
Alexandra Boldyreva
Daniele Micciancio (Eds.)

LN
CS

 1
16

92

39th Annual International Cryptology Conference
Santa Barbara, CA, USA, August 18–22, 2019
Proceedings, Part I

Advances in Cryptology – 
CRYPTO 2019



Lecture Notes in Computer Science 11692

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA



More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410


Alexandra Boldyreva • Daniele Micciancio (Eds.)

Advances in Cryptology –

CRYPTO 2019
39th Annual International Cryptology Conference
Santa Barbara, CA, USA, August 18–22, 2019
Proceedings, Part I

123



Editors
Alexandra Boldyreva
Georgia Institute of Technology
Atlanta, GA, USA

Daniele Micciancio
University of California at San Diego
La Jolla, CA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-26947-0 ISBN 978-3-030-26948-7 (eBook)
https://doi.org/10.1007/978-3-030-26948-7

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-26948-7


Preface

The 39th International Cryptology Conference (Crypto 2019) was held at the
University of California, Santa Barbara, California, USA, during August 18–22, 2019.
It was sponsored by the International Association for Cryptologic Research (IACR). As
in the previous year, a number of workshops took place on the days (August 17 and
August 18, 2019) immediately before the conference. This year, the list of affiliated
events included a Workshop on Attacks in Cryptography organized by Juraj Somor-
ovsky (Ruhr University Bochum); a Blockchain Workshop organized by Rafael Pass
(Cornell Tech) and Elaine Shi (Cornell); a Workshop on Advanced Cryptography
Standardization organized by Daniel Benarroch (QEDIT) and Tancrède Lepoint
(Google); a workshop on New Roads to Cryptopia organized by Amit Sahai (UCLA);
a Privacy Preserving Machine Learning Workshop organized by Gilad Asharov
(JP Morgan AI Research), Rafail Ostrovsky (UCLA) and Antigoni Polychroniadou
(JP Morgan AI Research); and the Mathcrypt Workshop organized by Kristin Lauter
(Microsoft Research), Yongsoo Song (Microsoft Research) and Jung Hee Cheon
(Seoul National University).

Crypto continues to grow, year after year, and Crypto 2019 was no exception. The
conference set new records for both submissions and publications, with a whopping
378 papers submitted for consideration. It took a Program Committee (PC) of 51
cryptography experts working with 333 external reviewers for over two months to
select the 81 papers which were accepted for the conference.

As usual, papers were reviewed in the double-blind fashion, with each paper
assigned to three PC members. Initially, papers received independent reviews, without
any communication between PC members. After the initial review stage, authors were
given the opportunity to comment on all available preliminary reviews. Finally, the PC
discussed each submission, taking all reviews and author comments into account, and
selecting the list of papers to be included in the conference program. PC members were
limited to two submissions, and their submissions were held to higher standards. The
two Program Chairs were not allowed to submit papers.

The PC recognized three papers and their authors for standing out amongst the rest.
“Cryptanalysis of OCB2: Attacks on Authenticity and Confidentiality”, by Akiko
Inoue, Tetsu Iwata, Kazuhiko Minematsu and Bertram Poettering was voted Best Paper
of the conference. Additionally, the papers “Quantum cryptanalysis in the RAM model:
Claw-finding attacks on SIKE” by Samuel Jaques and John M. Schanck, and “Fully
Secure Attribute-Based Encryption for t-CNF from LWE” by Rotem Tsabary, were
voted Best Papers Authored Exclusively By Young Researchers.

Beside the technical presentations, Crypto 2019 featured a Rump session, and two
invited talks by Jonathan Katz from University of Maryland, and Helen Nissenbaum
from Cornell Tech.



We would like to express our sincere gratitude to all the reviewers for volunteering
their time and knowledge in order to select a great program for 2019. Additionally, we
are very appreciative of the following individuals and organizations for helping make
Crypto 2019 a success:

– Muthu Venkitasubramaniam (University of Rochester) - Crypto 2019 General Chair
– Carmit Hazay (Bar-Ilan University) - Workshop Chair
– Jonathan Katz (University of Maryland) - Invited Speaker
– Helen Nissenbaum (Cornell Tech) - Invited Speaker
– Shai Halevi - Author of the IACR Web Submission and Review System
– Anna Kramer and her colleagues at Springer
– Whitney Morris and UCSB Conference Services

We would also like to say thank you to our numerous sponsors, the workshop
organizers, everyone who submitted papers, the session chairs, and the presenters.
Lastly, a big thanks to everyone who attended the conference at UCSB.

August 2019 Alexandra Boldyreva
Daniele Micciancio
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Abstract. We present practical attacks on OCB2. This mode of opera-
tion of a blockcipher was designed with the aim to provide particularly
efficient and provably-secure authenticated encryption services, and since
its proposal about 15 years ago it belongs to the top performers in this
realm. OCB2 was included in an ISO standard in 2009.

An internal building block of OCB2 is the tweakable blockcipher
obtained by operating a regular blockcipher in XEX∗ mode. The latter
provides security only when evaluated in accordance with certain tech-
nical restrictions that, as we note, are not always respected by OCB2.
This leads to devastating attacks against OCB2’s security promises: We
develop a range of very practical attacks that, amongst others, demon-
strate universal forgeries and full plaintext recovery. We complete our
report with proposals for (provably) repairing OCB2. To our under-
standing, as a direct consequence of our findings, OCB2 is currently
in a process of removal from ISO standards. Our attacks do not apply to
OCB1 and OCB3, and our privacy attacks on OCB2 require an active
adversary.

Keywords: OCB2 · Authenticated encryption · Cryptanalysis ·
Forgery · Plaintext recovery · XEX

1 Introduction

Authenticated encryption (AE) is a form of symmetric-key encryption that
simultaneously protects the confidentiality and authenticity of messages. The
primitive is widely accepted as a fundamental tool in practical cryptography,
finding application in many settings, including in SSH and TLS.
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Constructions of the AE primitive include the OCB family of blockcipher
modes of operation. Its three members (OCB1, OCB2, OCB3) are celebrated
for their beautiful and innovative architecture, and their almost unrivaled effi-
ciency. In fact, the modes are fully parallelizable and thus effectively as efficient
as the fastest known confidentiality-only modes. The first version (OCB1) was
proposed at ACM CCS 2001 by Rogaway et al. [34], the second version (OCB2)
at ASIACRYPT 2004 by Rogaway [30] (hereafter Rog04), and the third ver-
sion (OCB3) at FSE 2011 by Krovetz and Rogaway [20]. While all three designs
share roughly the same construction principles, differences to note include both
the external interface (while OCB1 is a pure AE mode, its successors OCB2
and OCB3 are AEAD modes where encryption and decryption is performed
with respect to an auxiliary associated data input), and a core internal building
block (while OCB1 and OCB3 are driven by look-up tables, OCB2 relies on the
so-called powering-up construction).

Each version of OCB has received significant attention from researchers,
standardization bodies, and the industry. In particular, OCB1 is listed in the
IEEE 802.11 standard as an option for the protection of wireless networks,
OCB2 was included in the ISO/IEC 19772:2009 [15] standard, and OCB3 is
specified as document RFC 7253 [21] as an IETF Internet standard. Moreover,
OCB3 is included in the final portfolio of the CAESAR competition1. Vari-
ous versions of OCB have been implemented in popular cryptographic libraries,
including in Botan, BouncyCastle, LibTomCrypt, OpenSSL, and SJCL.

The security of (all versions of) OCB has been extensively studied. For each
version, the designer(s) provided security reductions to the security of the under-
lying blockcipher, with additive birthday-bound tightness of roughly the form
O(σ2/2n), where σ indicates the number of processed blocks (message and asso-
ciated data) and n is the block size of the cipher. Note that this bound formally
becomes pointless if σ = 2n/2 blocks are involved, and indeed Ferguson [10] and
Sun et al. [36] showed collision attacks that get along with this many processed
blocks, implying that the bound is tight. (The attacks do not seem to be practi-
cal, though, as they require processing 300 EB (exabytes) of data with a single
key, assuming n = 128.) As discussed below, all further known attacks against
the members of the OCB family are in relaxed security settings (e.g. involving
nonce misuse), with the conclusion being that their security is widely believed
to hold (up to the birthday bound, in classic security models).

In this article we invalidate this belief by presenting a series of attacks against
OCB2. The most basic attack requires one encryption and one decryption (of
short messages and ciphertexts, respectively) to create an existential forgery
with success probability one. No heavy computation or large amount of memory
is needed for this; rather performing a couple of XOR computations is sufficient
to craft the forgery. The attack is independent of the blockcipher E over which
OCB2 is defined, including of its key and block length. Further, the message
to which the forged ciphertext decrypts is strongly dependent on the message
involved in the first encryption query, so that most parts of it can be assumed

1 https://competitions.cr.yp.to/caesar.html.
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to be known to, or influenced by, the adversary. Extended versions of our attack
achieve forgeries for arbitrary messages (including full control over nonces and
associated data), and full plaintext recovery, at the expense of a slight increase
in the number of required encryption and decryption queries. Long story short:
Our attacks on OCB2 are as critical as attacks on AE schemes could ever be.

We turn to technical details of our attacks. All members of the OCB family
can be seen as modes of operation of a tweakable blockcipher (TBC, [22]): For
encrypting a message consisting of one or multiple blocks, each message block is
enciphered independently of the others using a tweak that reflects the position
of the block in the message. Special tweaking rules are deployed for the last
(possibly padded) message block and the checksum used for tag generation. In
OCB2, the tweakable blockcipher itself is derived from an underlying regular
blockcipher (e.g. AES) using the XEX∗ transform. The latter is a hybrid of
XE (“XOR-encipher”, C = EK(Δ ⊕ M)) and XEX (“XOR-encipher-XOR”,
C = Δ ⊕ EK(Δ ⊕ M)) where it can be decided on a per-evaluation basis which
of the two is used. We emphasize that the flaw of OCB2 that we identify and
exploit is located neither in the general method the AEAD scheme is constructed
from a tweakable blockcipher nor in the security of the XEX∗ primitive. The
problem is rather hidden in the interplay between the former and a technical
peculiarity of the latter: If XEX∗ is ever evaluated twice on the same input but
in different modes (XE vs. XEX), it gives up on all security promises. While
the corresponding access rule was already identified as necessary by Rog04, it
was overlooked that OCB2 actually does not always satisfy it. Indeed, as we
expose in this paper, an attacker can arrange that an XEX evaluation occurring
when encrypting a regular message block and an XE evaluation occurring when
decrypting a (padded) last block of an unauthentic ciphertext are on the same
inputs. This issue, that was overlooked by the cryptographic community for the
past 15 years, not only devalidates the formal security argument for OCB2 but
ultimately leads to attacks that completely break the security of this primitive.
As it turns out, OCB2 can be provably fixed by replacing certain XE invocations
by XEX invocations. While the price to pay for this is minor (one additional XOR
operation per encryption/decryption operation), unfortunately the fixed version
loses backward compatibility with (unmodified) OCB2 implementations.

Our attacks are technical and fairly complex, so we confirmed their effectiv-
ity by implementing them: For our most relevant attacks we have C code that
breaks the OCB2 reference implementation2 with the reported high efficiency
and success rate. We finally note that OCB1 and OCB3 do not combine the XE
and XEX modes in the way OCB2 does, and we did not find them affected by
our attacks.

1.1 Impact

OCB2 has been standardized in ISO/IEC 19772:2009 for about a decade [15].
As the scheme offers exceptional performance that was and still is challenging

2 By Krovetz, http://web.cs.ucdavis.edu/∼rogaway/ocb/code-2.0.htm.
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to rival for AES-based constructions, it has to be assumed that industry has
widely picked up on it, ultimately incorporating the scheme into products. The
consequences of this might be severe. We have thus been in contact with members
of ISO/IEC SC 27 Working Group 2, which is responsible for the standard, to
advise on the right interpretation of our findings. The working group has issued
a document [16] that acknowledges our findings and makes it clear that OCB2
should no longer be used. Moves are nearing completion to remove the scheme
from the international standard.

OCB2 was and possibly still is covered by Intellectual Property claims. While
such claims don’t necessarily manifest a noticeable obstacle for deployment in
industry, for open source software development efforts they routinely are. As a
consequence, a number of relevant open source crypto libraries do not have an
implementation of OCB2 and are thus not affected by our findings (an exception
to this is Stanford’s SJCL library3). The lack of open implementations suggests
that most affected parties have industrial background. By the very nature of
(IND$ secure) encryption, spotting products that rely on OCB2 for security and
now became vulnerable remains a challenge.

1.2 Further Related Work

Besides the already mentioned attacks by Ferguson and Sun et al. (that show tight-
ness of the birthday bound claimed for OCB), the following analyses in less classic
attack settings have been conducted: Attacks in scenarios where the AE scheme is
deployed in a somewhat sloppy way, e.g. where nonces are repeated (nonce-misuse
setting) or where message fragments emerging from partially decrypted (possibly
invalid) ciphertexts are leaked (release of unverified plaintext setting) are proposed
by Andreeva et al. [1] and Ashur et al. [3]. In the same vein, but also considering
attacks against the birthday bound of security claims, Vaudenay and Vizár [37]
studied all third-round CAESAR candidates, including OCB3.

Not with the aim of breaking a particular version of OCB, but with the goal of
better understanding the security of the schemes by refining the set of necessary
security requirements on the underlying blockcipher, Aoki and Yasuda [2] show
that relaxed assumptions are sufficient to establish the security of OCB. (Note that
our attacks are in conflict with their claims on OCB2, indicating that their security
arguments have to be reconsidered; the authors of [2] confirmed this view to us.)

Attacks in the reforgeability setting [6,11] deliver a series of existential forg-
eries with the specific property that creating the first forgery is the hardest part.
While in most cases hardness is measured in terms of computation time, also our
attacks can be seen in the reforgeability setting, but with a different complexity
measure: While crafting the first OCB2 forgery requires two queries (one encryp-
tion, one decryption) and the forgery is only existential, all further forgeries can
be universal (on arbitrary messages and associated data), and only require one
further query (encryption). In fact, one can create hundreds of universal forgeries
from the second encryption query.

3 http://bitwiseshiftleft.github.io/sjcl/.
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1.3 Organization and Contributions

We recall notions of tweakable blockciphers and authenticated encryption in
Sect. 2. After specifying the OCB2 algorithms in Sect. 3 we present simple
authenticity and confidentiality attacks against them in Sect. 4. While the latter
achieve overwhelming advantages with respect to formal notions of unforgeabil-
ity and indistinguishability and thus make evident that OCB2 is academically
broken, certain restrictions on the format of forged or distinguished messages
remain. We hence develop, in Sect. 5, a set of advanced attacks (including uni-
versal forgery and arbitrary decryption) that break the scheme also in most
real-world settings. In Sect. 6 we explore which technical component of OCB2
is responsible for its insecurity; as many other schemes in symmetric cryptogra-
phy use structures similar to those of OCB2, these reflections might also guide
future cryptanalysis attempts of such schemes. In Sect. 7 we survey the applica-
bility of our attack strategies to related encryption modes, including to OCB1
and OCB3; however we do not identify any further weak candidate. Finally, in
Sect. 8 we consider a couple of ways to repair OCB2.

2 Preliminaries

2.1 Notations

If A is a set we write a
$← A for the operation of picking an element of A

uniformly at random and assigning it to the variable a. If B,B′ are sets we write
B ∪← B′ as shorthand for B ← B ∪ B′.

Strings and Padding. Let {0, 1}∗ be the set of all binary strings, including
the empty string ε. The bit length of X ∈ {0, 1}∗ is denoted by |X|, and in
particular we have |ε| = 0. The sequence of c zeros is denoted with 0c, with
the convention that 00 = ε. The concatenation of two bit strings X and Y is
written X ‖Y , or XY when no confusion is possible. The XOR combination of
two same-length bit strings X,Y is denoted X ⊕ Y . We denote with msbc(X)
and lsbc(X) the first and last c ≤ |X| bits of X, respectively.

For X,n with |X| ≤ n we define the zero padding, X ‖ 0∗, and the one-zero
padding, X ‖ 10∗. Both are X when |X| = n. They are X ‖ 0∗ = X ‖ 0n−|X| and
X ‖ 10∗ = X ‖ 10n−|X|−1, respectively, when 0 ≤ |X| < n.

For X ∈ {0, 1}∗, we also define the parsing of a string into n-bit blocks
denoted by

(X[1],X[2], . . . ,X[m]) n← X,

where m = |X|n def= �|X|/n	, X[1] ‖X[2] ‖ . . . ‖X[m] = X, |X[i]| = n for 1 ≤
i < m and 0 < |X[m]| ≤ n when |X| > 0. When |X| = 0, we let X[1] n← X with
X[1] = ε.
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2.2 (Tweakable) Blockciphers

A tweakable blockcipher (TBC) [22] is a keyed function ˜E : K×T ×M → M such
that for each (K,T ) ∈ K × T , the partial function ˜E(K,T, ·) is a permutation
of M. Here, K is the key and T is a public value called tweak, and typically we
have M = {0, 1}n where n is called the block length. (It is safe to assume n = 128
from here on.) A conventional blockcipher is a TBC with T being a singleton,
and specifically written as E : K × M → M. The enciphering of X ∈ M under
key K ∈ K and tweak T ∈ T is denoted, equivalently, ˜E(K,T,X) or ˜EK(T,X)
or ˜ET

K(X). For blockciphers we correspondingly write E(K,X) or EK(X). The
deciphering is written as ˜E−1,T

K (Y ) for TBCs and E−1
K (Y ) for blockciphers. For

any T ∈ T and K ∈ K, when Y = ˜ET
K(X) we have ˜E−1,T

K (Y ) = X.
When the key K used with a blockcipher or TBC invocation is obvious from

the context, we may omit writing it. Moreover, for a mode of operation that
depends on a keyed blockcipher instance EK , we may treat EK as the key and
write ModeE (and correspondingly for a TBC ˜E).

Security of (Tweakable) Blockciphers. Consider a TBC of the form
˜E : K×T ×M → M. A tweakable uniform random permutation (TURP) for sets
T ,M is an information-theoretic TBC that behaves like uniformly distributed
over all T -tweaked permutations over M (i.e., like a uniformly picked function
f : T × M → M such that f(T, ∗) is a permutation over M for all T ∈ T .) We
denote TURP instances for ˜E with ˜P.

We define the Tweakable Pseudorandom Permutation (TPRP) advantage and
the Tweakable Strong PRP (TSPRP) advantage of an adversary A as follows:

Advtprp
˜E

(A) def= Pr
[

K
$← K : A ˜EK ⇒ 1

]

− Pr
[

A˜P ⇒ 1
]

Advtsprp
˜E

(A) def= Pr
[

K
$← K : A ˜EK , ˜E−1

K ⇒ 1
]

− Pr
[

A˜P,˜P
−1

⇒ 1
]

Here, the adversaries perform chosen-plaintext attacks and chosen-ciphertext
attacks, respectively, and in both cases with chosen tweak. (That is, they can
query any (T,X) in the enciphering direction and any (T, Y ) in the deciphering
direction (if applicable), with freely chosen T .)

For blockciphers E : K ×M → M we analogously define the PRP advantage
Advprp

E (A) and SPRP advantage Advsprp
E (A), using a URP P as information-

theoretic reference point. (A URP uniformly distributes over all permutations
over M.)

Galois Fields. Following [18,30], bit strings a ∈ {0, 1}n can be considered
elements of GF(2n), assuming a representation of the latter with a polynomial
basis and seeing the bits of a as polynomial coefficients. The strings 0n−210 and
0n−211 correspond with the polynomials ‘x’ and ‘x+1’, and we denote these field
elements with ‘2’ and ‘3’, respectively. It is common to refer to the multiplication
of a field element with 2 (read: x) as doubling. For instance, 2ia denotes i-times
doubling a. Standard calculation rules (for fields) apply; in particular we have
3a = 2a ⊕ a and 2i3a = 3(2ia) = 2i+1a ⊕ 2ia for all i.
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In the spirit of the above, OCB2 considers the domain M = {0, 1}n of
the blockcipher it is based on a Galois field. More precisely, the fixed block
length n = 128 is assumed (which matches AES), and as the (irreducible) reduc-
tion polynomial of the GF(2n) representation the lexicographically-first primitive
polynomial is used, which is x128 + x7 + x2 + x + 1. This choice implies that all
non-zero elements of GF(2n) are (cyclically) obtained by continuously doubling
the element 2, and further that the doubling mapping a → 2a can be efficiently
implemented as lsbn(a � 1) if msb1(a) = 0 and lsbn(a � 1) ⊕ (012010000111)
if msb1(a) = 1, where (a � 1) denotes the left-shift of a by one bit. For more
details on this representation, see [30].

2.3 AE and AEAD

For simplicity we refer with the term AE to both: schemes implementing (pure)
Authenticated Encryption and schemes implementing Authenticated Encryption
with Associated Data (AEAD) [29]. An AE scheme Π = (Π.E ,Π.D) is defined
over a key space K, a nonce space N , an associated data (AD) space A, a
message space M, and a tag space T = {0, 1}τ for some fixed tag length τ . The
understanding of AD is that it is an input to the encryption and decryption
algorithms that is not to be kept confidential; rather it reflects the context in
which the encryption happens and is authenticated along with the encrypted
message.4 Formally, the AEAD encryption algorithm is a function Π.E : K ×
N × A × M → M × T , and the decryption (incl. verification) algorithm is a
function Π.D : K × N × A × M × T → M ∪ {⊥}, where symbol ⊥ is used to
report verification failures.

To encrypt plaintext M with nonce N , associated data A, and key K, com-
pute (C, T ) ← Π.EK(N,A,M) to produce ciphertext C and tag T . The tuple
(N,A,C, T ) is communicated to the receiver5 and the original message M recov-
ered by computing Π.DK(N,A,C, T ).

Security Notions. The security of AE is typically captured with two notions:
privacy and authenticity. Following the definitions of [5,32], authenticity requires
that ciphertexts (including nonce, associated data, and tag) cannot be forged, and
privacy requires their indistinguishability (including the tag).More precisely,while
[32, Sec. 3] defines privacy as the inability of a passive adversary to distinguish
ciphertext-tag pairs from random strings, [32, Sec. 6] gives a second definition that
formalizes privacy against active adversaries (that canpose decryption queries).As
noted in [32, Sec. 6], if authenticity is provided by a scheme, the two privacy notions
turn out to be equivalent. Since the current article considers an AE scheme that
does not provide authenticity, we emphasize that for this scheme the equivalence of
the two notions cannot be assumed (and in fact they differ!). We correspondingly
reproduce the two definitions separately.
4 For example, if network payloads are to be encrypted, it is useful to include network

header information in the AD.
5 In many practical cases, receivers can reproduce N and/or A by themselves so that

these values do not need to be transmitted.
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We formalize privacy against passive attacks with a pair of games where
a nonce-respecting adversary interacts with an oracle that is called on inputs
(N,A,M) and either implements a keyed AEAD instance that returns the cipher-
text (C, T ) = EK(N,A,M), or implements a random-bits oracle that returns a
uniformly picked string of length |M | + τ . The privacy advantage of an adver-
sary A is defined as

Advpriv
Π (A) def= Pr

[

K
$← K : AΠ.EK(·,·,·) ⇒ 1

]

− Pr
[

A$(·,·,·) ⇒ 1
]

.

Privacy against active adversaries is defined similarly, but with an added decryp-
tion oracle that the adversary may query on arbitrary tuples (N,A,C, T ) except
those where (C, T ) was returned by a EK(N,A, ·) or $(N,A, ·) query before. The
corresponding advantage definition is

Advpriv-cca
Π (A) def= Pr

K

[

AΠ.EK(·,·,·),Π.DK(·,·,·,·) ⇒1
]

− Pr
K

[

A$(·,·,·),Π.DK(·,·,·,·) ⇒1
]

.

where the probabilities are over the random choice K
$← K.

With respect to the authenticity notion, we deem adversaries A with access
to EK and DK oracles successful if they are effective with creating forgeries.
Formally, the authenticity advantage is defined as

Advauth
Π (A) def= Pr

[

K
$← K : AΠ.EK(·,·,·),Π.DK(·,·,·,·) forges

]

, (1)

where A forges if it receives a value M ′ �= ⊥ from the Π.DK oracle, conditioned
on it being nonce respecting and not querying tuples (N,A,C, T ) to the Π.DK

oracle if it made a query (N,A,M) to Π.EK with result (C, T ) before.

3 The OCB2 Mode of Operation

The OCB2 authenticated encryption scheme was initially, in [30], described as
a pure (nonce-based) AE mode without support for AD processing.6 Like its
predecessor OCB1 it is fully parallelizable and rate-1 (requiring one blockcipher
invocation per message block), but it replaced the table-driven design of OCB1
with the ‘powering-up’ construction to compute a sequence of tweaks by contin-
uously doubling them. Further, in [30, Sec. 11] it was suggested that the OCB2
AE mode can be generalized into an AEAD mode (dubbed AEM) by XOR-ing,
in all cases where the AD is non-empty, a MAC of the AD into the authenti-
cation tag of OCB2. The OCB2-related PMAC construction was identified as a
particularly interesting option as it would allow sharing its blockcipher instance
with that of the OCB2 encryption core.7

6 In that paper the mode was actually referred to as OCB1; what we call OCB1 was
referred to as OCB in [30].

7 The PMAC version from [31] is slightly different from the initial version [7] in that it
uses doublings for mask generation and was further adapted to be computationally
independent from the encryption part when combined with OCB2.
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Fig. 1. Algorithms of OCB2. See Appendix B for the specifications of len and PMACE .
Blockcipher E is implicitly parameterized with the AEAD key.

Our specification of OCB2 is taken from [31, Fig. 3] and supports associated
data. The key space K is that of the underlying blockcipher E, the latter is
required to have block length n = 128 (in particular, AES is suitable), the nonce
space is N = {0, 1}n, the message space M and the AD space A are the sets
of strings of arbitrary length, and the tag space is C = {0, 1}τ for any fixed
parameter τ ≤ n.

The OCB2 algorithms EE and DE are detailed in Fig. 1 (and algorithm EE is
further illustrated in Fig. 2). In the code, for X ∈ {0, 1}≤n, expression len(X)
denotes an n-bit encoding of |X|, PMACE(A) denotes the PMAC of A computed
with the (keyed) blockcipher instance E, and the field operations are with respect
to the GF(2n) setup described in Sect. 2.2. The details of functions len and
PMAC are ultimately not relevant for our attacks, so we omit their description
here. (For completeness we reproduce them in Appendix B.)

4 Basic Attacks

We prove by example that, in the formal sense, OCB2 provides neither authen-
ticity nor confidentiality. We start with specifying a minimal attack on unforge-
ability that gets along with a single encryption query to produce an existential
forgery with probability 1. This attack, while formally valid, is rather limited
with respect to the choice of involved parameters like message length and tag
length. We thus proceed with giving a more general version that extends the
basic attack in terms of these parameters.
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Fig. 2. OCB2 encryption for the case of empty AD.

We then focus on the confidentiality of OCB2 and observe that our attacks
against authenticity effectively also break the privacy of OCB2 (requiring one
encryption and one decryption query).

The attacks considered here neither craft universal forgeries nor decrypt arbi-
trary ciphertexts. These more powerful attacks are described in Sect. 5.

4.1 Minimal Forgery

We give the minimal example of our forgery attacks against OCB2. For simplic-
ity, assume τ = n, i.e., that tags have maximum length. Note that the attack is
independent of both the AD processing function (PMAC) and the details of the
length encoding function len.

The following steps of our attack are also illustrated in Fig. 3 and specified
in pseudocode in Fig. 4.

1. Encrypt (N,A,M) where N is any nonce, A = ε is empty, and M is the
2n-bit message M = M [1] ‖M [2] where

M [1] = len(0n)

and M [2] is any n-bit block. The encryption oracle returns the pair (C, T )
consisting of a 2n-bit ciphertext C = C[1] ‖C[2] and a tag T .

2. Decrypt (N ′, A′, C ′, T ′) with |C ′| = n such that

N ′ = N,

A′ = ε,

C ′ = C[1] ⊕ len(0n)
T ′ = M [2] ⊕ C[2] (2)
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Note that C ′ �= C (they have different lengths), so we have a successful forgery
if (N ′, A′, C ′, T ′) is accepted by the decryption algorithm. To see that this is the
case, observe first that by the encryption algorithm we have

C[1] = 2L ⊕ E(2L ⊕ len(0n))
C[2] = M [2] ⊕ Pad, (3)

where L = E(N) and Pad = E(22L ⊕ len(0n)). Let Pad′ and Σ′ be the inter-
mediate values computed during decryption. Then C ′ is decrypted to

M ′ = C ′ ⊕ Pad′

= C ′ ⊕ E(2L ⊕ len(0n))
= C[1] ⊕ len(0n) ⊕ E(2L ⊕ len(0n))
= 2L ⊕ E(2L ⊕ len(0n)) ⊕ len(0n) ⊕ E(2L ⊕ len(0n))
= 2L ⊕ len(0n),

and the tag is recovered as

T ∗ = E(2 · 3L ⊕ Σ′)
= E(2 · 3L ⊕ C ′ ⊕ Pad′)
= E(2 · 3L ⊕ M ′)
= E(2 · 3L ⊕ 2L ⊕ len(0n))

= E(22L ⊕ len(0n)) (4)
= Pad
= T ′, (5)

where (4) follows from the identity 2 · 3L = 22L ⊕ 2L and (5) follows from (2)
and (3). The conclusion is: We have T ∗ = T ′ and thus tuple (N ′, A′, C ′, T ′) is
falsely accepted as an authentic ciphertext.

4.2 Forgery of Longer Messages

We next show that the attack of Sect. 4.1 can be generalized, without increasing
the number of encryption or decryption queries, to allow forging ciphertexts for
arbitrarily long messages. The generalized attack further drops the requirement
for A = ε for the encryption query, and relaxes the τ = n requirement for the
tag length.

1. Encrypt (N,A,M) where N and A are arbitrary, M = M [1] ‖ · · · ‖M [m −
1] ‖M [m] is an m-block message satisfying

M [m − 1] = len(0n),

and M [m] is any s-bit string such that τ ≤ s ≤ n. The encryption oracle
returns a pair (C, T ) where C = C[1] ‖ · · · ‖C[m − 1] ‖C[m].
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Fig. 3. Minimal forgery attack (see Sect. 4.1).

2. Decrypt (N ′, A′, C ′, T ′) where N ′ = N , A′ = ε, and C ′ = C ′[1] ‖ · · · ‖C ′[m−
2] ‖C ′[m − 1] has m − 1 blocks such that

C ′[i] = C[i] for 1 ≤ i ≤ m − 2

C ′[m − 1] =
m−2
∑

i=1

M [i] ⊕ C[m − 1] ⊕ len(M [m])

T ′ = msbτ (M [m] ⊕ C[m]).

To see that this tuple is accepted as authentic (and thus manifests a forgery),
let T

′
be the reconstructed (untruncated) tag in the decryption query. We have

T
′
= E(Σ′ ⊕ 3 · 2m−1L)

= E

(

m−2
∑

i=1

M ′[i] ⊕ C ′[m − 1] ⊕ Pad′ ⊕ 3 · 2m−1L

)

= E

(

m−2
∑

i=1

M [i] ⊕ C ′[m − 1] ⊕ C[m − 1] ⊕ 2m−1L ⊕ 3 · 2m−1L

)

, (6)
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where M ′[i] = M [i] is the i-th decrypted plaintext block, and Pad′ = C[m − 1] ⊕
2m−1L. Since 2m−1L ⊕ 3 · 2m−1L = 2mL, the last term of (6) is further expanded
as

E

(

m−2
∑

i=1

M [i] ⊕ C ′[m − 1] ⊕ C[m − 1] ⊕ 2mL

)

= E

(

m−2
∑

i=1

M [i] ⊕
(

m−2
∑

i=1

M [i] ⊕ C[m − 1] ⊕ len(M [m])

)

⊕ C[m − 1] ⊕ 2mL

)

= E (len(M [m]) ⊕ 2mL)
= Pad .

Finally, we have

T ∗ = msbτ (T
′
)

= msbτ (Pad)
= msbτ (M [m] ⊕ C[m]) (∵ τ ≤ |M [m]| ≤ n)
= T ′ .

4.3 Confidentiality Attack

In Sect. 4.1 we have seen a basic attack that breaks the authenticity of OCB2.
Perhaps surprisingly at first, the very same attack (formally) also breaks the
privacy of the scheme. More precisely, we describe a two-query adversary against
the PRIV-CCA notion that achieves a distinguishing advantage of almost 1.

The intuition behind our adversary is quite simple: It poses the same encryp-
tion and decryption queries as adversary A in Sect. 4.1, but then considers
whether the value M ′ returned by the decryption oracle indicates that the cipher-
text was valid or not: A outputs b = 1 if M ′ ∈ M; otherwise, if M ′ = ⊥, it
outputs b = 0. Note that if A interacts with legit E and D oracles then the
forgery will be successful (by what we proved) and we have the b = 1 case. On
the other hand, if A interacts with $ and D, the probability that M ′ �= ⊥ and
thus A outputs b = 1, is only 2−τ .

Attacking the PRIV-CV notion. In Sect. 2.3 we formalized the privacy
notions PRIV and PRIV-CCA, where the former did not have a decryption
oracle and targeted fully passive adversaries. We note that a version that is like
the plain PRIV notion but adds a ciphertext verification oracle would interpolate
between the two; we call this notion PRIV-CV (for ciphertext verification). The
new oracle tries to decrypt any provided ciphertext and returns a bit (encoded
as �/⊥) indicating whether the ciphertext was valid. It is not hard to see that
our attack against PRIV-CCA is actually an attack against PRIV-CV. (Note
that this increases its applicability and thus makes it more powerful.) We give
the full details of the attack in Fig. 4, where we denote the verification oracle
with V.
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Fig. 4. Left: Minimal attack on authenticity. Right: Minimal attack on privacy (ver-
sion with ciphertext verification oracle).

Attacking the IND-CCA notion. A different formalization of confidentiality
is given by the IND-CCA notion [32] which does not require that ciphertexts
look like random strings but focuses on the bare semantic security aspect of
encryption. It is easy to modify our above attack to be successful in the IND-
CCA sense: In the classic left-or-right setting, the left message would be chosen
according to our authenticity attack, while the right message would be chosen
to be the all-zero message (of the same length). As above, the adversary would
output b = 1 iff its forgery attempt is deemed valid.

4.4 Observations

The attacks of Sects. 4.1 and 4.2 can be extended to several directions.

Truncated Tag. Since the tag T returned by the first encryption query is
not needed by our attacks, they also work if AD is chosen non-empty (for the
encryption query). However, the decryption query needs the empty AD. For the
same reason, our attacks also work when τ < n; we just set T ′ = msbτ (M [2] ⊕
C[2]) and the forgery will be accepted with probability one.

Almost-Arbitrary Message. Most of the blocks of the message involved in
the first encryption query can be freely chosen by the attacker. Only the last
but one block requires a special format: len(0n) = 0120107 (see Appendix B).
This format is not too special and could even occur naturally, e.g. if plaintexts
receive a certain padding before being encrypted.

The condition on M [m− 1]. Our attacks also work for some values M [m− 1]
that differ from len(0n). When M [m − 1] = len(0n−s) for some 0 < s < n,
by making (n − s)-bit C ′[m − 1] = msbn−s(C[m − 1]) ⊕ msbn−s(len(0n)) the
forgery is still successful if s is small. In more detail, the success probability is
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1/2s which is the probability that lsbs(Pad) equals to lsbs(2L⊕len(0n)). If we
create 2s forgeries for 2s encryption queries, there will be at least one successful
forgery with a high probability.

When len(M [m]) < τ , the adversary can forge T ∗ with probability
1/2τ−len(M [m]), since the adversary only knows msblen(M [m])(Pad) and has to
guess the remaining (τ − len(M [m])) bits.

5 Advanced Attacks

In this section we target some of the most powerful goals of encryption scheme
cryptanalysis: We contribute a universal forgery attack and a full plaintext recov-
ery attack for arbitrary ciphertexts.

5.1 Universal Forgeries

In a universal forgery attack the adversary freely chooses any M$ ∈ {0, 1}∗, any
A$ ∈ {0, 1}∗, and any N$ ∈ {0, 1}n, and creates a forgery (C$, T $) such that
OCB2.DE(N$, A$, C$, T $) returns M$. We present a universal forgery attack for
OCB2 that is based on two sub-routines that we describe first.

Extracting random blockcipher mappings. Given a fixed blockcipher
instance E = EK , we refer to any pair (X,Y ) ∈ ({0, 1}n)2 satisfying E(X) = Y
as an input-output pair or mapping of the blockcipher. Note that the regular
deployment of OCB2 does not expose such pairs. (This is not a coincidence as the
XEX∗ construction becomes insecure when such pairs become public.) However,
as we observe and explore in the following, if forged OCB2 ciphertexts surface
and are decrypted then the resulting messages do leak one or more input-output
pairs. We develop pseudocode for a procedure that, on input an integer m, per-
forms a specific OCB2 forgery and extracts roughly m-many input-output pairs
from the result. As our procedure does not control the positions X,Y for which
it finds the pairs we refer to the process as ‘random mapping extraction’.

Recall that in our authenticity attack from Sect. 4.1 the adversary learns value
M ′ = 2L ⊕ len(0n) and thus E(N) = L = (M ′ ⊕ len(0n))/2 from the forgery.
Note that (N,L) is the first example of an extracted input-output pair. In fact,
inspection of the OCB2 algorithms in Fig. 1 shows that also (2L⊕len(0n), 2L⊕
C[1]) and (22L⊕len(0n), C[2]⊕M [2]) are input-output pairs of E. (In addition,
but only if τ = n, we can obtain one more such pair from Σ and T ; however, for
generality we ignore this observation in the following.)

Similar observations hold for our long-message forgery attack of Sect. 4.2, and
the number of extractable input-output pairs is even higher (linear in the length
of the message). Our SamplePairs procedure, specified in Fig. 5 (left), mechanizes
the input-output pair gathering by crafting, in the spirit of Sect. 4.2, a forgery
for a long all-zero message. More precisely, the procedure takes on input a value
m ≥ 2 and extracts m+1 input-output pairs8, assuming it is provided with access
8 The number of pairs can be fewer than m + 1 when collisions occur, however this

event has a negligible probability.



18 A. Inoue et al.

to E and D oracles. (Again we ignore the extra pair obtainable when τ = n.) The
resulting pairs (X,Y ) are collected in a global set E. While the latter is shared
with other algorithms that we describe below, the set can be characterized by
the implication (X,Y ) ∈ E ⇒ E(X) = Y (for one fixed blockcipher key K).

Extracting specific blockcipher mappings. Once a non-empty set E is
obtained with the SamplePairs procedure, we can implement a second procedure
that takes an arbitrary vector (X1,X2, . . .) of blockcipher inputs and returns the
vector (Y1, Y2, . . .) such that E(Xi) = Yi for all i. The underlying idea is to pick
from E a random input-output pair (N,L), to use N as a (hopefully fresh) nonce
in an encryption query of a message M , and to exploit the a priori knowledge of
value L (that would normally remain hidden) to carefully prepare message M
such that the blockcipher invocations induced by the encryption process coincide
exactly with the points Xi. The corresponding values Yi can then be extracted
from the ciphertext.

The specification of the corresponding Encipher procedure is in Fig. 5 (right).
The nonce generation in line 2 assumes that set E was populated before by at
least one invocation of procedure SamplePairs. The likely most interesting detail
of the procedure is that while the first m − 1 values Xi are embedded directly
into (the first m − 1 blocks of) the message M , the one remaining value Xm

is only implicitly embedded: We carefully choose the last message block M [m]
such that the sum Σ = M [1] ⊕ . . . ⊕ M [m] used to derive the authentication
tag is such that the tag is computed as T = E(Xm). Observe that the full T ,
and thus Ym, is visible to the adversary only if τ = n, i.e., if the tag is not
truncated. Correspondingly, our procedure translates Xm to Ym only in this
case. Otherwise, if τ < n, only for X1, . . . , Xm−1 the corresponding value Yi is
identified and returned. Note that we feed back all extracted pairs (Xi, Yi) into
the set E, giving more choice to pick a fresh nonce in line 2 of a later invocation
of Encipher.

Universal Forgery Attack. Note that with the development of the Encipher
algorithm it became trivial to compute forgeries on any combination of nonce N ,
message M , and AD A: It simply suffices to execute OCB2’s encryption algo-
rithm E from Fig. 1 on input N,A,M , emulating all blockcipher evaluations with
invocations of Encipher. The resulting forgeries are perfect. Note further that
OCB2 is parallelizable, i.e., most of the blockcipher evaluations of an encryption
operation happen concurrently of each other. This property makes forging very
efficient (in terms of the number of required encryption queries), as all concurrent
enciphering operations can be batch-processed with a single Encipher call.

When closely looking at the details it however becomes apparent that univer-
sally forging cannot be performed with a single Encipher invocation. As a matter
of fact, not all enciphering operations related to an encryption are concurrent: In
OCB2’s E algorithm, tag T is computed by enciphering a value dependent on Pad
which is a blockcipher output by itself. These computations cannot be parallelized,
and it becomes clear that universal forging requires at least two succeedingEncipher
invocations. A similar observation can be made for the PMAC algorithm (see Fig. 9
in Appendix) where the finalization step requires enciphering an intermediate sum
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Fig. 5. Left: Procedure that generates a random collection of m+1 pairs (Xi, Yi) such
that E(Xi) = Yi for all i. If τ = n (gray part) then this is improved to m + 2 pairs.
Right: Procedure that given X1, . . . , Xm−1 finds Y1, . . . , Ym−1 such that E(Xi) = Yi

for all i. If τ = n (gray part) then one more mapping Xm → Ym can be processed. (If
τ < n use any value for Xm in line 5, e.g., Xm = 0.) Both: The procedures share a
common set variable E that is assumed to initially be empty. Procedure Encipher may
only be invoked after SamplePairs has been (this is to ensure well-defined behavior in
line 2 of the former).

that is computed by adding up outputs of other enciphering operations. The latter,
by themselves depend on the value E(0n), so the minimal number of Encipher invo-
cations increases to three. (Of course E(0n) could be cached from a prior forgery
but a worst-case analysis cannot assume that.)

We complete this discussion by showing that three Encipher invocations are
sufficient in all cases. We do this by describing the full set of instructions to
compute a forgery (C$, T $) for input data N$,M$, A$.

The attack successively calls SamplePairs and Encipher. The first call is to
obtain E(N$) and E(0n), the second is to obtain those needed for encryption of
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M$ and PMAC of A$ except the tag and the last AD block, and the third is for
the tag and the last AD block. Specifically, the steps for the universal forgery
are as follows:

1. The adversary performs SamplePairs(2). With overwhelming probability, we
assume nonce sampled in SamplePairs(2), N ′, is different from N$. Then she
obtains a set of distinct pairs written as E = {(N ′, L′), (X ′, Y ′), (X ′′, Y ′′)}.

2. If (N$, EK(N$)), (0n, EK(0n)) ∈ E, she goes to the next step. Otherwise, she
performs Encipher(N$, 0n, 0n) and obtains L := EK(N$) and V := 32EK(0n).

3. Let

Xi := M$[i] ⊕ 2iL for 1 ≤ i ≤ m − 1,

Xm := len(M$[m]) ⊕ 2mL,

XA
i := A$[i] ⊕ 2iV, for 1 ≤ i ≤ a − 1,

where M$[1], . . . , M$[m] n← M$ and A$[1], . . . , A$[a] n← A$. She obtains Yi =
EK(Xi) (1 ≤ i ≤ m) and Y A

i = EK(XA
i ) (1 ≤ i ≤ a − 1) by performing

Encipher(X1, · · · ,Xm,XA
1 , · · · ,XA

a−1, 0
n).

4. Let Xm+1 := Σ$ ⊕ 2m · 3L, where

Σ$ =
m−1
⊕

i=1

M$[i] ⊕ (M$[m] ‖ lsbn−|M$[m]|(Ym)).

If |A$[a]| = n, let XA
a := Σa−1

i=1 Y A
i ⊕A$[a]⊕2a ·3V and else, XA

a := Σa−1
i=1 Y A

i ⊕
ozp(A$[a]) ⊕ 2a · 32V . She obtains Ym+1 = EK(Xm+1) and Y A

a = EK(XA
a )

by calling Encipher(Xm+1,X
A
a , 0n).

5. She creates (N$, A$, C$, T $), where

C$ = (Y1 ⊕ 2L) ‖ · · · ‖ (Ym−1 ⊕ 2m−1L) ‖ (msb|M$[m]|(Ym) ⊕ M$[m]),

T $ = msbτ (Ym+1 ⊕ Y A
a ).

This tuple (N$, A$, C$, T $) will be accepted as valid by D, with return
value M$.

5.2 Plaintext Recovery

Security Model of Plaintext Recovery Attack. We consider an attack
model that closely follows [25]. A challenger has a secret key K. Let (C∗, T ∗) be
the encryption of (N∗, A∗,M∗), where a nonce N∗, associated data A∗, and a
plaintext M∗ are arbitrarily chosen by the challenger.

Then (N∗, A∗, C∗, T ∗) is given to the adversary as a challenge. She has access
to the encryption and decryption oracles, and the goal is to recover M∗. She
cannot use N∗ as a nonce in encryption queries (as N∗ was already used in
encryption to generate the challenge). Also, the adversary is nonce-respecting
and hence cannot repeat the same nonce in encryption queries. To avoid a trivial
win, she cannot use the challenge (N∗, A∗, C∗, T ∗) in decryption queries.
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Plaintext Recovery Attack. (C∗, T ∗) is the encryption of (N∗, A∗,M∗),
and (N∗, A∗, C∗, T ∗) is given to the adversary as a challenge. We first make an
assumption that M∗ is long and C∗ has many blocks (for instance 3 or more
blocks), and the goal is to recover M∗ (We will later show how to recover short
plaintexts).

We first recover L∗ := EK(N∗). This can be done by using SamplePairs and
Encipher as follows: The adversary first calls SamplePairs(2), and with overwhelm-
ing probability, we assume nonce N ′ sampled in SamplePairs(2) is different from
N∗. Then she obtains a set of distinct pairs E = {(N ′, L′), (X ′, Y ′), (X ′′, Y ′′)}. If
(N∗, EK(N∗)) ∈ E, then we have L∗. Otherwise, she performs Encipher(N∗, 0n)
and obtains L∗ from the first block of the output of Encipher(N∗, 0n).

With the knowledge of L∗, we modify C∗ to make a decryption query. Specif-
ically, let C∗ = (C∗[1], . . . , C∗[m∗]) be the challenge ciphertext broken into
blocks, and we first fix two distinct indices j, k ∈ {1, . . . , m∗−1}. Note that we are
assuming that M∗ is long and m∗ ≥ 3. We then define C$ = (C$[1], . . . , C$[m∗])
as follows:

– C$[i] := C∗[i] for i ∈ {1, . . . , m∗} \ {j, k}
– C$[j] := C∗[k] ⊕ 2kL∗ ⊕ 2jL∗

– C$[k] := C∗[j] ⊕ 2kL∗ ⊕ 2jL∗

Next, the adversary makes a decryption query (N∗, A∗, C$, T ∗), i.e, this is almost
the same as the challenge, but the j-th and k-th blocks of C∗ are modified.
This step can fail only with a negligible probability (e.g., if C∗[j] = C∗[k]
and L∗ = 0n). We see that the query will be accepted since the checksum
remains the same, and the adversary obtains M$. The goal of the attack, M∗,
is obtained by swapping the j-th and k-th blocks of M$ and making neces-
sary modifications. More precisely, from M$ = (M$[1], . . . ,M$[m∗]), we obtain
M∗ = (M∗[1], . . . ,M∗[m∗]) as follows:

– M∗[i] := M$[i] for i ∈ {1, . . . , m∗} \ {j, k}
– M∗[j] := M$[k] ⊕ 2kL∗ ⊕ 2jL∗

– M∗[k] := M$[j] ⊕ 2kL∗ ⊕ 2jL∗

Fig. 6. Left: The encryption process of (N∗, A∗, M∗). Right: The decryption process
of (N∗, A∗, C$, T ∗). In the right figure, we have C$[j] = C∗[k] ⊕ 2kL∗ ⊕ 2jL∗ and
C$[k] = C∗[j] ⊕ 2kL∗ ⊕ 2jL∗, and it follows that M∗[j] = M$[k] ⊕ 2kL∗ ⊕ 2jL∗ and
M∗[k] = M$[j] ⊕ 2kL∗ ⊕ 2jL∗. We see that the checksum remains the same.
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See Fig. 6 for the encryption process of (N∗, A∗,M∗) and the decryption process
of (N∗, A∗, C$, T ∗).

Emulating Blockcipher Decryption. We show that, for any Y ∗, the adver-
sary can compute X∗ = E−1

K (Y ∗). This complements the extraction of a specific
blockcipher mapping in Sect. 5.1, and this will be useful in the plaintext recovery
for plaintexts of two blocks.

The adversary first calls SamplePairs(2), and let N be the nonce sampled in
the call. Then she obtains E = {(N,L), (X[1], Y [1]), (X[2], Y [2])}.

Let (N ′, L′) = (X[1], Y [1]), where we assume that N ′ �= N , and define

M∗ = (X∗ ⊕ 2L′,X∗ ⊕ 22L′, 0n) ∈ {0, 1}3n.

The approach we take is to compute C∗ and T ∗ under the nonce N ′ and empty
A∗, and make a decryption query (N ′, A∗, C∗, T ∗). The adversary obtains M∗,
and X∗ can be obtained in an obvious way.

