,i
x∗ [2], ski−1

f [2]) ≈c (cti−1,i
x∗ [2], ski

f [2] )

where xx[2] denotes the p2-components of xx. That is, we will need to prove a
statement of the form:

{
h−du+zru
2 , h

dv+ Δi−1,v +wσru

2 , hru
2

}

u,σ,v=δ(u,σ)

≈c

{
h−du+zru
2 , h

dv+ Δi,v +wσru

2 , hru
2

}

u,σ,v=δ(u,σ)

given cti−1,i
x∗ [2]. Instead, we will sketch a proof that

{
h

−du+ Δi−1,u +zru

2 , hdv+wσru
2 , hru

2

}

u,σ,v=δ(u,σ)

≈c

{
h−du+zru
2 , h

dv+ Δi,v +wσru

2 , hru
2

}

u,σ,v=δ(u,σ)

(5)

given (si−1, si, si−1z + siwx∗
i
). The latter will be useful for simulating the terms

in cti−1,i
x∗ [2], which is given by:

cti−1,i
x∗ [2] = (g

si−1wx∗
i−1

2 , g
si−1
2 , g

si−1z+siwx∗
i

2 , gsi
2 , gsiz

2 )

We can interpret (5) as the key computational step that “propagates” the
entropy from the states in Fi−1,x∗ to those in Fi,x∗ . We will explain the con-
nection between (5) and the statement ski−1

f ≈c ski
f we need later on in the

overview.
The proof of (5) relies on the following three observations:

1. by the DDHHN
p2

assumption w.r.t. wx∗
i

mod p2, we have

(hzr
2 , h

wx∗
i

r

2 , hr
2) ≈c (hzr−siγ

2 , h
wx∗

i
r+si−1γ

2 , hr
2) (6)

given (si−1, si, si−1z + siwx∗
i
); this extends readily to the setting with many

triplets corresponding to the ru’s. Note that the above triplets (X,Y,Z) sat-
isfies a consistency check Xsi−1 · Y si = Z

si−1z+siwx∗
i .

2. whenever σ �= x∗
i , we can again invoke the DDHHN

p2
assumption, now w.r.t.

wσ mod p2, to replace hwσru
2 with h

Δi,v+wσru

2 for all u ∈ [Q], σ �= x∗
i , v =

δ(u, σ).
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3. for all x∗ and i ∈ [�], u ∈ [Q], we have

u ∈ Fi−1,x∗ ⇐⇒ δ(u, x∗
i ) ∈ Fi,x∗

This is one of two steps where we crucially relies on the definition of Fi,x∗ .

We note that the analogue of (6) given also gsiz
2 in cti−1,i

x [2] is false due to the
consistency check e(gsi

2 , hzr
2 ) = e(gsiz

2 , hr
2). Again, we will circumvent this issue

by modifying scheme (1) in the next section.

Proof – Fifth Idea. To make use of (5) in the proof, we introduce an additional
key distribution ski−1,i

f :

– ski−1,i
f is the same as skf except we add a h

Δi−1,u

2 term to h−du+zru for every
u.

Instead of

(mpk, cti−1,i
x∗ , ski−1

f ) ≈c (mpk, cti−1,i
x∗ , ski−1,i

f ) ≈c (mpk, cti−1,i
x∗ , ski

f )

we will show:

(mpk, cti−1
x∗ , ski−1

f ) ≈c (mpk, cti−1
x∗ , ski−1,i

f )

(mpk, cti−1,i
x∗ , ski−1,i

f ) ≈c (mpk, cti−1,i
x∗ , ski

f )

That is, we will switch from ski−1
f to ski−1,i

f in the presence of cti−1
x∗ instead of

cti−1,i
x∗ and employ the following strategy:

Gi−1 = (mpk, cti−1
x∗ , ski−1

f )

≈c (mpk, cti−1
x∗ , ski−1,i

f )

≈c (mpk, cti−1,i
x∗ , ski−1,i

f ) similar to 1st transition in (2)

≈c (mpk, cti−1,i
x∗ , ski

f ) using (5)

≈c (mpk, ctix∗ , ski
f ) = Gi identical to 3rd transition in (2)

(7)
Here, the last three computational transitions can be handled as before. This

leaves us with the first transition, namely to show that

(mpk, cti−1
x∗ , ski−1

f ) ≈c (mpk, cti−1
x∗ , ski−1,i

f ).
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Roughly, we focus on the p2-components and prove it via the following hybrid
arguments:

ski−1
f [2] =

⎛

⎜
⎝

hd1+wstartr1
2 , hr1

2 ,

{h−du+zru
2 , h

dv+ Δi−1,v +wσru

2 , hru
2 }u,σ,v=δ(u,σ),

{hα−du+wendru
2 , hru

2 }u∈F

⎞

⎟
⎠

≈s

⎛

⎜
⎜
⎜
⎜
⎝

h
d1− Δi−1,1 +wstartr1

2 , hr1
2 ,

{h
−du+ Δi−1,u +zru

2 , hdv+wσru
2 , hru

2 }u,σ,v=δ(u,σ),

{h
α−du+ Δi−1,u +wendru

2 , hru
2 }u∈F

⎞

⎟
⎟
⎟
⎟
⎠

≈c

⎛

⎜
⎝

h
d1−���Δi−1,1+wstartr1
2 , hr1

2 ,

{h
−du+Δi−1,u+zru

2 , hdv+wσru
2 , hru

2 }u,σ,v=δ(u,σ),

{h
α−du+���Δi−1,u+wendru

2 , hru
2 }u∈F

⎞

⎟
⎠ = ski−1,i

f [2]

in the presence of cti−1
x∗ [2], which is given by:

cti−1
x∗ [2] =

{
gs0wstart
2 , gs0

2 , gs0z
2 if i = 1

g
si−1wx∗

i−1
2 , g

si−1
2 , g

si−1z
2 if 2 ≤ i ≤ �

The first statistical step simply relies on the change of variable

du �→ du − Δi−1,u ∀u ∈ [Q].

Then we handle the second computational step by arguing

h
−Δi−1,1+wstartr1
2 ≈c hwstartr1

2 and h
Δi−1,u+wendru

2 ≈c hwendru
2 ∀ u ∈ F

This is implied by DDHHN
p2

assumption w.r.t. wstart, wend mod p2 with an excep-
tion:

– when i = 1, the ciphertext ct0x∗ leaks wstart mod p2 via gs0wstart
2 and DDHHN

p2

assumption w.r.t. wstart mod p2 does not hold. In this case, we use the fact
that Δ0,1 = 0 which is implied by 1 /∈ F0,x∗ .

This is the second step where we crucially rely on the definition of Fi,x∗ .

1.2 Our Construction

Here is our final “alternating” construction, where we introduce two copies of
(z, {wσ}), and we alternate between the two copies in the ciphertext depending
on the parity of i:
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msk =
(
h, α,wstart, wend, z0, z1, {wσ,0, wσ,1}σ∈Σ

)
(8)

mpk =
(
g1, g

wstart
1 , gwend

1 , gz0
1 , gz1

1 , {g
wσ,0
1 , g

wσ,1
1 }σ∈Σ , e(g1, h)α

)

ctx =

⎛

⎝
gs0
1 , gs0wstart

1 ,

{gsi
1 , g

si−1zi mod 2+siwxi,i mod 2

1 }i∈[�],
gs�
1 , gs�wend

1 , e(g1, h)s�α · m

⎞

⎠

skf =

⎛

⎝
hd1+wstartr1 , hr1 ,

{h−du+zbru , hdv+wσ,bru , hru}b∈{0,1},u∈[Q],σ∈Σ,v=δ(u,σ),
{hα−du+wendru , hru}u∈F

⎞

⎠

Note the additional i mod 2 subscript in ctx and the additional quantifier b ∈
{0, 1} in skf . Decryption proceeds essentially as before by computing e(gsi

1 , hdui )
for i = 0, . . . , � and finally e(g1, h)s�α and thus m.

Updating Auxiliary Distributions. The proof for the “alternating” con-
struction still follows the strategy in (7). The distributions ctix∗ and cti−1,i

x∗ are
defined analogously; we update ski

f [2] and ski−1,i
f [2] for the “alternating” con-

struction as follows:

ski
f [2] =

⎛

⎜
⎜
⎜
⎜
⎝

hd1+wstartr1
2 , hr1

2 ,

{h−du+zi mod 2ru
2 , h

dv+ Δi,v +wσ,i mod 2ru

2 , hru
2 }u,σ,v=δ(u,σ),

{h
−du+zi−1 mod 2ru

2 , h
dv+wσ,i−1 mod 2ru

2 , hru
2 }u,σ,v=δ(u,σ),

{hα−du+wendru
2 , hru

2 }u∈F

⎞

⎟
⎟
⎟
⎟
⎠

ski−1,i
f [2] =

⎛

⎜
⎜
⎜
⎜
⎝

hd1+wstartr1
2 , hr1

2 ,

{h
−du+ Δi−1,u +zi mod 2ru

2 , h
dv+wσ,i mod 2ru

2 , hru
2 }u,σ,v=δ(u,σ),

{h
−du+zi−1 mod 2ru

2 , h
dv+wσ,i−1 mod 2ru

2 , hru
2 }u,σ,v=δ(u,σ),

{hα−du+wendru
2 , hru

2 }u∈F

⎞

⎟
⎟
⎟
⎟
⎠

As an example, we illustrate a complete game sequence for 3-bit input in Fig. 1.

How Alternation Helps. We briefly describe how the alternating structure
circumvents two of the issues in the earlier proof overview:

– To switch from cti−1
x∗ to cti−1,i

x∗ given ski−1,i
f , we will rely on (si, zi mod 2)-

switching lemma. The earlier issue with the terms (gsi
1 , g

sizi+1 mod 2
1 ) in cti−1,i

x∗

simply goes away because zi mod 2 �= zi+1 mod 2, thanks to the alternation. A
similar trick works for switching from cti−1,i

x∗ to ctix∗ .
– To switch from ski−1,i

f to ski
f given cti−1,i

x∗ , we will rely on the analogue of (6)
with (zi mod 2, wx∗

i ,i mod 2) in place of (z, wx∗
i
). The extra term in cti−1,i

x∗ that
enables the earlier attack now corresponds to g

sizi+1 mod 2
2 , and the attack is

no longer applicable simply because zi mod 2 �= zi+1 mod 2, thanks again to the
alternation.
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Handling Many Secret Keys. The proof extends to selective security for
many keys, with fresh {du, ru}u∈[Q] per key and the same Δ used across all the
keys. Roughly speaking, the fresh ru allows us to carry out the computational
steps involving the DDHHN

p2
assumption, and in the final step, we rely on the

fact that all the secret keys only leak α + Δ and not α itself.

1.3 Prime-Order Groups

To complete the overview, we sketch our final ABE scheme which is secure under
the k-Linear assumption in prime-order bilinear groups.1 Here, we rely on the
previous framework of Chen et al. [4–6,9] for simulating composite-order groups
in prime-order ones. Let (G1, G2, GT , e) be a bilinear group of prime order p.
We start with our ABE scheme in composite-order groups (8) and carry out the
following substitutions:

du, α �→ du,k zb, wσ,b �→ Zb,Wσ,b

gsi
1 �→ [s�iA

�
1]1 hru �→ [ru]2

gsizb
1 , g

siwσ,b

1 �→ [s�iA
�
1Zb]1, [s�iA

�
1Wσ,b]1 hzbru , hwσ,bru �→ [Zbru]2, [Wσ,bru]2

where

A1 ← Z
(2k+1)×k
p and Zb,Wσ,b ← Z

(2k+1)×k
p , du,k ← Z

2k+1
p , si, ru ← Z

k
p

and [·]1, [·]2 correspond respectively to exponentiations in the prime-order groups
G1, G2. Note that A1 has height 2k + 1: we will use k-dimensional random sub-
spaces to simulate each of the p1 and p3 subgroups, and a 1-dimensional sub-
space to simulate the p2 subgroup; these are sufficient to simulate the SDGN

p1 �→p1p2
,

SDGN
p1 �→p1p3

and SDGN
p3 �→p3p2

assumptions (we would need to modify the proof of
the (s, w)-switching lemma in (4) to avoid SDGN

p3 �→p2
assumption). It is sufficient

to use Zb,Wσ,b of width k since we only rely on the DDHHN
p2

,DDHHN
p3

assump-
tions.

This yields the following prime-order ABE scheme for DFA:

msk = (k,Wstart,Wend,Z0,Z1, {Wσ,0,Wσ,1}σ∈Σ

)

mpk = ( [A�
1 ,A�

1Wstart,A
�
1Wend,A�

1Z0,A
�
1Z1, {A�

1Wσ,0,A
�
1Wσ,1}σ∈Σ ]1, [A

�
1k]T

)

ctx =

⎛

⎝
[s�0A

�
1 ]1, [s�0A

�
1Wstart]1

{[s�i A
�
1 ]1, [s

�
i−1A

�
1Zi mod 2 + s�i A

�
1Wxi,i mod 2]1}i∈[�]

[s��A
�
1 ]1, [s

�
�A

�
1Wend]1, [s��A

�
1k]T · m

⎞

⎠

skf =

⎛

⎝
[d1 + Wstartr1]2, [r1]2,

{[−du + Zbru]2, [dv + Wσ,bru]2, [ru]2}b∈{0,1},u∈[Q],σ∈Σ,v=δ(u,σ)

{[k − du + Wendru]2, [ru]2}u∈F

⎞

⎠ .

Decryption proceeds as before by first computing

[s�iA
�
1dui

]T ∀i = 0, . . . , �

via the associativity relations A�
1Z · ru = A�

1 · Zru (ditto Wstart,Wσ,b,Wend)
[7]; and finally recovers [s��A

�
1k]T and thus m.

1 e.g: k = 1 corresponds to the Symmetric External Diffie-Hellman Assumption
(SXDH), and k = 2 corresponds to the Decisional Linear Assumption (DLIN).
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1.4 Discussion

The main open problem arising in this work is to obtain an adaptively secure
ABE scheme for DFA under the k-Lin assumption. One natural approach is
to combine our techniques with the piecewise guessing framework in [12,13] to
obtain an adaptively secure ABE scheme for DFA under the k-Lin assumption.
The main obstacle here is that in the intermediate hybrids, we need to know the
sets Fi,x∗ , for which there can be up to 2Q possibilities, where Q is the maximal
number of states in a DFA provided by the adversary in the secret key queries.
As such, naively applying the piecewise guessing framework would incur a 2Q

security loss. Another potential approach is to appeal to the doubly selective
framework in [2,16], which reduces the problem to building a selectively secure
ciphertext-policy ABE for DFA (alternatively, a co-selectively secure key-policy
ABE for DFA) under the k-Lin assumption, in the single-key setting; again,
naively applying the techniques in this work would incur a 2Q security loss. To
conclude, achieving adaptive security under the k-Lin assumption with only a
polynomial loss appears to require new ideas that go beyond the state of the art.

Organization. The next section gives some background knowledge. We prove
selective security of the composite-order scheme in the one-key setting in Sect. 3.
We defer the prime-order scheme with proof in the many-key setting to the full
paper.

2 Preliminaries

Notation. We denote by s ← S the fact that s is picked uniformly at ran-
dom from a finite set S. By PPT, we denote a probabilistic polynomial-time
algorithm. Throughout this paper, we use 1λ as the security parameter. We
use lower case boldface to denote (column) vectors and upper case boldcase to
denote matrices. We use ≈s to denote two distributions being statistically indis-
tinguishable, and ≈c to denote two distributions being computationally indis-
tinguishable.

Deterministic Finite Automaton (DFA). A deterministic finite automaton
(DFA) f is defined by (Q,Σ, δ, F ) where

– Q is the number of states and we take [Q] as the state space;
– Σ is the alphabet;
– δ : [Q] × Σ → [Q] is a transition function;
– F ⊆ [Q] is the set of accept states.

Here the (unique) start state is always state 1. We use f(x) = 1 to denote that
an input x = (x1, . . . , x�) ∈ Σ� is accepted by DFA f , which means that there
exists a sequence of states u0, u1, . . . , u� ∈ [Q] satisfying: (1) u0 = 1; (2) for all
i = 1, . . . , �, we have δ(ui−1, xi) = ui; (3) u� ∈ F . If input x is not accepted by
DFA f , we write f(x) = 0.
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2.1 Attribute-Based Encryption for Deterministic Finite
Automaton

Syntax. An attribute-based encryption (ABE) scheme for DFA consists of four
algorithms (Setup,Enc,KeyGen,Dec):

Setup(1λ, Σ) → (mpk,msk). The setup algorithm gets as input the security
parameter 1λ and the alphabet Σ. It outputs the public parameter mpk and
the master key msk. We assume mpk defines the message space M.

Enc(mpk, x,m) → ctx. The encryption algorithm gets as input mpk, an input
x ∈ Σ∗ and a message m ∈ M. It outputs a ciphertext ctx. Note that x is
public given ctx.

KeyGen(mpk,msk, f) → skf . The key generation algorithm gets as input mpk,
msk and a description of DFA f . It outputs a secret key skf . Note that f is
public given skf .

Dec(mpk, skf , ctx) → m. The decryption algorithm gets as input skf and ctx
such that f(x) = 1 along with mpk. It outputs a message m.

Correctness. For all input x and DFA f with f(x) = 1 and all m ∈ M, we
require

Pr

⎡

⎣Dec(mpk, skf , ctx) = m :
(mpk,msk) ← Setup(1λ, Σ);
skf ← KeyGen(mpk,msk, f);
ctx ← Enc(mpk, x,m)

⎤

⎦ = 1.

Security Definition. For a stateful adversary A, we define the advantage func-
tion

AdvabeA (λ) := Pr

⎡

⎢
⎢
⎣β = β′ :

(mpk,msk) ← Setup(1λ, Σ);
(x∗,m0,m1) ← AKeyGen(mpk,msk,·)(mpk);
β ← {0, 1}; ctx∗ ← Enc(mpk, x∗,mβ);
β′ ← AKeyGen(mpk,msk,·)(ctx∗)

⎤

⎥
⎥
⎦ − 1

2

with the restriction that all queries f that A makes to KeyGen(mpk,msk, ·) satisfy
f(x∗) = 0. An ABE scheme is adaptively secure if for all PPT adversaries A,
the advantage AdvabeA (λ) is a negligible function in λ. The selective security is
defined analogously except that the adversary A selects x∗ before seeing mpk.

2.2 Composite-Order Groups

A generator G takes as input a security parameter 1λ and outputs group descrip-
tion G := (N,GN ,HN , GT , e), where N is product of three primes p1, p2, p3 of
Θ(λ) bits, GN , HN and GT are cyclic groups of order N and e : GN ×HN → GT

is a non-degenerate bilinear map. We require that the group operations in GN ,
HN and GT as well the bilinear map e are computable in deterministic poly-
nomial time with respect to λ. We assume that a random generator g (resp. h)
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of GN (resp. HN ) is always contained in the description of bilinear groups. For
every divisor n of N , we denote by Gn the subgroup of GN of order n. We use
g1, g2, g3 to denote random generators of subgroups Gp1 , Gp2 , Gp3 respectively
and define h1, h2, h3 random generators of subgroups Hp1 ,Hp2 ,Hp3 analogously.

Computational Assumptions. We review two static computational assump-
tions in the composite-order group, used e.g. in [8,14]. By symmetry, one may
permute the indices for subgroups.

Assumption 1 (SDGN
p1 �→p1p2

). We say that (p1 �→ p1p2)-subgroup decision
assumption, denoted by SDGN

p1 �→p1p2
, holds if for all PPT adversaries A, the fol-

lowing advantage function is negligible in λ.

Adv
SD

GN
p1 �→p1p2

A (λ) :=
∣
∣ Pr[A(G,D, T0) = 1] − Pr[A(G,D, T1) = 1]

∣
∣

where D := (g1, g2, g3, h1, h3, h12) with h12 ← Hp1p2 and

T0 ←r Gp1 , T1 ← Gp1p2 .

Assumption 2 (DDHHN
p1

). We say that p1-subgroup Diffie-Hellman assump-
tion, denoted by DDHHN

p1
, holds if for all PPT adversaries A, the following

advantage function is negligible in λ.

Adv
DDH

HN
p1

A (λ) :=
∣
∣ Pr[A(G,D, T0) = 1] − Pr[A(G,D, T1) = 1]

∣
∣

where D := (g1, g2, g3, h1, h2, h3) and

T0 := (hx
1 , hy

1, hxy
1 ), T1 := (hx

1 , hy
1, hxy+z

1 ), x, y, z ← ZN .

3 ABE for DFA in Composite-Order Groups

In this section, we present our ABE for DFA in composite-order groups. Here,
we focus on selective security in the one-key setting under static assumptions.

3.1 Scheme

Our ABE for DFA in composite-order groups is described as follows:

– Setup(1λ, Σ) : Run G = (N = p1p2p3, GN ,HN , GT , e) ← G(1λ) and pick
generators g1 ← Gp1 , h ← HN . Sample α,wstart, wend, z0, z1, wσ,0, wσ,1 ← ZN

for all σ ∈ Σ. Choose a pairwise-independent hash function H. Output

mpk =
(
g1, g

wstart
1 , gwend

1 , gz0
1 , gz1

1 , { g
wσ,0
1 , g

wσ,1
1 }σ∈Σ , e(g1, h)α,H

)
and

msk =
(
h, α,wstart, wend, z0, z1, {wσ,0, wσ,1}σ∈Σ

)

The message space M is the image space of H.
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– Enc(mpk, x,m) : Let x = (x1, . . . , x�) ∈ Σ�. Pick s0, s1, . . . , s� ← ZN and
output

ctx =

⎛

⎝
gs0
1 , gs0wstart

1 ,

{ gsi
1 , g

si−1zi mod 2+siwxi,i mod 2

1 }i∈[�],
gs�
1 , gs�wend

1 , H(e(g1, h)s�α) · m

⎞

⎠ .

– KeyGen(mpk,msk, f) : Pick du, ru ← ZN for all u ∈ [Q] and output

skf =

⎛

⎝
hd1+wstartr1 , hr1 ,

{h−du+zbru , hdv+wσ,bru , hru}b∈{0,1},u∈[Q],σ∈Σ,v=δ(u,σ),
{hα−du+wendru , hru}u∈F

⎞

⎠ .

– Dec(mpk, skf , ctx) : Parse ciphertext for input x = (x1, . . . , x�) as

ctx = (C0,1, C0,2, {Ci,1, Ci,2}i∈[�], Cend,1, Cend,2, C )

and key for f = (Q,Σ, δ, F ) as

skf = (K0,1,K0,2, {Kb,u,Kb,u,σ,Ku}b,u,σ, {Kend,u,Ku}u∈F ).

If f(x) = 1, compute (u0 = 1, u1, . . . , u�) ∈ [Q]�+1 such that δ(ui−1, xi) = ui

for i ∈ [�] and u� ∈ F , and proceed as follows:
1. Compute B0 = e(C0,1,K0,1) · e(C0,2,K0,2)−1;
2. For all i = 1, . . . , �, compute

Bi = e(Ci−1,1,Ki mod 2,ui−1) · e(Ci,1,Ki mod 2,ui−1,xi
) · e(Ci,2,Kui−1)

−1

3. Compute Bend = e(Cend,1,Kend,u�
) · e(Cend,2,Ku�

)−1 and

B = B0 ·
�∏

i=1

Bi · Bend

4. Output the message m′ ← C · H(B)−1.

Due to the lack of space, we defer the proof of correctness to the full paper.

Security. We will prove the following theorem for the one-key setting where
the adversary asks for at most one secret key. We explain how to handle many
keys in Sect. 3.9.

Theorem 1 (composite-order ABE for DFA). The ABE scheme for
DFA in composite-order bilinear groups described above is selectively secure
(cf. Sect. 2.1) in the one-key setting under the following static assumptions:
SDGN

p1 �→p1p2
, SDGN

p1 �→p1p3
, SDGN

p3 �→p3p2
, DDHHN

p2
and DDHHN

p3
.

3.2 Game Sequence

Let x∗ ∈ Σ� denote the selective challenge and let �̄ = � mod 2. WLOG, we
assume � > 1. Recall that g2, h2 denote random generators for Gp2 ,Hp2 respec-
tively.
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Auxiliary Distributions. We describe the auxiliary ciphertext and secret key
distributions that we use in the proof of security. Throughout, the distributions
are the same as the original distributions except for the p2-components. For
notational simplicity, we will only write down the p2-components and use xx[2]
to denote p2-components of xx.

Ciphertext distributions

– for i = 0, 1, . . . , �: ctix∗ is the same as ctx∗ except we replace gsi
1 with (g1g2)si ;

– for i = 1, 2, . . . , �: cti−1,i
x∗ is the same as ctx∗ except we replace g

si−1
1 , gsi

1 with
(g1g2)si−1 , (g1g2)si .

That is, we have: writing τ = i mod 2,

ctix∗ [2] =

⎧
⎪⎪⎨

⎪⎪⎩

gs0wstart
2 , gs0

2 , gs0z1
2 if i = 0

g
siwx∗

i
,τ

2 , g
si
2 , g

siz1−τ
2 if 0 < i < �

g
s�wx∗

�
,�̄

2 , g
s�
2 , g

s�wend
2 , e(g

s�
2 , hα

2 ) if i = �

cti−1,i
x∗ [2] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gs0wstart
2 , gs0

2 , g
s0z1+s1wx∗

1 ,1

2 , gs1
2 , gs1z0

2 if i = 1

g
si−1wx∗

i−1,1−τ

2 , g
si−1
2 , g

si−1zτ+siwx∗
i

,τ

2 , g
si
2 , g

siz1−τ
2 if 1 < i < �

g
s�−1wx∗

�−1,1−�̄

2 , g
s�−1
2 , g

s�−1z�̄+s�wx∗
�

,�̄

2 , g
s�
2 , g

s�wend
2 , e(g

s�
2 , hα

2 ) if i = �

The Δ-distributions. Fix a DFA f . Let F�,x∗ = F ; for i = 0, . . . , � − 1, we will
define

Fi,x∗ := {u ∈ [Q] : δ(u, x∗
i+1, . . . , x

∗
� ) ∈ F }.

Here, we use δ to also denote the “extended transition” function, namely

δ(u, σ1, σ2, . . . , σ�′) = δ(δ(δ(u, σ1), σ2), . . . , σ�′).

That is, Fi,x∗ is the set of states that are reachable from the accept states by
back-tracking along x∗

� , . . . , x
∗
i+1. In particular, if f(x∗) = 0, then 1 /∈ F0,x∗

(recall that 1 denotes the start state) and more generally, ui /∈ Fi,x∗ (recall that
ui = δ(1, x∗

1, . . . , x
∗
i )). Finally, we pick Δ ← ZN and define Δi,u to be

Δi,u :=

{
Δ if u ∈ Fi,x∗

0 otherwise

Secret key distributions

– for i = 0, 1, . . . , �: ski
f is the same as skf except we add h

Δi,v

2 to hdv+wσ,i mod 2ru

for every u ∈ [Q], σ ∈ Σ and v = δ(u, σ).
– for i = 1, 2, . . . , �: ski−1,i

f is the same as skf except we add h
Δi−1,u

2 to
h−du+zi mod 2ru for every u ∈ [Q].

– sk∗
f is the same as skf except we add h

Δ�,u

2 to hα−du+wendru for every u ∈ F .
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That is, we have: writing τ = i mod 2,

ski
f [2] =

⎛

⎜
⎜
⎜
⎜
⎝

hd1+wstartr1
2 , hr1

2 ,

{h−du+zτ ru
2 , h

dv+ Δi,v +wσ,τ ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h
−du+z1−τ ru

2 , h
dv+wσ,1−τ ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru
2 , hru

2 }u∈F

⎞

⎟
⎟
⎟
⎟
⎠

ski−1,i
f [2] =

⎛

⎜
⎜
⎜
⎜
⎝

hd1+wstartr1
2 , hr1

2 ,

{h
−du+ Δi−1,u +zτ ru

2 , h
dv+wσ,τ ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h
−du+z1−τ ru

2 , h
dv+wσ,1−τ ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru
2 , hru

2 }u∈F

⎞

⎟
⎟
⎟
⎟
⎠

sk∗
f [2] =

⎛

⎜
⎜
⎝

hd1+wstartr1
2 , hr1

2 ,

{h−du+zbru
2 , h

dv+wσ,bru

2 , hru
2 }b∈{0,1},u∈[Q],σ∈Σ,v=δ(u,σ),

{h
α−du+ Δ�,u +wendru

2 , hru
2 }u∈F

⎞

⎟
⎟
⎠

Game Sequence. We prove Theorem 1 via a series of games described below
and summarized in Fig. 2.

– G0: Identical to the real game.
– G1: Identical to G0 except that the challenge ciphertext is ct0x∗ .
– G2.i.0, i = 1, . . . , �: In this game, the challenge ciphertext is cti−1

x∗ and the
secret key is ski−1

f . Note that G2.1.0 is identical to G1 except that the secret
key is sk0f and we have G2.i.0 = G2.i−1.4 for all 2 ≤ i ≤ �.

– G2.i.1, i = 1, . . . , �: Identical to G2.i.0 except that the secret key is ski−1,i
f .

– G2.i.2, i = 1, . . . , �: Identical to G2.i.1 except that the challenge ciphertext is
cti−1,i

x∗ .
– G2.i.3, i = 1, . . . , �: Identical to G2.i.2 except that the secret key is ski

f .
– G2.i.4, i = 1, . . . , �: Identical to G2.i.3 except that the challenge ciphertext is
ctix∗ .

– G3: Identical to G2.�.4 except that secret key is sk∗
f .

We use AdvxxxA (λ) to denote the advantage of adversary A in Gxxx with
parameter 1λ.

3.3 Useful Lemmas

We begin with a few useful lemmas which will be used throughout the proof of
security.

Basic Facts. We first state several facts which we will use in the proof.

Lemma 1. For any x∗ ∈ Σ� and f such that f(x∗) = 0, we have:
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1. Δ0,1 = 0;
2. for all i ∈ [�], u ∈ [Q], we have

u ∈ Fi−1,x∗ ⇐⇒ δ(u, x∗
i ) ∈ Fi,x∗ .

Proof. The first statement follows from the fact 1 /∈ F0,x∗ . The second one can
be proved as follows: For direction =⇒, we know δ(u, x∗

i , x
∗
i+1, . . . , x

∗
� ) ∈ F for all

u ∈ Fi−1,x∗ . This means δ(δ(u, x∗
i ), x

∗
i+1, . . . , x

∗
� ) ∈ F and thus δ(u, x∗

i ) ∈ Fi,x∗

by the definition. The direction ⇐= can be proved analogously. �

Ciphertext Switching. We use (s, w)-switching lemma (Lemma 2) when
switching ciphertext distributions in Sect. 3.6. This extends the statement
described in (3) by considering many tuples of form (hwr · hΔ

2 , hr) each with
fresh r. To prove Lemma 2, we follow hybrid arguments described in (4) except
that (i) we use SDGN

p3 �→p3p2
instead of SDGN

p3 �→p2
assumption and (ii) we apply

SDGN
p1 �→p1p3

assumption once more. Looking ahead, this allows us to derive a
prime-order scheme with better parameters.

Lemma 2 ((s, w)-switching lemma). For all Q ∈ N, we have

aux, gs
1, { hwr̄u · hΔ̄

2 , hr̄u }u∈[Q]

≈c aux, gs
1 · gs

2 , { hwr̄u · hΔ̄
2 , hr̄u }u∈[Q]

where aux = (g1, g2, h, hw, gw
1 , gw

2 ) and w, s, Δ̄, r̄u ← ZN for all u ∈ [Q]. Con-
cretely, the advantage function Advswitch

B (λ) is bounded by

2 · AdvSD
GN
p1 �→p1p3

B1
(λ) + 4 · AdvDDH

HN
p3

B2
(λ) + Adv

SD
GN
p3 �→p3p2

B3
(λ)

with Time(B1),Time(B2),Time(B3) ≈ Time(B).

Proof. We prove the lemma via the following hybrid arguments:

LHS = aux, gs
1,

{
hwr̄u · hΔ̄

2 , hr̄u
}

u

≈c aux, gs
1 · gs

3 ,
{

hwr̄u · hΔ̄
2 , hr̄u

}
u

using SDGN
p1 �→p1p3

≈c aux, gs
1 · gs

3,
{

hwr̄u · hΔ̄
2 · hΔ̄

3 , hr̄u
}

u
using DDHHN

p3

≈c aux, gs
1 · gs

2 · gs
3,

{
hwr̄u · hΔ̄

2 · hΔ̄
3 , hr̄u

}
u

using SDGN
p3 �→p3p2

≈c aux, gs
1 · gs

2 · gs
3,

{
hwr̄u · hΔ̄

2 ·��hΔ̄
3 , hr̄u

}
u

using DDHHN
p3

≈c aux, gs
1 · gs

2 ·��gs
3,

{
hwr̄u · hΔ̄

2 , hr̄u
}

u
= RHS using SDGN

p1 �→p1p3

We proceed as follows:

– The first and the last ≈c rely on the SDGN
p1 �→p1p3

assumption stating that:

gs
1 ≈c gs

1 · gs
3 given g1, g2, h, h2

where s ← ZN . All reductions are straight-forward.
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– The second and the fourth ≈c rely on the following statement implied by
DDHHN

p3
assumption w.r.t. w mod p3: for all Δ̄ ∈ ZN , we have

{hwr̄u
3 , hr̄u

3 }u∈[Q] ≈c {hwr̄u+Δ̄
3 , hr̄u

3 }u∈[Q]

given g1, g2, g3, h1, h2, h3, h
w
3 where w, r̄u ← ZN for all u ∈ [Q]. All reductions

are straight-forward.
– The third ≈c relies on the SDGN

p3 �→p3p2
assumption stating that:

gs
3 ≈c gs

2 · gs
3 given g1, g2, h, h23 (9)

where s ← ZN and h23 is a random generator for Hp2p3 . The reduction works
as follows: On input (S, g1, g2, h, h23) where either S = gs

3 or S = gs
2 · gs

3,
we sample w, Δ̄, r̄u, s̃ ← ZN for all u ∈ [Q]. First, we can trivially compute
aux and challenge term gs̃

1 · S. Second, we simulate hΔ̄
2 · hΔ̄

3 with hΔ̄
23 by the

fact: hΔ̄
2 · hΔ̄

3 ≈s hΔ̄
23 for all h2, h3, h23 when Δ̄ ← ZN ; this is sufficient for

simulating all remaining terms.

Combining all five steps proves the lemma. �
Remark 1. Observe that the distributions in the lemma are easily distinguishable
if the view also contains gsw

1 or (g1g2)sw (on the LHS and RHS respectively).

Key Switching. We use (z, w)-transition lemma (Lemma 3) for switching key
distributions (see Sect. 3.7), which captures the core argument in the statement
(5) in the Introduction. Due to the lack of space, we defer the detailed proof to
the full paper.

