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Abstract. We introduce models of computation that enable direct com-
parisons between classical and quantum algorithms. Incorporating pre-
vious work on quantum computation and error correction, we justify the
use of the gate-count and depth-times-width cost metrics for quantum
circuits. We demonstrate the relevance of these models to cryptanalysis
by revisiting, and increasing, the security estimates for the Supersingular
Isogeny Diffie–Hellman (SIDH) and Supersingular Isogeny Key Encapsu-
lation (SIKE) schemes. Our models, analyses, and physical justifications
have applications to a number of memory intensive quantum algorithms.

1 Introduction

The US National Institute of Standards and Technology (NIST) is currently
standardising post-quantum cryptosystems. As part of this process, NIST has
asked cryptographers to compare the security of such cryptosystems to the secu-
rity of standard block ciphers and hash functions. Complicating this analysis
is the diversity of schemes under consideration, the corresponding diversity of
attacks, and stark differences in attacks on post-quantum schemes versus attacks
on block ciphers and hash functions. Chief among the difficulties is a need to
compare classical and quantum resources.

NIST has suggested that one quantum gate can be assigned a cost equivalent
to Θ(1) classical gates [34, Section 4.A.5]. However, apart from the notational
similarity between boolean circuits and quantum circuits, there seems to be little
justification for this equivalence.

Even if an adequate cost function were defined, many submissions rely on
proxies for quantum gate counts. These will need to be re-analyzed before com-
parisons can be made. Some submissions use query complexity as a lower bound
on gate count. Other submissions use a non-standard circuit model that includes
a unit-cost random access gate. The use of these proxies may lead to conservative
security estimates. However,

1. they may produce severe security underestimates—and correspondingly large
key size estimates—especially when they are used to analyze memory inten-
sive algorithms; and
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2. they lead to a proliferation of incomparable units.

We aim to provide cryptographers with tools for making justified comparisons
between classical and quantum computations.

1.1 Contributions

In Sect. 2 we review the quantum circuit model and discuss the role that classical
computers play in performing quantum gates and preserving quantum memories.
We then introduce a model of computation in which a classical random access
machine (RAM) acts as a controller for a memory peripheral such as an array of
bits or an array of qubits. This model allows us to clearly distinguish between
costly memory operations, which require the intervention of the controller, and
free operations, which do not.

We then describe how to convert a quantum circuit into a parallel RAM
(PRAM) program that could be executed by a collection of memory peripheral
controllers. The complexity of the resulting program depends on the physical
assumptions in the definition of the memory peripheral. We give two sets of
assumptions that lead to two distinct cost metrics for quantum circuits. Briefly,
we say that G quantum gates arranged in a circuit of depth D and width (number
of qubits) W has a cost of

– Θ(G) RAM operations under the G-cost metric, which assumes that quantum
memory is passively corrected ; and

– Θ(DW ) RAM operations under the DW -cost metric, which assumes that
quantum memory is actively corrected by the memory peripheral controller.

These metrics allow us to make direct comparisons between quantum circuits
and classical PRAM programs.

In the remainder of the paper we apply our cost metrics to algorithms of
cryptographic significance. In Sect. 6 we review the known classical and quantum
claw-finding attacks on the Supersingular Isogeny Key Encapsulation scheme
(SIKE). Our analysis reveals an attack landscape that is shaped by numerous
trade-offs between time, memory, and RAM operations. We find that attackers
with limited memory will prefer the known quantum attacks, whereas attackers
with limited time will prefer the known classical attacks. In terms of the SIKE
public parameter p, there are low-memory quantum attacks that use p1/4+o(1)

RAM operations, and there are low-depth classical attacks that use p1/4+o(1)

RAM operations. Simultaneous time and memory constraints push the cost of
all known claw-finding attacks higher. We are not aware of any attack that can
be parameterized to use fewer than p1/4+o(1) RAM operations, although some
algebraic attacks may also achieve this complexity.

We build toward our analysis of SIKE by considering the cost of prerequisite
quantum data structures and algorithms. In Sect. 4 we introduce a new dynamic
set data structure, which we call a Johnson vertex. In Sect. 5 we analyze the
cost of quantum algorithms based on random walks on Johnson graphs. We find
that data structure operations limit the range of time-memory trade-offs that
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are available in these algorithms. Previous analyses of SIKE [20,21] ignore data
structure operations and assume that time-memory trade-offs enable an attack
of cost p1/6+o(1). After accounting for data structure operations, we find that
the claimed p1/6+o(1) attack has cost p1/3+o(1).

In Sect. 6.3, we give non-asymptotic cost estimates for claw-finding attacks
on SIKE-n (SIKE with an n-bit public parameter p). This analysis lends further
support to the parameter recommendations of Adj et al. [1], who suggest that a
434-bit p provides 128-bit security and that a 610-bit p provides 192-bit security.
Adj et al. base their recommendation on the cost of memory-constrained classical
attacks. We complement this analysis by considering depth-constrained quantum
attacks (with depth < 296). Under mild assumptions on the cost of some subrou-
tines, we find that the best known depth-limited quantum claw-finding attack
on SIKE-434 uses at least 2143 RAM operations. Likewise, we find that the best
known depth-limited quantum claw-finding attack on SIKE-610 uses at least
2232 RAM operations.

Our methods have immediate applications to the analysis of other quantum
algorithms that use large quantum memories and/or classical co-processors. We
list some directions for future work in Sect. 7.

2 Machine Models

We begin with some quantum computing background in Sect. 2.1, including the
physical assumptions behind Deutsch’s circuit model. We elaborate on the circuit
model to construct memory peripheral models in Sect. 2.2. We specify classical
control costs, with units of RAM operations, for memory peripheral models in
Sect. 2.3. On a first read, the examples of memory peripherals given in Sect. 2.4
may be more informative than the general description of memory peripheral
models in Sect. 2.2. Section 2.4 justifies the cost functions that are used in the
rest of the paper.

2.1 Preliminaries on Quantum Computing

Quantum states and time-evolution. Let Γ be a set of observable configurations
of a computer memory, e.g. binary strings. A quantum state for that memory
is a unit vector |ψ〉 in a complex euclidean space H ∼= C

Γ . Often Γ will have
a natural cartesian product structure reflecting subsystems of the memory, e.g.
an ideal n-bit memory has Γ = {0, 1}n. In such a case, H has a corresponding
tensor product structure, e.g. H ∼= (C2)⊗n. The scalar product on H is denoted
〈 ·| ·〉 and is Hermitian symmetric, 〈φ| ψ〉 = 〈ψ|φ〉. The notation |ψ〉 for unit
vectors is meant to look like the right “half” of the scalar product. Dual vectors
are denoted 〈ψ|. The set {|x〉 | x ∈ Γ} is the computational basis of H. The
Hermitian adjoint of a linear operator A is denoted A†. A linear operator is
self-adjoint if A = A† and unitary if AA† = A†A = 1.

One of the postulates of quantum mechanics is that the observable properties
of a state correspond to self-adjoint operators. A self-adjoint operator can be



Quantum Cryptanalysis in the RAM Model: Claw-Finding Attacks on SIKE 35

written as A =
∑

i λiPi where λi ∈ R and Pi is a projector onto an eigenspace
with eigenvalue λi. Measurement of a quantum state |ψ〉 with respect to A
yields outcome λi with probability 〈ψ|Pi |ψ〉. The post-measurement state is an
eigenvector of Pi.

Quantum computing is typically concerned with only two observables: the
configurations of the memory, and the total energy of the system. The operator
associated to the memory configuration has the computational basis vectors as
eigenvectors; it can be written as

∑
x∈Γ λx |x〉〈x|. If the state of the memory is

given by |ψ〉 =
∑

x∈Γ ψx |x〉, then measuring the memory configuration of |ψ〉
will leave the memory in configuration x with probability |〈x| ψ〉|2 = |ψx|2. The
total energy operator is called the Hamiltonian of the system and is denoted H.
Quantum states evolve in time according to the Schrödinger equation1

d
dt

|ψ(t)〉 = −iH |ψ(t)〉 . (1)

Time-evolution for a duration δ yields |ψ(t0 + δ)〉 = Uδ |ψ(t0)〉 where Uδ =
exp (−iHδ). Note that since H is self-adjoint we have U†

δ = exp (iHδ) so Uδ is
unitary. In general, the Hamiltonian of a system may vary in time, and one may
write H(t) in Eq. 1. The resulting time-evolution operator is also unitary. The
Schrödinger equation applies only to closed systems. A time-dependent Hamil-
tonian is a convenient fiction that allows one to model an interaction with an
external system without modeling the interaction itself.

