
Subvector Commitments with Application
to Succinct Arguments

Russell W. F. Lai1(B) and Giulio Malavolta2(B)

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
giulio.malavolta@hotmail.it

2 Carnegie Mellon University, Pittsburgh, USA
russell.lai@cs.fau.de

Abstract. We put forward the notion of subvector commitments (SVC): An SVC
allows one to open a committed vector at a set of positions, where the opening size
is independent of length of the committed vector and the number of positions to
be opened. We propose two constructions under variants of the root assumption
and the CDH assumption, respectively. We further generalize SVC to a notion
called linear map commitments (LMC), which allows one to open a committed
vector to its images under linear maps with a single short message, and propose
a construction over pairing groups.

Equipped with these newly developed tools, we revisit the “CS proofs”
paradigm [Micali, FOCS 1994] which turns any arguments with public-coin ver-
ifiers into non-interactive arguments using the Fiat-Shamir transform in the ran-
dom oracle model. We propose a compiler that turns any (linear, resp.) PCP into a
non-interactive argument, using exclusively SVCs (LMCs, resp.). For an approx-
imate 80 bits of soundness, we highlight the following new implications:

1. There exists a succinct non-interactive argument of knowledge (SNARK)
with public-coin setup with proofs of size 5360 bits, under the adaptive root
assumption over class groups of imaginary quadratic orders against adver-
saries with runtime 2128. At the time of writing, this is the shortest SNARK
with public-coin setup.

2. There exists a non-interactive argument with private-coin setup, where
proofs consist of 2 group elements and 3 field elements, in the generic bilin-
ear group model.

1 Introduction

Commitment schemes are one of the fundamental building blocks and one of the most
well-studied primitives in cryptography. Due to their pivotal importance in the design of
cryptographic protocols, even small efficiency improvements have magnified repercus-
sions in the field. In a recent work, Catalano and Fiore [27] put forth the notion of Vector
Commitments (VC): A VC allows a prover to commit to a vector x of � messages, such
that it can later open the commitment at any position i ∈ [�] of the vector, i.e., reveal
a message and show that it equals to the i-th committed message. The distinguishing

G. Malavolta—Part of the work done while at Friedrich-Alexander-Universität Erlangen-
Nürnberg.

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11692, pp. 530–560, 2019.
https://doi.org/10.1007/978-3-030-26948-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26948-7_19&domain=pdf
https://doi.org/10.1007/978-3-030-26948-7_19

Subvector Commitments with Application to Succinct Arguments 531

feature of VCs is that the size of the commitments and openings is independent of �.
A VC scheme is required to be position binding, meaning that no efficient algorithm
can open a commitment at some position i to two distinct messages xi �= x′

i. Catalano
and Fiore [27] constructed two VC schemes based on the CDH assumption over pair-
ing groups and the RSA assumption, respectively. In both schemes, a commitment and
an opening both consist of a single group element (in the respective groups). Further-
more, the scheme based on the RSA assumption has public parameters whose size is
independent of the length of the vectors to be committed.

This concept was later generalized by Libert et al. [48], who formalized the notion
of functional commitment (FC). Intuitively, an FC allows the prover to commit to a vec-
tor x, and to open the commitment to function-value tuples (f, y) such that y = f(x).
Libert et al. [48] proposed a construction for linear forms1 based on the Diffie-Hellman
exponent assumption over pairing groups, where a commitment and an opening both
consist of a single group element. VCs and FCs for linear forms are very versatile tools
and turned out to be useful for a variety of applications, such a zero-knowledge sets [54],
polynomial commitments [44], accumulators, and credentials, to mention a few.

While a short commitment is certainly an appealing feature, there are contexts where
there is still a lot to be desired. For example, in case the prover wants to reveal multiple
locations of the committed vector (resp. multiple function outputs) the best known solu-
tion is to repeat the above protocol in parallel. This means that the size of the openings
grows linearly with the amount of revealed locations (resp. function outputs).

1.1 Commitments with Even Shorter Openings

We introduce the notion of subvector commitments (SVCs). An SVC allows one to
commit to a vector x of length � and later open to a subvector of an arbitrary length
≤ �. Given an ordered index set I ⊆ [�], we define the I-subvector of x as the vector
formed by collecting the i-th component of x for all i ∈ I . While a VC is required to
be succinct, namely the commitment size and the size of the proof of the opening are
independent of the length of the committed vector, an SVC has a stronger compactness2

property which additionally requires that these sizes do not depend on the length of
the subvector to be opened. This difference is going to be critical for our applications
(explained later). Improving upon the VC constructions of Catalano and Fiore [27], we
propose two constructions of SVCs based on the CDH assumption over pairing groups
and the RSA assumption, respectively. We further generalize the RSA-based scheme to
work over modules over Euclidean rings [51], where variants of the root assumption
are conjectured to hold. Loosely speaking, the root assumption states that it is hard
to find the e-th root of a random ring element, for any non-trivial e. In these settings
we obtain public-coin-setup instantiations of SVCs using class groups of imaginary
quadratic orders.

1 A linear form is a linear map from a vector space to its field of scalars. Libert et al. [48] used
the more general term linear functions to refer to linear forms.

2 The term “compactness” is borrowed from the literature of randomized encodings (RE) and
functional encryption, and not to be confused with the compactness notion of homomorphic
encryption. For example, a compact RE of a computation with n outputs should have size
independent of n [49].

532 R. W. F. Lai and G. Malavolta

We then generalize the notion of SVCs to allow the prover to reveal arbitrary linear
maps f : F

� → F
q computed over the committed vector. We call such class of schemes

linear map commitments (LMC). As in SVC, it is important to require an LMC to be
compact, meaning that both the commitment and the proofs are of size independent of
� and q, whereas succinctness only requires their size to be independent of �. Note that
an SVC can be viewed as an LMC restricted to the class of linear maps whose matrix
representation has exactly one 1 in each row and 0 everywhere else.

Table 1. Comparison of subvector and linear map commitments for messages of length �, with
binding against adversaries of runtime 2λ. All constants are omitted. pp: public parameters, C:
commitment, Λ: proof, Pub: public-coin, Pri: private-coin, CRH: collision-resistant hash, Root:
strong or adaptive root, SD: subgroup decision, GGM: generic bilinear group model.

Scheme |pp| |C| |Λ| time(Com) time(Open) time(Verify) Setup Assumption

Merkle Tree [52] 1 λ λq log � λ� λq log � λq log � Pub CRH

VC (RSA) [27] λ3� λ3 λ3q λ3� λ3q�2 λ3q Pri RSA

VC (CDH) [27] λ�2 λ λq λ� λq� λq Pri CDH

SVC (Class Group) λ2� λ2 λ2 λ2� λ2(� − q2) λ2q Pub Root

SVC (CDH) λ�2 λ λ λ� λq� λq Pri CDH

FC (linear form) [48] λ3� λ3 λ3q λ3� λ3q� λ3q� Pri SD

LMC λq� λ λ λ� λq�2 λq� Pri GGM

Naively, one may attempt to generalize position binding for LMC by requiring that
the prover cannot open a commitment to (f,y) and (f,y′) with y �= y′, where f is
a linear map and y,y′ ∈ F

k are now vectors. This turns out to be insufficient for our
applications: This is because the prover may be able to open to (f,y) and (f ′,y′) where
f �= f ′ and y �= y′ such that they form an inconsistent system of linear equations, yet
the attack is not captured by the definition. We tackle this issue by defining a more
general function binding notion which requires that no efficient algorithm can produce
openings for Q function-value tuples {(fk,yk)}k∈[Q] for any Q ∈ poly(λ), such that
there does not exist x with fk(x) = yk for all k ∈ [Q].

We then modify the construction of Libert et al. [48] to support batch openings to
linear forms or, equivalently opening to a linear map. Since the verification equation
of their construction is linear, a natural way to support batch openings is to define the
new verification equation as a random linear combination of previous ones. With this
observation, we embed a secret linear combination in the public parameters, and show
that the resulting construction is function binding in the generic bilinear group model.
In Table 1 we compare our SVC and LMC constructions with existing schemes.

1.2 The Quest of Constructing Ever Shorter Arguments

In addition to enabling batching in the original applications of VCs and FCs for linear
forms mentioned above, the compactness of SVCs and LMCs opens the new possibili-
ties of application in constructing succinct argument systems.

Subvector Commitments with Application to Succinct Arguments 533

Background. An argument system for an NP language L allows a prover, with a wit-
ness w, to convince a verifier that a certain statement x is in L. In contrast with proof
systems, argument systems are only required to be computationally sound. Due to this
relaxation, it is possible that the interaction between the prover and the verifier is suc-
cinct, i.e., the communication complexity is bounded by some polynomial poly(λ) in
the security parameter and is independent of the size of w. Other desirable properties of
an argument system are:

– “of knowledge”: a successful prover implies an extractor that can recover the witness;
– non-interactive: the protocol consists of a single message from the prover;
– (verifier) public-coin: messages from the verifier are sampled from public domains.

Recently, much progress has been made both in theory and practice to construct suc-
cinct non-interactive arguments of knowledge (SNARK) for general NP languages. We
distinguish between SNARKs in the public-coin-setup model and the pre-processing
model. In the public-coin-setup model, the prover and the verifier do not share any
input other than the statement x to be proven. In the pre-processing model, they share
a common reference string, generated by a trusted third party, which may depend on
the language L and the statement x. In general, existing SNARKs in the pre-processing
model are more efficient, in terms of both communication and computation, than those
in the public-coin-setup model. This reflects the intuition that pushing the majority of
the verifier’s workload to the offline pre-processing phase reduces its workload in the
online phase. On the other hand, in some applications, such as cryptocurrencies, it is
crucial to have a public-coin setup, which can be publicly initialized via, e.g., a random
oracle [8].

Public-Coin-Setup SNARKs. While it is known that public-coin-setup non-interactive
arguments for NP do not exists in the standard model [15], one can circumvent this
impossibility by working in the random oracle model [8]. A common way to obtain
public-coin-setup SNARKs is through the “CS proofs” paradigm [45,53] based on
probabilistically checkable proofs (PCP) [3]. To recall, a q-query 2−σ-soundness PCP
scheme allows the prover to efficiently compute a PCP string which encodes the wit-
ness of the statement to be proven. The verifier can then decide whether the statement
is true with probability close to 1−2−σ by inspecting q entries of the PCP string. Given
a PCP, a SNARK under the CS proofs paradigm are constructed in two steps. First, the
PCP is turned into an interactive argument system: The prover first commits to the PCP
string, typically using a Merkle-tree commitment. The verifier then sends the indices
of the entries to be inspected. Next, the prover opens the commitment at these entries.
Finally, by inspecting the revealed entries, the verifier can decide whether the statement
is valid. Typically, an argument system constructed this way has a public-coin verifier
and can be made non-interactive using the Fiat-Shamir transform [35].