The observation here is that the checksum of M∗ is Σ∗ := 2L′ ⊕ 22L′,
which is independent of X∗, and we know all the blockcipher input values to
compute C∗ and T ∗. See Fig. 7 for the encryption process of (N ′, A∗,M∗).
We need to derive the values of C∗[3] and T ∗ in Fig. 7. This can be done
by calling Encipher(X[1],X[2], 0n), where X[1] = len(0n) ⊕ 23L′ and X[2] =
2L′⊕22L′⊕233L′. From the output (Y [1], Y [2], Y [3]) of Encipher(X[1],X[2], 0n),
C∗[3] is Y [1] and T ∗ is msbτ (Y [2]).

The final step is to make a decryption query (N ′, A∗, C∗, T ∗), where A∗

is empty, C∗ = (Y ∗ ⊕ 2L′, Y ∗ ⊕ 22L′, C∗[3]), and C∗[3] and T ∗ are obtained as
above. The query will be accepted, and the oracle returns M∗ = (X∗ ⊕2L′,X∗ ⊕
22L′, 0n). The adversary can compute X∗ from the knowledge of L′, and we see
that the entire process succeeds with an overwhelming probability.

Plaintext Recovery Attack (Short Plaintext). Here, we show that the
plaintext recovery is possible even for short plaintexts. We first consider the
case where M∗ = (M∗[1],M∗[2]) is the target plaintext of two blocks. Let
(N∗, A∗, C∗, T ∗) be a challenge, where C∗ = (C∗[1], C∗[2]) has two blocks.

Fig. 7. The encryption process of (N ′, A∗, M∗). C∗[3] and T ∗ are unknown.



Cryptanalysis of OCB2: Attacks on Authenticity and Confidentiality 23

L∗ := EK(N∗) can be recovered as in case for the plaintext recovery for long
plaintexts. We can then compute Pad∗ := EK(len(C∗[2]) ⊕ 22L∗) by calling
Encipher(len(C∗[2])⊕22L∗, 0n), and M∗[2] can be obtained as msb|C∗[2]|(Pad∗)⊕
C∗[2]. To recover M∗[1], we need to compute E−1

K (C∗[1]⊕2L∗)⊕2L∗, which can
be done with the emulation of the blockcipher decryption we have just described.

When the target plaintext M∗ = M∗[1] has one block, we first recover
L∗ := EK(N∗), and then compute Pad∗ := EK(len(C∗[1]) ⊕ 2L∗) by calling
Encipher(len(C∗[1]) ⊕ 2L∗, 0n). This gives M∗[1] = msb|C∗[1]|(Pad∗) ⊕ C∗[1].

Therefore, it is possible to mount a plaintext recovery attack against any
challenge (N∗, A∗, C∗, T ∗).

6 Design Flaw of OCB2

The root of the flaw in OCB2 is in the instantiation of AE using XEX∗. For
blockcipher EK , let

XEXN,i,j
E (X) def= E(2iL ⊕ X) ⊕ 2iL,

XEN,i,j
E (X) def= E(2i3jL ⊕ X),

where L = E(N) for nonce N , for i = 1, 2, . . . and j = 0, 1, . . . . Here, j is always
set to 0 for XEX. XEX∗ unifies them by introducing one bit b to the tweak.
That is,

XEX∗,b,N,i,j
E (X) =

{

XEXN,i,j
E (X) if b = 1;

XEN,i,j
E (X) if b = 0.

Decryption is trivially defined, and is never invoked when b = 0. Rog04 refers b
to tag ; not to be confused with the tag in the global interface of AE.

Suppose an encryption query (N,A,M), where A = ε and M is parsed as
(M [1], . . . , M [m]), is given to OCB2. It encrypts M by using XEX∗,1,N,i,0

E for
M [i] with i = 1, . . . , m − 1, and XEX∗,0,N,m,0

E for M [m]. The checksum, Σ, is
encrypted by XEX∗,0,N,m,1

E to create the (untrancated) tag.
In the proof of OCB2, we first apply the standard conversion from compu-

tational to information theoretic security [4] and focus on the security of OCB2
instantiated by an n-bit uniform random permutation (URP), P, denoted by
OCB2P. Then, the proof of OCB2P has two main steps: the indistinguishabil-
ity of XEX∗

P, and the privacy and authenticity of AE9 which replaces XEX∗
P in

OCB2P with an ideal primitive, a tweakable random permutation ˜P. The latter
step is not relevant to our attacks.

For the first step, Rog04 proved that XEX∗
P is indistinguishable from ˜P for

any adversary who queries to both encryption and decryption of XEX∗
P and

respects the semantics of tag b. More precisely, the conditions for the adversary
are as follows.
9 An equivalent mode for OCB3 is called ΘCB3 [20].
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Definition 1. We say an adversary querying XEX∗ is tag-respecting when

1. XEX∗,0,N,i,j is only queried in encryption queries for any (N, i, j);
2. Once XEX∗,b,N,i,j is queried in either encryption or decryption, then it is not

allowed to query XEX∗,1−b,N,i,j, for any (N, i, j).

Let ΘCB2
˜E be the mode of operations of TBC ˜EK which has the same

interface as XEX∗
E . The pseudocode is shown in Fig. 8. Then, ΘCB2XEX∗

E
is

equivalent to OCB2E .
Let ˜P be TURP which has the same interface as XEX∗. Rog04 showed that,

for any privacy-adversary A and authenticity-adversary A±,

Advpriv
OCB2P

(A)=Advpriv
ΘCB2XEX∗

P

(A) ≤ Advtprp
XEX∗

P
(B) + Advpriv

ΘCB2
˜P
(A), (7)

Advauth
OCB2P

(A±)=Advauth
ΘCB2XEX∗

P

(A±) ≤ Advtsprp
XEX∗

P
(B±) + Advauth

ΘCB2
˜P
(A±) (8)

hold for some CPA-adversary B and CCA-adversary B±, which are tag-
respecting and can simulate the privacy and the authenticity games involving
ΘCB2XEX∗

P
and A and A±, respectively. From Rog04, we have

Advtprp
XEX∗

P
(B) ≤ 4.5q2

2n
, and Advtsprp

XEX∗
P
(B±) ≤ 9.5q2

2n
(9)

for any B and B± that are tag-respecting and use at most q queries. The last
terms of (7) and (8) are proved to be almost ideally small: zero for privacy and
2n−τ/(2n − 1) for authenticity with single decryption query.

The privacy bound is obtained from (9) and (7). However, to derive the
authenticity bound, we need to identify B± that can simulate A±, where A±
must compute the decryption of ΘCB2, even with single decryption query10.
Depending on A±, there are cases that no tag-respecting B± can simulate A±.
For example, let us assume that A± first queries (N,A,M) of |M | = 2n to
the encryption oracle and then queries (N ′, A′, C ′, T ′) to the decryption ora-
cle, where N ′ = N , A′ = ε and |C ′| = n, as well as the attack of Sect. 4.1.
Then, B± who simulates A± first queries to XEX∗,1,N,1,0 and XEX∗,0,N,2,0 and
XEX∗,0,N,2,1. For the second query, it queries to XEX∗,0,N,1,0 and XEX∗,0,N,1,1.
Thus both XEX∗,1,N,1,0 and XEX∗,0,N,1,0 are queried, which implies a violation
of the second condition of Definition 1. Consequently, the authenticity proof of
Rog04 does not work, hence our attacks. At the same time, this also implies that
the privacy (confidentiality) attack under CPA, i.e. distinguishing the ciphertext
from random using only encryption queries, is not possible. This shows a sharp
difference between CPA and CCA queries, where the latter easily breaks confi-
dentiality (Sect. 4.3).
10 Rog04 defines the authenticity notion in the game that the adversary queries to the

encryption oracle then outputs a query to the decryption oracle, but the response
is not returned. The decryption oracle is not involved in the game and the success
or failure of the forgery is determined outside the game. This definition itself is
essentially the same as Eq. (1), and has no problem. However, because the adversary’s
final output does not tell whether the adversary wins or loses, we do not know how
to apply a hybrid argument of (8) using this definition.
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Fig. 8. Algorithms of ΘCB2. For simplicity, τ = n and A = ε.

7 Applicability to Related Schemes

Other OCB Versions. Our attacks are only applicable to OCB2. For OCB1,
the last block is encrypted by XE with a clearly separated mask. For OCB3, the
last block is encrypted by XEX when it is n bits and otherwise by XE with a
mask separated from those used by XEX.

Other Designs based on OCB. We have not found other AE algorithms
based on OCB that could be affected by our attacks. OTR [24] is an inverse-free
(for the absence of the blockcipher decryption in the scheme) parallelizable AE
having a similar structure as OCB. As it only uses XE for the whole process, it
is safe from our attacks. OPP [12] is a permutation-based AE based on OCB.
It always uses XEX, or more precisely, a variant of XPX [23], because otherwise
an offline permutation inverse query easily breaks the scheme. It is safe because
of this consistent use of XPX.

Aoki and Yasuda [2] presented security bounds of OCB when the block cipher
has indistinguishability against encryption queries, however only unpredictabil-
ity for decryption queries (thus is weaker than normal SPRPs). The presented
bounds were claimed to cover all versions of OCB including OCB2. Therefore,
our attacks invalidated them regarding OCB2.

8 Fixing OCB2

We discuss several ways to prevent our attacks in practice. In principle each of our
suggestions would require its own formal security analysis, but we provide one
only for the “XEX for the last plaintext block” fix presented in Sect. 8.1. While
also our other proposals intuitively lead to a secure scheme, without conducting
further research we cannot fully vouch for their security.
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Always using AD. Our forgery attacks from Sect. 4 have the property that
the AD of the forgeries have to be the empty string. This was unavoidable as
for A �= ε we would have had to predict PMAC(A) but we are not aware of
a way to do so. (Of course, if we could use the Encipher algorithm of Sect. 5.1
then computing PMAC values is not a challenge; however, Encipher can only
be invoked after SamplePairs, and the latter implicitly conducts a forgery with
A = ε.) Overall we note that a forgery with A = ε is a key component of
all our attacks on OCB2. This observation immediately suggests a fix: If the
involved users agree that all encryption/decryption operations are with respect
to a non-empty AD, then it seems (to us) that all problems go away. An easy
way to implement this strategy generically is to prepend a fixed string (e.g. the
single letter “A” or the all-zero block 0n) to every occurring AD (including the
empty AD).

Always using PMAC. Recall from Line 10 of E in Fig. 1 that PMAC(A) is
XOR-ed into the tag only if A �= ε. We discuss the case that this condition
is removed, and PMAC(A) is always XOR-ed into the tag, also when A = ε.
An initial analysis of the PMAC algorithm (see Fig. 9 in Appendix) shows that
the value PMAC(ε) is unpredictable, and also cannot be replayed from other
ciphertexts, so that also this modification of OCB2 promises to be a secure
candidate.

Counter-cryptanalysis. The two countermeasures just discussed require that
the code of both the sender and the receiver would have to be adapted. It
might be impossible to do so for instance if OCB2 is included in already shipped
products that cannot be updated remotely. In such settings the following two
options might be interesting: The sender is modified to never encrypt a message
where the second-last block is len(0n) while the receiver remains unchanged, or
the sender remains unchanged and the receiver is modified to never decrypt to a
message where the last block would be of the form 2mL⊕len(0n).11 While such
changes would (marginally) influence the correctness of the encryption scheme,
they seem to make our attacks impossible. To patch a live system this might be
a viable option.

Use XEX+. Minematsu and Matsushima [26] proposed an extension of XEX∗

called XEX+. The latter allows to use plain blockcipher calls in combination with
XEX and XE. The authors in particular suggest how to use XEX+ to instantiate
a variant of OCB, where the last message block is encrypted by an unmasked
blockcipher. This variant of OCB is not affected by our attacks and provably
secure.

11 We caution that this change might not be sufficient. Our results from Sect. 4.4
indicate that more plaintexts and ciphertexts have to be rejected: on the encryp-
tor’s side all messages with M [m− 1] = len(0n−s) for some s = 1, . . . , n, and on the
decryptor’s side all ciphertexts that would result in M∗[m−1] = len(0n−s) for some
s = 1, . . . , n. We are still investigating which conditions would be necessary/sufficient
for security.
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8.1 XEX for the Last Message Block

Recall that the vulnerabilities of OCB2 stem from a bad interaction of the XE
and XEX components in XEX∗ and the fact that XE is used for the last block of
encryption. A simple way to fix OCB2 is to use XEX also for the last block. We
call the resulting scheme OCB2f. Its pseudocode is obtained by changing line 5
of OCB2.EE and OCB2.DE in Fig. 1 to

Pad ← 2mL ⊕ E(2mL ⊕ len(M [m]))

and
Pad ← 2mL ⊕ E(2mL ⊕ len(C[m])),

respectively. As well as OCB2, OCB2f is a mode of XEX∗, since the tweak
spaces of XE and XEX in OCB2f are distinct. Specifically, we define ΘCB2f

˜E as
a mode obtained by changing ˜E∗,0,N,m,0 to ˜E∗,1,N,m,0 in line 4 of ΘCB2.E

˜E and
ΘCB2.D

˜E in Fig. 8. Then ΘCB2f
˜E is equivalent to OCB2fE if ˜EK is XEX∗

E . To
handle a non-empty AD, we also define PMAC

˜E as a mode of TBC ˜EK defined
in the same way as ΘCB2 so that PMACXEX∗

E
is equivalent to PMACE (see

Fig. 9 in Appendix). We finally add the following line after line 8 (for ΘCB2.E
˜E

and ΘCB2.D
˜E) in Fig. 8

if A �= ε then T ← msbτ (T ⊕ PMAC
˜E(A))

to make it AEAD. We prove the security of OCB2f using a hybrid argument
involving ΘCB2f. To simplify the argument, we also define ΘCB2f′ by converting
PMAC

˜E in ΘCB2f to a URF (uniform random function) R : {0, 1}∗ → {0, 1}n.
The security bounds of OCB2f are the same as those claimed for OCB2:

Theorem 1. Let A and A± denote the adversary against AEAD in the privacy
and authenticity games. We assume A± uses qv decryption queries. We have

Advpriv
OCB2fP

(A) = Advpriv
ΘCB2fXEX∗

P

(A) ≤
5σ2

priv

2n
,

Advauth
OCB2fP

(A±) = Advauth
ΘCB2fXEX∗

P

(A±) ≤ 5σ2
auth

2n
+

4qv

2τ
,

where σpriv and σauth are the number of queried blocks (the number of invocations
of XEX∗) in the privacy game and the authenticity game, respectively.

Intuitively, the security of OCB2f holds because (1) OCB2f is ΘCB2f using ˜E
instantiated by XEX∗, and (2) ΘCB2f and ΘCB2f′ are indistinguishable (up to
collision), and (3) ΘCB2f′ in the privacy and authenticity games do not force
the adversary to violate the access rules (Definition 1). Combining the known
bounds of XEX∗ and PMAC

˜E and the proofs of ΘCB2
˜P with minor changes gives

the desired results. A full proof is given in the full version of this article [13].
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9 Conclusions

We have presented practical forgery and decryption attacks against OCB2, a
high-profile ISO-standard authenticated encryption scheme. This was possible
due to the discrepancy between the proof of OCB2 and the actual construction,
in particular the interpretation of OCB2 as a mode of a TBC which combines
XEX and XE. While the latest OCB3 has a superior software performance than
the previous ones, and is clearly recommended by the designers, we think OCB2
is still quite influential for its simple description and the sophisticated modular
design based on a TBC. Our attacks show that, while the approach introduced
by Rog04 is invaluable, we could not directly derive a secure AE from it without
applying a fix.

We comment that, due to errors in proofs, ‘provably-secure schemes’ some-
times still can be broken, or schemes remain secure but the proofs need to be
fixed. Even if we limit our focus to AE, we have many examples, such as NSA’s
Dual CTR [9,33], EAX-prime [25], GCM [19], and some of the CAESAR submis-
sions [8,27,35] and more. We believe our work emphasizes the need for quality
of security proofs, and their active verification.

Acknowledgements. The authors would like to thank Phil Rogaway for his response
to our findings, and officials of ISO SC 27 for feedback and suggestions. We also would
like to thank the reviewers of CRYPTO 2019 for useful comments.

A Brief History of This Paper

A frequent question we have received is how we came to find the flaws, and how
they lead to the devastating attacks. The current article is based on three prior
ones [14,17,28] that appeared in late 2018 on the IACR ePrint archive. That
OCB2 might be flawed was first identified by the authors of [14] when they re-
examined the proofs of OCB2 for educational purposes and searched for potential
improvements. Instead they came to find a seemingly tiny crack in the proof that
they first tried to fix as they strongly believed OCB2 was a secure design, but
after several tries they ended up with existential and (near-)universal forgeries.
Only two weeks after these findings became public (in [14]), the author of the
second ePrint article [28] announced an IND-CCA vulnerability and first steps
towards plaintext recovery, and again three days later, the author of the third
ePrint article [17] announced full plaintext recovery. This series of happenings
is a good example of “attacks only get better” and how seemingly minor error
conditions can rapidly grow to nullify the security of a renowned scheme.
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Fig. 9. Left: The algorithm PMACE for the use in OCB2. Right: A TBC-based
PMAC, PMAC

˜E .

B Left-out Details of OCB2

We complete our OCB2 description from Sect. 3 by specifying the details of the
PMAC and len functions. For the former see Fig. 9. The latter takes a string
X ∈ {0, 1}≤n and encodes its lengths |X| as per len(X) = 0n−8‖	X , where 	X

denotes the standard binary encoding of |X|. For example, len(0n) for n = 128
is 0120107.
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Abstract. We introduce models of computation that enable direct com-
parisons between classical and quantum algorithms. Incorporating pre-
vious work on quantum computation and error correction, we justify the
use of the gate-count and depth-times-width cost metrics for quantum
circuits. We demonstrate the relevance of these models to cryptanalysis
by revisiting, and increasing, the security estimates for the Supersingular
Isogeny Diffie–Hellman (SIDH) and Supersingular Isogeny Key Encapsu-
lation (SIKE) schemes. Our models, analyses, and physical justifications
have applications to a number of memory intensive quantum algorithms.

1 Introduction

The US National Institute of Standards and Technology (NIST) is currently
standardising post-quantum cryptosystems. As part of this process, NIST has
asked cryptographers to compare the security of such cryptosystems to the secu-
rity of standard block ciphers and hash functions. Complicating this analysis
is the diversity of schemes under consideration, the corresponding diversity of
attacks, and stark differences in attacks on post-quantum schemes versus attacks
on block ciphers and hash functions. Chief among the difficulties is a need to
compare classical and quantum resources.

NIST has suggested that one quantum gate can be assigned a cost equivalent
to Θ(1) classical gates [34, Section 4.A.5]. However, apart from the notational
similarity between boolean circuits and quantum circuits, there seems to be little
justification for this equivalence.

Even if an adequate cost function were defined, many submissions rely on
proxies for quantum gate counts. These will need to be re-analyzed before com-
parisons can be made. Some submissions use query complexity as a lower bound
on gate count. Other submissions use a non-standard circuit model that includes
a unit-cost random access gate. The use of these proxies may lead to conservative
security estimates. However,

1. they may produce severe security underestimates—and correspondingly large
key size estimates—especially when they are used to analyze memory inten-
sive algorithms; and
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2. they lead to a proliferation of incomparable units.

We aim to provide cryptographers with tools for making justified comparisons
between classical and quantum computations.

1.1 Contributions

In Sect. 2 we review the quantum circuit model and discuss the role that classical
computers play in performing quantum gates and preserving quantum memories.
We then introduce a model of computation in which a classical random access
machine (RAM) acts as a controller for a memory peripheral such as an array of
bits or an array of qubits. This model allows us to clearly distinguish between
costly memory operations, which require the intervention of the controller, and
free operations, which do not.

We then describe how to convert a quantum circuit into a parallel RAM
(PRAM) program that could be executed by a collection of memory peripheral
controllers. The complexity of the resulting program depends on the physical
assumptions in the definition of the memory peripheral. We give two sets of
assumptions that lead to two distinct cost metrics for quantum circuits. Briefly,
we say that G quantum gates arranged in a circuit of depth D and width (number
of qubits) W has a cost of

– Θ(G) RAM operations under the G-cost metric, which assumes that quantum
memory is passively corrected ; and

– Θ(DW ) RAM operations under the DW -cost metric, which assumes that
quantum memory is actively corrected by the memory peripheral controller.

These metrics allow us to make direct comparisons between quantum circuits
and classical PRAM programs.

In the remainder of the paper we apply our cost metrics to algorithms of
cryptographic significance. In Sect. 6 we review the known classical and quantum
claw-finding attacks on the Supersingular Isogeny Key Encapsulation scheme
(SIKE). Our analysis reveals an attack landscape that is shaped by numerous
trade-offs between time, memory, and RAM operations. We find that attackers
with limited memory will prefer the known quantum attacks, whereas attackers
with limited time will prefer the known classical attacks. In terms of the SIKE
public parameter p, there are low-memory quantum attacks that use p1/4+o(1)

RAM operations, and there are low-depth classical attacks that use p1/4+o(1)

RAM operations. Simultaneous time and memory constraints push the cost of
all known claw-finding attacks higher. We are not aware of any attack that can
be parameterized to use fewer than p1/4+o(1) RAM operations, although some
algebraic attacks may also achieve this complexity.

We build toward our analysis of SIKE by considering the cost of prerequisite
quantum data structures and algorithms. In Sect. 4 we introduce a new dynamic
set data structure, which we call a Johnson vertex. In Sect. 5 we analyze the
cost of quantum algorithms based on random walks on Johnson graphs. We find
that data structure operations limit the range of time-memory trade-offs that



34 S. Jaques and J. M. Schanck

are available in these algorithms. Previous analyses of SIKE [20,21] ignore data
structure operations and assume that time-memory trade-offs enable an attack
of cost p1/6+o(1). After accounting for data structure operations, we find that
the claimed p1/6+o(1) attack has cost p1/3+o(1).

In Sect. 6.3, we give non-asymptotic cost estimates for claw-finding attacks
on SIKE-n (SIKE with an n-bit public parameter p). This analysis lends further
support to the parameter recommendations of Adj et al. [1], who suggest that a
434-bit p provides 128-bit security and that a 610-bit p provides 192-bit security.
Adj et al. base their recommendation on the cost of memory-constrained classical
attacks. We complement this analysis by considering depth-constrained quantum
attacks (with depth < 296). Under mild assumptions on the cost of some subrou-
tines, we find that the best known depth-limited quantum claw-finding attack
on SIKE-434 uses at least 2143 RAM operations. Likewise, we find that the best
known depth-limited quantum claw-finding attack on SIKE-610 uses at least
2232 RAM operations.

Our methods have immediate applications to the analysis of other quantum
algorithms that use large quantum memories and/or classical co-processors. We
list some directions for future work in Sect. 7.

2 Machine Models

We begin with some quantum computing background in Sect. 2.1, including the
physical assumptions behind Deutsch’s circuit model. We elaborate on the circuit
model to construct memory peripheral models in Sect. 2.2. We specify classical
control costs, with units of RAM operations, for memory peripheral models in
Sect. 2.3. On a first read, the examples of memory peripherals given in Sect. 2.4
may be more informative than the general description of memory peripheral
models in Sect. 2.2. Section 2.4 justifies the cost functions that are used in the
rest of the paper.

2.1 Preliminaries on Quantum Computing

Quantum states and time-evolution. Let Γ be a set of observable configurations
of a computer memory, e.g. binary strings. A quantum state for that memory
is a unit vector |ψ〉 in a complex euclidean space H ∼= C

Γ . Often Γ will have
a natural cartesian product structure reflecting subsystems of the memory, e.g.
an ideal n-bit memory has Γ = {0, 1}n. In such a case, H has a corresponding
tensor product structure, e.g. H ∼= (C2)⊗n. The scalar product on H is denoted
〈 ·| ·〉 and is Hermitian symmetric, 〈φ| ψ〉 = 〈ψ|φ〉. The notation |ψ〉 for unit
vectors is meant to look like the right “half” of the scalar product. Dual vectors
are denoted 〈ψ|. The set {|x〉 | x ∈ Γ} is the computational basis of H. The
Hermitian adjoint of a linear operator A is denoted A†. A linear operator is
self-adjoint if A = A† and unitary if AA† = A†A = 1.

One of the postulates of quantum mechanics is that the observable properties
of a state correspond to self-adjoint operators. A self-adjoint operator can be
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written as A =
∑

i λiPi where λi ∈ R and Pi is a projector onto an eigenspace
with eigenvalue λi. Measurement of a quantum state |ψ〉 with respect to A
yields outcome λi with probability 〈ψ|Pi |ψ〉. The post-measurement state is an
eigenvector of Pi.

Quantum computing is typically concerned with only two observables: the
configurations of the memory, and the total energy of the system. The operator
associated to the memory configuration has the computational basis vectors as
eigenvectors; it can be written as

∑
x∈Γ λx |x〉〈x|. If the state of the memory is

given by |ψ〉 =
∑

x∈Γ ψx |x〉, then measuring the memory configuration of |ψ〉
will leave the memory in configuration x with probability |〈x| ψ〉|2 = |ψx|2. The
total energy operator is called the Hamiltonian of the system and is denoted H.
Quantum states evolve in time according to the Schrödinger equation1

d
dt

|ψ(t)〉 = −iH |ψ(t)〉 . (1)

Time-evolution for a duration δ yields |ψ(t0 + δ)〉 = Uδ |ψ(t0)〉 where Uδ =
exp (−iHδ). Note that since H is self-adjoint we have U†

δ = exp (iHδ) so Uδ is
unitary. In general, the Hamiltonian of a system may vary in time, and one may
write H(t) in Eq. 1. The resulting time-evolution operator is also unitary. The
Schrödinger equation applies only to closed systems. A time-dependent Hamil-
tonian is a convenient fiction that allows one to model an interaction with an
external system without modeling the interaction itself.

Quantum circuits. Deutsch introduced the quantum circuit model in [15]. A
quantum circuit is a collection of gates connected by unit-wires. Each wire rep-
resents the motion of a carrier (a physical system that encodes information).
A carrier has both physical and logical (i.e. computational) degrees of freedom.
External inputs to a circuit are provided by sources, and outputs are made avail-
able at sinks. The computation proceeds in time with the carriers moving from
the sources to the sinks. A gate with k inputs represents a unitary transforma-
tion of the logical state space of k carriers. For example, if the carriers encode
qubits, then a gate with k inputs is a unitary transformation of (C2)⊗k. Each
gate takes some non-zero amount of time. Gates that act on disjoint sets of
wires may be applied in parallel. The inputs to any particular gate must arrive
simultaneously; wires may be used to delay inputs until they are needed.

Carriers feature prominently in Deutsch’s description of quantum circuits [15,
p. 79], as does time evolution according to an explicitly time-dependent Hamil-
tonian [15, p. 88]. However, while Deutsch used physical reasoning to justify his
model, in particular his choice of gates, this reasoning was not encoded into the
circuit diagrams themselves. The gates that appear in Deutsch’s diagrams are
defined entirely by the logical transformation that they perform. Gates, includ-
ing the unit-wire, are deemed computationally equivalent if they enact the same
logical transformation. Two gates can be equivalent even if they act on different
carriers, take different amounts of time, etc. Computationally equivalent gates
1 Here we are taking Planck’s constant equal to 2π, i.e. � = 1.
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are given the same representation in a circuit diagram. Today it is common to
think of quantum circuits as describing transformations of logical states alone.

2.2 Memory Peripheral Models

The memory peripheral models that we introduce in this section generalize the
circuit model by making carriers explicit. We depart from the circuit model as
follows:

1. We associate a carrier to each unit-wire and to each input and output wire
of each gate. Wires can only be connected if they act on the same carrier.

2. We assume that the logical state of a computation emerges entirely from the
physical state of its carriers.

3. Our unit-wire acts on its associated carrier by time evolution according to a
given time-independent Hamiltonian for a given duration.

4. We interpret our diagrams as programs for classical controllers. Every gate
(excluding the unit-wire) represents an intervention from the controller.

In sum, these changes allow us to give some physical justification for how a circuit
is executed, and they allow us to assign different costs depending on the justifi-
cation provided. In particular, they allow us to separate free operations—those
that are due to natural time-independent evolution—from costly operations—
those that are due to interventions from the classical controller.

Our model has some potentially surprising features. A unit-wire that acts on
a carrier with a non-trivial Hamiltonian does not necessarily enact the logical
identity transformation. Consequently, wires of different lengths may not be com-
putationally equivalent in Deutsch’s sense. In fact, since arbitrary computations
can be performed ballistically, i.e. by time-independent Hamiltonians [16,24,28],
the unit-wire can enact any transformation of the computational state. We do
not take advantage of this in our applications; the unit-wires that we consider in
Sect. 2.4 enact the logical identity transformation (potentially with some associ-
ated cost).

A carrier, in our model, is represented by a physical state space H and a
Hamiltonian H : H → H. To avoid confusion with Deutsch’s carriers, we refer
to (H,H) as a memory peripheral.

Definition 2.1. A memory peripheral is a tuple A = (H,H) where H is a finite
dimensional state space and H is a Hermitian operator on H. The operator H
is referred to as the Hamiltonian of A.

The reader may like to keep in mind the example of an ideal qubit memory
Q = (C2, 0).

Parallel wires carry the parallel composition of their associated memory
peripherals. The memory peripheral that results from parallel composition of
A and B is denoted A ⊗ B. The state space associated with A ⊗ B is HA ⊗ HB,
and the Hamiltonian is HA ⊗ IB + IA ⊗ HB. We say that A and B are sub-
peripherals of A⊗B. We say that a memory peripheral is irreducible if it has no
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sub-peripherals. The width of a memory peripheral is the number of irreducible
sub-peripherals it contains.

A quantum circuit on n qubits may be thought of as a program for the
memory peripheral Q⊗n. Programs for other memory peripherals may involve
more general memory operations.

Definition 2.2. A memory operation is a morphism of memory peripherals f :
A → B that acts as a quantum channel between HA and HB, i.e. it takes quantum
states on HA to quantum states on HB.

The arity of a memory operation is the number of irreducible sub-peripherals
on which it acts. If there is no potential for ambiguity, we will refer to memory
operations as gates. Examples of memory operations include: unitary transforma-
tions of a single state space, isometries between state spaces, state preparation,
measurement, and changes to the Hamiltonian of a carrier.

In order to define state preparation and measurement it is convenient to
introduce a void peripheral 1. State preparation is a memory operation of the
form 1 → A, and measurement is a memory operation of the form A → 1. The
reader may assume that 1 = (C, 0) in all of our examples.

Networks of memory operations can be represented by diagrams that are
almost identical to quantum circuits. Memory peripherals must be clearly
labelled, and times must be given for gates, but no other diagrammatic changes
are necessary. An example is given in Fig. 1.

Just as it is useful to specify a gate set for quantum circuits, it is useful to
define collections of memory peripherals that are closed under parallel compo-
sition and under sequential composition of memory operations. The notion of
a symmetric monoidal category captures the relevant algebraic structure. The
following definition is borrowed from [13, Definition 2.1] and, in the language of
that paper, makes a memory peripheral model into a type of resource theory.
The language of resource theories is not strictly necessary for our purposes, but
we think this description may have future applications.

Definition 2.3. A memory peripheral model is a symmetric monoidal category
(C, ◦,⊗, 1) where

• the objects of C are memory peripherals,
• the morphisms between objects of C are memory operations,
• the binary operation ◦ denotes sequential composition of memory oper-

ations,
• the binary operation ⊗ denotes parallel composition of memory periph-

erals and of memory operations, and
• the void peripheral 1 satisfies A ⊗ 1 = 1 ⊗ A = A for all A ∈ C.

2.3 Parallel RAM Controllers for Memory Peripheral Models

A memory peripheral diagram can be viewed as a program that tells a classical
computer where, when, and how to interact with its memory. We will now specify
a computer that executes these programs.



38 S. Jaques and J. M. Schanck

Fig. 1. Three representations of a quantum algorithm.

Following Deutsch, we have assumed that all gates take a finite amount of
time, that each gate acts on a bounded number of subsystems, and that gates
that act on disjoint subsystems can be applied in parallel. Circuits can be of
arbitrary width, so a control program may need to execute an unbounded number
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of operations in a finite amount of time. Hence, we must either assume that the
classical control computer can operate arbitrarily quickly or in parallel.

We opt to treat controllers as parallel random access machines (PRAMs).
Several variants of the PRAM exist [26]. The exact details of the instruction set
and concurrency model are largely irrelevant here. For our purposes, a PRAM is
a collection of RAMs that execute instructions in synchrony. Each RAM executes
(at most) one instruction per time step. At time step i each RAM can assume
that the other RAMs have completed their step i − 1 instructions. We assume
that synchronization between RAMs and memory peripherals is free.

We assign a unique positive integer to each wire in a diagram, so that an
ordered collection of k memory peripherals can be identified by a k-tuple of
integers. We use a k-tuple to specify an input to a k-ary gate. The memory
operations that are available to a controller are also assigned unique positive
integers.

We add two new instructions to the RAM instruction set: APPLY and STEP.
These instructions enable parallel and sequential composition of memory opera-
tions, respectively. APPLY takes three arguments: a k-tuple of addresses, a mem-
ory operation, and an (optional) k-tuple of RAM addresses in which to store
measurement results. STEP takes no arguments; it is only used to impose a logi-
cal sequence on steps of the computation.

When a processor calls APPLY the designated memory operation is scheduled
to be performed during the next STEP call. In one layer of circuit depth, each
RAM processor schedules some number of memory operations to be applied in
parallel and then one processor calls STEP. If memory operations with overlap-
ping addresses are scheduled for the same step, the behaviour of the memory
peripheral is undefined and the controller halts. This ensures that only one oper-
ation is applied per subsystem per call to STEP.

A quantum circuit of width W can be converted into O(W ) RAM programs
by assigning gates to processors according to a block partition of {1, . . . , W}.
The blocks should be of size O(1), otherwise a single processor could need to
execute an unreasonable number of operations in a fixed amount of time. If a
gate involves multiple qubits that are assigned to different processors, the gate
is executed by the processor that is responsible for the qubit of lowest address.
We have provided an example in Fig. 1b.

To apply a multi-qubit gate, a RAM processor must be able to address arbi-
trary memory peripherals. This is a strong capability. However, each peripheral is
involved in at most one gate per step, so this type of random access is analogous
to the exclusive-read/exclusive-write random access that is typical of PRAMs.

The cost of a PRAM computation. Every RAM instruction has unit cost, except
for the placeholder “no operation” instruction, no op, which is free. The cost of
a PRAM computation is the total number of RAM operations executed.
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2.4 Examples of Memory Peripheral Models

Here we give three examples of memory peripheral models. Example 2.4.1 is
classical and primarily an illustration of the model. It shows that our frame-
work can accommodate classical memory without changing the PRAM costs.
Example 2.4.2 is a theoretical self-corrected quantum memory that justifies the
G-cost. Example 2.4.3 is a more realistic actively-corrected quantum memory
that justifies the DW -cost.

2.4.1 Non-volatile Classical Memories
A non-volatile bit-memory can store a bit indefinitely without periodic error
correction or read/write cycles. As a memory peripheral, this can simulate other
classical computation models and gives the expected costs.

Technologies. The historically earliest example of a non-volatile bit memory is
the “core memory” of Wang and Woo [41]. A modern example is Ferroelectric
RAM (FeRAM). The DRAM found in common consumer electronics requires
a periodic read/write cycle, which should be included in a cost analysis. While
there may be technological and economic barriers to using non-volatile memory
at all stages of the computing process, there are no physical barriers.

Hamiltonian of a memory cell. A logical bit can be encoded in the net mag-
netization of a ferromagnet. A ferromagnet can be modelled as a collection of
spins. Each spin is oriented up or down, and has state |↑〉 or |↓〉. The self-adjoint
operator associated to the orientation of a spin is σz = |↑〉〈↑| − |↓〉〈↓|; measuring
|↑〉 with respect to σz yields outcome +1 with probability 1, and measuring |↓〉
yields outcome −1 with probability 1.

In the d-dimensional Ising model of ferromagnetism, Ld spins are arranged in
a regular square lattice of diameter L in d-dimensional space. The Ising Hamil-
tonian imposes an energy penalty on adjacent spins that have opposite orienta-
tions:

HIsing = −
∑

(i,j)

σ(i)
z ⊗ σ(j)

z .

In 1936 [35] Peierls showed that the Ising model is thermally stable in dimensions
d ≥ 2. The two ground states, all spins pointing down and all spins pointing
up, are energetically separated. The energy required to map the logical zero (all
down) to logical one (all up) grows with L, and the probability of this happening
(under a reasonable model of thermal noise) decreases with L. The phenomenon
of thermal stability in dimensions 2 and 3 provides an intuitive explanation for
why we are able to build classical non-volatile memories like core-memory (see
also [14, Section X.A]).

Memory peripheral model. A single non-volatile bit, encoded in the net magne-
tization of an L × L grid of spins, can be represented by a memory peripheral
BL = ((C2)⊗L2

,HIsing). From a single bit we can construct w-bit word periph-
erals WL,w = B⊗w

L .
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Turing machines, boolean circuits, PRAMs, and various other classical mod-
els can be simulated by controllers for word memory peripheral models. The only
strictly necessary memory operations are those for reading and writing individual
words.

2.4.2 Self-correcting Quantum Memories
A self-correcting quantum memory is the quantum analogue of a non-volatile bit
memory. The Hamiltonian of the carrier creates a large energy barrier between
logical states. At a sufficiently low temperature the system does not have enough
energy for errors to occur.

The thermal stability of the Ising model in d ≥ 2 spatial dimensions seems
to have inspired Kitaev’s search for geometrically local quantum stabilizer codes
[27]. The two-dimensional toric code that Kitaev defined in [27] is not ther-
mally stable [2]. However, a four-dimensional variant is thermally stable [3,14].
The question of whether there exists a self-correcting quantum memory with a
Hamiltonian that is geometrically local in <4 spatial dimensions remains open.

In two spatial dimensions, various “no-go theorems” suggest that self-
correcting quantum memories may not exist. For example, a stabilizer code
defined on a two-dimensional lattice of qubits cannot self-correct [11]. Brown
et al. [12] summarize generalizations of this no-go result and survey the remain-
ing avenues toward self-correcting memory in low dimensions.

At present, a model of quantum computation that assumes non-volatile mem-
ory, i.e. a free identity gate, and <4 spatial dimensions is making a physical
assumption about the existence of two- or three-dimensional self-correcting mem-
ories. Here we will simply ignore geometric locality and write down a memory
peripheral for the four-dimensional toric code. Because real devices are limited
to three spatial dimensions, this is purely a theoretical example.

Memory peripheral model. The Hamiltonian for the four-dimensional toric code
can be found in [14, Section X.B]. We will denote it Htoric. Like the four-
dimensional Ising Hamiltonian it is defined on L4 spins arranged in a square
lattice. The memory peripheral Qtoric = (CL4

,Htoric) can serve as a drop-in
replacement for the ideal qubit memory peripheral Q for the purpose of describ-
ing the unit-wire.

To execute arbitrary quantum computations on a collection of logical qubits
encoded in Qtoric peripherals, we need memory operations for a universal
gate set, initialization, and measurement. Initialization and Clifford+T gates
are described for the two-dimensional toric code in [14, Section IX] and the
four-dimensional versions are similar. A measurement procedure for the four-
dimensional toric code is in [14, Section X.B]. Treating any of these procedures
as a single memory operation will mask some classical control cost that is poly-
nomial in L. Treating the T gate as a single memory operation masks the use of
an additional memory peripheral to hold a resource state.

Cost function. A quantum circuit on n qubits can be converted into a memory
peripheral diagram for Q⊗n

toric and then interpreted as a PRAM program. In this
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way we can assign a cost, in units of RAM operations, to the quantum circuit
itself. Each wire in the quantum circuit is assigned a length in the memory
peripheral diagram. The quantum circuit and memory peripheral diagram are
otherwise identical. Each gate in the diagram (including state-preparation and
measurement gadgets, but not unit-wires) is expanded into at least one APPLY
instruction. The wires themselves incur no RAM cost, but one STEP instruction
is needed per layer of circuit depth for synchronization. The number of STEP
instructions is no more than the number of APPLY instructions. The following
cost function, the G-cost, is justified by assuming that each gate expands to
O(1) RAM operations.

Definition 2.4 (G-cost). A logical Clifford+T quantum circuit that uses G
gates (in any arrangement) has a G-cost of Θ(G) RAM operations.

Remark 2.1. The depth and width of a circuit do not directly affect its G-cost,
but these quantities are often relevant in practice. A PRAM controller for a cir-
cuit that uses G gates in an arrangement that is D gates deep and W qubits wide
uses O(W ) RAM processors for Ω(D) time. Various G-cost-preserving trade-offs
between time and number of processors may be possible. For example, a circuit
can be re-written so that no two gates are applied at the same time. In this
way, a single RAM processor can execute any G gate circuit in Θ(G) time. This
trade-off is only possible because self-correcting memory allows us to assign an
arbitrary duration to a unit-wire.

2.4.3 Actively Corrected Quantum Memories
It should be possible to build quantum computers even if it is not possible to
build self-correcting quantum memories. Active error correction strategies are
nearing technological realizability; several large companies and governments are
currently pursuing technologies based on the surface code.

Memory peripheral model. When using an active error correction scheme, a logi-
cal Clifford+T circuit has to be compiled to a physical circuit that includes active
error correction. We may assume that the wires carry the ideal qubit memory
peripheral Q. A more detailed analysis might start from the Hamiltonians used
in circuit QED [9].

Memory operations. The compiled physical circuit will not necessarily use the
Clifford+T gate set. The available memory operations will depend on the phys-
ical architecture, e.g. in superconducting nano-electronic architectures one typ-
ically has arbitrary single qubit rotations and one two-qubit gate [42].

Cost function. We can assume that every physical gate takes Θ(1) RAM oper-
ations to apply. This may mask a large constant; a proposal for a hardware
implementation of classical control circuitry can be found in [32]. A review of
active quantum error correction for the purpose of constructing memories can
be found in [39].
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An active error correction routine is applied, repeatedly, to all physical qubits
regardless of the logical workload. If we assume that logical qubits can be encoded
in a constant number of physical qubits, and that logical Clifford+T gates can
be implemented with a constant number of physical gates, then the above con-
siderations justify the DW -cost for quantum circuits.

Definition 2.5 (DW-cost). A logical Clifford+T quantum circuit that is D
gates deep, W qubits wide, and uses any number of gates within that arrangement
has a DW -cost of Θ(DW ) RAM operations.

Remark 2.2. In contrast with the G-cost, there are no DW -cost preserving trade-
offs between time and number of processors when constructing a PRAM program
from a quantum circuit. A circuit of depth D and width W uses Θ(W ) processors
for time Θ(D).

Technologies. Fowler et al. provide a comprehensive overview of the surface
code [17]. Importantly, to protect a circuit of depth D and width W , the surface
code requires Θ(log2(DW )) physical qubits per logical qubit. The active error
correction is applied in a regular cycle (once every 200 ns in [17]). In each cycle
a constant fraction of the physical qubits are measured and re-initialized. The
measurement results are processed with a non-trivial classical computation [18].
The overall cost of surface code computation is Ω(log2(DW )) RAM operations
per logical qubit per layer of logical circuit depth. Nevertheless, future active
error correction techniques may bring this more in line with the DW -cost.

3 Cost Analysis: Quantum Random Access

Our memory peripheral models provide classical controllers with random access
to individual qubits. A controller can apply a memory operation—e.g. a
Clifford+T gate or a measurement—to any peripheral in any time step. How-
ever, a controller does not have quantum random access to individual qubits. A
controller cannot call APPLY with a superposition of addresses. Quantum random
access must be built from memory operations.

In [4], Ambainis considers a data structure that makes use of a “random
access gate.” This gate takes an index i, an input b, and an R element array
A = (a1, a2, . . . , aR). It computes the XOR of ai and b:

|i〉 |b〉 |A〉 �→ |i〉 |b ⊕ ai〉 |A〉 . (2)

Assuming that each |aj〉 is encoded in O(1) irreducible memory peripherals,
a random access gate has arity that grows linearly with R. If the underlying
memory peripheral model only includes gates of bounded arity, then an imple-
mentation of a random access gate clearly uses Ω(R) operations. Beals et al. have
noted that a circuit for random access to an R-element array of m-bit strings
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must have width Ω(Rm) and depth Ω(log R) [5, Theorem 4]. Here we give a
Clifford+T construction that is essentially optimal2.

Rather than providing a full circuit, we will describe how the circuit acts on
|i〉 |0〉 |A〉. The address is log R bits and each register of A is m bits. We use
two ancillary arrays |A′〉 and |A′′〉, both initialized to 0. The array A′ holds R
address-sized registers and O(R) additional qubits for intermediary results, a
total of O(R log R) qubits. The array A′′ is O(Rm) qubits.

We use a standard construction of R-qubit fan-out and R-qubit parity due
to Moore [33]. The fan-out is a tree of O(R) CNOT gates arranged in depth
O(log R). Parity is fan-out conjugated by Hadamard gates. We also use a log R-
bit comparison circuit due to Thapliyal, Ranganathan, and Ferreir [40]. This
circuit uses O(log R) gates in depth O(log log R).

Our random access circuit acts as follows:

1. Fan-out address: Fan-out circuits copy the address i to each register of A′.
This needs a total of log R fan-outs, one for each bit of address. These can
all be done in parallel.

2. Controlled copy: For each 1 ≤ j ≤ R, the boolean value A′[j] = j is stored in
the scratch space associated to A′. The controller knows the address of each
register, so it can apply a dedicated circuit for each comparison. Controlled-
CNOTs are used to copy A[j] to A′′[j] when A′[j] = j. Since A′[j] = j if and
only if j = i, this copies A[i] to A′′[i] but leaves A′′[j] = 0 for j �= i.

3. Parity: Since A′′[j] is 0 for j �= i, the parity of the low-order bit of all the
A′′ registers is equal to the low-order bit of just A′′[i]. Likewise for the other
m − 1 bits. So parallel R-qubit parity circuits can be used to copy A′′[i] to
an m-qubit output register.

4. Uncompute: The controlled copy and fan-out steps are applied in reverse,
returning A′′, A′, and the scratch space to zero.

The entire circuit can be implemented in width O(Rm+R log R). Step 1 dom-
inates the depth and Step 2 dominates the gate cost. The comparison circuits use
O(R log R) gates with depth O(log log R). To implement the controlled-CNOTs
used to copy A[i] to A′′[i] in constant depth, instead of O(m) depth, each of the
R comparison results can be fanned out to (m − 1) qubits in the scratch space
of A′′. This fan-out has depth O(log m).

The total cost of random access is given in Cost 1. Observe that there is more
than a constant factor gap between the G- and DW -cost.

Cost 1. Random access to R registers of m bits each.
Gates: O(Rm + R log R)
Depth: O(log m + log R)
Width: O(Rm + R log R)

2 Actually, here and elsewhere, we use a gate set that includes Toffoli gates and
controlled-swap gates. These can be built from O(1) Clifford+T gates.
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4 Cost Analysis: The Johnson Vertex Data Structure

We expect to find significant gaps between the G- and DW -costs of algorithms
that use a large amount of memory. Candidates include quantum algorithms for
element distinctness [4], subset-sum [7], claw-finding [38], triangle-finding [30],
and information set decoding [25]. All of these algorithms are based on quantum
random walks on Johnson graphs—graphs in which each vertex corresponds to
a subset of a finite set.

In this section we describe a quantum data structure for representing a vertex
of a Johnson graph. Essentially, we need a dynamic set that supports member-
ship testing, uniform sampling from the encoded set, insertion, and deletion.
These operations can be fine-tuned for quantum walk applications. In particu-
lar, insertion and deletion only need to be defined on inputs that would change
the size of the encoded set. To avoid ambiguity, we will refer to these special
cases as guaranteed insertion and guaranteed deletion.

4.1 History-Independence

Fix a finite set X . A quantum data structure for subsets of X consists of two
parts: a presentation of subsets as quantum states, and unitary transformations
representing set operations. The presentation must assign a unique quantum
state |A〉 to each A ⊂ X . Uniqueness is a strong condition, but it is necessary
for quantum interference. Different sequences of insertions and deletions that
produce the same set will only interfere if each sequence presents the output in
exactly the same way. The set {0, 1} cannot be stored as |0〉 |1〉 or |1〉 |0〉 depend-
ing on the order in which the elements were inserted. Some valid alternatives are
to fix an order (e.g. always store |0〉 |1〉) or to coherently randomize the order
(e.g. always store 1√

2
(|0〉 |1〉+|1〉 |0〉)). Data structures that allow for interference

between computational paths are called history-independent.
Ambainis describes a history-independent data structure for sets in [4]. His

construction is based on a combined hash table and skip list. Bernstein, Jeffery,
Lange, and Meurer [7], and Jeffery [22], provide a simpler solution based on
radix trees. Both of these data structures use random access gates extensively.
Our Johnson vertices largely avoid random access gates, and in Sect. 4.4 we show
that our data structure is more efficient as a result.

4.2 Johnson Vertices

The Johnson graph J(X,R) is a graph whose vertices are R-element subsets of
{1, . . . , X}. Subsets U and V are adjacent in J(X,R) if and only if |U∩V| = R−1.
In algorithms it is often useful to fix a different base set, so we will define our
data structure with this in mind: A Johnson vertex of capacity R, for a set of
m-bit strings, is a data structure that represents an R-element subset of some
set X ⊆ {1, . . . , 2m − 1}. This implies log2 R ≤ m.
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In our implementation below, a subset is presented in lexicographic order in
an array of length R. This ensures that every R element subset has a unique
presentation.