Lemma 3 ((z, w)-transition lemma). For all Q ∈ N, si−1, si �= 0 and Δ̄ ∈
ZN , we have

aux, si−1z + siw, { h
siΔ̄ +zr̄u

2 , hwr̄u
2 , hr̄u

2 }u∈[Q]

≈c aux, si−1z + siw, { hzr̄u
2 , h

si−1Δ̄ +wr̄u

2 , hr̄u
2 }u∈[Q]

where aux = (g1, g2, h1, h2, h3, h
z
2, h

w
2 ) and z, w, r̄u ← ZN for all u ∈ [Q]. Con-

cretely, the advantage function AdvtransB (λ) is bounded by 2 · AdvDDH
HN
p2

B1
(λ) with

Time(B1) ≈ Time(B).

3.4 Initialization: G0 �→ G1,G1 �→ G2.1.0

The first two transitions are straight-forward; we describe the following two
lemmas with the first proof omitted.

Lemma 4 (G0 ≈c G1). There exists B with Time(B) ≈ Time(A) such that

|Adv0A(λ) − Adv1A(λ)| ≤ Adv
SD

GN
p1 �→p1p2

B (λ).
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Lemma 5 (G1 ≈c G2.1.0). There exists B with Time(B) ≈ Time(A) such that

|Adv1A(λ) − Adv2.1.0A (λ)| ≤ 2|Σ| · AdvDDH
HN
p2

B (λ).

Proof. This roughly means that

(mpk, ct0x∗ , skf ) ≈c (mpk, ct0x∗ , sk0f ).

By the Chinese Reminder Theorem, it suffices to focus on the p2-components;
concretely, we prove that

skf [2] =

⎛

⎜
⎜
⎜
⎝

hd1+wstartr1
2 , hr1

2 ,

{h−du+z0ru
2 , h

dv+wσ,0ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h−du+z1ru
2 , h

dv+wσ,1ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru
2 , hru

2 }u∈F

⎞

⎟
⎟
⎟
⎠

≈c

⎛

⎜
⎜
⎜
⎜
⎝

hd1+wstartr1
2 , hr1

2 ,

{h−du+z0ru
2 , h

dv+ Δ0,v +wσ,0ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h−du+z1ru
2 , h

dv+wσ,1ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru
2 , hru

2 }u∈F

⎞

⎟
⎟
⎟
⎟
⎠

= sk0f [2]

given g1, h1, h3 and

ct0x∗ [2] :=
(
gs0wstart
2 , gs0

2 , gs0z1
2

)
.

Here terms g1, h1, h3 allow us to simulate the p1- and p3-components of ct0x∗ and
skf (or sk0f ) as well as mpk, which is sufficient for proving the lemma. Further-
more, this statement immediately follows from the statement below which are
implied by DDHHN

p2
assumption w.r.t. wσ,0 mod p2 with σ ∈ Σ: for all σ ∈ Σ

and Δ ∈ ZN , we have

{hru
2 , h

wσ,0ru

2 }u∈[Q] ≈c {hru
2 , h

Δ+wσ,0ru

2 }u∈[Q]

given g1, g2, h1, h2, h3 and h
wσ,0
2 where wσ,0, ru ← ZN for u ∈ [Q]. Here we

crucially rely on the fact the ciphertext ct0x∗ [2] does not leak wσ,0 mod p2 with
σ ∈ Σ. �

3.5 Switching Secret Keys I: G2.i.0 �→ G2.i.1

In this section, we prove the following lemma.

Lemma 6 (G2.i.0 ≈c G2.i.1). For all i = 1, . . . , �, there exists B with Time(B) ≈
Time(A) such that

|Adv2.i.0A (λ) − Adv2.i.1A (λ)| ≤ 2(|Σ| + 3) · AdvDDH
HN
p2

B (λ).
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Proof Organization. We need two auxiliary games G2.i.1.a and G2.i.1.b and
prove that:

G2.i.0
Lemma 7≈s G2.i.1.a

Lemma 8≈c G2.i.1.b
Lemma 9≈c G2.i.1

where the p2-components of the secret key in these games are recalled/defined
as below

G2.i.0 :

⎛

⎜
⎜
⎜
⎜
⎜
⎝

hd1+wstartr1
2 , hr1

2 ,

{h−du+zτ ru
2 , h

dv+wσ,τ ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h
−du+z1−τ ru

2 , h
dv+ Δi−1,v +wσ,1−τ ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h
α−du+wendru
2 , hru

2 }u∈F

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= ski−1
f [2]

G2.i.1.a :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h
d1− Δi−1,1 +wstartr1

2 , hr1
2 ,

{h
−du+ Δi−1,u +zτ ru

2 , h
dv− Δi−1,v +wσ,τ ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h
−du+ Δi−1,u +z1−τ ru

2 , h
dv+wσ,1−τ ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h
α−du+ Δi−1,u +wendru

2 , hru
2 }u∈F

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

G2.i.1.b :

⎛

⎜
⎜
⎜
⎜
⎝

h
d1−���Δi−1,1+wstartr1
2 , hr1

2 ,

{h
−du+Δi−1,u+zτ ru

2 , h
dv−Δi−1,v+wσ,τ ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h
−du+Δi−1,u+z1−τ ru

2 , h
dv+wσ,1−τ ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h
α−du+Δi−1,u+wendru

2 , hru
2 }u∈F

⎞

⎟
⎟
⎟
⎟
⎠

G2.i.1 :

⎛

⎜
⎜
⎜
⎜
⎝

hd1+wstartr1
2 , hr1

2 ,

{h
−du+Δi−1,u+zτ ru

2 , h
dv−���Δi−1,v+wσ,τ ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h
−du+���Δi−1,u+z1−τ ru

2 , h
dv+wσ,1−τ ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{h
α−du+���Δi−1,u+wendru

2 , hru
2 }u∈F

⎞

⎟
⎟
⎟
⎟
⎠

= ski−1,i
f [2]

and the p2-components of ciphertext are recalled as follows

cti−1
x∗ [2] =

{
gs0wstart
2 , gs0

2 , gs0z1
2 if i = 1

g
si−1wx∗

i−1,1−τ

2 , g
si−1
2 , g

si−1zτ

2 if 2 ≤ i ≤ �

The p1- and p3-components of secret key and ciphertext as well as mpk remain
unchanged among all the four games.

Lemmas and Proofs. We describe and prove the following lemmas. Combining
them together proves Lemma 6.

Lemma 7 (G2.i.0 ≈s G2.i.1.a). For all i = 1, . . . , �, we have

Adv2.i.0A (λ) = Adv2.i.1.a
A (λ).

Proof. This immediately follows from the change of variables: du �→ du −
Δi−1,u mod p2 for all u ∈ [Q]. �
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Lemma 8. (G2.i.1.a ≈c G2.i.1.b). For all i = 1, . . . , �, there exists B with
Time(B) ≈ Time(A) such that

|Adv2.i.1.a
A (λ) − Adv2.i.1.b

A (λ)| ≤ 2 · AdvDDH
HN
p2

B (λ).

Proof. We prove the lemma via a case analysis for i:

– Case i = 1: The two games are exactly identical due to the fact that Δ0,1 = 0,
see Lemma 1.

– Case i > 1: The lemma follows from the statement below implied by DDHHN
p2

assumption w.r.t. wstart mod p2: for all Δ ∈ ZN , we have

{hr1
2 , hwstartr1

2 } ≈c {hr1
2 , h−Δ+wstartr1

2 }
given g1, g2, h1, h2, h3 and hwstart

2 where wstart, r1 ← ZN . Here we crucially rely
on the fact the ciphertext cti−1

x∗ [2] with i > 1 does not leak wstart mod p2. �
Lemma 9 (G2.i.1.b ≈c G2.i.1). For all i = 1, . . . , �, there exists B with Time(B) ≈
Time(A) such that

|Adv2.i.1.b
A (λ) − Adv2.i.1A (λ)| ≤ 2(|Σ| + 2) · AdvDDH

HN
p2

B (λ).

Proof. This follows from statements below implied by DDHHN
p2

assumption w.r.t
wσ,τ , z1−τ , wend mod p2 with σ ∈ Σ:

– For all Δ ∈ ZN , we have

{hru
2 , h

z1−τ ru

2 , hwendru
2 }u∈[Q] ≈c {hru

2 , h
Δ+z1−τ ru

2 , hΔ+wendru
2 }u∈[Q]

given g1, g2, h1, h2, h3 and h
z1−τ

2 , hwend
2 where z1−τ , wend, ru ← ZN for all u ∈

[Q].
– For all σ ∈ Σ and Δ ∈ ZN , we have

{hru
2 , h

wσ,τ ru

2 }u∈[Q] ≈c {hru
2 , h

−Δ+wσ,τ ru

2 }u∈[Q]

given g1, g2, h1, h2, h3 and h
wσ,τ

2 where wσ,τ , ru ← ZN for u ∈ [Q].

Here we use the fact that cti−1
x∗ [2] with 1 ≤ i ≤ � does not leak

wσ,τ , z1−τ , wend mod p2 with σ ∈ Σ. �

3.6 Switching Ciphertexts: G2.i.1 �→ G2.i.2,G2.i.3 �→ G2.i.4

In this section, we prove the following two lemmas for G2.i.1 �→ G2.i.2 and G2.i.3 �→
G2.i.4, respectively. The proofs are similar, we give the details for the first proof
and only sketch the differences in the second proof.

Lemma 10 (G2.i.1 ≈c G2.i.2). For i = 1, . . . , �, there exists B with Time(B) ≈
Time(A) such that

|Adv2.i.1A (λ) − Adv2.i.2A (λ)| ≤ Advswitch
B (λ).



756 J. Gong et al.

Proof. This roughly means that

(mpk, cti−1
x∗ , ski−1,i

f ) ≈c (mpk, cti−1,i
x∗ , ski−1,i

f ).

Recall that τ = i mod 2. We prove the lemma using (si, zτ )-switching lemma
(see Lemma 2). On input

aux, Si, {hzτ r̄u · hΔ̄
2 , hr̄u}u∈[Q]

with aux = (g1, g2, h, hzτ , gzτ
1 , gzτ

2 ) and

Si = gsi
1 or Si = gsi

1 · gsi
2

where zτ , si, Δ̄, r̄u ← ZN for all u ∈ [Q], the reduction proceeds as follows:

(Simulating mpk). We sample α,wstart, wend, z1−τ , wσ,τ , wσ,1−τ ← ZN for all
σ ∈ Σ; then we can trivially simulate mpk with terms g1, h, gzτ

1 given out in aux.

(Simulating key for f). We want to simulate ski−1,i
f in the form

ski−1,i
f =

⎛

⎜
⎜
⎜
⎝

hd1+wstartr1 , hr1 ,

{ h−du+zτ ru · h
Δi−1,u

2 , hdv+wσ,τ ru , hru }u∈[Q],σ∈Σ,v=δ(u,σ),

{h−du+z1−τ ru , hdv+wσ,1−τ ru , hru}u∈[Q],σ∈Σ,v=δ(u,σ),
{hα−du+wendru , hru}u∈F

⎞

⎟
⎟
⎟
⎠

On input f , we build Fi−1,x∗ ⊆ [Q] from f , then sample du ← ZN for all u ∈ [Q]
and ru ← ZN for all u /∈ Fi−1,x∗ . We implicitly set

Δ = Δ̄ and ru = r̄u for all u ∈ Fi−1,x∗

and simulate ski−1,i
f as follows:

– By the definition of {Δi−1,u}u and our implicit setting, we can rewrite all
terms in the dashed boxes as:

{
hru , h−du+zτ ru if u /∈ Fi−1,x∗

hr̄u , h−du+zτ r̄u · hΔ̄
2 if u ∈ Fi−1,x∗

Terms for u /∈ Fi−1,x∗ can be computed honestly from {ru, du}u/∈Fi−1,x∗ we
sampled and h, hzτ given in aux; terms for u ∈ Fi−1,x∗ can be computed
from {du}u∈Fi−1,x∗ we sampled and {hzτ r̄u · hΔ̄

2 , hr̄u}u∈Fi−1,x∗ given out in
the input.

– All remaining terms can be trivially simulated using {ru}u/∈Fi−1,x∗ and {hru =
hr̄u}u∈Fi−1,x∗ as well as α, {du}u∈[Q], wstart, z1−τ , {wσ,τ , wσ,1−τ}σ∈Σ , wend

we sampled.
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(Simulating ciphertext for x∗). We want to generate a ciphertext for x∗

which is distributed as either cti−1
x∗ or ct

i−1, i

x∗ :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

gs0wstart
2 , gs0

2 , g
s0z1+ s1wx∗

1 ,1

2 , gs1
2 , gs1z0

2 if i = 1

g
si−1wx∗

i−1,1−τ

2 , g
si−1
2 , g

si−1zτ+ siwx∗
i

,τ

2 , gsi
2 , g

siz1−τ

2 if 1 < i < �

g
s�−1wx∗

�−1,1−�̄

2 , g
s�−1
2 , g

s�−1z�̄+ s�wx∗
�

,�̄

2 , gs�
2 , gs�wend

2 , e(gs�
2 , hα) if i = �

On input (m0,m1) ∈ M × M, we sample β ← {0, 1} and sj ← ZN for all j �= i,
and output the challenge ciphertext

⎧
⎪⎨

⎪⎩

(
. . . , (g1g2)s0z1 · S

wx∗
1 ,1

1 , S1, S
z0
1 · g

s2wx∗
2 ,0

1 , . . .
)

if i = 1
(

. . . , (g1g2)si−1zτ · S
wx∗

i
,τ

i , Si, S
z1−τ

i · g
si+1wx∗

i+1,1−τ

1 , . . .
)

if 1 < i < �
(

. . . , (g1g2)s�−1z�̄ · S
wx∗

�
,�̄

� , S�, S
wend
� ,H(e(S�, h

α)) · mβ

)
if i = �

Here we use the fact that the ciphertext contains no term with sizτ in the
exponent (cf. Remark 1). All omitted terms can be honestly computed from aux
and exponents {sj}j �=i sampled by ourselves. Clearly, when Si = gsi

1 , the output
is identical to cti−1

x∗ ; when Si = gsi
1 · gsi

2 , the output is identical to cti−1,i
x∗ . This

completes the proof. �
Lemma 11 (G2.i.3 ≈c G2.i.4). For i = 1, . . . , �, there exists B1,B2 with
Time(B1), Time(B2) ≈ Time(A) such that

|Adv2.i.3A (λ) − Adv2.i.4A (λ)| ≤ Advswitch
B1

(λ) + 4(|Σ| − 1) · AdvDDH
HN
p2

B2
(λ).

Proof. This roughly means that

(mpk, cti−1,i
x∗ , ski

f ) ≈c (mpk, ctix∗ , ski
f )

We prove the lemma using (si−1, wx∗
i ,τ )-transition lemma (see Lemma 2). Recall

that τ = i mod 2. The reduction is analogous to that for Lemma10: On input

aux, Si−1, {h
wx∗

i
,τ r̄u · hΔ̄

2 , hr̄u}u∈[Q]

with aux = (g1, g2, h, h
wx∗

i
,τ , g

wx∗
i

,τ

1 , g
wx∗

i
,τ

2 ) and

Si−1 = g
si−1
1 or Si−1 = g

si−1
1 · g

si−1
2

where wx∗
i ,τ , si−1, Δ̄, r̄u ← ZN for all u ∈ [Q], we sample α, wstart, wend, z0, z1,

wσ,1−τ ← ZN for all σ ∈ Σ, wσ,τ ← ZN for all σ �= x∗
i and sj ← ZN for all

j �= i − 1; then we can simulate mpk and the challenge ciphertext analogously.
The main difference locates at the simulation of secret key.
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(Simulating key for f). We want to simulate ski
f in the form:

ski
f =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

hd1+wstartr1 , hr1 ,

{h−du+zτ ru , h
dδ(u,x∗

i
)+wx∗

i
,τ ru · h

Δi,δ(u,x∗
i
)

2 , hru }u∈[Q],

{hdv+wσ,τ ru · h
Δi,v

2 }u∈[Q],σ �=x∗
i ,v=δ(u,σ)

{h−du+z1−τ ru , hdv+wσ,1−τ ru , hru}u∈[Q],σ∈Σ,v=δ(u,σ),
{hα−du+wendru , hru}u∈F

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

On input f , we sample du ← ZN for all u ∈ [Q] and implicitly set Δ = Δ̄ as
before but we set {ru}u∈[Q] as follows:

– We build Fi,x∗ ⊆ [Q], sample ru ← ZN for all u such that δ(u, x∗
i ) /∈ Fi,x∗

and implicitly set ru = r̄u for all u such that δ(u, x∗
i ) ∈ Fi,x∗ .

Then we simulate ski
f as follows:

– By the definition of {Δi,u}u and our implicit setting, we can rewrite all terms
in the dashed box as below

{
hru , h

dδ(u,x∗
i
)+wx∗

i
,τ ru if δ(u, x∗

i ) /∈ Fi,x∗

hr̄u , h
dδ(u,x∗

i
)+wx∗

i
,τ r̄u · hΔ̄

2 if δ(u, x∗
i ) ∈ Fi,x∗

and simulate them from either {ru}δ(u,x∗
i )/∈Fi,x∗ or {h

wx∗
i

,τ r̄u ·
hΔ̄
2 , hr̄u}δ(u,x∗

i )∈Fi,x∗ with the help of {du}u∈[Q] and aux. This is similar to
the simulation of terms in the dashed boxes in the proof for Lemma10.

– The terms in the gray box are computationally simulated in the following
form

{hdv+wσ,τ ru ·���h
Δi,v

2 }u∈[Q],σ �=x∗
i ,v=δ(u,σ)

using {du}u∈[Q], {wσ,τ}σ �=x∗
i

we sampled and {hru}u∈[Q] we have simulated.
This follows from DDHHN

p2
assumption w.r.t wσ,τ mod p2 with σ �= x∗

i which
implies that: for all σ �= x∗

i and Δ ∈ ZN , we have

{hru
2 , h

wσ,τ ru

2 }u∈[Q] ≈c {hru
2 , h

Δ+wσ,τ ru

2 }u∈[Q]

given g1, g2, h1, h2, h3 and h
wσ,τ

2 where wσ,τ , ru ← ZN for all u ∈ [Q]. Here
we use the fact that both cti−1,i

x∗ and ctix∗ does not leak wσ,τ mod p2 with
σ �= x∗

i .
– All remaining terms can be easily handled as in the proof of Lemma10.

This completes the proof. �

3.7 Switching Key II: G2.i.2 �→ G2.i.3

In this section we prove the following lemma.
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Lemma 12 (G2.i.2 ≈c G2.i.3). For all i = 1, . . . , �, there exists B1,B2 with
Time(B1), Time(B2) ≈ Time(A) such that

|Adv2.i.2A (λ) − Adv2.i.3A (λ)| ≤ AdvtransB1
(λ) + 2(|Σ| − 1) · AdvDDH

HN
p2

B2
(λ).

Proof. Recall τ = i mod 2. By the Chinese Reminder Theorem, it suffices to
focus on the p2-components; concretely we prove

ski−1,i
f [2] =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

hd1+wstartr1
2 , hr1

2 ,

{h
−du+ Δi−1,u +zτ ru

2 , h
dδ(u,x∗

i
)+wx∗

i
,τ ru

2 , hru
2 }u∈[Q],

{h
dv+wσ,τ ru

2 }u∈[Q],σ �=x∗
i ,v=δ(u,σ),

{h
−du+z1−τ ru

2 , h
dv+wσ,1−τ ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru
2 , hr

2}u∈F

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

≈c

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

hd1+wstartr1
2 , hr1

2 ,

{h−du+zτ ru
2 , h

dδ(u,x∗
i
)+ Δi,δ(u,x∗

i
) +wx∗

i
,τ ru

2 , hru
2 }u∈[Q],

{h
dv+wσ,τ ru

2 }u∈[Q],σ �=x∗
i ,v=δ(u,σ),

{h
−du+z1−τ ru

2 , h
dv+wσ,1−τ ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru
2 , hru

2 }u∈F

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≈c

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

hd1+wstartr1
2 , hr1

2 ,

{h−du+zτ ru
2 , h

dδ(u,x∗
i
)+Δi,δ(u,x∗

i
)+wx∗

i
,τ ru

2 , hru
2 }u∈[Q],

{h
dv+ Δi,v +wσ,τ ru

2 }u∈[Q],σ �=x∗
i ,v=δ(u,σ),

{h
−du+z1−τ ru

2 , h
dv+wσ,1−τ ru

2 , hru
2 }u∈[Q],σ∈Σ,v=δ(u,σ),

{hα−du+wendru
2 , hru

2 }u∈F

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= ski
f [2]

given g1, h1, h3 and

cti−1,i
x∗ [2] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gs0wstart
2 , gs0

2 , g
s0z1+s1wx∗

1 ,1

2 , gs1
2 , gs1z0

2 if i = 1

g
si−1wx∗

i−1,1−τ

2 , g
si−1
2 , g

si−1zτ+siwx∗
i

,τ

2 , g
si
2 , g

siz1−τ
2 if 1 < i < �

g
s�−1wx∗

�−1,1−�̄

2 , g
s�−1
2 , g

s�−1z�̄+s�wx∗
�

,�̄

2 , g
s�
2 , g

s�wend
2 , e(g

s�
2 , hα

2 ) if i = �

Here terms g1, h1, h3 allow us to simulate the p1- and p3-components of cti−1,i
x∗

and ski−1,i
f (or ski

f ) as well as mpk, which is sufficient for proving the lemma.
We then proceed as follows:

– The first ≈c relies on (zτ , wx∗
i ,τ )-transition lemma (see Lemma 3). On input

aux, si−1zτ + siwx∗
i ,τ , {hΔ̂0+zτ r̄u

2 , h
Δ̂1+wx∗

i
,τ r̄u

2 , hr̄u
2 }u∈[Q]

with aux = (g1, g2, h1, h2, h3, si−1, si, h
zτ
2 , h

wx∗
i

,τ

2 ) where zτ , wx∗
i ,τ , r̄u ← ZN

for all u ∈ [Q] and

(Δ̂0, Δ̂1) ∈ {(siΔ̄, 0), (0, si−1Δ̄)} with Δ̄ ← ZN ,
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we simulate p2-components of the ciphertext and keys as follows:

(Simulating ciphertext). We sample α,wstart, wend, z1−τ , wσ,1−τ ← ZN

for all σ ∈ Σ, and wσ,τ ← ZN for σ �= x∗
i . It is straight-forward to simulate

cti−1,i
x∗ [2] from g2, si−1, si, si−1zτ +siwx∗

i ,τ . This relies on the fact that neither
zτ mod p2 nor wx∗

i ,τ mod p2 appear elsewhere in cti−1,i
x∗ [2].

(Simulating key for f). We want to generate a challenge key which is either
ski−1,i

f [2] on the LHS or the key on the RHS depending on (Δ̂0, Δ̂1). On input
f , we build Fi−1,x∗ ⊆ [Q] from f and sample du ← ZN for all u ∈ [Q] and
ru ← ZN for all u /∈ Fi−1,x∗ . We implicitly set

Δ =

{
siΔ̄ for the LHS
si−1Δ̄ for the RHS

and ru = r̄u for all u ∈ Fi−1,x∗

and proceed as follows:
◦ We rewrite all terms in the second row of keys on the two sides in terms

of si−1, si, Δ̄, r̄u:

LHSrow 2 =

⎧
⎨

⎩
h

−du+ siΔ̄ +zτ r̄u

2 , h
dδ(u,x∗

i
)+wx∗

i
,τ r̄u

2 , hr̄u
2 if u ∈ Fi−1,x∗

h−du+zτ ru
2 , h

dδ(u,x∗
i
)+wx∗

i
,τ ru

2 , hru
2 if u /∈ Fi−1,x∗

RHSrow 2 =

⎧
⎨

⎩
h−du+zτ r̄u
2 , h

dδ(u,x∗
i
)+ si−1Δ̄ +wx∗

i
,τ r̄u

2 , hr̄u
2 if δ(u, x∗

i ) ∈ Fi,x∗

h−du+zτ ru
2 , h

dδ(u,x∗
i
)+wx∗

i
,τ ru

2 , hru
2 if δ(u, x∗

i ) /∈ Fi,x∗

and generate the second row of the challenge key as
⎧
⎨

⎩
h

−du+ Δ̂0 +zτ r̄u

2 , h
dδ(u,x∗

i
)+ Δ̂1 +wx∗

i
,τ r̄u

2 , hr̄u
2 if u ∈ Fi−1,x∗

h−du+zτ ru
2 , h

dδ(u,x∗
i
)+wx∗

i
,τ ru

2 , hru
2 if u /∈ Fi−1,x∗

where, with {du}u∈[Q], all terms for u ∈ Fi−1,x∗ can be built from terms

{hΔ̂0+zτ r̄u
2 , h

Δ̂1+wx∗
i

,τ r̄u

2 , hr̄u
2 }u∈Fi−1,x∗ provided in the input; all terms for

u /∈ Fi−1,x∗ can be built from h2, h
zτ
2 , h

wx∗
i

,τ

2 in aux and {ru}u/∈Fi−1,x∗ we
sampled.

◦ We can trivially generate all remaining terms in the challenge key
which are identical to ski−1,i

f [2] (and also the key on the RHS) using
{ru}u/∈Fi−1,x∗ and {hru

2 = hr̄u
2 }u∈Fi−1,x∗ as well as α, wstart, z1−τ ,

{wσ,τ}σ �=x∗
i
, {wσ,1−τ}σ∈Σ , wend.

Observe that,
◦ when (Δ̂0, Δ̂1) = (siΔ̄, 0), the output distribution is identical to the LHS;
◦ when (Δ̂0, Δ̂1) = (0, si−1Δ̄), the output distribution is identical to the

RHS; here we rely on the fact that u ∈ Fi−1,x∗ ⇐⇒ δ(u, x∗
i ) ∈ Fi,x∗ for

all u ∈ [Q], see Lemma 1.
This is sufficient for the proof of the first ≈c.
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– The second ≈c follows from DDHHN
p2

assumption w.r.t. wσ,τ mod p2 with
σ �= x∗

i , which implies that: for all σ �= x∗
i and Δ ∈ ZN , we have

{
hru
2 , h

wσ,τ ru

2

}
u∈[Q]

≈c

{
hru
2 , h

Δ+wσ,τ ru

2

}
u∈[Q]

given g1, g2, h1, h2, h3 and h
wσ,τ

2 where wσ,τ , ru ← ZN for all u ∈ [Q]. This
relies on the fact that cti−1,i

x∗ [2] does not leak wσ,τ mod p2 with σ �= x∗
i .

Combining the two steps proves the lemma. �

3.8 Finalize: G2.�.4 �→ G3

We first describe the following lemma. The proof is analogous to the proof for
Lemma 6 and we defer more details to the full paper due to the lack of space.

Lemma 13 (G2.�.4 ≈ G3). There exists B with Time(B) ≈ Time(A) such that

|Adv2.�.4A (λ) − Adv3A(λ)| ≤ 2(|Σ| + 3) · AdvDDH
HN
p2

B (λ).

Finally we prove the last lemma evaluating adversary’s advantage in G3.
Combining this lemma with Lemmas 2, 3 and Lemmas 4, 5, 6, 10, 11, 12, 13
proves Theorem 1.

Lemma 14 (Advantage in G3). For all A, we have Adv3A(λ) ≈ 0.

Proof. The definition of {Δ�,u}u∈F and F�,x∗ = F imply that sk∗
f only leak α +

Δ mod p2. This means that secret keys perfectly hide α mod p2. Therefore, the
term e(g2, h)s�α in ct�x∗ is independently and uniformly distributed and message
mβ is statistically hidden by H(e(g1, h)s�αe(g2, h)s�α) by the leftover hash lemma.
Hence, Adv3A(λ) ≈ 0. �

3.9 Towards Many-Key Setting

Our proof for the one-key setting can be extended to the many-key setting in a
straight-forward way. Without loss of generality, we assume that all key queries
f1, . . . , fq share the same state space [Q] and alphabet Σ, and extend notations
δ, F and Fi,x∗ , du, ru, Δi,u for fκ with an additional subscript κ. Then we sketch
the changes that are needed to handle the many-key setting:

Game Sequence. We still employ the game sequence described in Sect. 3.2
except

– secret keys in G2.i.0, G2.i.1, G2.i.3 and G3 are ski−1
fκ

, ski−1,i
fκ

, ski
fκ

and sk∗
fκ

,
respectively, for all κ ∈ [q];

– in each game, {Δi,u,κ}u∈[Q] for all κ ∈ [q] are defined using the same Δ ← ZN .
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Useful Lemmas. All lemmas in Sect. 3.3 can be trivially extended to the many-
key setting; in fact, the (s, w)-switching lemma (Lemma 2) and (z, w)-transition
lemma (Lemma 3) hold when we replace index u ∈ [Q] with (u, κ) ∈ [Q] × [q].

Lemmas and Proofs. Lemmas 4, 5, 6, 10, 11, 12, 13, 14 all hold in the many-
key setting:

– The proof for Lemma 4 can be trivially extended to the many-key setting.
– The proofs for Lemmas 5, 6, 13 can work in the many-key setting due to the

fact that
◦ {du,κ}u∈[Q] are fresh for each κ ∈ [q]; this ensures that all changes of

variables still hold with multiple keys;
◦ {ru,κ}u∈[Q] are fresh for each κ ∈ [q]; this ensures that all DDH-based

arguments still hold with multiple keys.
– The proofs for Lemmas 10, 11, 12 can be extended using the many-key version

of (s, w)-switching lemma or (z, w)-transition lemma; here we also need the
fact that {ru,κ}u∈[Q] are fresh for each κ ∈ [q].

– To prove Lemma 14 with many keys, we argue that all secret keys
sk∗

f1
, . . . , sk∗

fq
only leak α + Δ mod p2.
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Abstract. Constructing Attribute Based Encryption (ABE) [56] for
uniform models of computation from standard assumptions, is an
important problem, about which very little is known. The only known
ABE schemes in this setting that (i) avoid reliance on multilinear maps or
indistinguishability obfuscation, (ii) support unbounded length inputs and
(iii) permit unbounded key requests to the adversary in the security game,
are by Waters from Crypto, 2012 [57] and its variants. Waters provided
the first ABE for Deterministic Finite Automata (DFA) satisfying the
above properties, from a parametrized or “q-type” assumption over
bilinear maps. Generalizing this construction to Nondeterministic Finite
Automata (NFA) was left as an explicit open problem in the same work,
and has seen no progress to date. Constructions from other assumptions
such as more standard pairing based assumptions, or lattice based
assumptions has also proved elusive.

In this work, we construct the first symmetric key attribute based
encryption scheme for nondeterministic finite automata (NFA) from
the learning with errors (LWE) assumption. Our scheme supports
unbounded length inputs as well as unbounded length machines. In more
detail, secret keys in our construction are associated with an NFA M of
unbounded length, ciphertexts are associated with a tuple (x,m) where
x is a public attribute of unbounded length and m is a secret message
bit, and decryption recovers m if and only if M(x) = 1.

Further, we leverage our ABE to achieve (restricted notions of)
attribute hiding analogous to the circuit setting, obtaining the first
predicate encryption and bounded key functional encryption schemes
for NFA from LWE. We achieve machine hiding in the single/bounded
key setting to obtain the first reusable garbled NFA from standard
assumptions. In terms of lower bounds, we show that secret key
functional encryption even for DFAs, with security against unbounded
key requests implies indistinguishability obfuscation (iO) for circuits; this
suggests a barrier in achieving full fledged functional encryption for NFA.
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1 Introduction

Attribute based encryption (ABE) [56] is an emerging paradigm of encryption
that enables fine grained access control on encrypted data. In attribute based
encryption, a ciphertext of a message m is labelled with a public attribute x
and secret keys are labelled with a Boolean function f . Decryption succeeds to
yield the hidden message m if and only if the attribute satisfies the function,
namely f(x) = 1. Starting with the seminal work of Sahai and Waters [56], ABE
schemes have received a lot of attention in recent years [4,10,20,22,23,26,39–41,
43,45,49,57], yielding constructions for various classes of functions under diverse
assumptions.

In most constructions, the function f embedded in the key is represented
as a circuit. While powerful, circuits are a non-uniform model of computation
which necessitates different representations for different input lengths, forcing
the scheme to provide multiple function keys for the same functionality
as the input length varies. This drawback poses a significant deployment
barrier in many practical application scenarios, since data sizes in the real
world are rarely of fixed length1. Attribute based encryption for uniform
models of computation has also been studied, but so far, we have very few
constructions from standard assumptions. Waters [57] provided a construction
of ABE for Deterministic Finite Automata (DFA) from parametrized or
“q-type” assumptions over bilinear maps. Generalizing this construction to
Nondeterministic Finite Automata (NFA) was left as an explicit open problem2

in [57], and has remained open to date. Constructions from other assumptions
such as more standard pairing based assumptions, or lattice based assumptions
has also proved elusive. Boyen and Li [24] provided a construction of ABE for
DFA from the Learning With Errors (LWE) assumption but this was restricted
to DFAs with bounded length inputs, rendering moot the primary advantage
of a DFA over circuits. Agrawal and Singh [8] constructed a primitive closely
related to ABE for DFA, namely reusable garbled DFA from LWE, but their
construction is limited to a security game where the adversary may only request
a single function key.

From strong assumptions such as the existence of multilinear maps [33],
witness encryption [36] or indistinguishability obfuscation [18,34], attribute
based encryption (indeed, even its more powerful generalization – functional
encryption) has been constructed even for Turing machines [6,14,48], but these
are not considered standard assumptions; indeed many candidate constructions
have been broken [15,27–29,31,32,44,55]. Very recently, Ananth and Fan [10]
constructed ABE for RAM programs from LWE achieving decryption complexity
that is sublinear in the database length. However, the key sizes in their
1 A trivial workaround would be to fix the input length to some fixed upper bound

and pad all data to this bound; but this solution incurs substantial overhead (besides
being inelegant).

2 Note that an NFA can be converted to an equivalent DFA but this transformation
incurs exponential blowup in machine size.
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construction are massive and grow with the size of the entire database as well
as with worst case running time of the program on any input. In particular,
restricting the construction to any model of computation that reads the entire
input string (e.g. DFA, TM) yields a bounded input solution, since the key
size depends on the input length. Similarly, [26,42] construct attribute based
encryption for “bundling functionalities” where the size of the public parameters
does not depend on the size of the input chosen by the encryptor, say �. However,
the key generator must generate a key for a circuit with a fixed input length, say
�′, and decryption only succeeds if � = �′. Thus, bundling functionalities do not
capture the essential challenge of supporting dynamic data sizes; this was noted
explicitly in [42].