Under the CS proofs paradigm, a proof (e.g., in the scheme by Micali [53]) consists
of a λ-bit Merkle-tree commitment of a �-bit PCP string, q bits of the PCP string, and
q openings of the commitment, each of size λ log � bits. For concreteness, assuming
a 3-query PCP and � = 230, for 2−80-soundness against a 2128-time adversary, the
proof size is around 113 KB. Despite having linear verification time (hence not being a
SNARK) Bulletproof [21,26] is arguably the most practically efficient non-interactive

534 R. W. F. Lai and G. Malavolta

argument to date. A proof in [26] consists of 2 log n + 13 (group and field) elements,
where n is the number of multiplication gates in the arithmetic circuit representation of
the verification algorithm of L. In their instantiation over the curve secp256k1, each of
the group elements and integers can be represented by ∼256 bits, thus a proof consists
of roughly 512 log n + 3328 bits.

Pre-Processing SNARKs. In the pre-processing model, there exist plenty of SNARK
constructions originated by [37] based on pairings and linear interactive proofs (LIP),
where the latter can be constructed from linear PCPs. To recall, linear PCPs [42] gen-
eralizes traditional PCPs in the sense that the PCP string now encodes a linear form.
In a q-query linear PCP, the verifier, who is given oracle access to the linear form, can
decide the veracity of the statement with overwhelming probability by making only q
queries. SNARK constructions in this category typically have a computationally expen-
sive statement-dependent pre-processing phase, meaning that one set of public param-
eters has to be generated per statement to be proven.

In this setting, the scheme with the shortest proofs (4 group elements) in the standard
model is due to Danezis et al. [32]. In the generic bilinear group model, Groth [40]
proposed a scheme [60] with only 3 group elements, and showed that proofs constructed
from LIP must consist of at least 2 group elements. These schemes can be instantiated
over pairing-friendly elliptic curves. A popular choice is the 256-bit Barreto-Naehrig
curve [7], in which a group element can be represented using 256 bits.

Our Approach. Equipped with our newly developed tools, we revisit the CS proofs
paradigm. In previous schemes following this paradigm, the proof size is dominated by
the factor q log � due to the q Merkle-tree commitment openings. Moreover, due to the
lack of structure of a Merkle-tree commitment, prior schemes do not work with linear
PCPs. The main idea is thus to replace the Merkle-tree commitment with an SVC/LMC,
so that the q openings can be compressed into a single one which has size independent
of � and q. By doing so, we obtain a compiler which compiles any (resp. linear) PCP
into an interactive argument using an SVC (resp. LMC).

We highlight two interesting instantiations of our construction. The first instantia-
tion is with classical PCPs and our public-coin-setup SVC based on Cl(Δ), the class
group of imaginary quadratic order with discriminant Δ.

Instantiation 1. If the adaptive root assumption holds in Cl(Δ), then there exist
public-coin-setup SNARKs for NP with soundness error 2−σ in which a proof con-
sists of 2 Cl(Δ) elements and q bits in the random oracle model, using any q-query
2−σ-soundness PCP.

If one aims for an extremely short proof and is willing to accept expensive prover com-
putation, then a 3-query 2−1-soundness PCP can be amplified into a 3σ-query 2−σ-
soundness PCP and gives the shortest SNARK. Based on the best known attacks on the
root problem in class groups [41], for a soundness error of 2−80 against a 2128-time
adversary, we obtain a proof size of 5360 bits, which is shorter than that of Bullet-
proof [26] for n > 16, i.e., the verification circuit has more than 16 multiplication
gates. We view this instantiation as a feasibility for extremely succinct proofs and a

Subvector Commitments with Application to Succinct Arguments 535

step forward towards optimal (O(λ)-sized) public-coin-setup SNARKs. Next we turn
our attention to the instantiation with linear PCPs and our pairing-based LMCs.

Table 2. Comparison of SNARKs with 2−λ-soundness against adversaries of runtime 2128.
All constants are omitted. pp: public parameters, π: proof, n: size of circuit, �PCP: length of
PCP proof, �LPCP: length of linear PCP proof, Pub: public-coin, Pri: private-coin, Pre-Proc: pre-
processing, Root: strong or adaptive root assumption, GGM: generic group model.

Scheme |pp| |π| Setup Assumption

CS Proof (Merkle Tree Compiler) [45,53] 1 λ2 logn Pub ROM

Bulletproof [21,26] λn λ logn Pub DLog, ROM

Aurora [12] 1 λ log2 n Pub ROM

SVC Compiler (Class Group) λ2�PCP λ2 Pub Root, ROM

Groth [40] λn λ Pre-Proc GGM

SVC Compiler (CDH) λ�2LPCP λ Pri CDH, ROM

LMC Compiler λ�LPCP λ Pri GGM, ROM

Instantiation 2. In the generic bilinear group and random oracle model, there exist
pre-processing non-interactive arguments for NP in which a proof consists of 2 G ele-
ments and q field elements, using any q-query linear PCP.

Using a 3-query linear PCP (e.g. [17]) and instantiating the pairing group over the 256-
bit Barreto-Naehrig curve yields a proof consisting of 5 elements or 1280 bits. Com-
pared to other pairing-based compilers from linear PCPs to preprocessing SNARKs
(e.g., [40]), our compiler has the advantages that it supports any linear PCPs, but not
only those where the verifier is restricted to only evaluate quadratic polynomials. More-
over the setup phase is independent of the statements to be proven, and thus the same
public parameters can be reused for proving many statements.

A comparison with the shortest succinct arguments from the literature is given in
Table 2. To summarize, our approach yields extremely short proofs in exchange for a
higher prover complexity and the usage of public-key cryptography. We also stress that
our compiler is compatible with a broader class of PCPs, when compared with schemes
under the CS proofs paradigm and pairing-based schemes. Being a very active area
of research, we expect significant advancements in the design of more efficient PCPs,
which are going to benefit from the generality of our approach.

Other Applications. Catalano and Fiore [27] suggested a number of applications of
VC, including verifiable databases with efficient updates, updatable zero-knowledge
elementary databases, and universal dynamic accumulators. In all of these applications,
one can gain efficiency by replacing the VC scheme with an SVC scheme which allows
for batch opening and updating. When instantiated with our first construction of SVC,
one can further avoid the private-coin setup, which is especially beneficial to database
applications as trusted third parties are no longer required.

536 R. W. F. Lai and G. Malavolta

The notion of SVC has already attracted the attention of the community. A follow
up work by Boneh et al. [20] shows how SVCs can be used as a drop-in replacement for
Merkle-trees in SNARKs based on interactive oracle proofs (IOPs) which generalizes
PCPs. They leverage the structure of class group-based SVCs to reduce the proof size
to (r + 1) group elements and r integers, where r is the number of iterations of the
underlying IOP. They also propose a technique to improve the efficiency of the verifica-
tion algorithm and they estimate a decrease in verification time of ∼80%. Finally, they
discuss how to use SVCs to improve the current design of blockchain-based transaction
ledger in such a way that no user has to store the entire state of the ledger in memory.

1.3 Related Work

Succinct arguments were introduced by Kilian [45,46] and later improved, in terms of
round complexity, by Lipmaa and Di Crescenzo [34]. Succinct non-interactive argu-
ments, or computationally sound proofs, were first proposed by Micali [53]. These
early approaches rely on PCP and have been recently extended [9] to handle interac-
tive oracle proofs [13] (also known as probabilistic checkable interactive proofs [57]),
largely improving the efficiency of the prover. A recent manuscript by Ben-Sasson
et al. [10] improves the concrete efficiency of interactive oracle proofs. The first usage
of knowledge assumptions to construct SNARKs appeared in the work of Mie [55].
Later, Groth [39] and Lipmaa [50] upgraded this approach to non-interactive proofs.

Ishai, Kushilevitz, and Ostrovsky [42] observed that linear PCPs can be com-
bined with a linearly homomorphic encryption to construct more efficient arguments,
with pre-processing. The also introduced a new (interactive) commitment scheme with
private-coin verifier for linear functions. However, in contrast with LMC, their bind-
ing definition does not ensure that the committed function is actually linear. Gennaro
et al. [37] presented a very elegant linear PCP that gave rise to a large body of work to
improve the practical efficiency of non-interactive arguments [5,11,14,28,29,33]. All
of these constructions assume a highly structured and honestly generated common ref-
erence string (of size proportional to the circuit to be evaluated) and rely on some variant
of the knowledge of exponent assumption. Recently, Ames et al. [2] proposed an argu-
ment based on the MPC-in-the-head [43] paradigm to prove satisfiability of a circuit
C with proofs of size O(λ

√|C|). Zhang et al. [64] show how to combine interactive
proofs and verifiable polynomial delegation schemes to construct succinct interactive
arguments. The scheme requires a private-coin pre-processing and the communication
complexity is O(λ log |w|). A recent result by Whaby et al. [62] introduces a prover-
efficient construction with proofs of size O(λ

√|w|). Recent works [1,36] investigate
on the resilience of SNARKs against a subverted setup. Libert, Ramanna, and Yung [48]
constructed an accumulator for subset queries. Although similar in spirit to SVC, the
critical difference is that accumulators are not position binding, which is crucial for the
soundness of our argument system.

2 Preliminaries

Throughout this work we denote by λ ∈ N the security parameter, and by poly (λ)
and negl(λ) the sets of polynomials and negligible functions in λ, respectively. We

Subvector Commitments with Application to Succinct Arguments 537

say that a Turing machine is probabilistic polynomial time (PPT) if its running time
is bounded by some polynomial function poly(λ). An interactive protocol Π between
two machines A and B is referred to as (A,B)Π . Given a set S, we denote sampling
a random element from S as s ←$ S and the output of an algorithm A on input x is
written as z ← A(x). Let � ∈ N, the set [�] is defined as [�] := {1, . . . , �}. Vectors are
written vertically.

2.1 Subvectors

We define the notion of subvectors. Roughly speaking, a subvector (xi1 , . . . , xi|I|)
T is

an ordered subset (indexed by I) of the entries of a given vector (x1, . . . , x�)T .

Definition 1 (Subvectors). Let � ∈ N, X be a set, and (x1, . . . , x�)T ∈ X � be a vector.
Let I = (i1, . . . , i|I|) ⊆ [q] be an ordered index set. The I-subvector of x is defined as
xI := (xi1 , . . . , xi|I|)

T .