We describe circuits parameterized by m and R for membership testing, uni-
form sampling, guaranteed insertion, and guaranteed deletion. Since R is a cir-
cuit parameter, our circuits cannot be used in situations where R varies between
computational paths3. This is fine for quantum walks on Johnson graphs, but it
prevents our data structure from being used as a generic dynamic set.

Memory allocation. The set is stored in a length R array of m-bit registers that
we call A. Every register is initialized to the m-bit zero string, ⊥. The guaranteed
insertion/deletion and membership testing operations require auxiliary arrays A′

and A′′. Both contain O(Rm) bits and are initialized to zero. It is helpful to think
of these as length R arrays of m-bit registers that each have some scratch space.
We will not worry about the exact layout of the scratch space.

Guaranteed insertion/deletion. Let U be a set of m-bit strings with |U| =
R−1, and suppose x is an m-bit string not in U . The capacity R−1 guaranteed
insertion operation performs

|U〉 |⊥〉 |x〉 �→ |U ∪ {x}〉 |x〉 .

Capacity R guaranteed deletion is the inverse operation.
Figure 2 depicts the following implementation of capacity R − 1 guaranteed

insertion. For concreteness, we assume that the correct position of x is at index k
with 1 ≤ k ≤ R. At the start of the routine, the first R−1 entries of A represent
a sorted list. Entry R is initialized to |⊥〉 = |0〉⊗m.

(a). Fan-out: Fan-out the input x to the R registers of A′ and also to A[R], the
blank cell at the end of A. The fan-out can be implemented with O(Rm)
gates in depth O(log R) and width O(Rm).

(b). Compare: For i in 1 to R, flip all m bits of A′′[i] if and only if A′[i] ≤
A[i]. The comparisons are computed using the scratch space in A′′. Each
comparison costs O(m) gates, and has depth O(log m) and width O(m)
[40]. The single bit result of each comparison is fanned out to all m bits of
A′′[i] using O(m) gates in depth O(log m). The total cost is O(Rm) gates,
O(log m) depth.

(c). First conditional swap: For i in 1 to R − 1, if A′′[i] is 11 . . . 1 swap A′[i + 1]
and A[i]. After this step, cells k through R of A hold copies of x. The values
originally in A[k], . . . , A[R−1] are in A′[k+1], . . . , A′[R]. Each register swap
uses m controlled-swap gates. All of the swaps can be performed in parallel.
The cost is O(Rm) gates in O(1) depth.

(d). Second conditional swap: For i in 1 to R − 1, if A′′[i] is 11 . . . 1 then
swap A′[i + 1] and A[i + 1]. After this step, the values originally in
A′[k + 1], . . . , A′[R] are in A[k + 1], . . . , A[R]. The cost is again O(Rm)
gates in O(1) depth.

3 One can handle a range of capacities using controlled operations, but the size of the
resulting circuit grows linearly with the number of capacities it must handle.
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(e). Clear comparisons: Repeat the comparison step to reset A′′.
(f). Clear fan-out: Fan-out the input x to the array A′. This will restore A′ back

to the all 0 state. Note that the fan-out does not include A[R] this time.

Fig. 2. Insertion into a Johnson vertex. See text for full description.

Cost 2. Guaranteed insertion/deletion for a Johnson vertex of capacity R with
m-bit elements.

Gates: O(Rm)
Depth: O(log m + log R)
Width: O(Rm)

Membership testing and relation counting. The capacity R membership
testing operation performs

|U〉 |x〉 |b〉 �→
{

|U〉 |x〉 |b ⊕ 1〉 if x ∈ U
|U〉 |x〉 |b〉 otherwise.

As in guaranteed insertion/deletion, the routine starts with a fan-out followed
by a comparison. In the comparison step we flip the leading bit of A′′[i] if and
only if A′[i] = A[i]. This will put at most one 1 bit into the A′′ array. Computing
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the parity of the A′′ array will extract the result. The comparisons use O(Rm)
gates in depth O(log m) [40], as does the parity check [33]. Thus the cost of
membership testing matches that of guaranteed insertion: O(Rm) gates in depth
O(log m + log R).

The above procedure is easily modified to test other relations and return the
total number of matches. In place of the parity circuit, we would use a binary
tree of O(log R)-bit addition circuits. With the adders of [37], the cost of the
addition tree is O(R log R) gates in depth O(log2 R). The ancilla bits for the
addition tree do not increase the overall width beyond O(Rm). As such, the
gate cost of the addition tree is no more than a constant factor more than the
cost of a guaranteed insertion. The full cost of relation counting will also depend
on the cost of evaluating the relation.

Cost 3. Membership testing and relation counting for a Johnson vertex of capa-
city R with m-bit elements. The terms TG, TD, and TW denote the gates, depth,
and width of evaluating a relation.

Membership testing Relation counting
Gates: O(Rm) O(Rm + RTG)
Depth: O(log m + log R) O(log2 R + TD)
Width: O(Rm) O(Rm + RTW )

Uniform sampling. The capacity R uniform sampling operation performs
|A〉 |0〉 = |A〉

(
1√
R

∑
x∈A |x〉

)
. We use a random access to the array A with a

uniform superposition of addresses. By Cost 1, this uses O(Rm) gates in depth
O(log m + log R).

4.3 Random Replacement

A quantum walk on a Johnson graph needs a subroutine to replace U with a
neighbouring vertex in order to take a step. Intuitively, this procedure just needs
to delete u ∈ U , sample x ∈ X\U , then insert x. The difficulty lies in sampling x
in such a way that it can be uncomputed even after subsequent insertion/deletion
operations. The naive rejection sampling approach will entangle x with U .

The applications that we consider below can tolerate a replacement proce-
dure that leaves U unchanged with probability R/X. We first sample x uniformly
from X and perform a membership test. This yields

√
1/X

∑
x∈X |U〉 |x〉 |x ∈ U〉.

Conditioned on non-membership, we uniformly sample some u ∈ U , delete u, and
insert x. Conditioned on membership, we copy x into the register that would oth-
erwise hold u. The membership bit can be uncomputed using the “u” register.
This yields

√
1/X

∑
x∈U |U〉 |x〉 |x〉+√

1/RX
∑

V∼U |V〉 |x〉 |u〉 . The cost of ran-
dom replacement is O(1) times the cost of guaranteed insertion plus the cost of
uniform sampling in X .
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4.4 Comparison with Quantum Radix Trees

In [7] a quantum radix tree is constructed as a uniform superposition over all pos-
sible memory layouts of a classical radix tree. This solves the problem of history-
dependence, but relies heavily on random access gates. The internal nodes of a
radix tree store the memory locations of its two children. In the worst case,
membership testing, insertion, and deletion follow paths of Θ(m) memory loca-
tions. Because a quantum radix tree is stored in all possible memory layouts,
these are genuine random accesses to an R register array. Note that a radix tree
of m-bit strings cannot have more than 2m leaves. As such, log R = O(m) and
Cost 1 matches the lower bound for random access gates given by Beals et al.
[5]. Cost 4 is obtained by using Cost 1 for each of the O(log R) random accesses.
The lower bound in Cost 4 exceeds the upper bound in Cost 2.

Cost 4. Membership testing, insertion, and deletion for quantum radix trees.
Gates: Ω(Rm2)
Depth: Ω(m log m + m log R)
Width: Ω(Rm)

5 Cost Analysis: Claw-Finding by Quantum Walk

5.1 Quantum Walk Based Search Algorithms

Let S be a finite set with a subset M of “marked” elements. We focus on a
generic search problem: to find some x ∈ M. A simple approach is to repeat-
edly guess elements of S. This can be viewed as a random walk. At each step,
one transitions from the current guess to another with uniform probability. The
random walk starts with a setup routine that produces an initial element S.
It then repeats a loop of (1) checking if the current element is marked, and
(2) walking to another element. Of course, one need not use the uniform distri-
bution. In a Markov chain, the transition probabilities can be arbitrary, so long
as they only depend on the current guess. The probability of transitioning from
a guess of u to a guess of v can be viewed as a weighted edge in a graph with
vertex set S. The weighted adjacency matrix of this graph is called the transition
matrix of the Markov chain.

Quantum random walks perform analogous operations. The elements of S
are encoded into pairwise orthogonal quantum states. A setup circuit produces
an initial superposition of these states. A check circuit applies a phase to marked
elements. An additional diffusion circuit amplifies the probability of success. It
uses a walk circuit, which samples a new element of S.

Grover’s algorithm is a quantum walk with uniform transition probabilities.
It finds a marked element after Θ(

√|S| / |M|) check steps. Szegedy’s algorithm
can decide whether or not M is empty for a larger class of Markov chains [36].
Magniez, Nayak, Roland, and Santha (MNRS) generalize Szegedy’s algorithm
to admit even more general Markov chains [31]. They also describe a routine



50 S. Jaques and J. M. Schanck

that can find a marked element [31, “Tolerant RAA” algorithm]. We will not
describe these algorithms in detail; we will only describe the subroutines that
applications of quantum walks must implement. We do not present these in full
generality.

Quantum walk subroutines. Szegedy- and MNRS-style quantum walks use
circuits for the following transformations. The values u and v are elements of S,
and M is the subset of marked elements. The values pvu are matrix entries of
the transition matrix of a Markov chain P . We assume pvu = puv, and that the
corresponding graph is connected.

Set-up: |0 · · · 0〉 �→ 1
√|S|

∑

u∈S
|u〉 |0〉 . (3)

Check: |u〉 |v〉 �→
{

− |u〉 |v〉 if u ∈ M,

|u〉 |v〉 otherwise.
(4)

Update: |u〉 |0〉 �→
∑

u∈S

√
pvu |u〉 |v〉 (5)

Reflect: |u〉 |v〉 �→
{

|u〉 |v〉 if v = 0,

− |u〉 |v〉 otherwise.
(6)

The walk step applies (Update)−1(Reflect)(Update). After this, it swaps |u〉
and |v〉, repeats (Update)−1(Reflect)(Update), then swaps the vertices back.

Following MNRS, we write S for the cost of the Set-up circuit, U for the cost
of the Update and C for the cost of the check. The reflection cost is insignificant
in our applications. The cost of a quantum walk also depends on the fraction
of marked elements, ε = |M|/|S|, and the spectral gap of P . With our assump-
tions, the spectral gap is δ(P ) = 1 − |λ2(P )| where λ2(P ) is the second largest
eigenvalue of P , in absolute value.

Szegedy’s algorithm repeats the check and walk steps for O(1/
√

εδ) itera-
tions. MNRS uses O(1/

√
εδ) iterations of the walk step, but then only O(1/

√
ε)

iterations of the check step. MNRS also uses O(log(1/εδ)) ancilla qubits. Cost 5
shows the costs of both algorithms.

Cost 5. Quantum Random Walks. The tuples S, C, and U are the costs of random
walk subroutines, ε is the fraction of marked vertices, and δ is the spectral gap
of the underlying transition matrix.

Szegedy MNRS

Gates: O
(
SG + 1√

εδ
(UG + CG)

)
O

(
SG + 1√

ε

(
1√
δ
UG + CG

))

Depth: O
(
SD + 1√

εδ
(UD + CD)

)
O

(
SD + 1√

ε

(
1√
δ
UD + CD

))

Width: O (max{SW ,UW ,CW }) O
(
max{SW ,UW + log

(
1
εδ

)
,CW + log

(
1
εδ

)})
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5.2 The Claw-Finding Problem

We will now consider a quantum walk algorithm with significant cryptanalytic
applications. The claw-finding problem is defined as follows.

Problem 5.1 (Claw Finding). Given finite sets X , Y, and Z and functions
f : X → Z and g : Y → Z find x ∈ X and y ∈ Y such that f(x) = g(y).

In a so-called golden claw-finding problem the pair (x, y) is unique.
Tani applied Szegedy’s algorithm to solve the decisional version of the claw-

finding problem (detecting the presence of a claw) [38]. He then applied a binary
search strategy to solve the search problem. As noted in [38], the MNRS algo-
rithm can solve the claw-finding problem directly. The core idea is the same in
either case. Parallel walks are taken on Johnson graphs J(X,Rf ) and J(Y,Rg),
and the checking step looks for claws.

There are a few details to address. First, since the claw property is defined in
terms of the set Z, we will need to augment the base sets with additional data.
Second, we need to formalize the notion of parallel walks. Fortunately, this does
not require any new machinery. Tani’s algorithm perfoms a walk on the graph
product J(X,Rf ) × J(Y,Rg). A graph product G1 × G2 is a graph with vertex
set V (G1) × V (G2) which includes an edge between (v1, v2) and (u1, u2) if and
only if v1 is adjacent to u1 in G1 and v2 is adjacent to u2 in G2. Our random
replacement routine adds self-loops to both Johnson graphs.

5.3 Tracking Claws Between a Pair of Johnson Vertices

In order to track claws we will store Johnson vertices over the base sets Xf =
{(x, f(x)) : x ∈ X} and Yg = {(y, g(y)) : y ∈ Y}. Alongside each pair of Johnson
vertices for U ⊂ Xf and V ⊂ Yg, we will store a counter for the total number of
claws between U and V.

This counter can be maintained using the relationship counting routine of
Sect. 4. Before a guaranteed insertion of (x, f(x)) into U we count the number
of (y, g(y)) in V with f(x) = g(y). Evaluating the relation costs no more than
equality testing and so the full relation counting procedure uses O(Rgm) gates in
depth O(log m + log2 Rg). Assuming that Rf ≈ Rg, counting claws before inser-
tion into U is the dominant cost. We maintain the claw counter when deleting
from U , inserting into V, and deleting from V.

5.4 Analysis of Tani’s Claw-Finding Algorithm

We will make a few assumptions in the interest of brevity. We assume that
elements of Xf and Yg have the same bit-length m. We write X = |X |, Y = |Y|,
and R = max{Rf , Rg}. We also assume that the circuits for f and g are identical;
we write EG, ED, and EW for the gates, depth, and width of either.

In Tani’s algorithm a single graph vertex is represented by two Johnson vertex
data structures. Szegedy’s algorithm and MNRS store a pair of adjacent graph
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vertices, so here we are working with two pairs of adjacent Johnson vertices
UX ∼ VX and UY ∼ VY . The main subroutines are as follows.

Set-up. The Johnson vertices UX and UY are populated by sampling R elements
of X and inserting these while maintaining the claw counter. We defer the full
cost as it is essentially O(R) times the update cost.

Update. The update step applies the random replacement of Sect. 4.3 to each
of the Johnson vertices. The insertions and deletions within the replacement
routine must maintain the claw counter, so relation counting is the dominant
cost of either. Replacement has a cost of O(1) guaranteed insertion/deletions
(from the larger of the two sets) and O(1) function evaluations. Based on Cost
3 and the cost of evaluating f , the entire procedure uses O(Rm + EG) gates in
a circuit of depth O(log m + log2 R + ED) and width O(Rm + EW ).

Check. A phase is applied if the claw-counter is non-zero, with negligible cost.

Walk parameters. Let P be the transition matrix for a random walk on
J(X,Rf ), formed by normalizing the adjacency matrix. The second largest eigen-
value of P is λ2 = O(1 − 1

Rf
), and is positive. Our update step introduces

self-loops with probability R/X into the random walk. The transition matrix
with self-loops is P ′ = R

X I + (1 − R
X )P . The second-largest eigenvalue of P ′ is

λ′
2 = R

X + (1 − R
X )λ2. Since λ2 is positive, the spectral gap of the walk with

self-loops is δ′
f = 1 − |λ′

2| = Ω
(

1
Rf

− 1
X

)
. In general, the spectral gap of a

random walk on G1 × G2 is the minimum of the spectral gap of a walk on G1

or G2. Thus the spectral gap of our random walk on J(X,Rf ) × J(Y,Rg) is

δ = Ω

(
1
R

− 1
X

)

.

The marked elements are vertices (UX ,UY) that contain a claw. In the worst
case there is one claw between the functions and

ε =
RfRg

XY
.

The walk step will then be applied 1/
√

εδ ≥ √
XY/R times.

In Cost 6 we assume R ≤ (XY )1/3. This is because the query-optimal param-
eterization of Tani’s algorithm uses R ≈ (XY )1/3 [38], and the set-up routine
dominates the cost of the algorithm when R > (XY )1/3. The optimal values of
R for the G- and DW -cost will typically be much smaller than (XY )1/3. The
G-cost is minimized when R = EG/m, and the DW -cost is minimized when
R = EW /m.
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Cost 6. Claw-finding using Tani’s algorithm with |Xf | = X; |Yg| = Y ; R =
max{Rf , Rg} ≤ (XY )1/3; m large enough to encode an element of Xf or Yg;
and EG, ED, and EW the gates, depth, and width of a circuit to evaluate f or g.

Gates: O

(
m

√
XY R + EG

√
XY
R

)

Depth: O

(
log m

√
XY
R

+ log2 R
√

XY
R

+ ED

√
XY
R

)

Width: O (Rm + EW )

5.5 Comparison with Grover’s Algorithm

Cost 7 gives the costs of Grover’s algorithm applied to claw-finding. It requires
O(

√
XY ) Grover iterations. Each iteration evaluates f and g, and we assume

this is the dominant cost of each iteration. Note that the cost is essentially that
of Tani’s algorithm with R = 1.

Grover’s and Tani’s algorithms have the same square root relationship to
XY . Tani’s algorithm can achieve a slightly lower cost when the functions f and
g are expensive.

Cost 7. Claw-finding using Grover’s algorithm with the notation of Cost 6.

Gates: O
(
EG

√
XY

)

Depth: O
(
ED

√
XY

)

Width: O (EW )

5.6 Effect of Parallelism

The naive method to parallelise either algorithm over P processors is to divide
the search space into P subsets, one for each processor. For both algorithms,
parallelising will reduce the depth and gate cost for each processor by 1/

√
P .

Accounting for costs across all P processors shows that parallelism increases the
total cost of either algorithm by a factor of

√
P . This is true in both the G- and

the DW -cost metric. This is optimal for Grover’s algorithm [43], but may not
be optimal for Tani’s algorithm. The parallelisation strategy of Jeffery et al. [23]
is better, but uses substantial communication between processors in the check
step. A detailed cost analysis would need to account for the physical geometry
of the processors, which we leave for future work.

6 Application: Cryptanalysis of SIKE

The Supersingular Isogeny Key Encapsulation (SIKE) scheme [20] is based on
Jao and de Feo’s Supersingular Isogeny Diffie–Helman (SIDH) protocol [21]. In
this section we describe the G- and DW -costs of an attack on SIKE. Our analysis
can be applied to SIDH as well.
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SIKE has public parameters p and E where p is a prime of the form 2eA3eB −1
and E is a supersingular elliptic curve defined over Fp2 . Typically eA and eB

are chosen so that 2eA ≈ 3eB ; we will assume this is the case. For each prime
� �= p, one can associate a graph, the �-isogeny graph, to the set of supersingular
elliptic curves defined over Fp2 . This graph has approximately p/12 vertices. Each
vertex represents an equivalence class of elliptic curves with the same j-invariant.
Edges between vertices represent degree-� isogenies between the corresponding
curves4. A SIKE public key is a curve EA, and a private key is a path of length
eA that connects E and EA in the 2-isogeny graph; only one path of this length
is expected to exist.

The �-isogeny graph is (� + 1)-regular. So the set of paths of length c that
start at some fixed vertex in the 2-isogeny graph is of size 3 · 2c−1. This suggests
the following golden claw-finding problem. Let X be the set of paths of length
�eA/2� that start at E, and let Y be the set of paths of length �eA/2� that
start at EA. Let f : X → Fp2 and g : Y → Fp2 be functions that compute the
j-invariant corresponding to the curve reached by a path. Recovering the private
key corresponding to EA is no more difficult than finding a claw between f and
g. With the typical parameterisation of 2eA ≈ 3eB , both X and Y are of size
approximately p1/4.

We will fix these definitions of X , Y, f , and g for the remainder. We will
also assume that EG, ED, and EW —the gates, depth, and width of a circuit for
evaluating f or g—are all po(1).

6.1 Quantum Claw-Finding Attacks

Let us first consider a parallel Grover search with P quantum processors using
the parallelisation strategy of Sect. 5.6. Processor i performs a Grover search on
Xi × Yi where Xi is a subset of X of size p1/4/

√
P , and Yi is a subset of Y of

size p1/4/
√

P . Based on Cost 7 the circuit for all P processors uses p1/4+o(1)
√

P
gates, has depth p1/4+o(1)/

√
P , and has width po(1)P . The only benefit to using

more than 1 processor is a reduction in depth. The G- and the DW -cost both
increase with P .

Tani’s algorithm admits time vs. memory trade-offs using both the Johnson
graph parameter R and the number of parallel instances P . With any number
of instances, both the G- and the DW -cost are minimized when R = po(1).
Based on Cost 6 the circuit for P processors uses p1/4+o(1)

√
P gates, has depth

p1/4+o(1)/
√

P , and has width po(1)P . This is identical to Grover search up to
the po(1) factors. However, there may be a benefit to using R > 1 if function
evaluations are sufficiently expensive.

6.2 Classical Claw-Finding Attacks

In a recent analysis of SIKE, Adj et al. [1] conclude that the best known classical
claw-finding attack on the scheme is based on the van Oorschot–Wiener (VW)
4 We are being slightly imprecise, as the �-isogeny graph is actually directed. However,

if there is an edge from u to v corresponding to an isogeny φ, then there is an edge
from v to u corresponding to the dual isogeny φ̂.
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parallel collision search algorithm. We defer to [1] for a full description of the
attack. The VW method uses a PRAM with P processors and M registers. Each
register must be large enough to store an element of X or Y and a small amount
of additional information.

From [1], a claw-finding attack on SIKE using VW on a PRAM with 1 pro-
cessor and M registers of memory performs

max
{

p3/8+o(1)

M1/2
, p1/4+o(1)

}

(7)

RAM operations. The o(1) term hides the cost of evaluating f , g, and a hash func-
tion. The algorithm parallelizes perfectly so long as P < M ≤ p1/4. This restric-
tion is to avoid a backlog of operations on the shared memory. The algorithm
performs p1/4+o(1) shared memory operations in total, and M1/2P/p1/8+o(1)

shared memory operations simultaneously. Using memory M > p1/4+o(1) does
not reduce the total number of shared memory operations, hence the second
term in Eq. 7.

It is natural to treat the P processors in this attack as a memory peripheral
controller for M registers of non-volatile memory. Each processor needs an addi-
tional po(1) bits of memory for its internal state, and each of the M registers are
of size po(1). Unlike the quantum claw-finding attacks that we have considered,
the RAM operation cost of the VW method decreases as the amount of available
hardware increases.

The query-optimal parameterisation of Tani’s algorithm has p1/6+o(1) qubits
of memory. In our models this implies p1/6+o(1) classical processors for control
with a combined p1/6+o(1) bits of classical memory. A RAM operation for these
processors is equivalent to a quantum gate in cost and time. Repurposed to run
VW, these processors would solve the claw-finding problem in time p1/8+o(1) with
p7/24+o(1) RAM operations. Our conclusion is that an adversary with enough
quantum memory to run Tani’s algorithm with the query-optimal parameters
could break SIKE faster by using the classical control hardware to run van
Oorschot–Wiener.

6.3 Non-asymptotic Cost Estimates

The claw-finding attacks that we have described above can all break SIKE in
p1/4+o(1) RAM operations. However, they achieve this complexity using different
amounts of time and memory. Both quantum attacks achieve their minimal cost
in time p1/4+o(1) on a machine with po(1) qubits. The van Oorschot–Wiener
method achieves its minimal cost in time po(1) on a machine with p1/4+o(1)

memory and processors. A more thorough accounting of the low order terms
could identify the attack (and parameterization) of least cost, but real attackers
have resource constraints that might make this irrelevant.

We use SIKE-n to denote a parameterisation of SIKE using an n-bit prime.
We focus on SIKE-434 and SIKE-610, parameters introduced as alternatives to
the original submission to NIST [1]. Figure 3 depicts the attack landscape for
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SIKE-434. Figure 4 gives the cost of breaking SIKE-434 and SIKE-610 under var-
ious constraints. These cost estimates are based on assumptions that we describe
below.

Cost of function evaluations. The functions f and g involve computing iso-
genies of (2-smooth) degree approximately p1/4. We assume that the cost of
evaluating f is equal to the cost of evaluating g, and we let EG, ED, and EW

denote the gate-count, depth, and width of a circuit for either. We assume that
the classical and quantum gate counts are equal, which may lead us to underes-
timate the quantum cost.

The SIKE specification describes a method for computing a degree-2e isogeny
that uses approximately e log e curve operations [20]. Each operation is either
a point doubling or a degree-2 isogeny evaluation. We assume that it costs the
attacker at least 4 log p log log p gates to compute either curve operation. This is
a very conservative estimate given that both operations involve multiplication in
Fp2 , and a single multiplication in Fp2 involves 3 multiplications in Fp. Based on
this, we assume that computing an isogeny of degree ≈ p1/4 costs the attacker
at least (log p)2

(
(log log p)2 − 2 log log p

)
gates. We assume that the attacker’s

circuit has width 2 log p, which is just enough space to represent its output. We
assume that the gates parallelize perfectly so that ED = EG/EW .

For an attack on SIKE-434 our assumptions give EG = 223.4, ED = 213.7,
and EW = 29.8. For an attack on SIKE-610, they give EG = 224.6, ED = 214.3,
and EW = 210.3. We assume that elements of Xf and Yg can be represented in
m = (log p)/2 bits.

Grover. Each Grover iteration computes two function evaluations. However, to
avoid the issue of whether these evaluations are done in parallel or in series,
we only cost a single evaluation. We ignore the cost of the diffusion operator.
We partition the search space into P parts and distribute the subproblems to P
processors. Each processor performs approximately p1/4/

√
P Grover iterations.

This gives a total gate count of at least p1/4
√

PEG, depth of at least p1/4ED/
√

P ,
and width of at least PEW .

For depth-constrained computations we use the smallest P that is compati-
ble with the constraint. For memory-constrained computations we take P large
enough to use all of the available memory.

Tani. A single instance of Tani’s algorithm stores two lists of size R and needs
scratch space for computing two function evaluations. We only cost a single
function evaluation. We assume that only 2Rm + EW qubits are needed.

We parallelise the gate-optimal parameterisation, i.e. we take R = EG/m.
We partition the search space into P parts and distribute subproblems to P
processors. Each processor performs roughly p1/4/

√
RP walk iterations. Each

walk iteration performs at least one guaranteed insertion with claw-tracking
and at least one function evaluation. Each insertion costs at least Rm gates.
Each function evaluation has depth ED and width EW . The total gate cost
across all P processors is at least p1/4

√
P/R(Rm + EG) = p1/4

√
2mEGP gates
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in depth at least p1/4ED/
√

RP = p1/4ED

√
m/PEG and uses width at least

P (2Rm + EW ) = P (2EG + EW ).
For depth-constrained computations we use the smallest P that is compati-

ble with the constraint. For memory-constrained computations we take P large
enough to use all of the available memory. If the parallelisation is such that
R = EG/m ≥ (p1/2/P )1/3, which would cause the setup cost to exceed the cost
of the walk iteration, we decrease R.

van Oorschot–Wiener. Each processor iterates a cycle of computing a function
evaluation and storing the result. We only cost a single function evaluation per
iteration. Our quantum machine models assume a number of RAM controllers
that is proportional to memory. We make the same assumption here. When the
attacker has M bits of memory we assume they also have P = M/(EW + m)
processors. Intuitively, each processor needs space to evaluate a function and is
responsible for one unit of shared memory. This gives a total gate count of at
least (p3/8/M1/2)EG, a depth of at least (p3/8/M3/2)(EW + m)ED, and a width
of M .

For depth constrained-computations we use the smallest amount of memory
that satisfies the constraint. Unlike the quantum attacks, the gate cost of VW
decreases with memory use, so Fig. 4a and b do not show the best gate count that
VW can achieve with a depth constraint. For memory-constrained computations
we use the maximum amount of memory allowed.

Fig. 3. G-cost and depth of claw-finding attacks on SIKE-434, with the isogeny costs
of Sect. 6.3. The dashed lines are at the width of the query-optimal parameterisation
including storage, (p1/6 log p)/2. Axes are in base-2 logarithms.

7 Conclusions and Future Work

7.1 Impact of Our Work on the NIST Security Level of SIKE

The SIKE submission recommends SIKE-503, SIKE-751, and SIKE-964 for secu-
rity matching AES-128, AES-192, and AES-256, respectively. NIST suggests that
an attack on AES-128 costs 2143 classical gates (in a non-local boolean circuit
model). NIST also suggests that attacks on AES-192 and AES-256 cost 2207 and
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Fig. 4. Cost estimates for claw finding attacks on SIKE. All numbers are expressed as
base-2 logarithms.

2272 classical gates, respectively. We have used “RAM operations” throughout
to refer to non-local bit/qubit operations; our G-cost is directly comparable with
these estimates.

Adj et al. [1] recommend slightly smaller primes: SIKE-434 for security
matching AES-128 and SIKE-610 for security matching AES-192. Their anal-
ysis is based on the cost of van Oorschot–Wiener with less than 280 registers of
memory. NIST’s recommended machine model does not impose a limit on clas-
sical memory, but it does impose a limit on the depth of quantum circuits. Our
cost estimates (Fig. 4) suggests that known quantum attacks do not break SIKE-
434 using less than 2143 classical gates, or SIKE-610 using less than 2207 classical
gates, when depth is limited to 296. We agree with the conclusions of Adj et al.,
and believe that NIST’s machine model should include a width constraint.

We caution that claw-finding attacks may not be optimal. Biasse, Jao, and
Sankar [8] present a quantum attack that exploits the algebraic structure of
supersingular curves defined over Fp. This attack uses p1/4+o(1) quantum gates
and 2O(

√
log p) qubits of memory. Given our analysis of Tani’s algorithm, this

attack may be competitive with other quantum attacks.
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7.2 Further Applications of Our Memory Peripherals

Our analysis should be immediately applicable to other cryptanalytic algorithms
that use quantum walks on Johnson graphs. These include algorithms for subset
sum [7], information set decoding [25], and quantum Merkle puzzles [10].

The G- and DW -cost metrics have applications to classical algorithms that
use quantum subroutines, such as the quantum number field sieve [6], and to
quantum algorithms that use classical subroutines, such as Shor’s algorithm.

Our analysis of quantum random access might affect memory-intensive algo-
rithms like quantum lattice sieving [29]. However, we only looked at quantum
access to quantum memory. There may be physically realistic memory periph-
erals that enable inexpensive quantum access to classical memory (e.g. [19]).

7.3 Geometrically Local Memory Peripherals

Neither of our memory peripheral models account for communication costs. We
allow non-local quantum communication in the form of long-range CNOT gates.
We allow non-local classical communication in the controllers. The distributed
computing model of Beals et al. [5] might serve as a useful guide for eliminat-
ing non-local quantum communication. Note that the resulting circuits are, at
present, only compatible with the DW -cost metric. The known self-correcting
qubit memories are built out of physical qubit interactions that cannot be imple-
mented locally in 3 dimensional space.
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Abstract. Attribute-based Encryption (ABE), first introduced by
[SW05,GPSW06], is a public key encryption system that can support
multiple users with varying decryption permissions. One of the main
properties of such schemes is the supported function class of policies.
While there are fully secure constructions from bilinear maps for a fairly
large class of policies, the situation with lattice-based constructions is
less satisfactory and many efforts were made to close this gap. Prior to
this work the only known fully secure lattice construction was for the
class of point functions (also known as IBE).

In this work we construct for the first time a lattice-based (ciphertext-
policy) ABE scheme for the function class t-CNF, which consists of CNF
formulas where each clause depends on at most t bits of the input, for
any constant t. This class includes NP-verification policies, bit-fixing
policies and t-threshold policies. Towards this goal we also construct a
fully secure single-key constrained PRF from OWF for the same function
class, which might be of independent interest.

1 Introduction

Atrribute-based Encryption (ABE), first introduced in [SW05,GPSW06], is a
public key encryption system that can support multiple users with varying
decryption permissions. In this work we focus on ciphertext-policy ABE schemes,
where each ciphertext is associated with a public policy f and each decryption
key is associated with a public attribute x, such that decryption succeeds con-
ditioned on f(x) = 1. One of the main properties of an ABE scheme is the
function class of policies that can be attached to ciphertexts. In fact, ABE was
originally suggested as a generalization of identity-based encryption (IBE), in
which each ciphertext is destined to a single attribute x (i.e. the policies are
point functions).
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Bilinear Maps Constructions. It was shown in a long line of works that bilin-
ear maps prove to be useful for the task of constructing IBE and ABE under
varying group assumptions. [BF03,Coc01] constructed the first IBE schemes in
the random oracle model. [CHK03,BB04a] showed constructions in the standard
model, however their security was proven under a weaker notion, called selective
security.

A few approaches were suggested to go beyond selective security. [BB04b,
Wat05] introduced the first constructions with full security in the standard
model, using a partitioning technique. Their solutions were proved to be secure
via a lossy reduction, where the simulator aborts with probability that grows
with the number of keys owned by the adversary. [Gen06] introduced the tagging
technique, with which he managed to construct a fully secure IBE scheme with
a tight reduction, however the hardness assumption was still related to the num-
ber of keys. Finally, [Wat09] introduced the dual system encryption technique
and achieved the first fully secure IBE scheme with a tight reduction to a fixed
assumption.

The first ABE construction was suggested by [SW05] and supported thresh-
old policies. Later, [GPSW06] constructed a key-policy1 ABE scheme for poli-
cies that can be expressed as a linear secret-sharing (LSSS) access structure
and [OSW07] constructed a key-policy ABE scheme for all formulas. [Wat11]
showed a ciphertext-policy ABE construction for LSSS access structures. All of
those works were proved to be secure in the weaker selective mode. The works of
[LOS+10,LW12,KL15,CGKW18] expand the dual system technique of [Wat09]
to derive fully secure ABE for LSSS and recently [KW19] showed a construction
for all monotone access structures in NC1.

Lattice-Based Constructions. The emerging interest in hard problems over lat-
tices, which are believed to be hard even at the presence of quantum machines,
led to the development of a cryptographic toolbox [Ajt96,Ajt99,Reg05] that
allows to base the security of various systems over random instances of such
problems. This gave rise to a line of works about lattice-based IBE and
ABE schemes. The first lattice-based IBE constructions were introduced by
[GPV08,CHKP12,ABB10a] and were secure in the selective model. Shortly after,
[ABB10b] presented a construction with full security and [BL16] constructed a
fully secure scheme with a tight reduction.

The first schemes to support richer classes of polices were [AFV11,ABV+12],
which constructed ABE for inner product policies and threshold policies respec-
tively. [Boy13] showed key-policy ABE schemes for LSSS access structures.
Lastly, the works of [GVW13,BGG+14] constructed key-policy ABE for all poli-
cies that can be described by a bounded-depth polynomial-size circuit.

All of the aforementioned ABE constructions were proved to be selectively
secure. The works of [BV16,GKW16] showed how to boost the security of
[GVW13,BGG+14] to an intermediate notion, named semi-adaptive security,

1 In key-policy ABE the policies are attached to the keys and the attributes are
attached to the ciphertexts.
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however it is not clear how to further develop those techniques. The question
of whether it is possible to construct fully-secure ABE schemes from lattices
beyond point functions remained open.

Our Contribution. In this work we construct for the first time a lattice-based
ciphertext-policy ABE scheme for the ensemble of function classes t-CNF, which
consists of formulas in conjunctive normal form where each clause depends on at
most t bits of the input, for any constant t. Our construction supports functions
of unbounded size, that is, every function consisting of polynomial number of
clauses. Those function classes includes NP-verification policies, bit-fixing poli-
cies and t-threshold policies. Towards this goal we also construct a fully secure
single-key constrained PRF from OWF for the same function class, which might
be of independent interest.

1.1 Technical Background

Let us first describe the difference between full security and selective security.
The former is modeled as a game between an adversary A and a challenger C as
follows. At the beginning of the game, C publishes the public parameters of the
scheme. At any point of the game, A can query for multiple decryption keys to
attributes x of its choice. In the challenge phase, A chooses a challenge policy
f∗ and C returns a ciphertext respective to f∗. The goal of A is to determine
whether this is an encryption of 0 or 1, and the scheme is secure if it cannot do
that as long as none of its queried keys x are authorized by f∗. The selective
security game is identical, except that A has to announce the challenge policy
f∗ before the game begins.

In the latter game the security reduction has the opportunity to generate
the public parameters according to f∗. Selective security proofs usually follow a
similar structure, where f∗ introduces a partitioning of the identity space. The
public parameters are generated in the security reduction such that for all x for
which f∗(x) = 0 (i.e. not authorized by f∗) it is possible to simulate a decryption
key, and for all x for which f∗(x) = 1, a key for x would allow to break the hard
problem. Since A can only query for keys of the first type, the reduction can still
answer all of the queries appropriately.

Tagging. In [Gen06] Gentry presented an adaptively secure IBE scheme from
bilinear maps, using a tagging technique as follows. In the real scheme, every
ciphertext is associated with a random tag rct and every key is associated with
a random tag rsk. Decryption works as long as the IBE condition is satisfied and
rct �= rsk. The probability that decryption fails is negligible since the tags are
random. In the security proof, a random degree-Q polynomial P is embedded into
the public parameters, such that it is possible to generate a challenge ciphertext
respective to any x with the tag rct = P (x) and similarly it is possible to generate
a key respective to any x with the tag rsk = P (x). That is, the security reduction
can answer any key query and can generate a challenge ciphertext respective to
any x, however if it generates a ciphertext and a key for the same identity then
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the decryption fails because they both have the same tag. Recall that in the
security game A is not allowed to query for a challenge and a key respective to
the same attribute and therefore it cannot detect that case. Since P is a random
polynomial, the values of P on up to Q points are distributed uniformly. For that
reason security is guaranteed as long as A can only query for up to Q − 1 keys.
The evaluation of P has to be performed on a secret element in the exponent of
a group. Since it is only possible to compute linear functions over the exponent,
the reduction needs to get information that grows linearly with Q and makes
the assumption stronger.

The BGG+ Lattice-Based Construction. A long sequence of works [ABB10b,
MP12,GSW13,AP14,BGG+14] led to a selectively secure key-policy ABE
scheme with security based on LWE, for the function class of all policies that
can be described as a bounded-depth polynomial-size circuit. We now give an
overview of their technique.

The public parameters consist of a matrix A, and for each attribute x (resp.
policy f) there is a related efficiently computable matrix Ax ← EncodeX(A, x)
(resp. Af ← EncodeF(A, f)). Encryption for an attribute x is a Dual-Regev
encryption (see [GPV08]) respective to the public matrix Ax, while a decryption
key for f is a Dual-Regev key respective to the public matrix Af . The matrices
Ax,Af are cleverly defined s.t., informally, for all x, f

f(x) = 1 ←→ It is possible to convert a ciphertext respective to Ax

to a ciphertext respective to Af .

Let Convert be the “ciphertext conversion algorithm” that satisfies the above
condition, then we can informally say that

f(x) = 1 ←→ Convert(Ax, x, f) = Af .

The property that is important to us, is that Convert works gate-by-gate and
therefore respects function composition. That is, if f = g2 ◦ g1, then for all x it
holds that

Convert(Ax, x, f) = Convert (Convert(Ax, x, g1), g1(x), g2) (1)

and therefore

f(x) = 1 ←→ Convert (Convert(Ax, x, g1), g1(x), g2) = Af .

The security proof follows similar lines to other selectively-secure schemes as
described at the beginning of this section. That is, the challenge attribute x∗

is embedded into the public parameters A such that it is possible to create a
challenge ciphertext only respective to Ax∗ = EncodeX(A, x∗), and it is possible
to generate keys only respective to Af = EncodeF(A, f) for which f(x∗) = 0.
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1.2 Our Techniques

Identity-Based Encryption. We first describe how to construct a fully secure
IBE scheme with our approach. The main idea is to use the tagging technique
of [Gen06], but with a PRF instead of a random polynomial. The rich function
class supported by [BGG+14] allows us to compute a PRF over a seed that is
secretly embedded into the public parameters in the security proof. The tag of
a key for an attribute x is the value of the PRF on the input x, i.e. rx. That
is, a key for x can decrypt any ciphertext respective to x unless the ciphertext
tag is equivalent to rx. In the real scheme the tags of ciphertexts are sampled
uniformly, while in the security reduction they are determined by the PRF seed
that is embedded into the public parameters. Details follow.

For all x we let Ux denote the circuit that on inuput σ evaluates the PRF on
the point x with the seed σ. For all r we let Īr denote the circuit that on input
r′ returns 1 if and only if r′ �= r.

The public parameters of the IBE scheme are identical to [BGG+14] and the
master secret key includes a PRF seed σ. To encrypt respective to x, one samples
a fresh PRF seed σ′ and computes the Dual-Regev encryption with the public
matrix A′

x = Convert(Aσ′ , σ′, Ux) where Aσ′ = EncodeX(A, σ′). To generate
a key respective to x, one first computes rx = Ux(σ) and then generates the
Dual-Regev key respective to the matrix Afx

= EncodeF(A, fx), where fx =
Īrx

◦ Ux. Note that fx(σ′) = Īrx
(Ux(σ′)) where rx = Ux(σ). Therefore, if σ =

σ′ then fx(σ) = 0, but for any uniformly sampled σ′, Ux(σ′) �= Ux(σ) with
high probability and therefore fx(σ′) = 1. That is, with high probability over a
uniform σ′ it holds that

fx(σ′) = 1 ←→ σ′ �= σ

i.e.
Īrx

◦ Ux(σ′) = 1 ←→ σ′ �= σ .

By the properties of [BGG+14] described above, it holds that

Īrx
◦ Ux(σ′) = 1 ←→ Convert

(
Convert(Aσ′ , σ′, Ux), Ux(σ′), Īrx

)
= Afx

and therefore

σ′ �= σ ←→ Convert
(
A′

x, Ux(σ′), Īrx

)
= Afx

.

That is, whenever σ′ �= σ it is possible to convert a ciphertext respective to A′
x

to a ciphertext respective to Afx
and thus to decrypt. However, when σ′ = σ

there is no such conversion algorithm.
In the security proof we encode σ in the public parameters, such that it is

only possible to simulate Dual-Regev encryptions respective to matrices of the
form Ax = Convert(Aσ, σ, Ux) (where Aσ = EncodeX(A, σ)) but not respective
to any other σ′. The indistinguishability relies on the pseudorandomness of the
PRF and the properties of [BGG+14].
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Expanding the Function Class. The main idea here is to replace the PRF with a
constrained PRF. A constrained PRF, first defined in [BW13,KPTZ13,BGI14],
allows the key owner to generate constrained keys σf respective to functions f ,
with which it is possible to compute the value of the PRF only on points x
where f(x) = 1. More formally, there are two additional algorithms (Constrain,
ConstrainEval) such that if σf = Constrain(σ, f), then for all x for which f(x) = 1
it holds that ConstrainEval(σf , f, x) = Eval(σ, x), while for all x for which f(x) =
0, σf does not reveal information about Eval(σ, x).

Our construction uses a cPRF for policies in a function class F in order
to construct an ABE scheme for policies in F . The cPRF has to be single-key
adaptively secure, and in addition it has to satisfy two properties as follows.

– Gradual Evaluation requires that for any f, x for which f(x) = 1, the circuit
descriptions of the algorithms Eval(·, x) and ConstrainEval(Constrain(·, f), f, x)
are identical.

– Key Simulation requires an additional public algorithm KeySim(f) → σ′
f that

allows to simulate constrained keys. The keys should be indistinguishable
from real constrained keys to a distinguisher with no access to evaluations on
points x where f(x) = 1.

We call a cPRF that satisfies all of those properties a conforming cPRF. The
ABE construction from a cPRF is a generalization of the IBE construction from
a PRF. Details follow.

In the encryption algorithm, in order to encrypt respective to a pol-
icy f we compute a Dual-Regev encryption with the public matrix A′

f =
Convert(Aσ′ , σ′, Uf ), where Aσ′ = EncodeX(A, σ′) (as in the IBE construction)
and Uf is the circuit description of Constrain(·, f). The key generation algorithm
remains the same as in the IBE construction. To decrypt with a key respective
to x, one has to first convert the ciphertext to be respective to the matrix A′

x.
This is done by computing Convert(A′

f , Uf (σ′), Uf→x), where Uf→x is the circuit
description of ConstrainEval(·, f, x). Note that

Convert(A′
f , Uf (σ′), Uf→x) = Convert(Convert(Aσ′ , σ′, Uf ), Uf (σ′), Uf→x)

= Convert(Aσ′ , σ′, Ux) (2)
= A′

x

where the last equation holds by definition, and Eq. (2) holds since Uf→x ◦Uf =
Ux by the gradual evaluation property of the cPRF, and since Convert respects
function composition as described in Eq. (1).

The rest of the analysis is very similar to the IBE case. The key-simulation
property guarantees that the adversary cannot tell whether the challenge cipher-
text f∗ is generated respective to σ or to a random σ′, as long as it cannot query
for evaluations of σ on points x where f∗(x) = 1 (which is indeed guaranteed by
the ABE security game).

Constructing a Conforming cPRF. We construct a conforming cPRF for the
function class t-CNF for any constant t. A policy f is in the class t-CNF if it can
be described by a conjunctive normal form (CNF) formula, where each clause
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depends on t bits of the input. Our construction is inspired by the [DKNY18]
construction of bit-fixing cPRF for a constant number of keys. In fact, their
technique can be generalized to instantiate a family of cPRF schemes with a
tradeoff between the “CNF locality” of the supported policies and the number
of keys. They instantiate it with CNF locality 1 (i.e. bit-fixing) and t keys, while
we instantiate it with CNF locality t and a single key. Details follow.

Let � be the input length of the cPRF. We consider the set S = {(T, v)} of
all pairs (T, v) such that T ⊆ [�], |T | = t, v ∈ {0, 1}t. For any input x ∈ {0, 1}�

we define the set Sx = {(T, xT )}T where xT is the substring of x on indices T .
For all f we define the set Sf ⊆ S of all of the pairs (T, v) that do not violate
any of the clauses of f . It is easy to verify that for all x and f ,

f(x) = 1 ←→ Sx ⊆ Sf . (3)

The master secret key is a key σ of a standard PRF. Evaluation on a point x
returns the value rx, computed as

rx =
⊕

(T,v)∈Sx

Eval(σ(T,v), x) where σ(T,v) = Eval(σ, (T, v)) .

A constrained key for f consists of the values {σ(T,v)}(T,v)∈Sf
. Correctness holds

by Eq. (3), security and key simulation holds by the pseudorandomness of the
underlying PRF and gradual evaluation holds since the circuit CPRF.Eval(·, x)
is a sub-circuit of CPRF.ConstrainEval(Constrain(·, f), f, x).

1.3 Related Work

The idea to embed a PRF seed in a [BGG+14]-like construction was previously
suggested by [BV16,BL16].

Comparison with BV16. The work of [BV16] focuses on key-policy ABE with
unbounded attribute length. In their scheme, the evaluation of the PRF allows
to dynamically increase the width of the A matrix, so that Ax ← EncodeX(A, x)
can be computed for x of varying length. In particular, the PRF is evaluated over
values that only depend on the length of the attribute, where in our scheme the
PRF is evaluated over the attribute value itself. Their ciphertexts contain two
“pieces” for every bit of the attribute and they use an additional ABE scheme in
a black-box manner in order to control the access that keys have to those pieces.

Their construction achieves semi-adaptive security, which means that the chal-
lenge attribute x∗ has to be announced before the first key query, but possibly after
seeing the public parameters. This property is due to the fact that in their cihper-
texts the attribute value is implicitly XORed with a hidden random string Δ, that
can be chosen in the security reduction at the first key generation. We note that if
one desires a semi-adaptive scheme for a fixed attribute length �, their technique
can be instantiated with a PRG with poly(�) stretch instead of a PRF. That is,
the incentives for using a PRF are different in their work and ours.
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Comparison with BL16. The work of [BL16] focuses on fully-secure signatures and
IBE schemes with tight reductions. Their usage of a PRF in the IBE scheme has
some similarities to an IBE instantiation of our approach, however the technicali-
ties are different and the cPRF expansion is not applicable to their approach. They
use a PRF with tight security that on input x outputs a single bit bx. A ciphertext
for an identity x contains two independent Dual-Regev encryptions of the mes-
sage under two matrices Ax,0,Ax,1, and a key for x can only decrypt one of them
Ax,bx

. In the security proof the PRF seed is encoded into the public parameters
such that it is possible to simulate keys for Ax,bx

without the master secret key,
while it is only possible to simulate the “undecryptable” ciphertext part respective
to Ax,1−bx

.

1.4 Paper Organization

In Sect. 2 we go over the definitions of ABE and cPRF, and summarize lattice
techniques from previous works. In Sect. 3 we define the conforming cPRF and
provide a construction for policies in t-CNF. In Sect. 4 we construct a fully secure
ABE scheme that can be instantiated with any conforming cPRF.

2 Preliminaries

2.1 Constrained PRF, Attribute-Based Encryption, t-CNF Policies

Definition 1 ((Standard) PRF). A pseudo-random function family (PRF) is
a pair of ppt algorithms (Setup,Eval) with the following syntax. Setup(1λ) → sk
takes as input a security parameter λ and outputs a secret key sk. Evalsk(x) → rx

takes as input a secret key sk and a bit-string x ∈ {0, 1}�, and outputs a bit-sting
rx ∈ {0, 1}k.

Pseudorandomness. A PRF family is secure if for any ppt adversary A it holds
that ∣

∣
∣Pr[AEvalsk(·)(1λ) = 1] − Pr[AO(·)(1λ) = 1]

∣
∣
∣ = negl(λ)

where sk ← Setup(1λ) and O is a random oracle.