Our Results. In this work, we construct the first symmetric key attribute
based encryption scheme for nondeterministic finite automata (NFA) from the
learning with errors (LWE) assumption. Our scheme supports unbounded length
inputs as well as unbounded length machines. In more detail, secret keys in our
construction are associated with an NFA M of unbounded length, ciphertexts
are associated with a tuple (x,m) where x is a public attribute of unbounded
length and m is a secret message bit, and decryption recovers m if and only if
M(x) = 1. Moreover our construction achieves succinct parameters, namely, the
length of the function key and ciphertext grow only with the machine size and
input length respectively (and do not depend on the input length and machine
size respectively).

Further, we leverage our ABE to achieve (restricted notions of) attribute
hiding analogous to the circuit setting, obtaining the first predicate encryption
and bounded key functional encryption schemes for NFA. We achieve machine
hiding in the single key3 setting to obtain the first reusable garbled NFA from
standard assumptions. This improves upon the result of [8], which can only
support a single key request (as against bounded), and only DFAs (as against
NFAs).

The above results raise the question of whether full fledged functional
encryption, which achieves full attribute hiding for NFAs is possible
under standard assumptions. However, we show that secret key functional
encryption even for DFA with security against unbounded key requests implies
indistinguishability obfuscation (iO) for circuits. Since constructing iO for
circuits from standard assumptions is a central challenge in cryptography, this
suggests that there is a barrier in further generalizing our result to achieve full
attribute hiding.

We summarize our results in Table 1.

3 This may be generalized to bounded key, for any a-priori fixed (polynomial) bound.
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Table 1. Prior work and our results. Above, we say that input length supported by a
construction is bounded if the parameters and key lengths depend on the input size.
For attribute hiding, yes∗ indicates hiding in the restricted security games of predicate
or bounded key functional encryption.

Construction Model Input Length Number of
Keys

Attribute
and Function

Hiding

Assumption

Waters [57] DFA unbounded unbounded (no, no) q-type
assumption
on bilinear

maps
Boyen-Li [24] DFA bounded unbounded (no, no) LWE

Agrawal-
Singh

[8]

DFA unbounded single (yes, yes) LWE

Ananth-Fan
[10]

RAM bounded unbounded (no, no) LWE

Section 4 NFA unbounded unbounded (no, no) LWE

Full version NFA unbounded unbounded (yes∗, no) LWE

Full version NFA unbounded bounded (yes, yes) LWE

1.1 Our Techniques

In this section, we provide an overview of our techniques. Before we proceed,
we discuss the technical barriers that arise in following the approaches taken by
prior work. Since the construction by Waters [57] is the only one that supports
unbounded attribute lengths and unbounded key requests by the adversary, 4 it is
the most promising candidate for generalization to NFA. However, the challenges
in generalizing this construction to support NFAs were explicitly discussed in the
same work, and this has seen no progress in the last seven years to the best of our
knowledge, despite the significant research attention ABE schemes have received.
Moreover, even the solution for DFAs is not fully satisfactory since it relies on a
non-standard parametrized or “q-type” assumption.

Boyen and Li [24] attempt to construct ABE for DFAs from the LWE
assumption, but their construction crucially requires the key generator to know
the length of the attribute chosen by the encryptor, since it must provide a fresh
“trapdoor” for each row of the DFA transition table and each input position.
Indeed, reusing the same trapdoor for multiple positions in the input leads to
trivial “mix and match” attacks against their scheme. Thus, it is not even clear
how to obtain ABE for DFA with support for unbounded lengths by following
this route. The work of Agrawal and Singh [8] gives a construction of functional
encryption for DFA from LWE that does handle unbounded length inputs, but
4 The construction is later extended to be adaptively secure rather than selectively

secure (e.g., [16]), but the basic structure of the construction is unchanged.
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only in the limited single key setting. Their construction crucially relies on
reusable garbled circuits [37] which is a single key primitive, and natural attempts
to generalize their construction to support even two keys fails5. Similarly, the
very recent construction of Ananth and Fan [10] is also inherently bounded
length, for reasons similar as those discussed above for [24].

Thus, the handful of existing results in this domain all appear to pose
fundamental barriers to generalization. To overcome this hurdle, we design
completely new techniques to handle the challenge of unbounded length; these
may be applicable elsewhere. We focus on the symmetric key setting, and proceed
in two steps: i) we provide a secret key ABE scheme for NFA that supports
unbounded length inputs but only supports bounded size NFA machines,
and ii) we “bootstrap” the construction of step (i) to handle unbounded
length machines. We additionally achieve various notions of attribute hiding
as discussed above, but will focus on the ABE construction for the remainder of
this overview. We proceed to describe each of these steps in detail.

Constructing NfaABE for Bounded Size NFA. Our first goal is to construct a
secret key ABE scheme for NFA that supports unbounded length inputs but
only supports bounded size NFA machines from the LWE assumption. Since
ABE for circuits has received much success from the LWE assumption [22,39],
our first idea is to see if we can run many circuit ABE schemes “in parallel”,
one for each input length. We refer to our resulting ABE scheme for NFAs as
NfaABE and the ABE for circuits scheme simply as ABE, in order to differentiate
them.

Näıve Approach : We start with the following näıve construction that uses
a (public key) ABE for circuits as an ingredient. The master secret key
of the NfaABE scheme is a PRF key K. This PRF key defines a set of
key pairs {(ABE.mpkj ,ABE.mskj)}j∈[2λ] of the ABE scheme, where each
(ABE.mpkj ,ABE.mskj) is sampled using randomness derived from the PRF key
K and supports circuits with inputs of length j. When one encrypts a message
for a ciphertext attribute x, one chooses the master public key ABE.mpk|x| and
encrypts the message using the key, where |x| is the length of x. We can encrypt
for x with length at most 2λ and therefore can deal with essentially unbounded
length strings as ciphertext attributes. In order to generate a secret key for a
machine M , one has to convert it into a circuit since our underlying ingredient
is an ABE for circuits. The difference between an NFA machine M and a circuit
is that while the former takes a string with arbitrary length as an input, the
input length for the latter is fixed. To fill the gap, we prepare a circuit version of
NFA M for all possible input lengths. Namely, we convert the machine M into
an equivalent circuit ̂Mj with input length j for all j ∈ [2λ]. Then, we generate
ABE secret key associated with ̂Mj by running the key generation algorithm

5 For the knowledgeable reader, bounded key variants of reusable garbled circuits exist,
for instance by applying the compiler of [38], but using this in the aforementioned
construction does not work due to the structure of their construction.
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of the ABE for all j to obtain the NfaABE secret key {ABE.skj}j∈[2λ]. When
decrypting a ciphertext associated with x, the decryptor chooses ABE.sk|x| and
runs the decryption algorithm of the underlying ABE to retrieve the message.

Reducing the Number of Keys : Obviously, there are multiple problems with this
approach. The first problem is that there are 2λ instances of ABE and thus the
secret key of NfaABE is exponentially large. To handle this, we thin out most
of the instances and change the secret key to be {ABE.sk2j }j∈[0,λ]. In order to
make sure that the decryption is still possible even with this change, we modify
the encryption algorithm. To encrypt a message for an attribute x, one chooses
i ∈ [0, λ] such that 2i−1 < |x| ≤ 2i and uses the i-th instance to encrypt the
message, where if the length of x is not exactly 2i, it is padded with blank
symbols to adjust the length. This change reduces the number of instances down
to be polynomial.

Reducing the Size of Keys : However, a bigger problem is that even though we
reduced the number of secret keys, we did not reduce their size, which is still not
polynomial. In particular, there is no guarantee on the size of ABE.sk2λ since
the associated circuit ̂M2λ is of exponential size. Here, we leverage a crucial
efficiency property that is enjoyed by the ABE for circuits constructed by Boneh
et al. [22], namely, that the secret keys in this scheme are very short. The size
of secret keys in their scheme is dependent only on the depth of the circuits
being supported and independent of the input length and size. Thus, if we can
ensure that the depth of ̂M2λ is polynomially bounded (even though the input
is exponentially long), we are back in business.

However, converting the NFA to a circuit requires care. We note that
implementing the trivial approach of converting an NFA to a circuit by keeping
track of all possible states while reading input symbols results in circuit whose
depth is linear in input length, which is exponential. To avoid this, we make use
of a divide and conquer approach to evaluate the NFA, which makes the circuit
depth poly-logarithmic in the input length. As a result, the size of the secret
keys can be bounded by a polynomial as desired.

Efficiency of Key Generation : The final and the most difficult problem to be
addressed is that even though we managed to make the size of {ABE.sk2j }j∈[0,λ]

polynomially bounded, computational time for generating it is still exponentially
large, since so is the size of the associated circuits {̂M2j }j∈[0,λ]. To resolve the
problem, we note that the only algorithm which has the “space” to handle
the unbounded input length is the encryption algorithm. Hence, we carefully
divide the computation of generating {ABE.sk2j }j∈[0,λ] into pieces so that the
key generator only needs to do work proportional to the size of the machine,
the encryptor does work proportional to the size of the input and the decryptor
computes the requisite key on the fly.

To implement this idea, we use succinct single-key functional encryption
(FE), which can be realized from the LWE assumption [2,37]. To support
unbounded input length, we generate λ + 1 instances of the FE scheme to
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obtain {FE.mpkj ,FE.mskj}j∈[0,λ]. The secret key of NfaABE is {FE.ctj}j∈[0,λ],
where FE.ctj = FE.Enc(FE.mpkj , (M,K)) is an encryption of a description
of the associated NFA M and the PRF key K under the j-th instance of
the FE scheme. To provide the matching secret key, the encryptor appends
FE.ski = FE.KeyGen(FE.mski, Ci) to the ciphertext. Here, x is the attribute
vector of unbounded length, i is an integer s.t. 2i−1 < |x| ≤ 2i and Ci is a circuit
that takes as inputs the machine M and PRF key K and outputs an ABE secret
key ABE.sk2i associated with M .

We are almost done – the decryptor chooses FE.cti with appropriate i from
the received set {FE.ctj}j∈[0,λ] and decrypts it using FE.ski that is appended
to the ciphertext to obtain an ABE secret key ABE.sk2i . Then, it decrypts the
ABE ciphertext also provided in the ciphertext to retrieve the message. Note
that our construction is carefully designed so that we only require a single key
of the succinct FE scheme.

Arguing the efficiency of the scheme requires care. In order to make the key
generation algorithm run in polynomial time, we rely on the succinctness of
the underlying FE. Recall that the succinctness property says that the running
time of the encryption algorithm is independent of the size of the circuits being
supported and only dependent on the depth and input and output length. In our
construction, the computation of {FE.ctj = FE.Enc(FE.mpkj , (M,K))}j∈[0,λ] can
be performed in polynomial time, since the input length |M | + |K| is bounded
by a fixed polynomial6 and so is the output length |ABE.sk2j |. Note that we
crucially use the succinctness of the FE here, since the size of the circuit C2j ,
which is supported by the j-th instance of FE, is polynomial in 2j and thus
exponential for j = λ.

Security : Our construction of NfaABE satisfies standard (selective) indistin-
guishability based security. The high level idea of the proof is outlined next.
Intuitively, security follows from the security of the single key FE scheme and
the underlying circuit ABE scheme. In the first step, we show that even though
an adversary can obtain multiple FE ciphertexts and secret keys, it cannot obtain
anything beyond their decryption results {FE.Dec(FE.ski,FE.cti) = ABE.ski} by
the security of the FE. Then, we leverage the security of the ABE to conclude
that the message is indeed hidden. We note that in order to invoke the FE
security, we need to ensure that only single secret key is revealed to the adversary
for each instance of FE. This property is guaranteed, since the circuit for which
a secret key of the j-th instance of FE is generated is fixed (i.e., C2j ). Please see
Sect. 3 for details.

Removing the Size Constraint on NFAs. So far, we have constructed NfaABE for
NFA that can deal with unbounded input length and bounded size NFAs. Let
us call such a scheme (u, b)-NfaABE, where “u” and “b” stand for “unbounded”
and “bounded”. We define (b, u)-NfaABE and (u, u)-NfaABE analogously, where
the first parameter refers to input length and the second to machine size.
6 Recall that we are only dealing with bounded size NFAs.
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Our goal is to obtain (u, u)-NfaABE. At a high level, we compile (u, u)-NfaABE
using two pieces, namely (u, b)-NfaABE which we have already constructed, and
(b, u)-NfaABE, which we will instantiate next.

To construct (b, u)-NfaABE, our basic idea is to simply convert an NFA into
an equivalent circuit and then use existing ABE for circuits schemes [22,39]. This
approach almost works, but we need to exercise care to ensure that the depth
of these circuits can be bounded since we hope to support NFAs of unbounded
size. To fill this gap, we show that an NFA can be converted into an equivalent
circuit whose depth is poly-logarithmic in the size of the NFA by again using the
divide and conquer approach we discussed previously. This enables us to bound
the depth of the circuits by a fixed polynomial, even if the size of corresponding
NFA is unbounded and allows us to use existing ABE schemes for circuits to
construct (b, u)-NfaABE.

We are ready to construct (u, u)-NfaABE by combining (u, b)-NfaABE and
(b, u)-NfaABE. The master secret key of the (u, u)-NfaABE is a PRF key K. This
PRF key defines a set of keys {(u, b)-NfaABE.mskj}j∈[2λ] of the (u, b)-NfaABE
scheme, where each (u, b)-NfaABE.mskj supports NFAs with size j. Similarly,
the PRF key also defines keys {(b, u)-NfaABE.mskj}j∈[2λ] of the (b, u)-NfaABE
scheme, where each (b, u)-NfaABE.mskj supports input strings with length j.
To encrypt a message with respect to a ciphertext attribute x, it encrypts the
message for x using (u, b)-NfaABE.mskj to obtain (u, b)-NfaABE.ctj for all j ∈
[x]. Furthermore, it also encrypts the message for x using (b, u)-NfaABE.msk|x|
to obtain (b, u)-NfaABE.ct|x|. The final ciphertext is

( {(u, b)-NfaABE.ctj}j∈[|x|], (b, u)-NfaABE.ct|x|
)

.

To generate a secret key for a machine M , we essentially swap the roles
of (u, b)-NfaABE and (b, u)-NfaABE. Namely, we generate a secret key
(b, u)-NfaABE.skj for M using (b, u)-NfaABE.mskj for all j ∈ [|M |], where |M |
is the size of the machine M . We also generate (u, b)-NfaABE.sk|M | for M using
(u, b)-NfaABE.msk|M |. The final secret key is

(

(u, b)-NfaABE.sk|M |, {(b, u)-NfaABE.skj}j∈[|M |]
)

.

To decrypt a ciphertext for attribute x using a secret key for an NFA machine
M , we first compare |x| and |M |. If |x| > |M |, it decrypts (u, b)-NfaABE.ct|M |
using (u, b)-NfaABE.sk|M |. Otherwise, it decrypts (b, u)-NfaABE.ct|x| using
(u, b)-NfaABE.sk|x|. It is not hard to see that the correctness of the resulting
scheme follows from those of the ingredients. Furthermore, the security of the
scheme is easily reduced to those of the ingredients, as the construction simply
runs them in parallel with different parameters. The proof is by a hybrid
argument, where we change the encrypted messages in a instance-wise manner.
In Sect. 4, we streamline the construction and directly construct (u, u)-NfaABE
from (u, b)-NfaABE and ABE for circuits instead of going through (b, u)-NfaABE.

Generalizations and Lower Bounds. We further generalize our ABE construction
to obtain predicate encryption and bounded key functional encryption for
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NFAs along with the first construction of resuable garbled NFA. These
constructions are obtained by carefully replacing the underlying ABE for circuits
with predicate encryption, bounded key functional encryption for circuits or
reusable garbled circuits. This compiler requires some care as we need to
argue that the delicate balance of efficiency properties that enable our NfaABE
construction are not violated, as well as ensure that the constructions and
security proofs translate. In the full version, we show that we can indeed ensure
this, sometimes by employing additional tricks as required. In Sect. 5 we show
that secret key functional encryption (SKFE) for DFA with security against
unbounded collusion implies indistinguishability obfuscation for circuits. There,
we essentially show that we can convert an SKFE for DFA into an SKFE for NC1

circuit, which implies indistinguishability obfuscation for circuits by previous
results [9,47]. The conversion is by encoding and purely combinatorial – we first
convert an NC1 circuit into an equivalent branching program and then leverage
the similarity between the branching program and DFA to obtain the result.

Organization of the Paper. In Sect. 2, we provide the definitions and
preliminaries we require. In Sect. 3, we provide our ABE for NFA supporting
unbounded input but bounded machine length. In Sect. 4, we enhance the
construction to support both unbounded input and unbounded machine length.
The extensions of our construction to the setting of bounded key functional
encryption and reusable garbled circuits for NFA will appear in the full version.
In Sect. 5 we show that secret key functional encryption for DFA with security
against unbounded collusion implies indistinguishability obfuscation for circuits.
We conclude in Sect. 6.

2 Preliminaries

In this section, we define some notation and preliminaries that we require.

Notation. We begin by defining the notation that we will use throughout the
paper. We use bold letters to denote vectors and the notation [a, b] to denote
the set of integers {k ∈ N | a ≤ k ≤ b}. We use [n] to denote the set [1, n].
Concatenation is denoted by the symbol ‖.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we
use negl(n) to denote a negligible function of n. We say f(n) is polynomial if it
is O(nc) for some constant c > 0, and we use poly(n) to denote a polynomial
function of n. We use the abbreviation PPT for probabilistic polynomial-time.
We say an event occurs with overwhelming probability if its probability is 1 −
negl(n). The function log x is the base 2 logarithm of x. For any finite set S we
denote P(S) to be the power set of S. For a circuit C : {0, 1}�1+�2 → {0, 1} and
a string x ∈ {0, 1}�1 , C[x] : {0, 1}�2 → {0, 1} denotes a circuit that takes y and
outputs C(x,y). We construct C[x] in the following specified way. Namely, C[x]
is the circuit that takes as input y and sets
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zi =

{

y1 ∧ ¬y1 if xi = 0
y1 ∨ ¬y1 if xi = 1

and then computes C(z,y), where xi, yi, and zi are the i-th bit of x, y, and z,
respectively. In the above, it is clear that zi = xi and we have C(z,y) = C(x,y).
Furthermore, it is also easy to see that depth(C[x]) ≤ depth(C) + O(1) holds.

2.1 Definitions: Non Deterministic Finite Automata

A Non-Deterministic Finite Automaton (NFA) M is represented by the tuple
(Q,Σ, T, qst, F ) where Q is a finite set of states, Σ is a finite alphabet, T :
Σ × Q → P(Q) is the transition function (stored as a table), qst is the start
state, F ⊆ Q is the set of accepting states. For states q, q′ ∈ Q and a string
x = (x1, . . . , xk) ∈ Σk, we say that q′ is reachable from q by reading x if there
exists a sequence of states q1, . . . , qk+1 such that q1 = q, qi+1 ∈ T (xi, qi) for
i ∈ [k] and qk+1 = q′. We say M(x) = 1 iff there is a state in F that is reachable
from qst by reading x.

Remark 1. As it is known, we can transform an NFA with ε-transitions into a
one without them by a simple and efficient conversion. The conversion preserves
the size of the NFA. For simplicity and without loss of generality, we do not deal
with an NFA with ε-transitions in this paper.

2.2 Definitions: Secret-Key Attribute Based Encryption for NFA

A secret-key attribute-based encryption (SKABE) scheme NfaABE for a message
space M = {Mλ}λ∈N consists of four algorithms. In the following, we fix some
alphabet Σ = Σλ of size 2 ≤ |Σ| ≤ poly(λ).

– NfaABE.Setup(1λ) is a PPT algorithm takes as input the unary representation
of the security parameter and outputs the master secret key NfaABE.msk.

– NfaABE.Enc(NfaABE.msk,x,m) is a PPT algorithm that takes as input the
master secret key NfaABE.msk, a string x ∈ Σ∗ of arbitrary length and a
message m ∈ M. It outputs a ciphertext NfaABE.ct.

– NfaABE.KeyGen(NfaABE.msk,M) is a PPT algorithm that takes as input the
master secret key NfaABE.msk and a description of an NFA machine M . It
outputs a corresponding secret key NfaABE.skM .

– NfaABE.Dec(NfaABE.skM ,M,NfaABE.ct,x) is a deterministic polynomial
time algorithm that takes as input the secret key NfaABE.skM , its associated
NFA M , a ciphertext NfaABE.ct, and its associated string x and outputs
either a message m′ or ⊥.

Remark 2. In our construction in Sect. 3.2, we will pass an additional parameter
s = s(λ) to the NfaABE.Setup,NfaABE.Enc,NfaABE.KeyGen algorithms denoting
the description size of NFAs that the scheme can deal with. Later we give a
construction in Sect. 4 which can support NFAs with arbitrary size.



Attribute Based Encryption (and more) for NFA from LWE 775

Definition 1 (Correctness). An SKABE scheme NfaABE is correct if for all
NFAs M , all x ∈ Σ∗ such that M(x) = 1 and for all messages m ∈ M,

Pr

⎡

⎢

⎢

⎣

NfaABE.msk ← NfaABE.Setup(1λ) ,
NfaABE.skM ← NfaABE.KeyGen(NfaABE.msk,M) ,
NfaABE.ct ← NfaABE.Enc(NfaABE.msk,x,m) :
NfaABE.Dec

(

NfaABE.skM ,M,NfaABE.ct,x
) �= m

⎤

⎥

⎥

⎦

= negl(λ)

where the probability is taken over the coins of NfaABE.Setup, NfaABE.KeyGen,
and NfaABE.Enc.

Definition 2 (Security for NfaABE). The SKABE scheme NfaABE for a
message space M is said to satisfy selective security if for any stateful PPT
adversary A, there exists a negligible function negl(·) such that AdvNfaABE,A

(1λ, Σ) :=
∣

∣

∣Pr[Exp(0)NfaABE,A(1λ) → 1] − Pr[Exp(1)NfaABE,A(1λ) = 1]
∣

∣

∣ ≤ negl(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment Exp(b)NfaABE,A, modeled as a
game between the adversary A and a challenger, is defined as follows:

1. Setup phase: At the beginning of the game, A takes as input 1λ and declares
its target X ⊂ Σ∗, which is a set of strings of arbitrary size. Then the
challenger samples NfaABE.msk ← NfaABE.Setup(1λ).

2. Query phase: During the game, A adaptively makes the following queries,
in an arbitrary order and unbounded many times.
(a) Encryption queries: A submits to the challenger an attribute x ∈ X

and a pair of messages (m(0),m(1)) ∈ (Mλ)2. Then, the challenger replies
with NfaABE.ct ← NfaABE.Enc(NfaABE.msk,x,m(b)) in order.

(b) Key queries: A submits to the challenger an NFA M such that M(x) =
0 for all x ∈ X. Then, the challenger replies with NfaABE.skM ←
NfaABE.KeyGen(NfaABE.msk,M) in order.

3. Output phase: A outputs a guess bit b′ as the output of the experiment.

Remark 3. As noted in Remark 2, our construction in Sect. 3.2 is indexed with
an additional parameter s that specifies the size of NFAs being dealt with. In that
case, the above security definitions are modified so that A chooses 1s in addition
to X (or X and S, in the case of very selective security) at the beginning of the
game and key generation queries are made only for machines with size s.

2.3 Definitions: Attribute Based Encryption and Functional
Encryption for Circuits

Attribute Based Encryption for Circuits. For λ ∈ N, let Cinp,d denote a
family of circuits with inp bit inputs, an a-priori bounded depth d, and binary
output and C = {Cinp(λ),d(λ)}λ∈N. An attribute-based encryption (ABE) scheme
ABE for C over a message space M = {Mλ}λ∈N consists of four algorithms:
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– ABE.Setup(1λ, 1inp, 1d) is a PPT algorithm takes as input the unary
representation of the security parameter, the length inp = inp(λ) of the input
and the depth d = d(λ) of the circuit family Cinp(λ),d(λ) to be supported. It
outputs the master public key and the master secret key (ABE.mpk,ABE.msk).

– ABE.Enc(ABE.mpk,x,m) is a PPT algorithm that takes as input the master
public key ABE.mpk, a string x ∈ {0, 1}inp and a message m ∈ M. It outputs
a ciphertext ABE.ct.

– ABE.KeyGen(ABE.mpk,ABE.msk, C) is a PPT algorithm that takes as input
the master secret key ABE.msk and a circuit C ∈ Cinp(λ),d(λ) and outputs a
corresponding secret key ABE.skC .

– ABE.Dec(ABE.mpk,ABE.skC , C,ABE.ct,x) is a deterministic algorithm that
takes as input the secret key ABE.skC , its associated circuit C, a ciphertext
ABE.ct, and its associated string x and outputs either a message m′ or ⊥.

Definition 3 (Correctness). An ABE scheme for circuits ABE is correct if
for all λ ∈ N, polynomially bounded inp and d, all circuits C ∈ Cinp(λ),d(λ), all
x ∈ {0, 1}inp such that C(x) = 1 and for all messages m ∈ M,

Pr

⎡

⎢

⎢

⎢

⎣

(ABE.mpk,ABE.msk) ← ABE.Setup(1λ, 1inp, 1d),
ABE.skC ← ABE.KeyGen(ABE.mpk,ABE.msk, C),
ABE.ct ← ABE.Enc(ABE.mpk,x,m) :
ABE.Dec

(

ABE.mpk,ABE.skC , C,ABE.ct,x
)

�= m

⎤

⎥

⎥

⎥

⎦

= negl(λ)

where the probability is taken over the coins of ABE.Setup, ABE.KeyGen, and
ABE.Enc.

Definition 4 (Selective Security for ABE). The ABE scheme ABE for a
circuit family C = {Cinp(λ),d(λ)}λ∈N and a message space {Mλ}λ∈N is said to
satisfy selective security if for any stateful PPT adversary A, there exists a
negligible function negl(·) such that

AdvABE,A(1λ) =
∣

∣

∣Pr[Exp(0)ABE,A(1λ) = 1] − Pr[Exp(1)ABE,A(1λ) = 1]
∣

∣

∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N, the
experiment Exp(b)ABE,A, modeled as a game between adversary A and a challenger,
is defined as follows:

1. Setup phase: On input 1λ,A submits (1inp, 1d) and the target X ⊂
{0, 1}inp,which is a set of binary strings of length inp, to the challenger.
The challenger samples (ABE.mpk,ABE.msk) ← ABE.Setup(1λ, 1inp, 1d) and
replies to A with ABE.mpk.

2. Query phase: During the game, A adaptively makes the following queries,
in an arbitrary order and unbounded many times.
(a) Key Queries: A chooses a circuit C ∈ Cinp,d that satisfies C(x) = 0 for

all x ∈ X. For each such query, the challenger replies with ABE.skC ←
ABE.KeyGen(ABE.mpk,ABE.msk, C).
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(b) Encryption Queries: A submits a string x ∈ X and a pair of equal
length messages (m0,m1) ∈ (M)2 to the challenger. The challenger
replies to A with ABE.ct ← ABE.Enc(ABE.mpk,x,mb).

3. Output phase: A outputs a guess bit b’ as the output of the experiment.

Remark 4. The above definition allows an adversary to make encryption queries
multiple times. More standard notion of the security for an ABE restricts the
adversary to make only a single encryption query. It is well-known that they are
actually equivalent, which is shown by a simple hybrid argument. We adopt the
above definition since it is convenient for our purpose.

In our construction of SKABE for NFA in Sect. 3.2, we will use the ABE
scheme by Boneh et al. [22] as a building block. The following theorem
summarizes the efficiency properties of their construction.

Theorem 1 (Adapted from [22]). There exists a selectively secure ABE
scheme ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec) with the following
properties under the LWE assumption.

1. The circuit ABE.Setup(·, ·, ·; ·), which takes as input 1λ, 1inp, 1d, and a
randomness r and outputs ABE.msk = ABE.Setup(1λ, 1inp, 1d; r), can be
implemented with depth poly(λ, d). In particular, the depth of the circuit is
independent of inp and the length of the randomness r.

2. We have |ABE.skC | ≤ poly(λ, d) for any C ∈ Cinp,d, where (ABE.mpk,
ABE.msk) ← ABE.Setup(1λ, 1inp, 1d) and ABE.skC ← ABE.KeyGen(ABE.
mpk,ABE.msk, C). In particular, the length of the secret key is independent
of the input length inp and the size of the circuit C.

3. Let C : {0, 1}inp+� → {0, 1} be a circuit such that we have C[v] ∈ Cinp,d

for any v ∈ {0, 1}�. Then, the circuit ABE.KeyGen(·, ·, C[·]; ·), that takes as
input ABE.mpk, ABE.msk, v, and randomness ̂R and outputs ABE.KeyGen
(ABE.mpk,ABE.msk, C[v]; ̂R), can be implemented with depth depth(C) ·
poly(λ, d).

Functional Encryption for Circuits. For λ ∈ N, let Cinp,d,out denote a
family of circuits with inp bit inputs, depth d, and output length out and C =
{Cinp(λ),d(λ),out(λ)}λ∈N. A functional encryption (FE) scheme FE = (FE.Setup,
FE.KeyGen,FE.Enc,FE.Dec) for C consists of four algorithms:

– FE.Setup(1λ, 1inp, 1d, 1out) is a PPT algorithm takes as input the unary
representation of the security parameter, the length inp = inp(λ) of the input,
depth d = d(λ), and the length of the output out = out(λ) of the circuit family
Cinp(λ),d(λ),out(λ) to be supported. It outputs the master public key FE.mpk and
the master secret key FE.msk.

– FE.KeyGen(FE.mpk,FE.msk, C) is a PPT algorithm that takes as input the
master public key FE.mpk, master secret key FE.msk, and a circuit C ∈
Cinp(λ),d(λ),out(λ) and outputs a corresponding secret key FE.skC .
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– FE.Enc(FE.mpk,x) is a PPT algorithm that takes as input the master public
key FE.mpk and an input message x ∈ {0, 1}inp(λ) and outputs a ciphertext
FE.ct.

– FE.Dec(FE.mpk,FE.skC ,FE.ct) is a deterministic algorithm that takes as input
the master public key FE.mpk, a secret key FE.skC and a ciphertext FE.ct and
outputs C(x).

Definition 5 (Correctness). A functional encryption scheme FE is correct if
for all C ∈ Cinp(λ),d(λ),out(λ) and all x ∈ {0, 1}inp(λ),

Pr

⎡

⎢

⎣

(FE.mpk,FE.msk) ← FE.Setup(1λ, 1inp(λ), 1d(λ), 1out(λ));
FE.skC ← FE.KeyGen(FE.mpk,FE.msk, C);
FE.Dec

(

FE.mpk,FE.skC ,FE.Enc(FE.mpk,x)
)

�= C(x)

⎤

⎥

⎦ = negl(λ)

where the probability is taken over the coins of FE.Setup, FE.KeyGen, FE.Enc
and, FE.Dec).

We then define full simulation based security for single key FE as in [37,
Definition 2.13].

Definition 6 (FULL-SIM Security). Let FE be a functional encryption scheme
for a circuits. For a stateful PPT adversary A and a stateless PPT simulator
Sim, consider the following two experiments:

ExprealFE,A(1λ): ExpidealFE,Sim(1λ):

1: (1inp, 1d, 1out) ← A(1λ)
2: (FE.mpk,FE.msk)

← FE.Setup(1λ, 1inp, 1d, 1out)
3: C ← A(FE.mpk)
4: FE.skC

← FE.KeyGen(FE.mpk,FE.msk, C)
5: α ← AFE.Enc(FE.mpk,·)(FE.mpk,FE.skC)

1: (1inp, 1d, 1out) ← A(1λ)
2: (FE.mpk,FE.msk)

← FE.Setup(1λ, 1inp, 1d, 1out)
3: C ← A(FE.mpk)
4: FE.skC

← FE.KeyGen(FE.mpk,FE.msk, C)
5: α ← AO(·)(FE.mpk,FE.skC)

Here, O(·) is an oracle that on input x from A, runs Sim with inputs
(FE.mpk, skC , C, C(x), 1inp) to obtain a ciphertext FE.ct and returns it to the
adversary A.

The functional encryption scheme FE is then said to be single query
FULL-SIM secure if there exists a PPT simulator Sim such that for
every PPT adversary A, the following two distributions are computationally
indistinguishable:

{

ExprealFE,A(1λ)
}

λ∈N

c≈
{

ExpidealFE,Sim(1λ)
}

λ∈N
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Remark 5. The above definition allows an adversary to make encryption queries
multiple times. In the security notion defined in [37], the adversary is allowed to
make only a single encryption query. Similarly to the case of ABE, it is easy to
see that these definitions are actually equivalent (See Remark 4). We adopt the
above definition since it is convenient for our purpose.

In our construction of SKABE for NFA in Sect. 3.2, we will use the FE scheme
by Goldwasser et al. [37] as a building block. The following theorem summarizes
the efficiency properties of their construction.

Theorem 2 ([37]). There exists an FE scheme FE = (FE.Setup,FE.KeyGen,
FE.Enc,FE.Dec) with the following properties.

1. For any polynomially bounded inp(λ), d(λ), out(λ), all the algorithms in FE
run in polynomial time. Namely, the running time of FE.Setup and FE.Enc
do not depend on the size of circuit description to be supported by the scheme.

2. Assuming the subexponential hardness of the LWE problem, the scheme
satisfies full-simulation-based security.

We note that the first property above is called succinctness or semi-compactness
of FE. A stronger version of the efficiency property called compactness requires
the running time of the encryption algorithm to be dependent only on the
length of input message x. An FE with compactness is known to imply
indistinguishability obfuscation [12,21].

3 Attribute-Based Encryption for NFA

3.1 NFA as NC Circuit

Here, we introduce a theorem that provides an efficient algorithm that converts
an NFA into an equivalent circuit with shallow depth. The shallowness of the
circuit will play a crucial role in our construction of SKABE for NFA. In the
following, for ease of notation, we often input a string in Σ∗ to a circuit with the
understanding that the input is actually a binary string encoding a string in Σ∗.
To do so, we set η := �log(|Σ|+1)� and regard a symbol in Σ as a binary string
in {0, 1}η by a natural injection map from Σ to {0, 1}η. Furthermore, we also
introduce a special symbol ⊥ that is not in Σ and assign an unused symbol in
{0, 1}η to it. Intuitively, ⊥ represents a blank symbol that will be used to adjust
the length of a string. We will use alphabets {0, 1}η and Σ∪{⊥} interchangeably.

Theorem 3. Let Σ be an alphabet for NFAs. Then we have the following:

1. There exists a family of circuits {To-Circuits,�}s,�∈N where the circuit
To-Circuits,� takes as input an NFA M with size s and outputs a circuit
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̂M� : (Σ ∪ {⊥})� → {0, 1}. Furthermore, for all �, s ∈ N, all string x ∈ Σ≤�,
and all NFA M with size s, we have

̂M�(x̂) = M(x),

where ̂M� = To-Circuits,�(M) and x̂ = x‖⊥�−|x|.
2. The depths of the circuits To-Circuits,� and ̂M� = To-Circuits,�(M) for an NFA

M of size s are bounded by poly(log s, log �). Furthermore, the sizes of these
circuits are bounded by poly(s, �).