2.2 Arguments of Knowledge

Let R : {0, 1}∗ ×{0, 1}∗ → {0, 1} be an NP-relation with corresponding NP-language
L := {x : ∃w s.t . R(x,w) = 1}. We define arguments of knowledge [22] for interac-
tive Turing machines [38]. To be as general as possible, we define an additional setup
algorithm S, which is executed once and for all by a possibly trusted party. If the argu-
ment is secure without a setup, then such an algorithm can be omitted.

Definition 2 (Arguments of knowledge). A tuple (S, (P,V)Π) is a 2−σ-sound (suc-
cinct) argument of knowledge for R if the following conditions hold.

(Completeness). If R(x,w) = 1 then Pr
y←S(1λ)

[(P(x,w, y),V(x, y))Π = 1] = 1.

(Soundness). For any PPT adversary A, all x /∈ L, and all z ∈ {0, 1}∗,
Pr

y←S(1λ)
[(A(x, z, y),V(x, y))Π = 1] < 2−σ.

(Argument of Knowledge). For any PPT adversary A, there exists a PPT extractor
E , such that for all x, z ∈ {0, 1}∗, Pr

y←S(1λ)
[(A(x, z, y),V(x, y))Π = 1] > negl(λ),

then Pr[R(x,w) = 1|w ← EA(x)] > negl(λ) .
(Succinctness). The communication between P and V is at most poly(λ, log |x|).

2.3 Probabilistically Checkable Proofs

One of the principal tools in the construction of argument systems is probabilistic
checkable proofs (PCP) [3]. It is known that any witness w for an NP-statement can
be encoded into a PCP of length poly(|w|) bits such that it is sufficient to probabilisti-
cally test O(1) bits of the encoded witness.

Definition 3 (Probabilistically Checkable Proofs). A pair of machines (PPCP,VPCP)
is a �-long q-query 2−σ-sound PCP for an NP-relation R if the following hold.

538 R. W. F. Lai and G. Malavolta

(Completeness). If R(x,w) = 1, then Pr [Vπ
PCP(x) = 1|π ← PPCP(x,w)] = 1.

(Soundness). For all x /∈ L, Pr [Vπ
PCP(x) = 1|π ← PPCP(x,w)] < 2−σ.

(Proof Length). If R(x,w) = 1, then for all π ∈ PPCP(x,w), |π| ≤ �.

(Query Complexity). For all x,π ∈ {0, 1}∗, Vπ
PCP(x) queries at most q locations of π.

The notation Vπ
PCP(x) means that VPCP does not read the entire string π directly, but is

given oracle access to the string. On input a position i ∈ [|π|], the oracle returns the
value πi. It is well known that one can diminish the soundness error to a negligible func-
tion by repetition. We additionally require that the witness can be efficiently recovered
from the encoding of the witness π [61].

Definition 4 (Proof of Knowledge). A PCP is of knowledge if there exists a PPT algo-
rithm EPCP such that, given any strings x and π with Pr [Vπ

PCP(x) = 1] > negl(λ),
Eπ
PCP(x) extracts an NP witness w for x.

Linear PCPs. Ishai et al. [42] considered the notion of linear PCP, where the string π
is instead a vector in F

� for some finite field F (or in general a ring) and positive
integer �. The oracle given to the verifier is modified, such that on input f ∈ F

�, it returns
the inner product 〈f ,π〉. Note that this generalizes the classical notion of PCP as one
can recover the original definition by restricting the queries f to be unit vectors. In this
paper we are interested in the notion of linear PCP where soundness is only guaranteed
to hold against linear functions (same as considered in [17]).

3 Mathematical Background and Assumptions

To capture the minimal mathematical structure required for one of our constructions,
we follow the module-based cryptography framework of Lipmaa [51].

Background. A (left) R-module RD over the ring R (with identity) consists of an
Abelian group (D,+) and an operation ◦ : R × D → D, denoted r ◦ A for r ∈ R and
A ∈ D, such that for all r, s ∈ R and A,B ∈ D, we have

– r ◦ (A + B) = r ◦ A + r ◦ B,
– (r + s) ◦ A = r ◦ A + s ◦ A,
– (r · s) ◦ A = r ◦ (s ◦ A), and
– 1R ◦ r = r, where 1R is the multiplicative identity of R.

Let S = (s1, . . . , s�) ⊆ N be an ordered set, and r = (rs1 , . . . , rs�
)T ∈ R� and

A = (As1 , . . . , As�
)T ∈ D� be vectors of ring and group elements respectively. For

notational convenience, we denote
∑

i∈S ri ◦ Ai by 〈r,A〉.
A commutative ring R with identity is called an integral domain if for all r, s ∈ R,

rs = 0R implies r = 0R or s = 0R, where 0R is the additive identity of R. A ring
R is Euclidean if it is an integral domain and there exists a function deg : R → Z

+,
called the Euclidean degree, such that (i) if r, s ∈ R, then there exist q, k ∈ R such
that r = qs + k with either k = 0R, k �= 0R and deg(k) < deg(q), and (ii) if

Subvector Commitments with Application to Succinct Arguments 539

r, s ∈ R with rs �= 0R and r �= 0R, then deg(r) < deg(rs). The set of units U(R) :=
{u ∈ R : ∃v s.t . uv = vu = 1R} contains all invertible elements in R. An element
r ∈ R\({0R}∪U(R)) is said to be irreducible if there are no elements s, t ∈ R\{1R}
such that r = st. The set of all irreducible elements of R is denoted by IRR(R). An
element r ∈ R\({0R}∪U(R)) is said to be prime if for all s, t ∈ R, whenever r divides
st, then r divides s or r divides t. If R is Euclidean, then an element is irreducible if
and only if it is prime.

Adaptive Root. The adaptive root assumption (over unknown order groups, and
in particular over class groups of imaginary quadratic orders) was introduced by
Wesolowski [63] and re-formulated by Boneh et al. [19] to establish the security of the
verifiable delay function scheme of Wesolowski [63]. Here we state the same assumption
over modules in two variants – with private and public coins. Note that Wesolowski [63]
and Boneh et al. [19] implicitly considered the public-coin-setup variant.

Definition 5 ((Public-Coin) Adaptive Root). Let I be some ordered set. Let RD =
((Ri)Di

)i∈I be a family of modules. Let MGen(1λ;ω) be a deterministic algorithm
which picks some i ∈ I (hence some RD = (Ri)Di

∈ RD) and some element A ∈ D.
For a ring R, let IRRλ(R) ⊆ IRR(R) be some set of prime elements in R of size
2λ. The adaptive root assumption is said to hold over the family of modules RD with
respect to IRRλ, if for any PPT adversary A = (A1,A2) there exists ε(λ) ∈ negl(λ)
such that

Pr

[
e ◦ Y = X

∣∣∣
∣

ω ←$ {0, 1}λ; (RD, A) := MGen(1λ;ω)
X ← A1(RD, A , ω); e ←$ IRRλ(R);Y ← A2(e)

]
≤ ε(λ),

where A is not given ω (highlighted by the dashed box). If the inequality holds even if
A is given ω, then we say that the assumption is public-coin.

Strong Distinct-Prime-Product Root. We define the following variant of the “strong
root assumption” [30] over modules over Euclidean rings, which is a generalization of
the strong RSA assumption. Let RD be a module over some Euclidean ring R, and A be
an element of D. The strong distinct-prime-product root problem with respect to A asks
to find a set of distinct prime elements {ei}i∈S in R and an element Y in D such that(∏

i∈S ei

) ◦ Y = A. We define the assumption in two variants depending on whether
RD and A are sampled with public coins.

Definition 6 ((Public-Coin) Strong Distinct-Prime-Product Root). Let I be an
ordered set, RD = ((Ri)Di

)i∈I be a family of modules, and MGen(1λ;ω) be a deter-
ministic algorithm which picks some i ∈ I (hence some RD = (Ri)Di

∈ RD) and
some element A ∈ D. The strong distinct-prime-product root assumption is said to
hold over the family RD, if for any PPT adversary A there exists ε(λ) ∈ negl(λ) such
that

Pr

⎡

⎣

(∏
i∈S ei

) ◦ Y = A
∀i ∈ S, ei ∈ IRR(R)
∀i �= j ∈ S, ei �= ej

∣∣∣∣
∣∣

ω ←$ {0, 1}λ

(RD, A) := MGen(1λ;ω)
({ei}i∈S , Y) ← A(RD, A , ω)

⎤

⎦ ≤ ε(λ),

540 R. W. F. Lai and G. Malavolta

where A is not given ω (highlighted by the dashed box). If the inequality holds even if
A is given ω, then we say that the assumption is public-coin.

Lipmaa [51] defined several variants of the (strong) root assumption with respect to a
random element in D sampled with private coin, given the description of the module
RD sampled with public coin. Note that the (resp. public-coin) strong distinct-prime-
product root assumption is weaker than the (resp. public-coin) strong root assumption,
where the latter requires the adversary to simply output (e, Y) such that e �= 1R and
e ◦ Y = A. It is apparent that the strong distinct-prime-product root assumption over
RSA groups is implied by the strong RSA assumption.

4 Subvector Commitments

In the following we define the main object of interest for our work. Subvector commit-
ments are a generalization of vector commitments [27], where the opening is performed
with respect to subvectors.

Definition 7 (Subvector Commitments (SVC)). A subvector commitment scheme
SVC over X consists of the following PPT algorithms (Setup,Com,Open,Verify):

Setup(1λ, 1�;ω): The deterministic setup algorithm inputs the security parameter 1λ,

the vector size 1�, and a random tape ω. It outputs a public parameter pp. We assume
that all other algorithms input pp which we omit.
Com(x): The committing algorithm inputs a vector x ∈ X �. It outputs a commitment
string C and some auxiliary information aux.
Open(I,x′

I , aux): The opening algorithm inputs an index set I , an I-subvector x′
I ,

and some auxiliary information aux. It outputs a proof ΛI that x′
I is the I-subvector of

the committed vector.
Verify(C, I,x′

I , ΛI): The verification algorithm inputs a commitment string C, an
index set I , an I-subvector x′

I , and a proof ΛI . It accepts (i.e., it outputs 1) if and
only if C is a commitment to x and x′

I is the I-subvector of x.

The definition of correctness is given as follows.