Definition 2 (Constrained PRF). Let F be a function class such that F ⊆
{0, 1}� → {0, 1}. A constrained pseudo-random function (cPRF) for policies in
F is a tuple of ppt algorithms with the following syntax.

– Setup(1λ) → pp,msk takes as input a security parameter λ and outputs public
parameters pp along with a master secret key msk.

– Evalmsk(x) → rx is a deterministic algorithm that takes as input a master
secret key msk and a bit-string x ∈ {0, 1}�, and outputs a bit-sting rx ∈
{0, 1}k.

– Constrainmsk(f) → skf takes as input a master secret key msk and a function
f ∈ F , and outputs a constrained key skf .

– ConstrainEvalskf
(x) is a deterministic algorithm that takes as input a con-

strained key skf and a bit-string x ∈ {0, 1}�, and outputs a bit-string
r′
x ∈ {0, 1}k.
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Correctenss. A cPRF scheme is correct if for all x ∈ {0, 1}� and f ∈ F for
which f(x) = 1, it holds that Evalmsk(x) = ConstrainEvalskf

(x) where (pp,msk) ←
Setup(1λ) and skf ← Constrainmsk(f).

Pseudorandomness. The adaptive security game of a cPRF scheme between an
adversary A and a challenger C is as follows.

1. Initialization: C generates (pp,msk) ← Setup(1λ) and sends pp to A.
2. Queries Phase I: A makes (possibly many) queries in an arbitrary order:

– Evaluation Queries: A sends a bit-string x ∈ {0, 1}�, C returns rx ←
Evalmsk(x).

– Key Queries: A sends a function f ∈ F , C returns skf ← Constrainmsk(f).
3. Challenge Phase: A sends the challenge bit-string x∗ ∈ {0, 1}�. C uniformly

samples b
$← {0, 1}. If b = 0 then C returns r∗ $← {0, 1}k. Otherwise it returns

r∗ ← Evalmsk(x∗).
4. Queries Phase II: same as the first queries phase.
5. End of Game: A outputs a bit b′.

A wins the game if (1) b′ = b, (2) all of the evaluation queries are not for x∗

and (3) all of the key queries f are such that f(x∗) = 0. The single-key adaptive
security game is as described above, except that A can only make a single key
query throughout the entire game. A cPRF scheme is secure (resp. single-key
secure) if for any ppt adversary A, the probability that A wins in the adaptive
(resp. single-key adaptive) security game is at most 1/2 + negl(λ).

Definition 3 (Attribute-Based Encryption). Let F be a function class such
that F ⊆ {0, 1}� → {0, 1}. A (ciphertext-policy) attribute-based encryption
(ctpABE) for policies in F is a tuple of ppt algorithms with the following syntax.

– Setup(1λ) → pp,msk takes as input a security parameter λ and outputs public
parameters pp along with a master secret key msk.

– KeyGenmsk(x) → skx takes as input a master secret key msk and a bit-string
x ∈ {0, 1}�, and outputs a key skx.

– Enc(f, μ) → ct takes as input a function f ∈ F and plaintext μ ∈ {0, 1}, and
outputs a ciphertext ct.

– Decskx
(ct, f) takes as input a key skx, a ciphertext ct and a function f ∈ F ,

and outputs a bit μ′ ∈ {0, 1}.

Correctenss. A ctpABE scheme is correct if for all x ∈ {0, 1}� and f ∈ F for
which f(x) = 1, and for all μ ∈ {0, 1}, it holds that

Pr[Decskx
(Enc(f, μ), f) �= μ] = negl(λ)

where (pp,msk) ← Setup(1λ) and skx ← KeyGenmsk(x).
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Security. The adaptive security game of a ctpABE scheme between an adversary
A and a challenger C is as follows.

1. Initialization: C generates (pp,msk) ← Setup(1λ) and sends pp to A.
2. Queries Phase I: A makes (possibly many) key queries. For each query, A

sends a string x ∈ {0, 1}� and C returns skx ← KeyGenmsk(x).
3. Challenge Phase: A sends the challenge function f∗ ∈ F . C uniformly samples

b
$← {0, 1} and returns ct∗ ← Enc(f∗, b).

4. Queries Phase II: same as the first queries phase.
5. End of Game: A outputs a bit b′.

A wins the game if (1) b′ = b and (2) all of the key queries x are such that
f∗(x) = 0. A ctpABE scheme is secure if for any ppt adversary A, the proba-
bility that A wins in the adaptive security game is at most 1/2 + negl(λ).

In this work we focus on the class of functions that can be described in a
conjunctive normal form (CNF), where each clause is of constant locality. We
give now a definition.

Definition 4 (t-CNF). A t-CNF policy f : {0, 1}� → {0, 1} is a set of clauses
f = {(Ti, fi)}i, where for all i, Ti ⊆ [�], |Ti| = t and fi : {0, 1}t → {0, 1}. For
all x ∈ {0, 1}� the value of f(x) is computed as

f(x) =
∧

i

fi(xTi
)

where xT is the length-t bit-string consisting of the bits of x in the indices T .
A function class F is t-CNF if it consists only of t-CNF policies for some fixed
� ∈ N and a constant t ≤ �. If F is a t-CNF function class, we say that t is the
CNF locality of F .

2.2 Lattice Trapdoors, Bounded Distributions, LWE

Lattice Trapdoors. Let n, q ∈ Z, g = (1, 2, 4, . . . , 2�log q�−1) ∈ Z
�log q�
q and m =

n	log q
. The gadget matrix G is defined as the diagonal concatenation of g n
times. Formally, G = g⊗ In ∈ Z

n×m
q . For any t ∈ Z, the function G−1 : Zn×t

q →
{0, 1}m×t expands each entry a ∈ Zq of the input matrix into a column of size
	log q
 consisting of the bits representation of a. For any matrix A ∈ Z

n×t
q , it

holds that G · G−1(A) = A.
The (centered) discrete Gaussian distribution over Z

m with parameter τ ,
denoted DZm,τ , is the distribution over Z

m where for all x, Pr[x] ∝ e−π‖x‖2/τ2
.

Let n,m, q ∈ N and consider a matrix A ∈ Z
n×m
q . For all v ∈ Z

n
q we let A−1

τ (v)
denote the random variable whose distribution is the Discrete Gaussian DZm,τ

conditioned on A · A−1
τ (v) = v.

A τ -trapdoor for A is a procedure that can sample from a distribution within
2−n statistical distance of A−1

τ (v) in time poly(n,m, log q), for any v ∈ Z
n
q . We

slightly overload notation and denote a τ -trapdoor for A by A−1
τ . The following

properties had been established in a long sequence of works.
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Corollary 1 (Trapdoor Generation [Ajt96,MP12]). There exists an effi-
ciently computable value m0 = O(n log q) and an efficient procedure
TrapGen(1n, q,m) such that for all m ≥ m0 outputs (A,A−1

τ0 ), where A ∈ Z
n×m
q

is 2−n-uniform and τ0 = O(
√

n log q log n).

We use the most general form of trapdoor extension as formalized in [MP12].

Theorem 1 (Trapdoor Extension [ABB10b,MP12]). Given A ∈ Z
n×m
q with

a trapdoor A−1
τ , and letting B ∈ Z

n×m′
q be s.t. A = BS (mod q) where S ∈

Z
m′×m with largest singular value s1(S), then (A−1

τ ,S) can be used to sample
from B−1

τ ′ for any τ ′ ≥ τ · s1(S).

A few additional important corollaries are derived from this theorem. We
recall that s1(S) ≤ √

m′m ‖S‖∞ and that a trapdoor G−1
O(1) is trivial. The first

is a trapdoor extension that follows by taking S = [Im′‖0m]T .

Corollary 2. Given A ∈ Z
n×m′
q , with a trapdoor A−1

τ , it is efficient to generate
a trapdoor [A‖B]−1

τ ′ for all B ∈ Z
n×m
q , for any m ∈ N and any τ ′ ≥ τ .

Next is a trapdoor extension that had been used extensively in prior work.
It follows from Theorem 1 with S = [−RT ‖Im]T .

Corollary 3. Given A ∈ Z
n×m′
q , and R ∈ Z

m′×m with m = n	log q
, it is
efficient to compute [A‖AR + G]−1

τ for τ = O(
√

mm′ ‖R‖∞).

Note that by taking A uniformly and R to be a high entropy small matrix, e.g.
uniform in {−1, 0, 1}, and relying on the leftover hash lemma, Corollary 1 is in
fact a special case of this one.

Lattice Evaluation. The following is an abstraction of the evaluation procedure in
previous LWE based FHE and ABE schemes, that developed in a long sequence
of works [ABB10b,MP12,GSW13,AP14,BGG+14,GVW15].

Theorem 2. There exist efficient deterministic algorithms EvalF and EvalFX
such that for all n, q, � ∈ N and m = n	log q
, for any depth d boolean circuit
f : {0, 1}� → {0, 1}k and for every x ∈ {0, 1}�, for any matrix A ∈ Z

n×m·�
q , the

outputs H ← EvalF(f,A) and Ĥ ← EvalFX(f, x,A) are both in Z
m·�×m·k and it

holds that ‖H‖∞ ,
∥
∥
∥Ĥ

∥
∥
∥

∞
≤ (2m)d and

[A − x ⊗ G]Ĥ = AH − f(x) ⊗ G (mod q)2 .

Moreover, for any pair of circuits f : {0, 1}� → {0, 1}k, g : {0, 1}k → {0, 1}t

and for any matrix A ∈ Z
n×m·�
q , the outputs Hf ← EvalF(f,A), Hg ←

EvalF(g,AHf ) and Hg◦f ← EvalF(g ◦ f,A) satisfy HfHg = Hg◦f .

2 For all n ∈ Z and v ∈ {0, 1}n the term v ⊗G denotes a tensor product of the binary
row-vector v = (v1, . . . , vn) and the matrix G. That is, v ⊗G = [v1 ·G‖ . . . ‖vn ·G].
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Bounded Distributions. The following definitions and corollaries, taken from
[BV16], will allow us to properly set the parameters of our scheme.

Definition 5. A distribution χ supported over Z is (B, ε)-bounded if
Pr

x
$←χ

[|x| > B] < ε.

Definition 6. A distribution χ̃ supported over Z is (B, ε)-swallowing if for all
y ∈ [−B,B] ∩ Z it holds that χ̃ and y + χ̃ are within ε statistical distance.

Corollary 4. For every B, ε, δ there exists an efficiently sampleable distribution
that is both (B, ε)-swallowing and (B · √log (1/δ)/ε,O(δ))-bounded.

Definition 7. A distribution χ̃ supported over Z is (χ, ε)-swallowing, for a dis-
tribution χ, if it holds that χ̃ and χ+ χ̃ are within ε statistical distance. We omit
the ε when it indicates a negligible function in a security parameter that is clear
from the context.

Corollary 5. Let B(λ) be some function and let B̃(λ) = B(λ) ·λω(1), then there
exists an efficiently sampleable ensemble {χ̃λ}λ such that χ̃ is χ-swallowing for
any B(λ)-bounded {χλ}λ, and also B̃(λ)-bounded.

Learning With Errors. The Learning with Errors (LWE) problem was introduced
by Regev [Reg05]. In this work we will use its decisional version.

Definition 8 (Decisional LWE (DLWE) [Reg05] and its HNF [ACPS09]).
Let λ be the security parameter, n = n(λ) and q = q(λ) be integers and let
χ = χ(λ) be a probability distribution over Z. The DLWEn,q,χ problem states
that for all m = poly(n), letting A ← Z

n×m
q , s ← Z

n
q , e ← χm, and u ← Z

m
q , it

holds that
(
A, sA + e

)
and

(
A,u

)
are computationally indistinguishable.

In this work we only consider the case where q ≤ 2n. Recall that GapSVPγ

is the (promise) problem of distinguishing, given a basis for a lattice and a
parameter d, between the case where the lattice has a vector shorter than d,
and the case where the lattice doesn’t have any vector shorter than γ · d. SIVP
is the search problem of finding a set of “short” vectors. The best known algo-
rithms for GapSVPγ ([Sch87]) require at least 2Ω̃(n/ log γ) time. We refer the
reader to [Reg05,Pei09] for more information. The following corollary allows us
to appropriately choose the LWE parameters for our scheme according to known
reductions from GapSVPγ and SIVPγ to DLWEn,q,χ.

Corollary 6 ([Reg05,Pei09,MM11,MP12,BLP+13]). For all ε > 0 there exists
functions q = q(n) ≤ 2n, χ = χ(n) such that χ is B-bounded for some B = B(n),
q/B ≥ 2nε

and such that DLWEn,q,χ is at least as hard as the classical hardness
of GapSVPγ and the quantum hardness of SIVPγ for γ = 2Ω(nε).
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3 Conforming cPRF

Our ABE construction in the next section instantiates a constrained PRF that
has to satisfy some special properties, gathered under the following definition.

Definition 9 (Conforming cPRF). A cPRF scheme is conforming if, in
addition to the correctness and single-key adaptive security properties (see Defi-
nition 2), the following holds.

Gradual Evaluation. The algorithm Constrain (in addition to Eval,ConstrainEval)
is deterministic and the following holds. For any fixing of pp ← Setup(1λ), f ∈ F
and x ∈ {0, 1}� for which f(x) = 1, define the following circuits:

– Uσ→x : {0, 1}λ → {0, 1}k takes as input msk and computes Evalmsk(x).
– Uσ→f : {0, 1}λ → {0, 1}�f takes as input msk and computes Constrainmsk(f).
– Uf→x : {0, 1}�f → {0, 1}k takes as input skf and computes

ConstrainEvalskf
(x).

We require that for all pp, f, x as defined above, the circuit Uσ→x and the effective
sub-circuit of Uf→x ◦ Uσ→f are the same. That is, the description of Uσ→x as
a sequence of gates is identical to the sequence of gates that go from the input
wires to the output wires of the circuit Uf→x ◦ Uσ→f .

Key Simulation. We require a ppt algorithm KeySimpp(f) → skf such that any
ppt adversary A has at most 1/2+negl(λ) probability to win the following game
against a challenger C.

– Initialization: C generates (pp,msk) ← Setup(1λ) and sends pp to A.
– Evaluation Queries I: A makes (possibly multiple) queries. In each query it

sends a bit-string x ∈ {0, 1}� and C returns rx ← Evalmsk(x).
– Challenge Phase: A sends the challenge constraint f∗ ∈ F . C uniformly sam-

ples b
$← {0, 1}. If b = 0 then C returns skf∗ ← Constrainmsk(f), otherwise it

returns skf∗ ← KeySimpp(f).
– Evaluation Queries II: same as the first queries phase.
– End of Game: A outputs a bit b′.

A wins the game if (1) b′ = b and (2) all of the evaluation queries x are such
that f∗(x) = 0.

Remark 1. The requirement for a deterministic Constrain algorithm is for sim-
plicity of exposition and since in our construction this requirement holds trivially.
We note, however, that our ABE scheme can be extended to support a random-
ized Constrain algorithm. Alternatively, any cPRF scheme with a randomized
Constrain algorithm can be converted to one with a deterministic algorithm by
generating the randomness with an additional standard PRF.
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Example. The [GGM86] PRF is a conforming cPRF for prefix policies. Gradual
evaluation holds since for any x ∈ {0, 1}� and any length-t prefix f ∈ {0, 1}t, it
holds that Uσ→x(·) = Gx�

(· · · Gx2(Gx1(·))) while Uσ→f (·) = Gft
(· · · Gf2(Gf1(·)))

and Uf→x(·) = Gx�
(· · · Gxt+2(Gxt+1(·))). Key simulation holds since a con-

strained key for f is indistinguishable from uniform to any adversary that cannot
query for evaluations on points accepted by f .

3.1 Construction for t-CNF Policies

We now describe our single key construction for the function class F consisting of
CNF formulas where each clause depends on t bits of the input (see Definition 4).
Our construction is inspired by the [DKNY18] construction of bit-fixing cPRF
for a constant number of keys. In fact, their technique can be generalized to
instantiate a family of cPRF schemes with a tradeoff between the CNF locality
of the supported policies and the number of keys. They instantiate it with CNF
locality 1 (i.e. bit-fixing) and t keys, while we instantiate it with CNF locality t
and a single key.

Let (P.Setup,P.Eval) be a (standard) PRF (Definition 1), let t ≤ � be a fixed
constant and let S denote the set of all (T, v) pairs where T ⊆ [�], |T | = t and
v ∈ {0, 1}t.

– Setup(1λ): Sample and output (pp,msk) ← P.Setup(1λ).
– Eval(msk, x): Let Sx ⊆ S denote the set of all (T, v) ∈ S pairs that “agree”

with x, that is, Sx = {(T, xT ) ∈ S} where xT is the length-t bit-string
consisting of the bits of x in the indices T . For all (T, v) ∈ Sx compute
skT,v ← P.Evalmsk(T‖v). Output

rx =
⊕

(T,v)∈Sx

P.EvalskT,v
(x) . (4)

– Constrainmsk(f): Parse f as a set of clauses f = {(Ti, fi)} and recall that for
all i, Ti ⊆ [�], |Ti| = t and fi : {0, 1}t → {0, 1}. For any clause (Ti, fi) ∈ f let
Sf

i ⊆ S be the set of all (T, v) ∈ S pairs that “agree” with (Ti, fi), that is,

Sf
i = {(Ti, v) ∈ S : fi(v) = 1} .

Moreover, let Sf
rest ⊆ S be the set of all (T, v) ∈ S pairs such that f does not

have a clause respective to T . That is,

Sf
rest = {(T, v) ∈ S : ∀i Ti �= T} .

Finally let Sf = Sf
rest ∪ ⋃

(Ti,fi)∈f Sf
i . For all (T, v) ∈ Sf compute skT,v ←

P.Evalmsk(T‖v). Output skf = {skT,v}(T,v)∈Sf
.

– Evalskf
(x): If f(x) = 0 then abort, o.w. note that Sx ⊆ Sf and compute rx

as in Eq. (4).
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Correctness. Fix x ∈ {0, 1}� and f ∈ F for which f(x) = 1. It is enough to
prove that Sx ⊆ Sf . Note that Sx = {(T, xT ) ∈ S} and parse f = {(Ti, fi)}.
For each (T, xT ) ∈ Sx consider two options. If f has a clause respective to T ,
i.e. there exists i such that Ti = T , then since f(x) =

∧
fi(xTi

) and f(x) = 1,
it also holds that fi(xTi

) = 1, and therefore (T, xT ) = (Ti, xTi
) ∈ Sf

i ⊆ Sf .
Otherwise, f does not have a clause respective to T , i.e. ∀i Ti �= T , and therefore
(T, xT ) ∈ Sf

rest ⊆ Sf .

Single-Key Adaptive Security. We sketch here the proof, which follows similar
lines to [DKNY18]. Consider the single-key adaptive security game and let x∗

and f be the challenge query and (single) key query respectively. It is guaranteed
by the game that f(x∗) = 0, therefore there exists at least one clause (Ti, fi) ∈ f
such that fi(x∗

Ti
) = 0 and therefore (Ti, x

∗
Ti

) /∈ Sf .
In the simulated security game, the challenger guesses the value (Ti, x

∗
Ti

) at
the beginning of the game by sampling a random pair (T ′, v′) $← S. When a key
for f is queried, if there is no clause (Ti, fi) ∈ f such that Ti = T ′ and fi(v′) = 0,
then the challenger aborts. When a challenge for x∗ is queried, if x∗

T ′ �= v′

then the challenger aborts. Since there must exist an element (T ′, v′) ∈ S that
does not cause an abort, and since (T ′, v′) is chosen uniformly from S where
|S| = O((2�)t), there is a significant probability 1/O((2�)t) that the challenger
does not abort when t is constant.

If the challenger does not abort, it replaces the element EvalskT ′,v′ (x∗) in the
challenge ciphertext with a uniform bit-string. This is indistinguishable by the
pseudorandomness of P (respective to the key skT ′,v′) and since the challenger
does not have to provide skT ′,v′ in the constrained key. At this point the challenge
ciphertext is completely uniform, which completes the proof.

Gradual Evaluation. Fix x ∈ {0, 1}� and f ∈ F for which f(x) = 1 and note that
Sx ⊆ Sf . The circuit Uσ→x(·) can be divided to two layers, where the first layer
computes skx = {skT,xT

}(T,xT )∈Sx
and the second layer computes rx from skx.

Moreover, letting U∗
f→x ◦ U∗

σ→f denote the effective sub-circuit of Uf→x ◦ Uσ→f

(see Definition 9), it holds that U∗
σ→f (resp. U∗

f→x) is exactly the first (resp.
second) layer of Uσ→x(·).

Key Simulation. The simulator KeySim(f) simply samples all of the compo-
nents skf = {skT,v}(T,v)∈Sf

uniformly. We sketch now the indistinguishability
proof, which goes via a sequence of hybrids H0, . . . ,HQ,HQ+1 where Q is the
number of evaluation queries made by A. For i = 0 . . . Q, in hybrid Hi the chal-
lenger answers the first i evaluation queries with uniformly sampled values and
answers the challenge key query as in the real game. In hybrid HQ+1, the chal-
lenger answers all of the evaluation queries uniformly and answers the challenge
key query with KeySim(f∗) regardless of the value of b. Note that hybrid H0 is
identical to the key simulation game and that in hybrid HQ+1 the adversary wins
the game with probability 1/2. For all i = 1 . . . Q, the indistinguishability of Hi

and Hi−1 follows from the single-key adaptive security of the scheme. Lastly, in
hybrid HQ the components of the key challenge skf = {skT,v}(T,v)∈Sf

are either
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uniform (if b = 1) or from the distribution {sk(T,v) ← P.Evalmsk(T, v)}(T,v)∈Sf

(if b = 0), while in HQ+1 they are always uniform. Those hybrids are indistin-
guishable by the pseudorandomness of P and since |Sf | ∈ poly(λ).

4 Fully Secure ABE from Conforming cPRF

4.1 The Construction

We now construct a ciphertext-policy ABE scheme for a function class F from
a conforming cPRF (Definition 9) for F . Our construction has adaptive security
under the LWE assumption, and assuming that the underlying cPRF maintains
single-key adaptive security.

Let P = (P.Setup,P.Eval,P.Constrain,P.ConstrainEval) be a conforming cPRF
for a class family F with input length � and output length k. W.l.o.g. assume
that the master secret key length of P is λ. For all f ∈ F let �f denote the size
of a constrained key for the function f . Note that �f is constant and is efficiently
computable given f and the description of P.Constrain. Let Uσ→x, Uσ→f and
Uf→x be the circuits as in Definition 9. Define ABE = (Setup,Enc,KeyGen,Dec)
as follows.

– Setup(1λ): Sample (P.msk,P.pp) ← P.Setup(1λ) and denote σ = P.msk. Fix
the parameters n, q,m′, τ, χ, χ̃ as explained below and let m = n	log q
.
Sample a matrix with its trapdoor (B,B−1

τ0 ) ← TrapGen(1n,m′, q). Sam-
ple uniformly a matrix A $← Z

n×m·λ
q and a vector v $← Z

n
q . Output

pp = (B,A,v,P.pp) and msk = (B−1
τ0 , σ).

– Encpp(f, μ): Sample skf ← P.KeySimP.pp(f) and denote sf = skf . Sample
s $← Z

n
q , e0

$← χm, e1
$← χ̃m·�f , e2

$← χ, and output ct = (sf ,u0,u1, u2) such
that

u0 = sTB+eT
0 , u1 = sT [Af −sf ⊗G]+eT

1 , u2 = sTv+e2+μ�q/2
 ,

where Af = AHσ→f for Hσ→f ← EvalF(Uσ→f ,A).
– KeyGenmsk(x): Compute the matrix Hσ→x ← EvalF(Uσ→x,A) and denote

Ax = AHσ→x. Compute r ← P.Evalσ(x) and let Ir : {0, 1}k → {0, 1} be the
function that on input r′ returns 1 if and only if r = r′3. Compute Hr ←
EvalF(Ir,Ax), denote Ax,r = AxHr and use B−1

τ0 to compute [B‖Ax,r]−1
τ .

Sample k ← [B‖Ax,r]−1
τ (v) and output skx = (r,k).

– Decskx
(ct, f): Parse skx = (r,k) and ct = (sf ,u0,u1, u2). Compute r′ ←

Uf→x(sf ) and if r = r′ then abort. Otherwise, compute Af and Ax as in
Enc,KeyGen respectively, then compute

Ĥsf →r′ ← EvalFX(Uf→x, sf ,Af ) and Ĥr,r′ ← EvalFX(Ir, r
′,Ax) .

Lastly, compute u = u2 − [u0‖u1Ĥsf →r′Ĥr,r′ ]k and output 1 if and only if
|u| ≥ q/4.

3 Previous works used an ABE definition where the decryption succeeds conditioned
on f(x) = 0, while we require that f(x) = 1. Note that in our scheme the decryption
succeeds conditioned on f(x) = 1 ∧ r �= r′, i.e. f(x) = 1 ∧ Ir(r

′) = 0.
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Choice of Parameters. We set the parameters according to constraints that rise
up in the security and correctness analysis. Choose k = λ, let d = poly(λ) denote
the depth of Uσ→x and note that since P is gradual the depths of Uσ→f , Uf→x

are bounded by d. Choose n ≥ λ such that (2n2)2d+4 ≤ 2nε

, where ε ∈ (0, 1) is a
security/efficiency tradeoff parameter. Note that n ≤ dO(1/ε) which is polynomial
in λ for any constant ε. Moreover, E′ ≤ 2nε

where E′ is as defined in Eq. (5).
Choose q,B, χ according to Corollary 6 and note that q/B ≥ 2nε

and that χ is
B-bounded. Choose m′ = (n+1)	log q
+2λ and τ = max{τ0, τ

′}, where τ0 is as
in Corollary 1 and τ ′ is as in Eq. (6). Set χ̃ to be a B′-swallowing distribution,
where B′ = (m′ + m)λB(2m)d. By Corollary 5, χ̃ can be chosen such that it is
B̃-bounded for some B̃ ∈ O(B′, λ).

4.2 Correctness

Lemma 1. If P be a conforming cPRF for a class family F as per Definition
9, then ABE is a correct ciphertext policy attribute-based encryption scheme as
per Definition 3 for the class family F .

Proof. Fix μ ∈ {0, 1}, (pp,msk) ← Setup(1λ), f ∈ F and x ∈ {0, 1}� such
that f(x) = 1. Consider ct ← Enc(f, μ) and skx ← KeyGenmsk(x), and parse
skx = (r,k) and ct = (sf ,u0,u1, u2). Consider the execution of Decskx

(ct, f).
We first prove that with all but negligible probability r �= r′ via a

reduction to the pseudorandomness game of P. Recall that r′ is computed
as P.ConstrainEvalsk′

f
(x) where sk′

f ← P.KeySim(f), while r is computed as
P.Evalmsk(x). Consider an adversary A in the pseudorandomness game of P
as follows. Upon receiving P.pp, it computes sk′

f ← P.KeySim(f) and then
r′
x ← P.ConstrainEvalsk′

f
(x). It then requests for a challenge on x, and upon

receiving the challenge r∗
x it outputs 1 if and only if r∗

x = r′
x. The advantage of

A is at least Pr[r = r′] and therefore if P is pseudorandom then Pr[r = r′] is
negligible.

We now prove that if r �= r′ then the decryption succeeds with all but negli-
gible probability. Denote Hf→x = EvalF(Uf→x,Af ). Since P has gradual evalu-
ation (see Definition 9), the effective sub-circuit of Uf→x ◦ Uσ→f and the circuit
Uσ→x are identical. By Theorem 2 it follows that Hσ→fHf→x = Hσ→x, and
therefore AfHf→x = AHσ→fHf→x = AHσ→x = Ax.

By applying Theorem 2 on (Hf→x, Ĥsf →r′) and (Hr, Ĥr,r′), we get respec-
tively

[Af − sf ⊗ G] Ĥsf →r′ = AfHf→x − Uf→x(sf ) ⊗ G = Ax − r′ ⊗ G

and
[Ax − r′ ⊗ G] Ĥr,r′ = AxHr − Ir(r′)G = Ax,r
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where the last equation holds since r �= r′ and thus Ir(r′) = 0. Therefore,

u1
̂Hsf →r′ ̂Hr,r′ =

(

sT [Af − sf ⊗ G] + eT
1

)

̂Hsf →r′ ̂Hr,r′

= sT [Af − sf ⊗ G] ̂Hsf →r′ ̂Hr,r′ + e′
1 where e′

1 = eT
1

̂Hsf →r′ ̂Hr,r′

= sT [Ax − r′ ⊗ G] ̂Hr,r′ + e′
1

= sTAx,r + e′
1 .

Hence,

u2 − [u0‖u1Ĥsf →r′Ĥr,r′ ]k = sTv + e2 + μ�q/2
 − sT [B‖Ax,r]k − [eT
0 ‖e′

1]k

= μ�q/2
 + e2 − [eT
0 ‖e′

1]k .

Note that

‖e′
1‖∞ ≤ m2�fk

∥
∥eT

1

∥
∥

∞

∥
∥
∥Ĥsf →r′

∥
∥
∥

∞

∥
∥
∥Ĥr,r′

∥
∥
∥

∞
≤ m2�fkB̃(2m)dConEv+1

and that by the properties of discrete Gaussians, ‖k‖∞ ≤ τ
√

m′ + m with all
but 2−(m′+m) = negl(λ) probability.

Therefore, if m′, k, �f ∈ O(n, 	log q
), B̃ ∈ O(B,n) and τ ∈
O

(
k, λ, (2m)d+3

)
, then with all but negligible probability

∣
∣e2 − [eT

0 ‖e′
1]k

∣
∣ ≤ |e2| + (m′ ∥∥eT

0

∥
∥

∞ + m ‖e′
1‖∞) · ‖k‖∞

≤ B + (m′B + m3�fkB̃(2m)dConEv+1)τ
√

m′ + m

≤ B · poly(n, 	log q
) · (2m)dConEv+d+4 .

Denoting
E = B · poly(n, 	log q
) · (2m)dConEv+d+4

and

E′ = 4E/B = 4 · poly(n, 	log q
) · (2m)dConEv+d+4 , (5)

by our choice of parameters E′ is bounded by q/B, and therefore E = BE′/4 is
bounded by q/4. Therefore, if μ = 0 then |u| ≤ q/4 and if μ = 1 then |u| > q/4.

4.3 Security

Lemma 2. If P be a conforming cPRF for a class family F as per Definition
9, then ABE is a secure ciphertext policy attribute-based encryption scheme as
per Definition 3 for the class family F under the DLWEn,q,χ assumption.

Proof. We prove via a sequence of hybrids.

Hybrid H0. This is the adaptive security game from Definition 3.

Hybrid H1. We change the way C answers the challenge query f∗. Instead of
computing sf ← P.KeySimP.pp(f∗), it computes sf ← P.Constrainσ(f∗). Note
that now sf = Uσ→f (σ).
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We show computational indistinguishability via a reduction to the key simu-
lation game of P (see Definition 9). Let AP be an adversary in the key simulation
game. It operates as the challenger in the ABE security game as follows. For every
key query x sent by A, AP queries the P challenger for an evaluation over the
input x and proceeds with computing the ABE key for x as in the scheme. Note
that it is guaranteed by the ABE game that f∗(x) = 0 and therefore this query
is valid in the P game. When A asks for the challenge ciphertext, AP asks for
the challenge constrained key sk′

f and proceeds with the encryption algorithm
as in the scheme. Any advantage of A at distinguishing between those hybrids
translates to identical advantage of AP in the key simulation game.

Hybrid H2. We change the way C generates the matrix A as follows. It sam-
ples uniformly a matrix R $← {0, 1}m′×m·λ and sets A = BR + σ ⊗ G.
Indistinguishability follows from the extended leftover hash lemma, since m′ ≥
(n + 1)	log q
 + 2λ and B is statistically-close to uniform by Corollary 1.

Hybrid H3. We change again the way C answers the challenge query f∗, specifi-
cally the way it generates u1. Note that now

Af − sf ⊗ G = AHσ→f − Uσ→f (σ) ⊗ G

= [A − σ ⊗ G] ̂Hmsk→sf
where ̂Hmsk→sf

← EvalFX(Uσ→f , σ,A)

= BR ̂Hmsk→sf
.

The values u0 and u2 will be generated as before, by sampling s $← Z
n
q , e0

$← χm,

e2
$← χ and computing u0 = sTB + eT

0 and u2 = sTv + e2 + μ�q/2
.
Recall that previously u1 was computed as u1 = sT [Af −sf ⊗G]+eT

1 , where
e1

$← χ̃m·�f . In this hybrid, it will be computed as u1 = u0RĤmsk→sf
+eT

1 . Note
that now

u1 = u0RĤmsk→sf
+ eT

1

= (sTB + eT
0 )RĤmsk→sf

+ eT
1

= sT [Af − sf ⊗ G] + eT
0 RĤmsk→sf

+ eT
1

and that B′ =
∥
∥
∥eT

0 RĤmsk→sf

∥
∥
∥

∞
≤ (m′ + m)λ

∥
∥eT

0

∥
∥

∞ ‖R‖∞
∥
∥
∥Ĥmsk→sf

∥
∥
∥

∞
≤

(m′ + m)λB(2m)dCon , where dCon is the depth of Uσ→f . Therefore, if χ̃ is B′-
swallowing then this change is statistically indistinguishable.

Hybrid H4. We change the way C answers key queries. Let x be a query and fix
r ← P.Evalσ(x) and Ĥmsk→r ← EvalFX(Uσ→x, σ,A). Note that

[A − σ ⊗ G] ̂Hmsk→r = AHσ→x − r ⊗ G

= Ax − r ⊗ G where ̂Hmsk→r ← EvalFX(Uσ→x, σ,A) ,

and since Ir(r) = 1,

[Ax − r ⊗ G]̂Hr,r = AxHr − Ir(r)G = Ax,r − G where ̂Hr,r ← EvalFX(Ir, r,Ax) .
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Therefore, since A − σ ⊗ G = BR it holds that BRĤmsk→rĤr,r = Ax,r − G
and hence

[B‖Ax,r] = [B‖BRĤmsk→rĤr,r + G] .

Note that
∥
∥
∥RĤmsk→rĤr,r

∥
∥
∥

∞
≤ m2kλ ‖R‖∞

∥
∥
∥Ĥmsk→r

∥
∥
∥

∞

∥
∥
∥Ĥr,r

∥
∥
∥

∞
≤ m2kλ(2m)d+1 ,

and that Corollary 3, given B and RĤmsk→rĤr,r it is efficient to compute
[B‖Ax,r]−1

τ ′ for some

τ ′ = O
(∥
∥
∥RĤmsk→rĤr,r

∥
∥
∥

∞

)
= O

(
k, λ, (2m)d+3

)
. (6)

Therefore, if τ ≥ τ ′ then C can now sample from [B‖Ax,r]−1
τ (v) without B−1

τ0 .
The distribution remains identical to the previous hybrid.

Hybrid H5. We change the way B is generated. Instead of sampling it via
TrapGen, sample uniformly B $← Z

n×m
q . By Corollary 1 this change is statis-

tically indistinguishable.

Hybrid H6. We change again the way C answers the challenge query. It now
samples uniformly u0

$← Z
m′
q and u2

$← Zq. This change is computationally
indistinguishable under the DLWEn,q,χ assumption. At this step the challenge
completely hides b and so A has no advantage.

Acknowledgements. We thank Sina Shiehian for pointing out that the construction
in Sect. 4 can be initialized with a polynomial modulus q whenever the depth of the
conforming cPRF is logarithmic, which in turn implies that a low-depth PRF from
LWE with a polynomial modulus suffices to derive an ABE construction for t-CNF
with similar parameters.
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Abstract. We finally close the long-standing problem of constructing a
noninteractive zero-knowledge (NIZK) proof system for any NP language
with security based on the plainLearningWithErrors (LWE)problem, and
thereby on worst-case lattice problems. Our proof system instantiates the
framework recently developed by Canetti et al. [EUROCRYPT’18], Holm-
gren and Lombardi [FOCS’18], and Canetti et al. [STOC’19] for soundly
applying the Fiat–Shamir transform using a hash function family that is
correlation intractable for a suitable class of relations. Previously, such
hash families were based either on “exotic” assumptions (e.g., indistin-
guishability obfuscation or optimal hardness of certain LWE variants) or,
more recently, on the existence of circularly secure fully homomorphic
encryption (FHE). However, none of these assumptions are known to be
implied by plain LWE or worst-case hardness.

Our main technical contribution is a hash family that is correlation
intractable for arbitrary size-S circuits, for any polynomially bounded S,
based on plain LWE (with small polynomial approximation factors). The
construction combines two novel ingredients: a correlation-intractable
hash family for log-depth circuits based on LWE (or even the potentially
harder Short Integer Solution problem), and a “bootstrapping” trans-
form that uses (leveled) FHE to promote correlation intractability for
the FHE decryption circuit to arbitrary (bounded) circuits. Our con-
struction can be instantiated in two possible “modes,” yielding a NIZK
that is either computationally sound and statistically zero knowledge in
the common random string model, or vice-versa in the common reference
string model.

1 Introduction

A zero-knowledge (ZK) proof system [27] is a protocol by which a prover can
convince a verifier that a particular statement is true, while revealing nothing
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more than that fact. Such a system is noninteractive [8] (NIZK) if both par-
ties have access to some common string (e.g., a public source of randomness),
and the prover just sends a single message to the verifier. In the three decades
since the introduction of NIZK, several works have constructed such protocols
for arbitrary NP languages based on various cryptographic structures (such as
quadratic residuosity, bilinear pairings, and code obfuscation) [9,20,26,29,43],
and used them in a variety of important cryptographic settings, like encryption
that withstands chosen-ciphertext attacks [9,36], digital signatures [6], ZAPs [19]
cryptocurrencies [7], and low-interaction protocols in general.

In recent years, cryptography based on lattices has seen enormous growth.
Among its attractions are apparent resistance to quantum attacks, advanced func-
tionality like fully homomorphic encryption (FHE) [23], and strong theoretical
guarantees like security under worst-case hardness assumptions, usually via the
well-known Short Integer Solution (SIS) [1] and Learning With Errors (LWE)
problems [42]. Yet while (non-)interactive zero-knowledge protocols for specific
lattice problems have been known for some time [2,18,35,39], the goal of obtaining
NIZK for general NP languages based on standard, worst-case lattice assumptions
(which was explicitly posed in [39]) has frustratingly remained out of reach. The
past year has seen impressive progress toward this goal [15,16,32], but the current
constructions either satisfy a relaxed notion of NIZK or are based on assumptions
that are not yet known to be implied by LWE or worst-case hardness.

More specifically, a fascinating recent line of research [15,16,30,31] develops
a framework for instantiating the Fiat–Shamir transform [21], which removes
interaction from a public-coin protocol by replacing each random verifier mes-
sage with a hash of the transcript so far. In particular, these works show that if
the hash function satisfies a property called correlation intractability [17], then
the Fiat–Shamir transform can be applied soundly to many interactive proto-
cols, including some zero-knowledge ones. Roughly speaking, a hash family H is
correlation intractable for a relation R if, given a hash key k, it is hard to find
an input-output pair (x,Hk(x)) ∈ R. In the context of Fiat–Shamir, this ensures
that a cheating prover cannot find a message that hashes to a verifier message
that admits an accepting transcript.

The works [15,16,30] construct correlation-intractable hash functions for var-
ious sparse relations, and use them to soundly instantiate the Fiat–Shamir trans-
form, obtaining NIZK proofs for all of NP (among other results). Of particular
interest is the beautiful work of [15], which shows that for this purpose, it suf-
fices to have correlation intractability for arbitrary (bounded) polynomial-time
computations, i.e., for the special class of efficiently searchable relations. These
are relations where each input has at most a single output (witness) that is
computable within some desired polynomial time bound.

The hash families constructed in [15,16] are proved to be correlation
intractable under various lattice-related assumptions. However, these assump-
tions are somehow non-standard, involving either “optimal hardness” (e.g., of
LWE with uniform error in an interval) against polynomial-time attacks [15,16],
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or the existence of circularly secure FHE [15]. Although the latter assumption
seems tantalizingly close to plain LWE (and remains the only known way of
obtaining FHE that supports unbounded, as opposed to just leveled, homomor-
phic computations), none of these assumptions are known to be supported by the
hardness of LWE, nor the conjectured worst-case hardness of lattice problems.

1.1 Contributions

Our main result is a noninteractive zero-knowledge proof system for any NP
language, based on the plain LWE problem with (small) polynomial approxima-
tion factors. This finally closes (following much recent progress) the central open
problem of basing NIZK for NP on worst-case lattice assumptions. Our system
instantiates the NIZK framework recently developed in [15,16], but with a new
primary ingredient: a correlation-intractable hash family for arbitrary size-S cir-
cuits (i.e., relations searchable in size S), for any desired S = poly(λ), based on
plain LWE with small polynomial factors.

Just like the correlation-intractable hash family constructed in [15], ours also
can be instantiated in two “intractability modes,” computational and statistical,
by constructing the hash key in one of two computationally indistinguishable
ways. In the statistical mode, input-output pairs that satisfy the relation simply
do not exist (so obviously one cannot be found); in the computational mode,
the hash key is uniformly random and security can be based merely on SIS, a
potentially harder problem for which we have even stronger worst-case hardness
theorems than for LWE. In either case, this is the first known construction
of CI hash families for “rich” functions from plain LWE/SIS, or any worst-case
lattice assumption. As shown in [15], the choice of intractability mode determines
the precise properties of the NIZK system: the computational mode yields a
statistically zero knowledge, (selectively) computationally sound (i.e., argument)
system in the common random string model, while the statistical mode yields
a computationally zero knowledge, statistically sound (i.e., proof) system in the
common reference string model.

Our correlation-intractable hash family for bounded circuits is obtained by
combining two new ingredients that are interesting in their own right:

1. a correlation-intractable hash family for bounded circuits based on plain
SIS/LWE, where in particular for log-depth circuits the associated approx-
imation factor is a (small) polynomial ; and

2. a “bootstrapping” transform that uses (leveled) fully homomorphic encryp-
tion to promote CI for the FHE decryption circuit to CI for arbitrary bounded
circuits. (This transformation is inspired by other bootstrapping techniques
for code obfuscation [22], and is in some sense dual to Gentry’s bootstrapping
technique for FHE [23].)

In particular, a suitable FHE scheme having log-depth decryption can be instan-
tiated based on plain LWE with small polynomial factors [3,13], which yields
our ultimate LWE-based CI hash family.
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1.2 Techniques

Here we summarize the main ideas and techniques underlying our constructions.

Bootstrapping Correlation Intractability. In Sect. 4 we give a generic
transform that uses (leveled) fully homomorphic encryption to convert a
correlation-intractable hash family for “simple” relations related to the FHE
decryption function, into one for complex relations induced by circuits of any
size S. For simplicity, here we focus on correlation intractability for functions f ,
i.e., for searchable relations Rf = {(x, f(x))}, but everything easily generalizes
to more general relations.

Let FHE = (Gen,Enc,Dec,Eval) denote a (symmetric-key) fully homomor-
phic encryption scheme.1 Let CIH = (Gen,Hash) denote a hash family that is
correlation intractable for the class {Decsk(·)} of FHE decryption functions,
taken over all valid “hard-wired” secret keys. We define a new hash family
CIH′ = (Gen′,Hash′) for circuits of size S as follows:

– Gen′(1λ) generates a CIH key k ← CIH.Gen(1λ), an FHE key pair (sk, ek) ←
FHE.Gen(1λ), and a “dummy” ciphertext c ← Enc(sk, 0S). It outputs the
hash key k′ = (k, ek, c).

– Hash′(k′ = (k, ek, c), x) outputs Hash(k,Eval(ek, Ux, c)), where Ux(·) =
U(·, x) is a universal circuit for size-S circuits with x “hard-coded” in.

In words, Hash′ homomorphically evaluates an encrypted (dummy) circuit on
the input x, then hashes the resulting ciphertext using the underlying Hash
algorithm.

We now sketch why CIH′ is correlation intractable for any function f having
circuit size S. As a thought experiment, imagine replacing the “dummy” cipher-
text with c ← Enc(sk, f). By the security of the FHE scheme, this does not
noticeably change the probability that the adversary, given the key k′ = (k, ek, c),
can find an input x that violates correlation intractability of Hash′(k′, ·) for f ,
i.e.,

Hash′(k′, x) = Hash(k,Eval(ek, Ux, c)
︸ ︷︷ ︸

cx

) = f(x).

Suppose for the purpose of contradiction that the adversary is able to find such
an x. Then because cx is an FHE encryption of f(x) by construction, we have
Hash(k, cx) = f(x) = Decsk(cx). Therefore, we have found an input cx that
violates the correlation intractability of Hash(k, ·) for the function Decsk, which
is the desired contradiction.2

1 For simplicity, here we assume that FHE supports unbounded, not just leveled, homo-
morphic evaluation. Adapting the construction to leveled FHE is straightforward
because Eval is used only on circuits of bounded depth.

2 The reader might notice that the specific function Decsk is not fixed in advance,
but is instead chosen at random by the reduction. This is addressed in the non-
uniform setting by “fixing coins” for FHE.Gen that maximize the attacker’s success
probability, or in the uniform setting by adopting a security definition that lets the
adversary declare a (valid) target function before receiving the hash key.
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Correlation Intractability from SIS/LWE. In Sect. 3 we construct a public-
coin, correlation-intractable hash family for arbitrary functions of bounded cir-
cuit size based on plain SIS, with a complementary statistically intractable mode
based on LWE. Our construction works for arbitrary functions, and the circuit
size, depth, and output length induce corresponding SIS/LWE parameters. More
specifically, the dimension n grows linearly in the output length, and the approxi-
mation factor (and hence modulus q) grows exponentially with the depth and poly-
nomially with the size. Due to our bootstrapping transformation, the main param-
eterization of interest is log-depth circuits, for which the approximation factors can
be made (small) polynomials. In addition, for the NIZK application, log-depth cir-
cuits are sufficient even without using bootstrapping (see Remark 5).

Our construction is based upon the fully homomorphic commitment scheme
implicit in GSW homomorphic encryption [25], which was made explicit in sub-
sequent work on fully homomorphic signatures [28], and is inspired by the con-
struction based on circularly secure FHE from [15]. The construction works as
follows:

– A hash key is a commitment k = ̂D to a “dummy” circuit D of the desired
output length L and size S.

– To evaluate the hash function at an input x:

1. First, homomorphically evaluate a commitment ̂D(x) of D(x).
2. Then, homomorphically apply a certain special, public linear function G

from {0, 1}L to the SIS/LWE range Z

n
q , to get an “inert commitment”

cx = G(D(x)) that itself belongs to Z

n
q .

The name “inert,” and the different notation for it, reflect that it is a
different kind of commitment that (i) does not appear to support full
homomorphism, and (ii) hides a value from the same domain Z

n
q as the

commitment itself; this turns out to be central to the security argument.
3. Finally, output bin(cx), the binary representation (in {0, 1}L) of cx.

The special linear function G just needs to satisfy G(bin(u)) = u for all u ∈ Z

n
q .

(This implies that G is surjective, so the circuit output length L must be at least
n log q.) For example, G can map each of n groups of � = �lg q� bits to the mod-q
integers they represent in binary.3

Relation to [15]. We now summarize the main similarities and differences between
our construction and proof, and those based on circularly secure FHE from [15].
In [15], the hash key is an FHE encryption ̂D of a “dummy” circuit D, along with
an FHE encryption ̂sk of the secret decryption key sk; this is what requires the
circularity assumption. Our construction elides this second component, and since
it has no need for a decryption key at all, fully homomorphic commitment suffices.

3 Those familiar with the literature will recognize this as the linear transform induced
by the “gadget” matrix G.
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For hash evaluation, Step 1 is the same in both constructions, but then they
diverge. In [15], one uses ̂sk to homomorphically evaluate (the complement of)
the decryption circuit on ̂D(x), yielding the hash output y = Decsk(D(x)) ⊕ 1

∧

.
The security proof employs a clever diagonalization argument: using the FHE’s
security, it replaces ̂D in the hash key with ̂f for the function f of interest. This
makes it so that there does not exist any x that hashes to y = f(x). For if there
were, then by applying Decsk to both sides and by the FHE’s correctness, we
would get Decsk(y) = Decsk(f(x)) ⊕ 1 = Decsk(f(x)), a contradiction.

Our construction after Step 1 proceeds quite differently: it homomorphically
applies the special public function G : {0, 1}L → Z

n
q , which has a large range (not

just a single bit, as for FHE decryption), and just as importantly, it “collapses”
the result to an inert commitment G(D(x)) ∈ Z

n
q that lies in the same domain

as G(D(x)) ∈ Z

n
q itself. As we will see next, in the security proof this allows us

to directly compare the inert commitment to the value it hides, rather than only
reasoning about the latter (as in [15]).

Security. Security is argued as follows, where for the moment we focus on
the proof from SIS. Suppose that an adversary is able to violate correlation
intractability for some function f of size S and output length L, i.e., given a
hash key it finds an input x that hashes to f(x). By the (statistical) security of
the commitment scheme, the adversary has essentially the same probability of
succeeding if the hash key is a commitment ̂f to f . When it does succeed we
have bin(G(f(x))) = f(x), and so by applying G to both sides we get

G(f(x)) = G(f(x)) ∈ Z

n
q . (1)

To see why this yields an SIS solution, we need to understand the particu-
lar form of the commitments in a little more detail. All commitments are with
respect to a random SIS matrix A over Zq. The commitment scheme has the
property that, given the randomness used to form the original commitment ̂f , it
is possible to efficiently compute randomness that is consistent with the homo-
morphically evaluated commitment ̂f(x), and likewise for the inert commitment
cx = G(f(x)). Concretely, this derived randomness is a short integer vector r
such that

G(f(x)) = Ar + G(f(x)) (mod q).