The proof is by divide and conquer and will appear in the full version.

3.2 Construction: SKABE for Bounded Size NFA

We construct an SKABE scheme for NFA denoted by NfaABE = (NfaABE.Setup,
NfaABE.KeyGen,NfaABE.Enc,NfaABE.Dec) from the following ingredients:

1. PRF = (PRF.Setup,PRF.Eval): a pseudorandom function, where a PRF key
K ← PRF.Setup(1λ) defines a function PRF.Eval(K, ·) : {0, 1}λ → {0, 1}. We
denote the length of K by |K|.

2. FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec): a functional encryption scheme
for circuit with the efficiency property described in Item 1 of Theorem 2. We
can instantiate FE with the scheme proposed by Goldwasser et al. [37].

3. ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec): An ABE scheme that
satisfies the efficiency properties described in Theorem 1. We can instantiate
ABE with the scheme proposed by Boneh et al. [22].

4. U(·, ·): a universal circuit that takes as input a circuit C of fixed depth and size
and an input x to the circuit and outputs C(x). We often denote by U [C](·) =
U(C, ·) a universal circuit U with the first input C being hardwired. We need
to have depth(U) ≤ O(depth(C)). For construction of such a universal circuit,
we refer to [30].

Below we provide our construction for SKABE for NFA. In the description
below, we abuse notation and denote as if the randomness used in a PPT
algorithm was a key K of the pseudorandom function PRF. Namely, for a
PPT algorithm (or circuit) A that takes as input x and a randomness r ∈
{0, 1}� and outputs y, A(x;K) denotes an algorithm that computes r :=
PRF(K, 1)‖PRF(K, 2)‖ · · · ‖PRF(K, �) and runs A(x; r). Note that if A is a circuit,
this transformation makes the size of the circuit polynomially larger and adds a
fixed polynomial overhead to its depth. In particular, even if we add this change
to ABE.Setup and ABE.KeyGen, the efficiency properties of ABE described in
Theorem 1 is preserved.

NfaABE.Setup(1λ, 1s): On input the security parameter 1λ and a description size
s of an NFA, do the following:
1. For j ∈ [0, λ], sample PRF keys ̂Kj ,Rj ← PRF.Setup(1λ).
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2. For j ∈ [0, λ], sample (FE.mpkj ,FE.mskj) ← Setup(1λ, 1inp(λ), 1out(λ),
1d(λ)).
Here, we generate λ + 1 instances of FE. Note that all instances support
a circuit class with input length inp(λ) = s + 2|K|, output length out(λ),
and depth d(λ), where out(λ) and d(λ) are polynomials in the security
parameter that will be specified later.

3. Output NfaABE.msk = ({̂Kj ,Rj ,FE.mpkj ,FE.mskj}j∈[0,λ]).
NfaABE.Enc(NfaABE.msk,x, m, 1s): On input the master secret key NfaABE.msk,

an attribute x ∈ Σ∗ of length at most 2λ, a message m and the description
size s of NFA, do the following:
1. Parse the master secret key as NfaABE.msk → ({̂Kj ,Rj ,FE.mpkj ,

FE.mskj}j∈[0,λ]).
2. Set x̂ = x‖⊥2i−�, where � = |x| and i = �log ��.
3. Compute an ABE key pair (ABE.mpki,ABE.mski) = ABE.Setup

(1λ, 12
iη, 1d̂; ̂Ki) with ̂Ki as the randomness.

Here, we generate an instance of ABE that supports a circuit class with
input domain {0, 1}2iη ⊇ (Σ ∪ {⊥})2

i

and depth d̂.
4. Compute ABE.ct ← ABE.Enc(ABE.mpki, x̂,m) as an ABE ciphertext for

the message m under attribute x̂.
5. Obtain FE.ski = FE.KeyGen(FE.mpki,FE.mski, Cs,2i ;Ri), where Cs,2i is a

circuit described in Fig. 1.
6. Output NfaABE.ct = (FE.ski,ABE.mpki,ABE.ct).

Fig. 1. The description of the circuit.

NfaABE.KeyGen(NfaABE.msk,M , 1s): On input the master secret key NfaABE.
msk, the description of an NFA M and a size s of the NFA, if |M | �= s, output
⊥ and abort. Else, proceed as follows.
1. Parse the master secret key as NfaABE.msk → ({̂Kj ,Rj ,FE.mpkj ,

FE.mskj}j∈[0,λ]).
2. Sample ̂Rj ← PRF.Setup(1λ) for all j ∈ [0, λ].
3. Compute FE.ctj = FE.Enc(FE.mpkj , (M, ̂Kj , ̂Rj)) for all j ∈ [0, λ].
4. Output NfaABE.skM = {FE.ctj}j∈[0,λ].

NfaABE.Dec(NfaABE.skM ,M,NfaABE.ct,x): On input a secret key for NFA M
and a ciphertext encoded under attribute x, proceed as follows:
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1. Parse the secret key as NfaABE.skM → {FE.ctj}j∈[0,λ] and the ciphertext
as NfaABE.ct → (FE.ski,ABE.mpki,ABE.ct).

2. Set � = |x| and choose FE.cti from NfaABE.skM = {FE.ctj}j∈[0,λ] such
that i = �log �� < λ.

3. Compute y = FE.Dec(FE.mpki,FE.ski,FE.cti).
4. Compute and output z = ABE.Dec(ABE.mpki, y, U [̂M2i ],ABE.cti, x̂),

where we interpret y as an ABE secret key and x̂ = x‖⊥2i−�.

3.3 Correctness of NfaABE

The following theorem asserts that our scheme is efficient. This directly follows
from Theorem 3 and the efficiency of the underlying scheme NfaABE. We refer
to full version for the formal proof.

Theorem 4. Let |Σ|, d(λ), d̂(λ), and out(λ), be polynomials in λ. Then,
NfaABE = (NfaABE.Setup,NfaABE.KeyGen,NfaABE.Enc,NfaABE.Dec) defined
above runs in polynomial time.

The following theorem addresses the correctness of the scheme.

Theorem 5. For appropriately chosen d̂(λ), out(λ), and d(λ), our scheme
NfaABE is correct for any polynomially bounded s(λ).

Proof. We have to show that if we set d̂(λ), out(λ), and d(λ) appropriately, we
have z = m when M(x) = 1, where z is the value retrieved in Step 3.2 of the
decryption algorithm. To show this, let us set d̂(λ) = Ω(λ) and assume that

y = ABE.KeyGen(ABE.mpki,ABE.mski, U [̂M2i ]; ̂Ri) (3.1)

holds for the moment, where y is the value retrieved in Step 3.2 of the decryption
algorithm. Then, we have z = m by the correctness of ABE if U [̂M2i ] is supported
by the scheme, since we have

U [̂M2i ](x̂) = ̂M2i(x̂) = M(x) = 1

by Item 1 of Theorem 3. We claim that the depth of U [̂M2i ] is at most d̂ and
therefore U [̂M2i ] is indeed supported by the scheme. To see this, we observe
that

depth(U [̂M2i ]) ≤ depth(U(·, ·)) + O(1)

≤ O(1) · depth(̂M2i) + O(1)
≤ poly(log s, log 2i)
≤ poly(log λ)

≤ d̂ (3.2)
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holds, where the second inequality follows from the property of the depth
preserving universal circuit U and the third from Item 2 of Theorem 3.

It remains to prove that Eq. (3.1) holds if we set d(λ) and out(λ)
appropriately. To do so, we show that the depth and the output length of Cs,2i

are bounded by some fixed polynomials. By taking d(λ) and out(λ) larger than
these polynomials, we can ensure that the circuit Cs,2i is supported by the FE
scheme and thus Eq. (3.1) follows from the correctness of the FE, since we have

Cs,2i(M, ̂Ki, ̂Ri) = ABE.KeyGen(ABE.mpki,ABE.mski, U [̂M2i ]; ̂Ri),

where (ABE.mpki,ABE.mski) = ABE.Setup(1λ, 12
iη, 1d̂; ̂Ki) by the definition of

Cs,2i . We first bound the depth of Cs,2i . To do so, we first observe that Step 2 of
Cs,2i can be implemented by a circuit of depth poly(λ, d̂) = poly(λ) by Item 1
of Theorem 1. We then observe that Step 3 of Cs,2i can be implemented by a
circuit of depth poly(log s, log 2i) = poly(log λ) by Item 2 of Theorem 3. We
then bound the depth of the circuit that implements Step 4 of Cs,2i . This
step is implemented by the circuit ABE.KeyGen(·, ·, U [·]; ·) that takes as input
ABE.mpki, ABE.mski, U [̂M2i ] constructed in the previous step, and ̂R and returns
ABE.KeyGen(ABE.mpki,ABE.mski, U [̂M2i ]; ̂R). We have

depth(ABE.KeyGen(·, ·, U [·]; ·)) ≤ poly(λ, d̂) · depth(U(·, ·))
≤ poly(λ, d̂) · d̂
≤ poly(λ),

where the first inequality follows from Item 3 of Theorem 1 and the second from
Eq. (3.2). To sum up, we have that the depth of the circuit Cs,2i is bounded by
some fixed polynomial.

We next bound the output length of Cs,2i . Since the output of the circuit
is ABE.sk

U [̂M2i ]
= ABE.KeyGen(ABE.mpki,ABE.mski, U [̂M2i ]; ̂R), we bound the

length of the ABE secret key. We have

|ABE.sk
U [̂M2i ]

| ≤ poly(λ, d̂) ≤ poly(λ,poly(λ)) ≤ poly(λ)

as desired, where the first inequality follows from the Item 2 of Theorem 1. This
completes the proof of the theorem.

3.4 Proof of Security for NfaABE

Here, we prove that NfaABE defined above is secure, if so are FE and ABE.
Formally, we have the following theorem.

Theorem 6. Assume that FE satisfies full simulation based security, ABE is
selectively secure, and that PRF is a secure pseudorandom function. Then,
NfaABE satisfies selective security.
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Proof. To prove the theorem, let us fix a PPT adversary A and introduce the
following game Gamei between the challenger and A for i ∈ [0, λ].

Gamei: The game proceeds as follows.
Setup phase. At the beginning of the game, A takes 1λ as input and submits

1s and the set of its target X ⊂ Σ∗ to the challenger. Then, the challenger
chooses NfaABE.msk ← NfaABE.Setup(1λ, 1s)

The challenger answers the encryption and key queries made by A as follows.
Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A,

the challenger sets � := |x| and computes

NfaABE.ct =

{

NfaABE.Enc(NfaABE.msk, x̂,m(0)) If �log �� ≥ i

NfaABE.Enc(NfaABE.msk, x̂,m(1)) If �log �� ≤ i − 1.

Then, it returns NfaABE.ct to A.
Key queries. Given an NFA M from A, the challenger runs NfaABE.skM ←

NfaABE.KeyGen(NfaABE.msk,M) and returns NfaABE.skM to A.
Finally, A outputs its guess b′.

In the following, let Exxx denote the probability that A outputs 1 in Gamexxx. It
suffices to prove |Pr[E0] − Pr[Eλ+1]| = negl(λ), since Game0 (resp., Gameλ+1)
corresponds to the selective security game with b = 0 (resp., b = 1). Since we
have

|Pr[E0] − Pr[Eλ+1]| ≤
∑

i∈[0,λ]

|Pr[Ei] − Pr[Ei+1]|

by the triangle inequality, it suffices to show |Pr[Ei] − Pr[Ei+1]| = negl(λ) for
i ∈ [0, λ]. Let us define �max and imax as

�max := max{|x| : x ∈ X} and imax := �log �max�.
Note that �max is bounded by the running time of A and thus is polynomial in
λ. We then observe that for i > imax, we have Gamei = Gameλ+1 and thus
Pr[Ei] − Pr[Ei+1] = 0. Therefore, in the following, we will show that |Pr[Ei] −
Pr[Ei+1]| = negl(λ) holds for i ≤ imax. To do so, we further introduce the
following sequence of games for i ∈ [0, imax]:

Gamei,0: The game is the same as Gamei.
Gamei,1: In this game, we change the setup phase and the way encryption

queries are answered as follows.
Setup phase. Given X ⊂ Σ∗ from A, the challenger chooses NfaABE.msk ←

NfaABE.Setup(1λ, 1s) as in the previous game. In addition, it computes

(ABE.mpki,ABE.mski) ← ABE.Setup(1λ, 12
iη, 1d̂; ̂Ki)

and

FE.ski ← FE.KeyGen(FE.mpki,FE.mski, Cs,2i ;Ri).
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Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A,
the challenger sets � := |x| and computes NfaABE.ct as in the previous
game if �log �� �= i. Otherwise, it computes

ABE.ct ← ABE.Enc(ABE.mpki, x̂,m(0))

and returns NfaABE.ct = (FE.ski,ABE.mpki,ABE.ct) to A, where FE.ski

and ABE.mpki are the values that are computed in the setup phase.
Gamei,2: In this game, the challenger samples FE.ski as

FE.ski ← FE.KeyGen(FE.mpki,FE.mski, Cs,2i)

in the setup phase. Namely, it is sampled using true randomness instead of
the pseudorandom bits derived from the PRF key Ri.

Gamei,3: We change the way key queries are answered as follows:
Key queries. Given an NFA M of size s from A, the challenger answers the

query as follows. It first chooses ̂Rj ← PRF.Setup(1λ) for j ∈ [0, λ] and
computes

ABE.sk
U [̂M2i ]

= ABE.KeyGen(ABE.mpki,ABE.mski, U [̂M2i ]; ̂Ri),

where ABE.mpki and ABE.mski are the values that are computed in the
setup phase. It then computes FE.ctj ←

{

FE.Enc(FE.mpkj , (M, ̂Kj , ̂Rj)) If j ∈ [0, λ]\{i}
Sim(FE.mpki,FE.ski, Cs,2i ,ABE.sk

U [̂M2i ]
, 1inp(λ)) If j = i.

(3.3)
Then, it returns NfaABE.skM := {FE.ctj}j∈[0,λ] to A.

Gamei,4: In this game, the challenger samples (ABE.mpki,ABE.mski) in the
setup phase as

(ABE.mpki,ABE.mski) ← ABE.Setup(1λ, 12
iη, 1d̂).

It also generates ABE.sk
U [̂M2i ]

as

ABE.sk
U [̂M2i ]

← ABE.KeyGen(ABE.mpki,ABE.mski, U [̂M2i ]).

when answering a key query. Namely, they are sampled using true randomness
instead of the pseudorandom bits derived from the PRF keys ̂Ki and ̂Ri.

Gamei,5: In this game, we change the way the encryption queries are answered
as follows.
Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A,

the challenger sets � := |x| and computes NfaABE.ct as in the previous
game if �log �� �= i. Otherwise, it computes

ABE.ct = ABE.Enc(ABE.mpki, x̂,m(1))

and returns NfaABE.ct = (FE.ski,ABE.mpki,ABE.ct) to A, where FE.ski

and ABE.mpki are the values that are computed in the setup phase.
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Gamei,6: The game is the same as Gamei+1.

Since we have

|Pr[Ei] − Pr[Ei+1]| ≤
∑

j∈[6]

|Pr[Ei,j−1] − Pr[Ei,j ]|

by the triangle inequality, it suffices to show |Pr[Ei,j−1] − Pr[Ei,j ]| = negl(λ) for
j ∈ [6]. To complete the proof of the theorem, it remains to prove the following
lemmas.

Lemma 1. We have Pr[Ei,0] = Pr[Ei,1].

Proof. The change introduced here is only conceptual, where ABE.mpki and
FE.ski are computed beforehand. The lemma trivially follows.

Lemma 2. We have |Pr[Ei,1] − Pr[Ei,2]| = negl(λ).

Proof. We observe that Ri is used only when generating FE.ski in Gamei,1.
Therefore, the lemma follows by a straightforward reduction to the security of
PRF.

Lemma 3. We have |Pr[Ei,2] − Pr[Ei,3]| = negl(λ).

Proof. To prove the lemma, let us assume that |Pr[Ei,2] − Pr[Ei,3]| is non-
negligible and construct an adversary B that breaks the full simulation security
of FE using A. B proceeds as follows.

Setup phase. At the beginning of the game, B inputs 1λ to A and obtains 1s

and X ⊂ Σ∗ from A. Then B submits its target (1λ, 1inp(λ), 1out(λ)). Then,
the experiment samples

(FE.mpk,FE.msk) ← FE.Setup(1λ, 1inp(λ), 1out(λ))

and returns FE.mpk to B. B then sets FE.mpki := FE.mpk. In the rest of the
simulation, it implicitly sets FE.mski := FE.msk without knowing the value.
B then chooses (FE.mpkj ,FE.mskj) ← FE.Setup(1λ, 1inp(λ), 1out(λ), 1d(λ)) for
j ∈ [0, λ]\{i}. It also chooses ̂Kj ,Rj ← PRF.Setup(1λ) for j ∈ [0, λ]
and (ABE.mpki,ABE.mski) ← ABE.Setup(1λ, 12

iη, 1d̂; ̂Ki). Finally, it declares
Cs,2i as a circuit for which it request a secret key. Then, the experiment runs

FE.sk ← FE.KeyGen(FE.mpk,FE.msk, Cs,2i)

and returns FE.sk to B. B sets FE.ski := FE.sk.

B then handles the encryption and key queries as follows.
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Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A,
B sets � := |x| and i′ = �log ��. If i′ �= i, B answers the query using
(̂Ki′ ,Ri′ ,FE.mpki′ ,FE.mski′). Otherwise, it computes ABE.ct ← ABE.Enc
(ABE.mpki, x̂,m(0)) and returns NfaABE.ct = (FE.ski,ABE.mpki,ABE.ct) to
A, where ABE.mpki (resp., FE.ski) is the value sampled by itself (resp., by
the experiment) in the setup phase.

Key queries. Given an NFA M of size s from A, B first chooses ̂Rj ←
PRF.Setup(1λ) for j ∈ [0, λ] and computes FE.ctj = FE.Enc(FE.mpkj ,

(M, ̂Kj , ̂Rj)) for j ∈ [0, λ]\{i}. B then submits (M, ̂Ki, ̂Ri) to its encryption
oracle. Then, the experiment computes FE.ct ←
{

FE.Enc(FE.mpk, (M, ̂Ki, ̂Ri)) If B is in ExprealFE,B(1λ)
Sim(FE.mpk,FE.sk, Cs,2i , Cs,2i(M, ̂Ki, ̂Ri), 1inp(λ)) If B is in ExpidealFE,Sim(1λ)

(3.4)
and returns FE.ct to B. B then sets FE.cti := FE.ct and returns
NfaABE.skM := {FE.ctj}j∈[0,λ] to A.

Output phase: B outputs the same bit as A as its guess.

It is easy to see that B simulates Gamei,2 if B is in the real game. We then
claim that B simulates Gamei,3 if B is in the simulated game. The only
difference between these games is the way FE.cti is computed. In Gamei,3, it is
generated as Eq. (3.3) while in the simulation above, it is generated as Eq. (3.4)
(with B being in ExpidealFE,Sim). However, they are equivalent because B has set
(FE.mpki,FE.mski) := (FE.mpk,FE.msk) and FE.ski := FE.sk and we have

Cs,2i(M, ̂Ki, ̂Ri) = ABE.KeyGen(ABE.mpki,ABE.mski, U [̂M2i ]; ̂Ri) = ABE.skU [̂M2i ]
.

From the above observation, we can see that B breaks the security of FE if
A distinguishes the two games. This completes the proof of the lemma.

Lemma 4. We have |Pr[Ei,3] − Pr[Ei,4]| = negl(λ).

Proof. Due to the change we introduced, ̂Ki is not used to answer the encryption
queries any more and used only when generating (ABE.mpki,ABE.mski) in
Gamei,3. We also observe that ̂Ri is used only when generating ABE.sk

U [̂M2i ]
.

Therefore, the lemma follows by straightforward reductions to the security of
PRF.

Lemma 5. We have |Pr[Ei,4] − Pr[Ei,5]| = negl(λ).

Proof. To prove the lemma, let us assume that |Pr[Ei,4] − Pr[Ei,5]| is non-
negligible and construct an adversary B that breaks the selective security of
ABE using A. B proceeds as follows.
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Setup phase. At the beginning of the game, B inputs 1λ to A and obtains 1s

and X ⊂ Σ∗ from A. Then, B sets Xi := {x̂ = x‖⊥2i−|x| : x ∈ X, 2i−1 <

|x| ≤ 2i} and submits its target Xi and (1λ, 12
iη, 1d̂) to its challenger. Then,

the challenger samples

(ABE.mpk,ABE.msk) ← ABE.Setup(1λ, 12
iη, 1d̂)

and returns ABE.mpk to B. B then sets ABE.mpki := ABE.mpk. In the rest
of the simulation, it implicitly sets ABE.mski := ABE.msk without knowing
the value. It then chooses ̂Kj ,Rj ← PRF.Setup(1λ) for j ∈ [0, λ]\{i} and
(FE.mpkj ,FE.mskj) ← Setup(1λ, 1inp(λ), 1out(λ), 1d(λ)) for j ∈ [0, λ]. It also
computes FE.ski ← FE.KeyGen(FE.mpki,FE.mski, Cs,2i).

B then handles the encryption and key queries as follows.

Encryption queries. Given two messages (m(0),m(1)) and x ∈ X from A, B
sets � := |x| and i′ = �log ��. If i′ �= i, B answers the encryption query using
(̂Ki′ ,Ri′ ,FE.mpki′ ,FE.mski′). Otherwise, B makes an encryption query for the
attribute x̂ = x‖⊥2i−� and messages (m(0),m(1)) to its challenger. Then, the
challenger runs

ABE.ct ← ABE.Enc(ABE.mpk, x̂,m(b))

and returns a ciphertext ABE.ct to B. Then, it returns NfaABE.ct = (FE.ski,
ABE.mpki,ABE.ct) to A. Here, B uses FE.ski that is sampled in the setup
phase.

Key queries. Given an NFA M of size s from A, B first chooses ̂Rj ←
PRF.Setup(1λ) for j ∈ [0, λ]\{i}. It then queries a secret key for U [̂M2i ]
to its challenger. Then, the challenger runs

ABE.sk
U [̂M2i ]

← ABE.KeyGen(ABE.mpk,ABE.msk, U [̂M2i ])

and returns ABE.sk
U [̂M2i ]

to B. It then computes FE.ctj for j ∈ [0, λ] as
Eq. (3.3) and returns NfaABE.skM := {FE.ctj}j∈[0,λ] to A.

Output phase: B outputs the same bit as A as its guess.

It is easy to see that B simulates Gamei,4 if b = 0 and Gamei,5 if b = 1.
Therefore, B breaks the security of ABE if A distinguishes the two games. It
remains to prove that B is a legitimate adversary (i.e., it does not make any
prohibited key queries). For any attribute x̂ for which B makes an encryption
query and for any circuit U [̂M2i ] for which B makes a key query, we have

U [̂M2i ](x̂) = ̂M2i(x̂) = M(x),

where the second equality above follows from Item 1 of Theorem 3. Therefore,
B is a legitimate adversary as long as so is A. This completes the proof of the
lemma.
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Lemma 6. We have |Pr[Ei,5] − Pr[Ei,6]| = negl(λ).

Proof. This follows as in the indistinguishability of Gamei,0 and Gamei,4, but
in the reverse order. That is, we first change the random bits used in ABE.KeyGen
to a pseudorandom one by invoking the security of PRF. We then generate FE.cti
by using FE.Enc instead of Sim by invoking the full-simulation security of FE.
Finally, we change the random bits used in ABE.KeyGen to a pseudorandom one
by invoking the security of PRF again.

This concludes the proof of Theorem6.

3.5 Extensions

In the full version, we adapt our ABE construction to achieve (restricted
versions of) attribute privacy. In more detail, we construct secret key predicate
encryption and bounded key functional encryption for nondeterministic finite
automata. We also additionally achieve machine privacy, improving the result of
[8]. Intuitively, these results proceed by replacing the “inner” circuit ABE scheme
in our compiler by predicate encryption or bounded key functional encryption
scheme and arguing that the requisite efficiency requirements (Theorem 1) are
not violated. We again refer to the full version for details.

4 Attribute Based Encryption for NFA with Unbounded
Size Machines and Inputs

In this section we construct a secret-key attribute-based encryption scheme
(SKABE) for nondeterministic finite automata of arbitrary sizes supporting
inputs of arbitrary length. We denote our scheme by uNfaABE =
(uNfaABE.Setup, uNfaABE.KeyGen, uNfaABE.Enc, uNfaABE.Dec) and its con-
struction uses the following two ingredients.

1. NfaABE = (NfaABE.Setup,NfaABE.KeyGen,NfaABE.Enc,NfaABE.Dec): An
SKABE for NFA supporting inputs of unbounded length but for bounded size
machines. We instantiate NfaABE from our construction in Sect. 3.2.

2. ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec): An ABE scheme for
circuits that satisfies the efficiency properties described in Theorem 1. We
can instantiate ABE with the scheme proposed by Boneh et al. [22].

3. PRF = (PRF.Setup,PRF.Eval): a pseudorandom function, where a PRF
key K ← PRF.Setup(1λ) defines a function PRF.Eval(K, ·) : {0, 1}λ → R,
where we assume R to be the randomness space of both NfaABE.Setup and
ABE.Setup algorithms. Note that without loss of generality, we may assume
R = {0, 1}p(λ) for some sufficiently large polynomial p(λ).



790 S. Agrawal et al.

Below we provide our construction for SKABE for NFA.

uNfaABE.Setup(1λ): On input the security parameter 1λ, do the following:
1. Sample two PRF keys KNfaABE ← PRF.Setup(1λ),KABE ← PRF.Setup(1λ).
2. Output uNfaABE.msk = (KNfaABE,KABE).

uNfaABE.Enc(uNfaABE.msk,x, m): On input the master secret key
uNfaABE.msk, an attribute as x ∈ Σ∗ of length at most 2λ and a message
m ∈ M, do the following:
1. Parse the master secret key as uNfaABE.msk = (KNfaABE,KABE). Denote

� = |x|.
2. For all i ∈ [�], do the following:

(a) Sample NfaABE.mski ← NfaABE.Setup(1λ, 1i; ri) as an NfaABE
master secret key, where ri = PRF.Eval(KNfaABE, i).

Note that i denotes the size of the NFAs that are supported by
NfaABE.mski.

(b) Compute NfaABE.cti = NfaABE.Enc(NfaABE.mski,x,m, 1i).

3. Sample (ABE.mpk�,ABE.msk�) ← ABE.Setup(1λ, 1�, 1d̂; r�) as an ABE key
pair, where r� = PRF.Eval(KABE, �).
Note that � and d̂ denotes the input length and the depth of the circuit
respectively that (ABE.mpk�,ABE.msk�) supports.

4. Compute ABE.ct� = ABE.Enc(ABE.mpk�,x,m).

5. Output uNfaABE.ct = ({NfaABE.cti}i∈[�],ABE.mpk�,ABE.ct�).

uNfaABE.KeyGen(uNfaABE.msk,M ): On input the master secret key uNfaABE.
msk and the description of a NFA M = (Q,Σ, T, qst, F ), proceed as follows.
1. Parse the master secret key as uNfaABE.msk = (KNfaABE,KABE). Denote

s= |M |.
2. For all i ∈ [s], do the following:

(a) Let ̂Mi = To-Circuits,i(M). (See Theorem 3 for the definition of
To-Circuit.)

(b) Sample (ABE.mpki,ABE.mski) ← ABE.Setup(1λ, 1i, 1d̂; ri) as an ABE
key pair, where ri = PRF.Eval(KABE, i).

(c) Compute ABE.ski = ABE.KeyGen(ABE.mpki,ABE.mski, ̂Mi).
Note that ∀i ∈ [s], i and d̂ denotes the input length and the depth of the
circuit respectively that (ABE.mpki,ABE.mski) supports.

3. Sample NfaABE.msks←NfaABE.Setup(1λ, 1s; rs) as an NfaABE master
secret key, where rs = PRF.Eval(KNfaABE, s).

4. Compute NfaABE.sks = NfaABE.KeyGen(NfaABE.msks,M).

5. Output uNfaABE.skM = (NfaABE.sks, {ABE.mpki,ABE.ski}i∈[s]).



Attribute Based Encryption (and more) for NFA from LWE 791

uNfaABE.Dec(uNfaABE.skM ,M, uNfaABE.ct,x): On input a secret key for NFA
M and a ciphertext encoded under some attribute x, proceed as follows:
1. Parse the secret key as uNfaABE.skM = (NfaABE.sk|M |, {ABE.mpki,

ABE.ski}i∈[|M |]) and the ciphertext as uNfaABE.ct = ({NfaABE.cti}i∈[|x|],
ABE.mpk|x|,ABE.ct|x|).

2. If |x| ≥ |M |, compute and output NfaABE.Dec(NfaABE.sk|M |,M,
NfaABE.ct|M |,x).

3. Otherwise, compute and output ABE.Dec(ABE.mpk|x|,ABE.sk|x|, ̂M|x|,

ABE.ct|x|,x), where ̂M|x| = To-Circuit|M |,|x|(M).

The following theorems assert that our scheme is efficient, satisfies
correctness, and is secure, as long as so are the underlying NfaABE and ABE
schemes. Intuitively, these theorems follow since we simply run these underlying
schemes in parallel. We refer to the full version for the formal proofs.

Theorem 7. The scheme uNfaABE = (uNfaABE.Setup, uNfaABE.KeyGen,
uNfaABE.Enc, uNfaABE.Dec) defined above runs in polynomial time, as long as
d̂ and |Σ| are polynomials in λ.

Theorem 8. For appropriately chosen d̂ = d̂(λ), our scheme uNfaABE is correct
for any NFA.

Theorem 9. Assume that NfaABE and ABE both satisfy selective indistin-
guishability based security and PRF is a secure pseudorandom function. Then,
uNfaABE satisfies selective security.

5 FE for DFA Implies iO

Here, we show that secret key functional encryption (SKFE) for DFA with
security against unbounded collusion implies indistinguishability obfuscation
(iO). This result illuminates the difficulty of constructing such SKFE from a
standard assumption, since no construction of iO from standard assumption
is known despite the significant research effort in recent years [1–3,5,7,8,11–
13,17,21,34,35,37–40,40,50,51,51–54].

5.1 Preliminaries on DFA and Branching Programs

Here, we first recall that a deterministic finite automaton (DFA) is a special case
of NFA where for the transition function T , T (σ, q) consists of a single element
in Q for any σ ∈ Σ and q ∈ Q. We then define branching program similarly
to [25].
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Definition 7 (Branching Programs). A width-5 permutation branching
program BP of length L with input space {0, 1}� is a sequence of L tuples of
the form (var(t), σt,0, σt,1) where

– var : [L] → [�] is a function that associates the t-th tuple with an input bit
xvar(t).

– σj,0 and σj,1 are permutations on 5 elements. We will think of σj,0 and σj,1

as bijective functions from the set {1, 2, 3, 4, 5} to itself.

The computation of the program BP on input x = (x1, . . . , x�) proceeds as
follows. The state of the computation at any point in time t is a number ζt ∈
{1, 2, 3, 4, 5}. Computation starts with the initial state ζ0 = 1. The state ζt is
computed recursively as

ζt = σt,xvar(t) (ζt−1) . (5.1)

Finally, after L steps, our state is ζL. The output of the computation BP(x) is
1 if ζL = 1 and 0 otherwise.

We will use the following theorem, which essentially says that an NC1 circuit
can be converted into an equivalent branching program.

Theorem 10 (Barrington’s Theorem [19]). Every Boolean NAND circuit C
that acts on � inputs and has depth d can be computed by a width-5 permutation
branching program BP of length 4d. Given the description of the circuit BP, the
description of the branching program BP can be computed in poly(�, 4d) time. In
particular, if C is a polynomial-sized circuit with logarithmic depth (i.e., if the
circuit is in NC1), BP can be computed in polynomial time.

5.2 SKFE for DFA Implies iO

We first state the following theorem, which will be useful for our purpose. We
refer to the full version for the proof.

Theorem 11. Let d = d(λ) and � = �(λ) be integers. There exist deterministic
algorithms Encode and ToDFA with the following properties.

– Encode(x) → y ∈ {0, 1}n, where x ∈ {0, 1}� and n is a parameter determined
by d and �.

– ToDFA(C) → M , where C : {0, 1}� → {0, 1} is a circuit with depth bounded
by d and M is a DFA over alphabet Σ = {0, 1}.

We have that M(y) = 1 if and only if C(x) = 1. We also have that the running
time of Encode and ToDFA is poly(�, 2d). In particular, if C is a polynomial-
sized circuit with logarithmic depth (i.e., if the circuit is in NC1), Encode and
ToDFA(C) run in polynomial time.
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We then discuss that if there exists subexponentially secure SKFE for DFA that
is very selectively secure against unbounded collusion, it can be converted into
a secure indistinguishability obfuscation.

To do so, we first convert an SKFE for DFA into an SKFE for NC1 circuits.
The latter SKFE has the same setup algorithm as the former, but when
generating a secret key for a circuit C, it first converts C into a DFA M using
the algorithm in Theorem 11 and then invoke the key generation algorithm of
the SKFE for DFA on input M . Similarly, when encrypting a message x, it
computes y as in Theorem 11 and then invoke the encryption algorithm of the
SKFE for DFA on input y. The decryption algorithm is defined naturally. It is
easy to see that this conversion preserves the correctness and the security since
we have M(y) = C(x) by Theorem 11.

Then, we apply the conversion given by [12,21] to the SKFE for NC1 to
obtain SKFE for all circuits. We then further apply the conversion by Kitagawa
et al. [46,47] to the SKFE for all circuits to obtain iO. Note that while the
former conversion incurs only polynomial loss, the latter conversion incurs sub-
exponential security loss.

In summary, we obtain the following theorem.

Theorem 12. If there exists a subexponentially secure SKFE scheme for DFA
that is very selectively secure against unbounded collusion, then there exists an
indistinguishability obfuscation.

6 Conclusions

Several interesting questions arise from our work. The first is whether we may
generalize our techniques to support more advanced models of computation. For
the moment, we are restricted to NFAs, since we must bound the depth of the
equivalent circuits by a fixed polynomial and this step fails for more general
models such as Turing machines. Second, it would be interesting to design a
public key variant of our scheme. Improving the security proof to satisfy adaptive
rather than selective security is also a useful direction. Finally, it would be nice
to find other applications for our techniques.
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Abstract. There is surprisingly little consensus on the precise role of
the generator g in group-based assumptions such as DDH. Some works
consider g to be a fixed part of the group description, while others take it
to be random. We study this subtle distinction from a number of angles.