Definition 8 (Correctness). A subvector commitment SVC over X is said to be correct
if, for any security parameter λ, � ∈ N, random tape ω ∈ {0, 1}λ, public param-
eters pp ∈ Setup(1λ, 1�;ω), x ∈ X �, index set I ∈ [�], (C, aux) ∈ Com(x),
ΛI ∈ Open(I,xI , aux), there exists ε(λ) ∈ negl(λ) such that

Pr [Verify(C, I,xI , ΛI) = 1] ≥ 1 − ε(λ).

The distinguishing property for SVCs is compactness. Loosely speaking it says that the
size of the commitment strings C and the proofs ΛI are not only independent of the
length of the committed vector x, but also that of xI .

Subvector Commitments with Application to Succinct Arguments 541

Definition 9 (Compactness). A subvector commitment SVC over X is compact if there
exists a universal polynomial p ∈ poly(λ) such that for any � ∈ poly(λ), random tape
ω ∈ {0, 1}λ, public parameters pp ∈ Setup(1λ, 1�;ω), vector x ∈ X �, index set
I ∈ [�], (C, aux) ∈ Com(x), ΛI ∈ Open(I,xI , aux), it holds that |C| ≤ p(λ) and
|ΛI | ≤ p(λ).

We consider the notion of position binding for subvector commitments with public-coin
setup. Recall that position binding for vector commitments requires that it is infeasible
to open a commitment with respect to some position i to two distinct messages xi and
x′

i. We extend this notion to subvector commitments, by requiring that it is infeasible to
open a commitment with respect to some index sets I and J to subvectors xI and x′

J ,
respectively, such that there exists an index i ∈ I ∩ J where xi �= x′

i. Furthermore, we
require this property to hold even if the setup algorithm is public coin.

Definition 10 ((Public-Coin) Position Binding). A subvector commitment SVC over
X is position binding if for any PPT adversary A, there exists a negligible function
ε(λ) ∈ negl(λ) such that

Pr

⎡

⎣
Verify(C, I,xI , ΛI) = 1
Verify(C, J,x′

J , Λ′
J) = 1

∃i ∈ I ∩ J s.t . xi �= x′
i

∣∣∣∣
∣∣

ω ←$ {0, 1}λ

pp ← Setup(1λ, 1�;ω)
(C, I, J,xI ,x

′
J , ΛI , Λ

′
J) ← A(pp , ω)

⎤

⎦ ≤ ε(λ)

where A is not given ω (highlighted by the dashed box). If the inequality holds even if
A is given ω, then we say that SVC is function binding with public coins.

We do not define hiding as it is not needed for our purpose. However, as discussed
in [27], one can construct a hiding VC generically by committing to (normal) commit-
ments using VC. This naturally extends to SVC as well.

4.1 Linear Map Commitments

Functional commitments for linear functions, specifically for linear forms f : F
� → F

for some field F, were introduced by Libert, Ramanna and Yung [48] and is a general-
ization of vector commitments (VC) introduced by Catalano and Fiore [27]. Here we
refine the notion to capture a more general class of function families, which allows the
prover to open a commitment to the output of multiple linear forms or, equivalently, to
the output of a linear map f : F

� → F
q. Note that any linear map from F

� to F
q can be

represented by a matrix F ∈ F
q×�.

Definition 11 (Linear Map Commitments (LMC)). A linear map commitment
scheme LMC over F consists of the following PPT algorithms (Setup,Com,
Open,Verify):

Setup(1λ,F ;ω): Let �, q ∈ poly(λ) be positive integers, and F ⊆ {f : F
� → F

q} be a
family of linear maps. The deterministic setup algorithm inputs the security parameter
1λ, the description of the family F , and a random tape ω. It outputs a public parameter
pp. We assume that all other algorithms input pp which we omit.

542 R. W. F. Lai and G. Malavolta

Com(x): The committing algorithm inputs a vector x ∈ F
�. It outputs a commitment

string C and some auxiliary information aux.
Open(f,y, aux): The opening algorithm inputs an f ∈ F , an image y ∈ F

q, and some
auxiliary information aux. It outputs a proof Λ that y = f(x).
Verify(C, f,y, Λ): The verification algorithm inputs a commitment stringC, an f ∈ F ,
an image y, and a proof Λ. It accepts (i.e., it outputs 1) if and only if C is a commitment
to x and y = f(x).

In the following we define correctness and compactness for LMCs.

Definition 12 (Correctness). A linear map commitment scheme LMC over F is
said to be correct if, for any security parameter and length λ, �, q ∈ N, ran-
dom tape ω ∈ {0, 1}λ, linear map family F ⊆ {

f : F
� → F

q
}
, public parame-

ters pp ∈ Setup(1λ,F ;ω), x ∈ F
�, linear map f ∈ F , (C, aux) ∈ Com(x),

Λ ∈ Open(f, f(x), aux), there exists ε(λ) ∈ negl(λ) such that

Pr [Verify(C, f, f(x), Λ) = 1] ≥ 1 − ε(λ).

Definition 13 (Compactness). A linear map commitment LMC over F is compact if
there exists a universal polynomial p ∈ poly(λ), such that for any �, q ∈ poly (λ),
family of linear maps F ⊆ {f : F

� → F
q}, random tape ω ∈ {0, 1}λ, public param-

eters pp ∈ Setup(1λ,F ;ω), vector x ∈ F
�, linear map f ∈ F , (C, aux) ∈ Com(x),

Λ ∈ Open(f, f(x), aux), it holds that |C| ≤ p(λ) and |Λ| ≤ p(λ).

We next generalize the notion of function binding for linear maps. The original defini-
tion, as considered by Libert, Ramanna and Yung [48], requires that it is hard to open
a commitment to (f, y) and (f, y′) where y �= y′. When considering broader classes of
functions, such as linear maps where the target space is multidimensional, each open-
ing defines a system of equations. Note that in this case one might be able to generate
an inconsistent system with just a single opening, or generate openings to (f, y) and
(f ′, y′) with f �= f ′ but the systems defined by the tuples are inconsistent. Therefore,
our definition explicitly forbids the adversary to generate inconsistent equations.

Definition 14 ((Public-Coin) Function Binding). A linear map commitment LMC
over F is function binding if for any PPT adversary A, positive integers Q, �, q ∈
poly(λ), and family of linear maps F ⊆ {f : F

� → F
q}, there exists a negligible

function ε(λ) ∈ negl(λ) such that

Pr

⎡

⎣∀k ∈ [Q],
fk ∈ F ∧ yk ∈ F

q∧
Verify(C, fk,yk, Λk) = 1

�x ∈ X � s.t . ∀k ∈ [Q], fk(x) = yk

∣∣∣∣
∣∣

ω ←$ {0, 1}λ

pp ← Setup(1λ,F ;ω)
(C, {(fk,yk, Λk)}k∈[Q]) ← A(pp , ω)

⎤

⎦

≤ ε(λ)

where A is not given ω (highlighted by the dashed box). If the inequality holds even if
A is given ω, then we say that LMC is function binding with public coins.

As for SVC, we omit the hiding definition as it is not needed for our purpose.

Subvector Commitments with Application to Succinct Arguments 543

5 Constructions for SVCs

We propose two direct constructions of SVC, one from modules over Euclidean rings
where certain variants of the root assumption hold, and one from pairing groups where
the CDH assumption holds. Both schemes allow one to commit to binary strings (i.e.,
we consider the field X = F2). Our constructions are inspired by the work of Cata-
lano and Fiore [27] and extend the opening algorithms of their vector commitment
schemes to simultaneously handle multiple positions. These modifications introduce
several complications in the security proofs that require a careful manipulation of the
exponents.

5.1 SVC from Modules over Euclidean Rings

Our first SVC scheme relies on modules over Euclidean rings where some variants
of the root problem (the natural generalization of the RSA problem) is hard. Let � ∈
poly(λ) be a positive integer. Let MGen be an efficient module sampling algorithm as
defined in Sect. 3 and let R be an Euclidean ring sampled by MGen. Let IRRλ(R) be a
set of prime elements in R of size 2λ. Let H : {0, 1}∗ → IRRλ(R)� be a prime-valued
function which maps finite bit strings to tuples of � distinct elements in IRRλ(R). That
is, for all string s ∈ {0, 1}∗, if (e1, . . . , e�) = H(s), then ei �= ej for all i, j ∈ [q] where
i �= j. Let X := {0R, 1R}3 where 0R and 1R are the additive and multiplicative identity
elements of R respectively. We construct our first subvector commitment scheme in
Fig. 1. Note that in the opening algorithm, it is required to compute

ΛI :=

(
∏

i∈I

ei

)−1

◦ 〈x[�]\I ,S[�]\I〉.

Fig. 1. SVC from the root assumption.

3 In general, X can be set such that for all x, x′ ∈ X , gcd(x − x′, ei) = 1 for all i ∈ [q].

544 R. W. F. Lai and G. Malavolta

Although multiplicative inverses of ring elements do not exist in general, and if so, they
may be hard to compute, the above are efficiently computable because, for all i ∈ [�]\I
and hence for all i ∈ J \ I , we have

Si :=

⎛

⎝
∏

j∈[�]\{i}
ej

⎞

⎠ ◦ X =

⎛

⎝
∏

j∈I

ej

∏

j∈[�]\(I∪{i})
ej

⎞

⎠ ◦ X.

The correctness of the construction follows straightforwardly by inspection. Depending
on the instantiation of H , we can prove our scheme secure against different assump-
tions:

– H is a (non-cryptographic) hash: Our construction is secure if the strong distinct-
prime-product root assumption (introduced in Sect. 3) holds over the module family
RD. This is shown in Theorem 1.

– H is a random oracle: Our construction is secure if the adaptive root problem (intro-
duced in [19]) is hard over the module family. This is shown in Theorem 2.

Theorem 1. If the (resp. public-coin) strong distinct-prime-product root assumption
holds over the module family RD, then the scheme in Fig. 1 is (resp. public-coin) posi-
tion binding.

Proof. Suppose not, let A be a PPT adversary such that

Pr

⎡

⎣
Verify(C, I,xI , ΛI) = 1
Verify(C, J,x′

J , Λ′
J) = 1

∃i ∈ I ∩ J s.t . xi �= x′
i

∣∣∣
∣∣∣

ω ←$ {0, 1}λ

pp ← Setup(1λ, 1�;ω)
(C, I, J,xI ,x

′
J , ΛI , Λ

′
J) ← A(1λ, pp , ω)

⎤

⎦ >
1

f(λ)

for some polynomial f(λ) ∈ poly(λ), where A gets ω as input (highlighted by the
dashed box) only in the public-coin variant. We construct an algorithm C as follows,
whose existence contracts the fact that RD is a (public-coin) strong distinct-prime-
product root modules family.