Quantum circuits. Deutsch introduced the quantum circuit model in [15]. A
quantum circuit is a collection of gates connected by unit-wires. Each wire rep-
resents the motion of a carrier (a physical system that encodes information).
A carrier has both physical and logical (i.e. computational) degrees of freedom.
External inputs to a circuit are provided by sources, and outputs are made avail-
able at sinks. The computation proceeds in time with the carriers moving from
the sources to the sinks. A gate with k inputs represents a unitary transforma-
tion of the logical state space of k carriers. For example, if the carriers encode
qubits, then a gate with k inputs is a unitary transformation of (C2)⊗k. Each
gate takes some non-zero amount of time. Gates that act on disjoint sets of
wires may be applied in parallel. The inputs to any particular gate must arrive
simultaneously; wires may be used to delay inputs until they are needed.

Carriers feature prominently in Deutsch’s description of quantum circuits [15,
p. 79], as does time evolution according to an explicitly time-dependent Hamil-
tonian [15, p. 88]. However, while Deutsch used physical reasoning to justify his
model, in particular his choice of gates, this reasoning was not encoded into the
circuit diagrams themselves. The gates that appear in Deutsch’s diagrams are
defined entirely by the logical transformation that they perform. Gates, includ-
ing the unit-wire, are deemed computationally equivalent if they enact the same
logical transformation. Two gates can be equivalent even if they act on different
carriers, take different amounts of time, etc. Computationally equivalent gates
1 Here we are taking Planck’s constant equal to 2π, i.e. � = 1.
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are given the same representation in a circuit diagram. Today it is common to
think of quantum circuits as describing transformations of logical states alone.

2.2 Memory Peripheral Models

The memory peripheral models that we introduce in this section generalize the
circuit model by making carriers explicit. We depart from the circuit model as
follows:

1. We associate a carrier to each unit-wire and to each input and output wire
of each gate. Wires can only be connected if they act on the same carrier.

2. We assume that the logical state of a computation emerges entirely from the
physical state of its carriers.

3. Our unit-wire acts on its associated carrier by time evolution according to a
given time-independent Hamiltonian for a given duration.

4. We interpret our diagrams as programs for classical controllers. Every gate
(excluding the unit-wire) represents an intervention from the controller.

In sum, these changes allow us to give some physical justification for how a circuit
is executed, and they allow us to assign different costs depending on the justifi-
cation provided. In particular, they allow us to separate free operations—those
that are due to natural time-independent evolution—from costly operations—
those that are due to interventions from the classical controller.

Our model has some potentially surprising features. A unit-wire that acts on
a carrier with a non-trivial Hamiltonian does not necessarily enact the logical
identity transformation. Consequently, wires of different lengths may not be com-
putationally equivalent in Deutsch’s sense. In fact, since arbitrary computations
can be performed ballistically, i.e. by time-independent Hamiltonians [16,24,28],
the unit-wire can enact any transformation of the computational state. We do
not take advantage of this in our applications; the unit-wires that we consider in
Sect. 2.4 enact the logical identity transformation (potentially with some associ-
ated cost).

A carrier, in our model, is represented by a physical state space H and a
Hamiltonian H : H → H. To avoid confusion with Deutsch’s carriers, we refer
to (H,H) as a memory peripheral.

Definition 2.1. A memory peripheral is a tuple A = (H,H) where H is a finite
dimensional state space and H is a Hermitian operator on H. The operator H
is referred to as the Hamiltonian of A.

The reader may like to keep in mind the example of an ideal qubit memory
Q = (C2, 0).

Parallel wires carry the parallel composition of their associated memory
peripherals. The memory peripheral that results from parallel composition of
A and B is denoted A ⊗ B. The state space associated with A ⊗ B is HA ⊗ HB,
and the Hamiltonian is HA ⊗ IB + IA ⊗ HB. We say that A and B are sub-
peripherals of A⊗B. We say that a memory peripheral is irreducible if it has no
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sub-peripherals. The width of a memory peripheral is the number of irreducible
sub-peripherals it contains.

A quantum circuit on n qubits may be thought of as a program for the
memory peripheral Q⊗n. Programs for other memory peripherals may involve
more general memory operations.

Definition 2.2. A memory operation is a morphism of memory peripherals f :
A → B that acts as a quantum channel between HA and HB, i.e. it takes quantum
states on HA to quantum states on HB.

The arity of a memory operation is the number of irreducible sub-peripherals
on which it acts. If there is no potential for ambiguity, we will refer to memory
operations as gates. Examples of memory operations include: unitary transforma-
tions of a single state space, isometries between state spaces, state preparation,
measurement, and changes to the Hamiltonian of a carrier.

In order to define state preparation and measurement it is convenient to
introduce a void peripheral 1. State preparation is a memory operation of the
form 1 → A, and measurement is a memory operation of the form A → 1. The
reader may assume that 1 = (C, 0) in all of our examples.

Networks of memory operations can be represented by diagrams that are
almost identical to quantum circuits. Memory peripherals must be clearly
labelled, and times must be given for gates, but no other diagrammatic changes
are necessary. An example is given in Fig. 1.

Just as it is useful to specify a gate set for quantum circuits, it is useful to
define collections of memory peripherals that are closed under parallel compo-
sition and under sequential composition of memory operations. The notion of
a symmetric monoidal category captures the relevant algebraic structure. The
following definition is borrowed from [13, Definition 2.1] and, in the language of
that paper, makes a memory peripheral model into a type of resource theory.
The language of resource theories is not strictly necessary for our purposes, but
we think this description may have future applications.

Definition 2.3. A memory peripheral model is a symmetric monoidal category
(C, ◦,⊗, 1) where

• the objects of C are memory peripherals,
• the morphisms between objects of C are memory operations,
• the binary operation ◦ denotes sequential composition of memory oper-

ations,
• the binary operation ⊗ denotes parallel composition of memory periph-

erals and of memory operations, and
• the void peripheral 1 satisfies A ⊗ 1 = 1 ⊗ A = A for all A ∈ C.

2.3 Parallel RAM Controllers for Memory Peripheral Models

A memory peripheral diagram can be viewed as a program that tells a classical
computer where, when, and how to interact with its memory. We will now specify
a computer that executes these programs.
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Fig. 1. Three representations of a quantum algorithm.

Following Deutsch, we have assumed that all gates take a finite amount of
time, that each gate acts on a bounded number of subsystems, and that gates
that act on disjoint subsystems can be applied in parallel. Circuits can be of
arbitrary width, so a control program may need to execute an unbounded number
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of operations in a finite amount of time. Hence, we must either assume that the
classical control computer can operate arbitrarily quickly or in parallel.

We opt to treat controllers as parallel random access machines (PRAMs).
Several variants of the PRAM exist [26]. The exact details of the instruction set
and concurrency model are largely irrelevant here. For our purposes, a PRAM is
a collection of RAMs that execute instructions in synchrony. Each RAM executes
(at most) one instruction per time step. At time step i each RAM can assume
that the other RAMs have completed their step i − 1 instructions. We assume
that synchronization between RAMs and memory peripherals is free.

We assign a unique positive integer to each wire in a diagram, so that an
ordered collection of k memory peripherals can be identified by a k-tuple of
integers. We use a k-tuple to specify an input to a k-ary gate. The memory
operations that are available to a controller are also assigned unique positive
integers.

We add two new instructions to the RAM instruction set: APPLY and STEP.
These instructions enable parallel and sequential composition of memory opera-
tions, respectively. APPLY takes three arguments: a k-tuple of addresses, a mem-
ory operation, and an (optional) k-tuple of RAM addresses in which to store
measurement results. STEP takes no arguments; it is only used to impose a logi-
cal sequence on steps of the computation.

When a processor calls APPLY the designated memory operation is scheduled
to be performed during the next STEP call. In one layer of circuit depth, each
RAM processor schedules some number of memory operations to be applied in
parallel and then one processor calls STEP. If memory operations with overlap-
ping addresses are scheduled for the same step, the behaviour of the memory
peripheral is undefined and the controller halts. This ensures that only one oper-
ation is applied per subsystem per call to STEP.

A quantum circuit of width W can be converted into O(W ) RAM programs
by assigning gates to processors according to a block partition of {1, . . . , W}.
The blocks should be of size O(1), otherwise a single processor could need to
execute an unreasonable number of operations in a fixed amount of time. If a
gate involves multiple qubits that are assigned to different processors, the gate
is executed by the processor that is responsible for the qubit of lowest address.
We have provided an example in Fig. 1b.

To apply a multi-qubit gate, a RAM processor must be able to address arbi-
trary memory peripherals. This is a strong capability. However, each peripheral is
involved in at most one gate per step, so this type of random access is analogous
to the exclusive-read/exclusive-write random access that is typical of PRAMs.

The cost of a PRAM computation. Every RAM instruction has unit cost, except
for the placeholder “no operation” instruction, no op, which is free. The cost of
a PRAM computation is the total number of RAM operations executed.
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2.4 Examples of Memory Peripheral Models

Here we give three examples of memory peripheral models. Example 2.4.1 is
classical and primarily an illustration of the model. It shows that our frame-
work can accommodate classical memory without changing the PRAM costs.
Example 2.4.2 is a theoretical self-corrected quantum memory that justifies the
G-cost. Example 2.4.3 is a more realistic actively-corrected quantum memory
that justifies the DW -cost.