But because G(f(x)) = G(f(x)) by Eq. (1), it follows that Ar = 0 ∈ Z

n
q .

Therefore, the short vector r is a solution to the SIS problem for the random
instance A, as desired. (We also need to ensure that r is nonzero; this is easily
done via standard techniques.)

To get statistical correlation intractability based on LWE, we need to slightly
tweak the construction, defining the hash function to evaluate an inert commit-
ment cx = G(D(x)) + �q/2	un, where un is the nth standard basis vector.4 For
a particular f of interest, we again replace the commitment to D with one to f .
4 With this change, the SIS-based proof still goes through, thanks to the technique

for ensuring that r �= 0.
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Then, to get a hash key for which an x that hashes to f(x) simply does not
exist, we switch A to be an LWE matrix whose bottom row bt is a noisy linear
combination of the others, i.e., bt = stA′ +et where A′ consists of the top n−1
rows of A and e is a “short” error vector; by the LWE assumption, this change
is unnoticeable by the attacker.5 Much like above, a hypothetical input x which
hashes to f(x) now yields Ar = −�q/2	un, which implies that A′r = 0 and
hence

−�q/2	 = bt · r = (stA′ + et)r = st(A′r) + et · r = 〈e, r〉 (mod q).

But because both e and r are relatively short, by taking q to be large enough
this equation simply cannot hold, hence no such x exists.

1.3 Discussion and Open Problems

We conclude this introduction with a few additional remarks about our construc-
tions and their implications, and list some open problems for further research.

Other applications. Our NIZK implies the first entirely LWE-based, standard-
model construction of an encryption scheme that is secure for key-dependent
messages and under chosen-ciphertext attacks (called KDM-CCA), by applying
the generic transform from [14] to the LWE-based KDM-CPA-secure construc-
tion from [4] and any of the known LWE-based IND-CCA-secure constructions
of, e.g., [33,37,41]. Just as in [15], our CI hash family also suffices for proving
that the parallelized quadratic residuosity protocol of [27] is not zero knowledge
(assuming that QR is not in BPP), but now under plain SIS/LWE assumptions
instead of circularly secure FHE.

Compact hashing. We emphasize that our CI hash family is non-compact : the
size of the hash key, and hence the evaluation time as well, grow with the descrip-
tion size S of the circuits for which it is correlation intractable. This property
is shared by all other prior constructions except those based on highly “exotic”
assumptions like indistinguishability obfuscation or optimal key-dependent mes-
sage security, e.g., [15,16,31]. A compact construction based on more standard
assumptions would be very interesting, and presumably quite powerful.

SIS versus LWE. Our SIS-based CI hash family works for circuits of any depth,
but is only supported by polynomial SIS factors for log-depth circuits. Dealing
with deeper circuits while retaining polynomial approximation factors requires
us to use our bootstrapping theorem with (leveled) FHE, which brings in the
LWE assumption. (In addition, the NIZK construction also uses LWE for lossy
encryption.) It is an interesting open problem to get a CI hash family for super-
logarithmic depth based on just SIS with polynomial factors.

5 This change also turns the fully homomorphic commitment scheme into the GSW
FHE scheme [25,28], but we do not need its decryption capability.
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Multi-theorem (statistical) zero knowledge. The zero-knowledge property of our
NIZK constructions holds for a single statement and proof. We can use the
generic “OR” trick from [20] to convert our single-theorem NIZK systems to
multi-theorem ones. However, the resulting NIZK systems are computational
zero knowledge, even if the original ones are statistical zero knowledge. There-
fore, an interesting open problem is to construct a noninteractive, multi-theorem,
statistical zero-knowledge system based on LWE. We note that such NIZK sys-
tems, having an even stricter perfect zero-knowledge property, can be constructed
from bilinear pairings [29].

Compact proofs. A final interesting open problem is to construct a noninterac-
tive statistical zero-knowledge argument system with compact proofs, i.e., with
proof size that is both asymptotically smaller than the size of the underlying
verifier circuit for the NP relation and only linear in the length of the witness.
Assuming leveled or unbounded FHE, such compact proofs having computational
zero knowledge exist [24]. In the construction based on leveled FHE (and hence
based only on LWE), the proof size exceeds the witness length by poly(λ, d),
where d is the depth of verifier circuit. Unbounded FHE yields proofs that are
longer than the witness by only an additive poly(λ) term.

2 Preliminaries

We denote column vectors by lower-case bold letters, e.g., a. We denote matrices
by upper-case bold letters, e.g., A. For integral vectors and matrices (i.e., those
over Z), we use the notation |r|, |R| to denote the maximum absolute value over
all the entries.

The Kronecker product A ⊗ B of two matrices (or vectors) A and B is
obtained by replacing each entry ai,j of A with the block ai,jB. This obeys the
mixed-product property: (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) for any matrices
A,B,C,D with compatible dimensions.

2.1 Noninteractive Zero Knowledge

Definition 1. Let R be a relation. A noninteractive proof system for R is a tuple
of PPT algorithms (Setup,Prove,Verify) having the following interfaces (where
1n, 1λ are implicit inputs to Prove, Verify):

– Setup(1n, 1λ), given a statement length n and a security parameter λ, outputs
a string σ.

– Prove(σ, x, w), given a string σ and a statement-witness pair (x,w) ∈ R,
outputs a proof π.

– Verify(σ, x, π), given a string σ, a statement x, and a proof π, either accepts
or rejects.

Definition 2. Let Π = (Setup,Prove,Verify) be a noninteractive proof system
for a relation R, and let L be the language defined by R. In this work we focus
on systems that satisfy some subset of the following properties:
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1. Completeness: for every (x,w) ∈ R and every λ ∈ N, Verify(σ, x, π)
accepts with probability 1, over the choice of σ ← Setup(1|x|, 1λ) and π ←
Prover(σ, x, w).

2. Common random string: Setup(1n, 1λ) simply outputs a uniformly random
string.

3. Statistical soundness: there exists a negligible function ν(λ) such that for any
n ∈ N,

Pr
σ←Setup(1n,1λ)

[∃(x, π∗) s.t. Verify(σ, x, π∗) accepts ∧ x /∈ L] ≤ ν(λ). (2)

4. Computational soundness: for every non-uniform polynomial-size “cheating”
prover P ∗ = {P ∗

λ} there exists a negligible function ν(λ) such that for any
n ∈ N and any x /∈ L,

Pr
σ←Setup(1n,1λ)

π∗ =P ∗
λ (σ,x)

[Verify(σ, x, π∗)] ≤ ν(λ). (3)

5. Statistical zero knowledge: there exists a PPT simulator S such that for every
(x,w) ∈ R the following two distribution ensembles are statistically indistin-
guishable:

{S(1λ, x)}λ

s≈ {(σ,Prover(σ, x, w)) : σ ← Setup(1|x|, 1λ)}λ. (4)

6. Adaptive (computational) zero knowledge: there exists a PPT simulator S =
(S1,S2) such that for every non-uniform polynomial-size “cheating” verifier
V ∗ = (V ∗

1 , V ∗
2 ), for every n ∈ N the probabilities

Pr[V ∗
2 (σ, x, π, ζ) = 1 ∧ (x ∈ L)]

in the following two experiments differ only by negl(λ):
– in the “real” experiment, σ ← Setup(1n, 1λ), (x,w, ζ) ← V ∗

1 (σ), π ←
Prove(σ, x, w);

– in the “simulation” experiment, (σ, τ) ← S1(1λ), (x,w, ζ) ← V ∗
1 (σ), π ←

S2(σ, x, τ).

2.2 Correlation Intractability

As in [15] we define efficiently searchable relations and recall the definitions of
correlation intractability, in their computational and statistical versions.

Definition 3. We say that a relation R ⊆ X ×Y is searchable in size S if there
exists a function f : X → Y that is implementable as a boolean circuit of size S,
such that if (x, y) ∈ R then y = f(x). (In other words, f(x) is the unique witness
for x, if such a witness exists.)



98 C. Peikert and S. Shiehian

Definition 4. Let R = {Rλ} be a relation class, i.e., a set of relations for
each λ. A hash function family (Gen,Hash) is correlation intractable (CI) for R
if for every non-uniform polynomial-size adversary A = {Aλ} there exists a
negligible function ν(λ) such that for every R ∈ Rλ

Pr
k←Gen(1λ)
x=Aλ(k)

[(x,Hash(k, x)) ∈ R] ≤ ν(λ). (5)

Definition 5. Let R = {Rλ} be a relation class. A hash function family
(Gen,Hash) with a fake-key generation algorithm StatGen is somewhere statisti-
cally correlation intractable for R if

1. StatGen(1λ, z), where z is an auxiliary input, outputs a key k,
2. there exists a negligible function ν(λ) and a class of auxiliary inputs Z = {Zλ}

such that
– the distribution ensembles {StatGen(1λ, zλ)} and {Gen(1λ)} are compu-

tationally indistinguishable for every sequence of zλ ∈ Zλ, and
– for every R ∈ Rλ there exists zR ∈ Zλ such that

Pr
k←StatGen(1λ,zR)

[∃x s.t. (x,Hash(k, x)) ∈ R] ≤ ν(λ). (6)

We call zR the intractability guarantee for R.

2.3 (Leveled) Fully Homomorphic Encryption

We recall the notion of leveled FHE from [23].

Definition 6. A leveled fully homomorphic encryption scheme is a tuple of
algorithms (Gen,Enc,Dec,Eval) with the following interfaces (we use only a
symmetric-key version, which is sufficient for our purposes):

– Gen(1λ, 1d) outputs a secret key sk and an evaluation key ek.
– Enc(sk,m ∈ {0, 1}∗), where m is a message, outputs a ciphertext c.
– Eval(C, c), where C is a boolean circuit of depth (at most) d, deterministically

outputs a ciphertext c′.
– Dec(sk, c) outputs a message (deterministically).

It should satisfy the following properties:

1. Completeness: For any circuit C of depth at most d and message m,
Dec(sk,Eval(C, c)) = C(m) with probability 1, over the random choice of
sk ← Gen(1λ, 1d) and c ← Enc(sk,m).

2. CPA security: for any sequence of message pairs {(m0,λ,m1,λ)}λ where
|m0,λ| = |m1,λ|, and any sequence {dλ}, the distribution ensembles

{Enc(sk,mb,λ) : sk ← Gen(1λ, 1dλ)}λ (7)

are computationally indistinguishable for b = 0, 1.
3. Compactness: the complexity of Dec is a fixed polynomial in λ alone. (This

implies that the output of Eval has a fixed polynomial size in λ alone, and
does not depend on the evaluated circuit or d.)
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2.4 Branching Programs

A width-w boolean permutation branching program BP of length L with input
space {0, 1}� consists of 2L permutations {πi,b : [w] → [w]}i∈[L],b∈{0,1} along with
an index-to-input map v : [L] → [�]. To compute the output of BP on an input
x ∈ {0, 1}� we first initialize a state variable st0 = 1. Then, for each i ∈ [L] we
set sti = πi,xv(i)(sti−1). Finally, if stL = 1 we output 1; otherwise, we output 0.
More generally, a branching program can have multi-bit output by just having
a separate branching program for each output bit; its length is the maximum
length of all the component programs.

Barrington’s theorem [5] states that every depth-d boolean circuit can be
efficiently converted into a width-5 permutation branching program of length
4d. In particular, any NC1 circuit can be converted into a polynomial-length,
constant-width permutation branching program.

2.5 Short Integer Solution and Learning with Errors

We recall the Short Integer Solution (SIS) and Learning With Errors (LWE)
problems, and their hardness based on worst-case lattice problems.

Definition 7. The SISn,m,q,β problem is: given a uniformly random matrix A ∈
Z

n×m
q , find a non-zero integral vector z ∈ Z

m such that A · z = 0 mod q and
‖z‖ ≤ β.

We sometimes drop the subscript m when it is an unspecified polynomial
in n and log q. When q ≥ β · Õ(

√
n), solving SISn,q,β is at least as hard as

approximating certain worst-case lattice problems on n-dimensional lattices to
within a β · Õ(

√
n) factor [34].

For a positive integer dimension n and modulus q, and an error distribution χ
over Z, the LWE distribution and decision problem are defined as follows. For an
s ∈ Z

n, the LWE distribution As,χ is sampled by choosing a uniformly random
a ← Z

n
q and an error term e ← χ, and outputting (a, b = 〈s,a〉 + e) ∈ Z

n+1
q .

If we have m such samples (ai, bi), we can gather them as a uniformly random
matrix A ∈ Z

n×m
q and vector bt = stA + et ∈ Z

m
q .

Definition 8. The LWEn,m,q,χ problem is to distinguish, with non-negligible
advantage, between m independent samples drawn from As,χ for a single s ← Z

n
q ,

and m uniformly random and independent samples over Z

n+1
q .

(As with SIS, we sometimes drop the subscript m.) A standard instantiation
of LWE is to let χ be a discrete Gaussian distribution over Z with parameter
r = 2

√
n. A sample drawn from this distribution has magnitude bounded by,

say, r
√

n = Θ(n) except with probability at most 2−n, and hence this tail of
the distribution can be entirely removed. For this parameterization, it is known
that LWE is at least as hard as quantumly approximating certain “short vec-
tor” problems on n-dimensional lattices, in the worst case, to within Õ(q

√
n)

factors [38,42]. Classical reductions are also known for different parameteriza-
tions [12,37]. It is also well-known folklore that for such parameters, LWEn,m,q,χ

reduces to SISn,m,q,β for every β ≤ q/r.
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2.6 Lattice Gadgets

Here we recall lattice “gadgets” [33] over Zq. For a positive integer modulus q,
let � = �lg q�. The “gadget” vector over Zq is defined as

gt = (1, 2, 4, . . . , 2�−1) ∈ Z

�
q. (8)

For every u ∈ Zq, there is an efficiently computable binary vector g−1[u] ∈
{0, 1}� such that 〈g,g−1[u]〉 = u (mod q). Specifically, g−1[u] corresponds to the
binary representation of the distinguished representative of u in {0, 1, . . . , q−1}.
We stress that g−1 : Zq → {0, 1}� is a function; its name reflects the essential
property 〈g,g−1[u]〉 = u.

For a dimension n, the gadget matrix is defined as

Gn = In ⊗ gt ∈ Z

n×m
q ,

where m = n�. We often drop the subscript n when it is clear from context.
Similarly to above, we define the function G−1 = (I ⊗ g−1) : Z

n
q → {0, 1}m,

which applies g−1 to each coordinate and appends the results. This has the
essential property, which is also reflective of the mixed-product property, that
for every u ∈ Z

n
q ,

G · G−1[u] = (I ⊗ gt) · (I ⊗ g−1)[u] = u.

2.7 Fully Homomorphic Commitments

Here we recall the relevant homomorphic properties of gadgets, some of
which were implicit in [25], and which were developed and exploited further
in [3,10,13,28]. We particularly focus on their application to fully homomorphic
commitments, as laid out in [28], and refer to that work for full details.

Let A ∈ Z

n×w
q be an arbitrary matrix for some dimension w. Let Ci =

ARi + xiG for some integral matrix Ri ∈ Z

w×m and scalar xi ∈ Zq for i = 1, 2.
We view Ci as a commitment (relative to A) to xi under randomness Ri. Observe
that these commitments satisfy the following homomorphic properties:

G − C1 = A(−R1) + (1 − x1)G
C+ := C1 + C2 = A(R1 + R2

︸ ︷︷ ︸

R+

) + (x1 + x2)G

C× := C1 · G−1[C2] = A(R1 · G−1[C2]) + x1G · G−1[AR2 + x2G]

= A(R1 · G−1[C2] + x1R2
︸ ︷︷ ︸

R×

) + x1x2G.

In words, G−C1,C+,C× are commitments to 1 − x1, x1 + x2, x1x2 under ran-
domness −R1,R+,R×, respectively. Moreover, if the original committed val-
ues xi and randomness Ri are “small” in norm, then so are the new values and
randomness (though they are somewhat larger), because G−1[C2] is small.
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In particular, if the original committed values xi ∈ {0, 1} are restricted to
bits, then the above homomorphic operations yield a complete set of logical gates
with which we can homomorphically evaluate any boolean circuit. For example,
we can implement NAND(x, y) = 1 − xy using the third equation, then the
first one. Of course, the size of the randomness in the final committed result
depends on the depth and size of the circuit. Similarly, as shown in [3,13], the
asymmetric factors applied to the commitment randomness R1 versus R2 in
R× can be exploited to implement other models of computation, like branching
programs, with tighter control over the magnitude of the derived randomness.
In particular, the magnitude can be limited to just polynomial in the length of
the branching program.

For our purposes, we need one more simple homomorphic property. Suppose
we have a commitment

C = AR + xt ⊗ G = AR + xt ⊗ In ⊗ gt

to a vector x ∈ Z

L
q . (Observe that the ith m-column chunk of C is Ci = ARi +

xiG ∈ Z

n×m
q , where Ri is the analogous chunk of R.) Any matrix M ∈ Z

n×L
q

can be “vectorized” as an m ∈ Z

nL
q , so that (xt ⊗ In) · m = Mx. Then

cM := C · G−1
Ln[m] = A(R · G−1

Ln[m]
︸ ︷︷ ︸

rM

) + (xt ⊗ In ⊗ gt) · (IL ⊗ In ⊗ g−t)[m]

= ArM + (xt ⊗ In) · m
= ArM + Mx ∈ Z

n
q .

We view cM as an “inert commitment” to Mx ∈ Z

n
q , under randomness rM,

which is small if R is small. (We call it an inert commitment because it does not
appear to support any nonlinear homomorphic operations.)

We summarize all of the above in the following fully homomorphic commitment
scheme.

Construction 1. The commitment scheme FHC is parameterized by n and q,
and is defined as follows. Each input in square brackets is optional, and when
provided, the algorithm also produces the additional described output. The algo-
rithm’s main output is the same whether or not the optional input is provided.

– Gen chooses a uniformly random A ← Z

n×w
q , where w = 2m = 2n�.

– Com(A ∈ Z

n×w
q ,x ∈ Z

S
q ;R ← Z

w×Sm) outputs a commitment C = AR +
xt ⊗G ∈ Z

n×Sm
q . If the randomness R is not provided explicitly, it is chosen

uniformly from {0, 1}w×Sm (but note that it is not required to be binary in
general).

– CircuitEval(C,C ∈ Z

n×Sm
q [,R ∈ Z

w×Sm]), for a boolean circuit C : {0, 1}t →
{0, 1}L, deterministically outputs a commitment matrix CC ∈ Z

n×Lm [and
additionally an integral matrix RC ∈ Z

w×Lm].
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– BranchEval(B,C ∈ Z

n×Sm
q [,R ∈ Z

w×Sm]), for a branching program
B : {0, 1}S → {0, 1}L, deterministically outputs a commitment matrix CB ∈
Z

n×Lm [and additionally an integral matrix RB ∈ Z

w×Lm].
– InertEval(M ∈ Z

n×L
q ,C ∈ Z

n×Lm
q [,R ∈ Z

w×Lm]) deterministically outputs
an “inert commitment” vector cM ∈ Z

n
q [and additionally an integral vector

rM ∈ Z

w].

Proposition 1. The above commitment scheme FHC satisfies the following
properties:

1. By the leftover hash lemma, for any x ∈ Z

poly(m)
q the distribution of (A,C)

has negl(m) statistical distance from uniformly random, where A ← Gen(1n)
and C ← Com(A,x).

2. For any boolean circuit C : {0, 1}S → {0, 1}L of depth d, any x ∈ {0, 1}S, any
A ∈ Z

n×w
q and any R ∈ Z

w×Sm, for commitment C = Com(A,x;R) we have

CircuitEval(C,C) = Com(A, C(x);RC), (9)

where RC ∈ Z

w×Lm is the additional output of CircuitEval(C,C,R), and
|RC | = |R| · mO(d).

3. For any branching program B : {0, 1}S → {0, 1}L of length D, any x ∈ X ,
any A ∈ Z

n×w
q and any R ∈ Z

w×Sm, for commitment C = Com(A,x;R) we
have

BranchEval(B,C) = Com(A, B(x);RB), (10)

where RB ∈ Z

w×Lm is the additional output of BranchEval(B,C,R), and
|RB | = |R| · mO(1)D.

4. For any matrix M ∈ Z

n×L
q , any x ∈ {0, 1}L, any A ∈ Z

n×w
q and any

R ∈ Z

w×Lm, for commitment C = AR + xt ⊗ G we have

InertEval(M,C) = ArM + Mx, (11)

where rM ∈ Z

w is the additional output of InertEval(M,C,R), and
|rM| ≤ |R| · Lm.

3 Correlation-Intractable Hashing from SIS/LWE

In this section we construct correlation-intractable hash families for (searchable
relations defined by) arbitrary functions of bounded complexity, based on SIS.
Particular cases of interest are functions computable by log-depth (i.e., NC1)
circuits, and polynomial-length branching programs, either of which are sufficient
to invoke our bootstrapping transform in Sect. 4.



Noninteractive Zero Knowledge for NP from (Plain) Learning with Errors 103

3.1 Construction for Circuits

Let FHC be the fully homomorphic commitment scheme from Sect. 2.7. Recall
that FHC is parameterized by an SIS dimension n and a modulus q, which we
instantiate below as functions of the security parameter λ based on the targeted
class of functions. Our hash families work for functions of arbitrary input length,
and output length exactly m = n� = n�log q�. Correlation intractability immedi-
ately extends to functions of output length greater than m, simply by appending
zeros to the length-m hash output.

We start with a construction that is correlation intractable for boolean circuits.

Construction 2 (CIH for circuits). The hash family CIH = (Gen,Hash) with
fake-key generation algorithm StatGen is parameterized by an arbitrary circuit
size S = S(λ) = poly(λ) and depth d = d(λ) ≤ S(λ). Let U(C, x) = C(x) denote
a depth-universal circuit for size-S circuits.

– Gen(1λ): generate A ← FHC.Gen and C ← Com(A, 0S(λ)), choose a uniformly
random a ← Z

n
q , and output the hash key k = (a,C).

– StatGen(1λ, C): given a circuit C of size S, choose a uniformly random Ā ←
Z

(n−1)×m
q and ā ← Z

n−1
q . Choose s ← Z

n−1
q , e ← χm and e ← χ, where χ is

an LWE error distribution. Let

A :=
[

Ā
stĀ + et

]

∈ Z

n×m
q , a :=

[

ā
st · ā + e − �q/2	

]

∈ Z

n
q . (12)

Compute C ← Com(A, C) and output the hash key k = (a,C).
– Hash(k = (a,C), x): let circuit Ux(·) = U(·, x), and output

G−1
n [a + InertEval(Gn,CircuitEval(Ux,C))] ∈ {0, 1}m

.

Remark 1. By Item 1 of Proposition 1, the hash key k = (a,C) produced by
Gen is statistically close to uniformly random, so CIH is public coin.

Remark 2. In Construction 2, the circuit “size” means the length of a bit string
required to describe a member of the particular circuit family C = {Cλ} for
which we seek correlation intractability. In more detail, we assume that every
circuit C ∈ Cλ can be efficiently described by a S(λ)-bit string sC , and that
there is a (uniformly generated) depth-universal circuit family U = {Uλ} for C
for which Uλ(sC , x) = C(x) for every C ∈ Cλ and input x. For certain circuit
families there may be more compact ways of specifying a member of the family
than the general circuit representation; this can yield more compact hash keys.

3.2 Correlation Intractability

We now prove that Construction 2 is computationally correlation intractable
under an appropriate SIS assumption (Theorem 1), and statistically correlation
intractable under an appropriate LWE assumption (Theorem2).
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Theorem 1. Assuming the hardness of SISn,m+1,q,β for a sufficiently large β =
mO(d), Construction 2 is correlation intractable for the class of functions with
output length m that can be implemented by size-S, depth-d boolean circuits.

Proof. Let A = {Aλ} be any non-uniform polynomial-size adversary,
and fix any sequence of functions {fλ}, where fλ has output length
m = m(λ) and can be implemented by a circuit of size S = S(λ) and depth
d = d(λ). To show that Construction 2 is correlation intractable with respect
to f , we first define a hybrid experiment and show that it is statistically indis-
tinguishable from the real experiment. Then we show that in this hybrid, it is
hard for an adversary to break correlation intractability against {fλ}.

In the hybrid experiment we merely modify how C is generated, letting it
be C ← Com(A, f) for f = fλ. By Item 1 of Proposition 1, this experiment
is within statistical distance negl(m) = negl(λ) from the real one, so A’s suc-
cess probability can differ by at most this much between the real and hybrid
experiments.

We now show that under the hardness hypothesis, ν(λ) := Prk[x = Aλ(k) :
Hash(k, x) = f(x)] is a negligible function that depends only on A (not {fλ}). To
do this we use A to construct a non-uniform polynomial-size attacker S = {Sλ}
against SIS that also has success probability ν(λ), as follows.

The attacker Sλ, given an SIS instance A′ = [a | A] ∈ Z

n×(m+1)
q , generates

C ← Com(A, f) and retains the commitment randomness R ∈ {0, 1}w×Sm. It
defines a hash key k = (a,C) and lets x = Aλ(k). If Hash(k, x) = f(x), then S
lets (Cx,Rx) = CircuitEval(Ux,C,R) and then lets rx be the additional output
of InertEval(Gn,Cx,Rx). It outputs zx = (1, rx) ∈ Z

m+1 as the nonzero SIS
solution.

We now analyze S. First observe that the distribution of the hash key k it
provides to Aλ is exactly as in the hybrid experiment, by the uniform distribution
of the SIS instance A′ = [a | A]. We claim that zx = (1, rx) is a valid SIS solution
whenever Hash(k, x) = f(x). To see this, observe that this condition implies that

Gn · f(x) = Gn · Hash(k, x)
= a + InertEval(Gn,CircuitEval(Ux,C))
= a + (Arx + Gn · f(x))
= A′zx + Gn · f(x)

and that ‖zx‖ = mO(d) ≤ β, both by Eqs. (9) and (11) of Proposition 1. There-
fore, A′zx = 0 and zx satisfies the norm bound, as desired.

Theorem 2. Assuming the hardness of LWEn−1,m+1,q,χ for a poly(n)-
bounded χ and a sufficiently large q = mO(d), Construction 2 is somewhere
statistically correlation intractable for the class of functions with output length m
that can be implemented by size-S, depth-d boolean circuits; each circuit serves
as the intractability guarantee for itself.
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Proof. First, it follows immediately from the LWE assumption that the out-
puts of Gen(1λ) and Gen(1λ, Cλ) are computationally indistinguishable for any
sequence of circuits Cλ of size S.

Now fix any sequence of functions {fλ}, where fλ has output length m =
m(λ) and can be implemented by a circuit of size S = S(λ) and depth d = d(λ).
We will show that

Pr
k←StatGen(1λ,fλ)

[∃x s.t. Hash(k, x) = f(x)] = 0. (13)

Using the notation from StatGen, let A′ = [a | A] ∈ Z

n×(m+1)
q and let Ā′ =

[ā | Ā] ∈ Z

(n−1)×(m+1)
q be its top (n− 1) rows. Similarly, let e′ = [e | e] ∈ Z

m+1.
For any hash input x, define rx and zx = (1, rx) ∈ Z

m+1 exactly as in the proof
of Theorem 1 above. Now, notice that if Hash(k, x) = f(x) then as above we
have

Gn · f(x) = A′zx + Gn · f(x).

This implies that
[

Ā′ · zx

st · Ā′ · zx + e′t · zx

]

=
[

0
�q/2	

]

(14)

and hence 〈e′, zx〉 = �q/2	. But this is impossible because |〈e′, zx〉| ≤ ‖e′‖ ·
‖zx‖ = nO(1) · mO(d) = mO(d), which is smaller than q/2 for a sufficiently large
choice of q = mO(d).

3.3 Construction for Branching Programs

We now describe a correlation-intractable hash family for branching programs of
arbitrary length D(λ) = poly(λ). By Barrington’s Theorem [5] this is sufficient
for evaluating log-depth (i.e., NC1) circuits, and in particular the decryption
functions of known FHE schemes. (It is also possible to express the decryption
functions more efficiently, directly using branching programs [3].)

The construction is almost identical to Construction 2, except that it uses a
universal branching program (in place of the universal circuit U) and BranchEval
(in place of CircuitEval). The proof of security is also essentially identical to those
above, but due to Eq. (10) of Proposition 1, the derived randomness for the
ultimate inert commitment grows only polynomially, as mO(1) · D. This yields
the following two security theorems.

Theorem 3. Assuming the hardness of SISn,m+1,q,β for a sufficiently large β =
mO(1) ·D, the above-described construction is correlation intractable for the class
of functions with output length m that can be implemented by length-D branching
programs.

Theorem 4. Assuming the hardness of LWEn−1,m,q,χ for a poly(n)-bounded χ
and a sufficiently large q = mO(1) · D, the above-described construction is some-
where statistically correlation intractable for the class of functions with output
length m that can be implemented by length-D branching programs; each branch-
ing program serves as the intractability guarantee of itself.
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3.4 Parameter Instantiations

Here we show how the parameters n, q (with � := �log q� and m := n�) can
be chosen, with a focus on the SIS problem and the branching program instan-
tiation; a very similar process can be followed for LWE and/or circuits. For a
branching program of length D = λd and desired output size of (at most) L = λc

for some constants c, d > 0, let β = mc1 · D for the (small) constant c1 > 0 be
the norm bound given by Theorem 3. To invoke worst-case hardness theorems,
we can take some q = β · Õ(

√
n) and n = �L/�	, so that the true output size

m = n� ≤ L.
With these choices, we have q = poly(λ), n = L/Θ(log λ) = λc−o(1), and

D = nd/c+o(1). This corresponds to a worst-case approximation factor

γ(n) = β · Õ(
√

n) = nc1+d/c+1/2+o(1) = poly(n) (15)

for the underlying n-dimensional lattice problem.
Two noteworthy extremes are as follows. We can obtain a very short hash

output length of λc for arbitrarily small c > 0, where security is supported by
(large) poly(n)-approximate lattice problems in n = λc−o(1) dimensions, which
are plausibly subexponentially hard. On the other extreme, in our NIZK appli-
cation using the bootstrapping transform, the value of d is fixed by the FHE
scheme and we may choose L = λc freely. So, by taking a large enough con-
stant c, security is supported by (small) nc1+1/2+ε approximation factors for any
desired constant ε > 0.

4 Bootstrapping Correlation Intractability

In this section we present our bootstrapping theorem for correlation-intractable
hash functions.

Construction 3. Let C = {Cλ} be a circuit class and Uλ(C, x) = C(x) denote
a universal circuit for Cλ. Let FHE = (Gen,Enc,Dec,Eval) be a (symmetric-
key) encryption scheme supporting homomorphic computation of the class
{Ux(·) = Uλ(·, x)}λ. Let CIH = (Gen,Hash) be a hash function family with fake-
key generation algorithm StatGen. Define a new hash family CIH′ = (Gen′,Hash′)
with fake-key generation algorithm StatGen′ as follows:

– Gen′(1λ): generate k ← CIH.Gen(1λ) and (sk, ek) ← FHE.Gen(1λ). Generate
c ← Enc(pk,D) for some arbitrary “dummy” circuit D ∈ Cλ, and output hash
key k′ = (k, ek, c).

– StatGen′(1λ, C ∈ Cλ): generate (sk, ek) ← FHE.Gen(1λ) and
k ← StatGen(1λ,FHE.Dec(sk, ·)). Generate c ← Enc(pk,C) and output hash
key k′ = (k, ek, c).

– Hash′(k′ = (k, ek, c), x): output Hash(k,Eval(ek, Ux, c)).

Remark 3. Observe that if the original CIH family has (pseudo)random hash
keys, and FHE has jointly pseudorandom evaluation keys and ciphertexts, then
CIH′ has pseudorandom hash keys as well.
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Let R = {Rλ = {Rλ}} be a class of relations. For each Rλ ∈ Rλ, each secret
key sk that may be output by FHE.Gen(1λ), and each circuit C ∈ Cλ, define the
associated relations

Rλ,sk = {(c, y) : (FHE.Dec(sk, c), y) ∈ Rλ}
Rλ,C = {(x, y) : (C(x), y) ∈ Rλ}.

Essentially, these relations first apply some computation (either decryption with
a certain fixed secret key, or some circuit C) to the input, then check whether
the provided witness is valid (under the original relation) for the result. They
naturally yield the associated relation classes RDec := {RDec

λ = {Rλ,sk : Rλ ∈
Rλ}} and RC := {RC

λ = {Rλ,C : Rλ ∈ Rλ, C ∈ Cλ}}.

Remark 4. Similar to Remark 2, the size of the CIH′ hash key is affected by the
choice of FHE and the description size of members of the circuit family {Cλ}.
To analyze the size of the hash key k′ = (k, ek, c), first notice that as shown
below in Theorem 5, the underlying hash function CIH need only be CI for
a circuit class whose members can be described by FHE secret keys. With a
(leveled or unbounded) FHE, secret keys have a fixed poly(λ) length, regardless
of the supported family C. But depending on the FHE scheme, the size of the
evaluation key ek and the ciphertext c can have various dependencies on the
circuit family C. Specifically, with an unbounded FHE, the size of ek is a fixed
polynomial in λ independent of the circuit family, and the size of c is a fixed
polynomial in λ and the description size of members of C. In a leveled FHE, the
sizes of ek and c may additionally depend (polynomially) on the depth of the
supported circuit class.

Theorem 5. If FHE is CPA-secure (for the sequence of message spaces {Cλ})
and CIH is correlation intractable for the relation class RDec, then CIH′ is cor-
relation intractable for the relation class RC.

Proof. Let A′ = {A′
λ} be a non-uniform polynomial-size adversary against

the correlation intractability of CIH′ for RC , and fix any sequence of relations
{Rλ,Cλ

} for some choice of Cλ ∈ Cλ for each λ.
We first define a hybrid experiment and show that it is computationally

indistinguishable from the real experiment. In the hybrid experiment we modify
only how the c component of the hash key is generated, letting c ← Enc(pk,Cλ).
By the CPA-security of FHE, the success probability of A′ can differ by only a
negligible amount between the real and the hybrid experiments. (The reduction
showing this is straightforward, because sk is not used in the experiment.)

Our goal is prove that in the hybrid experiment,

ν(λ) := Pr
k′

[x ← A′(k′) : (x,Hash′(k′, x)) ∈ Rλ,Cλ
]
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is a negligible function that depends only on A′ (and not Rλ,Cλ
). First, observe

that by construction of CIH′,

Pr

⎡

⎢

⎢

⎢

⎢

⎣

k ← CIH.Gen(1λ)
(sk, ek) ← FHE.Gen(1λ)

c ← Enc(ek, Cλ)
x = A′

λ(k′ = (k, ek, c))
cx = Eval(ek, Ux, c)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(Cλ(x),Hash(k, cx)) ∈ Rλ,Cλ

⎤

⎥

⎥

⎥

⎥

⎦

= ν(λ). (16)

By an averaging argument, there exists (skλ, ekλ) in the support of FHE.Gen(1λ)
such that

Pr

⎡
⎢⎢⎣

k ← CIH.Gen(1λ)
c ← Enc(ekλ, Cλ)

x = A′
λ(k′ = (k, ekλ, c))

cx = Eval(ekλ, Ux, c)

∣∣∣∣∣∣∣∣
(Cλ(x),Hash(k, cx)) ∈ Rλ,Cλ

⎤
⎥⎥⎦ ≥ ν(λ). (17)

We use A′ to construct a non-uniform polynomial-size attacker A = {Aλ}
against the correlation intractability of CIH for RDec, and specifically the
sequence of relations {Rλ,skλ

}. Given a CIH key k, Aλ generates c ←
Enc(ekλ, Cλ), lets x = A′

λ(k′ = (k, ekλ, c)), and outputs cx = Eval(ekλ, Ux, c).
We now prove that Aλ succeeds with probability at least ν(λ), hence ν(λ)

is a negligible function (that does not depend on the choice of relations). First,
notice that the distribution of k′ that Aλ passes to A′

λ is exactly as in Eq. (17).
Next, observe that by the correctness of FHE, we have Dec(skλ, cx) = Cλ(x).
Therefore, whenever (Cλ(x),Hash(k, cx)) ∈ Rλ,Cλ

we have (x,Hash(k, cx)) ∈ Rλ

and hence (cx,Hash(k, cx)) ∈ Rλ,skλ
, as needed.

Theorem 6. If FHE is CPA-secure (for the sequence of message spaces {Cλ})
and CIH is somewhere statistical correlation intractable for the relation class
RDec, where for each Rλ,sk the intractability guarantee is the description of the
circuit FHE.Dec(sk, ·), then CIH′ is somewhere statistical correlation intractable
for the relation class RC, and for each Rλ,C the intractability guarantee is the
circuit C.

Proof. First we have to argue that the outputs of Gen′(1λ) and StatGen′(1λ, Cλ)
are computationally indistinguishable for any Cλ ∈ Cλ. This follows immediately
from the CPA-security of FHE and the fact that CIH is somewhere statistically
correlation intractable with fake-key generation StatGen.

Now fix any sequence of relations {Rλ,Cλ
} for some choice of Cλ ∈ Cλ for

each λ. We need to show that

ν(λ) := Pr
k′←StatGen′(1λ,Cλ)

[∃x s.t. (x,Hash′(k′, x)) ∈ Rλ,Cλ
]

is a negligible function (that does not depend on Rλ,Cλ
). First, observe that by

construction of CIH′,
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Pr

⎡
⎣

(sk, ek) ← FHE.Gen(1λ)
k ← StatGen(1λ,FHE.Dec(sk, ·))

c ← Enc(ek, Cλ)

∣∣∣∣∣∣
∃x s.t.

(Cλ(x),Hash(k, cx)) ∈ Rλ,Cλ
where

cx = Eval(ek, Ux, c)

⎤
⎦ = ν(λ). (18)

By an averaging argument, there exists (skλ, ekλ) in the support of FHE.Gen(1λ)
such that

Pr

⎡
⎣ k ← StatGen(1λ, FHE.Dec(skλ, ·))

c ← Enc(ekλ, Cλ)

∣∣∣∣
∃x s.t.

(Cλ(x),Hash(k, cx)) ∈ Rλ,Cλ
where

cx = Eval(ekλ, Ux, c)

⎤
⎦ ≥ ν(λ). (19)

Next, observe that by the correctness of FHE, we have Dec(skλ, cx) = Cλ(x).
Therefore, whenever (Cλ(x),Hash(k, cx)) ∈ Rλ,Cλ

we have (x,Hash(k, cx)) ∈ Rλ

and hence (cx,Hash(k, cx)) ∈ Rλ,skλ
. So, Eq. (19) implies that

Pr
k←StatGen(1λ,Dec(skλ,·))

[∃cx s.t. (cx,Hash(k, cx)) ∈ Rλ,Cλ
] ≥ ν(λ). (20)

The theorem follows by the somewhere statistical correlation intractability of
CIH.

5 Putting It All Together

In this section we assemble the components from the previous sections and prior
works to obtain correlation-intractable hash families for all bounded circuits,
and our main result of noninteractive zero knowledge for all of NP. (Throughout
this section, for simplicity we assume the standard LWE error distribution χ,
i.e., a discrete Gaussian of parameter r = 2

√
n for LWE dimension n.)

5.1 Correlation-Intractable Hashing for All Circuits

In this subsection let L = L(λ), S = S(λ), and d = d(λ) be arbitrary poly(λ)-
bounded functions, and define the relation class RL,S,d = {Rλ,L,S,d}, where
Rλ,L,S,d = {Rf = {(x, f(x))}} is the set of all efficiently searchable relations
whose search functions f can be computed by a circuit with output length L(λ),
size S(λ), and depth d(λ).

Let FHE be a leveled fully homomorphic encryption scheme instantiated to
support circuits of depth at most d = d(λ), with decryption circuit having size
SDec(λ) and logarithmic depth dDec(λ) = O(log λ). Let CIH denote Construction 2
for circuit size S = L · SDec(λ) (allowing for the decryption of L ciphertexts) and
depth d = dDec(λ), and with FHC parameters n, q satisfying L ≥ n�lg q�.
Theorem 7. Assuming the hardness of SISn,q,β for a suitable β = poly(S)
(respectively LWEn−1,q,χ for a poly(n)-bounded χ and a suitable q = poly(S))
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and the CPA-security of FHE, Construction 3 instantiated with FHE and CIH is
correlation intractable with respect to RL,S,d (respectively, somewhere statisti-
cally correlation intractable with respect to RL,S,d, where for each Rf ∈ RL,S,d

the intractability guarantee is f).

Proof. Let I = {Iλ = {(x, x) : x ∈ {0, 1}L(λ)}} be the class of equality relations.
Because FHE.Dec has circuit depth dDec = O(log λ), by Theorem 3 CIH is corre-
lation intractable (respectively, somewhere statistically correlation intractable)
for the relation class IDec (as defined in Sect. 4). The theorem follows by notic-
ing that RL,S,d = IC where C is the class of circuits used to define RL,S,d, and
applying Theorem 5.

Using any known leveled FHE scheme based on LWE with polynomial factors
that has jointly pseudorandom evaluation keys and ciphertexts (e.g., [13]), we
get the following corollary.

Corollary 1. Assuming the hardness of LWE with suitable polynomial factors,
there exists a somewhere statistically correlation-intractable hash family (with
pseudorandom hash keys) for RL,S,d, where for each Rf ∈ RL,S,d the intractabil-
ity guarantee is f .

5.2 Noninteractive Zero Knowledge for NP

We are now ready to instantiate the noninteractive zero-knowledge protocol
from [15] with our correlation-intractable hash functions. We first recall the
following theorem; see Definition 2 for a reminder of the NIZK modifiers.

Theorem 8 ([15]). Assuming the existence of

– a lossy public-key encryption scheme with uniformly random lossy public keys
(respectively, an ordinary CPA-secure public-key encryption scheme), and

– a hash family with (pseudo)random keys which is CI for all circuits of output
length L(λ) ≥ λc for some constant c > 0 and size bounded by some suffi-
ciently large S(λ) = poly(λ) (respectively, a hash family that is somewhere
statistically correlation intractable for all such circuits, where the intractabil-
ity guarantee for each circuit is itself),

there exists a computationally sound, statistically zero-knowledge noninteractive
argument system with common random string for any NP language (respec-
tively, a statistically sound, adaptively computational zero-knowledge noninter-
active proof system with common reference string).

A lossy encryption scheme satisfying the requirements of Theorem 8 can be
constructed based on LWE with polynomial factors (see, e.g., [40,42]). So, by
Corollary 1 we get our main result:

Theorem 9. Assuming the hardness of LWE with suitable polynomial factors,
for any NP language there exists
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– a computationally sound, statistically zero-knowledge noninteractive argument
system having a common random string, and

– a statistically sound, adaptively computational zero-knowledge noninteractive
proof system having a common reference string.

Remark 5. We remark that intractability bootstrapping and leveled FHE are
not actually necessary for the NIZK construction, because we just need a hash
family that is correlation intractable for the class of “bad challenge” functions of
the underlying graph-Hamiltonicity protocol of [20]. As pointed out by Alex
Lombardi, a trick from [15] allows the bad-challenge functions to be imple-
mented in NC1 (i.e., logarithmic depth), so we can obtain the required cor-
relation intractability merely from SIS with small polynomial factors. (However,
we still use LWE for the lossy encryption ingredient.)

In short, the bad-challenge function decrypts the prover’s ciphertexts to
recover a graph, then checks whether the graph is a cycle. Decryption of LWE-
based lossy encryption in NC1 is standard. To implement the cycle check, we
additionally require the prover to (de)commit to a permutation between its com-
mitted graph and a canonical cycle graph. The bad-challenge function (and ver-
ifier) performs the appropriate checks, which can be done in logarithmic depth
by brute force. (Without the explicit permutation, the best known parallel com-
plexity for cycle checking is NC2, which is not good enough for the present
purpose.)

Remark 6. When using a CI hash family arising from our bootstrapping trans-
form of Construction 3, either NIZK system of Theorem 9 can have a compact
common random/reference string, i.e., a string whose length does not depend on
the size of the statement being proved. In fact, the CRS generation algorithm
does not need to get the size (or any other parameter) of the statement as an
input.

To see this, we first observe that for any statement length, the “bad chal-
lenge” circuits making up the family C for which Theorem 8 needs correlation
intractability can be represented by strings of a fixed poly(λ) length. Specifically,
these circuits can be fully specified by the secret key of the (lossy) public-key
encryption scheme used in Theorem 8. We next observe that the universal cir-
cuit U(·, ·) for this representation (and a given statement length) is uniformly
generated and has a fixed logarithmic depth in its input length. Therefore, it
suffices to instantiate the FHE in Construction 3 using any leveled FHE scheme
(e.g., [11,25]) for some arbitrary � = ω(log(λ)) levels. Then, by Remark 4 the
hash key and hence the CRS is completely independent of the statement size.

For comparison, we also point out that there is a generic transformation
from [24] which converts any NIZK to one with a compact CRS. However, this
transformation does not preserve statistical zero knowledge, i.e., the resulting
NIZK system is always computational zero knowledge. On the other hand, our
construction has a compact CRS and is also statistical zero knowledge.

Acknowledgments. We thank Alex Lombardi and Daniel Wichs for useful comments.
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Abstract. We devise new techniques for design and analysis of efficient
lattice-based zero-knowledge proofs (ZKP). First, we introduce one-shot
proof techniques for non-linear polynomial relations of degree k ≥ 2,
where the protocol achieves a negligible soundness error in a single exe-
cution, and thus performs significantly better in both computation and
communication compared to prior protocols requiring multiple repeti-
tions. Such proofs with degree k ≥ 2 have been crucial ingredients for
important privacy-preserving protocols in the discrete logarithm setting,
such as Bulletproofs (IEEE S&P ’18) and arithmetic circuit arguments
(EUROCRYPT ’16). In contrast, one-shot proofs in lattice-based cryp-
tography have previously only been shown for the linear case (k = 1) and
a very specific quadratic case (k = 2), which are obtained as a special
case of our technique.

Moreover, we introduce two speedup techniques for lattice-based
ZKPs: a CRT-packing technique supporting “inter-slot” operations, and
“NTT-friendly” tools that permit the use of fully-splitting rings. The
former technique comes at almost no cost to the proof length, and the
latter one barely increases it, which can be compensated for by tweaking
the rejection sampling parameters while still having faster computation
overall.

To illustrate the utility of our techniques, we show how to use them
to build efficient relaxed proofs for important relations, namely proof of
commitment to bits, one-out-of-many proof, range proof and set mem-
bership proof. Despite their relaxed nature, we further show how our
proof systems can be used as building blocks for advanced cryptographic
tools such as ring signatures.

Our ring signature achieves a dramatic improvement in length over all
the existing proposals from lattices at the same security level. The com-
putational evaluation also shows that our construction is highly likely
to outperform all the relevant works in running times. Being efficient in
both aspects, our ring signature is particularly suitable for both small-
scale and large-scale applications such as cryptocurrencies and e-voting
systems. No trusted setup is required for any of our proposals.
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1 Introduction

Zero-knowledge proofs (ZKP) are fundamental building blocks used in many
privacy-preserving applications such as anonymous cryptocurrencies and anony-
mous credentials [10], and the underlying advanced cryptographic primitives
such as ring signatures [26]. They enable a prover to convince a verifier that
a certain statement regarding a secret is true with minimal secret information
leakage. A core property of ZKPs is soundness, that is, a cheating prover should
not be able to create a convincing “proof”. In the context of proofs of knowledge
(PoK), this means successful provers know a relevant secret (i.e., a witness),
and this is usually proven by using an extractor that efficiently recovers the wit-
ness given two accepting protocol transcripts with the same initial message. We
call this procedure “basic” witness extraction (also known as “2-special sound-
ness”, see Definition 3). A natural behaviour that is trivially observed in discrete
logarithm (DL) based ZKPs is that they achieve a convincing soundness level
(i.e., a negligible soundness error) in a single protocol run (i.e., they are one-
shot). However, this natural behaviour turns out to be unexpectedly hard to
achieve in lattice-based proofs. There are some works [3,6,22–24] that address
this problem in lattice-based cryptography and provide one-shot proofs in the
context of protocols that work with “basic” witness extraction. On the other
hand, recent research in the DL setting [7–9,16] has shown that it is possible
to construct more efficient proofs that require a “complex” witness extraction
involving more than two accepting protocol transcripts (and thus more than two
challenges) for recovering prover’s secret (i.e., the protocols are many-special
sound). Such proofs rely on higher degree relations to obtain compact results,
unlike the 2-special sound proofs that can only check linear (first degree) rela-
tions (we refer to the aforementioned works for the motivation behind proving
high-degree relations). Again, in the DL setting, these proofs work smoothly and
are easily one-shot. However, in the lattice setting, the situation is much more
complicated, and, to the best of our knowledge, there is no one-shot witness
extraction technique for non-linear relations.

1.1 Related Work – Lattice-Based Zero-Knowledge Proofs

In being one-shot proofs, the most relevant works for our zero-knowledge proofs
are [6] and [3], where the protocols explicitly make use of lattice-based com-
mitments. In fact, the ideas date back to the works by Lyubashevsky [22,23]
introducing the “Fiat-Shamir with Aborts” technique in lattice-based cryptog-
raphy. The advantage of these works is that the (underlying) protocols achieve
a negligible soundness error in a single run, which makes them very efficient
in practice. However, all these approaches are limited to working with “basic”
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witness extraction except for a specific multiplicative (second degree) relation
in [6]. The multiplicative argument in [6] is to prove that the coefficient of a
quadratic term is zero and no explicit witness extraction from this non-linear
relation is provided (and, indeed, no witness extraction from this second degree
relation is needed as witnesses are extracted from the linear relations). All these
one-shot proofs introduce new complications (more precisely, relaxations in the
relation being proved) as we discuss in detail in Sect. 3. One can get asymptoti-
cally efficient lattice-based proofs for arithmetic circuits when the circuit size is
large compared to the security parameter λ using the amortization techniques
from [2]. However, these techniques do not seem to be helpful in our case as the
proved relations do not necessarily require a large circuit.