In the private-coin setting, C receives as input (RD, A) generated by MGen(1λ;ω)
for some ω ←$ {0, 1}λ. It sets X := A, and computes (e1, . . . , e�) ← H(RD,X). It

then sets Si :=
(∏

j∈[�]\{i} ej

)
◦ X for all i ∈ [�], S := (S1, . . . , Sq)T , and e :=

(e1, . . . , e�). It sets pp := (RD,X,S,e) and runs A on input (1λ, pp). In the public-
coin setting, C receives additionally ω and runs A on (1λ, pp, ω) instead. In any case, it
is clear that pp and ω obtained above distribute identically as

{(pp, ω) : ω ←$ {0, 1}λ; pp ← Setup(1λ, 1�;ω)}λ.

Hence, with probability at least 1/f(λ), C obtains (C, I, J,xI ,x
′
J , ΛI , Λ

′
J) such that

〈xI ,SI〉 +
(

∏

i∈I

ei

)

◦ ΛI = 〈x′
J ,SJ 〉 +

(
∏

i∈J

ei

)

◦ Λ′
J

Subvector Commitments with Application to Succinct Arguments 545

which implies

〈xI\J ,SI\J 〉 − 〈x′
J\I ,SJ\I〉 + 〈xI∩J − x′

I∩J ,SI∩J 〉

=

(
∏

i∈I∩J

ei

) ⎛

⎝

⎛

⎝
∏

i∈J\I

ei

⎞

⎠ ◦ Λ′
J −

⎛

⎝
∏

i∈I\J

ei

⎞

⎠ ◦ ΛI

⎞

⎠ .

Recall that Si =
(∏

j∈[�]\{i} ej

)
◦ A. Define δi :=

⎧
⎪⎨

⎪⎩

xi i ∈ I \ J

−x′
i i ∈ J \ I

xi − x′
i i ∈ I ∩ J

and

Λ :=
((∏

i∈J\I ei

)
◦ Λ′

J −
(∏

i∈I\J ei

)
◦ ΛI

)
. C obtains

⎛

⎝
∑

i∈I∪J

δi

∏

j∈[�]\{i}
ej

⎞

⎠ ◦ A =

(
∏

i∈I∩J

ei

)

◦ Λ.

Let K0 := {i ∈ I ∩ J : δi = 0R} and K1 := {i ∈ I ∪ J : δi �= 0R}. Next, we

show that d := gcd
(∑

i∈I∪J δi

∏
j∈[�]\{i} ej ,

∏
i∈I∩J ei

)
=

∏
j∈K0

ej . Furthermore,

suppose that this is the case, we have (I ∩J)\K0 �= ∅ since there exists i ∈ I ∩J such
that δi = xi − x′

i �= 0R. To prove the above, we first note that

∑

i∈I∪J

δi

∏

j∈[�]\{i}
ej =

∑

i∈K1

δi

∏

j∈[�]\{i}
ej =

∏

j∈[�]\(I∪J)

ej

⎛

⎝
∑

i∈K1

δi

∏

j∈(I∪J)\{i}
ej

⎞

⎠ .

Hence

d = gcd

⎛

⎝
∑

i∈K1

δi

∏

j∈(I∪J)\{i}
ej ,

∏

i∈I∩J

ei

⎞

⎠

=
∏

j∈K0

ej · gcd
⎛

⎝
∑

i∈K1

δi

∏

j∈(I∪J)\(K0∪{i})
ej ,

∏

i∈(I∩J)\K0

ei

⎞

⎠ .

It remains to show that d′ := gcd
(∑

i∈K1
δi

∏
j∈(I∪J)\(K0∪{i}) ej ,

∏
i∈(I∩J)\K0

ei

)

= 1R. Suppose not, let d′ =
∏

i∈L ei for some L ⊆ (I ∩ J) \ K0. Suppose � ∈ L �= ∅.
This means δ� �= 0R and hence � ∈ K1. Then there exists r ∈ R such that

e� · r =
∑

i∈K1

δi

∏

j∈(I∪J)\(K0∪{i})
ej

= δ�

∏

j∈(I∪J)\(K0∪{�})
ej + e�

∑

i∈K1\{�}
δi

∏

j∈(I∪J)\(K0∪{i})
ej .

546 R. W. F. Lai and G. Malavolta

Let r′ := r − ∑
i∈K1\{�} δi

∏
j∈(I∪J)\(K0∪{i}) ej . We have

e� · r′ = δ�

∏

j∈(I∪J)\(K0∪{�})
ej .

Since δ� �= 0R, i.e., δ� ∈ {−1R, 1R}, the above contradicts the fact that e� is a prime
element. Thus we must have L = ∅ and hence d′ = 1R.

Now that we have concluded d = gcd
(∑

i∈I∪J δi

∏
j∈[�]\{i} ej ,

∏
i∈I∩J ei

)
=

∏
j∈K0

ej , C can use the extended Euclidean algorithm to find a, b ∈ R such that

a
∑

i∈I∪J

δi

∏

j∈[�]\{i}
ej + b

∏

i∈I∩J

ei =
∏

j∈K0

ej .

Multiplying this to A, it gets
⎛

⎝
∏

j∈K0

ej

⎞

⎠ ◦ A =

⎛

⎝a
∑

i∈I∪J

δi

∏

j∈[�]\{i}
ej + b

∏

i∈I∩J

ei =
∏

j∈K0

ej

⎞

⎠ ◦ A

=

(

a
∏

i∈I∩J

ei

)

◦ Λ +

(

b
∏

i∈I∩J

ei

)

◦ A

=

(
∏

i∈I∩J

ei

)

(a ◦ Λ + b ◦ A) .

Since (I ∩ J) \ K0 �= ∅, C can set S := (I ∩ J) \ K0 and Y := (a ◦ Λ + b ◦ A), and
output ({ei}i∈S , Y) as a solution to the strong distinct-prime-product root problem. ��
Theorem 2. If the (resp. public-coin) adaptive root assumption holds over the module
familyRD with respect to IRRλ, then the scheme in Fig. 1 is (resp. public-coin) position
binding in the random oracle model.

Due to space constraints, we refer to [47] for a full proof.

Efficiency and Optimizations. Our construction admits two complementary instanti-
ations, discussed in the following.

– Efficient Verifier (assuming random access to public parameters): The vectors S
and e are explicitly included in the public parameters (as it is currently described).
In this case, and suppose the verifier has random access to each ei and Si, the com-
putational effort of the verifier is only proportional to |I|, the size of the subvector.
The shortcoming of this scheme is that the size of the public parameters is linear in
�, which can be very large depending on the application.

– Short Public Parameters: One can reduce the size of the public parameters to a con-
stant by including only the module description (RD,X) and letting each algorithm

Subvector Commitments with Application to Succinct Arguments 547

recompute the terms of S needed for the computations. This however increases the
computational complexity of the verifier, since the computation needed for each
element of S is linear in the vector length �. This can be partially amortized by
observing that the values (S1, . . . , S�) do not depend on the committed vector and
can be precomputed by both parties.

Another possible tradeoff is given by the assumption that one is willing to rely on: Note
that the main workload for the verifier (in the verifier-optimized variant) is to compute
the term

(∏
i∈I ei

)◦ΛI . Assuming R = Z and the term is computed by repeated squar-
ing, the complexity of the computation depends on the bit-length of the primes ei. In the
adaptive root assumption, the primes (e1, . . . , e�) are sampled randomly from a set of
primes of size 2λ, therefore representing each prime requires at least λ bits. On the other
hand, under the strong distinct-prime-product root assumption we can set (e1, . . . , e�)
to be the smallest � primes. Since � ∈ poly (λ), each prime can be represented by
O(log λ) bits. This greatly reduces the computational effort of the verifier.

5.2 SVC from the Computational Diffie-Hellman Assumption

Next we present our SVC construction from pairing groups. In favor of a simpler
presentation and a more general result we describe our scheme assuming symmetric
pairings. However, we stress that the scheme can be easily adapted to work over the
more efficient asymmetric (type III) bilinear groups without affecting computational
efficiency nor opening size by, e.g., replicating all public parameters in both source
groups.

The public parameters consist of a set of random elements {Gi = Gzi}i∈[q] and
their pairwise “Diffie-Hellman products” Hi,i′ = Gzizi′ with i �= i′. To commit
to a vector x one computes C :=

∏
i Gxi

i . The opening of a subvector xI is then∏
i∈I

∏
i′ /∈I H

xi′
i,i′ . Note that since i ∈ I and i′ /∈ I , it is always true that i �= i′.

Fig. 2. SVC from CDH.

548 R. W. F. Lai and G. Malavolta

Therefore the product is efficiently computable for an honest prover. Assuming that the
verifier has random access to each Gi in the public parameters, it can check the relation
by accessing |I| entries in the public parameters, and computing 2 · |I| group operations
and 2 pairings (which are independent of �). Since the public parameters are highly
structured, this scheme does not admit an instantiation with short public parameters,
which grow quadratically with the vector size �.

Let GGen be an efficient bilinear group sampling algorithm. Let (p, G, GT , G, e) be
a group description output by GGen. Let X := Zp. Our second subvector commitment
scheme is shown in Fig. 2. In the following we show that our SVC scheme is position
binding with a private-coin setup.

Theorem 3. If the computational Diffie-Hellman (CDH) assumption holds with respect
to GGen, then the scheme in Fig. 2 is position binding.

Proof. Suppose not, let A be a PPT adversary such that

Pr

⎡

⎣
Verify(C, I,xI , ΛI) = 1
Verify(C, J,x′

J , Λ′
J) = 1

∃i ∈ I ∩ J s.t . xi �= x′
i

∣∣∣∣∣∣

ω ←$ {0, 1}λ

pp ← Setup(1λ, 1�;ω)
(C, I, J,xI ,x

′
J , ΛI , Λ

′
J) ← A(1λ, pp)

⎤

⎦ >
1

f(λ)

for some f(λ) ∈ poly(λ). We construct a square-DH solver C, which implies a CDH
solver [6], as follows.