2.4.1 Non-volatile Classical Memories
A non-volatile bit-memory can store a bit indefinitely without periodic error
correction or read/write cycles. As a memory peripheral, this can simulate other
classical computation models and gives the expected costs.

Technologies. The historically earliest example of a non-volatile bit memory is
the “core memory” of Wang and Woo [41]. A modern example is Ferroelectric
RAM (FeRAM). The DRAM found in common consumer electronics requires
a periodic read/write cycle, which should be included in a cost analysis. While
there may be technological and economic barriers to using non-volatile memory
at all stages of the computing process, there are no physical barriers.

Hamiltonian of a memory cell. A logical bit can be encoded in the net mag-
netization of a ferromagnet. A ferromagnet can be modelled as a collection of
spins. Each spin is oriented up or down, and has state |↑〉 or |↓〉. The self-adjoint
operator associated to the orientation of a spin is σz = |↑〉〈↑| − |↓〉〈↓|; measuring
|↑〉 with respect to σz yields outcome +1 with probability 1, and measuring |↓〉
yields outcome −1 with probability 1.

In the d-dimensional Ising model of ferromagnetism, Ld spins are arranged in
a regular square lattice of diameter L in d-dimensional space. The Ising Hamil-
tonian imposes an energy penalty on adjacent spins that have opposite orienta-
tions:

HIsing = −
∑

(i,j)

σ(i)
z ⊗ σ(j)

z .

In 1936 [35] Peierls showed that the Ising model is thermally stable in dimensions
d ≥ 2. The two ground states, all spins pointing down and all spins pointing
up, are energetically separated. The energy required to map the logical zero (all
down) to logical one (all up) grows with L, and the probability of this happening
(under a reasonable model of thermal noise) decreases with L. The phenomenon
of thermal stability in dimensions 2 and 3 provides an intuitive explanation for
why we are able to build classical non-volatile memories like core-memory (see
also [14, Section X.A]).

Memory peripheral model. A single non-volatile bit, encoded in the net magne-
tization of an L × L grid of spins, can be represented by a memory peripheral
BL = ((C2)⊗L2

,HIsing). From a single bit we can construct w-bit word periph-
erals WL,w = B⊗w

L .
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Turing machines, boolean circuits, PRAMs, and various other classical mod-
els can be simulated by controllers for word memory peripheral models. The only
strictly necessary memory operations are those for reading and writing individual
words.

2.4.2 Self-correcting Quantum Memories
A self-correcting quantum memory is the quantum analogue of a non-volatile bit
memory. The Hamiltonian of the carrier creates a large energy barrier between
logical states. At a sufficiently low temperature the system does not have enough
energy for errors to occur.

The thermal stability of the Ising model in d ≥ 2 spatial dimensions seems
to have inspired Kitaev’s search for geometrically local quantum stabilizer codes
[27]. The two-dimensional toric code that Kitaev defined in [27] is not ther-
mally stable [2]. However, a four-dimensional variant is thermally stable [3,14].
The question of whether there exists a self-correcting quantum memory with a
Hamiltonian that is geometrically local in <4 spatial dimensions remains open.

In two spatial dimensions, various “no-go theorems” suggest that self-
correcting quantum memories may not exist. For example, a stabilizer code
defined on a two-dimensional lattice of qubits cannot self-correct [11]. Brown
et al. [12] summarize generalizations of this no-go result and survey the remain-
ing avenues toward self-correcting memory in low dimensions.

At present, a model of quantum computation that assumes non-volatile mem-
ory, i.e. a free identity gate, and <4 spatial dimensions is making a physical
assumption about the existence of two- or three-dimensional self-correcting mem-
ories. Here we will simply ignore geometric locality and write down a memory
peripheral for the four-dimensional toric code. Because real devices are limited
to three spatial dimensions, this is purely a theoretical example.

Memory peripheral model. The Hamiltonian for the four-dimensional toric code
can be found in [14, Section X.B]. We will denote it Htoric. Like the four-
dimensional Ising Hamiltonian it is defined on L4 spins arranged in a square
lattice. The memory peripheral Qtoric = (CL4

,Htoric) can serve as a drop-in
replacement for the ideal qubit memory peripheral Q for the purpose of describ-
ing the unit-wire.

To execute arbitrary quantum computations on a collection of logical qubits
encoded in Qtoric peripherals, we need memory operations for a universal
gate set, initialization, and measurement. Initialization and Clifford+T gates
are described for the two-dimensional toric code in [14, Section IX] and the
four-dimensional versions are similar. A measurement procedure for the four-
dimensional toric code is in [14, Section X.B]. Treating any of these procedures
as a single memory operation will mask some classical control cost that is poly-
nomial in L. Treating the T gate as a single memory operation masks the use of
an additional memory peripheral to hold a resource state.

Cost function. A quantum circuit on n qubits can be converted into a memory
peripheral diagram for Q⊗n

toric and then interpreted as a PRAM program. In this
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way we can assign a cost, in units of RAM operations, to the quantum circuit
itself. Each wire in the quantum circuit is assigned a length in the memory
peripheral diagram. The quantum circuit and memory peripheral diagram are
otherwise identical. Each gate in the diagram (including state-preparation and
measurement gadgets, but not unit-wires) is expanded into at least one APPLY
instruction. The wires themselves incur no RAM cost, but one STEP instruction
is needed per layer of circuit depth for synchronization. The number of STEP
instructions is no more than the number of APPLY instructions. The following
cost function, the G-cost, is justified by assuming that each gate expands to
O(1) RAM operations.

Definition 2.4 (G-cost). A logical Clifford+T quantum circuit that uses G
gates (in any arrangement) has a G-cost of Θ(G) RAM operations.

Remark 2.1. The depth and width of a circuit do not directly affect its G-cost,
but these quantities are often relevant in practice. A PRAM controller for a cir-
cuit that uses G gates in an arrangement that is D gates deep and W qubits wide
uses O(W ) RAM processors for Ω(D) time. Various G-cost-preserving trade-offs
between time and number of processors may be possible. For example, a circuit
can be re-written so that no two gates are applied at the same time. In this
way, a single RAM processor can execute any G gate circuit in Θ(G) time. This
trade-off is only possible because self-correcting memory allows us to assign an
arbitrary duration to a unit-wire.

2.4.3 Actively Corrected Quantum Memories
It should be possible to build quantum computers even if it is not possible to
build self-correcting quantum memories. Active error correction strategies are
nearing technological realizability; several large companies and governments are
currently pursuing technologies based on the surface code.

Memory peripheral model. When using an active error correction scheme, a logi-
cal Clifford+T circuit has to be compiled to a physical circuit that includes active
error correction. We may assume that the wires carry the ideal qubit memory
peripheral Q. A more detailed analysis might start from the Hamiltonians used
in circuit QED [9].

Memory operations. The compiled physical circuit will not necessarily use the
Clifford+T gate set. The available memory operations will depend on the phys-
ical architecture, e.g. in superconducting nano-electronic architectures one typ-
ically has arbitrary single qubit rotations and one two-qubit gate [42].

Cost function. We can assume that every physical gate takes Θ(1) RAM oper-
ations to apply. This may mask a large constant; a proposal for a hardware
implementation of classical control circuitry can be found in [32]. A review of
active quantum error correction for the purpose of constructing memories can
be found in [39].
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An active error correction routine is applied, repeatedly, to all physical qubits
regardless of the logical workload. If we assume that logical qubits can be encoded
in a constant number of physical qubits, and that logical Clifford+T gates can
be implemented with a constant number of physical gates, then the above con-
siderations justify the DW -cost for quantum circuits.

Definition 2.5 (DW-cost). A logical Clifford+T quantum circuit that is D
gates deep, W qubits wide, and uses any number of gates within that arrangement
has a DW -cost of Θ(DW ) RAM operations.

Remark 2.2. In contrast with the G-cost, there are no DW -cost preserving trade-
offs between time and number of processors when constructing a PRAM program
from a quantum circuit. A circuit of depth D and width W uses Θ(W ) processors
for time Θ(D).

Technologies. Fowler et al. provide a comprehensive overview of the surface
code [17]. Importantly, to protect a circuit of depth D and width W , the surface
code requires Θ(log2(DW )) physical qubits per logical qubit. The active error
correction is applied in a regular cycle (once every 200 ns in [17]). In each cycle
a constant fraction of the physical qubits are measured and re-initialized. The
measurement results are processed with a non-trivial classical computation [18].
The overall cost of surface code computation is Ω(log2(DW )) RAM operations
per logical qubit per layer of logical circuit depth. Nevertheless, future active
error correction techniques may bring this more in line with the DW -cost.