Another line of research makes use of multi-shot proofs that require multiple
protocol repetitions to get a negligible soundness error. Stern-like combinatorial
protocols [29] and proofs using binary challenges fall into this category, where one
needs at least λ protocol repetitions for λ-bit security. Therefore, even though
these approaches have a wide range of applications (e.g. logarithmic-sized group
and ring signatures as in [20]), they currently seem to fall far behind practical
expectations (see Table 1 for the concrete results of [20]).

In the ring R = Z[X]/(Xd + 1), it is possible to achieve a soundness error
of 1/(2d) using the monomial challenges from [5]. Here the challenges are of the
form Xi for some 0 ≤ i < 2d (i.e., there are 2d possible challenges in total),
and it is shown in [5] that doubled inverses of challenge differences are short
(more precisely,

∥
∥2(Xi − Xj)−1

∥
∥ ≤

√
d for i �= j). Still proofs using monomial

challenges require at least 10 repetitions for a typical ring dimension d ≤ 2048.
To summarize, for a soundness goal of 2−λ, all the above multi-shot approaches
produce proofs of length Õ(λ2), as a function of the security parameter λ.

1.2 Asymptotic Costs of Existing Lattice-Based ZKP Techniques

First, let us assume that one relies on computational hardness assumptions,
particularly, Module-SIS (M-SIS) and Module-LWE (M-LWE) for the security of
a commitment scheme and let dSIS, dLWE be the dimension parameters required
for M-SIS and M-LWE security, respectively. It is known that one needs dSIS =
O(λ log2 βSIS

log q ) for λ-bit security based on M-SIS where βSIS is the norm of a valid
M-SIS solution (see Appendix F.4 in the full version [13] for more). Letting
βSIS = qε for 0 < ε ≤ 1, we get log βSIS = ε log q and, for a balanced security,

dLWE ≈ dSIS = O(λε2 log q). (1)

In lattice-based cryptography, the most commonly used commitment schemes
for algebraic proofs are Unbounded-Message Commitment (UMC) and Hashed-
Message Commitment (HMC) (see Sect. 2.4). These commitment schemes have
different tradeoffs as discussed in the full version. Let n,m, d, v be the mod-
ule rank for M-SIS, the randomness vector dimension in a commitment, the
polynomial ring dimension and the message vector dimension in a commitment,
respectively. The commitment vector is of dimension n + v for UMC and n for
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HMC, which means the space costs of a commitment are (n + v)d log q and
nd log q for UMC and HMC, respectively. Letting κ be the number of protocol
repetitions, we get the formulae for space costs in Table 2.

The commitment matrix dimensions are (n+v)×m for UMC and n×(m+v) for
HMC, and both of the commitments are computed as a matrix-vector multiplica-
tion.1 Therefore, we also get the formulae for the time costs as given in Table 2
assuming a degree-d polynomial multiplication can be performed in time Õ(d)
(more precisely, O(d log d)) using, e.g., FFT-like methods.

Further, we have dLWE = (m − n − v)d and thus md > dLWE for UMC, and
dSIS = nd for both HMC and UMC. As a result, using (1), we get

md = O(λε2 log q) for UMC, and nd = O(λε2 log q) for UMC/HMC. (2)

Now, suppose that we want to prove a relation that involves commitment to
k = O(log q) messages (for example, to prove knowledge of m1, . . . mk such
that

∑k
i=1 αimi = 0 for public values α1, . . . , αk). Clearly, if we commit to these

messages independently, then the overall cost of both time and space increase by
a factor of k. Alternatively, we can pack multiple messages in a commitment by
setting v = k and hope that this gives a better performance. If an existing multi-
shot technique such as Stern-based proofs, or those using binary or monomial
challenges, is used, the number of protocol repetitions κ will be Õ(λ), and thus
we get the asymptotic costs in the “multi-shot” column of Table 2 (using (2)). On
the other hand, if one can make the proof one-shot, then we get the complexities
in the “one-shot” column of Table 2, where there is a clear saving of Õ(λ).

1.3 Our Contributions

One-shot proof techniques for non-linear polynomial relations via
adjugate matrices. We introduce new techniques that provide the first solu-
tion to the problem of building efficient one-shot lattice-based ZKPs that require
a “complex” witness extraction. In particular, we introduce witness extraction
from non-linear polynomial relations of degree k ≥ 2 (i.e., “(k +1)-special sound
protocols”, see Definition 3) while still having a one-shot proof. Our proofs reach
a negligible soundness error in a single run of the protocol. In comparison to
relevant multi-shot prior works such as [14,20], we improve the asymptotic com-
putation and communication costs by a factor of Õ(λ) for the security parameter
λ (see Table 2), and also achieve a dramatic practical efficiency improvement in
both costs (see Table 1). The previous one-shot ideas [3,6,22,23] are obtained as
a special case of our technique (see Sect. 3.2).

Speedup Technique 1: CRT-packing supporting inter-slot operations.
Drawing inspiration from the CRT-packing techniques [15,27] used in fully homo-
morphic encryption, we introduce the first CRT-packing technique in lattice-
based ZKPs that supports “inter-slot” and a complete set of operations. That
1 Here, we overlook the fact that some parts of the commitment matrix are zero or

identity, but this does not change the asymptotic behaviour in Table 2.
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is, our technique supports operations between messages stored in separate CRT
“slots”, and gives the ability to commit to/encode multiple messages at once and
then “extract” all the messages in a way that permits interoperability among
extracted values. In its full potential, it provides an asymptotic improvement
of O(log q) in computation costs of proofs involving O(log q) messages at no
additional cost to the proof length (see Table 2).

Table 1. Size comparison of ring signatures for “post-quantum” 128-bit security with
N ring participants (the challenge space size is 2256). Signature lengths are in KB. See
Appendix A in the full version [13] for more details.

Ring Size (N) : 2 23 26 212 221 Security basis

[20] 23000 52000 94000 179000 306000 SIS

[14] 1000 1200 1600 2400 4100 M-LWE & M-SIS

[12] 236 477 839 1561 2645 LowMC (Sym-key)

[18] ? ? ∼ 250 ∼ 456 ? LowMC (Sym-key)

This Work 36 41 58 103 256 M-LWE & M-SIS

[30] > 38 > 124 > 900 61000 > 224 Ring-SIS

[4] 35 83 ∼ 600 40000 > 224 M-LWE & M-SIS

Speedup Technique 2: “NTT-friendly” tools for fully-splitting rings.
An important obstacle to computational efficiency of lattice-based ZKPs is that
one often requires invertibility of short elements in a ring. A common solution
to meeting this criterion is to choose a modulus q of a special form (such as
q ≡ 5 mod 8) at the cost of disabling the ring Rq = Zq[X]/(Xd + 1) to fully-
split, and thus preventing the (full) use of fast computational algorithms such
as Number Theoretic Transform (NTT). We introduce a new result (Lemma 7)
that can be used as an alternative to enforcing invertibility, and show how it can
be made used of while still supporting the use of NTT-like algorithms. The only
requirement of our lemma is for the modulus q to be sufficiently large, without
putting any assumptions on its “shape”. One can see from, e.g., [25, Table 2]
that full NTT provides a speedup of a factor between 6–8 in comparison to plain
Karatsuba multiplication (with no FFT).

Design of shorter and faster lattice-based protocols. Our techniques
enable the construction of communication and computation efficient lattice-
based analogues of DL-based protocols for important applications, where there
was previously no efficient lattice-based solutions known. To illustrate this utility
of our techniques, we design an efficient range proof that uses speedup technique
1, and an efficient one-out-of-many proof that uses speedup technique 2, where
our one-shot proof technique is also applied in both of the proofs.
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Application to advanced cryptographic tools. Despite their relaxed nature,
we show that our ZKPs are sufficient for important practical applications. Our
one-out-of-many proof is used as a building block for lattice-based ring signa-
tures, and our relaxed aggregated range proof is shown to be sufficient for an
application in a form of privacy-preserving linkable anonymous credentials.

In Table 1, we compare our ring signature size results to the other potential
post-quantum proposals.2 Most of these schemes, including ours, are only ana-
lyzed in the classical random oracle model (ROM), and all the results provided
in Table 1 are those in ROM. [12,18] are recent proposals from symmetric-key
primitives using LowMC cipher [1] and all the rest are lattice-based proposals.
As can be seen from the table, we achieve a dramatic improvement in comparison
to all these post-quantum solutions. Our scheme even reaches the same perfor-
mance of the linear-sized proposals (bottom two rows), which are tailored to be
efficient for small ring sizes, for the smallest possible ring size N = 2.3

As detailed in the full version [13], our ring signature achieves a signature
length quasi-linear in the security parameter λ, and poly-logarithmic in the ring
size N . In practice, its length is proportional to λ log2 λ logc N for some constant
c ≈ 1.67. This improves on the quadratic dependence on λ in [12,14,18,20].4 In
terms of the dependence on log N , our scheme grows slightly faster, however, it
still outperforms all these works for N as big as billions and beyond.

We further analyze the computational efficiency of our ring signature
in Appendix F.5 of the full version [13]. The analysis based on reasonable
assumptions shows that our construction also greatly improves practical sign-
ing/verification times over the existing ring signature proposals with con-
crete computational efficiency results. For N = 1024, we estimate the sign-
ing/verification times of our scheme to be below 30 ms whereas [18] reports 2.8 s for
both of the running times. Our ring signature as well as its underlying protocols,
namely binary proof and one-out-of-many proof, do not require any assumption
on the “shape” of the modulus q, and thus permit the use of NTT-like algorithms.

2 A concurrent work [21] has recently been put on ePrint, and it builds a linear-
sized (linkable) ring signature. Even though “a less efficient version that is based on
standard lattice problems” (in particular, SIS and Inhomogeneous SIS) is described,
there are no concrete parameters provided for that scheme. The provided concrete
instantiation, of size 1.3N KB for N ring members, relies on NTRU assumption
and claims 103-bit security against quantum attackers. We restrict our comparison
in Table 1 to those based on “standard lattice problems”. Nevertheless, even the
NTRU-based scheme produces longer ring signatures than ours when N ≥ 43.

3 Note that N = 1 would simply give an ordinary signature, and there is no reason
for using a ring signature for that purpose.

4 In [20], the soundness goal of λω(1) is used and so the number of protocol repetitions

for Stern’s framework is taken to be ω(log λ), which disappears in ˜O(·) notation.
But, we consider a practice-oriented goal for the soundness error of 2−λ, and thus
the number of protocol repetitions for Stern-based proofs must be Ω(λ). Also, it is
stated in [18] that they have the same asymptotic signature growth with [20].
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1.4 Our Techniques

One-shot witness extraction for non-linear polynomial relations. The
main challenge in designing efficient lattice-based ZKPs is that the extracted
witness is required to be short as mandated by computational lattice problems
(in particular, Short Integer Solution – SIS problem). Traditional witness extrac-
tion techniques involve the inverse of challenge differences as a multiplicative fac-
tor in extracted witnesses, and such an approach is problematic in lattice-based
protocols as these inverse terms need not be short in general. This causes one
to either resort to more inefficient techniques such as aforementioned multi-shot
proofs or introduce relaxations in the proofs. Our solution falls into the latter.

The target problem reduces to the question of extracting useful informa-
tion from a system of equations of the form V · c = b where V is a matrix
(a Vandermonde matrix in our case) constructed by challenges, c is a vector of
commitments with unknown openings and b is a vector of commitments with
known openings. Our idea is to introduce the use of adjugate matrices instead
of inverse matrices in the “complex” witness extraction of lattice-based ZKPs.
This technique, in one hand, enables us to extract useful information about the
openings of the commitments in c without the involvement of inverse terms, and
on the other hand, is the main cause of relaxations. Here, it is crucial that the
relaxed proof proves a useful relation, is sound, and also efficient. These piece
together nicely when the use of adjugate matrices is accompanied by a good
choice of challenge space, and we provide an analysis of our technique with a
family of commonly used challenge spaces. We emphasize that straightforward
soundness proofs do not work, and one needs special tools such as those intro-
duced in this work to overcome the complications. Our one-shot proof approach
is detailed in Sect. 3 after introducing necessary preliminaries.

Table 2. The (minimal) asymptotic time and space complexities of lattice-based pro-
tocols involving commitment to k = O(log q) messages. βSIS: M-SIS solution norm, q:
modulus, κ: the number of protocol repetitions, n: module rank for M-SIS, v: message
vector dimension in a commitment, d: polynomial ring dimension, m: randomness vec-
tor dimension in a commitment. Assume: log q < log2 βSIS/2 and degree-d polynomial

multiplication costs ˜O(d). To optimize both costs, one would set n = v in all cases.

Multi-shot [14,20] One-shot One-shot + CRT

Formula κ = ˜O(λ), v = k κ = 1, v = k κ = 1, v = O(1)

Space UMC κ(n + v)d log q ˜O(λ2 log2 βSIS) ˜O(λ log2 βSIS) ˜O(λ log2 βSIS)

Time UMC κ(n + v)md ˜O(λ2 log2 βSIS) ˜O(λ log2 βSIS) ˜O(λ log2 βSIS/ log q)

Space HMC κnd log q ˜O(λ2 log2 βSIS) ˜O(λ log2 βSIS) N/A

Time HMC κn(m + v)d ˜O(λ2 log2 βSIS) ˜O(λ log2 βSIS) N/A

CRT-packing supporting inter-slot operations. Let R = Z[X]/(Xd + 1)
and Rq = Zq[X]/(Xd + 1) for a usual choice of power-of-two d. It is known
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that Xd + 1 factors linearly (and thus Rq fully splits) for certain choices of q
(e.g., a prime q ≡ 1 mod 2d) and, in that case, one can use NTT for polynomial
multiplication in Rq in time O(d log d). Assume that we choose such an “NTT-
friendly” q. For 1 ≤ s ≤ d where s is a power of two, let R

(0)
q , . . . , R

(s−1)
q

be the polynomial rings of dimension d/s such that Rq = R
(0)
q × · · · × R

(s−1)
q

and R
(i)
q = Zq[X]/(P (i)(X)) for some polynomial P (i)(X) of degree d/s for all

0 ≤ i < s (which is obtained by the Chinese Remainder Theorem – CRT).
We use these CRT “slots” to store s messages in a single ring element. Thus,
if we have k messages in total, we can set the message vector dimension in a
commitment as v = k/s (instead of v = k in previous approaches).

This initial part of the CRT-packing idea seems easy, and indeed a possi-
ble application of CRT in lattice-based ZKPs is mentioned in [25] to perform
parallel proofs where there is no interaction between the messages in different
slots. We are, on the other hand, interested in applications such as range proofs
requiring “inter-slot” operations between messages in separate CRT slots, and
get a complete set of operations (see [15] for a discussion in the context of FHE).

First thing to note about the CRT-packing technique is that even if the
messages to be stored in CRT slots are short, the resulting element in Rq rep-
resenting s messages need not be so. This makes the technique inapplicable to
HMC, which require short message inputs (at least in the general case). More
importantly, there are two crucial hurdles we need to overcome: (1) it is not clear
how to enable inter-slot operations and make the ZKP work in this setting, and
(2) we need to make the proof one-shot in order not to lose the factor λ gained.

Let us write m = 〈m0, . . . ,ms−1〉 where m ∈ Rq and mi ∈ R
(i)
q for 0 ≤

i < s if m maps to (m0, . . . ,ms−1) under the CRT-mapping. In general, to
prove knowledge of a message b, the prover in the protocol needs to send some
“encoding” of the message as f = Encx(b) = x · b + ρ where x is a challenge and
ρ is a random masking value. Clearly, we do not want to send k encodings in
Rq as it does not result in any savings. Instead, our idea is to send k/s elements
in Rq, each encoding s messages, in a way that enables the verifier to “extract”
all k messages out of them. When the prover sends f = x · m + ρ (there may
be multiple such f ’s), for each 0 ≤ i < s, the verifier can compute fi = f mod
(q, P (i)(X)) = xi · mi + ρi as the extracted encodings where x = 〈x0, . . . , xs−1〉
and ρ = 〈ρ0, . . . , ρs−1〉. The main problem here is now that fi’s are encodings
of mi’s, but under possibly different xi’s, which circumvents interoperability of
distinct fi’s. For example, the sum fi+fj for i �= j does not result in an encoding
of the sum of messages under a common challenge x if xi �= xj .

To overcome this problem, our idea is to choose the challenge x = 〈x, . . . , x〉
for x ∈

⋂s−1
i=0 R

(i)
q such that all extracted encodings are under the same challenge

x. This means x must be of degree smaller than d/s and thus the challenge space
size is possibly greatly decreased.5 To make the proof one-shot, we choose the

5 We remark that earlier works [6,28] also considered choosing a challenge of degree d/s
for some s > 1 for the purpose of invertibility of challenges. However, our motivation
here is to make sure that x has the same element in all CRT slots.
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challenges to be polynomials of degree at most d/s − 1 with coefficients in Zp

such that pd/s = 22λ (i.e., there are 22λ challenges in total).6 Therefore, we need
d/s · log p = 2λ, which is satisfied by choosing d/s = λε2 and log p = 2/ε2. We
should also ensure log q > log p = 2/ε2 = 2 log2 q/ log2 βSIS. This holds assuming
log q < log2 βSIS/2, which is easily satisfied in most of the practical applications.

To have fast computation, we also set d = dSIS = O(λε2 log q), and hence
get s = O(log q). Recall that we have k messages in total and s slots in a single
ring element. As a result, for k = O(log q), it is enough to have v = k/s = O(1).
Overall, we end up with the asymptotic costs in the last column of Table 2, where
our technique has a factor log q saving in asymptotic computational time in
comparison to previous approaches without any compromise in communication.

An attractive example in practice where one would need a commitment to
k = O(log q) messages is a range proof on [0, 2k − 1]. Let us take a range proof
on � ∈ [0, 264 − 1] as a running example. In this case, our proof proceeds as
follows. We allow Rq to split into at least 64 factors, and thus use a single Rq

element to commit to all the bits of � (so committing to all the bits of � only
cost a single commitment with message vector dimension v = 1). In its initial
move, the prover sends some commitments and gets a challenge from the verifier.
Then, the prover responds with a single encoding in Rq (or 64 small encodings
that costs as much as a single element in Rq). From here, the verifier extracts
the encodings of all the bits, reconstructs the masked integer value � and checks
whether it matches the input commitment to �. In this setting, it is clear that
we require operability between different slots, and thus set the encodings of all
the bits to be under the same challenge x. For a ring dimension d = 512, the
infinity norm of a challenge can be as large as 231, which seems quite large.

Table 3. Comparison of non-interactive range proof sizes (in KB). “Ideal w/o CRT” is
a hypothetical scheme optimized for proof length. FFT denotes the maximum number
of FFT levels supported. Our proof sizes can be slightly reduced at the cost of reducing
the FFT levels. The full parameter setting details are given in the full version [13].

range width (N) N = 232 N = 264

# of batched proofs (ψ) 1 5 10 (d, FFT) 1 5 10 (d, FFT)

with “norm-optimal” challenges from [25] 161 745 1484 (256, 1) 443 2131 4274 (256, 2)

Ideal w/o CRT 52 113 180 (32, 5) 86 201 302 (16, 4)

Our Work: CRT-packed 58 130 202 (512, 5) 93 216 319 (512, 6)

An alternative to this approach is to use “norm-optimal” challenges from
[25] (named “optimal” in [25]) such that the infinity norm of a challenge is set
to 1, and thus the overall Euclidean norm of a challenge is minimized. In this
case, one needs to set the ring dimension d ≥ 256 to get a challenge space size
of at least 2256. However, this results in significantly longer proofs as shown
in Table 3. The reason behind this phenomenon is that one needs to encode
6 In this work, we consider a challenge space size of 22λ for λ-bit post-quantum security.
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64 values and with the “norm-optimal” challenges the cost of these encodings
and the commitments grow too much. The use of challenges with larger (even
much larger) norm does not seem to cause significant increase in the proof length,
which can be explained as follows. To do a range proof on 64-bit range, the
modulus q must be at least 264. Using UMC, where the message part does not
affect the hardness of finding binding collisions (in particular, M-SIS hardness),
such a large q already makes M-SIS very hard and M-LWE very easy. Therefore,
having a challenge with a large norm only brings the hardness level of M-SIS to
that of M-LWE, and results in a very compact proof.

We also add for comparison a hypothetical idealized range proof scheme
optimized for proof length in Table 3, where for this scheme we only check two
conditions: (1) q ≥ N and (2) M-SIS and M-LWE root Hermite factors are
less than or equal to 1.0045. More specifically, we go over all the values of the
ring dimension d ∈ {8, 16, . . . , 1024}, log q ∈ {log N, . . . , 100} and initial noise
distribution U({−B, . . . ,B}) for B ∈ {1, 2, 3}, and set the remaining parameters
so that the above security condition (2) is satisfied. Therefore, for the “ideal w/o
CRT” scheme we do not check whether the soundness proof of the protocol works
with the parameters set. Even with this advantage given, we see from Table 3
that our range proof, as expected, has approximately the same proof length as
“ideal w/o CRT”, and also achieves a significant speedup as the ring dimension
as well as the number of FFT levels supported is higher. One can see from [25,
Table 2] that going from 2 levels of FFT to 6 levels of FFT alone results in a
speedup of a factor more than 3.

When we allow the ring Rq to split into more than 64 factors, then the 64
subrings in which the message bits are encoded will not be fields and the structure
of Rq in these subring is lost. We are currently unable to make the soundness
proof of the binary proof go through in these subrings, whose structure is unclear.
On the other hand, we can make the binary proof work both in Rq using our
new result (Lemma 7) and in any field. Thus, we allow Rq to split into exactly
log N fields for a range proof of width N , which also gives the invertibility of
challenges and challenge differences at no cost. The reason why the scheme with
“norm-optimal” challenges cannot split into more than 22 = 4 factors is because
the invertibility of polynomials with coefficients as large as 216 is required when
one relies solely on the results of [25].

“NTT-friendly” tools for fully-splitting rings. [25] studies in detail how
cyclotomic rings split and the required invertibility conditions for short ring
elements. A main motivation in [25] for the invertibility of short elements can
be sketched as follows. In the hope of proving knowledge of a secret s (which
is usually a message-randomness pair (m, r)) that satisfies a certain relation
g(s) = t for public homomorphic function g and public t, one-shot proofs can
only convince the verifier of knowledge of s̄ such that g(s̄) = x̄t, where x̄ = x−x′

for some (distinct) challenges x, x′. If g is a commitment scheme and one later
opens t to a valid s′ such that g(s′) = t, then one can show that s′ = s̄/x̄ using
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the binding property of the commitment scheme provided that x̄ is invertible. In
our protocols, however, the relaxed relation proves knowledge of a secret message
m such that

g′(x̄m) = x̄t′

where g′ and t′ are the parts dependent on the message (see Definitions 4 and 6).
When one gets two relaxed openings (x̄0,m0) and (x̄1,m1), we have

g′(x̄0m0) = x̄0t
′

g′(x̄0m1) = x̄1t
′ =⇒

g′(x̄1x̄0m0) = x̄1x̄0t
′

g′(x̄0x̄1m1) = x̄0x̄1t
′ =⇒ x̄1x̄0m0 = x̄0x̄1m1, (3)

due to the binding property of the commitment scheme. On contrary to the
invertibility requirement, if the norm of each term is small relative to q, which
is often the case, we use our new result Lemma 7 to show that,

x̄0x̄1(m0 − m1) = 0 in Zq[X]/(Xd + 1) =⇒ m0 = m1. (4)

That is, we can conclude the equality of two message openings even for non-
invertible challenge differences. The lemma only requires q to be sufficiently
large without putting any condition on its “shape”, and thus enables the use of
an “NTT-friendly” modulus q.

Open Problems. Our CRT technique only allows us to gain an improvement
in terms of computation. A very interesting result would be to also have an
asymptotic/practical advantage in communication costs, which remains as an
open problem. Another interesting question is whether one can make the binary
proof work while having a fully-splitting Rq. This would allow us to exploit the
full potential of our CRT technique in its application to range proofs.

Roadmap. Section 3 is devoted to the introduction of the one-shot proof tech-
nique for non-linear polynomial relations. Our CRT-packing technique and other
new tools that enable faster proofs are detailed in Sect. 4, followed by an appli-
cation to range proofs. We apply our one-shot proof techniques to build efficient
ZKPs of useful relations such as one-out-of-many proofs in Sect. 5. Further appli-
cations to advanced cryptographic tools such as ring signatures and anonymous
credentials are discussed under Sect. 6. Some formal definitions, further discus-
sions and proofs of lemmas/theorems are given in the full version [13].

2 Preliminaries

In addition to the standard notations, for a vector of polynomials p, HW(p)
denotes the Hamming weight of the coefficient vector of p, and Dr

σ denotes
the discrete normal distribution with center zero and standard deviation σ over
Z

r. The formal definition and the norm bounds of normal distribution, and
relations between different norms are recalled in the full version. We summarize
the rejection sampling [23], used to make prover’s responses independent of secret
information, in Algorithm 1 and its full statement is given in the full version.
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2.1 Vandermonde Matrices and Some Basics of Linear Algebra

We recall some basics about Vandermonde matrices and from Linear Algebra
relevant to our discussions (see e.g. [17] for more details). We denote the n-
dimensional identity matrix by In, and assume that the matrices are defined
over a ring R. Let A be a n×n square matrix and det(A) denote its determinant.
The adjugate adj(A) of A, defined as the transpose of the cofactor matrix of A,
satisfies the following property

adj(A) · A = A · adj(A) = det(A) · In. (5)

Therefore, if A is non-singular, adj(A) = det(A) · A−1. A (k + 1)-dimensional
Vandermonde matrix V is defined as below for some x0, . . . , xk ∈ R, with its
determinant satisfying the following property

V =

⎛

⎜

⎜

⎝

1 x0 x2
0 · · · xk

0

1 x1 x2
1 · · · xk

1

: : : : :

1 xk x2
k · · · xk

k

⎞

⎟

⎟

⎠

, and det(V ) =
∏

0≤i<j≤k

(xj − xi). (6)

The following is an easy consequence of (6).

Fact 1. The Vandermonde determinant det(V ) has
(
k+1
2

)

multiplicands of the
form xj − xi with j �= i.

As given in [14], the Vandermonde matrix inverse V −1, when it exists, has the
following structure
⎛

⎜

⎜

⎜

⎜

⎜

⎝

∗
(x0−x1)(x0−x2)···(x0−xk)

∗
(x0−x1)(x1−x2)···(x1−xk)

· · · ∗
(x0−xk)(x1−xk)···(xk−1−xk)

∗
(x0−x1)(x0−x2)···(x0−xk)

∗
(x0−x1)(x1−x2)···(x1−xk)

· · · ∗
(x0−xk)(x1−xk)···(xk−1−xk)

...
...

...
...

1
(x0−x1)(x0−x2)···(x0−xk)

−1
(x0−x1)(x1−x2)···(x1−xk)

· · · (−1)k

(x0−xk)(x1−xk)···(xk−1−xk)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (7)

where ∗ denotes some element in the ring R, computed as a function of xi’s. It
is clear from this structure that V −1 exists over R if and only if the differences
xi − xj for 0 ≤ i < j ≤ k are invertible over R. The structure in (7) helps us to
visualize the structure of adj(V ) using the fact that adj(V ) = det(V ) · V −1 if
V is non-singular. In particular, we have the following fact.

Fact 2. Let (Γ0, . . . , Γk) be the last row of adj(V ). Then,

Γi = (−1)i+k
∏

0≤l<j≤k ∧ j,l �=i

(xj − xl),

Algorithm 1. Rej(z, c, φ, T )

1: σ = φT ; μ(φ) = e12/φ+1/(2φ2); u ← [0, 1)

2: if u > ( 1
μ(φ)

) · exp
(

−2〈z ,c〉+‖c‖2

2σ2

)

then return 0 � means abort in the protocols.

3: else return 1
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and Γi has
[(

k+1
2

)

− k
]

= k(k−1)
2 multiplicands for all 0 ≤ i ≤ k.

Fact 2 follows by observing that k multiplicands in det(V ) are cancelled out by
the corresponding denominator in V −1.

2.2 Module-SIS and Module-LWE Problems

Our schemes’ security relies on the hardness of Module-SIS (M-SIS) (defined in
“Hermite normal form” as in [3]) and Module-LWE (M-LWE) problems [19].

Definition 1. (M-SISn,m,q,βSIS
). Given A = [ In ‖A′ ] with A′ ← U(R

n×(m−n)
q ),

the goal is to find z ∈ Rm
q such that Az = 0 mod q and 0 < ‖z‖ ≤ βSIS.

Definition 2. (M-LWEn,m,q,χ). Let χ be a distribution over Rq and s ← χn

be a secret key. Define LWEq,s as the distribution obtained by sampling a ← Rn
q ,

e ← χ and outputting (a, 〈a, s〉 + e). The goal is to distinguish between m given
samples from either LWEq,s or U(Rn

q , Rq).

The above definition is a standard variant of decision M-LWE problem where the
secret is sampled from the error distribution. More discussion about the security
aspects is given in the full version [13].

2.3 Σ-protocols

Σ-protocols are a type of interactive proof systems between a prover P and a
verifier V. It is 3-move as in Protocol 1. A protocol transcript is accepting if it
is accepted by the verifier. Σ-protocols are defined for a relation R, and for a
(v, w) ∈ R, the quantity w is said to be a witness for v. We use the generalized
definition of Σ-protocols from [14] that extends the one in [5].

Definition 3 ([14, Definition 4]). For relations R,R′ with R ⊆ R′, (P,V) is
called a Σ-protocol for R,R′ with completeness error α, a challenge space C,
public-private inputs (v, w), if the following properties are satisfied.

• Completeness: An interaction between an honest prover and an honest ver-
ifier is accepted with probability at least 1 − α whenever (v, w) ∈ R.

• (k + 1)-special soundness: There exists an efficient PPT extractor E that
computes w′ satisfying (v, w′) ∈ R′ given (k+1) accepting protocol transcripts
(a, x0, z0), . . . , (a, xk, zk) with distinct xi’s for 0 ≤ i ≤ k. We refer to this
process as witness extraction.

• Special honest-verifier zero-knowledge (SHVZK): There exists an effi-
cient PPT simulator S that outputs (a, z) given v in the language of R and
x ∈ C such that (a, x, z) is indistinguishable from an accepting transcript
produced by a real run of the protocol.

As seen from above, the special soundness is relaxed in the sense the verifier is
only convinced of the proof of knowledge of a witness for the relation R′. This is
usually referred to as the soundness gap. This relaxation is necessary for efficient
algebraic proofs and such relaxed proofs are sufficient for our applications.
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2.4 Commitment Schemes

We define the commitment schemes UMC (Unbounded-Message Commitment)
[3,6] and HMC (Hashed-Message Commitment) (see, e.g., [3,14]). Both hiding
and binding properties are computational (see the full version [13] for formal
definitions of commitments, their properties and more discussion). Let n,m,B, q
be positive integers, and assume that we commit to v-dimensional vectors over
Rq for v ≥ 1. As in [3,6], the opening algorithm Open is relaxed in the sense that
there is an additional input y ∈ Rq, called relaxation factor, to Open algorithm
along with a message-randomness pair (m′, r′) such that Open checks if y · C =
Comck(m′; r′). The instantiation of HMC with m > n is as follows.

• CKeygen(1λ): Pick G′
r ← R

n×(m−n)
q and Gm ← Rn×v

q . Output ck = G =

[Gr ‖Gm ] ∈ R
n×(m+v)
q where Gr = [ In ‖G′

r ]. We assume that Commit and
Open takes ck as an input implicitly.

• Commit(m): Pick r ← {−B, . . . ,B}md. Output

Comck(m; r) = G · (r,m) = Gr · r + Gm · m.

• Open(C, (y,m′, r′)): If Comck(m′; r′) = yC and ‖(r′,m′)‖ ≤ γcom, return 1.
Otherwise, return 0.

Lemma 1. If M-LWEm−n,n,q,U({−B,...,B}d) problem is hard, then HMC is com-
putationally hiding. If M-SISn,m+v,q,2γcom

is hard, then HMC is computationally
strong γcom-binding with respect to the same relaxation factor y.

The instantiation of UMC is also similar and defined as below for m > n + v.

• CKeygen(1λ): Pick G′
1 ← R

n×(m−n)
q and G′

2 ← R
v×(m−n−v)
q . Set G1 =

[ In ‖G′
1 ] and G2 = [0v×n||Iv ‖G′

2 ]. Output ck = G =
[

G1

G2

]

∈ R
(n+v)×m
q .

We assume that Commit and Open takes ck as an input implicitly.
• Commit(m): Pick r ← {−B, . . . ,B}md. Output

Comck(m; r) = G · r + (0n,m).

• Open(C, (y,m′, r′)): If Comck(m′; r′) = yC and ‖r′‖ ≤ γcom, return 1. Oth-
erwise, return 0.

Observe from the above definition that only the norm of r′ is checked in the
Open algorithm of UMC whereas that of (m′, r′) is checked in HMC. Also, our
definition of Open for UMC is slightly different than that in [3] because we do
not multiply the relaxation factor with the message as the invertibility of the
relaxation factor is not guaranteed in our case.

Lemma 2. ([3]). If M-LWEm−n−v,n+v,q,U({−B,...,B}d) problem is hard, then
UMC is computationally hiding. If M-SISn,m,q,2γcom

is hard, then UMC is com-
putationally γcom-binding with respect to the same relaxation factor y.
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We use the same notation for both of the commitment schemes and will clar-
ify in the relevant sections which specific instantiation is used. We say that
(y,m′, r′) is a valid opening of C if Open(C, (y,m′, r′)) = 1. A valid opening
(y,m′, r′) with y = 1 is called an exact valid opening. We call the message part
m′ of an opening as message opening, and if (y,m′, r′) is a valid opening such
that yC = Comck(ym′; r′), then we call m′ a relaxed message opening with
relaxation factor y. It is also straightforward that both UMC and HMC sat-
isfy the following homomorphic properties: Comck(m0; r0) + Comck(m1; r1) =
Comck(m0 +m1; r0 +r1) and c ·Comck(m; r) = Comck(c ·m; c ·r) for c ∈ Rq.

3 One-Shot Proofs for Non-Linear Polynomial Relations

In this section, we focus on lattice-based zero-knowledge proofs in a general frame-
work using homomorphic commitments, and introduce our techniques to get effi-
cient proofs. Even though such a setting is also mostly shared with DL-based
Σ-protocols using homomorphic commitments, the main challenges described
here are not encountered in those cases. Since our main concern is about the
soundness of the protocol, in this section, we omit the discussion about the zero-
knowledge property, which is later obtained using a standard rejection sampling
technique. We always consider homomorphic commitments when referring to
“commitment” and assume that all the elements are in a ring R.

3.1 The Case for Linear Relations (2-Special Soundness)

If we investigate the (underlying) one-shot Σ-protocols from [3,6,22,23], we see
the following. The common input of the protocol is a commitment C1 to the
prover’s witness and the prover sends an initial commitment C0.7 Then, the
verifier sends a random challenge x ← C, which is responded by the prover as
(f ,z), and (f ,z) is used by the verifier as a message-randomness pair for a
commitment computation.8 More precisely, the verification checks if C0 +xC1 =
Comck(f ; z) holds and f ,z have small norm. This is equivalent to the structure
represented in Protocol 1 for k = 1. From here, when the extractor gets two
valid protocol transcripts (C0, x0,f0,z0), (C0, x1,f1,z1) using the same initial
message C0, and different challenges x0 and x1, the extractor obtains

C0 + x0C1 = Comck(f0; z0)
C0 + x1C1 = Comck(f1; z1)

=⇒ (x1 − x0)C1 = Comck(f1−f0; z1−z0). (8)

At this stage, it is not possible to obtain a valid exact opening of C1 unless
(x1 − x0)−1 is guaranteed to be short due to the shortness requirements of valid

7 The reason behind indexing becomes clear in what follows.
8 In certain proofs, the use of UMC allows the prover to respond only with the ran-

domness part z. In such a case, f need not be transmitted and can be assumed to
be set appropriately by the verifier.
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P((ck, C0, . . . , Ck), (mk, rk)) V(ck, C0, . . . , Ck)

x x ← C

f , z ← F (· · · ) f , z

‖f‖
?

≤ Tf , ‖z‖
?

≤ Tz

C0 + xC1 + · · · + xkCk
?
=, fz

Protocol 1. Structure of a (k + 1)-special sound Σ-protocol. Tf , Tz ∈ R
+ are some

pre-determined values that vary among different proofs.

openings for lattice-based commitment schemes.9 Unless ensured by design, there
is no particular reason why the inverse term (x1 − x0)−1 would be short. In the
current state of affairs, the largest set of challenges with short challenge difference
inverses is monomial challenges [5] used with ring variants of lattice assumptions.
Here, only 2(x1−x0)−1 is guaranteed to be short and thus the extractor can only
get the openings of 2C1. As discussed previously, for a ring dimension of d, the
cardinality of the monomial challenge space is only 2d, which is typically smaller
than 212 in practice. This small challenge space problem causes major efficiency
drawbacks in terms of both computation and communication as the protocol is
required to be repeated many times to get a negligible soundness error (that
is, the same computation and communication steps are repeated multiple times,
resulting in a multi-fold increase in both computation and communication). The
situation is even worse in terms of the number of repetitions when binary chal-
lenges or Stern’s framework [29] is used where the protocol is required to be
repeated at least λ times for λ-bit security.

The idea for a one-shot proof is to make use of (8) without any inverse
computation by observing that (f1−f0,z1−z0) is a valid opening of (x1−x0)C1

as long as f1 − f0 and z1 − z0 are short, which is ensured by norm checks
on f ,z in each verification. If one can prove that having this relaxed case is
sufficient and also violates the binding property of the commitment (i.e., that
it allows one to solve a computationally hard problem), then the soundness of
the protocol is achieved (with a relaxed relation R′ as in Definition 3) with
no challenge difference inverses involved. This eliminates the need for challenge
differences to have short inverses and enables one to use exponentially large
challenge spaces, resulting in one-shot proofs. The main technical difficulty here
is handling soundness gap, where the extractor only obtains an exact opening of
(x1 − x0)C1 (rather than C1, which is the commitment to the prover’s witness).

9 Recall that UMC allows an unbounded message opening, but still the randomness
is required to be short.
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3.2 Generalization to Degree k > 1 ((k + 1)-Special Soundness)

As can be seen from (8), the 2-special sound case is quite restrictive as it only
allows witness extraction from linear (first degree) relations. On the other hand,
the ability to work with non-linear relations is a must in recent efficient proofs
[7–9,16], which renders the existing lattice-based one-shot techniques inapplica-
ble. Therefore, we generalize our setting, and suppose that we have a degree-k
polynomial relation ((k +1)-special sound Σ-protocol), k ≥ 1, with the structure
given in Protocol 1. Note that since the extractor only knows that verification
steps hold, unaware of how any component is generated, other steps but those in
the verification is not important. Therefore, we write all the Ci’s as a common
input whereas in the actual protocol a subset of them can be generated during a
protocol run. The commitment to the prover’s witness (mk, rk) is Ck.

The witness extraction, in this case, works by the extractor obtaining k + 1
accepting protocol transcripts for distinct challenges x0, . . . , xk with the same
input (C0, . . . , Ck), and responses (f0,z0), . . . , (fk,zk), represented as below.

⎛

⎜
⎜
⎝

1 x0 x2
0 · · · xk

0

1 x1 x2
1 · · · xk

1

: : : : :
1 xk x2

k · · · xk
k

⎞

⎟
⎟
⎠

·

⎛

⎜
⎜
⎝

C0

C1

:
Ck

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

Comck(f0; z0)
Comck(f1; z1)

:
Comck(fk; zk)

⎞

⎟
⎟
⎠

. (9)

We have seen that using the aforementioned relaxed opening approach, one can
extract a witness from a linear relation (8) in one shot. Now a natural general-
ization is to ask “Can we extract a witness from a non-linear relation (9) as in
Protocol 1 in one shot?”

Naive approach and previous multi-shot approach. Denoting (9) as
V ·c = b, the matrix V is a Vandermonde matrix. A straightforward idea to obtain
the openings of Ci’s is to multiply both sides of (9) by V −1, which gives c = V −1 ·b.
From here, using the homomorphic properties of the commitment scheme, we can
get potential “openings” of Ci’s. However, one needs to make sure that V −1 exists
overR and that it has short entries so that these “openings” are valid. The way [14]
deals with this issue is by making use of monomial challenges from [5]. Using the
structure of V −1 in (7), it is argued in [14] that the entries in 2kV −1 are short by
the fact that doubled inverse of challenge differences (i.e., 2(xj − xi)−1) are short
when monomial challenges are used. Thus, this approach still maintains the draw-
back of requiring multiple protocol repetitions to achieve a negligible soundness
error, and does not address our question.

Our one-shot solution. Now, let us see how we develop a one-shot proof
technique for non-linear relations. Using (5), we multiply both sides of (9) by
adj(V ), and obtain

adj(V ) · V · c = adj(V ) · b =⇒ det(V ) · c = adj(V ) · b. (10)
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Note that det(V ) is just some scalar in R, and we obtain potential relaxed “open-
ings” of Ci’s as a result of the multiplication adj(V ) · b. In particular, for the
commitment Ck of the witness, we have

det(V ) · Ck =
k∑

i=0

Γi · Comck(f i; zi) = Comck(
k∑

i=0

Γi · f i;
k∑

i=0

Γi · zi), (11)

where Γi = (−1)i+k
∏

0≤l<j≤k∧j,l �=i(xj − xl) by Fact 2. As a result, we get a
relaxed opening of Ck, or more precisely, an exact opening of det(V ) · Ck as
(m̂k, r̂k) =

(
∑k

i=0 Γif i,
∑k

i=0 Γizi

)

. Provided that the norms of m̂k and r̂k

are small, this gives a valid opening and thus can be related to a hard lattice
problem (M-SIS, in particular). It is important to observe here that m̂k and r̂k

do not involve any inverse term and can be guaranteed to be short by ensuring
that Γi’s are short. The opening of other Ci’s can also be recovered in a similar
fashion, but the case for Ck is sufficient for our applications.

When k = 1, i.e., when the protocol is 2-special sound, det(V ) = (x1 − x0)
and (Γ0, Γ1) = (−1, 1). Therefore, we exactly obtain (8) as a special case of
(11) with k = 1. That is, we get the results of the previous approaches from
[3,6,22,23] as a special case of ours.

3.3 New Tools for Compact Proofs

Let us analyze our generalized solution and introduce our new tools to get com-
pact proofs. The results can be easily used in other protocols that use a chal-
lenge space of the form defined in (12) as they are independent of the low-level
details of a protocol. Since the most commonly used challenge spaces (e.g., in
[3,4,11,24,25]) for one-shot proofs are special cases of (12), our results are widely
applicable. Let R = R = Z[X]/(Xd + 1) and Rq = Zq[X]/(Xd + 1) for q ∈ Z

+.
For w ≤ d and p ≤ q/2, let Cd

w,p be the challenge space defined as

Cd
w,p = {x ∈ Z[X] : deg(x) ≤ d − 1 ∧ HW(x) = w ∧ ‖x‖∞ = p }. (12)

It is easy to observe that ‖x‖1 ≤ pw for any x ∈ Cd
w,p and |Cd

w,p| =
(

d
w

)

· (2p)w,
which is, for example, larger than 2256 for (d,w, p) = (256, 60, 1). We define
ΔCd

w,p to be the set of challenge differences excluding zero.

Bound on the product of challenge differences.

Lemma 3. For any y1, . . . , yn ∈ ΔCd
w,p, the following holds

‖
n∏

i=1

yi‖∞ ≤ (2p)n · wn−1, and ‖
n∏

i=1

yi‖ ≤
√

d · (2p)n · wn−1.
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Bound on the relaxation factor: det(V ).

Lemma 4. Let κ =
(
k+1
2

)

= k(k+1)
2 . For the (k + 1)-dimensional Vandermonde

matrix V defined in (9) using the challenge space Cd
w,p in (12),

‖det(V )‖∞ ≤ (2p)κ · wκ−1.

Proof. By Fact 1, det(V ) has κ =
(
k+1
2

)

multiplicands where each multiplicand
is in ΔCd

w,p. The result follows from Lemma 3. ��

Bound on the extracted witness norm: adj(V ) × (openings of b).

Lemma 5. For k ≥ 1 and (m̂k, r̂k) =
(
∑k

i=0 Γif i,
∑k

i=0 Γizi

)

where Γi =
∏

0≤l<j≤k∧j,l �=i(xj − xl), the following holds, for κ′ = k(k − 1)/2,

– ‖m̂k‖ ≤ (k + 1) · d · (2p)κ′ · wκ′−1 · maxi ‖f i‖, and
– ‖r̂k‖ ≤ (k + 1) · d · (2p)κ′ · wκ′−1 · maxi ‖zi‖.

The proofs of Lemmas 3 and 5 are provided in the full version [13].

Reducing extracted witness norm in proofs with non-linear relations.
In some proofs with non-linear polynomial relations such as our one-out-of-many
proof, the extractor obtains an opening with a relaxation factor y of some compo-
nent that is witness of a sub-protocol. Since the invertibility of y is not ensured,
when this opening is used in the non-linear polynomial relation, the relaxation
factor also gets exponentiated by the degree k > 1. In the end, instead of get-
ting det(V ) as the overall relaxation factor, we end up with relaxation factor
yk · det(V ). We use the lemma below to show that even though we cannot
completely eliminate the extra term yk, we can eliminate its exponent k. This
results in obtaining an extracted witness with a smaller norm, and in turn, helps
in getting shorter proofs. The proof of Lemma 6 is given in the full version.

Lemma 6. Let f, g ∈ R = Z[X]/(Xd +1). If f ·gk = 0 in Rq = Zq[X]/(Xd +1)
for some k ∈ Z

+, then f · g = 0 in Rq.

4 New Techniques for Faster Lattice-Based Proofs

In this section, we go into the details of our new techniques to get computation-
efficient proofs. We first show a lemma that enables one to prove that if a product
of polynomials is equal to zero in Rq and the norm of each factor is sufficiently
small, then there must be a factor which is exactly equal to zero. This result
works for any sufficiently large q, enabling the use of a modulus suitable for fast
computation such as an “NTT-friendly” modulus.

Lemma 7. Let f1, . . . , fn ∈ R for some n ≥ 1. If
∏n

i=1 fi = 0 in Rq and
q/2 > ‖f1‖∞ ·

∏n
i=2 ‖fi‖1 , then there exists 1 ≤ j ≤ n such that fj = 0.
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Proof. (Lemma 7). Using standard norm relations in R and the assumption on
q, we have

‖
s∏

i=1

fi‖∞ ≤ ‖f1‖∞ ·
n∏

i=2

‖fi‖1 < q/2.

Therefore,
∏n

i=1 fi = 0 holds over R. Since Xd + 1 is irreducible over Q, (at
least) one of the multiplicand fi’s must be zero. ��

Note that Lemma 7 requires all the multiplicands to have bounded norm whereas
there is no such requirement in Lemma 6. Therefore, we are unable to use
Lemma 7 for the purpose of the use of Lemma 6 described previously as there is
no norm-bound on a multiplicand in the place Lemma 6 is used (see how these
lemmas are used in the soundness proofs for more details). Lemma 7 is used in
the binary proof to argue that y0y1y2b̂(y− b̂) = 0 in Rq for some (non-zero) chal-
lenge differences y, y0, y1, y2 implies b̂ = yb for a bit b ∈ {0, 1} without requiring
invertibility of any challenge difference (see Sect. 5.1).

4.1 Supporting Inter-slot Operations on CRT-packed Messages

Now, we can go into the details of our CRT packing technique. Define f =
Encx(m) = x · m + ρ ∈ Rq as an encoding of a message m under a challenge x.
This encoding is widely used in proofs of knowledge as a “masked” response to a
challenge x. An important advantage of this encoding over a commitment is that
the storage cost of an encoding is at most d log q whereas that of a commitment
is nd log q for HMC and (n + v)d log q for UMC. Therefore, for a typical module
rank of, say, 4, a commitment is 4× more costly than an encoding.

There are known methods to choose a modulus q such that Xd +1 splits into
s factors, in which case, Rq splits into s fields and we get Rq = R

(0)
q ×· · ·×R

(s−1)
q .

In the case that Xd + 1 splits into more than s factors, but we only want to use
s slots, we still have Rq = R

(0)
q × · · · × R

(s−1)
q where R

(i)
q = Zq[X]/(P (i)(X)) for

some polynomial P (i)(X) of degree d/s. However, R
(i)
q ’s are not a field in that

case as P (i)(X)’s are not irreducible over Zq.
As discussed previously, when we use these s slots to pack s messages in a

single ring element, we have

f = Encx(m) = x · m + ρ = 〈x0m0 + ρ0, . . . , xs−1ms−1 + ρs−1〉, (13)

where x = 〈x0, . . . , xs−1〉, m = 〈m0, . . . ,ms−1〉 and ρ = 〈ρ0, . . . , ρs−1〉 in the
CRT-packed representation. In this case, parallel additions are easy as

Encx(〈m0, . . . , ms−1〉) + Encx(〈m′
0, . . . , m

′
s−1〉) = Encx(〈m0 + m′

0, . . . , ms−1 + m′
s−1〉).