C receives as input (p, G, GT , G,H, e), where (p, G, GT , G, e) ← GGen(1λ)
and H = Gz for some random z ←$ Zp, and must output Gz2

. It picks an index
i∗ ←$ [�] and set Gi∗ := H . Symbolically, let zi∗ := z, which is not known by C.
For the other indices i, i′ ∈ [�] \ {i∗}, it samples zi ←$ Zp and sets Gi := Gzi

and Hi,i′ := Gzizi′ . It also sets Hi∗,i = Hi,i∗ = Gzzi for each i ∈ [�] \ {i∗}.
It then sets pp = (p, G, GT , G, {Gi}i∈[�], {Hi,i′}i,i′∈[�],i 	=i′ , e), which is identically
distributed as pp output by Setup. C runs A on input (1λ, pp). With probability at
least 1/f(λ), it obtains (C, I, J,xI ,x

′
J , ΛI , Λ

′
J) such that Verify(C, I,xI , ΛI) = 1,

Verify(C, J,x′
J , Λ′

J) = 1, and ∃i ∈ I ∩ J s.t . xi �= x′
i. Conditioning on the above,

with probability 1/�, it holds that i∗ ∈ I ∩ J and xi∗ �= x′
i∗ . By examining the verifica-

tion equations, we have

e

(
∏

i∈I

Gxi
i ,

∏

i∈I

Gi

)

· e(ΛI , G) = e

(
∏

i∈J

G
x′

i
i ,

∏

i∈J

Gi

)

· e(ΛJ , G)

e

(
∏

i∈J

G
x′

i
i ,

∏

i∈J

Gi

)

· e

(
∏

i∈I

G−mi
i ,

∏

i∈I

Gi

)

= e(Λ,G), where Λ := ΛI/ΛJ

(
∑

i∈J

zix
′
i

) (
∑

i∈J

zi

)

−
(

∑

i∈I

zixi

) (
∑

i∈I

zi

)

= logG Λ

αz2i∗ + βzi∗ + γ = logG Λ

Subvector Commitments with Application to Succinct Arguments 549

where

α := (x′
i∗ − xi∗) β :=

∑

i∈J\{i∗}
zi(x′

i + x′
i∗) −

∑

i∈I\{i∗}
zi(xi + xi∗)

γ :=

⎛

⎝
∑

i∈J\{i∗}
zix

′
i

⎞

⎠

⎛

⎝
∑

i∈J\{i∗}
zi

⎞

⎠ −
⎛

⎝
∑

i∈I\{i∗}
zixi

⎞

⎠

⎛

⎝
∑

i∈I\{i∗}
zi

⎞

⎠

are computable by C since they do not depend on z = zi∗ . C then outputs Gz2
=

(
Λ

HβGγ

)1/α
which is the solution to the square-DH instance. ��

6 Construction for LMC

Our LMC construction is inspired by the scheme presented in [48] and it is based upon
the following observations. First, when the vectors x,f ∈ F

� for some field F are
encoded as the polynomials pf (α) :=

∑
j∈[�] fjα

�+1−j and px(α) :=
∑

j∈[�] xjα
j

with variable α respectively, their inner product is the coefficient of the monomial
α�+1 in the polynomial product pf (α)px(α). Second, due to linearity of polyno-
mial multiplication, if a matrix F ∈ F

q×� is encoded in the polynomial pF (α) :=∑
i∈[q],j∈[�] fi,jziα

�+1−j with variables (α, z1, . . . , zq), then the matrix-vector product

Fx is given in the coefficients of the monomials ziα
�+1 for i ∈ [q] in the polynomial

pF (α)px(α).
With the above observations, we give an overview of our construction. We let the

commitment C to x be Gpx (α), which is computable by combining elements of the form

Fig. 3. LMC from bilinear pairings.

550 R. W. F. Lai and G. Malavolta

Gαj

given in the public parameters. Given (F,y), to verify that Fx = y, the verifier
computes via pairing e(GpF (α,z1,...,zq), Gpx (α)), where the left-input is computable by
combining elements of the form Gziα

j

given in the public parameters. If the relation
Fx = y indeed holds, then the coefficients of y must be encoded as the coefficients of
the (lifted) monomials Gziα

�+1
. To convince the verifier that this is the case, it suffices

for the prover to provide the remaining terms of the product polynomial.
Let GGen be an efficient bilinear group sampling algorithm. Let (p, G, GT , G, e)

be a group description output by GGen. Let F = Zp, �, q ∈ N, and F be the set of all
linear maps from Z

�
p to Z

q
p. Our LMC for Zp is given in Fig. 3. For full generality we

present the construction over symmetric pairings, however one can easily convert it to
the more efficient asymmetric pairing groups via standard techniques, without affecting
the size of the openings. Although we do not aim to achieve the hiding property, our
construction can be easily modified to be hiding, by introducing randomness similar to
that in Pedersen commitment [56]. Indeed this is how the FC of [48] achieves hiding.
We show that our construction is function binding (in the generic bilinear group model)
in the following.

Theorem 4. Let �, q ∈ poly(λ) and 1/p ∈ negl(λ). The scheme in Fig. 3 is function
binding in the generic bilinear group model.

Proof. The proof uses the generic group model abstraction of Shoup [59] and we refer
the reader to [18] for a comprehensive introduction to the bilinear group model. Here
we state the central lemma useful for proving facts about generic attackers.

Lemma 1 (Schwartz-Zippel). Let F (X1, . . . , Xm) be a non-zero polynomial of
degree d ≥ 0 over a field F. Then the probability that F (x1, . . . , xm) = 0 for ran-
domly chosen values (x1, . . . , xm) in F

n is bounded from above by d
|F| .

Fix Q ∈ N. Suppose there exists an adversary A, who only performs generic bilinear
group operations, such that there exists a polynomial f ∈ poly(λ) with

Pr

⎡

⎣ ∀k ∈ [Q],
Fk ∈ Z

q×�
p ∧ yk ∈ Z

q
p∧

Verify(C, fk,yk, Λk) = 1
� ∃x ∈ Z

�
p s.t . ∀k ∈ [Q], Fk(x) = yk

∣
∣∣∣∣∣

pp ← Setup(1λ,F)
(C, {(Fk,yk, Λk)}k∈[Q]) ← A(1λ, pp)

⎤

⎦

> 1
f(λ) .

Since A is generic, and C and each of Λk are G elements, we can write logG C and
each logG Λk in the following form:

logG C = γ0 +
∑

j∈[�]

γjα
j +

∑

i∈[q]
j∈[2�]\{�+1}

γi,jziα
j

logG Λk = λk,0 +
∑

j∈[�]

λk,jα
j +

∑

i∈[q]
j∈[2�]\{�+1}

λk,i,jziα
j

Subvector Commitments with Application to Succinct Arguments 551

for some integer coefficients γj , γi,j , λk,j , and λk,i,j for i, j, and k in the appropriate
ranges. Since for each k ∈ [Q], Verify(C,Fk,yk, Λk) = 1, the following relations hold:

(logG C)

⎛

⎝
∑

i∈[q]

∑

j∈[�]

fk,i,jziα
�+1−j

⎞

⎠ =
∑

i∈[q]

yk,iziα
�+1 + logG Λk.

Note that the above defines a (n+1)-variate polynomial of degree 3�+2 which evaluates
to zero at a random point (α, z1, . . . , zq). Suppose that the polynomial is non-zero. By
the Schwartz-Zippel lemma, the probability that the above happens is bounded by 3�+2

p

which is negligible as � ∈ poly(λ) and 1/p ∈ negl(λ). We can therefore assume that
the polynomial is always zero. In particular, the coefficients of the monomials ziα

�+1

are zero for all i ∈ [q]. Thus, we have the following relations for all k ∈ [Q] and i ∈ [q]:
∑

j∈[�]

fk,i,jγj = yk,i.

In other words, there exists x := (γ1, . . . , γq)T mod p ∈ Z
q
p such that Fk(x) = yk,

for all k ∈ [Q], which contradicts the assumption about A. We thus conclude that such
adversaries exist only with negligible probability. Since the above holds for any Q ∈ N,
we conclude that the construction is function binding. ��

7 Succinct Arguments of Knowledge from SVC/LMC

We present our compiler for constructing interactive arguments of knowledge either
from traditional PCPs and subvector commitments (Sect. 5), or from linear PCPs [42]
and linear map commitments (Sect. 6). The constructions for both cases are in fact iden-
tical and we present only the latter since it is strictly more general (an traditional PCP
can be seen as a linear PCP where queries are restricted to unit vectors).

Let (PPCP,VPCP) be an �-long q-query (linear) PCP over some field F for NP
with r being the length of the random coins of the possibly adaptive verifier.
Let PRG : {0, 1}λ → {0, 1}r be a pseudo-random generator and let LMC :=
(Setup,Com,Open,Verify) be a linear map commitment for the set of all linear maps
F from F

� to F
q, possibly with public-coin setup. We present a 4-move interactive

argument of knowledge in Fig. 4.

7.1 Protocol Description

We first describe some subroutines to be used in the protocol. We construct polynomial
time algorithms Record, Reconstruct, and Decide which perform the following:

– Record: On input a statement x, a proof π, a randomness ρ, it runs Vπ
PCP(x; ρ) and

records the queries f1, . . . ,fq ∈ F
q made by VPCP. It outputs a query matrix F :=

[f1| . . . |fq]T ∈ F
q×�.

– Reconstruct: On input a statement x, a response vector y ∈ F
q, and a randomness

ρ, it runs Vπ
PCP(x; ρ) by simulating the oracle π using the response vector y. That is,

when VPCP makes the i-th query fi for i ∈ [q], it responds by returning the value yi.
It outputs a query matrix F := [f1| . . . |fq]T ∈ F

q×�.

552 R. W. F. Lai and G. Malavolta

Fig. 4. Succinct argument of knowledge for NP from SVC/LMC

– Decide: On input a statement x, a response vector y ∈ F
q, it runs Vπ

PCP(x; ρ) by
simulating the oracle π as in Reconstruct, and outputs whatever Vπ

PCP(x; ρ) outputs.

It is clear that for any strings x and π and randomness ρ, if y is formed in such a way
that yi is the response to the i-th query made by Vπ

PCP(x; ρ), then Record(x,π, ρ) =
Reconstruct(x,y, ρ), and Decide(x,y, ρ) = Vπ

PCP(x; ρ).
We now describe the protocol. The setup algorithm S samples a random string ω

and computes the public parameters pp of LMC using ω. It outputs pp if an LMC with
private-coin setup is used, which results in an argument system with private-coin setup.
Alternatively, if an LMC with public-coin setup is used, it outputs additionally ω (as
highlighted in the dashed box). This results in a public-coin setup.

In the rest of the protocol, the verifier is entirely public-coin. On input the public
parameter pp, the statement x and the witness w, the prover P produces π as the PCP
encoding of the witness w, then it commits to π and sends its commitment C to the
verifier V . Upon receiving the commitment C, V responds with a random string α. The
prover P stretches α with a PRG into ρ and executes VPCP on ρ. Here the PRG is used
to compress the (possibly large) randomness of the verifier, which is strictly needed

Subvector Commitments with Application to Succinct Arguments 553

only for linear PCPs (standard PCPs typically have low randomness complexity and
therefore the random coins can be sent in plain).