3 Cost Analysis: Quantum Random Access

Our memory peripheral models provide classical controllers with random access
to individual qubits. A controller can apply a memory operation—e.g. a
Clifford+T gate or a measurement—to any peripheral in any time step. How-
ever, a controller does not have quantum random access to individual qubits. A
controller cannot call APPLY with a superposition of addresses. Quantum random
access must be built from memory operations.

In [4], Ambainis considers a data structure that makes use of a “random
access gate.” This gate takes an index i, an input b, and an R element array
A = (a1, a2, . . . , aR). It computes the XOR of ai and b:

|i〉 |b〉 |A〉 �→ |i〉 |b ⊕ ai〉 |A〉 . (2)

Assuming that each |aj〉 is encoded in O(1) irreducible memory peripherals,
a random access gate has arity that grows linearly with R. If the underlying
memory peripheral model only includes gates of bounded arity, then an imple-
mentation of a random access gate clearly uses Ω(R) operations. Beals et al. have
noted that a circuit for random access to an R-element array of m-bit strings
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must have width Ω(Rm) and depth Ω(log R) [5, Theorem 4]. Here we give a
Clifford+T construction that is essentially optimal2.

Rather than providing a full circuit, we will describe how the circuit acts on
|i〉 |0〉 |A〉. The address is log R bits and each register of A is m bits. We use
two ancillary arrays |A′〉 and |A′′〉, both initialized to 0. The array A′ holds R
address-sized registers and O(R) additional qubits for intermediary results, a
total of O(R log R) qubits. The array A′′ is O(Rm) qubits.

We use a standard construction of R-qubit fan-out and R-qubit parity due
to Moore [33]. The fan-out is a tree of O(R) CNOT gates arranged in depth
O(log R). Parity is fan-out conjugated by Hadamard gates. We also use a log R-
bit comparison circuit due to Thapliyal, Ranganathan, and Ferreir [40]. This
circuit uses O(log R) gates in depth O(log log R).

Our random access circuit acts as follows:

1. Fan-out address: Fan-out circuits copy the address i to each register of A′.
This needs a total of log R fan-outs, one for each bit of address. These can
all be done in parallel.

2. Controlled copy: For each 1 ≤ j ≤ R, the boolean value A′[j] = j is stored in
the scratch space associated to A′. The controller knows the address of each
register, so it can apply a dedicated circuit for each comparison. Controlled-
CNOTs are used to copy A[j] to A′′[j] when A′[j] = j. Since A′[j] = j if and
only if j = i, this copies A[i] to A′′[i] but leaves A′′[j] = 0 for j �= i.

3. Parity: Since A′′[j] is 0 for j �= i, the parity of the low-order bit of all the
A′′ registers is equal to the low-order bit of just A′′[i]. Likewise for the other
m − 1 bits. So parallel R-qubit parity circuits can be used to copy A′′[i] to
an m-qubit output register.

4. Uncompute: The controlled copy and fan-out steps are applied in reverse,
returning A′′, A′, and the scratch space to zero.

The entire circuit can be implemented in width O(Rm+R log R). Step 1 dom-
inates the depth and Step 2 dominates the gate cost. The comparison circuits use
O(R log R) gates with depth O(log log R). To implement the controlled-CNOTs
used to copy A[i] to A′′[i] in constant depth, instead of O(m) depth, each of the
R comparison results can be fanned out to (m − 1) qubits in the scratch space
of A′′. This fan-out has depth O(log m).

The total cost of random access is given in Cost 1. Observe that there is more
than a constant factor gap between the G- and DW -cost.

Cost 1. Random access to R registers of m bits each.
Gates: O(Rm + R log R)
Depth: O(log m + log R)
Width: O(Rm + R log R)

2 Actually, here and elsewhere, we use a gate set that includes Toffoli gates and
controlled-swap gates. These can be built from O(1) Clifford+T gates.



Quantum Cryptanalysis in the RAM Model: Claw-Finding Attacks on SIKE 45

4 Cost Analysis: The Johnson Vertex Data Structure

We expect to find significant gaps between the G- and DW -costs of algorithms
that use a large amount of memory. Candidates include quantum algorithms for
element distinctness [4], subset-sum [7], claw-finding [38], triangle-finding [30],
and information set decoding [25]. All of these algorithms are based on quantum
random walks on Johnson graphs—graphs in which each vertex corresponds to
a subset of a finite set.

In this section we describe a quantum data structure for representing a vertex
of a Johnson graph. Essentially, we need a dynamic set that supports member-
ship testing, uniform sampling from the encoded set, insertion, and deletion.
These operations can be fine-tuned for quantum walk applications. In particu-
lar, insertion and deletion only need to be defined on inputs that would change
the size of the encoded set. To avoid ambiguity, we will refer to these special
cases as guaranteed insertion and guaranteed deletion.

4.1 History-Independence

Fix a finite set X . A quantum data structure for subsets of X consists of two
parts: a presentation of subsets as quantum states, and unitary transformations
representing set operations. The presentation must assign a unique quantum
state |A〉 to each A ⊂ X . Uniqueness is a strong condition, but it is necessary
for quantum interference. Different sequences of insertions and deletions that
produce the same set will only interfere if each sequence presents the output in
exactly the same way. The set {0, 1} cannot be stored as |0〉 |1〉 or |1〉 |0〉 depend-
ing on the order in which the elements were inserted. Some valid alternatives are
to fix an order (e.g. always store |0〉 |1〉) or to coherently randomize the order
(e.g. always store 1√

2
(|0〉 |1〉+|1〉 |0〉)). Data structures that allow for interference

between computational paths are called history-independent.
Ambainis describes a history-independent data structure for sets in [4]. His

construction is based on a combined hash table and skip list. Bernstein, Jeffery,
Lange, and Meurer [7], and Jeffery [22], provide a simpler solution based on
radix trees. Both of these data structures use random access gates extensively.
Our Johnson vertices largely avoid random access gates, and in Sect. 4.4 we show
that our data structure is more efficient as a result.

4.2 Johnson Vertices

The Johnson graph J(X,R) is a graph whose vertices are R-element subsets of
{1, . . . , X}. Subsets U and V are adjacent in J(X,R) if and only if |U∩V| = R−1.
In algorithms it is often useful to fix a different base set, so we will define our
data structure with this in mind: A Johnson vertex of capacity R, for a set of
m-bit strings, is a data structure that represents an R-element subset of some
set X ⊆ {1, . . . , 2m − 1}. This implies log2 R ≤ m.
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In our implementation below, a subset is presented in lexicographic order in
an array of length R. This ensures that every R element subset has a unique
presentation.

We describe circuits parameterized by m and R for membership testing, uni-
form sampling, guaranteed insertion, and guaranteed deletion. Since R is a cir-
cuit parameter, our circuits cannot be used in situations where R varies between
computational paths3. This is fine for quantum walks on Johnson graphs, but it
prevents our data structure from being used as a generic dynamic set.

Memory allocation. The set is stored in a length R array of m-bit registers that
we call A. Every register is initialized to the m-bit zero string, ⊥. The guaranteed
insertion/deletion and membership testing operations require auxiliary arrays A′

and A′′. Both contain O(Rm) bits and are initialized to zero. It is helpful to think
of these as length R arrays of m-bit registers that each have some scratch space.
We will not worry about the exact layout of the scratch space.

Guaranteed insertion/deletion. Let U be a set of m-bit strings with |U| =
R−1, and suppose x is an m-bit string not in U . The capacity R−1 guaranteed
insertion operation performs

|U〉 |⊥〉 |x〉 �→ |U ∪ {x}〉 |x〉 .

Capacity R guaranteed deletion is the inverse operation.
Figure 2 depicts the following implementation of capacity R − 1 guaranteed

insertion. For concreteness, we assume that the correct position of x is at index k
with 1 ≤ k ≤ R. At the start of the routine, the first R−1 entries of A represent
a sorted list. Entry R is initialized to |⊥〉 = |0〉⊗m.

(a). Fan-out: Fan-out the input x to the R registers of A′ and also to A[R], the
blank cell at the end of A. The fan-out can be implemented with O(Rm)
gates in depth O(log R) and width O(Rm).

(b). Compare: For i in 1 to R, flip all m bits of A′′[i] if and only if A′[i] ≤
A[i]. The comparisons are computed using the scratch space in A′′. Each
comparison costs O(m) gates, and has depth O(log m) and width O(m)
[40]. The single bit result of each comparison is fanned out to all m bits of
A′′[i] using O(m) gates in depth O(log m). The total cost is O(Rm) gates,
O(log m) depth.

(c). First conditional swap: For i in 1 to R − 1, if A′′[i] is 11 . . . 1 swap A′[i + 1]
and A[i]. After this step, cells k through R of A hold copies of x. The values
originally in A[k], . . . , A[R−1] are in A′[k+1], . . . , A′[R]. Each register swap
uses m controlled-swap gates. All of the swaps can be performed in parallel.
The cost is O(Rm) gates in O(1) depth.