– In the generic group model, we demonstrate the plausibility of groups
in which random-generator DDH (resp. CDH) is hard but fixed-
generator DDH (resp. CDH) is easy. We observe that such groups
have interesting cryptographic applications.

– We find that seemingly tight generic lower bounds for the Discrete-
Log and CDH problems with preprocessing (Corrigan-Gibbs and
Kogan, Eurocrypt 2018) are not tight in the sub-constant success
probability regime if the generator is random. We resolve this by
proving tight lower bounds for the random generator variants; our
results formalize the intuition that using a random generator will
reduce the effectiveness of preprocessing attacks.

– We observe that DDH-like assumptions in which exponents are
drawn from low-entropy distributions are particularly sensitive to the
fixed- vs. random-generator distinction. Most notably, we discover
that the Strong Power DDH assumption of Komargodski and Yogev
(Komargodski and Yogev, Eurocrypt 2018) used for non-malleable
point obfuscation is in fact false precisely because it requires a fixed
generator. In response, we formulate an alternative fixed-generator
assumption that suffices for a new construction of non-malleable
point obfuscation, and we prove the assumption holds in the generic
group model. We also give a generic group proof for the security of
fixed-generator, low-entropy DDH (Canetti, Crypto 1997).

1 Introduction

Starting with the seminal work of Diffie and Hellman [21], the Computational
Diffie-Hellman (CDH) assumption in certain cyclic groups has become a core

The full version of this paper is available at iacr.org/2019/202 [3].
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pillar of modern cryptography. For a finite cyclic group G and generator g, the
assumption holds if it is hard to compute gab given (g, ga, gb) for random a, b.
The corresponding Decisional Diffie-Hellman (DDH) assumption, introduced by
Brands [12], is that given (g, ga, gb) for random a, b, it is hard to distinguish gab

from gc for random c.
A somewhat subtle issue is the precise role of g in these assumptions: is it

fixed in the group description, or is it randomly chosen along with a and b? For
CDH in groups where the totient of the order is known, a folklore equivalence
between the fixed and random generator variants exists (e.g. see Chap. 21 of
Galbraith’s textbook [25]). For DDH, Shoup [40] observed that the fixed genera-
tor assumption appears to be a stronger assumption than the random generator
version, though a formal separation between the two is unknown. Despite this
apparent distinction, the cryptographic literature commonly refers to both the
fixed and random generator variants simply as “DDH”.1

A likely explanation for this practice is that in most applications of crypto-
graphic groups, it is straightforward to switch between fixed and random gener-
ators. For example, in ElGamal encryption [22], users who want the additional
security of random-generator DDH can easily specify a random generator in their
public key.

Sadeghi and Steiner [37] observed that this justification does not apply in
settings where the choice of group generator is left to a potentially untrusted
party.2 They give the example of a bank that offers its customers an anonymous
payment system, claiming provable security under group-based assumptions. If
the bank is free to choose parameters such as the group generator, then for secu-
rity it is crucial that any underlying assumptions hold in their (stronger) fixed
generator form. While Sadeghi and Steiner did not point to specific assumptions
that can be broken simply by fixing the group generator, they stressed that con-
tinuing to conflate these distinct assumptions could lead to serious ambiguities
and mistakes in the future.

In the nearly two decades since Sadeghi and Steiner [37] first called attention
to the above issue, dozens of new and increasingly sophisticated group-based
assumptions have been introduced. Accordingly, researchers have devoted sig-
nificant effort to evaluating the plausibility of these assumptions (e.g. [2,20]),
frequently in idealized models such as the generic group model [34,36,39]. We
observe that these generic group justifications generally ignore the question of
whether the generator is fixed or random, but that in most cases this distinction
does not seem to affect real world security of these assumptions.

In this work, however, we will see that this is not always the case.

1 For example, the Katz-Lindell textbook [29] defines DDH with a fixed generator,
while Cramer-Shoup [19] defines DDH with a random generator.

2 Sadeghi and Steiner [37] actually consider the more general possibility of the
untrusted party choosing the group itself maliciously. This question is beyond the
scope of our work, but in many cases it is an equally important consideration.
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1.1 Our Results

We first examine how the fixed vs. random generator distinction affects the
classical Discrete-Log, CDH, and DDH problems in a variety of different settings,
obtaining the following results:

– Generic Separations for CDH and DDH. We prove that fixed- and
random-generator DDH are inequivalent assumptions in the generic group
model [34,36,39]. We show that for groups of unknown order, fixed- and
random-generator CDH are also inequivalent assumptions in the generic
group model. In addition, we give evidence (relying on a new assumption
about arithmetic circuits) that they are inequivalent even if the group order
is known but its factorization is not.3

– Split-CDH and Split-DDH Groups. We define Split-CDH (resp. Split-
DDH) groups for which the fixed-generator variant of CDH (resp. DDH) is
easy but the random-generator variant is hard, and we observe that such
groups imply interesting cryptographic applications. A split-CDH group can
be turned into a self-bilinear map [30,43] where the random-generator variant
of the Multilinear CDH assumption holds. This implies powerful primitives
such as multiparty non-interactive key agreement (with trusted setup).4 A
split-DDH group can be used to instantiate a variant of the Boneh-Franklin
identity-based encryption [8] scheme. We stress here that giving candidate
constructions of these groups is outside of the scope of this work. On the
negative side, we prove that a natural class of non-interactive key exchange
protocols (without trusted setup) are insecure in certain split-CDH groups.

– Asymptotic Bounds for Discrete-Log and CDH with Preprocessing.
We revisit the recent work of Corrigan-Gibbs and Kogan [18], which seemingly
resolves the generic hardness of Discrete-Log and CDH with preprocessing.
We observe that while their lower bounds are tight for the fixed-generator
variants, they leave a gap in the random-generator setting for algorithms with
sub-constant success probability. We close these gaps by proving tight lower
bounds for the random-generator variants. Our bounds suggest that using
a random generator can reduce the impact of preprocessing attacks, and in
turn group parameters can be set more aggressively than previously thought
in situations where random-generator Discrete-Log or CDH are sufficient.

Next, we turn our attention to the class of Diffie-Hellman-like assumptions
involving non-uniform random exponents. An example of such an assumption is
Canetti’s “DDH-II” assumption [13], which states that DDH remains hard even if
the exponent a in (g, ga, gb, gab) is drawn from a well-spread distribution (so that
a has super-logarithmic min-entropy). While these assumptions are somewhat
undesirable due to their non-standard nature [27], Wee [42] showed that these
assumptions (ones that require hardness given only super-logarithmic entropy)
are necessary for applications such as point-function obfuscation.
3 This inequivalence was also suggested by Saxena and Soh [38].
4 A similar observation was also made in [38].
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Before we rely on such assumptions, it is important to rule out idealized
adversaries that attack the underlying structure of the assumption. The most
common technique for achieving this is to prove the assumption holds in the
generic group model [34,36,39]. Such proofs certainly do not imply the validity
of the assumption; instead, these proofs are generally viewed as a minimal level
of guarantee we need to gain confidence in an assumption [2].

Our central focus is on the recently proposed “Strong Power DDH” assump-
tion of Komargodski and Yogev [31]. The assumption states that for x sampled
from any arbitrary well-spread distribution D, that gx, gx2

, . . . , gxk

is indistin-
guishable from k uniformly random group elements. Our results are the following:

– Strong Power DDH is False for a Fixed Generator. We demonstrate
the “Strong Power DDH” assumption underlying Komargodski and Yogev’s
non-malleable point obfuscator [31] as well as Fenteany and Fuller’s non-
malleable digital locker [23] is false in the fixed-generator setting.5 This results
from a subtle issue in the order of quantifiers; if g is fixed, an arbitrary well-
spread distribution could depend on g. For example, x can come from the
distribution that conditions on the bit-representation of gx beginning with
0. Unfortunately, these constructions can only be instantiated with a fixed
generator, so the original security proofs in [31] and [23] must rely on a false
assumption.6,7

In response to private communication from the authors of this work, Komar-
godski and Yogev have offered a simple fix [32] for their original construction
through a new “Entropic Power DDH” assumption.8 This new assumption
suffices for non-malleable point obfuscation and is formulated precisely to
address the vulnerability described above.

– Fixing Non-Malleable Point Obfuscation and Justifying Assump-
tions in the Generic Group Model. In this work, we offer an alternative
resolution. We construct a new non-malleable point obfuscator that is quali-
tatively different from the one in [31]. Security of our construction relies on a
newly formulated fixed-generator entropic assumption that we prove holds in
the generic group model. Note that neither the Strong Power DDH Assump-
tion [31] nor the revised Entropic Power DDH Assumption [32] come with
generic group proofs of security.
Along the way, we develop general techniques (based heavily on [16]) for
proving generic security of non-standard, entropic assumptions. As a final

5 The authors privately communicated these issues to the authors of [23,31].
6 Relying on a random generator would require a common random string, which is

not the model considered in [31] or in the version of [23] dated Jan 30, 2019 at
eprint.iacr.org/2018/957/20190130:190441.

7 This issue appears in the Eurocrypt 2018 version of [31], in an older ePrint ver-
sion of [32] dated May 1, 2018 at eprint.iacr.org/2018/149/20180211:142746, and in
the ePrint version of [23] dated Jan 30, 2019 at eprint.iacr.org/2018/957/20190130:
190441.

8 This refers to the newer ePrint version of [32] dated Feb 21, 2019 available at
https://eprint.iacr.org/2018/149/20190221:133556.

https://eprint.iacr.org/2018/957/20190130:190441
https://eprint.iacr.org/2018/149/20180211:142746
https://eprint.iacr.org/2018/957/20190130:190441
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contribution, we demonstrate the applicability of these techniques by showing
that the fixed- and random-generator versions of Canetti’s DDH-II assump-
tion [13] hold in the generic group model.9 This assumption has been used
in both its fixed-generator form (e.g. [14,20,28]) and random-generator form
(e.g. [6,13]).

1.2 Technical Overview

Part 1: Generic Separations and Split Groups

Formalizing the Distinction. We will assume some process for generating a
group description G of order N . This group description is assumed to include
a generator g. The fixed-generator DDH assumption, or f-DDH, states that the
tuples (gx, gy, gxy) and (gx, gy, gz) are computationally indistinguishable, given
the description of G. Here, x, y, z are chosen randomly in ZN . On the other
hand, the random-generator DDH assumption, or r-DDH, states that the tuples
(h, hx, hy, hxy) and (h, hx, hy, hz) are computationally indistinguishable. Here,
x, y, z are chosen randomly in ZN , and h is a random generator of G (chosen, say,
by setting h = gr for a random r in Z

∗
N ). We can also define fixed- and random-

generator variants of Computational Diffie-Hellman (CDH) and Discrete-Log
(DLog). For example, f-CDH states that given (gx, gy) for random x, y, it is
computationally infeasible to find gxy.

We consider the following three settings of groups: known prime group order,
known composite group order of unknown factorization, and unknown group
order. For each of the three assumptions and three settings (for 9 instances
in total) we explore the relationship between the fixed- and random-generator
variants. Trivially, the f- variants of the assumptions are at least as strong as
the r- variants. In the other direction, some instances have known or folklore
reductions showing equivalence [25]. For each of the cases that do not have a
proof of equivalence, we provide a separation. This is formalized by augmenting
the generic group model [39] with an oracle for the f- variant, and showing
(potentially under reasonable computational assumptions) that the r- variant
still holds. Table 1 summarizes our findings.

Applications of Split Groups. Looking at Table 1, we see that in the case of DDH,
there is the potential for a group where f-DDH is easy but r-DDH is hard. We
will call such groups split-DDH groups. Similarly, if the group order is unknown,
potentially f-CDH is easy but r-CDH is hard; we call such groups split-CDH
groups. In this section, we will see that such split Diffie-Hellman groups have
useful cryptographic applications.

9 Previously, such proofs had been obtained by Bitanksy and Canetti [6] and Damg̊ard,
Hazay, and Zottarel [20], who considered the random- and fixed-generator versions,
respectively. We observe that both of these proofs treat the well-spread distribution
as independent of the generic group labeling. Our proof handles distributions with
arbitrary dependence on the labels; for more discussion refer to Part 4 of Sect. 1.2.
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Table 1. Generic equivalences and separations. FL denotes a folklore result. � means
that the fixed and random generator versions are equivalent. × means that the random
generator version is harder than the fixed generator version (in the generic model). ×?
means the result holds under a plausible conjecture. These results are all given in the
full version [3].

DLog CDH DDH

Known Order �
FL

�
FL

×

Unknown Factorization �
FL

×? ×

Unknown order �
FL

×?
[44]

×

First, we observe that a split-CDH group is very close to a self-bilinear
map [43]. A self-bilinear map is a group G together with a pairing e : G2 → G
such that e(gx, gy) = e(g, g)xy. Let g1 = g and gn = e(g, gn−1). A typical compu-
tational assumption on self-bilinear maps would be the multilinear CDH assump-
tion [9]: for any n > 1, given gx0 , . . . , gxn , it is hard to compute g

∏n
i=0 xi

n . Notice
that by applying the mapping e(·, ·), it is only possible to compute g

∏n
i=0 xi

n+1 .
An f-CDH oracle gives such an oracle where e(g, g) = g. Therefore, a split-

CDH group gives all the functionality of a self-bilinear map. But notice that since
e(g, g) = g, gn = g for any n. Therefore, the multilinear CDH assumption is false.
However, we observe that if we choose a random element h, then e(h, h) = hr

where h = gr. As such, the f-CDH oracle would also give a self-bilinear map with
respect to the random generator h. We then show that multilinear CDH is actu-
ally hard relative to h, assuming r-CDH is hard. Thus, we obtain a self-bilinear
map from any split-CDH group. As a consequence, following [43] we would imme-
diately obtain multiparty non-interactive key agreement, broadcast encryption
satisfying a distributed setup notion [10], and attribute-based encryption for
circuits.

In the full version [3] we show that Split-DDH groups allow for a simple
identity-based encryption (IBE) scheme based on the Boneh-Franklin [8] con-
struction.

Part 2: Trusted Setup Assumptions. The previous sections demonstrated
that the f- and r-DDH assumptions are distinct assumptions that may not both
be true. But then which DDH assumption should be used? In practice, g is
typically part of a standards library chosen by a trusted third party (e.g. NIST).
As such, users have essentially three choices:

1. Believe that the trusted third party chose g at random, and use the r-DDH
assumption.
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2. Do not trust the third party, but instead assume that there are no bad g. In
other words, rely on the f-DDH assumption for g.

3. Do not trust the third party, but instead have one of the users generate a
random g and distribute it to everyone else. Then rely on r-DDH.

Option 1 means that users need to trust that no one could have subverted g
and chosen a bad generator for which DDH is actually easy; history has shown
such trust could very well be misplaced. Only Options 2 and 3 remove the need
to trust a third party.

Remark 1. Note that to remove trusted setup assumptions entirely, we would
need to ensure that G itself is guaranteed to satisfy f-DDH. One option is to
assume that both G and g were generated by a deterministic process, so that all
parties can calculate G, g for themselves without any setup. For groups based
on finite fields, this requires deterministically generating large primes; while no
polynomial-time provable algorithms are known, there are very simple heuris-
tic algorithms. For elliptic curve-based groups, other options are available (e.g.
using a field with small characteristic). For one approach to deterministic curve
generation, see [11].

In most cases, it is straightforward to switch between Options 2 and 3. A
scheme designed for f-DDH can often be converted into a scheme that relies
only on r-DDH by having one of the parties choose a random generator. On the
other hand, a scheme designed for r-DDH can often be converted into an f-DDH
scheme by fixing a group element and not including it with the user’s messages,
saving slightly on transmission costs.

The above means slightly different parameter sizes for the two assumptions.
For example, for public key schemes, the extra group element would naturally
go in the public key. The result is that schemes secure under r-DDH naturally
require one additional group element in the public key relative to the f-DDH
analog. As authors often compare parameter sizes in terms of group elements
(e.g. [24]), it is important that they clearly identify which assumption is used.

In some cases, however, switching between f-DDH and r-DDH will have a
more profound impact. For example, in a protocol between mutually distrusting
parties, which party will be entrusted to come up with the generator? While we
are not aware of any instances of protocols in the literature that cannot be made
to work with a random generator, it is straightforward to devise protocols where
no single party can be trusted to choose the generator. As such, care must be
taken when using the r-DDH assumption in these settings.

Diffie-Hellman Key Exchange. For the remainder of this section, we will focus on
a concrete setting where it is not possible to trivially switch between f-DDH and
r-DDH: Diffie-Hellman key exchange. In the protocol, Alice chooses a random
a ← ZN and computes A = ga, and Bob chooses a random b ← ZN and computes
B = gb. Then the two parties exchange A,B. In most treatments, Diffie-Hellman
is a non-interactive key exchange (NIKE), which means that A and B are sent
simultaneously. Alice then computes the secret key K = gab = Ba and Bob
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computes K = gab = Ab. By the DDH assumption, an eavesdropper who learns
A,B can learn nothing about K.

The key issue here is that Alice and Bob need to know g in order to generate
their first message. So if we want one of them, say Alice, to come up with the gen-
erator, the result is an interactive protocol with Alice sending the first message,
and only then can Bob send his. Therefore, in addition to requiring slightly more
communication, Option 3 actually changes the nature of the protocol. What we
see is that Diffie-Hellman can only remain a setupless NIKE under the f-DDH
assumption.

Now, it is possible to alter Diffie-Hellman to work with CDH by extracting
hardcore bits from the unpredictable key. By the equivalence of f-CDH and r-
CDH in known prime-order groups, we can obtain a setupless NIKE protocol
from r-CDH (and hence also r-DDH). In groups of unknown order, however,
this does not apply. As our main technical result from this section, we give
evidence that in groups where the totient of the order is unknown, r-CDH alone
is insufficient for constructing setupless NIKE. This is formalized by assuming
that f-CDH is easy and demonstrating an attack on a wide class of key agreement
protocols that generalize the classical Diffie-Hellman protocol.

Part 3: Random-Generator Discrete-Log and CDH with Preprocess-
ing. A recent line of works [5,16,18,33,35] have explored non-uniform attacks
on various problems in cryptographic groups. Here, a computationally expensive
offline pre-processing stage generates an advice string, which in a later online
stage can be used to speed up computation in the group. We are interested in
the relationship between the length S of the advice string, the running time T
of the online stage, the group order N , and the success probability ε.

Very recently, Corrigan-Gibbs and Kogan [18] seemingly resolve the non-
uniform hardness of the discrete logarithm problem. Namely, they show in the
generic group model that ε = ˜O(ST 2/N), where the ˜O hides logarithmic factors.
This matches known upper bounds (attacks) up to logarithmic factors.

However, all the works in this line (both lower bounds and attacks) only
consider the fixed generator version of discrete log. Corrigan-Gibbs and Kogan
briefly mention this, concluding that “using a fixed generator is essentially with-
out loss of generality” since a discrete log with respect to one generator can be
solved by solving two discrete logs with respect to a different generator.

When considering just polynomial reductions between problems, the above
is certainly true. However, when it comes to precisely quantifying hardness,
the problem no longer remains identical for different generators. In particular,
suppose we have an algorithm that solves discrete log with respect to generator
g with probability ε and we want to solve a discrete log instance with respect to
generator h = gr. To do so, on input hx, we apply the algorithm twice to find
the discrete logs of h and hx with respect to g. This gives r and rx, allowing us
to solve for x. But since we needed to solve both instances correctly, our overall
success probability is only ε2. Of course if ε is a constant so is ε2, but in the
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low success probability regime, squaring the advantage significantly changes the
hardness of the problem.

We resolve the question of the hardness of random-generator discrete log in
the pre-processing setting, showing that ε = ˜Θ

(

T 2

N + S2T 4

N2

)

. The attack side
is simple: there are two natural ways to attack a random-generator discrete
log instance h, hx. One is to ignore the pre-processing, and apply the Baby-step
Giant-step algorithm, with success Ω(T 2

N ). The other is to use the pre-processing
to solve two discrete log instances relative to some fixed generator g, in the
manner described above. This gives success Ω((ST 2

N )2), as shown in [18]. By
choosing which algorithm to use based on the parameters S, T,N , one obtains
ε = Ω

(

T 2

N + S2T 4

N2

)

.
On the other hand, to prove the lower bound we need to show, essentially,

that the two algorithms above are the only possible algorithms. This does not
follow from the analysis of [18]. Instead, we use the tools developed in subse-
quent works [16,17] (based on the earlier pre-sampling techniques developed by
Unruh [41] for the Random Oracle model) to switch to a “bit-fixing” model,
where we then show the optimality of the algorithms. In addition, we show that
the same relationship holds as well for r-CDH. Generically, auxiliary input r-
CDH is as hard as either using the auxiliary information to solve two discrete
logarithms, or ignoring the input and solving one discrete logarithm.

1.3 Part 4: Low-Entropy Fixed-Generator Assumptions

Background: Point Obfuscation from Low-Entropy Assumptions. Our discussion
thus far has focused on Discrete Log/Diffie-Hellman-type assumptions where
ga, gb are uniformly random group elements. However, the security of many
important cryptographic applications often relies on a stronger version of these
assumptions in which a and/or b might not be drawn uniformly at random.

Canetti’s construction of point function obfuscation is perhaps the most well-
known example. A point function fx(·) is a boolean function that accepts on x
and rejects on all other inputs. Roughly speaking, an obfuscated point function
O(fx(·)) implements the same input/output functionality as fx(·), but leaks
no information about x beyond what can be learned through black-box oracle
queries to fx(·). In other words, the obfuscated program acts as a virtual black box
for evaluating the function.10 Canetti’s point function obfuscator is simple: to
obfuscate fx(·), draw a random group element gb and output (gb, gxb). Evaluation
on input y is done by computing (gb)y and accepting if it matches gxb.

The security of this construction follows from an assumption Canetti refers
to as DHI-II (in subsequent works it has been renamed to “DDH-II”; we will
adopt this name), which states that (g, ga, gb, gab) ≈C (g, ga, gb, gc) where g
is a random generator, b, c are chosen uniformly at random, and a has super-
logarithmic min-entropy, i.e. it is sampled from a well-spread distribution D.

10 We defer a more detailed discussion on virtual-black-box obfuscation to [1] (see [42]
for specifics on point function obfuscation).
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We stress that DDH-II is technically an infinite family of assumptions, since it
requires indistinguishability if D is any well-spread distribution (even ones that
are not efficiently sampleable).

Under DDH-II, the obfuscated program (gb, gxb) hides all information about
the point x as long as x is drawn from a well-spread distribution, since gxb

is indistinguishable from gc. This immediately implies a notion of average-case
virtual-black-box (VBB) security. Canetti proves that if a point function obfusca-
tor is average-case VBB for any well-spread distribution, this implies full (worst-
case) VBB security. It was later shown by Wee ([42], Sect. 4.2) that Canetti’s
approach is essentially inherent: VBB-secure point function obfuscation requires
strong assumptions that are hard for any well-spread distribution.

Background: Non-malleable Point Obfuscation. Canetti’s original motivation for
studying point obfuscation was to realize useful properties of random oracles [4]
in the standard model. If H(·) is a random oracle, observe that H(x) is a secure
point obfuscation of fx(·), where evaluation is a single random oracle call fol-
lowed by a comparison. Komargodski and Yogev [31] observe that the random
oracle obfuscator H(x) satisfies a strong non-malleability property, in the sense
that given H(x) it is impossible to compute H(f(x)) for any (meaningfully)
related point f(x), without first recovering x. This property is missing from
Canetti’s point obfuscator [13], e.g. since given (gb, gxb), one can easily compute
(gb, g(x+1)b), which is an obfuscation of the related point f(x) = x + 1.

Komargodski and Yogev [31] propose the following modification to Canetti’s
point obfuscator. To obfuscate the point x, sample a random b and output
(gb, (gb)gx4+x3+x2+x

). Note that for this expression to make sense, gx4+x3+x2+x

must be mapped back into the exponent space under some fixed public mapping.
Evaluation on input y is done by computing gy4+y3+y2+y, mapping this element
back to the exponent space and raising gb to that power, and finally comparing
to (gb)gx4+x3+x2+x

.
Komargodski and Yogev [31] argue their obfuscation resists bounded-degree

polynomial mauling attacks, in which an adversary given an obfuscation of x
attempts to produce an obfuscation of P (x) for some bounded-degree polyno-
mial P (·). Roughly, the intuition is that the adversary cannot replace gb with
any other gb′

, since generating (gb′
)gP (x)

does not appear possible given only

(gb)gx4+x3+x2+x

. But if the adversary cannot change gb, the argument is that the
linear constraints imposed by the form of x4 + x3 + x2 + x make it impossible
to replace x with P (x).

Formally, security in [31] is proved under the newly introduced “Strong Power
DDH” assumption, which states it is hard to distinguish gx, gx2

, . . . , gx�

from �
random group elements, if x is drawn from any well-spread distribution.

Fixed-Generator Strong Power DDH is False. In stating the assumption, Komar-
godski and Yogev [31] do not specify how g is chosen or the relationship between
g and the distribution over x. We observe that if g is a fixed generator, then
their assumption is false. For a uniformly random group element, there must be
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some bit in its description with noticeable entropy. If it is bit i, we let D be the
distribution over all points x such that the ith bit of the description of gx is 0.
Then D has high min-entropy, and moreover gx for x ← D is distinguishable
from a random group element by inspecting the ith bit.

If the assumption is taken in its random-generator formulation, the security
proof in [31] breaks down, since an adversary can potentially replace g with
a different generator g′. A natural idea to fix the construction would be to
generate g using a public source of randomness.11 However, this would move the
construction into the CRS model, where strong non-malleability results were
previously known [15].

Fixing Non-malleable Point Obfuscation. We remedy this situation by giving
an alternative low-entropy fixed-generator assumption, and proving that this
assumption is sufficient to achieve their notion of non-malleable point obfusca-
tion. We formulate our assumption in a way that allows us to prove it holds in
the generic group model. Our assumption is the following:

Let p ∈ [2λ−1, 2λ] and let n be at most poly(λ). Fix a group G of order p
along with a generator g and any well-spread distribution D over Zp (which
can depend on G). Next sample k2, . . . , kn uniformly at random from Zp.
Then no efficient adversary can distinguish {gkix+xi}i∈{2,...,n} for x ← D
from n − 1 uniformly random group elements, even given k2, . . . , kn.12

The intuition for the design of this assumption is the following. We want
to modify the group elements gx, gx2

, . . . in Strong Power DDH to block dis-
tributions D which “condition” on the fixed g, as we have already seen how
such distributions falsify the assumption. However, we are restricted to modifi-
cations that preserve our ability to perform a security reduction for the proof of
non-malleability, as in [31].

Without delving into the non-malleability security proof itself, the key
requirement is that the reduction must be able to construct specific polyno-
mials (in x) in the exponent. We tweak the construction so that the reduction
can construct a polynomial of the form ax+x2+x3+x4+x5, where a is an arbi-
trary but known scalar. Then by using terms of the form gkix+xi

, we enable the
reduction to construct this polynomial by simply multiplying the i = 2, . . . , 5
terms; it will know a since the ki’s are given in the clear. Intuitively, the ki

scalars contribute enough randomness to prevent distributions D which make
the gkix+xi

terms distinguishable from random.
11 As noted in Sect. 1.1, Komargodski and Yogev have offered a fix through a new

Entropic Power DDH Assumption in a revised ePrint posting [32], which does not
come with a generic group proof. The goal of this section is to build non-malleable
point obfuscation from an assumption that holds against generic adversaries.

12 The assumption we actually use is slightly different: instead of stating indistinguisha-

bility from uniform, we require indistinguishability from {gkiy+yi}i∈{2,...,n} for the
same {ki}i but uniformly random y. We can prove both forms of this assumption
hold in the GGM, but this second form yields a simpler proof of VBB security. For
the purposes of this technical overview this distinction can be ignored.
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Our resulting construction of non-malleable point obfuscation is (essentially)
a, gax+x2+x3+x4+x5

. We note that our construction does not require the “double
exponentiation” of [31]. The full construction comes with two additional scalars
and group elements that ensure that x is the only accepting input.

Discussion: Low-Entropy Fixed Generator Assumptions in the Generic Group
Model. In order to gain confidence in our assumption, we prove it secure in the
generic group model. As discussed in Sect. 1.1, this is usually viewed as a mini-
mum requirement in order to gain confidence in a new group-based assumption.
Recall that in the generic group model, group elements gx are replaced with
random “labels” σ(x), where σ is a uniformly random injection from the space
of exponents to some space of labels. An oracle stores the entire description of σ,
and allows the generic adversary oracle access to honest group operations. For
example, an adversary with labels σ(x), σ(y) can request the label for σ(x + y).

We find that in the setting of fixed generator lower entropy assumptions, the
standard intuition for designing generic group model proofs falls short. Our goal
is to prove no generic adversary can distinguish between {ki, σ(kix+xi)}i∈{2,...,n}
and {ki, σ(ri)}i∈{2,...,n} for uniformly random ki, ri, and x ← D. Since the group
and generator are fixed in this assumption, we must consider distributions which
depend on the group description itself. So in the generic model, any distribution
D should be viewed as the output distribution of a potentially inefficient sam-
pling algorithm S that is free to scan the entire labeling function σ. The only
requirement we enforce is that given σ, the point x ← S(σ) has super-logarithmic
entropy.

To illustrate the difference in this setting, suppose for a moment that the
sampler S had to output x without seeing σ (as is the case when x is drawn
uniformly at random from Zp). The standard generic group argument for indis-
tinguishability would use the following structure:

Imagine treating x as a formal variable instead of as a randomly drawn
value. This replaces the group exponent space Zp with formal polynomials
Zp[x], so the oracle now returns labels by sampling a uniformly random
label from the image of σ each time it encounters a distinct formal poly-
nomial. Observe that there are no (non-trivial) linear combinations of the
{kix + xi}i polynomials (taken as formal polynomials in x) that evaluate
to identically zero polynomials over x. This implies that the adversary will
never encounter non-trivial collisions in the labels it sees, and we can use
the Schwartz-Zippel Lemma to argue that the adversary’s view is identical
in the world where x is random instead of a formal variable.

This type of argument breaks down if S can choose x after seeing the labeling
function σ. Now S can try to pick x so that σ(kix + xi) conveys non-trivial
distinguishing information to the adversary. In particular, it is no longer accurate
to argue that we can produce an identical view for the adversary by replacing x
with a formal variable.

We could intuitively hope that S is powerless to pick x that can bias the
distribution of σ(kix + xi) away from uniform, as it does not know the random
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ki. However, this intuition proves tricky to formalize, especially since S is given
unlimited computational power and access to the entire function σ.

Connection to Preprocessing Attacks. To solve this problem, we apply the “bit-
fixing” technique from Coretti, Dodis, and Guo [16]. They consider generic algo-
rithms which are given an additional advice string, computed beforehand using
a computationally unbounded algorithm with access to σ. Conditioned on the
advice string, it is no longer accurate to argue σ is a random labeling function.
However, they show (roughly) that if we obtain at most P bits of advice about
σ, this only leaks useful information about σ on O(P ) points. So for generic
security proofs, this allows us to switch to a setting in which σ is a random
labeling function on all but O(P ) inputs.

We apply these techniques to our setting by re-casting the sampler S out-
putting x as a computationally unbounded algorithm outputting x as “advice”.
However in our setting, the challenger is the one receiving the advice instead of
the adversary. It turns out that the [16] techniques still apply here, allowing us
to argue that σ can be re-sampled on all but polynomially many points. Once we
perform this re-sampling, we show that the adversary will not be able to apply
group operations to its set of initial group elements and produce a point that
was not re-sampled, except with negligible probability. Once this is established,
standard generic group techniques suffice to complete the proof.

Generic Hardness of DDH-II. As a final contribution, we also prove the generic
hardness of Canetti’s DDH-II assumption. We remark that previous proofs of
DDH-II [6,20] operate in a highly idealized model that assumes the sampler is
independent of the labeling function σ. Preventing the sampler from seeing the
labels implicitly relies on the group itself being drawn at random, which in par-
ticular leads to counterexamples when dealing with fixed generator assumptions.
For example, the Strong Power DDH assumption with fixed generator can be
proven in this model even though it is false in the real world.

In the case of DDH-II, one of the elements the adversary receives is σ(a) for
low entropy a. We must show at a minimum that this does not allow the adver-
sary to recover a (i.e. compute the discrete log), as distinguishing would then be
trivial. Such a claim might not be immediately obvious, especially considering
that we can distinguish σ(a) from σ(r) for uniform r for certain distributions on
a. We observe that any adversary which succeeds in solving discrete log of σ(a)
with noticeable advantage for a well-spread distribution is also an adversary that
solves discrete log (with much smaller advantage) for the uniform distribution.
However, the resulting advantage exceeds the known generic bounds for discrete
log algorithms [39]. The remainder of our proof makes use of bit-fixing techniques
to reduce the problem of distinguishing the DDH-II instance to the problem of
recovering a given just σ(a).
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2 Preliminaries

For n ∈ N, let [n] denote the set {1, . . . , n}. We specify formal variables by bold
letters x. For a function f , let im(f) denote the image of f .

Throughout, we let λ ∈ N be the security parameter. We use the usual
Landau notations. A function f(λ) is said to be negligible if it is λ−ω(1) and we
denote it by f(λ) := negl(λ). A function f(λ) is said to have polynomial growth
rate if it is λO(1) and we denote it by f(λ) := poly(λ). A probability p(λ) is said
to be overwhelming if it is 1−λ−ω(1). We refer to A as PPT if it is a probabilistic
polynomial time algorithm. If A has access to an oracle O, we write AO.

The statistical distance between two distributions D1 and D2 over a count-
able support S is defined to be Δ(D1,D2) := 1

2

∑

x∈S |D1(x)−D2(x)|. Let γ > 0.
We say that two distributions D1 and D2 are γ-close if Δ(D1,D2) ≤ γ. We let
x ← D denote drawing x from the distribution D. When X is a set, then x ← X
denotes drawing x uniformly at random from the set X. The following definition
regarding infinite families of distributions will be used throughout.

Definition 1 (Well-Spread Distribution Ensemble). An ensemble of dis-
tributions {Dλ}λ over domains {Xλ}λ is well-spread if for all large enough λ ∈ N,

H∞(Dλ) = − min
x∈Xλ

log2 Pr[x ← Dλ] = ω(log(λ)).

2.1 Generic Group Model

Definition 2 (Generic Group Model (GGM) [36,39]). An application in
the generic group model is defined as an interaction between a T -attacker A and
a challenger C. For a cyclic group of order N with fixed generator g, a random
injective function σ : [N ] → [M ] is sampled, mapping group exponents in ZN to
a set of labels L. Label σ(x) for x ∈ ZN corresponds to the group element gx.