The prover P then records the sets of queries F = Record(x,π, ρ) of VPCP using
randomness ρ to π, and computes the responses y = Fπ. Next, it computes the open-
ing Λ of the commitment C to the tuple (F,y). The opening Λ along with the response
y are sent to the verifier V . The verifier V runs Reconstruct(x,y, ρ) to reconstruct
the query matrix F . It then checks if Λ is a valid opening of C to (F,y). Finally, it
checks if Decide(x,y, ρ) returns 1. If all checks are passed, it outputs 1. Otherwise, it
outputs 0.

7.2 Analysis

Clearly, if (PPCP,VPCP) is a complete linear PCP, and LMC is a correct LMC, then the
argument system is complete. Alternatively, if (PPCP,VPCP) is a complete (traditional)
PCP, and LMC is a correct SVC, then the system is also complete. The succinctness
of the system follows directly from the compactness of LMC. Next, we show that the
argument system is of knowledge by the following theorem. Due to space constraints,
we refer to [47] for a full proof.

Theorem 5. Let (PPCP,VPCP) be a 2−σ-sound linear PCP of knowledge for NP, PRG
be a pseudo-random generator, and LMC := (Setup,Com,Open,Verify) be (resp.
public-coin) function binding. Then the protocol in Fig. 4 is a 2−σ-sound (resp. public-
coin) argument of knowledge.

7.3 Instantiations and Efficiency

Since our argument system has a public-coin verifier, we can apply the Fiat-Shamir
transformation to turn it into a non-interactive argument and sometimes a SNARK.4 We
highlight some interesting instantiations of our compiler: Regardless of the specific root
assumption used, we can instantiate our first SVC construction over Cl(Δ), the class
group of an imaginary quadratic order with discriminant Δ. Considering the current
best attacks, we can assume that root problems for a O(λ2)-bit Δ are hard for a 2λ-time
adversary. Concretely, with a 2560-bit Δ, which roughly offers security against a 2128-
time adversary, each element in Cl(Δ) can be represented by at most 2560 bits (see
Sect. 8 for more details). Using a 240-query 2−80-sound PCP, the resulting proof size is
2 · 2560 + 240 = 5360 bits. When using the verifier-optimized SVC (see Sect. 5.1) the
workload of the verifier is dominated by 240 exponentiations, regardless of the witness
size. However the public parameters grow linearly with the length of the PCP encoding.
One can reduce the size of the public parameters to constant at the cost of having an
inefficient verifier. We stress that class groups of imaginary quadratic orders have a
public-coin setup and so does the resulting SNARK.

Alternatively, we can use our second SVC construction over the pairing-friendly
256-bit Barreto-Naehrig curve [7], which roughly offers security against 2128-time

4 In the original definition of Bitansky et al. [16], a SNARK verifier is a Turing machine with
runtime logarithmic in that of the corresponding NP verifier. We consider a relaxed definition
where the SNARK verifier is a random access machine.

554 R. W. F. Lai and G. Malavolta

adversaries. In such a curve, each group element can be represented by 256 bits. There-
fore the resulting proof size is 2 · 256 + 240 = 752 bits. This marginally improves
over the shortest proofs known [40]. A shortcoming of this approach is that the public
parameters of the resulting SNARK grow quadratically in the length of the PCP proof.

An unsatisfactory aspect of the instantiations above is that PCPs with such short
queries have typically a very high prover complexity and are therefore very expensive
to compute, which means that our arguments described above have a high prover com-
plexity. One approach to address this issue is to leverage the large body of work on
linear PCPs [17,42], which significantly improve the complexity of the prover. Any of
these schemes can be used in combination with an LMC (such as the construction of
Sect. 6) to obtain a non-interactive argument with slightly larger proofs (by a constant
factor) but with a more efficient prover. We stress that our compiler supports any linear
PCP, whereas existing compilers only support those with a verifier who only evalu-
ates quadratic polynomials. Moreover, although our pairing-based instantiations inherit
the private-coin setup from underlying SVC/LMC, the setup is statement-independent.
In contrast, the setup in existing pairing-based schemes such as [40] depends on the
statement to be proven. We shall mention however that our LMC has a linear verifier
complexity and therefore it yields an argument with verifier computation linear in the
length of the PCP.

For the efficiency of the verifier, there are several techniques to reduce its com-
putational overhead: As an example, one could compose our scheme with a verifier-
optimized SNARK to prove the validity of the verification equation, instead of having
the verifier computing it. Very recently, Boneh et al. [20] presented a special-purpose
proof of knowledge of co-prime roots (PoKCR) that drastically reduces the running
time of the verifier in class group-based SVCs (see Sect. 5) by trading group opera-
tions for modular multiplications and additions, which are orders of magnitude more
efficient. We refer the reader to [20] for a detailed analysis of the concrete costs.

8 Candidate Module Families

In the following we suggest some candidate instantiations for modules (specifically
groups) where the strong distinct-prime-root assumption and/or the adaptive root
assumption are believed to hold.

8.1 Class Groups of Imaginary Quadratic Orders

The use of class groups in cryptography was first proposed by Buchmann and
Williams [25]. We refer to, e.g., [23,24], for more detailed discussions. We recall the
basic properties of class groups necessary for our purpose. Let Δ be a negative integer
such that Δ ≡ 0 or 1 (mod 4). The ring OΔ := Z + Δ+

√
Δ

2 Z is called an imaginary
quadratic order of discriminant Δ. Its field of fractions is Q(

√
Δ). The discriminant

is fundamental if Δ/4 (resp. Δ) is square-free in the case of Δ ≡ 0 (mod 4) (resp.
Δ ≡ 1 (mod 4)). If Δ is fundamental, then OΔ is a maximal order. The fractional ide-

als of OΔ are of the form q
(
aZ + b+

√
Δ

2 Z

)
with q ∈ Q, a ∈ Z

+, and b ∈ Z, subject

Subvector Commitments with Application to Succinct Arguments 555

to the constraint that there exists c ∈ Z
+ such that Δ = b2 − 4ac and gcd(a, b, c) = 1.

A fractional ideal can therefore be represented by a tuple (q, a, b). If q = 1, then the
ideal is called integral and can be represented by a tuple (a, b). An integral ideal (a, b)
is reduced if it satisfies −a < b ≤ a ≤ c and b > 0 if a = c. It is known that if
an ideal (a, b) is reduced, then a ≤ √|Δ|/3. Two ideals a, b ⊆ OΔ are equivalent if
there exists 0 �= α ∈ Q(

√
Δ) such that b = αa. It is known that, for each equivalence

class of ideals, there exists exactly one reduced ideal which serves as the representative
of the equivalence class. The set of equivalence classes of ideals equipped with ideal
multiplication forms an Abelian group Cl(Δ) known as a class group.

Properties Useful in Cryptography. Since for all reduced ideals, |b| ≤ a ≤ √|Δ|/3,
Cl(Δ) is finite. For sufficiently large |Δ|, no efficient algorithm is known for finding
the cardinality of Cl(Δ), also known as the class number. Group operations can be per-
formed efficiently, as there exist efficient algorithms for ideal multiplication and com-
puting reduced ideals [23]. Assuming the extended Riemann hypothesis, Cl(Δ) is gen-
erated by the classes of all invertible prime ideals of norm smaller than 12(log |Δ|)2 [4],
where the norm of a fractional ideal (q, a, b) is defined as q2a (= a for integral ideals).
Since these ideals have norms logarithmic in |Δ|, they can be found in polynomial time
through exhaustive search. A random element can then be sampled by computing a
power product of the elements in the generating set, with exponents randomly chosen
from [|Δ|].

(Strong) Root Problem and its Variants in Cl(Δ). To recall, the strong root problem
in Cl(Δ) is to find a prime e ∈ Z and a group element Y ∈ Cl(Δ) such that Y e = X ,
for some given element X ∈ Cl(Δ). It is widely believed that root problems in Cl(Δ)
for a large enough Δ are hard if the problem instances are sampled randomly with
private coin [25]. Although the strong root problem in Cl(Δ) is not as well studied, it is
shown to be hard for generic group algorithms [31]. The best attacks currently known
are the ones for the root problem which runs in time proportional to L|Δ|(12 , 1) [41],
where Lx(d, c) := exp(c(log x)d(log log x)1−d). As discussed in [41], using a 2560-bit
Δ offers approximately 128 bits of computational security.

The (resp. public-coin setup) position binding property of our first construction of
SVC can be proven under either the (resp. public-coin setup) strong distinct-prime-
product root assumption or the (resp. public-coin setup) adaptive root assumption. Note
that these two assumptions are somewhat “dual” to each other, in the sense that the
former allows the adversary to choose which root it is going to compute, while the
latter allows the adversary to choose the element whose root is to be found.

In the private-coin setup setting, it is clear that the strong distinct-prime-product root
assumption is implied by the standard strong root assumption. In the public-coin setup
setting, it is conjectured [19,63] that the adaptive root assumption holds in Cl(Δ). In the
following, we first propose a simple candidate sampling algorithm MGen for sampling
Cl(Δ) and random elements in Cl(Δ) with public coin, and then elaborate more about
the strong distinct-prime-product root assumption with respect to MGen.

The sampling algorithm MGen first samples random integers of the appropriate
length until it finds a fundamental discriminant Δ. Let {G1, . . . , Gk} be a generating

556 R. W. F. Lai and G. Malavolta

set of Cl(Δ). Our sampling algorithm samples random primes c1, . . . , ck ∈ [|Δ|] sub-
ject to the constraint that the ci’s are pairwise coprime5. That is gcd(ci, cj) = 1 for all
i, j ∈ [k] with i �= j. The algorithm then outputs Δ along with A =

∏
i∈[k] G

ci
i .

With the above restriction in place, it seems that the best strategy of finding an
e-th root of A is to find an e-th root of Gi for all i ∈ [k] simultaneously. On the other
hand, the additional constraint seems necessary for the strong distinct-prime-product
root problem with respect to A to be hard. Suppose that (1) there exists a subset I =
{ci1 , . . . , ci�

} ⊆ [k] such that gcd(ci1 , . . . , ci�
) = d �= 1; (2) d can be efficiently

factorized into {ei}i∈S such that d =
∏

i∈S ei for distinct primes ei �= 1; and (3) for all
j ∈ [k] \ I , Gj can be efficiently represented as a product Gj =

∏
i∈I G

ai,j

i for some
ai,j . Then one can efficiently find a d-th root of A, say Y , and output ({ei}i∈S , Y) as a
solution to the strong distinct-prime-product root problem. Since it seems unreasonable
to assume that d cannot be efficiently factorized into a product of distinct primes (see
also the discussion of RSA-UFO below), nor is it sound to assume that none of the Gj

can be represented with a power product of the Gi’s where i �= j, we impose the more
reasonable restriction that the ci’s are pairwise coprime.