(d). Second conditional swap: For i in 1 to R − 1, if A′′[i] is 11 . . . 1 then
swap A′[i + 1] and A[i + 1]. After this step, the values originally in
A′[k + 1], . . . , A′[R] are in A[k + 1], . . . , A[R]. The cost is again O(Rm)
gates in O(1) depth.

3 One can handle a range of capacities using controlled operations, but the size of the
resulting circuit grows linearly with the number of capacities it must handle.
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(e). Clear comparisons: Repeat the comparison step to reset A′′.
(f). Clear fan-out: Fan-out the input x to the array A′. This will restore A′ back

to the all 0 state. Note that the fan-out does not include A[R] this time.

Fig. 2. Insertion into a Johnson vertex. See text for full description.

Cost 2. Guaranteed insertion/deletion for a Johnson vertex of capacity R with
m-bit elements.

Gates: O(Rm)
Depth: O(log m + log R)
Width: O(Rm)

Membership testing and relation counting. The capacity R membership
testing operation performs

|U〉 |x〉 |b〉 �→
{

|U〉 |x〉 |b ⊕ 1〉 if x ∈ U
|U〉 |x〉 |b〉 otherwise.

As in guaranteed insertion/deletion, the routine starts with a fan-out followed
by a comparison. In the comparison step we flip the leading bit of A′′[i] if and
only if A′[i] = A[i]. This will put at most one 1 bit into the A′′ array. Computing
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the parity of the A′′ array will extract the result. The comparisons use O(Rm)
gates in depth O(log m) [40], as does the parity check [33]. Thus the cost of
membership testing matches that of guaranteed insertion: O(Rm) gates in depth
O(log m + log R).

The above procedure is easily modified to test other relations and return the
total number of matches. In place of the parity circuit, we would use a binary
tree of O(log R)-bit addition circuits. With the adders of [37], the cost of the
addition tree is O(R log R) gates in depth O(log2 R). The ancilla bits for the
addition tree do not increase the overall width beyond O(Rm). As such, the
gate cost of the addition tree is no more than a constant factor more than the
cost of a guaranteed insertion. The full cost of relation counting will also depend
on the cost of evaluating the relation.

Cost 3. Membership testing and relation counting for a Johnson vertex of capa-
city R with m-bit elements. The terms TG, TD, and TW denote the gates, depth,
and width of evaluating a relation.

Membership testing Relation counting
Gates: O(Rm) O(Rm + RTG)
Depth: O(log m + log R) O(log2 R + TD)
Width: O(Rm) O(Rm + RTW )

Uniform sampling. The capacity R uniform sampling operation performs
|A〉 |0〉 = |A〉

(
1√
R

∑
x∈A |x〉

)
. We use a random access to the array A with a

uniform superposition of addresses. By Cost 1, this uses O(Rm) gates in depth
O(log m + log R).

4.3 Random Replacement

A quantum walk on a Johnson graph needs a subroutine to replace U with a
neighbouring vertex in order to take a step. Intuitively, this procedure just needs
to delete u ∈ U , sample x ∈ X\U , then insert x. The difficulty lies in sampling x
in such a way that it can be uncomputed even after subsequent insertion/deletion
operations. The naive rejection sampling approach will entangle x with U .

The applications that we consider below can tolerate a replacement proce-
dure that leaves U unchanged with probability R/X. We first sample x uniformly
from X and perform a membership test. This yields

√
1/X

∑
x∈X |U〉 |x〉 |x ∈ U〉.

Conditioned on non-membership, we uniformly sample some u ∈ U , delete u, and
insert x. Conditioned on membership, we copy x into the register that would oth-
erwise hold u. The membership bit can be uncomputed using the “u” register.
This yields

√
1/X

∑
x∈U |U〉 |x〉 |x〉+√

1/RX
∑

V∼U |V〉 |x〉 |u〉 . The cost of ran-
dom replacement is O(1) times the cost of guaranteed insertion plus the cost of
uniform sampling in X .
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4.4 Comparison with Quantum Radix Trees

In [7] a quantum radix tree is constructed as a uniform superposition over all pos-
sible memory layouts of a classical radix tree. This solves the problem of history-
dependence, but relies heavily on random access gates. The internal nodes of a
radix tree store the memory locations of its two children. In the worst case,
membership testing, insertion, and deletion follow paths of Θ(m) memory loca-
tions. Because a quantum radix tree is stored in all possible memory layouts,
these are genuine random accesses to an R register array. Note that a radix tree
of m-bit strings cannot have more than 2m leaves. As such, log R = O(m) and
Cost 1 matches the lower bound for random access gates given by Beals et al.
[5]. Cost 4 is obtained by using Cost 1 for each of the O(log R) random accesses.
The lower bound in Cost 4 exceeds the upper bound in Cost 2.

Cost 4. Membership testing, insertion, and deletion for quantum radix trees.
Gates: Ω(Rm2)
Depth: Ω(m log m + m log R)
Width: Ω(Rm)

5 Cost Analysis: Claw-Finding by Quantum Walk

5.1 Quantum Walk Based Search Algorithms

Let S be a finite set with a subset M of “marked” elements. We focus on a
generic search problem: to find some x ∈ M. A simple approach is to repeat-
edly guess elements of S. This can be viewed as a random walk. At each step,
one transitions from the current guess to another with uniform probability. The
random walk starts with a setup routine that produces an initial element S.
It then repeats a loop of (1) checking if the current element is marked, and
(2) walking to another element. Of course, one need not use the uniform distri-
bution. In a Markov chain, the transition probabilities can be arbitrary, so long
as they only depend on the current guess. The probability of transitioning from
a guess of u to a guess of v can be viewed as a weighted edge in a graph with
vertex set S. The weighted adjacency matrix of this graph is called the transition
matrix of the Markov chain.

Quantum random walks perform analogous operations. The elements of S
are encoded into pairwise orthogonal quantum states. A setup circuit produces
an initial superposition of these states. A check circuit applies a phase to marked
elements. An additional diffusion circuit amplifies the probability of success. It
uses a walk circuit, which samples a new element of S.

Grover’s algorithm is a quantum walk with uniform transition probabilities.
It finds a marked element after Θ(

√|S| / |M|) check steps. Szegedy’s algorithm
can decide whether or not M is empty for a larger class of Markov chains [36].
Magniez, Nayak, Roland, and Santha (MNRS) generalize Szegedy’s algorithm
to admit even more general Markov chains [31]. They also describe a routine
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that can find a marked element [31, “Tolerant RAA” algorithm]. We will not
describe these algorithms in detail; we will only describe the subroutines that
applications of quantum walks must implement. We do not present these in full
generality.

Quantum walk subroutines. Szegedy- and MNRS-style quantum walks use
circuits for the following transformations. The values u and v are elements of S,
and M is the subset of marked elements. The values pvu are matrix entries of
the transition matrix of a Markov chain P . We assume pvu = puv, and that the
corresponding graph is connected.

Set-up: |0 · · · 0〉 �→ 1
√|S|

∑

u∈S
|u〉 |0〉 . (3)

Check: |u〉 |v〉 �→
{

− |u〉 |v〉 if u ∈ M,

|u〉 |v〉 otherwise.
(4)

Update: |u〉 |0〉 �→
∑

u∈S

√
pvu |u〉 |v〉 (5)

Reflect: |u〉 |v〉 �→
{

|u〉 |v〉 if v = 0,

− |u〉 |v〉 otherwise.
(6)

The walk step applies (Update)−1(Reflect)(Update). After this, it swaps |u〉
and |v〉, repeats (Update)−1(Reflect)(Update), then swaps the vertices back.

Following MNRS, we write S for the cost of the Set-up circuit, U for the cost
of the Update and C for the cost of the check. The reflection cost is insignificant
in our applications. The cost of a quantum walk also depends on the fraction
of marked elements, ε = |M|/|S|, and the spectral gap of P . With our assump-
tions, the spectral gap is δ(P ) = 1 − |λ2(P )| where λ2(P ) is the second largest
eigenvalue of P , in absolute value.

Szegedy’s algorithm repeats the check and walk steps for O(1/
√

εδ) itera-
tions. MNRS uses O(1/

√
εδ) iterations of the walk step, but then only O(1/

√
ε)

iterations of the check step. MNRS also uses O(log(1/εδ)) ancilla qubits. Cost 5
shows the costs of both algorithms.

Cost 5. Quantum Random Walks. The tuples S, C, and U are the costs of random
walk subroutines, ε is the fraction of marked vertices, and δ is the spectral gap
of the underlying transition matrix.