C initializes A with some set of labels {σ(xi)}i. It then implements the group
operation oracle OG(·, ·), which on inputs σ1, σ2 ∈ [M ] does the following:

– If either of σ1 or σ2 is not in L, return ⊥.
– Otherwise, set x = σ−1(σ1) and y = σ−1(σ2), compute x + y ∈ ZN , and

return σ(x + y).

A is allowed at most T queries to the oracle, after which C outputs a bit indi-
cating whether A was successful. We refer to the probability that this bit is 1 as
SuccC(A).

Remark 2. It will often be convenient to represent each query to OG as a linear
polynomial over the initial set of elements {xi}i given to A.

For an indistinguishability application, we define the advantage of attacker A as
AdvC(A) = 2|SuccC(A)−1/2|. For an unpredictability application, the advantage
is defined as AdvC(A) = SuccC(A). An application with associated challenger C
is (T, ε)-secure in the GGM is for every T -attacker A, AdvC(A) ≤ ε.
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Definition 3 (Auxiliary-Input Generic Group Model (AI-GGM)). We
now consider (S, T )-attackers A = (A1,A2). First σ : [N ] → [M ] is sampled.
A1 receives σ as input and outputs an S-bit string aux. Then the challenger
C operates as before, modeling interaction between A2 and OG(·, ·). Now A2

receives aux as input and is allowed T queries to the oracle. Success, advantage,
and security are defined analogously.

Definition 4 (Bit-Fixing Generic Group Model (BF-GGM)). We now
consider (S, T, P )-attackers A = (A1,A2). First σ : [N ] → [M ] is sampled. A1

receives σ as input and outputs an S-bit string aux along with a set P ⊆ ZN of
size P . Then σ is uniformly re-sampled on all but the points P (conditioned on
maintaining the same image), producing the injection σ′. We let im(P) refer to
the images under σ and σ′ of the points in P. Then the challenger C operates as
before, modeling interaction between A2 and OG(·, ·), where OG(·, ·) uses σ′ to
answer queries. A2 receives aux as input and is allowed T queries to the oracle.
Success, advantage, and security are defined analogously.

Theorem 1 ([16]). Let N,M,P ∈ N, N ≥ 16, and γ > 0. If an unpredictabil-
ity application with challenger C that initializes A with T ′ group elements is
((S, T, P ), ε′)-secure in the BF-GGM for

P ≥ 18(S + log(γ−1))(T + T ′),

then it is ((S, T, P ), ε)-secure in the AI-GGM for ε ≤ 2ε′ + γ.

3 Lower Bounds for Random Generator Discrete Log
and CDH

We proceed to give tight lower bounds (up to logarithmic factors) for r-DLog
and r-CDH in the AI-GGM, making use of the following special case of a lemma
due to Yun [45].

Lemma 1 (Search-by-Hyperplane-Queries [45] (SHQ)). Consider draw-
ing z1, z2 uniformly at random from ZN , and allowing an adversary A hyper-
plane queries of the form (a1, a2, b) where 1 is returned if a1z1 + a2z2 = b and 0
otherwise. Then the probability that A outputs (z1, z2) after q hyperplane queries
is at most q2/N2.

Theorem 2. The r-Dlog problem is ((S, T ), ε)-secure in the AI-GGM for any
prime N ≥ 16 and

ε = ˜O

(

T 2

N
+

(

ST 2

N

)2
)

.

Proof. In the r-Dlog game, the challenger C draws x ← Z
∗
N , y ← ZN and initial-

izes A with (σ(1), σ(x), σ(xy)). A is successful if it outputs y after at most T
generic group queries. We show that r-Dlog is
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(

(S, T ), O
(

T 2

N + T 2P 2+T 3P
N2

))

-secure in the BF-GGM. Then we can apply Theo-
rem 1 with γ = 1/N to get the result, noting that T ′ = 3 and log(1/γ) = log(N),
so P = ˜O(ST ).

A := A2 takes as input the advice string aux generated by A1, makes T

adaptive queries {c
(t)
1 σ(x)+c

(t)
2 σ(xy)+c

(t)
3 σ(1)}t∈[T ] to the generic group oracle

and receives {σ(c(t)1 x + c
(t)
2 xy + c

(t)
3 )}t∈[T ] in return. Let E be the event that

there exists an a ∈ P and t ∈ [T ] such that c
(t)
1 x + c

(t)
2 xy + c

(t)
3 = a and c

(t)
3 
= a.

Then

Pr
σ,x,y

[y ← AOG(aux)] ≤ Pr
σ,x,y

[y ← AOG(aux) | E] + Pr
σ,x,y

[y ← AOG(aux) | ¬E].

We begin by analyzing the first probability in the sum. Condition on a par-
ticular image L of σ and a particular set of fixed points P. The following holds
for any such choice. We set up a reduction B which plays the SHQ game defined
above and perfectly simulates the generic group game for A. B has access to
L,P, im(P), and hyperplane query access to uniform values z1, z2 in ZN which
we implicitly set to be x, xy. We assume that z1 
= 0, which happens except with
probability 1/N . B operates as follows.

– Maintain a table mapping linear polynomials in ZN [z1, z2] to L. For each
a ∈ P, record the pair (a, σ(a)).

– Query the SHQ oracle on hyperplane (1, 0, a) for each a ∈ P. If any query
returns 1, record the pair (z1, σ(a)), otherwise choose a uniform value r from
all unused values in L \ im(P) and record (z1, r). Do the same for z2. Next,
store 1 along with its image. If 1 ∈ P this is already done. If not, query
(1, 0, 1) to determine if z1 = 1 and if so store 1 along with the image of z1.
Do the same for z2. Otherwise, draw a uniform value r from all unused values
in L \ im(P) and record (1, r). Initialize A with the images of 1, z1, and z2.

– When A submits a query c1z1 + c2z2 + c3, subtract each previously stored
polynomial Q(z1, z2), resulting in some polynomial k1z1 + k2z2 + k3. Query
the SHQ oracle on (k1, k2,−k3). If 1 is returned, let s be the element stored
along with Q(z1, z2), record (c1z1+c2z2+c3, s), and return s to A. Otherwise,
choose a uniform value r from all unused values in L \ im(P), record (c1z1 +
c2z2 + c3, r) and return r.

– If E occurs, B will see a 1 returned by the SHQ oracle on a hyperplane
query (k1, k2, k3) for k3 
= 0, meaning at least one of k1, k2 
= 0. Record this
tuple. At the end of the interaction, A will return a y ∈ ZN . Now B outputs
(k3(k1 + k2y)−1, y).

Setting z1 = x and z2 = xy, it is clear that B perfectly simulates the r-Dlog
game for A. If E occurs, we know that k3 = k1x + k2xy = x(k1 + k2y), and
k3 
= 0, so k1 + k2y 
= 0. Thus if A is successful and returns y, B successfully
computes x = k3(k1 + k2y)−1. Applying Lemma 1, and noting that B makes less
than 2(P + 1) + T (P + T ) = O(TP + T 2) queries, we get that



The Distinction Between Fixed and Random Generators 817

Pr
σ,x,y

[y ← AOG(aux) | E] = O

(

T 2P 2 + T 3P + T 4

N2

)

.

To analyze the second probability, we move to a hybrid game in the BF-GGM
where x and y are set to be formal variables x and y at the beginning of the
game. The challenger implements group operations over ZN [x,y], initializing its
table with the points in (a, σ(a)) for all a ∈ P. Every time A queries for a new
polynomial, C chooses a uniform element in L \ im(P) among those unused so
far. When A outputs a guess for y at the end of the game, the true value is
chosen uniformly at random, so A wins with probability 1/N . Given that E
does not occur, A’s probability of distinguishing these two games is bounded
by the probability that in the original game, two of its T queries are different
polynomials over x and y but evaluate to the same element, or there exists
some query c

(j)
1 x + c

(j)
2 xy + c

(j)
3 such that c

(j)
1 x + c

(j)
2 xy = 0 and at least one

of c
(j)
1 , c

(j)
2 
= 0. So there are O(T 2) possible equations that could be satisfied

and by Schwartz-Zippel, each occurs with probability O(1/N) over the random
choice of x and y. Thus by a union bound, A’s probability of distinguishing is
O(T 2/N).

Combining, we have that A’s probability of success is

O

(

T 2P 2 + T 3P + T 4

N2

)

+ O

(

T 2

N

)

+ O

(

1
N

)

= O

(

T 2

N
+

T 2P 2 + T 3P

N2

)

.

��

In the full version [3], we use similar techniques to show the same bound for
r-CDH, which again is tight.

Theorem 3. The r-CDH problem is ((S, T ), ε)-secure in the AI-GGM for any
prime N ≥ 16 and

ε = ˜O

(

T 2

N
+

(

ST 2

N

)2
)

.

4 Non-malleable Point Obfuscation

In this section, we construct a non-malleable point obfuscator secure against
polynomial mauling attacks, which were first considered by Komargodski and
Yogev [31]. We first briefly review relevant definitions.

4.1 Definitions

Denote by Ix the function that returns 1 on input x and 0 otherwise.

Definition 5. (Point Obfuscation). A point obfuscator for a domain {Xλ}λ of
inputs is a PPT Obf that takes as input a point x ∈ Xλ and outputs a circuit
such that the following hold.
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– Functionality Preservation: For all λ ∈ N, there exists a negligible func-
tion μ such that for all x ∈ Xλ,

Pr[Obf(x) ≡ Ix] = 1 − μ(λ).

– Virtual Black Box (VBB) Security: For all PPT A and any polynomial
function p, there exists a PPT S such that for all x ∈ Xλ and any predicate
P : Xλ → {0, 1}, and all large enough λ,

∣

∣Pr[A(Obf(x)) = P (x)] − Pr[SIx(1λ) = P (x))]
∣

∣ ≤ 1
p(λ)

.

We give another property of point obfuscators first considered in [13] and
re-defined in [7].

Definition 6 (Distributional Indistinguishability). Let {Xλ}λ be a fam-
ily of domains. Then a point obfuscator Obf for {Xλ}λ satisfies Distributional
Indistinguishability if for all PPT A and well-spread ensembles of distributions
{Dλ}λ over {Xλ}λ, there exists a negligble function μ(λ) such that

|Pr[A(Obf(x)) = 1] − Pr[A(Obf(u)) = 1]| = μ(λ),

where x ← Dλ and u is drawn from the uniform distribution over Xλ.

[7,13] show that Distributional Indistiguishability is equivalent to VBB secu-
rity for point obfuscators. Now we give the [31] definition of non-malleability.
This definition involves the notion of a Verifier algorithm, which simply checks
that the potentially mauled obfuscation is valid.

Definition 7. (Verifier) A PPT V for a point obfuscator Obf for an ensemble
of domains {Xλ}λ is called a Verifier if for all λ ∈ N and x ∈ Xλ, it holds that
Pr[V(Obf(x)) = 1] = 1, where the probability is taken over the randomness of V
and Obf.

Definition 8. (Non-malleable Point Function Obfuscation). Let Obf be a point
function obfuscator for an ensemble of domains {Xλ}λ with an associated verifier
V. Let {Fλ}λ = {f : Xλ → Xλ}λ be an ensemble of families of functions, and
let {Dλ}λ be an ensemble of distributions over Xλ. Then Obf is a non-malleable
point obfuscator for F and D if for any PPT A, there exists a negligible function
μ such that for any λ ∈ N,

Pr[V(C) = 1, f ∈ Fλ, C ≡ If(x) | x ← Dλ, (C, f) ← A(Obf(x))] ≤ μ(λ).

In the following, we rely on the existence of a pseudo-deterministic GroupGen
algorithm that may use randomness, but on input the security parameter 1λ

outputs a unique description of a group Gλ with a unique generator g and prime
order p(λ) ∈ [2λ−1, 2λ]. As discussed in the introduction, this would involve
psuedo-deterministic generation of large primes. This is not provably efficient,
but we can rely for example on Cramer’s conjecture to argue efficiency. See [26]
for further discussion on psuedo-deterministic algorithms, including group gen-
erator generation.
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4.2 Assumptions

Assumption 1. Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ.
Let {Dλ} be a family of well-spread distributions where the domain of Dλ is
Zp(λ). Then for any n = poly(λ), for any PPT A,
∣

∣

∣Pr[A({ki, g
kix+xi}i∈[2,...,n]) = 1] − Pr[A({ki, g

kir+ri}i∈[2,...,n]) = 1]
∣

∣

∣ = negl(λ),

where x ← Dλ, r ← Zp(λ), and ki ← Zp(λ).

Assumption 2. Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ.
Let {Dλ} be a family of well-spread distributions where the domain of Dλ is
Zp(λ). Then for any n = poly(λ), for any PPT A (which outputs an element of
Gλ),

Pr[gx = A({ki, g
kix+xi}i∈[2,...,n])] = negl(λ),

where x ← Dλ and ki ← Zp(λ).

We prove the following in the full version [3].

Lemma 2. Assumption 1 implies Assumption 2.

4.3 The Obfuscator

Our obfuscation consists of three scalars and three group elements. We remark
that the first group element is sufficient for our proof on non-malleability, but
that we include the next two to obtain functionality preservation.

– Obf(1λ, x): Compute GroupGen(1λ) = (Gλ, g, p(λ)). Draw a, b, c ← Zp(λ) and
output

a, b, c, gax+x2+x3+x4+x5
, gbx+x6

, gcx+x7
.

– Eval(1λ, (a, b, c, ha, hb, hc), x): Compute GroupGen(1λ) = (Gλ, g, p(λ)). Accept
if and only if

ha = gax+x2+x3+x4+x5
, hb = gbx+x6

, hc = gcx+x7
.

Theorem 4. The above point obfuscator satisfies functionality preservation.

Proof. Fix a point x ∈ Zp(λ). We show the probability that there exists a y 
= x

such that Eval(1λ,Obf(1λ, x), y) accepts is at most 4/p(λ)2. Union bounding over
all x completes the proof.

The randomness in Obf consists of the elements a, b, c. Fix just a for now and
let t = ax + x2 + x3 + x4 + x5. Then any y which causes Eval to accept satisfies
ay + y2 + y3 + y4 + y5 = t. This leaves four possible y 
= x. For each such y,
we write P (b) = (x6 − y6) + (x − y)b and Q(c) = (x7 − y7) + (x − y)c which
are linear polynomials over b and c respectively with non-zero linear coefficient.
Then y only causes Eval to accept if P (b) = 0 and P (c) = 0. But these occur
simultaneously with probability 1/p(λ)2 over the uniform randomness of b, c. So
by a union bound, there exists a y 
= x such that Eval(1λ,Obf(1λ, x), y) accepts
with probability at most 4/p(λ)2. ��
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Theorem 5. Under Assumption 1, the above point obfuscator satisfies Virtual
Black Box Security.

Proof. The obfuscator satisfies distributional indistinguishability, which fol-
lows directly from Assumption 1 with n = 7. A reduction simply receives
{ki, hi}i∈[2,...,7] and forms the obfuscation (

∑5
i=2 ki, k6, k7,

∏5
i=2 hi, h6, h7). As

mentioned earlier, this is equivalent to VBB security. ��

Theorem 6. Let {Dλ} be a well-spread distribution ensemble with domain
{Zp(λ)}λ. Let Fpoly = {fλ : Zp(λ) → Zp(λ)}λ be the ensemble of functions where
fλ is the set of non-constant, non-identity polynomials 13 in Zp(λ)[x] with poly(λ)
degree. Then under Assumption 1, the above obfuscator is non-malleable for Fpoly

and distribution ensemble {Dλ}.

Proof. First, we fix the verifier to check that the Eval circuit is using the g output
by GroupGen(1λ). Now we show that any mauling adversary A can be used to
break Assumption 2, which as seen above follows from Assumption 1.

We first handle the case where A outputs an f of degree at least 2. Let m ≥ 2
be the degree of A’s polynomial. We define the following reduction B.

– Receive {ki, hi}i∈[2,...,7m] := {ki, g
kix+xi}i∈[2,...,7m] from the Assumption 2

challenger, where x ← Dλ.
– Send (

∑5
i=2 ki, k6, k7,

∏5
i=2 hi, h6, h7) to A, which returns (f, a, b, c, ja, jb, jc)

where a, b, c ∈ Zp(λ) and ja, jb, jc are group elements.
– Compute cf(x) + f(x)7 = �0 + �1x + · · · + �7mx7m.
– Return (jc/(g�0

∏7m
i=2(h

�i
i )))1/(�1−∑7m

i=2 ki�i).

B perfectly simulates the obfuscation for x ← Dλ for A, which is guaranteed
to return a valid obfuscation of f(x) with 1/poly(λ) probability. In this case, fc =
g�0+�1x+···+�7mx7m

. Then B successfully computes gx unless �1 −
∑7m

i=2 ki�i = 0.
We know that �7m 
= 0 and that k7m is uniformly random and independent of
A’s view, so this occurs with probability at most 1/p(λ) = negl(λ). Thus, B
breaks Assumption 2 with 1/poly(λ) probability.

In the case that f is linear, we set up the same reduction B, except for the
last two steps.

– Compute af(x) + f(x)2 + f(x)3 + f(x)4 + f(x)5 = �0 + �1x + · · · + �5x
5.

– Return (ja/(g�0
∏5

i=2(h
�i
i )))1/(�1−∑5

i=2 ki�i).

Like before, it suffices to argue that �1 −
∑5

i=2 ki�i 
= 0 except with negligible
probability. In this case, the adversary receives z := k2 + k3 + k4 + k5. Thus
letting k5 = z − k2 − k3 − k4, there are 3 free variables k2, k3, k4 in A’s view. We
can then re-write �1 −

∑5
i=2 ki�i 
= 0 as

�1 − �5z + (�5 − �2)k2 + (�5 − �3)k3 + (�5 − �4)k4.
13 Note that constant and identity polynomials correspond to “trivial” mauling attacks

that cannot be prevented. A constant polynomial corresponds to picking an unrelated
y and obfuscating y, while the identity polynomial corresponds to doing nothing.
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So in order for this to evaluate to 0 with non-negligible probability, each of
the coefficients on k2, k3, k4 must be 0. Let f(x) = rx+s. Then writing out what
the �i are, we see that the following must hold.

r5 = 5r4s + r4 = 10r3s2 + 4r3s + r3 = 10r2s3 + 6r2s2 + 3r2s + r2

It is easily verified that the only solutions to the above system are when
r = 0 or (r = 1, s = 0). These correspond to when f is constant or the identity,
so we can conclude that if A succeeds in breaking non-malleability, B breaks
Assumption 2 with 1/poly(λ) probability. ��

5 Justifying Assumptions in the Generic Group Model

We will need some additional background from [16], plus a couple of new simple
lemmas. Note that while we make use of techniques from [16] that establish
theorems relating the AI-GGM and BF-GGM, we never technically operate in
the BF-GGM. We need a more fine-grained approach, starting in the plain GGM
and modifying the labeling function and challenger’s game incrementally.

5.1 Background

Definition 9 ([16]). An (N,M)-injection source Σ is a random variable that
takes on as value function tables corresponding to injections σ : [N ] → [M ]. An
(N,M)-injection source Σ is called (P,L, 1 − δ)-dense for L ⊆ [M ] if it is fixed
on at most P coordinates and if for every subset I of non-fixed coordinates,

H∞(ΣI) ≥ (1 − δ) log
(

(N − P )!
(N − P − |I|)!

)

,

where ΣI is the random variable Σ restricted to the coordinates in I. When
δ = 0, the source is called (P,L)-fixed.

Remark 3. We denote by AΣ an algorithm that has oracle access to an injection
σ drawn from the source Σ. This means that A can perform forward queries
where on input x the oracle returns σ(x) or backward queries where on input x
the oracle returns σ−1(x).

Lemma 3 ([16]). Let Σ be a uniform (N,M)-injection source and f : [M ][N ] →
{0, 1}S a potentially randomized function. Let Σf,x,L be the random variable cor-
responding to the distribution of Σ conditioned on f(Σ) = x and im(Σ) = L.
Then for any γ > 0, P ∈ N, there exists a family {Yx,L}x,L, indexed by val-
ues x ∈ {0, 1}S and size-N subsets L of [M ], of convex combinations Yx,L of
(P,L, 1 − S+log(1/γ)

P log(N/e) )-dense sources, such that Σf,x,L is γ-close to Yx,L. Fur-
thermore, replacing each Yx,L with its corresponding convex combination Zx,L of
(P,L)-fixed sources, we have that for any distinguisher D taking an S-bit input
and making at most T queries to its injection oracle,

|Pr[DΣ(f(Σ)) = 1] − Pr[DZf(Σ),im(Σ)(f(Σ)) = 1]| ≤ 2(S + log 1/γ) · T

P
+ γ.
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The above is actually slightly modified from the statement in [16], with the
only difference being that we allow f to be randomized. The only place in their
proof that makes use of f being deterministic is Claim 19, essentially that (where
everything is conditioned on some range L), Ex[H∞(Σ|f(Σ) = x)] ≥ log(N !)−S.
Their proof of this claim can easily be adapted to allow randomized f . Say
that f uses k uniformly random bits. Then define the deterministic function
f ′ : {0, 1}k×[N ][N ] → {0, 1}S that runs f using its first input as the randomness.
Let K be the random variable corresponding to drawing a uniformly random
string in {0, 1}k. Now by averaging, we have that for any x, H∞(Σ|X = x) ≥
H∞((K,Σ)|X = x) − k. Then, following the proof in [16],

Ex[H∞(Σ|f(Σ) = x)] ≥ Ex[H∞((K,Σ)|f ′(K,Σ) = x)] − k

= Ex[H((K,Σ)|f ′(K,Σ) = x)] − k ≥ log(N !) + k − S − k = log(N !) − S,

where H is Shannon entropy, and the equality is due to the fact that condi-
tioned on x, (K,Σ) is uniform over all values (r, σ) such that f ′(r, σ) = x.

Lemma 4 ([16]). For any (P,N, 1 − δ)-dense (N,N)-injection (bijection)
source Y and its corresponding (P,N)-fixed source Z, it holds that for any (adap-
tive) distinguisher D that makes at most T queries to its oracle,

|Pr[DY = 1] − Pr[DZ = 1]| ≤ Tδ log N.

Now we give two additional lemmas, useful for proving Theorem7.

Lemma 5. Let Σ be a uniform (N,N)-injection (bijection) source with
log(N) = Θ(λ) and f : [N ][N ] → {0, 1}S a potentially randomized func-
tion. Let Σ′ be the random variable on σ′ that results from drawing σ ← Σ,
x ← f(σ), and then σ′ ← Σf,x,[N ] defined in Lemma 3. Say that for all σ,
H∞(X|Σ = σ) = ω(log(λ)). Then

EΣ′ [max
x

{Pr[X = x|Σ′ = σ]}] = negl(λ).

Proof. With two applications of Bayes’ Theorem, we see that for any x ∈ {0, 1}S

Pr[X = x|Σ′ = σ] =
Pr[Σ′ = σ|X = x] Pr[X = x]

Pr[Σ′ = σ]
=

Pr[Σ = σ|X = x] Pr[X = x]

Pr[Σ′ = σ]

=

(
Pr[X=x|Σ=σ] Pr[Σ=σ]

Pr[X=x]

)
Pr[X = x]

Pr[Σ′ = σ]
= Pr[X = x|Σ = σ]

(
Pr[Σ = σ]

Pr[Σ′ = σ]

)
.

So plugging in,

EΣ′ [max
x

{Pr[X = x|Σ′ = σ]}] =
∑

σ

max
x

{Pr[X = x|Σ′ = σ]}Pr[Σ′ = σ]

=
∑

σ

max
x

{Pr[X = x|Σ = σ] Pr[Σ = σ]} ≤ max
x,σ

{Pr[X = x|Σ = σ]} = negl(λ).

��
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Lemma 6. Consider n events X1, . . . , Xn such that each event occurs with prob-
ability at least α, where α > 2/n. Then for a uniformly random i, j ← [n],
Pr[Xi ∧ Xj ] ≥ α2

4 .

The proof can be found in the full version [3].

5.2 Proofs

Theorem 7. Assumption 1 (Sect. 4) holds in the Generic Group Model.

Proof. We define the following hybrid games.

– Hybrid 0. The Assumption 1 distinguishing game for generic adversary A.
Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ. Let p := p(λ).
Sample a uniformly random injection σ : [p] → [p′] for an arbitrary p′ > p.
Let S : [p′][p] → Zp be a possibly inefficient randomized algorithm such that
H∞(S(σ)|σ) = ω(log(λ)). Sample x ← S(σ).
The challenger C receives as input (Gλ, g, p, σ, x), chooses b ← {0, 1}, r, ki ←
Zp for i ∈ [2, ..., n], and initializes the adversary A with {ki, σ(b(kix + xi) +
(1−b)(kir+ri))}i∈[2,...n]. The challenger C proceeds to implement the generic
group oracle for A, after which A outputs a guess b′ ∈ {0, 1}. A wins if b′ = b.

– Hybrid 1. In this hybrid, we switch to a “bit-fixing” labeling σ′.
Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 < p(λ) < 2λ. Let p := p(λ).
Sample a uniformly random injection σ : [p] → [p′] for an arbitrary p′ > p.
Let S : [p′][p] → Zp be a possibly inefficient randomized algorithm such that
H∞(S(σ)|σ) = ω(log(λ)). Sample x ← S(σ).
Let Zx,im(σ) be the family defined as in Lemma 3 (parameterized by some
P ∈ N and γ := 1/2λ). Sample σ′ ← Zx,im(σ)

The challenger C receives as input (Gλ, g, p, σ′, x), chooses b ← {0, 1}, r, ki ←
Zp for i ∈ [2, ..., n], and initializes the adversary A with {ki, σ

′(b(kix + xi) +
(1−b)(kir+ri))}i∈[2,...n]. The challenger C proceeds to implement the generic
group oracle for A, after which A outputs a guess b′ ∈ {0, 1}. A wins if b′ = b.

Now we assume the existence of an adversary A that makes T (λ) = poly(λ)
queries and attains non-negligible advantage ε(λ) in Hybrid 0. Let q(λ) =
poly(λ) be such that q(λ) > 1/ε(λ) for infinitely many λ. Let T := T (λ) and
q := q(λ). Set P = 30λT 4q = poly(λ).

C laim. A attains advantage at least 1/2q in Hybrid 1.

Consider the following distinguisher D(x), which interacts with an oracle
injection source mapping [p] → [p′], and receives as input x ← S(σ). D simulates
the interaction between C and A described in Hybrid 0 and outputs a bit
indicating whether A was successful or not. If the injection source that D is
interacting with is σ, then the simulation is exactly Hybrid 0. If it is Zx,im(σ),
then the simulation is exactly Hybrid 1.
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Applying Lemma 3 with the sampler x ← S(σ) as the function f , we have
that the success probability of A in Hybrid 1 must be at least

ε(λ) − 2T (log p + log(1/γ))
P

− γ ≥ 1
q

− 4λT

30λT 4q
− 1

2λ
≥ 1

2q
.

We show that A obtaining this advantage leads to a contradiction. Condition
on im(σ) = L for some L where A obtains at least advantage 1/2q. Here Σ is
defined as in Lemma 3, except [M ] is fixed to be L, resulting in a bijection source.
We drop subscripts from the associated distributions, so Yx := Yx,L, Zx := Zx,L,
and Σx := ΣS,x,L. The distribution Zx is a convex combination of bit-fixing
distributions B(j)

x with associated fixed points P(j)
x . Let this convex combination

be Jx. So to draw σ′ from Zx, we draw j ← Jx, then σ′ ← B(j)
x .

Now we analyze the adversary’s generic group oracle queries. Any query A
makes can be viewed as a linear polynomial over its challenge elements

�1 +
n

∑

i=2

�i(b(kix + xi) + (1 − b)(kir + ri)),

specified by coefficients [�1, ..., �n]. We split these queries into two parts based
on whether the linear polynomial is constant or non-constant over the challenge
elements (whether there is some i ∈ [2, ..., n] such that �i 
= 0). We will consider
each initial handle that A receives as a non-constant query where �i = 1 for
some i and �j = 0 for j 
= i. Assume without loss of generality that all of A’s
queries are distinct linear combinations.

Note that constant queries are identically distributed in the b = 0 and b = 1
cases. Let Tc denote the set of constants that are queried by A throughout its
interaction. Then observe that if, for both settings of b, all of A’s non-constant
queries result in distinct group elements that each lie outside of the set P(j)

x ∪Tc,
the oracle responses are identically distributed in both cases. Now, for any T -
query adversary that at some point queries two distinct non-constant linear
polynomials that evaluate to the same point, we can define a T 2-query adversary
that at some point queries a non-constant linear polynomial that evaluates to
zero. Redefine A to be this latter adversary. Thus if A distinguishes, it must at
some point form a non-constant query that evaluates to a value in P(j)

x ∪Tc∪{0}.
For a given query t, let T (t)

c denote the set of constants among the first t
queries made by A. There must exist some query t such that both of the following
hold with probability 1/(2qT 2).

– t is non-constant and evaluates to an element in P(j)
x ∪ T (t)

c ∪ {0} OR t is a
constant c and there exists an earlier non-constant query t′ such that query
t′ evaluates to c

– all previous non-constant queries (except perhaps t′) evaluate to an element
outside of P(j)

x ∪ T (t)
c ∪ {0}

Otherwise, by a union bound, A could not obtain distinguishing success
1/(2q). Note that every non-constant query prior to t except perhaps t′ is
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answered with a uniformly random value in L \ im(P(j)
x ∪ T (t)

c ∪ {0}). Since
|P(j)

x ∪ T (t)
c ∪ {0}| = poly(λ), we can imagine instead drawing each response

uniformly from L, which by a union bound will change A’s view with negligible
probability. Then A can simulate these answers itself with uniform randomness,
with a negligible difference in success probability.

Now we are left with an adversary A that takes as input {ki} := {ki}i∈[2,...,n],
makes at most T 2 queries to σ′, and outputs a set of coefficients [�1, ..., �n]
(representing the non-constant query t or t′). Define P ′(j)

x := P(j)
x ∪ T (t)

c ∪ {0}.
Now we break up the analysis into whether b = 0 or b = 1. If b = 0, we

are guaranteed that with probability 1/(2qT 2) − negl(λ) = 1/poly(λ) over all
randomness in the game setup, {ki}, and A, the following holds.

�1 +
n

∑

i=2

�i(kir + ri) ∈ P ′(j)
x

But note that r is drawn uniformly at random from a set of size p, inde-
pendently of A’s view. Thus by Schwartz-Zippel and a union bound, the above
holds with probability at most (T 2 + P + 1)n/p = negl(λ).

Now let b = 1. We are guaranteed that with probability 1/(2qT 2) − negl(λ)
over all randomness in the game setup, {ki}, and A, the following holds:

�1 +
n

∑

i=2

�i(kix + xi) ∈ P ′(j)
x .

Redefine A to output the above polynomial Q(x) ∈ Zp[x] on input {ki}. Now
accounting for all randomness during the course of the game, we have that

Pr
σ←Σ,x←S(σ),j←Jx,

σ′←B(j)
x ,{ki}←Z

n−1
p ,A

[Q(x) ∈ P ′(j)
x : Q ← Aσ′

({ki})] =
1

2qT 2
− negl(λ).

Now we switch the distribution on σ′ from Z = {Zx}x to Y = {Yx}x. We
can still represent Yx in the same way as Zx except the B(j)

x ’s are replaced by
(P, 1− δ)-dense sources D(j)

x . Referring to the Lemma 3 statement, we have that

δ ≤ 2λ + log 1/γ

P log(p/e)
≤ 1

10T 4q log(p/e)
.

Now assume towards contradiction that this switch in distribution causes the
adversary’s success to become at most 1/(4qT 2). Then there must exist some
fixed choice of σ, x and j such that A’s difference in success over σ′ and its input
is at least 1/(4qT 2) − negl(λ). So we have

Pr
σ′←B(j)

x ,{ki}←Z
n−1
p ,A

[Q(x) ∈ P ′(j)
x : Q ← Aσ′

({ki})]−

Pr
σ′←D(j)

x ,{ki}←Z
n−1
p ,A

[Q(x) ∈ P ′(j)
x : Q ← Aσ′

({ki})] ≥ 1
4qT 2

− negl(λ).
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But now we can define a distinguisher that contradicts Lemma4. The dis-
tinguisher knows the fixed x and the set of fixed points P(j)

x , and interacts with
either B(j)

x or D(j)
x , simulating A making T 2 queries. It can tell whether A suc-

ceeds by plugging x into the polynomial produced and comparing the result to
the set of fixed points and the set of queries made by A. Yet it can only distin-
guish with probability at most T 2δ log p ≤ 1/(5qT 2) which is a contradiction.

Now we imagine picking c uniformly at random from P ′(j)
x . Since 1/(4qT 2) =

1/poly(λ) and |P ′(j)
x | ≤ T 2 + P + 1 = poly(λ), we can say that

Pr
σ←Σ,x←S(σ),j←Jx,σ′←D(j)

x ,

c←P′(j)
x ,{ki}←Z

n−1
p ,A

[Q(x) = c : Q ← Aσ′
({ki})] =

1
poly(λ)

.

Now there must exist a 1/poly(λ) fraction of {ki} such that the above holds
with probability 1/poly(λ) on each of those inputs. Denote this set K, where Ki

denotes the ith element of the set. We also now give σ′ as an input to A rather
than just giving it oracle access. So we have

Pr
σ←Σ,x←S(σ),j←Jx,

σ′←D(j)
x ,c←P′(j)

x ,A

[Q(x) = c : Q ← A(σ′,Ki)] =
1

poly(λ)
∀i ∈ [|K|].

Then by Lemma 6, noting that |K| = ω(poly(λ)),

Pr
σ←Σ,x←S(σ),j←Jx,σ′←D(j)

x ,

c←P′(j)
x ,A,i1,i2←[|K|]

[

Q1(x) = c = Q2(x) :
Q1 ← A(σ′,Ki1)
Q2 ← A(σ′,Ki2)

]

=
1

poly(λ)
.

Thus we can get rid of c, and are guaranteed that

Pr
σ←Σ,x←S(σ),j←J ,

x

σ′←D(j)
x ,A,i1,i2←[|K|]

[

Q1(x) − Q2(x) = 0 :
Q1 ← A(σ′,Ki1)
Q2 ← A(σ′,Ki2)

]

=
1

poly(λ)
.

Now since K is a 1/poly(λ) fraction of the entire domain of {ki}, we can
instead pick these sets from the entire domain, and with 1/poly(λ) probability
they will both lie in K. This gives

Pr
σ←Σ,x←S(σ),j←Jx,σ′←D(j)

x ,

A,{k
(1)
i },{k

(2)
i }←Zn−1

p

[

Q1(x) − Q2(x) = 0 :
Q1 ← A(σ′, {k

(1)
i })

Q2 ← A(σ′, {k
(2)
i })

]

=
1

poly(λ)
.