Parallel multiplication is also possible as Encx(m)·Encx(m′) = m·m′·x2+c1x+c0
for c0, c1 only dependent on m,m′, ρ, ρ′, all of which are known to the prover in
advance of his first move. Therefore, the prover can prove that the coefficient
of x2 is the product of m and m′, and thus proving the relation in parallel
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for all CRT slots.10 Addition and multiplication alone, however, do not provide
a complete set of operations (see [15] for a discussion in the context of FHE).
Given an encoding of m, our main requirement is to have the ability to extract all
encodings in the CRT slots of m in a way that allows further operations among
extracted encodings. That is, all extracted encodings must be under the same
challenge x, which translates to requiring x = 〈x, . . . , x〉 for x ∈

⋂s−1
i=0 R

(i)
q . As a

result, when we use s slots, the degree of a challenge can be at most d/s−1. With
this, from an encoding f = Encx(〈m0, . . . ,ms−1〉), anyone can extract encodings
by computing

fi = Encx(mi) = f mod (q, P (i)(X)) = x · mi + ρi = Encx(mi)

for all 0 ≤ i ≤ s−1. Conversely, given encoding Encx(mi)’s for all 0 ≤ i ≤ s−1,
anyone can compute an encoding Encx(〈m0, . . . ,ms−1〉).

Even more, with this choice of the challenge x = 〈x, . . . , x〉 for x ∈
⋂s−1

i=0 R
(i)
q ,

we get invariance of the challenge under any permutation σ on CRT slots.
That is, for any permutation σ, we have σ(Encx(m)) = Encx(σ(m)). From
here, one can perform any inter-slot operation, and may even not require pack-
ing/unpacking of the messages in some applications. In our application to the
range proof, extraction of the slots is sufficient and we refer to [15] for more on
permutations. In our approach, an encoding and a commitment per message slot
costs, respectively, at most d log q/s bits and (n+v) log q/s bits, which are much
cheaper than a commitment to a single message.

4.2 Using CRT-packed Inter-slot Operations in Relaxed Range
Proof

In this section, we introduce the first application of our ideas to Σ-protocols
where the proof is relaxed as described in Sect. 2.3. In all of our protocols, the
prover aborts if any rejection sampling step (Algorithm 1) returns 0, and our
protocols are honest-verifier zero-knowledge for non-aborting interactions. For
most of the practical applications, the protocol is made non-interactive, and
thus having only non-aborting protocols with the zero-knowledge property does
not cause an issue. Nevertheless, the protocols can be easily adapted to be zero-
knowledge for the aborting cases using a standard technique from [5].

Our first application is a range proof that allows an efficient aggregation in
the sense that the prover can prove that a set of committed values packed in
a single commitment falls within a set of certain ranges. Let ψ ∈ Z

+, �(i) ∈
[0, Ni) be prover’s values for 1 ≤ i ≤ ψ and Ni = 2ki with k = k1 + · · · +
kψ, and s be the smallest power of two such that s ≥ max{k1, . . . , kψ}. For
simplicity, we use base β = 2, but the result can be generalized to other base
values β. Binary case gives the the most compact proofs in practice. Assume
that Rq = Zq[X]/(Xd +1) splits into exactly s fields such that Rq = R

(0)
q ×· · ·×

R
(s−1)
q and R

(i)
q = Zq[X]/(P (i)(X)) for some irreducible polynomial P (i)(X)

10 We believe this is the application of CRT mentioned in [25].
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of degree d/s for all 0 ≤ i < s. Write �(i) = (b(i)0 , . . . , b
(i)
ki−1) in the binary

representation and define �
(i)
crti = 〈b(i)0 , . . . , b

(i)
ki−1〉. The exact relations proved

by our “simultaneous” range proof is given in Definition 4. We show in the
full version of the manuscript [13] that the relaxed range proof is sufficient for
an application in anonymous credentials. Such a “simultaneous” range proof is
useful when showing a credential that a set of attributes such as age, expiry
date, residential postcode etc. fall into some respective ranges, and this can be
achieved with a single commitment and a single proof using our techniques.

Definition 4. The following defines the relations for Protocol 2 for T , T̂ ∈ R
+.

Rrange(T ) =
{

((ck, V ), (�(1), . . . , �(ψ), r)) : ‖r‖ ≤ T ∧
V = Comck(�(1), . . . , �(ψ); r) ∧ �(i) ∈ [0, Ni) ∀1 ≤ i ≤ ψ

}

,

R′
range(T̂ ) =

{

((ck, V ), (x̄, �(1), . . . , �(ψ), r̂)) : ‖r̂‖ ≤ T̂ ∧ x̄ ∈ ΔCd/s
w,p ∧

x̄V =Comck(x̄�(1), . . . , x̄�(ψ); r̂) ∧ �(i) ∈ [0, Ni) ∀1 ≤ i ≤ ψ

}

.

The full description of the range proof is given in Protocol 2 where the
commitment scheme is instantiated with UMC and φ1, φ2 are parameters deter-
mining the rejection sampling rate. The first part of the proof (Steps 4 and 5
in the verification, and its relevant components) uses the binary proof idea from
[7,14] to show that f

(i)
j ’s are encodings of bits, but the proof is done in par-

allel CRT slots. Observe in Protocol 2 that f (i) = x · 〈b(i)0 , . . . , b
(i)
ki−1,0

s−ki〉 +

〈a(i)
0 , . . . , a

(i)
ki−1,0

s−ki〉 = x · �
(i)
crti + a

(i)
crti where 0s−ki denotes a zero vector of

dimension s − ki. Therefore, we have, for each 1 ≤ i ≤ ψ,

f (i)(x − f (i)) = x2 · �
(i)
crti(1 − �

(i)
crti) + x · a

(i)
crti(1 − 2�

(i)
crti) − (a(i)

crti)
2

Since there is no x2 term (i.e., the coefficient of x2 is zero) on the left hand side
of Step 5 in the verification, we get �

(i)
crti(1 − �

(i)
crti) = 0 when Step 5 is satisfied

for 3 distinct challenges x. This gives us

〈b(i)0 (1−b
(i)
0 ), . . . , b(i)ki−1(1−b

(i)
ki−1),0

s−ki〉 = 0 =⇒ b
(i)
j (1−b

(i)
j ) = 0 in R(j)

q (14)

for each 0 ≤ j < s − ki. This fact is then used to prove that b
(i)
j ’s are binary.

However, since the proof is relaxed, we need to deal with more complicated issues
and give the full details in the proofs of Theorem 1.

The second part of the proof is a standard argument to show that the bits
b
(i)
0 , . . . , b

(i)
ki−1 construct a value �(i) for each 1 ≤ i ≤ ψ. We assumed Ni’s are

of the form Ni = 2ki for ki ≥ 1. This can be extended to work for any range
as described in the full version [13], where we also discuss about the practical
aspects of the range proof. The following states the properties of Protocol 2.

Theorem 1. Let γrange = 4
√

3φ2pwBmd. Assume q > max{N1, . . . , Nψ},
d ≥ 128,11 Rq splits into exactly s fields and UMC is hiding and γrange-binding.
11 The assumption d ≥ 128 is put merely to use a constant factor of 2 when bounding

the Euclidean norm of a vector following normal distribution.
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Prange((ck, V ), (
(1), . . . , 
(ψ); r)) Vrange(ck, V )

1: rb, rc ← {−B, . . . , B}md

2: ra, rd, re ← Dmd
φ2T2 for T2 = pwB

√
3md

3: for i = 1, . . . , ψ do

4: a
(i)
0 , . . . , a

(i)
ki−1 ← D

d/s
φ1T1

for T1 = p
√

kw

5: a
(i)
crti = CRT

−1(a
(i)
0 , . . . , a

(i)
ki−1,0

s−ki)

6: 

(i)
crti = CRT

−1(b
(i)
0 , . . . , b

(i)
ki−1,0

s−ki)

7: B = Comck(

(1)
crti, . . . , 


(ψ)
crti; rb)

8: A = Comck(a
(1)
crti, . . . , a

(ψ)
crti; ra)

9: C = Comck(a
(1)
crti(1 − 2


(1)
crti), . . . , a

(ψ)
crti(1 − 2


(ψ)
crti); rc)

10: D = Comck(−(a
(1)
crti)

2, . . . , −(a
(ψ)
crti)

2; rd)

11: E = Comck(e; re) A, B, C, D, E

x x ← Cd′
w,p for d′ = d/s

12: for i ∈ [1, ψ], j ∈ [0, ki) do

13: f
(i)
j = x · b

(i)
j + a

(i)
j

f crt := (f
(1)
0 , . . . , f

(ψ)
kψ−1), b := (b

(1)
0 , . . . , b

(ψ)
kψ−1)

14: Rej(f crt, xb, φ1, p
√

kw)

15: zb = x · rb + ra, zc = x · rc + rd

16: z = x · r + re

17: Rej((zb, zc, z), x(rb, rc, r), φ2, T2)

If aborted, return ⊥ . f crt, zb, zc, z

1: for i = 1, . . . , ψ do

2: f (i) = CRT
−1(f

(i)
0 , . . . , f

(i)
ki−1,0

s−ki)

3: ‖zb‖ , ‖zc‖ , ‖z‖
?

≤ 2φ2T2

√
md

4: xB + A
?
= Comck(f (0), . . . , f (ψ); zb)

g := (f (0)(x − f (0)), . . . , f (ψ)(x − f (ψ)))

5: xC + D
?
= Comck(g; zc)

6: xV + E
?
= Comck(v; z)

Protocol 2. Σ-protocol for Rrange and R′
range. The vectors e and v are defined below.

e :=

(

k1−1
∑

j=0

2ja
(1)
j , . . . ,

kψ−1
∑

j=0

2ja
(ψ)
j

)

, v :=

(

k1−1
∑

j=0

2jf
(1)
j , . . . ,

kψ−1
∑

j=0

2jf
(ψ)
j

)

over Rq.
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Then, Protocol 2 is a 3-special sound Σ-protocol (as in Definition 3) for the
relations Rrange(B

√
md) and R′

range(γrange) with a completeness error 1 −
1/(μ(φ1)μ(φ2)) for μ(φi) = e12/φi+1/(2φ2

i ), i = 1, 2.

Proof (Theorem 1). Completeness and SHVZK proofs are in the full version.

3-special soundness: Given 3 accepting protocol transcripts, we have (A,B,C,
D,E, x,f crt,zb,zc,z), (A,B,C,D,E, x′,f ′

crt,z
′
b,z

′
c,z

′), (A,B,C,D,E, x′′,f ′′
crt,

z′′
b ,z′′

c ,z′′), with f = (f (1), . . . , f (ψ)), f ′ = (f ′(1), . . . , f ′(ψ)) and f ′′ = (f ′′(1),
. . . , f ′′(ψ)) computed as in the verification. We split the proof into two parts: binary
proof and range proof.
Binary proof. By Step 4 in the verification, we have

xB + A = Comck(f ; zb), (15)
x′B + A = Comck(f ′; z′

b), (16)
x′′B + A = Comck(f ′′; z′′

b ). (17)

Subtracting (16) from (15), we get (x − x′) · B = Comck(f − f ′; zb − z′
b). Thus,

for y := x − x′, we get exact valid openings of yB such that

yB = Comck(f − f ′; zb − z′
b) =: Comck(b̂; r̂b). (18)

Note that ‖r̂b‖ = ‖zb − z′
b‖ ≤ 4

√
3φ2pwBmd = γrange, proving the claimed

bound for R′
range. Multiplying (15) by y and using (18) gives

yA = Comck(yf ; yzb) − xyB = Comck(yf − xb̂; yzb − xr̂b)
= Comck(xf ′ − x′f ; xz′

b − x′zb) =: Comck(â; r̂a).
(19)

Observe that yf = xb̂ + â by the definition of â. By the Chinese Remainder
Theorem, the equality holds in each CRT slot. Using Step 5 of the verification
in a similar manner, we get exact message openings ĉ and d̂ of yC and yD such
that yg = xĉ + d̂. Writing these equations coordinate-wise in each CRT slot, we
have the following for all 1 ≤ i ≤ ψ and 0 ≤ j ≤ s − 1

yf
(i)
j = xb̂

(i)
j + â

(i)
j in R(j)

q , and (20)

yg
(i)
j = yf

(i)
j (x − f

(i)
j ) = xĉ

(i)
j + d̂

(i)
j in R(j)

q , (21)

since all the challenges and their differences are the same in each CRT slot. Now,
by the γrange-binding property of UMC, except with negligible probability, the
PPT prover cannot output a new valid exact opening of yA, yB, yC or yD in any
of its rewinds. Thus, except with negligible probability, responses with respect
to x′ and x′′ will have the same form. That is, the following holds

yf
′(i)
j = x′b̂(i)j + â

(i)
j ,

yf
′′(i)
j = x′′b̂(i)j + â

(i)
j ,

yf
′(i)
j (x′ − f

′(i)
j ) = x′ĉ(i)j + d̂

(i)
j ,

yf
′′(i)
j (x′′ − f

′′(i)
j ) = x′′ĉ(i)j + d̂

(i)
j ,

in R(j)
q . (22)
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Now, multiplying (21) by y and using (20), we get

y·
(

x · ĉ
(i)
j + d̂

(i)
j

)

= y ·
(

yf
(i)
j (x − f

(i)
j )

)

= yf
(i)
j (yx − yf

(i)
j )

= (xb̂
(i)
j + â

(i)
j )(yx − xb̂

(i)
j − â

(i)
j ) = (xb̂

(i)
j + â

(i)
j )(x(y − b̂

(i)
j ) − â

(i)
j )

= x2
[

b̂
(i)
j (y − b̂

(i)
j )

]

+ x
[

â
(i)
j (y − 2b̂

(i)
j )

]

− (â(i)
j )2,

(23)

and thus

x2
[

b̂
(i)
j (y − b̂

(i)
j )

]

+x
[

â
(i)
j (y − 2b̂

(i)
j ) − yĉ

(i)
j

]

−(â(i)
j )2−yd̂

(i)
j = 0 in R(j)

q . (24)

Repeating the same steps of (23) with the equations in (22), we get two copies
of (24) where x is replaced with x′ in one and with x′′ in the other. That is, we
have the following system

⎛

⎝

1 x x2

1 x′ x′2

1 x′′ x′′2

⎞

⎠ ·

⎛

⎜
⎝

−(â(i)
j )2 − yd̂

(i)
j

â
(i)
j (y − 2b̂

(i)
j ) − yĉ

(i)
j

b̂
(i)
j (y − b̂

(i)
j )

⎞

⎟
⎠ = 0 in R(j)

q . (25)

Since R
(j)
q is a field, Vandermonde matrix on the left is invertible for distinct

challenges, and we get b̂
(i)
j (y − b̂

(i)
j ) = 0, which implies b̂

(i)
j ∈ {0, y} in a field, i.e.

b̂
(i)
j = yb

(i)
j for b

(i)
j ∈ {0, 1}. (26)

The range proof part is rather easier and is given in the full version [13]. ��

Remark 1. The first rejection sampling at Step 14 of Protocol 2 is not necessary
as UMC allows unbounded-length messages. However, when rejection sampling
is done, the bitsize of f

(i)
j ’s are smaller (about a factor 3) than d log q/s, which

is the bitsize of a random element in R
(j)
q . Further, there is no mod q reduction

in the prover’s response, and also no mod P (j)(X) at Step 13 of Protocol 2 since
b
(i)
j ’s are binary.

5 Efficient One-Shot Proofs for Useful Relations

5.1 Relaxed Proof of Commitment to Sequences of Bits

Using our new techniques, we extend the multi-shot proof of commitment to bits
from [14] to a one-shot proof. Our protocol, called Protocol Bin, proves a weaker
relation but, the relaxation is tailored in a way that the soundness proof of
higher level proofs (Protocol 3) still work. It proves that a commitment B opens
to sequences of binary values such that there is a single 1 in each sequence, i.e.,
Hamming weight of each sequence is exactly 1. The relations of Protocol Bin are
defined in Definition 5 where b = (b0,0, . . . , bk−1,β−1) for k ≥ 1, β ≥ 2.
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Definition 5. The following defines the relations for Protocol Bin T , T̂ ∈ R
+.

Rbin(T ) =
{

((ck,B), (b, r)) : ‖r‖ ≤ T ∧ (bj,i ∈ {0, 1} ∀j, i)
∧ B = Comck(b; r) ∧ (

∑β−1
i=0 bj,i = 1 ∀j)

}

.

R′
bin(T̂ ) =

{

((ck,B), (y, b, r̂)) : ‖r̂‖ ≤ T̂ ∧ (bj,i ∈ {0, 1} ∀j, i) ∧
y ∈ ΔCd

w,p ∧ yB = Comck(yb; r̂) ∧ (
∑β−1

i=0 bj,i = 1 ∀j)

}

.

The idea of the binary proof (combined with the CRT-packing technique) is
already used in Protocol 2. The condition on the Hamming weight is the differ-
ence to Protocol 2 and is handled with a small modification. We defer the full
description of Protocol Bin to the full version of the manuscript and show below
the crucial part in making the binary proof work in a fully-splitting ring Rq.

Handling binary proof for NTT-friendly modulus q. As in (25) in the
soundness proof of Theorem 1, we get the same system of equations below in
the soundness proof of Protocol Bin

⎛

⎝

1 x x2

1 x′ x′2

1 x′′ x′′2

⎞

⎠ ·

⎛

⎝

−(âj,i)2 − yd̂j,i

âj,i(y − 2b̂j,i) − yĉj,i

b̂j,i(y − b̂j,i)

⎞

⎠ = 0 in Rq,

where b̂j,i are the values we want to prove to be of the form b̂j,i = ybj,i for
bj,i ∈ {0, 1}. The difference now is that all equations now hold in Rq, and
we cannot use any invertibility argument. Multiplying both sides of the above
system by adj(V ) where V is the Vandermonde matrix on the left, we get

det(V )b̂j,i(y − b̂j,i) = (x′′ − x′)(x′ − x)(x′′ − x)b̂j,i(y − b̂j,i) = 0 in Rq. (27)

We show in the proof of Theorem 2 that ‖(x′′−x′)(x′−x)(x′′−x)b̂j,i(y−b̂j,i)‖∞ ≤
27φ2

1p
5w3d2kβ. Therefore assuming q/2 > 27φ2

1p
5w3d2kβ, one of the factors in

(27) must be zero by Lemma 7. As challenge differences are non-zero, this gives
either b̂j,i or y − b̂j,i is zero. Thus, we get b̂j,i ∈ {0, y}. That is, b̂j,i = ybj,i for
bj,i ∈ {0, 1} as needed for R′

bin. We state the results in the theorem below, and
defer its full proof to the full version of the manuscript [13].

Theorem 2. Let γbin = 2p
√

dw
(
16φ4

1p
4d3k3w2β(β + 1) + 12φ2

2p
2w2B2m2d2

)1/2.
Assume that d ≥ 128, q/2 > 27φ2

1p
5w3d2kβ and HMC is hiding and γbin-

binding. Then, Protocol Bin is a 3-special sound Σ-protocol (as in Definition
3) for the relations Rbin(B

√
md) and R′

bin(4
√

2φ2pwBmd) with a completeness
error 1 − 1/(μ(φ1)μ(φ2)) for μ(φi) = e12/φi+1/(2φ2

i ), i = 1, 2.

5.2 Relaxed One-out-of-many Proof

Our one-out-of-many proof has the same structure as in [14], which combines
ideas from [7,16]. The main differences of our proof from that in [14] are the use
of an exponentially large challenge set, enabling one-shot proofs, the relation
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the verifier is convinced of and some tweaks to the rejection sampling. The
challenging part here is the soundness proof of the protocol. We use our new
tools, namely Lemmas 3, 5 and 6, from Sect. 3 for the soundness proof.

Let L = {P0, . . . , PN−1} be a set of public commitments for some N ≥ 1.
The prover’s goal is to show that he knows an opening of one of these Pi’s. In
common with the previous works [7,14,16], we assume that N = βk, which can
be easily satisfied by adding dummy values to L when needed. Suppose that the
prover’s commitment is P� for some 0 ≤ � < N . Observe that

∑N−1
i=0 δ�,iPi = P�.

The idea for the proof is then to prove knowledge of the index � with
∑N−1

i=0 δ�,iPi

being a commitment to zero. Writing � = (�0, . . . , �k−1) and i = (i0, . . . , ik−1)
as the representations in base β, we have δ�,i =

∏k−1
j=0 δ�j ,ij

. The prover first
commits to the sequences (δ�j ,0, . . . , δ�j ,β−1) for all 0 ≤ j ≤ k − 1, and then uses
Protocol Bin to show that they are well-formed (i.e., they construct an index in
the range [0, N) as in the range proof). Let us define the proved relations next.

Definition 6. The following defines the relations for Protocol 3 for T , T̂ ∈ R
+.

R1/N(T ) =
{

((ck, (P0, . . . , PN−1)), (�, r)) :
� ∈ [0, N) ∧ ‖r‖ ≤ T ∧ P� = Comck(0; r)

}

,

R′
1/N(T̂ ) =

{

((ck, (P0, . . . , PN−1)), (y, �, r̂)) : � ∈ [0, N) ∧ ‖r̂‖ ≤ T̂ ∧
yP� = Comck(0; r̂) ∧ y is a product of elements in ΔCd

w,p

}

.

From Protocol Bin, the prover’s response contains fj,i = xδ�j ,i + aj,i for a chal-
lenge x. Considering the product pi(x) :=

∏k−1
j=0 fj,ij

, we see, for all i ∈ [0, N −1],

pi(x)=
k−1∏

j=0

(

xδ�j ,ij
+ aj,ij

)

=
k−1∏

j=0

x · δ�j ,ij
+

k−1∑

j=0

pi,jx
j = δ�,ix

k +
k−1∑

j=0

pi,jx
j , (28)

for some ring element pi,j ’s as a function of � and aj,i’s (independent of the chal-
lenge x). Since � and aj,i’s are known to the prover before receiving a challenge,
he can compute pi,j ’s prior to sending the initial commitment. Since p� is the
only such polynomial of degree k, in his first move, the prover sends some Ej ’s
that are tailored to cancel out the coefficients of the terms 1, x, . . . , xk−1, and
the coefficient of xk is set to the prover’s commitment P� using

∑N−1
i=0 δ�,iPi.

The full description is given in Protocol 3. In the full version [13], we show how
our one-out-of-many proof can be extended to a set membership proof.

Theorem 3. Let γ1/N = (k + 1)2κ′+2
√

3φ2Bmd2wκpκ+1 for κ′ = k(k − 1)/2
and κ = k(k + 1)/2. Assume d ≥ 128, q > 27φ2

1p
5w3d2kβ and HMC is hiding

and γ-binding for γ = max{γbin, γ1/N}. For μ(·) as in Theorem 1, Protocol
3 is a (k′ + 1)-special sound Σ-protocol (as in Definition 3) for the relations
R1/N(B

√
md) and R′

1/N(γ1/N) with a completeness error 1 − 1/(μ(φ1)μ(φ2))
where k′ = max{2, k}.

Proof (Theorem 3). Completeness and SHVZK proofs are in the full version.
(k′+1)-special soundness: Assume that k > 1. Given (k+1) distinct challenges
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P1/N((ck, (P0, . . . , PN−1)), (
, r)) V1/N(ck, (P0, . . . , PN−1))

1: rb ← {−B, . . . , B}md

2: δ = (δ�0,0, . . . , δ�k−1,β−1)

3: B = Comck(δ; rb)

4: A, C, D ← Pbin((ck, B), (δ, rb))

5: ρ0 ← Dmd
φ2T2 for T2 = Bpkwk

√
3md

6: for j = 0, . . . , k − 1 do

7: ρj ← {−B, . . . , B}md if j �= 0

8: Ej =

N−1
∑

i=0

pi,jPi + Comck(0; ρj)

using pi,j ’s from (28) A, B, C, D, E0, . . . , Ek−1

x x ← Cd
w,p

9: f 1, zb, zc ← Pbin(x)

10: Rej(f 1, xδ1, φ1, p
√

kw) for δ1 := (δ�0,1, . . . , δ�k−1,β−1)

11: z = xkr −
∑k−1

j=0
xjρj

12: Rej((zb, zc, z), (xrb, xrc, x
kr −

k−1
∑

j=1

xjρj), φ2, T2)

If aborted, return ⊥ . f 1, zb, zc, z

1: Vbin(ck, B, x, A, C, D, f 1, zb, zc)
?
= 1

2: ‖z‖ , ‖zb‖ , ‖zc‖
?

≤ 2
√

3φ2Bmdpkwk

3:

N−1
∑

i=0

(

k−1
∏

j=0

fj,ij

)

Pi−
k−1
∑

j=0

Ejx
j ?
=Comck(0; z)

Protocol 3. Σ-protocol for R1/N and R′
1/N. Pbin in Steps 4 and 9 refers to the com-

mitment and response algorithms of Protocol Bin’s prover, respectively, and Vbin refers
to Protocol Bin’s verifier algorithm. The norm checks on zb, zc in Protocol Bin are
skipped when Vbin(ck, B, x, A, C, D, f 1, zb, zc) is run.

x0, . . . , xk, we have (k+1) accepting responses with the same (A,B,C,D,E0, . . . ,

Ek−1). Let (f (0)
1 ,z(0)), . . . , (f (k)

1 ,z(k)) be part of the responses with respect to
challenges x0, . . . , xk, respectively. Setting y = x1 − x0, we first use 3-special
soundness of Protocol Bin to extract exact valid message openings b̂j,i and âj,i

of yB and yA, respectively. We know that b̂j,i = ybj,i for bj,i ∈ {0, 1} and only a
single one of {bj,0, . . . , bj,β−1} is 1 for each j ∈ {0, . . . , k −1}. Now, we construct



New Techniques in Lattice-Based Zero-Knowledge Proofs 143

the representation of � in base β as follows. For each 0 ≤ j ≤ k − 1, the j-th
digit �j is the integer c such that bj,c = 1. It is easy to construct the index �
from here using its digit �j ’s.

From the soundness proof of Protocol Bin that use γbin-binding property
of the commitment scheme, we have, for all 0 ≤ η ≤ k − 1, yf

(η)
j,i = xη b̂j,i +

âj,i = xη · ybj,i + âj,i. Now compute p̂i(xη) = yk
∏k−1

j=0 f
(η)
j,ij

=
∏k−1

j=0 yf
(η)
j,ij

=
∏k−1

j=0

(

yxηbj,ij
+ âj,ij

)

for each i = 0, . . . , N −1. By the construction of �, p̂�(xη)
is the only polynomial of degree k in xη for all 0 ≤ η ≤ k − 1. Then, we can
multiply the both sides of the last verification step by yk and re-write it as below

N−1∑

i=0

p̂i(xη)Pi −
k−1∑

j=0

ykEjx
j
η = xk

η · ykP� +
k−1∑

j=0

Ẽjx
j
η = Comck(0; ykz(η)), (29)

where Ẽj ’s are the terms multiplied by the monomials xj
η’s of degree at most

k − 1 and are independent of xη. Equation (29) is exactly the case described
in (9) and the verification of Protocol 1 in Sect. 3 with Ck = ykP�. By the
discussion in Sect. 3, we obtain exact openings of det(V )ykP� as (0, ykr̂) where
r̂ =

∑k
i=0 Γiz

(i) for Γi = (−1)i+k
∏

0≤l<j≤k∧j,l �=i(xj − xl), i.e., we have

det(V )ykP� = Comck(0; ykr̂) =⇒ yk · (det(V )P� − Comck(0; r̂)) = 0
(by Lemma 6) =⇒ y · (det(V )P� − Comck(0; r̂)) = 0

=⇒ det(V )yP� = Comck(0; yr̂). (30)

In the end, we have an exact opening of det(V )yP� as (0, yr̂). This randomness
opening is a factor y ∈ ΔCd

w,p larger than what we have in Lemma 5. Thus, using
Lemma 3 and Lemma 5, we conclude, for κ′ = k(k − 1)/2 and κ = k(k + 1)/2,

‖yr̂‖ ≤ (k + 1)d(2p)κ′+1wκ′
max

i
‖z(i)‖ ≤ (k + 1)d(2p)κ′+1wκ′ · 2

√
3φ2Bmdwkpk

≤ (k + 1)2κ′+2
√

3φ2Bmd2wκpκ+1.

Recall that we assumed k > 1. When k = 1, Protocol Bin still needs 3 challenges
for its soundness property. Hence, Protocol 3 is at least 3-special sound. ��

6 Applications of Relaxed ZKPs to Advanced Tools

The relaxed range proof combined with a relaxed proof of knowledge results in
a form of efficient anonymous credentials as detailed in the full version of the
manuscript [13]. To prove relations on a set of attributes, a single use of our
range proof is sufficient and we show how the relaxation is handled. Our second
construction is a ring signature that builds on the relaxed one-out-of-many proof.

Ring Signature. The construction of ring signature from one-out-of-many proof
follows the same strategy as in [7,14,16]. The users commit to their secret keys
and these commitments represent the public keys. A set of public keys is then
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Table 4. Parameter setting of our ring signature with a root Hermite factor ≤ 1.0045
for both M-LWE and M-SIS. B = 1, φ1 = φ2 = 15 for all cases.

N 2 8 64 212 221

(d, w, p) (256, 60, 1) (256, 60, 1) (128, 66, 2) (128, 66, 2) (128, 66, 2)

(n, m) (4, 12) (4, 13) (10, 28) (13, 32) (22, 46)

(k, β) (1, 2) (1, 8) (1, 64) (2, 64) (3, 128)

q ≈ 253 ≈ 258 ≈ 259 ≈ 260 ≈ 277

Signature Length (KB) 36 41 58 103 256

Public Key Length (KB) 6.63 7.25 9.22 12.19 26.47

Secret Key Length (KB) 0.38 0.41 0.44 0.50 0.72

used as the set of public commitments in one-out-of-many proof. The prover
proves knowledge of an opening of one of the commitments (i.e., knowledge of
a secret key corresponding to one of the public keys of the ring signature). The
main difference from [7,14,16] is that we show that our relaxed proof is still
sufficient (see the full version [13] for details). In Table 4, we give the concrete
instantiation of the parameters.

Acknowledgement. Ron Steinfeld and Joseph K. Liu were supported in part by ARC
Discovery Project grant DP180102199.
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Abstract. We provide new zero-knowledge argument of knowledge sys-
tems that work directly for a wide class of language, namely, ones involv-
ing the satisfiability of matrix-vector relations and integer relations com-
monly found in constructions of lattice-based cryptography. Prior to this
work, practical arguments for lattice-based relations either have a con-
stant soundness error (2/3), or consider a weaker form of soundness,
namely, extraction only guarantees that the prover is in possession of
a witness that “approximates” the actual witness. Our systems do not
suffer from these limitations.

The core of our new argument systems is an efficient zero-knowledge
argument of knowledge of a solution to a system of linear equations,
where variables of this solution satisfy a set of quadratic constraints. This
argument enjoys standard soundness, a small soundness error (1/poly),
and a complexity linear in the size of the solution. Using our core argu-
ment system, we construct highly efficient argument systems for a variety
of statements relevant to lattices, including linear equations with short
solutions and matrix-vector relations with hidden matrices.

Based on our argument systems, we present several new constructions
of common privacy-preserving primitives in the standard lattice setting,
including a group signature, a ring signature, an electronic cash system,
and a range proof protocol. Our new constructions are one to three orders
of magnitude more efficient than the state of the art (in standard lat-
tice). This illustrates the efficiency and expressiveness of our argument
system.
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1 Introduction

Traditional cryptographic schemes based on number theoretic assumptions are
at risk due to possible attacks from quantum computers. Among all alternatives,
the lattice-based ones appear to be the most promising. To date, we have good
candidates to fundamental cryptographic primitives such as public key encryp-
tion schemes (e.g., [3,10,11,29]) and signature schemes (e.g., [9,18,21,46]). How-
ever, lattice-based privacy-preserving primitives, such as group signatures [16],
ring signatures [56], electronic cash (E-cash) [15], etc., are still significantly less
efficient than their traditional counterparts, partially due to the lack of suitable
lattice-based zero-knowledge proofs. Specifically, current zero-knowledge proofs
for lattice-based relations either have a poor efficiency or have great restrictions
when employed in constructing advanced applications.

The study of lattice-based zero-knowledge proofs is initialized by Goldreich
and Goldwasser in [23]. Goldreich and Goldwasser’s proof system, as well as proof
systems developed in subsequent works [2,28,50,54], are mainly of theoretical
interest. While one can construct applications such as verifiable encryption [25]
and group signature [14,26] from these protocols, their lack of efficiency prevents
them from being employed in practice.

For practical lattice-based zero-knowledge proofs, there are two main
approaches in current literature.

Stern-type Protocol. One approach, which follows techniques in [31,57], is pro-
posed by Ling et al. in [40]. They construct an efficient zero-knowledge argument
of knowledge (ZKAoK) for the basic Inhomogeneous Short Integer Solution (ISIS)
relation RISIS = {(A,y),x : A · x = y ∧ ‖x‖ ≤ β}. Focusing on arguing addi-
tional relations over witnesses, ZKAoKs for a wider class of lattice-based relations
are constructed in subsequent works. This gives rise to various applications,
such as verifiable encryption [40], group signature [33,34,36,41,43], ring signa-
ture [36], group encryption [35] and E-cash [37].

The major issue for Stern-type protocols is their inherent large soundness
error. More precisely, a single round Stern-type protocol has a soundness error of
2/3, i.e., a cheating prover is able to convince an honest verifier with probability
2/3 even if it does not possess any valid witness. Thus, to achieve a negligible
soundness error, the protocol is required to repeat for many (e.g., 219) times,
and the final proof consists of proofs generated in all iterations. Consequently,
its proof size is usually on the order of tens of megabytes to terabytes.

Fiat-Shamir with Abort. Another line of research follows the identification
schemes from [44–46]. Early works in this direction [32,51] consider ZKAoK pro-
tocols with binary challenges, which leads to a soundness error of 1/2 for a single
iteration. Thus, multiple (e.g., 128) repetitions are needed to achieve a negligible
soundness error. Subsequently, ZKAoKs with larger challenge spaces are adopted
to reduce the number of rounds required. This results in one-round protocols
with inverse-polynomial/negligible soundness error. Thus, we only need to run
them a few (e.g., 10 or even 1) time(s) to achieve a negligible soundness error.
Consequently, the proof size is usually a few megabytes or less.
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We have seen some applications, such as verifiable encryption [7,47], group
signature [12,13,17] and ring signature [19] from Fiat-Shamir with abort (FSwA)
protocols (with large challenge space). However, it is a complex task to design
cryptographic protocols using FSwA. This is mainly due to the so-called sound-
ness gap. For instance, for the ISIS relation RISIS , the FSwA proof only attests
the fact that the prover knows a witness for R′

ISIS = {(A,y),x : A · x =
c · y ∧ ‖x‖ ≤ β′}, where β′ > β and c > 1. Thus, to construct advanced appli-
cations from them, we have to use cryptographic primitives that are compatible
with such relaxed soundness, e.g., encryption schemes with a relaxed decryption
[7,47], commitment schemes with a relaxed opening [6,8] and signature schemes
with a relaxed verification [13]. Unfortunately, it is usually hard or even impos-
sible to construct primitives with such property. Meanwhile, general frameworks
in the literature for advanced applications may not work when we use relaxed
versions as building blocks. Thus, the construction and security analysis has
to be conducted from scratch. Additionally, we do not have a simple manner
to prove the relations over witnesses using Fiat-Shamir with abort protocols.
Ad-hoc techniques are used to circumvent this requirement, which introduce
additional complexity.

To summarize, we have some “user-friendly” lattice-based ZKAoKs that are
less efficient; and some efficient ZKAoKs that are very complicated for advanced
applications. The goal of this paper is, therefore, to construct ZKAoKs that are
both efficient and easy to use.

On the Difficulty of Achieving Standard Soundness and Small Soundness Error.
Before presenting our main results, we would like to discuss why previous works
cannot achieve the standard soundness and a small soundness error simultane-
ously. First, for most (if not all) lattice-based relations, we need to prove that
(parts of) the witnesses are small integers. This can be done in two approaches,

1. In a Stern-type protocol, a short integer is decomposed into a binary vector
of bounded length. Then the prover proves that the decomposition outputs
are correct via a standard Stern protocol, which asks the prover to open 2
out of 3 commitments in the challenge phase. Therefore, the soundness error
2/3 is inherent for a Stern-type protocol.

2. In a Fiat-Shamir with abort protocol, the prover and the verifier run a
Schnorr-type protocol with some tweaks for arguing shortness of the wit-
ness. However, the standard extraction procedure for the Schnorr protocol
does not work here. This is because the extracted witnesses will be scaled
by some large number (more accurately, the inverse of the difference of two
challenges) and may be large. To circumvent this problem, the extraction
procedure avoids multiplication of inverses. Correspondingly, the definition
of soundness is relaxed in the sense that the extracted witness does not nec-
essarily satisfy the original relation.
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1.1 Our Results

In this work, we present a new approach for constructing efficient zero-knowledge
arguments of knowledge for a large class of lattice-based relations. The core
component of our methodology is an efficient ZKAoK for linear equations with
additional quadratic constraints over the witnesses.

More concretely, let m, n, and � be positive integers, and q be a large enough
integer that is a power-of-prime. The ZKAoK protocol proves the following relation
R∗ in Eq.(1)1:

R∗ = {(A,y,M), (x) ∈ (Zm×n
q × Z

m
q × ([1, n]3)�) × (Zn

q ) :

A · x = y ∧ ∀(h, i, j) ∈ M,x[h] = x[i] · x[j]} (1)

where M is a set of � triples that defines quadratic constraints over x. Usually,
� will be linear in n and in any case, we have � ≤ n3.

Building upon our main protocol, we present a variety of ZKAoKs for some
concrete lattice-based relations. The constructed ZKAoKs have standard sound-
ness, yet achieving an inverse polynomial soundness error. We summarize the
differences between our approaches and previous results in Table 1.

Table 1. Comparison of approaches for lattice-based ZKAoKs.

Standard Soundness Soundness Error

Stern-Style 2/3

FSwA 1/poly or negl

This work 1/poly

To further demonstrate the usefulness of our methodology, we develop several
privacy-preserving primitives from these ZKAoKs. We illustrate the roadmap to
these applications in Fig. 1.

In addition, we also examine the concrete efficiency (particularly, communi-
cation cost) of our applications. We highlight some of the results in Table 2. For
more details, see the full version of this work.

We remark that the applications (and the performance data thereof) are to
illustrate the usefulness of our framework. They are by no means exhaustive nor
optimal. One may extend our results to other privacy-preserving primitives such
as anonymous credential, decentralized anonymous credential, group encryp-
tion, traceable signature, linkable ring signature, CryptoNote protocol (and thus
Monero), k-times anonymous authentication, blacklistable anonymous creden-
tial, Zerocoin, etc. Also, one can improve the results of this work via utilizing
structured lattices (such as ideal lattices or NTRU lattices) and application-
specific optimizations. Those extensions and optimizations are beyond the scope
of this paper.
1 In this paper, operations over group elements in Zq are modulo q unless otherwise

specified.



Efficient Lattice-Based Zero-Knowledge Arguments with Standard Soundness 151

Group Signature

(full version)

Ring Signature

(full version)

E-Cash

(full version)

Range Proof

(full version)

ZKAoK for

Membership

of

Accumulator

(Sec. 4.4)

ZKAoK for

Message-

Signature

Pair

(Sec. 4.3)

ZKAoK

for

Plaintext

of PKE

(Sec. 4.2)

ZKAoK

for

Preimage

of PRF

(Sec. 4.5)

ZKAoK

for

Opening of

Commitment

(Sec. 4.1)

ZKAoK

for

Integer

Addition

(full version )

ZKAoK for RSS ZKAoK for Rshort ZKAoK for RHM

ZKAoK for R∗ (Sec. 3)

Fig. 1. The Roadmap for our ZKAoKs and their Applications. The starting point is our
core ZKAoK for R∗. It is then used to construct ZKAoKs for some elementary relations,
namely, Rshort , RSS , and RHM (we define these elementary relations and explain how
to develop ZKAoKs for them in Sect. 1.2). Based on these elementary ZKAoKs, we further
construct ZKAoKs for cryptographic schemes. Finally, we construct privacy-preserving
primitives from these ZKAoKs.

Comparisons. Next, we give a brief comparison between the communication
cost of applications in this work and that of previous results. Our examples in
this section target 80 bits security unless otherwise specified.

We summarize the results in Table 2. Generally, for applications where solu-
tions were only available through Stern-type protocols, our constructions are
(much) more efficient than the state of the art. For applications where solutions
were also available through Fiat-Shamir with abort protocols, our constructions
are less efficient. Note that constructions utilizing Fiat-Shamir with abort are
designed from scratch and these state-of-the-art constructions are optimized
through the use of structured lattices (ideal lattices); while our solutions are
built on standard lattices, which are believed to offer better security.

We stress again that the main advantage of our framework is that it pro-
vides a fairly good efficiency yet keeping its user-friendliness. Optimizing toward
individual application, as stated earlier, is beyond the scope of this paper.

Ring Signatures. Following the framework of [36], a ring signature scheme can
be obtained with our ZKAoK. The signature size of [36] is estimated by [19]
at 47.3 MB, for a ring of 210 users. In contrast, the signature size of our ring
signature scheme is 4.24 MB in the same setting.

To the best of our knowledge, the most efficient ring signature scheme is from
[19], using Fiat-Shamir with abort protocols. For the same number (i.e., 210) of
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Table 2. Comparison of communication cost for applications from different ZKAoKs.

Application This paper Stern-type FSwA (ideal lattice)

Ring Signature 4.24 MB 47.3 MB [36] 1.41MB [19]

Group Signature 6.94 MB 61.5 MB [36] 0.58MB [17]

Range Proof 1.21MB 3.54 MB [38] N/A

Electronic Cash 262MB ≈720TB [37] N/A

users, its signature size is about 1.41 MB at 100 bits security level. Using a similar
parameter setting, the signature size of our solution is 3.05 MB.2

Group Signatures. A group signature can also be obtained following a similar
approach in [36] using our ZKAoK. The signature size of [36] is 61.5 MB for a
group of 210 users. In contrast, the signature size of our solution is 6.94 MB in
the same setting.

The most efficient group signature scheme to date is from [17], achieving a
signature size of less than 1 MB. Nonetheless, our approach can achieve addi-
tional features. For example, one can convert our group signature scheme into
a fully dynamic one via the techniques in [42], without increasing its signature
size.

Electronic Cash. To the best of our knowledge, the only lattice-based (compact)
electronic cash system is from [37], but no concrete estimation of its performance
is provided. In the full version of this work, we provide a rough estimation for
the communication cost of their spend protocol, for a wallet of 210 coins. The
estimation shows that the communication cost of their spend protocol is at least
several terabytes while our spend protocol can achieve a communication cost of
262 MB in the same setting.

There is no E-cash system from Fiat-Shamir with abort protocols in the
literature. This is due to the following technical barriers. First, in an E-cash
system, we need an argument of correct evaluation for pseudorandom function
(PRF). This requires an argument for the learning with rounding (LWR) rela-
tion, i.e., proving the (rounded) error terms lie exactly in an interval. Due to the
aforementioned soundness gap, it is not known how this proof can be done from
Fiat-Shamir with abort protocols. Moreover, we also need an adaptively secure
signature scheme and an argument of knowledge of a valid message/signature
pair for it. To date, signature schemes that admit an argument from Fiat-Shamir
with abort protocols can only achieve selective security. Complexity leveraging
trick that converts a selectively secure scheme into an adaptively secure one does
not work here either, since the message space, which contains all possible PRF
keys, are exponentially large.

2 In [19], parameters are set in a slightly mild way, so, the signature size is smaller if we
use their criterion to select parameters.
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Range Proof. Prior to our work, the most efficient lattice-based range proof is
from [38]. When arguing knowledge of a 1000-bits committed value in a given
range, its proof size is 3.54 MB. In contrast, the proof led by our solution is only
1.21 MB in the same setting.

1.2 Technical Overview

Warm-Up: An Argument for RISIS . Before explaining the idea of our app-
roach, we would like to give a simple intuition on how one can argue the ISIS
relation, with standard soundness and small soundness error simultaneously. Our
solution can be viewed as a somewhat mix of the Stern-type protocol and the
Fiat-Shamir with abort protocol. In particular, we will first use the bit-
decomposition technique to deal with small integers. Then we prove that the
decomposition outputs are binary via proving some quadratic constraint over
them (i.e., arguing x = x2 for each bit x of the output). As shown in [27] (and
its lattice variant [19]), this can be proved via arguing linear relations over com-
mitments and thus can be instantiated with known commitment with a relaxed
opening and Fiat-Shamir with abort protocols. Since we do not argue shortness
of witnesses explicitly in the latter argument, soundness gap is not introduced.3

Surprisingly, this simple strategy can produce much more than merely arguing
shortness of witnesses. We elaborate this next.

Building ZKAoK for R∗. We start with a protocol that proves

R0 = {(A,y), (x) ∈ (Zm×n
q × Z

m
q ) × (Zn

q ) : A · x = y} (2)

which is the linear equation part of R∗. The protocol can be viewed as an
extension of the Schnorr protocol to the linear algebra setting. It proceeds as
follows:

1. The prover samples a vector r
$← Z

n
q and sends t = A · r to the verifier.

2. The verifier samples a challenge α ∈ C and sends it to the prover. Here C ⊂ Z

is the challenge space of the protocol and will be specified later.
3. The prover sends z = α · x + r to the verifier.
4. The verifier accepts the proof iff A · z = α · y + t.

Given two valid transcripts with distinct challenges, i.e., (t, α,z) and (t, α′,z′),
one can extract a vector x̄ = (α − α′)−1 · (z − z′) that satisfies Eq. (2). In
the meantime, a cheating prover cannot pass the verification unless it success-
fully guesses the challenge α. Thus, the protocol achieves a soundness error of
1/‖C‖. Hence, we can obtain an inverse-polynomial soundness error if C contains
polynomial many distinct challenges.

In the remaining part of this section, we explain how to additionally prove
the quadratic constraints over the witnesses.

3 There exists a soundness gap in the proof, but it will not affect the proved argument
due to the commitment with a relaxed opening.
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Let (h, i, j) be an item in M, our goal is to prove that x[h] = x[i] ·x[j]. First,
from the response z = α · x + r, the verifier can compute

d = α · z[h] − z[i] · z[j]

= (x[h] − x[i] · x[j]) · α2 + (r[h] − r[i] · x[j] − r[j] · x[i]) · α − r[i] · r[j]

:= (x[h] − x[i] · x[j]) · α2 + a · α − b

where a = r[h]−r[i]·x[j]−r[j]·x[i] and b = r[i]·r[j]. Note that x[h] = x[i]·x[j] iff
d is linear in α. Therefore, the main task is reduced to proving that the quadratic
polynomial d is indeed linear in α, or alternatively d−a·α+b is a zero polynomial.

To prove this, we can ask the prover to additionally send a and b in Step 1.
Correspondingly, in Step 4, the verifier computes d and further checks if d =
a·α−b. Since the prover does not know α in advance, a and b must be independent
from α. Therefore, if the verification is successful, d is linear in α.

However, sending a and b in plaintext may leak information about the wit-
ness. To solve this problem, we adopt a homomorphic commitment scheme
Commit(m; r) 	→ c that commits a message m to a commitment c using ran-
domness r. More precisely, in Step 1, the prover generates Ca = Commit(a; sa)
and Cb = Commit(b; sb) for some sa and sb, and send them to the verifier. In
Step 3, the prover also computes s = α · sa − sb and send s to the verifier. The
verifier then checks if Commit(d; s) = α · Ca − Cb.

Remark 1.1. In this work, we will use the commitment scheme in [6], which
is both additive homomorphic and supports multiplication by small constants.
Therefore, we require the challenge space C to be a set of polynomially-many
small integers. The commitment scheme also requires the randomness to be
drawn from some distributions with bounded norm. Here, we instantiate it with
the Gaussian distribution.

Since new variables Ca, Cb and s are introduced in the proof, we also need
to make sure that they will not compromise the privacy of a and b. First, Cb is
determined by α, d, s and Ca, thus, we only need to consider s and Ca in the
analysis. Recall that both sa and sb are drawn from the Gaussian distributions.
According to the rejection sampling lemma [46], we can use sb to mask α · sa,
and enforce the output s to follow a specific distribution that is independent
from sa. Then, by the hiding property of the commitment scheme, Ca reveals
nothing about a. As a result, the commitments Ca, Cb and the randomness s do
not leak additional information to the verifier.

There is an additional subtlety that we need to deal with. Note that in
the aforementioned protocol, we try to argue that the quadratic polynomial
d−a ·α− b is a zero polynomial. Thus, in the proof for soundness, we need three
valid transcripts with distinct challenges after rewinding (note that a quadratic
polynomial with three distinct roots must be a zero polynomial). So, to fix the
extracted witnesses from these transcripts, the prover should also commit the
witness x and proves that the witness is properly committed (using a Fiat-
Shamir with abort protocol).
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In summary, our ZKAoK protocol contains three parts.

1. A Schnorr-type protocol that proves possession of a witness for R0.
2. A commitment of witness x and a Fiat-Shamir with abort protocol proving

that the committed value is actually x.
3. A proof for the quadratic constraints over the witnesses.