Szegedy MNRS

Gates: O
(
SG + 1√

εδ
(UG + CG)

)
O

(
SG + 1√

ε

(
1√
δ
UG + CG

))

Depth: O
(
SD + 1√

εδ
(UD + CD)

)
O

(
SD + 1√

ε

(
1√
δ
UD + CD

))

Width: O (max{SW ,UW ,CW }) O
(
max{SW ,UW + log

(
1
εδ

)
,CW + log

(
1
εδ

)})
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5.2 The Claw-Finding Problem

We will now consider a quantum walk algorithm with significant cryptanalytic
applications. The claw-finding problem is defined as follows.

Problem 5.1 (Claw Finding). Given finite sets X , Y, and Z and functions
f : X → Z and g : Y → Z find x ∈ X and y ∈ Y such that f(x) = g(y).

In a so-called golden claw-finding problem the pair (x, y) is unique.
Tani applied Szegedy’s algorithm to solve the decisional version of the claw-

finding problem (detecting the presence of a claw) [38]. He then applied a binary
search strategy to solve the search problem. As noted in [38], the MNRS algo-
rithm can solve the claw-finding problem directly. The core idea is the same in
either case. Parallel walks are taken on Johnson graphs J(X,Rf ) and J(Y,Rg),
and the checking step looks for claws.

There are a few details to address. First, since the claw property is defined in
terms of the set Z, we will need to augment the base sets with additional data.
Second, we need to formalize the notion of parallel walks. Fortunately, this does
not require any new machinery. Tani’s algorithm perfoms a walk on the graph
product J(X,Rf ) × J(Y,Rg). A graph product G1 × G2 is a graph with vertex
set V (G1) × V (G2) which includes an edge between (v1, v2) and (u1, u2) if and
only if v1 is adjacent to u1 in G1 and v2 is adjacent to u2 in G2. Our random
replacement routine adds self-loops to both Johnson graphs.

5.3 Tracking Claws Between a Pair of Johnson Vertices

In order to track claws we will store Johnson vertices over the base sets Xf =
{(x, f(x)) : x ∈ X} and Yg = {(y, g(y)) : y ∈ Y}. Alongside each pair of Johnson
vertices for U ⊂ Xf and V ⊂ Yg, we will store a counter for the total number of
claws between U and V.

This counter can be maintained using the relationship counting routine of
Sect. 4. Before a guaranteed insertion of (x, f(x)) into U we count the number
of (y, g(y)) in V with f(x) = g(y). Evaluating the relation costs no more than
equality testing and so the full relation counting procedure uses O(Rgm) gates in
depth O(log m + log2 Rg). Assuming that Rf ≈ Rg, counting claws before inser-
tion into U is the dominant cost. We maintain the claw counter when deleting
from U , inserting into V, and deleting from V.

5.4 Analysis of Tani’s Claw-Finding Algorithm

We will make a few assumptions in the interest of brevity. We assume that
elements of Xf and Yg have the same bit-length m. We write X = |X |, Y = |Y|,
and R = max{Rf , Rg}. We also assume that the circuits for f and g are identical;
we write EG, ED, and EW for the gates, depth, and width of either.

In Tani’s algorithm a single graph vertex is represented by two Johnson vertex
data structures. Szegedy’s algorithm and MNRS store a pair of adjacent graph
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vertices, so here we are working with two pairs of adjacent Johnson vertices
UX ∼ VX and UY ∼ VY . The main subroutines are as follows.

Set-up. The Johnson vertices UX and UY are populated by sampling R elements
of X and inserting these while maintaining the claw counter. We defer the full
cost as it is essentially O(R) times the update cost.

Update. The update step applies the random replacement of Sect. 4.3 to each
of the Johnson vertices. The insertions and deletions within the replacement
routine must maintain the claw counter, so relation counting is the dominant
cost of either. Replacement has a cost of O(1) guaranteed insertion/deletions
(from the larger of the two sets) and O(1) function evaluations. Based on Cost
3 and the cost of evaluating f , the entire procedure uses O(Rm + EG) gates in
a circuit of depth O(log m + log2 R + ED) and width O(Rm + EW ).

Check. A phase is applied if the claw-counter is non-zero, with negligible cost.

Walk parameters. Let P be the transition matrix for a random walk on
J(X,Rf ), formed by normalizing the adjacency matrix. The second largest eigen-
value of P is λ2 = O(1 − 1

Rf
), and is positive. Our update step introduces

self-loops with probability R/X into the random walk. The transition matrix
with self-loops is P ′ = R

X I + (1 − R
X )P . The second-largest eigenvalue of P ′ is

λ′
2 = R

X + (1 − R
X )λ2. Since λ2 is positive, the spectral gap of the walk with

self-loops is δ′
f = 1 − |λ′

2| = Ω
(

1
Rf

− 1
X

)
. In general, the spectral gap of a

random walk on G1 × G2 is the minimum of the spectral gap of a walk on G1

or G2. Thus the spectral gap of our random walk on J(X,Rf ) × J(Y,Rg) is

δ = Ω

(
1
R

− 1
X

)

.

The marked elements are vertices (UX ,UY) that contain a claw. In the worst
case there is one claw between the functions and

ε =
RfRg

XY
.

The walk step will then be applied 1/
√

εδ ≥ √
XY/R times.

In Cost 6 we assume R ≤ (XY )1/3. This is because the query-optimal param-
eterization of Tani’s algorithm uses R ≈ (XY )1/3 [38], and the set-up routine
dominates the cost of the algorithm when R > (XY )1/3. The optimal values of
R for the G- and DW -cost will typically be much smaller than (XY )1/3. The
G-cost is minimized when R = EG/m, and the DW -cost is minimized when
R = EW /m.
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Cost 6. Claw-finding using Tani’s algorithm with |Xf | = X; |Yg| = Y ; R =
max{Rf , Rg} ≤ (XY )1/3; m large enough to encode an element of Xf or Yg;
and EG, ED, and EW the gates, depth, and width of a circuit to evaluate f or g.

Gates: O

(
m

√
XY R + EG

√
XY
R

)

Depth: O

(
log m

√
XY
R

+ log2 R
√

XY
R

+ ED

√
XY
R

)

Width: O (Rm + EW )

5.5 Comparison with Grover’s Algorithm

Cost 7 gives the costs of Grover’s algorithm applied to claw-finding. It requires
O(

√
XY ) Grover iterations. Each iteration evaluates f and g, and we assume

this is the dominant cost of each iteration. Note that the cost is essentially that
of Tani’s algorithm with R = 1.

Grover’s and Tani’s algorithms have the same square root relationship to
XY . Tani’s algorithm can achieve a slightly lower cost when the functions f and
g are expensive.

Cost 7. Claw-finding using Grover’s algorithm with the notation of Cost 6.

Gates: O
(
EG

√
XY

)

Depth: O
(
ED

√
XY

)

Width: O (EW )

5.6 Effect of Parallelism

The naive method to parallelise either algorithm over P processors is to divide
the search space into P subsets, one for each processor. For both algorithms,
parallelising will reduce the depth and gate cost for each processor by 1/

√
P .

Accounting for costs across all P processors shows that parallelism increases the
total cost of either algorithm by a factor of

√
P . This is true in both the G- and

the DW -cost metric. This is optimal for Grover’s algorithm [43], but may not
be optimal for Tani’s algorithm. The parallelisation strategy of Jeffery et al. [23]
is better, but uses substantial communication between processors in the check
step. A detailed cost analysis would need to account for the physical geometry
of the processors, which we leave for future work.

6 Application: Cryptanalysis of SIKE

The Supersingular Isogeny Key Encapsulation (SIKE) scheme [20] is based on
Jao and de Feo’s Supersingular Isogeny Diffie–Helman (SIDH) protocol [21]. In
this section we describe the G- and DW -costs of an attack on SIKE. Our analysis
can be applied to SIDH as well.
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SIKE has public parameters p and E where p is a prime of the form 2eA3eB −1
and E is a supersingular elliptic curve defined over Fp2 . Typically eA and eB

are chosen so that 2eA ≈ 3eB ; we will assume this is the case. For each prime
� �= p, one can associate a graph, the �-isogeny graph, to the set of supersingular
elliptic curves defined over Fp2 . This graph has approximately p/12 vertices. Each
vertex represents an equivalence class of elliptic curves with the same j-invariant.
Edges between vertices represent degree-� isogenies between the corresponding
curves4. A SIKE public key is a curve EA, and a private key is a path of length
eA that connects E and EA in the 2-isogeny graph; only one path of this length
is expected to exist.

The �-isogeny graph is (� + 1)-regular. So the set of paths of length c that
start at some fixed vertex in the 2-isogeny graph is of size 3 · 2c−1. This suggests
the following golden claw-finding problem. Let X be the set of paths of length
�eA/2� that start at E, and let Y be the set of paths of length �eA/2� that
start at EA. Let f : X → Fp2 and g : Y → Fp2 be functions that compute the
j-invariant corresponding to the curve reached by a path. Recovering the private
key corresponding to EA is no more difficult than finding a claw between f and
g. With the typical parameterisation of 2eA ≈ 3eB , both X and Y are of size
approximately p1/4.