Now we look at the probability that Q1 and Q2 are distinct polynomials.
For any fixed Q, there are at most a 1/p fraction of sets {ki} such that A({ki})
could possibly output Q. This follows since given some {ki}, the coefficients on
x2, ..., xn in Q determine the �2, ..., �n in A’s linear combination. Then there
remains a 1/p chance that the {�i} and {ki} dot product to the correct linear



The Distinction Between Fixed and Random Generators 827

coefficient in Q. So for uniformly random choice of the {k
(1)
i } and {k

(2)
i } sets,

there is a negl(λ) chance that the resulting Q1 and Q2 output by A could possibly
be equal.

Let E1 be the event that Q1(x) − Q2(x) = 0 and E2 be the event that
Q1 
= Q2. We want to say that Pr[E1 ∧ E2] = 1/poly(λ). This follows from a
simple union bound: Pr[E1∧E2] = 1−Pr[¬E1∨¬E2] ≥ 1−Pr[¬E1]−Pr[¬E2] =
1 − (1 − 1/poly(λ)) − negl(λ) = 1/poly(λ).

So we redefine A to generate two random sets {k
(1)
i } and {k

(2)
i } for itself,

determine the polynomials Q1 and Q2, solve for the roots of Q1 − Q2, and
output a uniformly random root. Note that the degree of Q1 − Q2 will be at
most n = poly(λ). Thus the following holds:

Pr
σ←Σ,x←S(σ),σ′←Yx,A

[x ← A(σ′)] =
1

poly(λ)
.

Now we can switch Yx to Σx, and claim that

Pr
σ←Σ,x←S(σ),σ′←Σx,A

[x ← A(σ′)] =
1

poly(λ)
.

If instead A’s success was negligible after this switch, then there exists a fixed
x for which the difference in success is 1/poly(λ). But Yx and Σx are γ-close with
γ = 1/2λ = negl(λ) so this is impossible. Then, we can write

Pr
σ′←Σ′,A

[x ← A(σ′)] =
1

poly(λ)
,

where Σ′ is defined as in Lemma 5. This contradicts Lemma 5. ��

Assumption 3 (f-DDH-II). Let GroupGen(1λ) = (Gλ, g, p(λ)), where 2λ−1 <
p(λ) < 2λ. Let {Dλ}λ be a family of well-spread distributions where the domain
of Dλ is Zp(λ). Then for any PPT A,

|Pr[A(gx, gr, gxr) = 1] − Pr[A(gx, gr, gs) = 1]| = negl(λ),

where x ← Dλ, and r, s ← Zp(λ).

Theorem 8. Assumption 3 holds in the Generic Group Model.

We give the proof in the full version [3]. Note that this trivially implies generic
security of r-DDH-II.
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Abstract. We introduce hardness in relative entropy, a new notion of
hardness for search problems which on the one hand is satisfied by all
one-way functions and on the other hand implies both next-block pseu-
doentropy and inaccessible entropy, two forms of computational entropy
used in recent constructions of pseudorandom generators and statisti-
cally hiding commitment schemes, respectively. Thus, hardness in rel-
ative entropy unifies the latter two notions of computational entropy
and sheds light on the apparent “duality” between them. Additionally,
it yields a more modular and illuminating proof that one-way functions
imply next-block inaccessible entropy, similar in structure to the proof
that one-way functions imply next-block pseudoentropy (Vadhan and
Zheng, STOC ‘12).

Keywords: One-way function · Pseudorandom generator ·
Pseudoentropy · Computational entropy · Inaccessible entropy ·
Statistically hiding commitment · Next-bit pseudoentropy

1 Introduction

1.1 One-Way Functions and Computational Entropy

One-way functions [3] are on one hand the minimal assumption for complexity-
based cryptography [15], but on the other hand can be used to construct a
remarkable array of cryptographic primitives, including such powerful objects as
CCA-secure symmetric encryption, zero-knowledge proofs and statistical zero-
knowledge arguments for all of NP, and secure multiparty computation with an
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honest majority [5–7,9,14,16,20]. All of these constructions begin by converting
the “raw hardness” of a one-way function (OWF) to one of the following more
structured cryptographic primitives: a pseudorandom generator (PRG) [1,22], a
universal one-way hash function (UOWHF) [18], or a statistically hiding com-
mitment scheme (SHC) [2].

The original constructions of these three primitives from arbitrary one-way
functions [9,14,20] were all very complicated and inefficient. Over the past
decade, there has been a series of simplifications and efficiency improvements to
these constructions [8,11,12,21], leading to a situation where the constructions
of two of these primitives—PRGs and SHCs—share a very similar structure and
seem “dual” to each other. Specifically, these constructions proceed as follows:

1. Show that every OWF f : {0, 1}n → {0, 1}n has a gap between its
“real entropy” and an appropriate form of “computational entropy”. Specif-
ically, for constructing PRGs, it is shown that the function G(x) =
(f(x), x1, x2, . . . , xn) has “next-block pseudoentropy” at least n + ω(log n)
while its real entropy is H (G(Un)) = n [21] where H (·) denotes Shan-
non entropy. For constructing SHCs, it is shown that the function G(x) =
(f(x)1, . . . , f(x)n, x) has “next-block accessible entropy” at most n−ω(log n)
while its real entropy is again H (G(Un)) = n [11]. Note that the differ-
ences between the two cases are whether we break x or f(x) into individ-
ual bits (which matters because the “next-block” notions of computational
entropy depend on the block structure) and whether the form of computa-
tional entropy is larger or smaller than the real entropy.

2. An “entropy equalization” step that converts G into a similar generator where
the real entropy in each block conditioned on the prefix before it is known.
This step is exactly the same in both constructions.

3. A “flattening” step that converts the (real and computational) Shannon
entropy guarantees of the generator into ones on (smoothed) min-entropy
and max-entropy. This step is again exactly the same in both constructions.

4. A “hashing” step where high (real or computational) min-entropy is converted
to uniform (pseudo)randomness and low (real or computational) max-entropy
is converted to a small-support or disjointness property. For PRGs, this
step only requires randomness extractors [14,19], while for SHCs it requires
(information-theoretic) interactive hashing [4,17]. (Constructing full-fledged
SHCs in this step also utilizes UOWHFs, which can be constructed from one-
way functions [20]. Without UOWHFs, we obtain a weaker binding property,
which nevertheless suffices for constructing statistical zero-knowledge argu-
ments for all of NP.)

This common construction template came about through a back-and-forth
exchange of ideas between the two lines of work. Indeed, the uses of computa-
tional entropy notions, flattening, and hashing originate with PRGs [14], whereas
the ideas of using next-block notions, obtaining them from breaking (f(x), x) into
short blocks, and entropy equalization originate with SHCs [11]. All this leads to
a feeling that the two constructions, and their underlying computational entropy
notions, are “dual” to each other and should be connected at a formal level.
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In this paper, we make progress on this project of unifying the notions of
computational entropy, by introducing a new computational entropy notion
that yields both next-block pseudoentropy and next-block accessible entropy
in a clean and modular fashion. It is inspired by the proof of [21] that
(f(x), x1, . . . , xn) has next-block pseudoentropy n + ω(log n), which we will
describe now.

1.2 Next-Block Pseudoentropy via Relative Pseudoentropy

We recall the definition of next-block pseudoentropy, and the result of [21] relat-
ing it to one-wayness.

Definition 1.1 (next-block pseudoentropy, informal). Let n be a security
parameter, and X = (X1, . . . , Xm) be a random variable distributed on strings of
length poly(n). We say that X has next-block pseudoentropy at least k if there
is a random variable Z = (Z1, . . . , Zm), jointly distributed with X, such that:

1. For all i = 1, . . . ,m, (X1, . . . , Xi−1,Xi) is computationally indistinguishable
from (X1, . . . , Xi−1, Zi).

2.
∑m

i=1 H (Zi|X1, . . . , Xi−1) ≥ k.

Equivalently, for I uniformly distributed in [m], XI has conditional pseudoen-
tropy at least k/m given (X1, . . . , Xi−1).

It was conjectured in [10] that next-block pseudoentropy could be obtained
from any OWF by breaking its input into bits, and this conjecture was proven
in [21]:

Theorem 1.2 ([21], informal). Let f : {0, 1}n → {0, 1}n be a one-way func-
tion, let X be uniformly distributed in {0, 1}n, and let X = (X1, . . . , Xm) be
a partition of X into blocks of length O(log n). Then (f(X),X1, . . . , Xm) has
next-block pseudoentropy at least n + ω(log n).

The intuition behind Theorem 1.2 is that since X is hard to sample given
f(X), then it should have some extra computational entropy given f(X). This
intuition is formalized using the following notion of “relative pseudoentropy,”
which is a renaming of [21]’s notion of “KL-hard for sampling,” to better unify
the terminology with the notions introduced in this work.

Definition 1.3 (relative pseudoentropy). Let n be a security parameter,
and (X,Y ) be a pair of random variables, jointly distributed over strings of
length poly(n). We say that X has relative pseudoentropy at least Δ given Y if
for all probabilistic polynomial-time S, we have

KL (X,Y ‖S(Y ), Y ) ≥ Δ,

where KL (· ‖ ·) denotes the relative entropy (a.k.a. Kullback–Leibler diver-
gence).1

1 Recall that for random variables A and B with Supp(A) ⊆ Supp(B), the relative
entropy is defined by KL (A ‖ B) = Ea←A [log(Pr [A = a] / Pr [B = a])].
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That is, it is hard for any efficient adversary S to sample the conditional distri-
bution of X given Y , even approximately.

The first step of the proof of Theorem 1.2 is to show that one-wayness implies
relative pseudoentropy (which can be done with a one-line calculation):

Lemma 1.4. Let f : {0, 1}n → {0, 1}n be a one-way function and let X be uni-
formly distributed in {0, 1}n. Then X has relative pseudoentropy at least ω(log n)
given f(X).

Next, we break X into short blocks, and show that the relative pseudoentropy
is preserved:

Lemma 1.5. Let n be a security parameter, let (X,Y ) be random variables
distributed on strings of length poly(n), let X = (X1, . . . , Xm) be a partition
of X into blocks, and let I be uniformly distributed in [m]. If X has Δ relative
pseudoentropy given Y , then XI has relative pseudoentropy at least Δ/m given
(Y,X1, . . . , XI−1).

Finally, the main part of the proof is to show that, once we have short blocks,
relative pseudoentropy is equivalent to a gap between conditional pseudoentropy
and real conditional entropy.

Lemma 1.6. Let n be a security parameter, Y be a random variable distributed
on strings of length poly(n), and X a random variable distributed on strings of
length O(log n). Then X has relative pseudoentropy at least Δ given Y iff X has
conditional pseudoentropy at least H (X|Y ) + Δ given Y .

Putting these three lemmas together, we see that when f is a one-
way function, and we break X into blocks of length O(log n) to obtain
(f(X),X1, . . . , Xm), on average, the conditional pseudoentropy of XI given
(f(X),X1, . . . , XI−1) is larger than its real conditional entropy by ω(log n)/m.
This tells us that the next-block pseudoentropy of (f(X),X1, . . . , Xm) is larger
than its real entropy by ω(log n), as claimed in Theorem 1.2.

We remark that Lemma 1.6 explains why we need to break the input of
the one-way function into short blocks: it is false when X is long. Indeed, if f
is a one-way function, then we have already seen that X has ω(log n) relative
pseudoentropy given f(X) (Lemma 1.4), but it does not have conditional pseu-
doentropy noticeably larger than H (X|f(X)) given f(X) (as correct preimages
can be efficiently distinguished from incorrect ones using f).

1.3 Inaccessible Entropy

As mentioned above, for constructing SHCs from one-way functions, the notion
of next-block pseudoentropy is replaced with next-block accessible entropy:

Definition 1.7 (next-block accessible entropy, informal). Let n be a secu-
rity parameter, and Y = (Y1, . . . , Ym) be a random variable distributed on strings
of length poly(n). We say that Y has next-block accessible entropy at most k if
the following holds.
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Let G̃ be any probabilistic poly(n)-time algorithm that takes a sequence of
uniformly random strings R̃ = (R̃1, . . . , R̃m) and outputs a sequence Ỹ =
(Ỹ1, . . . , Ỹm) in an “online fashion” by which we mean that Ỹi = G̃(R̃1, . . . , R̃i)
depends on only the first i random strings of G̃ for i = 1, . . . , m. Suppose further
that Supp(Ỹ ) ⊆ Supp(Y ).

Then we require:

m∑

i=1

H
(
Ỹi|R̃1, . . . , R̃i−1

)
≤ k.

(Next-block) accessible entropy differs from (next-block) pseudoentropy in
two ways:

1. Accessible entropy is useful as an upper bound on computational entropy, and
is interesting when it is smaller than the real entropy H (Y ). We refer to the
gap H (Y ) − k as the next-block inaccessible entropy of Y .

2. The accessible entropy adversary G̃ is trying to generate the random variables
Yi conditioned on the history rather than recognize them. Note that we take
the “history” to not only be the previous blocks (Ỹ1, . . . , Ỹi−1), but the coin
tosses (R̃1, . . . , R̃i−1) used to generate those blocks.

Note that one unsatisfactory aspect of the definition is that when the random
variable Y is not flat (i.e. uniform on its support), then there can be an adversary
G̃ achieving accessible entropy even larger than H (Y ), for example by making
Ỹ uniform on Supp(Y ).

Similarly to (and predating) Theorem 1.2, it is known that one-wayness
implies next-block inaccessible entropy.

Theorem 1.8 ([11]). Let f : {0, 1}n → {0, 1}n be a one-way function, let X be
uniformly distributed in {0, 1}n, and let (Y1, . . . , Ym) be a partition of Y = f(X)
into blocks of length O(log n). Then (Y1, . . . , Ym,X) has next-block accessible
entropy at most n − ω(log n).

Unfortunately, however, the existing proof of Theorem 1.8 is not modular like
that of Theorem 1.2. In particular, it does not isolate the step of relating one-
wayness to entropy-theoretic measures (like Lemma 1.4 does) or the significance
of having short blocks (like Lemma 1.6 does).

1.4 Our Results

We remedy the above state of affairs by providing a new, more general notion
of hardness in relative entropy that allows us to obtain next-block inaccessible
entropy in a modular way while also encompassing what is needed for next-block
pseudoentropy.

Like in relative pseudoentropy, we will consider a pair of jointly distributed
random variables (Y,X). Following the spirit of accessible entropy, the adversary
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G̃ for our new notion will try to generate Y together with X, rather than taking
Y as input. That is, G̃ will take randomness R̃ and output a pair (Ỹ , X̃) =
G̃(R̃) = (G̃1(R̃), G̃2(R̃)), which we require to be always within the support of
(Y,X). Note that G̃ need not be an online generator; it can generate both Ỹ and
X̃ using the same randomness R̃. Of course, if (Y,X) is efficiently samplable
(as it would be in most cryptographic applications), G̃ could generate (Ỹ , X̃)
identically distributed to (Y,X) by just using the “honest” sampler G for (Y,X).
So, in addition, we require that the adversary G̃ also come with a simulator S,
that can simulate its coin tosses given only Ỹ . The goal of the adversary is to
minimize the relative entropy

KL
(
R̃, Ỹ

∥
∥
∥S(Y ), Y

)

for a uniformly random R̃. This divergence measures both how well G̃1 approx-
imates the distribution of Y as well as how well S simulates the corresponding
coin tosses of G̃1. Note that when G̃ is the honest sampler G, the task of S is
exactly to sample from the conditional distribution of R̃ given G(R̃) = Y . How-
ever, the adversary may reduce the divergence by instead designing the sampler
G̃ and simulator S to work in concert, potentially trading off how well G̃(R̃)
approximates Y in exchange for easier simulation by S. Explicitly, the definition
is as follows.

Definition 1.9 (hardness in relative entropy, informal version of Def-
inition 3.4). Let n be a security parameter, and (Y,X) be a pair of random
variables jointly distributed over strings of length poly(n). We say that (Y,X) is
Δ-hard in relative entropy if the following holds.

Let G̃ = (G̃1, G̃2) and S be probabilistic poly(n)-time algorithms such that
Supp(G̃(R̃)) ⊆ Supp((Y,X)), where R̃ is uniformly distributed. Then writing
Ỹ = G̃1(R̃), we require that

KL
(
R̃, Ỹ

∥
∥
∥S(Y ), Y

)
≥ Δ.

Similarly to Lemma 1.4, we can show that one-way functions achieve this
notion of hardness in relative entropy.

Lemma 1.10. Let f : {0, 1}n → {0, 1}n be a one-way function and let X be
uniformly distributed in {0, 1}n. Then (f(X),X) is ω(log n)-hard in relative
entropy.

Note that this lemma implies Lemma 1.4. If we take G̃ to be the “honest” sampler
G̃(x) = (f(x), x), then we have:

KL (X, f(X) ‖ S(Y ), Y ) = KL
(
R̃, Ỹ

∥
∥
∥S(Y ), Y

)
,

which is is ω(log n) by Lemma 1.10. That is, relative pseudoentropy (as in Defini-
tion 1.3 and Lemma 1.4) is obtained by fixing G̃ and focusing on the hardness for
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the simulator S, i.e. the divergence KL (X|Y ‖ S(Y )|Y ). Furthermore, the step of
breaking into short blocks (Lemma 1.5) is equivalent to requiring the simulator
be online and showing that relative pseudoentropy implies the following notion
of next-block relative pseudoentropy :

Definition 1.11 (next-block relative pseudoentropy, informal). Let n be
a security parameter, (X,Y ) be jointly distributed random variables over strings
of length poly(n), and let X = (X1, . . . , Xm) be a partition of X into blocks. We
say that X has next-block relative pseudoentropy at least Δ given Y if for all
probabilistic polynomial-time S, we have

m∑

i=1

KL (Xi|X<i, Y ‖S(X<i, Y )|X<i, Y ) ≥ Δ,

where we use the notation z<i = (z1, . . . , zi−1).
Here, the simulator S is required to be “online” in the sense that it cannot

simulate (X1, . . . , Xm) at once, but must simulate Xi only as a function of X<i

and Y .

In particular, Lemma 1.6 is thus equivalent to the statement that having Δ
next-block relative pseudoentropy for blocks of length O(log n) is equivalent to
having next-block pseudoentropy at least Δ +

∑m
i=1 H(Xi|X<i, Y ) in the sense

of Definition 1.1.
Conversely, we show that inaccessible entropy arises from hardness in relative

entropy by first requiring the generator G to be online and breaking the relative
entropy into blocks to obtain the following next-block hardness property.

Definition 1.12 (next-block hardness in relative entropy, informal). Let
n be a security parameter, and Y = (Y1, . . . , Ym) be a random variable distributed
on strings of length poly(n). We say that Y is Δ next-block hard in relative
entropy if the following holds.

Let G̃ be any probabilistic poly(n)-time algorithm that takes a sequence of
uniformly random strings R̃ = (R̃1, . . . , R̃m) and outputs a sequence Ỹ =
(Ỹ1, . . . , Ỹm) in an “online fashion” by which we mean that Ỹi = G̃(R̃1, . . . , R̃i)
depends on only the first i random strings of G̃ for i = 1, . . . ,m. Suppose fur-
ther that Supp(Ỹ ) ⊆ Supp(Y ). Additionally, let S be a probabilistic poly(n)-time
algorithms such for all i = 1, . . . ,m, S takes as input R̂1, . . . , R̂i−1 and Yi and
outputs R̂i, where R̂j has the same length as R̃j. Then we require that for all
such (G̃,S), we have:

m∑

i=1

KL
(
R̃i, Ỹi|R̃<i, Ỹ<i

∥
∥
∥ R̂i, Yi|R̂<i, Y<i

)
≥ Δ.

Observe that hardness in relative entropy can be seen as the specific case of
next-block hardness in relative entropy when there is only one block (i.e., setting
m = 1 in the previous definition).
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Next, we fix the simulator, analogously to how relative pseudoentropy was
obtained by fixing the generator, and obtain next-block inaccessible relative
entropy :

Definition 1.13 (next-block inaccessible relative entropy, informal).
Let n be a security parameter, and Y = (Y1, . . . , Ym) be a random variable dis-
tributed on strings of length poly(n). We say that Y has next-block inaccessible
relative entropy at least Δ if the following holds.

Let G̃ be any probabilistic poly(n)-time algorithm that takes a sequence of
uniformly random strings R̃ = (R̃1, . . . , R̃m) and outputs a sequence Ỹ =
(Ỹ1, . . . , Ỹm) in an online fashion, and such that Supp(Ỹ ) ⊆ Supp(Y ). Then
we require that for all such G̃, we have:

m∑

i=1

KL
(
Ỹi|R̃<i, Ỹ<i

∥
∥
∥Yi|R<i, Y<i

)
≥ Δ,

where R = (R1, . . . , Rm) is a dummy random variable independent of Y .

That is, the goal of the online generator G̃ is to generate Ỹi given the history
of coin tosses R̃<i with the same conditional distribution as Yi given Y<i. As
promised, there is no explicit simulator in the definition of next-block inaccessible
relative entropy, as we essentially dropped all R̂ variables from the definition
of next-block hardness in relative entropy. Nevertheless we can obtain it from
hardness in relative entropy by using sufficiently short blocks:

Lemma 1.14. Let n be a security parameter, let Y be a random variable dis-
tributed on strings of length poly(n), and let Y = (Y1, . . . , Ym) be a partition of
Y into blocks of length O(log n).

If (Y1, . . . , Ym) is Δ next-block hard in relative entropy, then (Y1, . . . , Ym) has
next-block inaccessible relative entropy at least Δ − negl(n).

An intuition for the proof is that since the blocks are of logarithmic length, given
Yi we can simulate the corresponding coin tosses of R̃i of G̃ by rejection sampling
and succeed with high probability in poly(n) tries.

A nice feature of the definition of next-block inaccessible relative entropy
compared to inaccessible entropy is that it is meaningful even for non-flat random
variables, as KL divergence is always nonnegative. Moreover, for flat random
variables, it equals the inaccessible entropy:

Lemma 1.15. Suppose Y = (Y1, . . . , Ym) is a flat random variable. Then Y has
next-block inaccessible relative entropy at least Δ if and only if Y has accessible
entropy at most H(Y ) − Δ.

Intuitively, this lemma comes from the identity that if Y is a flat random variable
and Supp(Ỹ ) ⊆ Supp(Y ), then H

(
Ỹ

)
= H (Y ) − KL

(
Ỹ

∥
∥
∥ Y

)
. We stress that

we do not require the individual blocks Yi have flat distributions, only that the
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random variable Y as a whole is flat. For example, if f is a function and X is
uniform, then (f(X),X) is flat even though f(X) itself may be far from flat.

Putting together Lemmas 1.10, 1.14, and 1.15, we obtain a new, more mod-
ular (and slightly tighter) proof of Theorem 1.8. The reduction implicit in the
combination of these lemmas is the same as the one in [11], but the analysis is
different. (In particular, [11] makes no use of KL divergence.) Like the existing
proof of Theorem 1.2, this proof separates the move from one-wayness to a form
of hardness involving relative entropies, the role of short blocks, and the move
from hardness in relative entropy to computational entropy, as summarized in
Fig. 1. Moreover, this further illumination of and toolkit for notions of compu-
tational entropy may open the door to other applications in cryptography.

Fig. 1. Relationships between hardness notions.

We remark that another interesting direction for future work is to find a con-
struction of universal one-way hash functions (UOWHFs) from one-way func-
tions that follows a similar template to the above constructions of PRGs and
SHCs. There is now a construction of UOWHFs based on a variant of inaccessi-
ble entropy [8], but it remains more complex and inefficient than those of PRGs
and SHCs.

2 Preliminaries

Notations. For a tuple x = (x1, . . . , xn), we write x≤i for (x1, . . . , xi), and x<i

for (x1, . . . , xi−1).



840 R. Agrawal et al.

poly denotes the set of polynomial functions and negl the set of all negligible
functions: ε ∈ negl if for all p ∈ poly and large enough n ∈ N, ε(n) ≤ 1/p(n).
We will sometimes abuse notations and write poly(n) to mean p(n) for some
p ∈ poly and similarly for negl(n).

ppt stands for probabilistic polynomial time and can be either in the uniform
or non-uniform model of computation. All our results are stated as uniform
polynomial time oracle reductions and are thus meaningful in both models.

For a random variable X over X , Supp(X) def= {x ∈ X : Pr[X = x] >
0} denotes the support of X. A random variable is flat if it is uniform over
its support. Random variables will be written with uppercase letters and the
associated lowercase letter represents a generic element from its support.

Information theory.

Definition 2.1 (Entropy). For a random variable X and x ∈ Supp(X), the
sample entropy (also called surprise) of x is H∗

x (X) def= log(1/Pr [X = x]). The
entropy H (X) of X is the expected sample entropy: H(X) def= Ex←X [H∗

x (X)].

Definition 2.2 (Conditional entropy). Let (A,X) be a pair of random vari-
ables and consider (a, x) ∈ Supp(A,X), the conditional sample entropy of (a, x)
is H∗

a,x (A|X) def= log(1/Pr [A = a |X = x]) and the conditional entropy of A
given X is the expected conditional sample entropy:

H(A|X) def= E
(a,x)←(A,X)

[

log
1

Pr [A = a |X = x]

]

.

Proposition 2.3 (Chain rule for entropy). Let (A,X) be a pair of ran-
dom variables, then H(A,X) = H (A|X) + H (X) and for (a, x) ∈ Supp(A,X),
H∗

a,x (A,X) = H∗
a,x (A|X) + H∗

x (X).

Definition 2.4 (Relative entropy2). For a pair (A,B) of random variables
and (a, b) ∈ Supp(A,B) the sample relative entropy (log-probability ratio) is:

KL∗
a (A ‖ B) def= log

Pr [A = a]
Pr [B = a]

,

and the relative entropy of A with respect to B is the expected sample relative
entropy:

KL (A ‖ B) def= E
a←A

[

log
Pr [A = a]
Pr [B = a]

]

.

2 Relative entropy is also commonly referred to as Kullback–Liebler divergence, which
explains the standard KL notation. We prefer to use relative entropy to have more
uniformity across the notions discussed in this work.
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Definition 2.5 (Conditional relative entropy). For pairs of random vari-
ables (A,X) and (B, Y ), and (a, x) ∈ Supp(A,X), the conditional sample rela-
tive entropy is:

KL∗
a,x (A|X ‖ B|Y ) def= log

Pr [A = a|X = x]
Pr [B = a|Y = x]

,

and the conditional relative entropy is:

KL (A|X ‖ B|Y ) def= E
(a,x)←(A,X)

[

log
Pr [A = a|X = x]
Pr [B = a|Y = x]

]

.

Proposition 2.6 (Chain rule for relative entropy). For pairs of random
variables (X,A) and (Y,B):

KL (A,X ‖ B, Y ) = KL (A|X ‖ B|Y ) + KL (X ‖ Y ) ,

and for (a, x) ∈ Supp(A,X):

KL∗
a,x (A,X ‖ B, Y ) = KL∗

a,x (A|X ‖ B|Y ) + KL∗
x (X ‖ Y ) .

Proposition 2.7 (Data-processing inequality). Let (X,Y ) be a pair of ran-
dom variables and let f be a function defined on Supp(Y ), then:

KL (X ‖ Y ) ≥ KL (f(X) ‖ f(Y )) .

Definition 2.8 (min relative entropy). Let (X,Y ) be a pair of random vari-
ables and δ ∈ [0, 1]. We define KLδ

min (X ‖ Y ) to be the quantile of level δ of
KL∗

x (X ‖ Y ), equivalently it is the smallest Δ ∈ R satisfying:

Pr
x←X

[KL∗
x (X ‖ Y ) ≤ Δ] ≥ δ ,

and it is characterized by the following equivalence:

KLδ
min (X ‖ Y ) > Δ ⇐⇒ Pr

x←X
[KL∗

x (X ‖ Y ) ≤ Δ] < δ .

Block generators.

Definition 2.9 (Block generator). An m-block generator is a function G :
{0, 1}s → ∏m

i=1{0, 1}�i . Gi(r) denotes the i-th block of G on input r and |Gi| = �i

denotes the bit length of the i-th block.

Definition 2.10 (Online generator). An online m-block generator is a func-
tion G̃ :

∏m
i=1{0, 1}si → ∏m

i=1{0, 1}�i such that for all i ∈ [m] and r ∈
∏m

i=1{0, 1}si , G̃i(r) only depends on r≤i. We sometimes write G̃i(r≤i) when the
input blocks i + 1, . . . ,m are unspecified.

Definition 2.11 (Support). The support of a generator G is the support of
the random variable Supp

(
G(R)

)
for uniform input R. If G is an (m + 1)-block

generator, and Π is a binary relation, we say that G is supported on Π if
Supp

(
G≤m(R),Gm+1(R)

) ⊆ Π.

When G is an (m + 1)-block generator supported on a binary relation Π,
we will often use the notation Gw

def= Gm+1 to emphasize that the last block
corresponds to a witness for the first m blocks.
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Cryptography.

Definition 2.12 (One-way Function). Let n be a security parameter, t = t(n)
and ε = ε(n). A function f : {0, 1}n → {0, 1}n is a (t, ε)-one-way function if:

1. For all time t randomized algorithm A: Prx←Un

[
A

(
f(x)

) ∈ f−1
(
f(x)

)] ≤ ε,
where Un is uniform over {0, 1}n.

2. There exists a polynomial time algorithm B such that B(x, 1n) = f(x) for all
x ∈ {0, 1}n.

If f is (nc, 1/nc)-one-way for every c ∈ N, we say that f is (strongly) one-way.

3 Search Problems and Hardness in Relative Entropy

In this section, we first present the classical notion of hard-on-average search
problems and introduce the new notion of hardness in relative entropy. We then
relate the two notions by proving that average-case hardness implies hardness
in relative entropy.

3.1 Search Problems

For a binary relation Π ⊆ {0, 1}∗ × {0, 1}∗, we write Π(y, w) for the predicate
that is true iff (y, w) ∈ Π and say that w is a witness for the instance y3. To
each relation Π, we naturally associate (1) a search problem: given y, find w
such that Π(y, w) or state that no such w exist and (2) the decision problem
defined by the language LΠ

def= {y ∈ {0, 1}∗ : ∃w ∈ {0, 1}∗, Π(y, w)}. FNP
denotes the set of all relations Π computable by a polynomial time algorithm
and such that there exists a polynomial p such that Π(y, w) ⇒ |w| ≤ p(|y|).
Whenever Π ∈ FNP, the associated decision problem LΠ is in NP. We now
define average-case hardness.

Definition 3.1 (Distributional search problem). A distributional search
problem is a pair (Π,Y ) where Π ⊆ {0, 1}∗ × {0, 1}∗ is a binary relation and Y
is a random variable supported on LΠ .

The problem (Π,Y ) is (t, ε)- hard if Pr
[
Π

(
Y,A(Y )

)] ≤ ε for all time t
randomized algorithm A, where the probability is over the distribution of Y and
the randomness of A.

Example 3.2. For f : {0, 1}n → {0, 1}n, the problem of inverting f is the search
problem associated with the relation Πf def= {(f(x), x) : x ∈ {0, 1}n}. If f is
a (t, ε)-one-way function, then the distributional search problem

(
Πf , f(X)

)
of

inverting f on a uniform random input X ∈ {0, 1}n is (t, ε)-hard.

3 We used the unconventional notation y for the instance (instead of x) because our
relations will often be of the form Πf for some function f ; in this case an instance
is some y in the range of f and a witness for y is any preimage x ∈ f−1(y).
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Remark 3.3. Consider a distributional search problem (Π,Y ). Without loss of
generality, there exists a (possibly inefficient) two-block generator G = (G1,Gw)
supported on Π such that G1(R) = Y for uniform input R. If Gw is polynomial-
time computable, it is easy to see that the search problem

(
ΠG1 ,G1(R)

)
is at least

as hard as (Π,Y ). The advantage of writing the problem in this “functional”
form is that the distribution (G1(R), R) over (instance, witness) pairs is flat,
which is a necessary condition to relate hardness to inaccessible entropy (see
Theorem 4.10).

Furthermore, if G1 is also polynomial-time computable and (Π,Y ) is
(poly(n),negl(n))-hard, then R �→ G1(R) is a one-way function. Combined with
the previous example, we see that the existence of one-way functions is equivalent
to the existence of (poly(n),negl(n))-hard search problems for which (instance,
witness) pairs can be efficiently sampled.

3.2 Hardness in Relative Entropy

Instead of considering an adversary directly attempting to solve a search problem
(Π,Y ), the adversary in the definition of hardness in relative entropy comprises
a pair of algorithm (G̃,S) where G̃ is a two-block generator outputting valid
(instance, witness) pairs for Π and S is a simulator for G̃: given an instance y,
the goal of S is to output randomness r for G̃ such that G̃1(r) = y. Formally, the
definition is as follows.

Definition 3.4 (hardness in relative entropy). Let (Π,Y ) be a distribu-
tional search problem. We say that (Π,Y ) is (t,Δ)-hard in relative entropy if:

KL
(
R̃, G̃1(R̃)

∥
∥
∥ S(Y ), Y

)
> Δ ,

for all pairs (G̃,S) of time t algorithms where G̃ is a two-block generator supported
on Π and R̃ is uniform randomness for G̃1. Similarly, for δ ∈ [0, 1], (Π,Y ) is
(t,Δ)-hard in δ-min relative entropy if for all such pairs:

KLδ
min

(
R̃, G̃1(R̃)

∥
∥
∥ S(Y ), Y

)
> Δ .

Note that a pair (G̃,S) achieves a relative entropy of zero in Definition 3.4 if
G̃1(R) has the same distribution as Y and if G̃1

(
S(y)

)
= y for all y ∈ Supp(Y ).

In this case, writing G̃w
def= G̃2, we have that G̃w

(
S(Y )

)
is a valid witness for Y

since G̃ is supported on Π.
More generally, the composition G̃w ◦ S solves the search problem (Π,Y )

whenever G̃1

(
S(Y )

)
= Y . When the relative entropies in Definition 3.4 are upper-

bounded, we can lower bound the probability of the search problem being solved
(Lemma 3.7) This immediately implies that hard search problems are also hard
in relative entropy.
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Theorem 3.5. Let (Π,Y ) be a distributional search problem. If (Π,Y ) is (t, ε)-
hard, then it is (t′,Δ′)-hard in relative entropy and (t′,Δ′′)-hard in δ-min relative
entropy for every δ ∈ [0, 1] where t′ = Ω(t),4 Δ′ = log(1/ε) and Δ′′ = log(1/ε)−
log(1/δ).