8.2 RSA Groups

RSA-based cryptosystems operate over Z
∗
N , the group of positive integers smaller and

coprime with N , equipped with modular multiplication, where N is an integer with
at least two distinct large prime factors. The security of these systems relies on the
hardness of the (strong) root problem over Z

∗
N , known as the (strong) RSA assumption.

Typically, N is chosen as a product of two secret distinct large primes p, q. However,
the (strong) root problem over Z

∗
N is easy if p and q are known. In other words, for N

generated this way, the (strong) root assumption with public-coin setup does not hold
over Z

∗
N .

RSA-UFOs. The problem of constructing RSA-based accumulators without trapdoors
was considered by Sander [58], who proposed a way to generate (k, ε)-“generalized
RSA moduli of unknown complete factionization (RSA-UFOs)” N which has at least
two distinct k-bit prime factors with probability 1 − ε, summarized as follows. Let
N1, . . . , Nr be random 3k-bit integers with r = O(log 1/ε). It is known that with con-
stant probability Ni has at least two distinct k-bit prime factors [58]. It then follows that
N :=

∏
i∈[r] Ni has at least two distinct k-bit prime factors. An important observation

is that N can be generated with public coin, e.g., using a random oracle. However, since
N is a 3kr-bit integer, any cryptosystem based on Z

∗
N seems impractical. Nevertheless,

one can show that strong RSA over RSA-UFO groups is implied by the standard strong
RSA assumption in the presence of a random oracle. This result is implicitly shown by
Sander [58] and a proof sketch is given in [47].

Acknoweldgements. We thank Yuval Ishai and Eran Tromer for insighful discussions and com-
ments on an earlier draft of this work. Research supported in part by a gift from DoS Networks.

5 This is assuming k > 1, else just set c1 = 1.

Subvector Commitments with Application to Succinct Arguments 557

References

1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zaj ↪ac, M.: A subversion-resistant SNARK. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 3–33. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70700-6 1

2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear argu-
ments without a trusted setup. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pp. 2087–2104. ACM (2017)

3. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. J. ACM
(JACM) 45(1), 70–122 (1998)

4. Bach, E.: Explicit bounds for primality testing and related problems. Math. Comput. 55(191),
355–380 (1990)

5. Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical and
privacy-preserving proofs on authenticated data. In: 2015 IEEE Symposium on Security and
Privacy, pp. 271–286. IEEE Computer Society Press, May 2015

6. Bao, F., Deng, R.H., Zhu, H.F.: Variations of Diffie-Hellman problem. In: Qing, S., Goll-
mann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-39927-8 28

7. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel,
B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006).
https://doi.org/10.1007/11693383 22

8. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient
protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM
CCS 1993, pp. 62–73. ACM Press, November 1993

9. Ben-Sasson, E., et al.: Computational integrity with a public random string from quasi-linear
PCPs. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS, vol. 10212,
pp. 551–579. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7 19

10. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast Reed-Solomon interactive oracle
proofs of proximity. In: Electronic Colloquium on Computational Complexity (ECCC), vol.
24, p. 134 (2017)

11. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying
program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40084-1 6

12. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: trans-
parent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019,
Part I. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-17653-2 4

13. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M., Smith,
A. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53644-5 2

14. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of
elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617,
pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1 16

15. Bitansky, N., et al.: The hunting of the SNARK. J. Cryptol. 30(4), 989–1066 (2017)
16. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to

succinct non-interactive arguments of knowledge, and back again. In: Goldwasser, S. (ed.)
ITCS 2012, pp. 326–349. ACM, January 2012

17. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive argu-
ments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
315–333. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 18

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-540-39927-8_28
https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-319-56617-7_19
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-642-36594-2_18

558 R. W. F. Lai and G. Malavolta

18. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without ran-
dom oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 14

19. Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. Technical report,
Cryptology ePrint Archive, Report 2018/712 (2018). https://eprint.iacr.org/2018/712

20. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with applications
to IOPs and stateless blockchains. Cryptology ePrint Archive, Report 2018/1188 (2018).
https://eprint.iacr.org/2018/1188

21. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments
for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 12

22. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput.
Syst. Sci. 37(2), 156–189 (1988)

23. Buchmann, J., Hamdy, S.: A survey on IQ-cryptography. Technical report TI-4/01, Technis-
che Universitäat Darmstadt, Fachbereich Informatik (2000)

24. Buchmann, J., Takagi, T., Vollmer, U.: Number field cryptography. In: High Primes and
Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams, vol. 41,
pp. 111–125 (2004)

25. Buchmann, J., Williams, H.C.: A key-exchange system based on imaginary quadratic fields.
J. Cryptol. 1(2), 107–118 (1988)

26. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short
proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and
Privacy, pp. 315–334. IEEE Computer Society Press, May 2018

27. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K.,
Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 5

28. Chiesa, A., Tromer, E., Virza, M.: Cluster computing in zero knowledge. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 371–403. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 13

29. Costello, C.: Geppetto: versatile verifiable computation. In: 2015 IEEE Symposium on Secu-
rity and Privacy, pp. 253–270. IEEE Computer Society Press, May 2015

30. Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based on groups
with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2 8

31. Damgård, I., Koprowski, M.: Generic lower bounds for root extraction and signature schemes
in general groups. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 256–
271. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 17

32. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with applica-
tions to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part
I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45611-8 28

33. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with applica-
tions to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part
I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45611-8 28

34. Di Crescenzo, G., Lipmaa, H.: Succinct NP proofs from an extractability assumption. In:
Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 175–
185. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69407-6 21

https://doi.org/10.1007/978-3-540-24676-3_14
https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/1188
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-662-46803-6_13
https://doi.org/10.1007/3-540-36178-2_8
https://doi.org/10.1007/3-540-46035-7_17
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-540-69407-6_21

Subvector Commitments with Application to Succinct Arguments 559

35. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature
problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer,
Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

36. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature
problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer,
Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

37. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct
NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38348-9 37

38. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof sys-
tems. SIAM J. Comput. 18(1), 186–208 (1989)

39. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-17373-8 19

40. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49896-5 11

41. Hamdy, S., Möller, B.: Security of cryptosystems based on class groups of imaginary
quadratic orders. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 234–247.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 18

42. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs. In: Twenty-
Second Annual IEEE Conference on 2007 Computational Complexity, CCC 2007, pp. 278–
291. IEEE (2007)

43. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty
computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 21–30. ACM Press,
June 2007

44. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and
their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 11

45. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In:
24th ACM STOC, pp. 723–732. ACM Press, May 1992

46. Kilian, J.: Improved efficient arguments (preliminary version). In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 311–324. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-44750-4 25

47. Lai, R.W.F., Malavolta, G.: Subvector commitments with applications to succinct arguments.
Cryptology ePrint Archive, Report 2018/705 (2018). https://eprint.iacr.org/2018/705

48. Libert, B., Ramanna, S., Yung, M.: Functional commitment schemes: from polynomial com-
mitments to pairing-based accumulators from simple assumptions. In: Chatzigiannakis, I.,
Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP 2016, LIPIcs, vol. 55, pp. 30:1–
30:14. Schloss Dagstuhl, July 2016

49. Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings and appli-
cations. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS, vol. 9562, pp. 96–124.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9 5

50. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 10

51. Lipmaa, H.: Secure accumulators from Euclidean rings without trusted setup. In: Bao, F.,
Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 224–240. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-31284-7 14

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/3-540-44448-3_18
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/3-540-44750-4_25
https://doi.org/10.1007/3-540-44750-4_25
https://eprint.iacr.org/2018/705
https://doi.org/10.1007/978-3-662-49096-9_5
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-31284-7_14

560 R. W. F. Lai and G. Malavolta

52. Merkle, R.C.: A digital signature based on a conventional encryption function. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988).
https://doi.org/10.1007/3-540-48184-2 32

53. Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453. IEEE Computer
Society Press, November 1994

54. Micali, S., Rabin, M., Kilian, J.: Zero-knowledge sets. In: 44th FOCS, pp. 80–91. IEEE
Computer Society Press, October 2003

55. Mie, T.: Polylogarithmic two-round argument systems. J. Math. Cryptol. 2(4), 343–363
(2008)

56. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 9

57. Reingold, O., Rothblum, G.N., Rothblum, R.D. Constant-round interactive proofs for dele-
gating computation. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp. 49–62. ACM
Press, June 2016

58. Sander, T.: Efficient accumulators without trapdoor extended abstract. In: Varadharajan, V.,
Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 252–262. Springer, Heidelberg (1999).
https://doi.org/10.1007/978-3-540-47942-0 21

59. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-69053-0 18

60. Shoup, V.: OAEP reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
239–259. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 15

61. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78524-8 1

62. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs
without trusted setup (2018)

63. Wesolowski, B.: Efficient verifiable delay functions. IACR Cryptology ePrint Archive
2018/623 (2018)

64. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: verifying arbi-
trary SQL queries over dynamic outsourced databases. In: 2017 IEEE Symposium on Secu-
rity and Privacy, pp. 863–880. IEEE Computer Society Press, May 2017

https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-540-47942-0_21
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-44647-8_15
https://doi.org/10.1007/978-3-540-78524-8_1

	Subvector Commitments with Application to Succinct Arguments
	1 Introduction
	1.1 Commitments with Even Shorter Openings
	1.2 The Quest of Constructing Ever Shorter Arguments
	1.3 Related Work

	2 Preliminaries
	2.1 Subvectors
	2.2 Arguments of Knowledge
	2.3 Probabilistically Checkable Proofs

	3 Mathematical Background and Assumptions
	4 Subvector Commitments
	4.1 Linear Map Commitments

	5 Constructions for SVCs
	5.1 SVC from Modules over Euclidean Rings
	5.2 SVC from the Computational Diffie-Hellman Assumption

	6 Construction for LMC
	7 Succinct Arguments of Knowledge from SVC/LMC
	7.1 Protocol Description
	7.2 Analysis
	7.3 Instantiations and Efficiency

	8 Candidate Module Families
	8.1 Class Groups of Imaginary Quadratic Orders
	8.2 RSA Groups

	References