We will fix these definitions of X , Y, f , and g for the remainder. We will
also assume that EG, ED, and EW —the gates, depth, and width of a circuit for
evaluating f or g—are all po(1).

6.1 Quantum Claw-Finding Attacks

Let us first consider a parallel Grover search with P quantum processors using
the parallelisation strategy of Sect. 5.6. Processor i performs a Grover search on
Xi × Yi where Xi is a subset of X of size p1/4/

√
P , and Yi is a subset of Y of

size p1/4/
√

P . Based on Cost 7 the circuit for all P processors uses p1/4+o(1)
√

P
gates, has depth p1/4+o(1)/

√
P , and has width po(1)P . The only benefit to using

more than 1 processor is a reduction in depth. The G- and the DW -cost both
increase with P .

Tani’s algorithm admits time vs. memory trade-offs using both the Johnson
graph parameter R and the number of parallel instances P . With any number
of instances, both the G- and the DW -cost are minimized when R = po(1).
Based on Cost 6 the circuit for P processors uses p1/4+o(1)

√
P gates, has depth

p1/4+o(1)/
√

P , and has width po(1)P . This is identical to Grover search up to
the po(1) factors. However, there may be a benefit to using R > 1 if function
evaluations are sufficiently expensive.

6.2 Classical Claw-Finding Attacks

In a recent analysis of SIKE, Adj et al. [1] conclude that the best known classical
claw-finding attack on the scheme is based on the van Oorschot–Wiener (VW)
4 We are being slightly imprecise, as the �-isogeny graph is actually directed. However,

if there is an edge from u to v corresponding to an isogeny φ, then there is an edge
from v to u corresponding to the dual isogeny φ̂.
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parallel collision search algorithm. We defer to [1] for a full description of the
attack. The VW method uses a PRAM with P processors and M registers. Each
register must be large enough to store an element of X or Y and a small amount
of additional information.

From [1], a claw-finding attack on SIKE using VW on a PRAM with 1 pro-
cessor and M registers of memory performs

max
{

p3/8+o(1)

M1/2
, p1/4+o(1)

}

(7)

RAM operations. The o(1) term hides the cost of evaluating f , g, and a hash func-
tion. The algorithm parallelizes perfectly so long as P < M ≤ p1/4. This restric-
tion is to avoid a backlog of operations on the shared memory. The algorithm
performs p1/4+o(1) shared memory operations in total, and M1/2P/p1/8+o(1)

shared memory operations simultaneously. Using memory M > p1/4+o(1) does
not reduce the total number of shared memory operations, hence the second
term in Eq. 7.

It is natural to treat the P processors in this attack as a memory peripheral
controller for M registers of non-volatile memory. Each processor needs an addi-
tional po(1) bits of memory for its internal state, and each of the M registers are
of size po(1). Unlike the quantum claw-finding attacks that we have considered,
the RAM operation cost of the VW method decreases as the amount of available
hardware increases.

The query-optimal parameterisation of Tani’s algorithm has p1/6+o(1) qubits
of memory. In our models this implies p1/6+o(1) classical processors for control
with a combined p1/6+o(1) bits of classical memory. A RAM operation for these
processors is equivalent to a quantum gate in cost and time. Repurposed to run
VW, these processors would solve the claw-finding problem in time p1/8+o(1) with
p7/24+o(1) RAM operations. Our conclusion is that an adversary with enough
quantum memory to run Tani’s algorithm with the query-optimal parameters
could break SIKE faster by using the classical control hardware to run van
Oorschot–Wiener.

6.3 Non-asymptotic Cost Estimates

The claw-finding attacks that we have described above can all break SIKE in
p1/4+o(1) RAM operations. However, they achieve this complexity using different
amounts of time and memory. Both quantum attacks achieve their minimal cost
in time p1/4+o(1) on a machine with po(1) qubits. The van Oorschot–Wiener
method achieves its minimal cost in time po(1) on a machine with p1/4+o(1)

memory and processors. A more thorough accounting of the low order terms
could identify the attack (and parameterization) of least cost, but real attackers
have resource constraints that might make this irrelevant.

We use SIKE-n to denote a parameterisation of SIKE using an n-bit prime.
We focus on SIKE-434 and SIKE-610, parameters introduced as alternatives to
the original submission to NIST [1]. Figure 3 depicts the attack landscape for
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SIKE-434. Figure 4 gives the cost of breaking SIKE-434 and SIKE-610 under var-
ious constraints. These cost estimates are based on assumptions that we describe
below.

Cost of function evaluations. The functions f and g involve computing iso-
genies of (2-smooth) degree approximately p1/4. We assume that the cost of
evaluating f is equal to the cost of evaluating g, and we let EG, ED, and EW

denote the gate-count, depth, and width of a circuit for either. We assume that
the classical and quantum gate counts are equal, which may lead us to underes-
timate the quantum cost.

The SIKE specification describes a method for computing a degree-2e isogeny
that uses approximately e log e curve operations [20]. Each operation is either
a point doubling or a degree-2 isogeny evaluation. We assume that it costs the
attacker at least 4 log p log log p gates to compute either curve operation. This is
a very conservative estimate given that both operations involve multiplication in
Fp2 , and a single multiplication in Fp2 involves 3 multiplications in Fp. Based on
this, we assume that computing an isogeny of degree ≈ p1/4 costs the attacker
at least (log p)2

(
(log log p)2 − 2 log log p

)
gates. We assume that the attacker’s

circuit has width 2 log p, which is just enough space to represent its output. We
assume that the gates parallelize perfectly so that ED = EG/EW .

For an attack on SIKE-434 our assumptions give EG = 223.4, ED = 213.7,
and EW = 29.8. For an attack on SIKE-610, they give EG = 224.6, ED = 214.3,
and EW = 210.3. We assume that elements of Xf and Yg can be represented in
m = (log p)/2 bits.

Grover. Each Grover iteration computes two function evaluations. However, to
avoid the issue of whether these evaluations are done in parallel or in series,
we only cost a single evaluation. We ignore the cost of the diffusion operator.
We partition the search space into P parts and distribute the subproblems to P
processors. Each processor performs approximately p1/4/

√
P Grover iterations.

This gives a total gate count of at least p1/4
√

PEG, depth of at least p1/4ED/
√

P ,
and width of at least PEW .

For depth-constrained computations we use the smallest P that is compati-
ble with the constraint. For memory-constrained computations we take P large
enough to use all of the available memory.

Tani. A single instance of Tani’s algorithm stores two lists of size R and needs
scratch space for computing two function evaluations. We only cost a single
function evaluation. We assume that only 2Rm + EW qubits are needed.

We parallelise the gate-optimal parameterisation, i.e. we take R = EG/m.
We partition the search space into P parts and distribute subproblems to P
processors. Each processor performs roughly p1/4/

√
RP walk iterations. Each

walk iteration performs at least one guaranteed insertion with claw-tracking
and at least one function evaluation. Each insertion costs at least Rm gates.
Each function evaluation has depth ED and width EW . The total gate cost
across all P processors is at least p1/4

√
P/R(Rm + EG) = p1/4

√
2mEGP gates
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in depth at least p1/4ED/
√

RP = p1/4ED

√
m/PEG and uses width at least

P (2Rm + EW ) = P (2EG + EW ).
For depth-constrained computations we use the smallest P that is compati-

ble with the constraint. For memory-constrained computations we take P large
enough to use all of the available memory. If the parallelisation is such that
R = EG/m ≥ (p1/2/P )1/3, which would cause the setup cost to exceed the cost
of the walk iteration, we decrease R.

van Oorschot–Wiener. Each processor iterates a cycle of computing a function
evaluation and storing the result. We only cost a single function evaluation per
iteration. Our quantum machine models assume a number of RAM controllers
that is proportional to memory. We make the same assumption here. When the
attacker has M bits of memory we assume they also have P = M/(EW + m)
processors. Intuitively, each processor needs space to evaluate a function and is
responsible for one unit of shared memory. This gives a total gate count of at
least (p3/8/M1/2)EG, a depth of at least (p3/8/M3/2)(EW + m)ED, and a width
of M .

For depth constrained-computations we use the smallest amount of memory
that satisfies the constraint. Unlike the quantum attacks, the gate cost of VW
decreases with memory use, so Fig. 4a and b do not show the best gate count that
VW can achieve with a depth constraint. For memory-constrained computations
we use the maximum amount of memory allowed.

Fig. 3. G-cost and depth of claw-finding attacks on SIKE-434, with the isogeny costs
of Sect. 6.3. The dashed lines are at the width of the query-optimal parameterisation
including storage, (p1/6 log p)/2. Axes are in base-2 logarithms.