Remark 3.6. As we see, a “good” simulator S for a generator G̃ is one for
which G̃1

(
S(Y )

)
= Y holds often. It will be useful in Sect. 4 to consider sim-

ulators S which are allowed to fail by outputting a failure string r /∈ Supp(R̃),
(e.g. r = ⊥) and adopt the convention that G̃1(r) = ⊥ whenever r /∈ Supp(R̃).
With this convention, we can without loss of generality add the requirement
that G̃1

(
S(Y )

)
= Y whenever S(Y ) ∈ Supp(R̃): indeed, S can always check

that it is the case and if not output a failure symbol. For such a simulator S,
observe that for all r ∈ Supp(R̃), the second variable on both sides of the relative
entropy in Definition 3.4 is obtained by applying G̃1 on the first variable and can
thus be dropped, leading to a simpler definition of hardness in relative entropy:
KL

(
R̃

∥
∥
∥S(Y )

)
> Δ.

Theorem 3.5 is an immediate consequence of the following lemma.

Lemma 3.7. Let (Π,Y ) be a distributional search problem and (G̃,S) be a pair
of algorithms with G̃ = (G̃1, G̃w) a two-block generator supported on Π. Define the
linear-time oracle algorithm A

˜Gw,S(y) def= G̃w(S(y)). For Δ ∈ R
+ and δ ∈ [0, 1]:

1. If KL
(
R̃, G̃1(R̃)

∥
∥
∥S(Y ), Y

)
≤ Δ then Pr

[
Π(Y,A

˜Gw,S(Y ))
]

≥ 1/2Δ.

2. If KLδ
min

(
R̃, G̃1(R̃)

∥
∥
∥S(Y ), Y

)
≤ Δ then Pr

[
Π(Y,A

˜Gw,S(Y ))
]

≥ δ/2Δ.

Proof. We have:

Pr
[
Π

(
Y,A

˜Gw,S(Y )
)]

= Pr
[
Π(Y, G̃w(S(Y )))

]

≥ Pr
[
G̃1(S(Y )) = Y

]
(G̃ is supported on Π)

=
∑

r∈Supp( ˜R)

Pr
[
S(Y ) = r ∧ Y = G̃1(r)

]

= E
r← ˜R

⎡

⎣
Pr

[
S(Y ) = r ∧ Y = G̃1(r)

]

Pr
[
R̃ = r

]

⎤

⎦

= E
r← ˜R

y←˜G1(r)

[
2−KL∗

r,y( ˜R,˜G1( ˜R)‖ S(Y ),Y )
]

.

4 For the theorems in this paper that relate two notions of hardness, the notation
t′ = Ω(t) means that there exists a constant C depending only on the computational
model such that t′ ≥ C · t.
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Now, the first claim follows by Jensen’s inequality (since x �→ 2−x is convex) and
the second claim follows by Markov’ inequality when considering the event that
the sample relative entropy is smaller than Δ (which occurs with probability at
least δ by assumption).

Relation to Relative Pseudoentropy. In [21], the authors introduced the notion
of relative pseudoentropy5: for jointly distributed variables (Y,W ), W has rel-
ative pseudoentropy given Y if it is hard for a polynomial time adversary
to approximate—measured in relative entropy—the conditional distribution W
given Y . Formally:

Definition 3.8 (Relative pseudoentropy, Definition 3.4 in [21]). Let
(Y,W ) be a pair of random variables, we say that W has relative pseudoen-
tropy (t,Δ) given Y if for all time t randomized algorithm S, we have:

KL (Y,W ‖ Y,S(Y )) > Δ .

As discussed in Sect. 1.2, it was shown in [21] that if f : {0, 1}n → {0, 1}n

is a one-way function, then
(
f(X),X1, . . . , Xn) has next-bit pseudoentropy for

uniform X ∈ {0, 1}n (see Theorem 1.2). The first step in proving this result was
to prove that X has relative pseudoentropy given f(X) (see Lemma 1.4).

We observe that when (Y,W ) is of the form (f(X),X) for some function
f : {0, 1}n → {0, 1}n and variable X over {0, 1}n, then relative pseudoentropy
is implied by hardness in relative entropy by simply fixing G̃ to be the “honest
sampler” G̃(X) = (f(X),X). Indeed, in this case we have:

KL
(
X, G̃1(X)

∥
∥
∥ S(Y ), Y

)
= KL (X, f(X) ‖ S(Y ), Y ) .

We can thus recover Lemma 1.4 as a direct corollary of Theorem 3.5.

Corollary 3.9. Consider a function f : {0, 1}n → {0, 1}n and define Πf def=
{(f(x), x) : x ∈ {0, 1}n} and Y

def= f(X) for X uniform over {0, 1}n. If f is
(t, ε)-one-way, then (Πf , Y ) is

(
t′, log(1/ε)

)
-hard in relative entropy and X has(

t′, log(1/ε)
)

relative pseudoentropy given Y with t′ = Ω(t).

Witness Hardness in Relative Entropy. We also introduce a relaxed notion
of hardness in relative entropy called witness hardness in relative entropy. In
this notion, we further require (G̃,S) to approximate the joint distribution of
(instance, witness) pairs rather than only instances. For example, the problem
of inverting a functionf over a random input X is naturally associated with the
distribution

(
f(X),X

)
. The relaxation in this case is analogous to the notion of

distributional one-way function for which the adversary is required to approxi-
mate the uniform distribution over preimages.
5 As already mentioned in the introduction, this notion was in fact called “KL-hardness

for sampling” in [21] but we rename it here to unify the terminology between the
various notions discussed here.
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Definition 3.10 (Witness hardness in relative entropy). Let Π be a
binary relation and (Y,W ) be a pair of random variables supported on Π. We
say that (Π,Y,W ) is (t,Δ) witness hard in relative entropy if for all pairs of
time t algorithms (G̃,S) where G̃ is a two-block generator supported on Π, for
uniform R̃:

KL
(
R̃, G̃1(R̃), G̃w(R̃)

∥
∥
∥ S(Y ), Y,W

)
> Δ .

Similarly, for δ ∈ [0, 1], (Π,Y,W ) is (t,Δ)-witness hard in δ-min relative
entropy, if for all such pairs:

KLδ
min

(
R̃, G̃1(R̃), G̃w(R̃)

∥
∥
∥ S(Y ), Y,W

)
> Δ .

We introduced hardness in relative entropy first, since it is the notion which
is most directly obtained from the hardness of distribution search problems.
Observe that by the data processing inequality for relative entropy (Proposi-
tion 2.7), dropping the third variable on both sides of the relative entropies in
Definition 3.10 only decreases them. Hence, hardness in relative entropy implies
witness hardness as stated in (Theorem 3.11). As we will see in Sect. 4 witness
hardness in relative entropy is the “correct” notion to obtain inaccessible entropy
from: it is in fact equal to inaccessible entropy up to 1/poly losses.

Theorem 3.11. Let Π be a binary relation and (Y,W ) be a pair of random
variables supported on Π. If (Π,Y ) is (t, ε)-hard, then (Π,Y,W ) is (t′,Δ′) wit-
ness hard in relative entropy and (t′,Δ′′) witness hard in δ-min relative entropy
for every δ ∈ [0, 1] where t′ = Ω(t), Δ′ = log(1/ε) and Δ′′ = log(1/ε)− log(1/δ).

Remark 3.12. The data processing inequality does not hold exactly for KLmin,
hence the statement about δ-min relative entropy in Theorem 3.11 does not
follow with the claimed parameters in a black-box manner from Theorem 3.5.
However, an essentially identical proof given in Appendix A yields the result.

4 Inaccessible Entropy and Hardness in Relative Entropy

In this section, we relate our notion of witness hardness in relative entropy to
the inaccessible entropy definition of [13]. Roughly speaking, we “split” the rel-
ative entropy into blocks and obtain the intermediate notion of next-block inac-
cessible relative entropy (Sect. 4.1) that we then relate to inaccessible entropy
(Sect. 4.2). Together, these results show that if f is a one-way function, the gener-
ator Gf (X) =

(
f(X)1, . . . , f(X)n,X

)
has superlogarithmic inaccessible entropy.

4.1 Next-Block Hardness and Rejection Sampling

Consider a binary relation Π and a pair of random variables (Y,W ) supported on
Π. Let G̃ be an online (m+1)-block generator supported on Π and write Ỹ≤m

def=
G̃(R̃≤m) for uniform R̃≤m. For such a generator G̃, it is natural to consider
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simulators operating in an online manner. Specifically, an online simulator in
this context is a PPT algorithm S such that on input (R̂<i, Yi), S outputs R̂i

of the same length as R̃i. The goal of S is to output random coins such that
(R̃i, Ỹi) is “close” to (R̂i, Yi) conditioned on the past. This leads to the following
natural blockwise notion of hardness in relative entropy for online generators
and simulators.

Definition 4.1 (Next-block hardness in relative entropy). The joint dis-
tribution (Y1, . . . , Ym) is (t,Δ) next-block hard in relative entropy if the following
holds.

Let G̃ be any time t online m-block generator supported on Y≤m and write

Ỹ≤m
def= G̃(R̃≤m) for uniform R̃≤m. Let S be an online simulator and define

inductively R̂i
def= S(R̂<i, Yi) with R̂i having the same length as R̃i, where S is a

probabilistic algorithm that uses time at most t to compute R̂≤m.
Then we require:

m∑

i=1

KL
(
R̃i, Ỹi|R̃<i, Ỹ<i

∥
∥
∥ R̂i, Yi|R̂<i, Y<i

)
> Δ .

Similarly, for δ ∈ [0, 1], we say that (Y1, . . . , Ym) is (t,Δ)-next-block hard in
δ-min relative entropy if, with the same notations as above:

Pr
r≤m← ˜R≤m

y≤m←˜G(r≤m)

[
m∑

i=1

KL∗
yi,r<i,y<i

(
R̃i, Ỹi|R̃<i, Ỹ<i

∥
∥
∥ R̂i, Yi|R̂<i, Y<i

)
≤ Δ

]

< δ .

Observe that using the chain rule for relative entropy, the sum of relative
entropies appearing in Definition 4.1 is exactly equal to the relative entropies
appearing in Definition 3.4. Since, furthermore considering an online generator
G̃ and online simulator S is only less general than arbitrary pairs (G̃,S), we
immediately obtain the following theorem.

Theorem 4.2. Let (Π,Y ) be a distributional search problem. If (Π,Y ) is (t,Δ)-
hard in relative entropy then (Y1, . . . , Ym) is (t,Δ) next-block hard in relative
entropy.

Similarly, for any δ ∈ [0, 1], if (Π,Y ) is (t,Δ)-hard in δ-min relative entropy
then (Y1, . . . , Ym) is (t,Δ) next-block hard in δ-min relative entropy.

Proof. Immediate using the chain rule for relative (sample) entropy.

The next step is to obtain a notion of hardness that makes no reference to
simulators by considering, for an online block generator G̃, a specific simulator
Sim

˜G,T which on input (R̂<i, Yi), generates R̂i using rejection sampling until
G̃i(R̂≤i) = Yi. The superscript T is the maximum number of attempts after
which Sim

˜G,T gives up and outputs ⊥. The formal definition of Sim
˜G,T is given

in Algorithm 1.
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Algorithm 1. Rejection sampling simulator Sim
˜G,T for 1 ≤ i ≤ m

Input: yi ∈ {0, 1}∗, r̂<i ∈ ({0, 1}v ∪ {⊥})i−1

Output: r̂i ∈ {0, 1}v ∪ {⊥}
if r̂i−1 = ⊥ then

r̂i ← ⊥; return
end if
repeat

sample r̂i ← {0, 1}v

until ˜Gi(r̂≤i) = yi or ≥ T attempts

if ˜Gi(r̂≤i) 	= yi then
r̂i ← ⊥

end if

For the rejection sampling simulator Sim
˜G,T , we will show in Lemma 4.5 that

the next-block hardness in relative entropy in Definition 4.1 decomposes as the
sum of two terms:

1. A term measuring how well G̃≤m approximates the distribution Y in an online
manner, without any reference to a simulator.

2. An error term measuring the failure probability of the rejection sampling
procedure due to having a finite time bound T .

As we show in Lemma 4.6, the error term can be made arbitrarily small by setting
the number of trials T in Sim

˜G,T to be a large enough multiple of m · 2� where
� is the length of the blocks of G̃≤m. This leads to a poly(m) time algorithm
whenever � is logarithmic in m. That is, given an online block generator G̃ for
which G̃≤m has short blocks, we obtain a corresponding simulator “for free”.
Thus, considering only the first term leads to the following clean definition of
next-block inaccessible relative entropy that makes no reference to simulators.

Definition 4.3 (Next-block inaccessible relative entropy). The joint dis-
tribution (Y1, . . . , Ym) has (t,Δ) next-block inaccessible relative entropy, if for
every time t online m-block generator G̃ supported on Y≤m, writing Ỹ≤m

def=
G̃(R̃≤m) for uniform R̃≤m, we have:

m∑

i=1

KL
(
Ỹi|R̃<i, Ỹ<i

∥
∥
∥ Yi|R<i, Y<i

)
> Δ ,

where Ri is a “dummy” random variable over the domain of G̃i and independent
of Y≤m+1. Similarly, for δ ∈ [0, 1], we say that (Y1, . . . , Ym+1) has (t,Δ)-next-
block inaccessible δ-min relative entropy if for every G̃ as above:

Pr
r≤m← ˜R≤m

y≤m←˜G(r≤m)

[
m∑

i=1

KL∗
yi,r<i,y<i

(
Ỹi|R̃<i, Ỹ<i

∥
∥
∥ Yi|R<i, Y<i

)
≤ Δ

]

< δ ,
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where (Ỹ≤m, R̃≤m) are defined as above.

Remark 4.4. Since Ỹ<i is a function of R̃<i, the first conditional distribution
in the KL is effectively Ỹi|R̃<i. Similarly the second distribution is effectively
Yi|Y<i. The extra random variables are there for syntactic consistency.

With this definition in hand, we can make formal the claim that, even as
sample notions, the next-block hardness in relative entropy decomposes as next-
block inaccessible relative entropy plus an error term.

Lemma 4.5. For a joint distribution (Y1, . . . , Ym), let G̃ be an online m-block
generator supported on Y≤m. Define (Ỹ1, . . . , Ỹm) def= G̃(R̃) for uniform random
variable R̃ = (R̃1, . . . , R̃m) and let Ri be a “dummy” random variable over the
domain of G̃i and independent of Y≤m+1. We also define R̂i

def= Sim
˜G,T (R̂<i, Yi)

and Ŷi = G̃(R̂≤i). Then, for all r ∈ Supp(R̃) and y
def= G̃(r):

m∑

i=1

KL∗
r,y

(
R̃i, Ỹi|R̃<i, Ỹ<i

∥
∥
∥ R̂i, Yi|R̂<i, Y<i

)

=
m∑

i=1

KL∗
r,y

(
Ỹi|R̃<i, Ỹ<i

∥
∥
∥Yi|R<i, Y<i

)

+
m∑

i=1

log

⎛

⎝ 1

Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]

⎞

⎠ .

Moreover, the running time of Sim
˜G,T on input R̂<i, Yi is O(|ri| · T ), with at

most T oracle calls to G̃.

Proof. Consider r ∈ Supp(R̃) and y
def= G̃(r). Then:

m∑

i=1

KL∗
r,y

(
R̃i, Ỹi|R̃<i, Ỹ<i

∥
∥
∥ R̂i, Yi|R̂<i, Y<i

)

=
m∑

i=1

KL∗
r,y

(
R̃i, Ỹi|R̃<i, Ỹ<i

∥
∥
∥ R̂i, Ŷi|R̂<i, Ŷ<i

)

=
m∑

i=1

(
KL∗

r,y

(
R̃i|R̃<i, Ỹ≤i

∥
∥
∥ R̂i|R̂<i, Ŷ≤i

)
+ KL∗

r,y

(
Ỹi|R̃<i, Ỹ<i

∥
∥
∥ Ŷi|R̂<i, Ŷ<i

))

=
m∑

i=1

KL∗
r,y

(
Ỹi|R̃<i, Ỹ<i

∥
∥
∥ Ŷi|R̂<i, Ŷ<i

)

=
m∑

i=1

KL∗
r,y

(
Ỹi|R̃<i

∥
∥
∥ Ŷi|R̂<i

)
,
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The first equality is because Yi = Ŷi since we are only considering non-failure
cases (ri �= ⊥). The second equality is the chain rule. The penultimate equality is
by definition of rejection sampling: R̃i|R̃<i, Ỹ≤i and R̂i|R̂<i, Ŷ≤i are identical on
Supp(R̃i) since conditioning on Ŷi = y implies that only non-failure cases (ri �=
⊥) are considered. The last equality is because Ỹ<i (resp. Ŷ<i) is a deterministic
function of R̃<i (resp. R̂<i).

We now relate Ŷi|R̂<i to Yi|Y<i:

Pr
[
Ŷi = yi|R̂<i = r<i

]

= Pr
[
Ŷi = yi, Yi = yi|R̂<i = r<i

]
(Ŷi = yi ⇔ Ŷi = yi ∧ Yi = yi)

= Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]
· Pr

[
Yi = yi|R̂<i = r<i

]
(Bayes’ Rule)

= Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]
· Pr [Yi = yi|Y<i = y<i] ,

where the last equality is because when r ∈ Supp(R̃), R̂<i = r<i ⇒ Y<i = y<i

and because Yi is independent of R̂<i given Y<i (as R̂<i is simply a randomized
function of Y<i). The conclusion of the lemma follows by combining the previous
two derivations.

Observe that taking expectations with respect to a uniform R̃ on both sides
in the conclusion of Lemma 4.5, we get that next-block hardness in relative
entropy is equal to the sum of next-block inaccessible relative entropy and the
expectation of the error term coming from the rejection sampling procedure. The
following lemma upper bounds this expectation.

Lemma 4.6. Let G̃ be an online m-block generator, and let Li
def= 2|˜Gi| be the

size of the codomain of G̃i, i ∈ [m]. Then for all i ∈ [m], r<i ∈ Supp(R̃<i) and
uniform R̃i:

E
yi←˜Gi(r<i, ˜Ri)

⎡

⎣log
1

Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]

⎤

⎦ ≤ log
(

1 +
Li − 1

T

)

.

Proof (Proof of Lemma 4.6). By definition of Sim
˜G,T , we have:

Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]
= 1 −

(
1 − Pr

[
G̃i(r<i, R̃i) = yi

])T

.
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Applying Jensen’s inequality, we have:

E
yi←˜Gi(r<i, ˜Ri)

⎡

⎣log

⎛

⎝ 1

Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]

⎞

⎠

⎤

⎦

≤ log E
yi←˜Gi(r<i, ˜Ri)

⎡

⎣ 1

Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]

⎤

⎦

= log

⎛

⎝
∑

y∈Im(˜Gi(r<i,·))

py

1 − (1 − py)T

⎞

⎠

where py = Pr
[
G̃i(r<i, R̃i) = y

]
. Since the function x/

(
1 − (1 − x)T

)
is convex

(see Lemma A.1 in the appendix), the maximum of the expression inside the
logarithm over probability distributions {py} is achieved at the extremal points
of the standard probability simplex. Namely, when all but one py → 0 and the
other one is 1. Since limx→0 x/1 − (1 − x)T = 1/T :

log

⎛

⎝
∑

y∈Im(˜Gi)

py

1 − (1 − py)T

⎞

⎠ ≤ log
(

1 + (Li − 1) · 1
T

)

.

By combining Lemmas 4.5 and 4.6, we are now ready to state the main
result of this section, relating witness hardness in relative entropy to next-block
inaccessible relative entropy.

Theorem 4.7. Let Π be a binary relation and let (Y,W ) be a pair of random
variables supported on Π. Let Y = (Y1, . . . , Ym) where the bit length of Yi is at
most �. Then we have:

1. if (Π,Y,W ) is (t,Δ) witness hard in relative entropy, then for every 0 < Δ′ ≤
Δ, (Y1, . . . , Ym,W ) has (t′,Δ − Δ′) next-block inaccessible relative entropy
where t′ = Ω(tΔ′/(m22�)).

2. if (Π,Y,W ) is (t,Δ) witness hard in δ-min relative entropy then for every 0 <
Δ′ ≤ Δ and 0 ≤ δ′ ≤ 1−δ, we have that (Y1, . . . , Ym,W ) has (t′,Δ−Δ′) next-
block inaccessible (δ + δ′)-min relative entropy where t′ = Ω(tδ′Δ′/(m22�)).

Proof. We consider an online generator G̃ supported on (Y1, . . . , Ym,W ) and
the simulator Sim

˜G,T . For convenience, we sometimes write Ym+1 for W . Define
R̃

def= R̃≤m where R̃≤m is a sequence of independent and uniformly random

variables, Ỹ≤m+1
def= G̃(R̃), G̃1(R̃) def= Y≤m and G̃w(R̃) def= Ỹm+1. We also write for

1 ≤ i ≤ m, R̂i
def= Sim

˜G,T (R̂<i, Yi), Ŷi
def= G̃(R̂≤i)i. Finally we define S

˜G,T (Y ) def=
R̂≤m.

Observe that (G̃1, G̃w) is a two-block generator supported on Π, so the pair
(G̃,S

˜G,T ) forms a pair a algorithms as in the definition of witness hardness in
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relative entropy (Definition 3.10). We focus on sample notions first, and consider
r ∈ Supp(R̃), y ∈ Supp(Ỹ≤m) and w ∈ Supp(Ỹm+1). First we use the chain rule
to isolate the witness block:

KL∗
r,y,w

(
R̃, G̃1(R̃), G̃w(R̃)

∥
∥
∥S

˜G,T (Y ), Y,W
)

= KL∗
r,y,w

(
G̃w(R̃)|R̃, G̃1(R̃)

∥
∥
∥ W |S˜G,T (Y ), Y

)

+ KL∗
r,y,w

(
R̃, G̃1(R̃)

∥
∥
∥ S

˜G,T (Y ), Y
)

= KL∗
r,y,w

(
Ỹm+1|R̃≤m, Ỹ≤m

∥
∥
∥Ym+1|R≤m, Y≤m

)

+ KL∗
r,y,w

(
R̃, G̃1(R̃)

∥
∥
∥ S

˜G,T (Y ), Y
)

.

Next, as in Theorem 4.2 we apply the chain rule to decompose the second
term on the right-hand side and obtain next-block hardness in relative entropy:

KL∗
r,y,w

(
R̃, G̃1(R̃)

∥
∥
∥S

˜G,T (Y ), Y
)

=
m∑

i=1

KL∗
r,y,w

(
R̃i, Ỹi|R̃<i, Ỹ<i

∥
∥
∥ R̂i, Yi|R̂<i, Y<i

)
.

Finally, we use Lemma 4.5 to further decompose the right-hand side term
into inaccessible relative entropy and the rejection sampling error:

m∑

i=1

KL∗
r,y,w

(
R̃i, Ỹi|R̃<i, Ỹ<i

∥
∥
∥ R̂i, Yi|R̂<i, Y<i

)

=
m∑

i=1

KL∗
r,y

(
Ỹi|R̃<i, Ỹ<i

∥
∥
∥ Yi|R<i, Y<i

)

+
m∑

i=1

log

⎛

⎝ 1

Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]

⎞

⎠ .

Combining the previous derivations, we obtain:

m+1∑

i=1

KL∗
r,y

(
Ỹi|R̃<i, Ỹ<i

∥
∥
∥ Yi|R<i, Y<i

)

= KL∗
r,y,w

(
R̃, G̃1(R̃), G̃w(R̃)

∥
∥
∥S

˜G,T (Y ), Y,W
)

−
m∑

i=1

log

⎛

⎝ 1

Pr
[
Ŷi = yi|Yi = yi, R̂<i = r<i

]

⎞

⎠ .

Now, the first claim of the theorem follows by taking expectations on both
sides and observing that when T = m · 2�/(Δ′ ln 2), Lemma 4.6 implies that the
expected value of the rejection sampling error is smaller than Δ′.
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For the second claim, we first establish using Lemma 4.6 and Markov’s
inequality that:

Pr
y≤m+1←˜Y≤m+1

r← ˜R

⎡

⎣
m∑

i=1

log

⎛

⎝ 1

Pr
[
Ŷi = yi|R̂<i = r<i, Ŷ<i = y<i

]

⎞

⎠ ≥ m · 2�

Tδ′ ln 2

⎤

⎦ ≤ δ′

and we reach a similar conclusion by setting T = m · 2�/(δ′Δ′ ln 2).

Remark 4.8. For fixed distribution and generators, in the limit where T grows
to infinity, the error term caused by the failure of rejection sampling in time T
vanishes. In this case, hardness in relative entropy implies next-block inaccessible
relative entropy without any loss in the hardness parameters.

4.2 Next-Block Inaccessible Relative Entropy and Inaccessible
Entropy

We first recall the definition from [13], slightly adapted to our notations.

Definition 4.9 (Inaccessible Entropy). Let (Y1, . . . , Ym+1) be a joint dis-
tribution.6 We say that (Y1, . . . , Ym+1) has t-inaccessible entropy Δ if for
all (m + 1)-block online generators G̃ running in time t and consistent with
(Y1, . . . , Ym+1):

m+1∑

i=1

(
H(Yi|Y<i) − H(Ỹi|R̃<i)

)
> Δ .

where (Ỹ1, . . . , Ỹm+1) = G̃(R̃1, . . . , R̃m+1) for a uniform R̃≤m+1. We say that
(Y1, . . . , Ym+1) has (t, δ)-max-inaccessible entropy Δ if for all (m + 1)-block
online generators G̃ running in time t and consistent with (Y1, . . . , Ym+1):

Pr
r≤m+1← ˜R≤m+1

y≤m+1←˜G(r≤m+1)

[
m+1∑

i=1

(
H∗

yi,y<i
(Yi|Y<i) − H∗

yi,r<i

(
Ỹi|R̃<i

))
≤ Δ

]

< δ .

Unfortunately, one unsatisfactory aspect of Definition 4.9 is that inaccessible
entropy can be negative since the generator G̃ could have more entropy than
(Y1, . . . , Ym+1): if all the Yi are independent biased random bits, then a generator
G̃ outputting unbiased random bits will have negative inaccessible entropy. On
the other hand, next-block inaccessible relative entropy (Definition 4.3) does not
suffer from this drawback.

Moreover, in the specific case where (Y1, . . . , Ym+1) is a flat distribution7,
then no distribution with the same support can have higher entropy and in this
case Definitions 4.3 and 4.9 coincide as stated in the following theorem.
6 We write m+1 the total number of blocks, since in this section we will think of Ym+1

(also written as W ) as the witness of distributional search problem and (Y1, . . . , Ym)
are the blocks of the instance as in the previous section.

7 For example, the distribution (Y≤m, Ym+1) = (f(U), U) for a function f and uniform
input U is always a flat distribution even if f itself is not regular.
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Theorem 4.10. Let (Y1, , . . . , Ym+1) be a flat distribution and G̃ be an (m +
1)-block generator consistent with Y≤m+1. Then for Ỹ≤m+1 = G̃(R̃≤m+1) for
uniform R̃≤m+1:

1. For every y≤m+1, r≤m+1 ∈ Supp(Ỹ≤m+1, R̃≤m+1), it holds that

m+1∑

i=1

(
H∗

yi,y<i
(Yi|Y<i) − H∗

yi,r<i

(
Ỹi|R̃<i

))

=
m+1∑

i=1

KL∗
yi,y<i,r<i

(
Ỹi|R̃<i, Ỹ<i

∥
∥
∥Yi|R<i, Y<i

)

In particular, (Y1, . . . , Ym+1) has (t,Δ) next-block inaccessible δ-min relative
entropy if and only if it has (t, δ)-max-inaccessible entropy at least Δ.

2. Furthermore,

m+1∑

i=1

(
H (Yi|Y<i) − H

(
Ỹi|R̃<i

))
=

m+1∑

i=1

KL
(
Ỹi|R̃<i, Ỹ<i

∥
∥
∥Yi|R<i, Y<i

)
,

so in particular, (Y1, . . . , Ym+1) has (t,Δ) next-block inaccessible relative
entropy if and only if it has t-inaccessible entropy at least Δ.

Proof. For the sample notions, the chain rule (Proposition 2.6) gives:

m+1∑

i=1

H∗
yi,y<i

(Yi|Y<i) = H∗
y (Y≤m+1) = log |Supp(Y≤m+1)|

for all y since Y is flat. Hence:

log|Supp(Y≤m+1)| −
m+1∑

i=1

H∗
yi,y<i

(
Ỹi|R̃<i

)

=
m+1∑

i=1

(
H∗

yi,y<i
(Yi|Y<i) − H∗

yi,r<i

(
Ỹi|R̃<i

))

=
m+1∑

i=1

KL∗
yi,y<i,r<i

(
Ỹi|R̃<i, Ỹ<i

∥
∥
∥Yi|R<i, Y<i

)
,

so the second claim follows by taking the expectation over (Ỹ≤m+1, R̃≤m+1) on
both sides.

By chaining the reductions between the different notions of hardness consid-
ered in this work (hardness in relative entropy, next-block inaccessible relative
entropy and inaccessible entropy), we obtain a more modular proof of the the-
orem of Haitner et al. [13], obtaining inaccessible entropy from any one-way
function.
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Theorem 4.11. Let n be a security parameter, f : {0, 1}n → {0, 1}n be a (t, ε)-
one-way function, and X be uniform over {0, 1}n. For � ∈ {1, . . . , n}, decompose
f(X) def= (Y1, . . . , Yn/�) into blocks of length �. Then:

1. For every 0 ≤ Δ ≤ log(1/ε), (Y1, . . . , Yn/�,X) has t′-inaccessible entropy at
least (log(1/ε) − Δ) for t′ = Ω

(
t · Δ · �2/(n2 · 2�)

)
.

2. For every 0 < δ ≤ 1 and 0 ≤ Δ ≤ log(1/ε) − log(2/δ), (Y1, . . . , Yn/�,X)
has (t′, δ)-max-inaccessible entropy at least (log(1/ε) − log(2/δ) − Δ) for t′ =
Ω

(
t · δ · Δ · �2/(n2 · 2�)

)
.

Proof. Since f is (t, ε)-one-way, the distributional search problem
(
Πf , f(X)

)

where Πf = {(f(x), x) : x ∈ {0, 1}n} is (t, ε)-hard. Clearly, (f(X),X) is sup-
ported on Πf , so by applying Theorem 3.11, we have that (Πf , f(X),X) is
(Ω(t), log(1/ε)) witness hard in relative entropy and (Ω(t), log(1/ε) − log(2/δ))
witness hard in δ/2-min relative entropy. Thus, by Theorem 4.7 we have that
(Y1, . . . , Yn/�,X) has

(
Ω

(
t · Δ · �2/(n2 · 2�)

)
, log(1/ε) − Δ

)
next-block inacces-

sible relative entropy and
(
Ω

(
t · δ · Δ · �2/(n2 · 2�)

)
, log(1/ε) − log(2/δ) − Δ

)

next-block inaccessible δ-min relative entropy, and we conclude by Theorem 4.10.

Remark 4.12. For comparison, the original proof of [13] shows that for every
0 < δ ≤ 1, (Y1, . . . , Yn/�,X) has (t′, δ)-max-inaccessible entropy at least
(log(1/ε) − 2 log(1/δ) − O(1)) for t′ = Ω̃

(
t · δ · �2/(n2 · 2�)

)
, which in partic-

ular for fixed t′ has quadratically worse dependence on δ in terms of the
achieved inaccessible entropy: log(1/ε) − 2 · log(1/δ) − O(1) rather than our
log(1/ε) − 1 · log(1/δ) − O(1).

Corollary 4.13 (Theorem 4.2 in [13]). Let n be a security parameter,
f : {0, 1}n → {0, 1}n be a strong one-way function, and X be uniform over
{0, 1}n. Then for every � = O(log n), (f(X)1...�, . . . , f(X)n−�+1...n,X) has
nω(1)-inaccessible entropy ω(log n) and (nω(1),negl(n))-max-inaccessible entropy
ω(log n).

Acknowledgements. We thank Muthuramakrishnan Venkitasubramaniam for an
inspiring conversation which sparked this work.

A Missing Proofs

Lemma A.1. For all t ≥ 1, f : x �→ x
1−(1−x)t is convex over [0, 1].

Proof. We instead show convexity of f̃ : x �→ f(1 − x). A straightforward com-
putation gives:

f̃ ′′(x) =
xt−2t

(
t(1 − x)(xt + 1) − (1 + x)(1 − xt)

)

(1 − xt)3

so that it suffices to show the non-negativity of g(x) = t(1−x)(xt+1)−(1+x)(1−
xt) over [0, 1]. The function g has second derivative t(1−x)(t2 −1)xt−2, which is
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non-negative when x ∈ [0, 1], and thus the first derivative g′ is non-decreasing.
Also, the first derivative at 1 is equal to zero, so that g′ is non-positive over [0, 1]
and hence g is non-increasing over this interval. Since g(1) = 0, this implies that
g is non-negative over [0, 1] and f is convex as desired.

Theorem A.2 (Theorem 3.11 restated). Let Π be a binary relation and let
(Y,W ) be pair of random variables supported on Π. If (Π,Y ) is (t, ε)-hard, then
(Π,Y,W ) is (t′,Δ′) witness hard in relative entropy and (t′,Δ′′) witness hard
in δ-min relative entropy for every δ ∈ [0, 1] where t′ = Ω(t), Δ′ = log(1/ε) and
Δ′′ = log(δ/ε).

Proof. We proceed similarly to the proof of Theorem 3.5. Let (G̃,S) be a pair of
algorithms with G̃ = (G̃1, G̃w) a two-block generator supported on Π. Define the
linear-time oracle algorithm A

˜Gw,S(y) def= G̃w(S(y)). Then

Pr
[
Π

(
Y,A

˜Gw,S(Y )
)]

= Pr
[
Π(Y, G̃w(S(Y )))

]

≥ Pr
[
G̃1(S(Y )) = Y

]
(G̃ is supported on Π)

=
∑

r∈Supp( ˜R)

Pr
[
S(Y ) = r ∧ Y = G̃1(r)

]

≥
∑

r∈Supp( ˜R)

w∈Supp(˜G2( ˜R))

Pr
[
S(Y ) = r ∧ Y = G̃1(r) ∧ W = w

]

= E
r← ˜R

w←˜G2(r)

⎡

⎣
Pr

[
S(Y ) = r ∧ Y = G̃1(r) ∧ W = w

]

Pr
[
R̃ = r ∧ G̃2(r) = w

]

⎤

⎦

= E
r← ˜R

y←˜G1(r)

w←˜G2(r)

[
2−KL∗

r,y,w( ˜R,˜G1( ˜R),˜G2( ˜R)‖ S(Y ),Y,W)
]
,

The witness hardness in relative entropy then follows by applying Jensen’s
inequality (since 2−x is convex) and the witness hardness in δ-min relative
entropy follows by Markov’s inequality by considering the event that the sample
relative entropy is smaller than Δ (this event has density at least δ).

References

1. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo
random bits. In: Proceedings of the 23th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 112–117 (1982)
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