7 Conclusions and Future Work

7.1 Impact of Our Work on the NIST Security Level of SIKE

The SIKE submission recommends SIKE-503, SIKE-751, and SIKE-964 for secu-
rity matching AES-128, AES-192, and AES-256, respectively. NIST suggests that
an attack on AES-128 costs 2143 classical gates (in a non-local boolean circuit
model). NIST also suggests that attacks on AES-192 and AES-256 cost 2207 and
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Fig. 4. Cost estimates for claw finding attacks on SIKE. All numbers are expressed as
base-2 logarithms.

2272 classical gates, respectively. We have used “RAM operations” throughout
to refer to non-local bit/qubit operations; our G-cost is directly comparable with
these estimates.

Adj et al. [1] recommend slightly smaller primes: SIKE-434 for security
matching AES-128 and SIKE-610 for security matching AES-192. Their anal-
ysis is based on the cost of van Oorschot–Wiener with less than 280 registers of
memory. NIST’s recommended machine model does not impose a limit on clas-
sical memory, but it does impose a limit on the depth of quantum circuits. Our
cost estimates (Fig. 4) suggests that known quantum attacks do not break SIKE-
434 using less than 2143 classical gates, or SIKE-610 using less than 2207 classical
gates, when depth is limited to 296. We agree with the conclusions of Adj et al.,
and believe that NIST’s machine model should include a width constraint.

We caution that claw-finding attacks may not be optimal. Biasse, Jao, and
Sankar [8] present a quantum attack that exploits the algebraic structure of
supersingular curves defined over Fp. This attack uses p1/4+o(1) quantum gates
and 2O(

√
log p) qubits of memory. Given our analysis of Tani’s algorithm, this

attack may be competitive with other quantum attacks.
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7.2 Further Applications of Our Memory Peripherals

Our analysis should be immediately applicable to other cryptanalytic algorithms
that use quantum walks on Johnson graphs. These include algorithms for subset
sum [7], information set decoding [25], and quantum Merkle puzzles [10].

The G- and DW -cost metrics have applications to classical algorithms that
use quantum subroutines, such as the quantum number field sieve [6], and to
quantum algorithms that use classical subroutines, such as Shor’s algorithm.

Our analysis of quantum random access might affect memory-intensive algo-
rithms like quantum lattice sieving [29]. However, we only looked at quantum
access to quantum memory. There may be physically realistic memory periph-
erals that enable inexpensive quantum access to classical memory (e.g. [19]).

7.3 Geometrically Local Memory Peripherals

Neither of our memory peripheral models account for communication costs. We
allow non-local quantum communication in the form of long-range CNOT gates.
We allow non-local classical communication in the controllers. The distributed
computing model of Beals et al. [5] might serve as a useful guide for eliminat-
ing non-local quantum communication. Note that the resulting circuits are, at
present, only compatible with the DW -cost metric. The known self-correcting
qubit memories are built out of physical qubit interactions that cannot be imple-
mented locally in 3 dimensional space.
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Henŕıquez, F.: On the cost of computing isogenies between supersingular elliptic
curves. In: Cid, C., Jacobson Jr., M. (eds.) SAC 2018. LNCS, vol. 11349, pp. 322–
343. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-10970-7 15

2. Alicki, R., Fannes, M., Horodecki, M.: On thermalization in Kitaev’s 2D model. J.
Phys. A 42, 065303 (2009)

3. Alicki, R., Horodecki, M., Horodecki, P., Horodecki, R.: On thermal stability of
topological qubit in Kitaev’s 4d model. Open Syst. Inf. Dyn. 17, 1–20 (2010)

4. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput.
37, 210–239 (2007)

5. Beals, R., et al.: Efficient distributed quantum computing. Proc. R. Soc. Lond. A:
Math. Phys. Eng. Sci. 469, 20120686 (2013)

6. Bernstein, D.J., Biasse, J.-F., Mosca, M.: A low-resource quantum factoring algo-
rithm. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp.
330–346. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 19

https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.1007/978-3-319-59879-6_19


60 S. Jaques and J. M. Schanck

7. Bernstein, D.J., Jeffery, S., Lange, T., Meurer, A.: Quantum algorithms for the
subset-sum problem. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp.
16–33. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9 2

8. Biasse, J.-F., Jao, D., Sankar, A.: A quantum algorithm for computing isoge-
nies between supersingular elliptic curves. In: Meier, W., Mukhopadhyay, D.
(eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 428–442. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13039-2 25

9. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quan-
tum electrodynamics for superconducting electrical circuits: an architecture for
quantum computation. Phys. Rev. A 69, 14 pages (2004)

10. Brassard, G., Høyer, P., Kalach, K., Kaplan, M., Laplante, S., Salvail, L.: Merkle
puzzles in a quantum world. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 391–410. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9 22

11. Bravyi, S., Terhal, B.: A no-go theorem for a two-dimensional self-correcting quan-
tum memory based on stabilizer codes. New J. Phys.11 (2009)

12. Brown, B.J., Loss, D., Pachos, J.K., Self, C.N., Wootton, J.R.: Quantum memories
at finite temperature. Rev. Modern Phys. 88, 045005 (2016)

13. Coecke, B., Fritz, T., Spekkens, R.W.: A mathematical theory of resources. Inf.
Comput. 250, 59–86 (2016)

14. Dennis, E., Kitaev, A., Landahl, A., Preskill, J.: Topological quantummemory. J.
Math. Phys. 43, 4452–4505 (2002)

15. Deutsch, D.E.: Quantum computational networks. Proc. R. Soc. Lond. A 425,
73–90 (1989)

16. Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16, 507–531 (1986)
17. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surfacecodes: towards

practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012)
18. Fowler, A.G., Whiteside, A.C., Hollenberg, L.C.L.: Towards practical classical pro-

cessing for the surface code. Phys. Rev. Lett. 108, 180501 (2012)
19. Giovannetti, V., Lloyd, S., Maccone, L.: Architectures for a quantum random access

memory. Phys. Rev. A 78, 052310 (2008)
20. Jao, D., et al.: Supersingular isogeny key encapsulation. Submission to NIST post-

quantum project (2017). https://sike.org/#nist-submission
21. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular

elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

22. Jeffery, S.: Frameworks for quantum algorithms. Ph.D. thesis, University of Water-
loo (2014)

23. Jeffery, S., Magniez, F., De Wolf, R.: Optimal parallel quantum query algorithms.
Algorithmica 79, 509–529 (2017)

24. Jordan, S.P.: Fast quantum computation at arbitrarily low energy. Phys. Rev. A
95, 032305 (2017)

25. Kachigar, G., Tillich, J.-P.: Quantum information set decoding algorithms. In:
Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 69–89. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59879-6 5

26. Karp, R.M., Ramachandran, V.: A survey of parallel algorithms for shared-memory
machines, Technical report UCB/CSD-88-408, EECS Department, University of
California, Berkeley, March 1988

27. Kitaev, A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30
(2003)

https://doi.org/10.1007/978-3-642-38616-9_2
https://doi.org/10.1007/978-3-319-13039-2_25
https://doi.org/10.1007/978-3-642-22792-9_22
https://doi.org/10.1007/978-3-642-22792-9_22
https://sike.org/#nist-submission
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-319-59879-6_5


Quantum Cryptanalysis in the RAM Model: Claw-Finding Attacks on SIKE 61

28. Kitaev, A., Shen, A., Vyalyi, M.N.: Classical and Quantum Computation, no. 47.
American Mathematical Society, Providence (2002)

29. Laarhoven, T., Mosca, M., van de Pol, J.: Finding shortest lattice vectors faster
using quantum search. Des. Codes Crypt. 77, 375–400 (2015)

30. Le Gall, F., Nakajima, S.: Quantum algorithm for triangle finding in sparse graphs.
Algorithmica 79, 941–959 (2017)

31. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM
J. Comput. 40, 142–164 (2011)

32. McDermott, R., et al.: Quantum-classical interface based onsingle flux quantum
digital logic. Quantum Sci. Technol. 3, 024004 (2018)

33. Moore, C.: Quantum circuits: Fanout, parity, and counting, arXiv preprint (1999).
https://arxiv.org/abs/quant-ph/9903046

34. National Institute of Standards and Technology, Submission requirements
and evaluation criteria or the post-quantum cryptography standardiza-
tion process (2017). https://csrc.nist.gov/csrc/media/projects/post-quantum-
cryptography/documents/call-for-proposals-final-dec-2016.pdf

35. Peierls, R.: On Ising’s model of ferromagnetism. In: Mathematical Proceedings
Cambridge Philosophical Society, vol. 32, pp. 477–481. Cambridge University Press,
Cambridge (1936)

36. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: 2004 IEEE
Symposium on Foundations of Computer Science, pp. 32–41, October 2004

37. Takahashi, Y., Tani, S., Kunihiro, N.: Quantum addition circuits and unbounded
fan-out. Quantum Inf. Comput. 10, 872–890 (2010)

38. Tani, S.: An improved claw finding algorithm using quantum walk. In: Kučera, L.,
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