Building ZKAoK for More Relations. Next, we show how to develop ZKAoKs
for relations relevant to lattice-based cryptographic schemes. As we illustrated
in Fig. 1, such relations can be viewed as combinations of some elementary rela-
tions, namely, linear equations with short solutions (Rshort), subset sum of linear
equations (RSS ), and linear equations with hidden matrices (RHM ). Thus, here
we focus on how to deal with these elementary relations.4

Linear Equation with Short Solution. This is a primary lattice-based relation
and appears in (almost) all applications. Concretely, let m, n, and k be positive
integers, q be a large enough power-of-prime, and β = 2k −1. The relation Rshort

is given as

Rshort = {(P ,v), (w) ∈ (Zm×n
q × Z

m
q ) × ([0, β]n) : P · w = v}

The reduction from Rshort to R∗ takes the following steps:

• set a new witness x as the binary decomposition of the original witness w,
i.e., each element w in w is decomposed into k bits x1, . . . , xk such that
w =

∑k
i=1 xi · 2i−1 (note that a positive integer can be decomposed into k

bits iff it is in [0, 2k − 1]);
• set A = P · G where the gadget matrix G := In ⊗ (1 2 4 . . . 2k−1) (thus,

we have G · x = w);
• set y = v;
• set M = {(i, i, i)}i∈[1,nk];

In doing so, we obtain a new relation in the form of R∗ where both the length
of witness and the size of M are nk.

Note that since q is a power-of-prime, for any x ∈ Zq, x2 = x iff x = 0 or
x = 1. Thus, the new relation is equivalent to the original relation Rshort .

There are two common variants to Rshort . First, for simplicity, we have set
β+1 to be a power-of-2. The first variant removes this unnecessary constraint and
deals with arbitrary positive integer β. This is achieved by applying the refined
decomposition technique proposed in [40] and the length of the decomposed
witness is n · (�log β + 1).

The second variant is to argue knowledge of a witness w ∈ [−β, β]n that
satisfies a linear equation. This can be reduced to the relation Rshort via adding
β to each element of w. Note that the linear equation will also need to be
modified accordingly.
4 Detailed constructions of ZKAoKs for elementary relations can be found in Sect. 4,

e.g, the ZKAoK for lattice-based PKE is in fact a ZKAoK for a variant of Rshort .
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Optimized arguments for Linear Equation with Short Solution. In some cases, it
is desirable to prove a relation Rshort with a large n, which makes it inefficient
to decompose all elements in x. We propose an alternative relation, given by
Eq. (3), to argue equations with short solutions more efficiently in this case, at
a cost of re-introducing some soundness gap for the argument. More precisely,
to argue a linear equation Pw = v with β-bounded solution w, the argument
can only guarantee that the prover possesses a n · β-bounded solution w′ that
satisfies Pw′ = v.

R′
short = {(P ,v,H , c), (w,u, r) ∈

(Zm×n
q × Z

m
q × [0, 1]λ×n × C) × (Zn

q × [0, n · β]λ × R) :

P · w = v ∧ H · w − u = 0 ∧ c = Commit(w; r)} (3)

where

• Commit is a commitment scheme and c = Commit(w; r) is the commitment;
• C and R are the output space and the randomness space of Commit;
• H ← H(c) ∈ [0, 1]λ×n, where λ is the security parameter and H is modeled

as a random oracle.

To see why R′
short could guarantee that all elements in w are in [0, n·β], assume

there exists i ∈ [n] such that | w[i] |> n · β. Let h1 and h2 be two n-dimension
binary vectors that are identical in all positions except that h1[i] �= h2[i]. Then
we have | hᵀ

1 · w − hᵀ
2 · w |=| w[i] |> n · β. Thus, either hᵀ

1 · w or hᵀ
2 · w must

be outside the interval [0, n · β]. Therefore, for a vector h sampled uniformly from
[0, 1]n, with a probability of at least 1/2, hᵀ ·w > n ·β. Therefore, the probability
that all elements in H · w are in [0, n · β] is negligible.

It remains to show how to argue the relation R′
short . Our strategy is to reduce

the relation to an instance of relation R∗ and then argue the instance via our
main protocol. Looking ahead, in our main protocol, the prover also generates
a commitment of the witness in the first step and will argue that the witness
is properly committed during the proof. In addition, the commitment scheme
allows one to commit part of the witness first, and then commit the remaining
part later, where the partial commitment generated in the first stage is also
included in the complete commitment. Consequently, the commitment and the
argument for the opening of the commitment are free5. The remaining part of
relation R′

short are equations with short solutions, and thus can be straightfor-
wardly reduced to R∗.

In more detail, to argue R′
short, the prover first generates the commitment

c = Commit(w) and computes the matrix H = H(c) and u = Hw. Then, it
commits u and appends the commitment to c. Finally, it runs the remaining part
of our main protocol, arguing that there exists a small vector u and a vector w
that satisfies u = H(c)w and v = Pw.
5 In fact, we only obtain a relaxed argument for the opening of the commitment. This

is sufficient for our purpose.
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To summarize, we can prove equations with short solutions via our main
protocol on R∗, where the length of the witness is n + λ · (�log (n · β) + 1) and
the size of M is λ · (�log (n · β) + 1).

Subset Sum of Linear Equations. Let m, n and l be positive integers and q be a
large power-of-prime. The relation is given as

RSS = {({P i}i∈[1,l],v), ({w}i∈[1,l], {bi}i∈[1,l]) ∈

((Zm×n
q )l × Z

m
q ) × ((Zn

q )l × {0, 1}l) :
l∑

i=1

bi · P i · wi = v}

To reduce RSS to R∗, we first compute vi = P i · wi and v′
i = bi · vi for

i ∈ [1, l]. Then we set the new witness vector x = (b1, . . . , bl,v
′
1, . . . ,v

′
l,v1, . . . ,

vl,w1, . . . ,wl) and set

A =
(
0 0 −Iml P
0 J 0 0

)

and y =
(
0
v

)

where

P =

⎛

⎜
⎜
⎜
⎝

P 1

P 2

. . .
P l

⎞

⎟
⎟
⎟
⎠

and J =
(
Im Im . . . Im

)
.

Here, the first part of the equation Ax = y (specified by the first “row” of A)
indicates that vi = P i · wi for i ∈ [1, l] and its second part indicates that the
sum of all v′

i are v.
Finally, we set

M = {(i, i, i)}i∈[1,l] ∪ {(l +m · (i− 1)+ j, l +ml +m · (i− 1)+ j, i)}i∈[1,l],j∈[1,m]

where {(i, i, i)}i∈[1,l] indicates that bi is binary and the rest indicates that v′
i =

bi · vi. This gives us an R∗ statement where the length of witness becomes
(nl + 2ml + l) and the size of M is ml + l.

Linear Equation with Hidden Matrix. Let m and n be positive integers and q be
a large power-of-prime, the relation is defined as follows:

RHM = {(v), (P ,w) ∈ (Zm
q ) × (Zm×n

q × Z
n
q ) : P · w = v}

To reduce RHM to R∗, we first obtain a new witness vector x = (x0, . . . ,x2m)
as follows:

• x0 = w;
• for i ∈ [1,m], xi is the i-th row of P ;
• for i ∈ [1,m], xm+i is the Hadamard product between the i-th row of P and

w (i.e., xm+i[j] = xi[j] · w[j]).
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Then we set A =
(
0m×n 0m×mn M

)
and y = v where M = Im ⊗(

1 1 . . . 1
) ∈ Z

m×mn
q .

Finally, we set M = {((m+ i) ·n+j, i ·n+j, j)}i∈[1,m],j∈[1,n], which indicates
that xm+i[j] = xi[j] · w[j]. In this way, we obtain a new relation in the form of
R∗, where the length of witness is (2m + 1) · n and the size of M is mn.

2 Preliminaries

Notations. In this paper, we will use bold lower-case letters (e.g., v) to denote
vectors, and use bold upper-case letters (e.g., A) to denote matrices. All elements
in vectors and matrices are integers unless otherwise specified. For a vector v
of length n, we use v[i] to denote the ith element of v for i ∈ [1, n] and for an
m-by-n matrix A, we use A[i, j] to denote the element on the i-th row and the
j-th column of A for i ∈ [1,m] and j ∈ [1, n]. For a vector v, we use bin(v) to
denote the binary decomposition of v, i.e., v[i] =

∑k
j=1 2j−1 · v̄[(i − 1) · k + j],

where v̄ = bin(v) and k = �log(‖v‖∞)�. We use In to denote an n-by-n identity
matrix. We use ⊗ to denote the Kronecker product of two matrices.

For a string a, we use ‖a‖ to denote the length of a. For a finite set S, we

use ‖S‖ to denote the size of S and use s
$← S to denote sampling an element s

uniformly from set S. For a distribution D, we use d ← D to denote sampling d
according to D.

For integers a ≤ b, we write [a, b] to denote all integers from a to b. We write
negl(·) to denote a negligible function and write poly(·) to denote a polynomial.

2.1 Discrete Gaussian Distribution

We recall the discrete Gaussian distribution and some results from [46].

Definition 2.1 (Discrete Gaussian Distribution). The continuous Gaus-
sian distribution over R

m centered at v ∈ R
m with standard deviation σ is

defined by the function ρm
v ,σ(x) = ( 1√

2πσ2 )me
−‖x −v ‖2

2σ2 .
The discrete Gaussian distribution over Z

m centered at v ∈ Z
m with stan-

dard deviation σ is defined as Dm
v ,σ(x) = ρm

v ,σ(x)/ρm
σ (Zm), where ρm

σ (Zm) =∑
x∈Zm ρm

σ (x).

We write Dm
σ (x) = Dm

0,σ(x) for short.

Lemma 2.1 ([46, Full Version, Lemma 4.4])

1. For any k > 0, Pr[‖z‖ > kσ : z ← D1
σ] ≤ 2e

−k2
2 .

2. For any z ∈ Z
m, and σ ≥ 3/

√
2π, Dm

σ (z) ≤ 2−m.
3. For any k > 1, Pr[‖z‖ > kσ

√
m : z ← Dm

σ ] < kme
m
2 (1−k2).
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2.2 Rejection Sampling

In this work, we will also use the celebrated “rejection sampling lemma” from
[45,46] to argue the zero-knowledge property of our protocol.

Lemma 2.2 ([46, Full Version, Theorem 4.6]). Let V be a subset of Zm in
which all elements have norms less than T . Let h be a probability distribution over
V. Let σ be a real number that σ = ω(T

√
log m). Then there exists a constant M

such that the distribution of the following algorithm A and that of the following
algorithm F are within statistical distance 2−ω(log m)

M .
A:

1. v ← h
2. z ← Dm

v ,σ

3. Output (v,z) with probability
min(1, Dm

σ (z)
MDm

v ,σ(z)
)

F :

1. v ← h
2. z ← Dm

σ

3. Output (v,z) with probability
1
M

Moreover, the probability that A outputs something is at least 1−2−ω(log m)

M .

As a concrete example (suggested in [30]), if σ = αT for some positive α,
then M = e13.3/α+1/(2α2), the output of algorithm A is within statistical distance
2−128

M of the output of F , and the probability that A outputs something is at
least 1−2−128

M .

2.3 Hardness Assumptions

The security of our main protocol relies on the short integer solution (SIS)
assumption and the learning with errors (LWE) assumption. For both assump-
tions, we will use the normal form (as defined in [53]).

Definition 2.2 (SISn,m,q,β, Normal Form). Given a random matrix A ∈
Z

n×(m−n)
q , find a nonzero integer vector z ∈ Z

m such that ‖z‖ ≤ β and [In |
A] · z = 0.

As hardness of the SIS assumption usually depends only on n, q, β (assuming
m is large enough), in this work, we write SISn,m,q,β as SISn,q,β for short.

Lemma 2.3 ([1,22,48,49,53]). For any m = poly(n), any β > 0, and any suffi-
ciently large q ≥ β · Õ(

√
n), solving (normal form) SISn,m,q,β with non-negligible

probability is at least as hard as solving the decisional approximate shortest vector
problem GapSVPγ and the approximate shortest independent vectors problems
SIVPγ (among others) on arbitrary n-dimensional lattices (i.e., in the worst
case) with overwhelming probability, for some γ = β · Õ(

√
n).

Definition 2.3 (Decision-LWEn,m,q,χ, Normal Form). Given a random
matrix A ∈ Z

(m−n)×n
q , and a vector b ∈ Z

m−n
q , where b is generated accord-

ing to either of the following two cases:
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1. b = A · s + e, where s ← χn and e ← χm−n

2. b
$← Z

m−n
q

distinguish which is the case with non-negligible advantage.

If χ is a discrete Gaussian distribution with standard deviation σ, we write
the problem as LWEn,m,q,α where α = σ · √

2π/q. Also, as the hardness of the
LWE assumption usually depends only on n, q, α (assuming m is large enough),
in this work, we write LWEn,m,q,α as LWEn,q,α for short.

Lemma 2.4 ([4,53,55]). For any m = poly(n), any modulus q ≤ 2poly(n), and
any (discrete) Gaussian error distribution χ with standard deviation σ (i.e.,
χ = Dσ), where σ = αq/

√
2π ≥ √

2n/π and 0 < α < 1, solving the (normal
form) decision-LWEn,m,q,χ problem is at least as hard as (quantumly) solving
GapSVPγ and SIVPγ on arbitrary n-dimensional lattices, for some γ = Õ(n/α).

2.4 Zero-Knowledge Arguments of Knowledge

In a zero-knowledge argument of knowledge system [24], a prover proves to a veri-
fier that he possesses the witness for a statement without revealing any additional
information.

More formally, let R = {(x,w)} ∈ {0, 1}∗ × {0, 1}∗ be a statements-witnesses
set for an NP relation. The ZKAoK for R is an interactive protocol 〈P,V〉 run
between a prover P and a verifier V that satisfies:

• Completeness. For any (x,w) ∈ R, Pr[〈P(x,w),V(x)〉 �= 1] ≤ δc.
• Proof of Knowledge. There exists an extractor E that for any x, for any

probabilistic polynomial time (PPT) cheating prover P̂, if Pr[〈P̂,V(x)〉 =
1] > δs + ε for some non-negligible ε, then E can extract in polynomial time
a witness w such that (x,w) ∈ R via accessing P̂ in a black-box manner.

• (Honest-Verifier) Zero-Knowledge. There exists a simulator S that for
any (x,w) ∈ R, the two distributions are computationally indistinguishable:
1. The view of an honest verifier V in an interaction 〈P(x,w),V(x)〉.
2. The output of S(x).

where δc is the completeness error and δs is the soundness error.
In this work, we also consider non-interactive ZKAoKs (NIZKAoK). They can be

obtained by applying the Fiat-Shamir heuristic [20] to public coin ZKAoKs. One
advantage led by the Fiat-Shamir transform is that the transformed NIZKAoKs
additionally admit a message as input, thus it is also called signature proof of
knowledge (SPK), and is usually written as SPK{(x,w) : (x,w) ∈ R}[m], where
m is the additional message.

2.5 Commitment with a Relaxed Opening

In our main construction, we will employ the commitment scheme presented
in [6]6, which admits a relaxed opening.
6 In fact, we will use its variant in the standard lattice setting. For completeness, we

will restate its security in the security proof of our main construction.



Efficient Lattice-Based Zero-Knowledge Arguments with Standard Soundness 161

Let λ be the security parameter. Let l1 and l2 be positive integers that are
polynomials in the security parameter λ. Let σ be a small positive integer that
satisfies σ ≥ √

2l2/π. Also, let n be the length of the committed vector. The
public parameter of the commitment scheme is a matrix B ∈ Z

(l1+n)×(l1+n+l2)
q

defined as follows:

B =

⎛

⎝
I l1 B1

0n×l1 In B2

⎞

⎠

where B1 and B2 are random matrices sampled from Z
l1×(l2+n)
q and Z

n×l2
q

respectively.
To commit to a message m ∈ {0, 1}n, the commit algorithm first samples

s ∈ Dl1+n+l2
σ . Then it outputs a commitment c = B · s + (0ᵀ‖mᵀ)ᵀ and the

opening s.
The open algorithm outputs 1 on input B,m, c, s iff c = B · s + (0ᵀ‖mᵀ)ᵀ

and s is small. Besides, it admists a relaxed opening, where the input of the
algorithm includes B,m, c, s and a small integer f , and the algorithm outputs
1 iff f · c = B · s + f · (0ᵀ‖mᵀ)ᵀ and s, f are small.

3 Main Construction

In this section, we present our main construction, namely, an efficient zero-
knowledge argument of knowledge for linear equations with quadratic constraints
over the witness.

More concretely, let m,n, � be positive integers, q be a large enough integer that
is a power-of-prime, i.e., q = qe

0 for some prime q0 and some positive integer e. Also,
let A be a matrix in Z

m×n
q , x and y be vectors in Z

n
q and Z

m
q respectively, and M

be a set of � 3-tuples, each of which consists of 3 integers in [1, n]. We will construct
a ZKAoK for the following relation:

R∗ = {(A,y,M), (x) : A · x = y ∧ ∀(h, i, j) ∈ M,x[h] = x[i] · x[j]} (4)

Specifically, in Sect. 3.1, we give a basic version of the ZKAoK protocol for R∗ as
defined in Eq. (4). This protocol achieves an inverse polynomial soundness error
and a constant completeness error. Then, in Sect. 3.2, we transform the basic
protocol into a NIZKAoK with negligible soundness error and completeness error.

3.1 The Basic Protocol

Let aCommit be an auxiliary bit commitment scheme with randomness space
{0, 1}κ and a suitable message space. As no additional requirement is desired for
aCommit, we can safely assume it to be a random oracle G, i.e., given an input x
and a random string ρ as randomness, the commitment is G(x‖ρ). Nonetheless,
aCommit can be instantiated by any secure commitment scheme.
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Let λ be the security parameter. Let l1 and l2 be positive integers that are
polynomials in the security parameter λ. Let B1,1, B1,2, B2,1 and B2,2 be ran-
dom matrices sampled from Z

l1×(l2+n)
q , Zn×l2

q , Zl1×(l2+�)
q and Z

�×l2
q respectively.

Also let

B1 =

⎛

⎝
I l1 B1,1

0n×l1 In B1,2

⎞

⎠ , B2 =

⎛

⎝
I l1 B2,1

0�×l1 I� B2,2

⎞

⎠

Here B1 and B2 are public parameters of the underlying homomorphic commit-
ment scheme, and we assume that they are honestly generated (via some public
coin) and are shared by all parties in the protocol.

Let σ1 be small positive integer that satisfies σ1 ≥ √
2l2/π. Let p be small

positive integer that is polynomial in λ. Let l = 2l1 + 2l2 + n + �. Let σ2 =
2p · √

l · log l · σ1. Let M = e13.3/ log l+1/(2 log2 l). For any l-dimension vectors v

and z, let p(v,z) = min(1,
Dl

σ2
(z)

MDl
v ,σ2

(z)
).

The basic protocol P1 for R∗ is described in Fig. 2.

Theorem 3.1. Assume the worst-case hardness of GapSVPγ (or SIVPγ) for
some polynomial γ, if q ≥ 16p · max(

√
l1 + l2 + n,

√
l1 + l2 + �) · (σ2 + p · σ1) ·

Õ(
√

l1), q/σ1 is a polynomial, q0 > 2p, and aCommit is a secure bit commit-
ment scheme, then the protocol P1, which is described in Fig. 2, is a secure
zero-knowledge argument of knowledge with completeness error 1 − 1/M and
soundness error 2/(2p + 1).

We give the detailed proof for Theorem 3.1 in the full version.

3.2 NIZKAoK for R∗

In this section, we show how to transform our basic protocol in Sect. 3.1 into a
non-interactive zero-knowledge arguments of knowledge with negligible sound-
ness error and completeness error. Generally, this can be done via some standard
techniques such as repetition and Fiat-Shamir transform. Nonetheless, we will
employ a few tricks (developed in previous works) to reduce the efficiency loss
in the transformations. In particular, to minimize the number of repetitions, we
will employ the tweaks in [19] when repeating the basic protocol. In a nutshell, it
applies one rejection sampling on all (repeated) instances simultaneously, which
avoids completeness error increasing caused by repetition.

The Construction. Let aCommit, λ, l1, l2, B1,1, B1,2, B2,1 and B2,2, σ1, p, l
and M be identical to those of P1. We highlight the differences.

In the new scheme, a proof is generated by repeating the basic protocol
N = λ/ log p times. Then we set σ2 = 2p · √

N · l · log(N · l) · σ1, and for any

N · l-dimension vectors v and z, we set p(v,z) = min(1,
DN·l

σ2
(z)

MDN·l
v ,σ2

(z)
). We will

additionally use a hash function H with output space [−p, p]N , which is modelled
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Fig. 2. The Basic Protocol P1: A Zero-Knowledge Arguments of Knowledge for R∗

with Inverse Polynomial Soundness Error and Constant Completeness Error.

as a random oracle. Also, let AUX be some application-dependent auxiliary
information (e.g., the signed message in a group signature) that is specified as
an input to H.

The prove algorithm and the verify algorithm of the NIZKAoK P2 for R∗ is
described in Figs. 3 and 4 respectively.
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Fig. 3. The Prove Algorithm of P2.

Fig. 4. The Verify Algorithm of P2.

Theorem 3.2. Assume the worst-case hardness of GapSVPγ (or SIVPγ) for
some polynomial γ, if q ≥ 16p · max(

√
l1 + l2 + n,

√
l1 + l2 + �) · (σ2 + p · σ1) ·

Õ(
√

l1), q/σ1 is a polynomial, q0 > 2p, aCommit is a secure bit commitment
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scheme, and H is modelled as a random oracle, then the scheme P2 is a secure
non-interactive zero-knowledge argument of knowledge with negligible complete-
ness error and soundness error.

Proof of Theorem 3.2 follows proof of Theorem 3.1 and well-known results,
we omit the details here.

Efficiency. In P2, a proof π contains a commitment and a set of N elements,
where each element consists of a challenge, a κ-bit string, a commitment and
three vectors. Thus, we have

‖π‖ = (log (2p + 1) + κ + (3l1 + 2l2 + 2n + 2�) · log q) · N + (l1 + n) · log q

4 ZKAoKs for Various Cryptographic Schemes

In this section, we build several tools that are useful for constructing privacy-
preserving primitives. This includes an argument of knowledge of committed
value, an argument of knowledge of plaintext, an argument of knowledge of sig-
nature, an argument for cryptographic accumulator and an argument for pseu-
dorandom function.

4.1 ZKAoK of Committed Value

We start with an argument of knowledge of the committed value for the com-
mitment scheme in [31].

Let l1, l2, L be positive integers and q be a power-of-prime. We propose a
ZKAoK for the following relation:

Rcom = {(B1,B2, c), (r,w) ∈
(Zl1×l2

q × Z
l1×L
q × Z

l1
q ) × ({0, 1}l2 × {0, 1}L) : B1 · r + B2 · w = c}

Rcom contains linear equations with binary witness. We construct the argu-
ment via reducing Rcom to an instance of R∗ through the following steps:

1. Set the new witness x = (rᵀ‖wᵀ)ᵀ;
2. Set A = (B1‖B2) and y = c;
3. Set M = (i, i, i)i∈[1,l2+L].

Note that since q is a power of prime, for any x ∈ Zq, x2 = x iff x = 0 or
x = 1. Thus, the new relation R∗ over (A,y,M), (x) is equivalent to the original
relation Rcom . Also, both ‖x‖ and ‖M‖ are l2 + L for R∗.

4.2 ZKAoK of Plaintext

Next, we give an argument of knowledge of the plaintext for the encryption
scheme proposed in [39].
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More precisely, let l1, l2, L and β be positive integers and q be a power-of-
prime, we propose a ZKAoK for the following relation:

Renc = {(B1,B2, c1, c2), (r,e1,e2,w) ∈
(Zl1×l2

q × Z
L×l2
q × Z

l1
q × Z

L
q ) × (Zl2

q × Z
l1
q × Z

L
q × {0, 1}L) :

‖r‖∞ ≤ β ∧ ‖e1‖∞ ≤ β ∧ ‖e2‖∞ ≤ β∧
B1 · r + e1 = c1 ∧ B2 · r + e2 + �q

2
� · w = c2}

We construct the argument via reducing the relation Renc , which contains
linear equations with short solutions, to an instance of the relation R∗.

First, we define vectors β1 = (β β . . . β)ᵀ ∈ Z
l2
q , β2 = (β β . . . β)ᵀ ∈ Z

l1
q ,

β3 = (β β . . . β)ᵀ ∈ Z
L
q and define r′ = r +β1, e′

1 = e1 +β2 and e′
2 = e2 +β3.

Then, we decompose vectors r′, e′
1 and e′

2 into binary vectors r̄, ē1

and ē2 using the decomposition technique proposed in [40]. More precisely,
let k = �log 2β + 1 and let g = (�(2β + 1)/2‖�(2β + 2)/4‖ . . . ‖�(2β +
2i−1)/2i‖ . . . ‖�(2β + 2k−1)/2k) be a row vector. It is claimed in [40] that (1)
an integer a ∈ [0, 2β] iff there exists a binary vector a ∈ {0, 1}k that g · a = a;
(2) one can decompose the integer a ∈ [0, 2β] into the k-dimension binary vector
a efficiently.

Next, we define the gadget matrix G1 = I l2 ⊗ g, G2 = I l1 ⊗ g, G3 = IL ⊗ g
and they satisfy that G1 · r̄ = r′, G2 · ē1 = e′

1 and G3 · ē2 = e′
2.

Finally, we set

A =

⎛

⎝
B1 · G1 G2 0 0

B2 · G1 0 G3 � q
2� · IL

⎞

⎠

x = (r̄ᵀ ēᵀ
1 ēᵀ

2 wᵀ)ᵀ
, y =

⎛

⎝
c1 + B1 · β1 + β2

c2 + B2 · β1 + β3

⎞

⎠

and set M = (i, i, i)i∈[1,(l1+l2+L)·k+L]. Here, both ‖x‖ and ‖M‖ are (l1 + l2 +
L) · k + L.

One common variant of the encryption scheme in [39] is to use binary secrets
and errors rather than sampling them from β bounded distributions. To generate
arguments of knowledge of plaintexts for this variant, we can use an almost
identical construction as above, except that we do not need to decompose the
vectors r, e1 and e2. Thus, when reducing the relation to R∗ in this case, both
‖x‖ and ‖M‖ will be l1 + l2 + 2L.

4.3 ZKAoK of Message-Signature Pair

Next, we give an argument of knowledge of a valid message/signature pair for
the signature scheme proposed in [37].
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Let l1, l2, l3, L, and β be positive integers and q be a power-of-prime. Also
let kq = �log q�. We propose a ZKAoK that proves knowledge of

{
{τi}i∈[1,l3] ∈ {0, 1}l3 ;v1 ∈ Z

l2
q ;v2 ∈ Z

l2
q ;

w ∈ {0, 1}kql1 ; s ∈ Z
2l2
q ;m ∈ {0, 1}L

that satisfies
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

B · v1 + (B0 +
l3∑

i=1

τi · Bi) · v2 = u + D · w

H · w = D0 · s + D1 · m

‖v1‖∞ ≤ β; ‖v2‖∞ ≤ β; ‖s‖∞ ≤ β

for public {
B ∈ Z

l1×l2
q ; {Bi}i∈[0,l3] ∈ (Zl1×l2

q )l3+1;u ∈ Z
l1
q

D ∈ Z
l1×kql1
q ;D0 ∈ Z

l1×2l2
q ;D1 ∈ Z

l1×L
q

where H = I l1 ⊗ (1 2 4 . . . 2kq−1).
Again, we construct the argument via reducing the relation, which contains

a subset sum of linear equations and linear equations with short solutions, to an
instance of the relation R∗.

First, we define vectors β1 = (β β . . . β)ᵀ ∈ Z
l2
q , β2 = (β β . . . β)ᵀ ∈ Z

2l2
q ,

and define v′
1 = v1 + β1, v′

2 = v2 + β1 and s′ = s + β2.
Then, we decompose vectors v′

1, v′
2 and s′ into binary vectors v̄1, v̄2, and s̄

using the decomposition technique proposed in [40]. Let k = �log 2β + 1, then
the vectors v̄1, v̄2 and s̄ are of length kl2, kl2 and 2kl2 respectively.

Also, let g = (�(2β + 1)/2‖ . . . ‖�(2β + 2i−1)/2i‖ . . . ‖�(2β + 2k−1)/2k) be
a row vector. Then, we define the gadget matrix G1 = I l2 ⊗ g, G2 = I2l2 ⊗ g,
and they satisfy that G1 · v̄1 = v′

1, G1 · v̄2 = v′
2 and G2 · s̄ = s′.

Next, for i ∈ [1, l3], let ui = Bi · v2 and let u′
i = τi · ui. Also, we define

û = (uᵀ
1‖uᵀ

2‖ . . . ‖uᵀ
l3

)ᵀ and û′ = (u′ᵀ
1 ‖u′ᵀ

2 ‖ . . . ‖u′ᵀ
l3

)ᵀ. Moreover, define τ =
(τ1 τ2 . . . τl3)

ᵀ.
Finally, we set

A =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 −I l1l3 B̄ · G1 0 0 0 0

0 J 0 B0 · G1 B · G1 −D 0 0

0 0 0 0 0 −H D0 · G2 D1

⎞

⎟
⎟
⎟
⎟
⎠

x =
(
τᵀ û′ᵀ ûᵀ v̄ᵀ

2 v̄ᵀ
1 wᵀ s̄ᵀ mᵀ)ᵀ

, y =

⎛

⎜
⎜
⎜
⎜
⎝

B̄ · β1

u + B0 · β1 + B · β1

D0 · β2

⎞

⎟
⎟
⎟
⎟
⎠
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where

B̄ =

⎛

⎜
⎝

B1

...
Bl3

⎞

⎟
⎠ , J = (I l1 I l1 . . . I l1)

Besides, let N = l3 + 2l1l3 + 2kl2 + kql1 + 2kl2 + L, we define
⎧
⎪⎨

⎪⎩

M1 = {(i, i, i)}i∈[1,l3]

M2 = {(i, i, i)}i∈[l3+2l1l3+1,N ]

M3 = {(l3 + l1 · (i − 1) + j, i, l3 + l1l3 + l1 · (i − 1) + j)}i∈[1,l3],j∈[1,l1]

where M1 indicates that each τi is binary, M2 indicates that v̄2, v̄1,w, s̄,m are
binary vectors, and M3 indicates that u′

i = τi · ui for i ∈ [1, l3]. Then we set
M = M1 ∪ M2 ∪ M3. In the new relation, the length of the witness is N and
the size of M is N − l1l3.

We can also use the fast mode (mentioned in Sect. 1.2) to argue that v1, v2

and s are short. This will lead to an instance of R∗, where the length of the
witness is l3 + 2l1l3 + 4l2 + kql1 + L + λ · (�log (2 · 4l2 · β) + 1), and the size of
M is l3 + l1l3 + kql1 + L + λ · (�log (2 · 4l2 · β) + 1).

4.4 ZKAoK of Accumulated Value

In this section, we give an argument of knowledge of an accumulated value for
the accumulator scheme presented in [36].

More precisely, let l1, L be positive integers and q be a power-of-prime.
Also, let kq = �log q� and l2 = l1kq. We propose a zero knowledge argument of
knowledge that proves knowledge of

{{τi}i∈[1,L] ∈ {0, 1}L; {vi}i∈[1,L] ∈ ([0, 1]l2)L; {wi}i∈[1,L] ∈ ([0, 1]l2)L; }
that satisfies

{
B1+τ1 · v1 + B2−τ1 · w1 = H · u

∀i ∈ [2, L],B1+τi
· vi + B2−τi

· wi = H · vi−1

for public
{B1 ∈ Z

l1×l2
q ;B2 ∈ Z

l1×l2
q ;u ∈ [0, 1]l1kq}

where H = I l1 ⊗ (1 2 4 . . . 2kq−1).
We construct the argument via reducing the relation to an instance of the

relation R∗. Note that the relation contains L parts, each of which is a disjunction
of two equations, namely, B1·vi+B2·wi = H·vi−1 and B1·wi+B2·vi = H·vi−1

(here, we define v0 = u). As shown in [36], each part can be transformed into
a subset sum of these two equations via setting the coefficients as (1 − τi, τi).
Next, we describe the reduction in more details.

First, for i ∈ [2, L], we define zi,0 = B1 · vi + B2 · wi − H · vi−1, zi,1 =
B1 · wi + B2 · vi − H · vi−1, z′

i,0 = (1 − τi) · zi,0 and z′
i,1 = τi · zi,1. Moreover,
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we set z1,0 = B1 · v1 + B2 · w1, z1,1 = B1 · w1 + B2 · v1, z′
1,0 = (1 − τ1) · z1,0

and z′
1,1 = τ1 · z1,1.

Then, we set τ 0 = (1 − τ1 1 − τ2 . . . 1 − τL)ᵀ and τ 1 = (τ1 τ2 . . . τL)ᵀ.
Also, we define ẑ′

0 = (z′ᵀ
1,0‖z′ᵀ

2,0‖ . . . ‖z′ᵀ
L,0)

ᵀ, ẑ′
1 = (z′ᵀ

1,1‖z′ᵀ
2,1‖ . . . ‖z′ᵀ

L,1)
ᵀ, ẑ0 =

(zᵀ
1,0‖zᵀ

2,0‖ . . . ‖zᵀ
L,0)

ᵀ, ẑ1 = (zᵀ
1,1‖zᵀ

2,1‖ . . . ‖zᵀ
L,1)

ᵀ, v̂ = (vᵀ
1‖vᵀ

2‖ . . . ‖vᵀ
L)ᵀ, ŵ =

(wᵀ
1‖wᵀ

2‖ . . . ‖wᵀ
L)ᵀ. Besides, we define û = ((H · u)ᵀ‖01×(L−1)·l1)ᵀ.

Finally, we set

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

IL IL 0 0 0 0 0 0

0 0 I l1L I l1L 0 0 0 0

0 0 0 0 I l1L 0 M1 N2

0 0 0 0 0 I l1L M2 N1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

x =
(
τᵀ
0 τᵀ

1 ẑ′ᵀ
0 ẑ′ᵀ

1 ẑᵀ
0 ẑᵀ

1 v̄ᵀ w̄ᵀ)ᵀ
, y =

(
1L ûᵀ 0 0

)ᵀ

where

M1 =

⎛

⎜
⎜
⎜
⎝

−B1

H −B1

. . . . . .
H −B1

⎞

⎟
⎟
⎟
⎠

, M2 =

⎛

⎜
⎜
⎜
⎝

−B2

H −B2

. . . . . .
H −B2

⎞

⎟
⎟
⎟
⎠

N1 = −IL ⊗ B1, N2 = −IL ⊗ B2

Besides, we define
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M1 = {(i, i, i)}i∈[1,L]

M2 = {(i, i, i)}i∈[2L+4l1L+1,2L+4l1L+2l2L]

M3 = {(2L + l1 · (i − 1) + j, 2L + 2l1L + l1 · (i − 1) + j, i)}i∈[1,L],j∈[1,l1]

M4 = {(2L + l1L + l1 · (i − 1) + j, 2L + 3l1L + l1 · (i − 1) + j, L + i)}i∈[1,L],j∈[1,l1]

where M1 indicates that τ 0 is a binary vector, M2 indicates that v̄ and w̄ are
binary vectors, M3 and M4 indicate z′

i,0 = (1 − τi) · zi,0 and z′
i,1 = τi · zi,1 for

i ∈ [1, L] respectively. Then we set M = M1 ∪ M2 ∪ M3 ∪ M4. Note that as in
the linear equation A ·x = y, it is proved that τ 0[i]+τ 1[i] = 1 for i ∈ [1, L], the
fact that τ 0[i] is binary implies that τ 1[i] is also binary. In the new relation, the
length of the witness is 2L + 4l1L + 2l2L and the size of M is L + 2l1L + 2l2L.

4.5 ZKAoK of PRF Preimage

In this section, we give an argument for the weak pseudorandom function con-
structed implicitly in [5]. In particular, the argument claims knowledge of a
key/input pair that evaluates to a public output.
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More precisely, let l1, l2 be positive integers, q0 be a prime and p = qe1
0 ,

q = qe2
0 , where 1 ≤ e1 < e2, we propose a ZKAoK for the following relation:

RPRF = {(c), (B,k) ∈ (Zl1
p ) × (Zl1×l2

q × Z
l2
q ) : c = �B · kp mod p}

We construct the argument via reducing the relation RPRF to an instance of
the relation R∗. First, we rewrite the equation c = �B · kp mod p as follows:

⎧
⎨

⎩

B · k = u mod q

�p

q
· u = c mod p

The first equation is a linear equation with hidden matrix. The second equation,
as shown in [37,58], holds iff each element of the vector u − q

pc is in [0, q
p ), and

thus can be transformed into a linear equation with short solution. Next, we
describe the reduction in more details. We remark that in the remaining part of
this section, all arithmetic operations are under the modulus q, so we omit the
moduli in the remaining part of this section.

First, for i ∈ [1, l1], we define bi as the i-th row of B and define vi as the
Hadamard product between bi and k, i.e., vi[j] = bi[j] · k[j] for j ∈ [1, l2].

Let e = u− q
pc, then we decompose the vector e into a binary vector ē using

the decomposition technique proposed in [40]. Let γ = q
p −1 and k = �log γ+1,

then the length of ē is k · l1.
Also, let g = (�(γ + 1)/2‖ . . . ‖�(γ + 2i−1)/2i‖ . . . ‖�(γ + 2k−1)/2k) be a

row vector. Then, we define the gadget matrix G = I l1 ⊗ g, and it satisfies that
G · ē = e.

Next, we define b = (bᵀ
1‖ . . . ‖bᵀ

l1
)ᵀ ∈ Z

l1·l2
q and define v = (vᵀ

1‖ . . . ‖vᵀ
l1

)ᵀ ∈
Z

l1·l2
q .

Finally, we set

A =

⎛

⎝
0 0 M −I l1 0

0 0 0 I l −G

⎞

⎠

x = (kᵀ bᵀ vᵀ uᵀ ēᵀ)ᵀ
, y =

(

0
q

p
· cᵀ

)ᵀ

where M = I l1 ⊗ (1 1 . . . 1) ∈ Z
l1×l1·l2
q .

Besides, we define
{

M1 = {(i, i, i)}i∈[l2+2l1l2+l1+1,l2+2l1l2+l1+kl1]

M2 = {(l2 + l1l2 + (i − 1) · l2 + j, l2 + (i − 1) · l2 + j, j)}i∈[1,l1],j∈[1,l2]

where M1 indicates that ē is a binary vector and M2 indicates that vi is the
Hadamard product between bi and k. Then we set M = M1 ∪ M2. In the new
relation, the length of the witness is l2 + 2l1l2 + l1 + kl1, and the size of M is
kl1 + l1l2.
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Remark 4.1. We remark that besides privacy-preserving primitives, our ZKAoK
for weak PRF also implies a lattice-based verifiable random function (VRF) with
trusted uniqueness (as formally defined in [52]).

More precisely, let λ be the security parameter. Let m,n, p, q be positive
integers that are polynomial in λ, where m ≥ n(log q + 1)/(log p − 1). Let A be
a random matrix in Z

m×n
q and serves as a public parameter. The secret key of

the VRF is a random vector s ∈ Z
n
q and the public key is a vector b = �A · sp

mod p. The evaluation algorithm outputs y = �H(x) · sp mod p on input a
bitstring x, where H is a hash function that maps an arbitrary-length bitstrings
onto a matrix in Z

m×n
q and is modeled as a random oracle. The proof for the

correct evaluation of the VRF on an input x is a ZKAoK that argues knowledge
of a secret key s s.t. b = �A · sp ∧ y = �B · sp, where B = H(x) (Note that,
we do not need to hide the matrices in this argument.).

First, as proved in [58], with all but negligible probability over the choice of A,
the secret key and the public key are bijective. Then the trusted uniqueness of
the VRF follows directly from the soundness of the underlying arguments.
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Abstract. A key component of many lattice-based protocols is a zero-
knowledge proof of knowledge of a vector �s with small coefficients satis-
fying A�s = �u mod q. While there exist fairly efficient proofs for a relaxed
version of this equation which prove the knowledge of �s′ and c satisfying
A�s′ = �uc where ‖�s′‖ � ‖�s‖ and c is some small element in the ring
over which the proof is performed, the proofs for the exact version of the
equation are considerably less practical. The best such proof technique
is an adaptation of Stern’s protocol (Crypto ’93), for proving knowledge
of nearby codewords, to larger moduli. The scheme is a Σ-protocol, each
of whose iterations has soundness error 2/3, and thus requires over 200
repetitions to obtain soundness error of 2−128, which is the main culprit
behind the large size of the proofs produced.

In this paper, we propose the first lattice-based proof system that
significantly outperforms Stern-type proofs for proving knowledge of a
short �s satisfying A�s = �u mod q. Unlike Stern’s proof, which is combi-
natorial in nature, our proof is more algebraic and uses various relaxed
zero-knowledge proofs as sub-routines. The main savings in our proof
system comes from the fact that each round has soundness error of 1/n,
where n is the number of columns of A. For typical applications, n is a
few thousand, and therefore our proof needs to be repeated around 10
times to achieve a soundness error of 2−128. For concrete parameters,
it produces proofs that are around an order of magnitude smaller than
those produced using Stern’s approach.

Keywords: Lattices · Zero-knowledge proofs · Commitments

1 Introduction

Lattice based cryptography is viewed as one of the most promising post-quantum
replacements for traditional public key cryptography because the most cru-
cial cryptographic primitives, such as public key encryption and digital signa-
tures, can be efficiently constructed from lattice assumptions. Furthermore, there
exist cryptographic primitives (e.g. FHE [Gen09]) whose only current realization
stems from lattice assumptions.
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1.1 Lattice-Based Zero-Knowledge Proofs

A central part of many lattice protocols is a zero-knowledge proof of a vector �s
satisfying

A�s = �u mod q (1)

for public A ∈ Z
m×n
q and �u ∈ Z

m
q . Current lattice-based zero-knowledge proofs

for the above equation come in several varieties. The most direct approach proves
exactly the knowledge of �s satisfying (1) that the prover uses to generate the
proof. This proof system [KTX08,LNSW13] is an adaptation of Stern’s protocol
[Ste93], which proves knowledge of nearby codewords, to larger moduli. Its main
weakness is that each iteration of the proof has soundness error 2/3 and it
therefore needs to be repeated 219 times to achieve soundness error 2−128. For
typical applications where the modulus is q ≈ 230, the size of such a proof is
several megabytes long.

There are other protocols that give “relaxed” proofs of (1), which may be
useful in some situations. The Fiat-Shamir-with-Aborts [Lyu09,Gro10,Lyu12]
approach proves knowledge of an �s′ and c satisfying A�s′ = c�u mod q. Despite
the fact that ‖�s′‖ > ‖�s‖ and the presence of an extra factor c, this technique
is useful for producing short lattice-based primitives, such as digital signatures,
when performed over polynomial rings. The reason that these protocols are so
efficient is that each run of the protocol has negligible soundness error and so only
needs to be performed once. Another approach [BCK+14] proves the knowledge
of �s′ satisfying A�s′ = 2�u mod q for ‖�s′‖ > ‖�s‖. When performed over polynomial
rings, the soundness error of this protocol 1/2d, where d is the dimension of the
ring. In the case where one has many equations as in (1) for the same A, but
different �si and �ui, there are even sub-linear size proofs [BBC+18] showing that
A�s′

i = �ui, where ‖�s′
i‖ > ‖�si‖.

The main downside in all of the aforementioned efficient proofs is that even
though they are more efficient than Stern-type proofs, they always prove knowl-
edge of an �s′ which is larger than the �s that the prover knows. Other than the
Stern-type proofs mentioned above, the only other known proof system that
exactly proves knowledge of the �s in (1) is based on the hardness of the dis-
crete logarithm problem [dPLS19] using the “Bulletproofs” [BCC+16,BBB+18]
approach which results in short proofs, but long running times (in addition to
requiring the discrete logarithm assumption).1 The disadvantage of proofs that
prove knowledge of a larger �s′ is that, for security reasons, they force the modulus
q to be larger. When the zero-knowledge proof is the main part of the protocol
one is building (e.g. group signatures [LNWX18,dPLS18]), this trade-off may be
worthwhile. On the other hand, if one would like to use a zero-knowledge proof
to prove something about a relation used in a different protocol (e.g. proving
that the public key of a lattice based encryption scheme is well-formed), then

1 Since the submission of this paper, independently achieved results (some using very
different techniques) appeared for solving versions of this problem [Beu19,BN19,
YAZ+19].
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one may not want to increase the parameters of the scheme just to make the
zero-knowledge proof more efficient.

In this paper, we present a new proof technique for exactly proving (1) which
is different from the “combinatorial” approach of Stern-like proofs. The proof
crucially uses the connection between the coefficient and the NTT (i.e. FFT) rep-
resentation in polynomial rings, invokes a “relaxed” lattice-based commitment
scheme as a sub-routine, and uses some “tricks” present in certain discrete-log
based proofs (e.g. [GK15]).

1.2 Our Approach

The basic building block of our zero-knowledge proof system is a proof of knowl-
edge of an �s with coefficients in {0, 1, 2} satisfying (1). One can easily trans-
form this into a proof system where �s comes from the more typical space of
{−1, 0, 1} and also extend it into a proof system where �s has coefficients in
the set {−S . . . , S}. The former is trivial, whereas the latter involves rewriting
�s = G�s′, where �s′ has coefficients in {0, 1, 2} for some public matrix G, and then
proving knowledge of an �s′ such that A′�s′ = �u for A′ = AG.

Notice that in the above transformation from a basic proof to a general one,
the larger the size of the basic set is, the fewer columns A′ will have – which
is good for keeping the proof size small. On the other hand, as we’ll see below,
the larger the basic set is, the larger the proof will be for the fact that each
coefficient of �s′ is in the basic set. When picking the size of the basic set, it is
thus important to balance these two conditions to obtain the optimally minimal
proof size. It turns out that choosing the basic set to be {0, 1, 2} is very close
to the optimal choice. Furthermore, {0, 1, 2} (which is equivalent to {−1, 0, 1})
is often the actual set in which we want to prove that the coefficients of the
solution lie. We therefore choose to work with this set for the remainder of the
paper.

If �1 and �2 are n-dimensional vectors consisting of 1’s and 2’s, then proving
that the coefficients are all in the set {0, 1, 2} is equivalent to showing that

�s ◦ (�s −�1) ◦ (�s −�2) = �0 mod q,

where ◦ denotes component-wise multiplication. Let us now consider a poly-
nomial ring R = Zq[X]/(f(X)) where f(X) is a polynomial of degree n that
splits into linear factors modulo q. For example, if n is a power of 2 and q ≡ 1
(mod 2n), then f(X) = Xn + 1 is a good polynomial to use. If s ∈ R satisfies
s(s−1)(s−2) = 0, then it also holds that ŝ ◦ (ŝ− 1̂) ◦ (ŝ− 2̂) = 0̂ mod q, where
ŝ is the NTT (or FFT) representation of s. Since the we chose our ring so that
f(X) fully splits, ŝ is a vector of dimension n and so 1̂ and 2̂ are n-dimensional
vectors consisting entirely of 1’s and 2’s. We can now rephrase what we’re trying
to prove in terms of polynomials and their NTT representations. Proving the
knowledge of a polynomial s ∈ R such that

s(s − 1)(s − 2) = 0 and Aŝ = �u mod q (2)
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is equivalent to proving the knowledge of �s with coefficients in {0, 1, 2} satisfying
(1).

Our proof of knowledge of (2) begins with the prover picking a random
masking polynomial y ∈ R and producing a �w = Aŷ mod q. For a challenge
c ∈ Zq ⊂ R, if the prover outputs z = y + cs, then this can be rewritten as
ẑ = ŷ + cŝ, and therefore the verifier can check the equation

Aẑ = �w + c�u. (3)

Notice that in order for z = y + cs to imply (3), it is crucial that c ∈ Zq, since
this is the only way that all the coefficients of ĉ can be identical. By rewinding,
we can obtain another equation Aẑ′ = �w + c′�u, for a c′ �= c and combining the
two we get

A(ẑ − ẑ′) = (c − c′)�u. (4)

The above does not really prove (1) since we still do not know that the coefficients
of (ẑ−ẑ) are in {0, 1, 2} and there is the term (c−c′) ∈ Zq which is not necessarily
1. Let us first describe how the latter problem is handled. In the first step, the
prover additionally makes commitments Com(y) and Com(s) to y and s using
the commitment scheme from [BDL+18] which has the property that for any
c ∈ R

Com(y) + c · Com(s) = Com(y + cs).

After receiving the challenge c, the prover will prove that Com(y)+ c ·Com(s) is
a commitment to z, which implies that y+cs = z, and therefore after rewinding,
(c − c′)s = z− z′. Plugging this into (4) implies that A(c − c′)ŝ = (c − c′)�u, and
since c �= c′ and q is prime, we can divide out by (c − c′) to obtain

Aŝ = �u. (5)

What we still have not proved is that the coefficients of ŝ (or more precisely,
the NTT coefficients of the message that was committed to in Com(s)) are in
{0, 1, 2}. For this proof, we make the observation that

z(z− c)(z− 2c) = y3 + 3y2(s− 1)c + y(3s2 − 6s+ 2)c2 + s(s− 1)(s− 2)c3. (6)

In particular, the last coefficient of the above polynomial is exactly what we
would like to prove equals to 0. In the first step of the protocol, the prover will
also commit to

t0 = Com(y3)

t1 = Com(3y2(s − 1))

t2 = Com(y(3s2 − 6s + 2))

and after receiving the challenge c, he will again use the linearity of the com-
mitment scheme to show that

Com(z(z − c)(z − 2c)) = t0 + ct1 + c2t2 (7)
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Intuitively (by an argument similar to the Schwartz-Zippel Lemma) this implies
that z(z − c)(z − 2c) as written in (6) is indeed a polynomial that is quadratic
in c and therefore the last term of (6) is 0 as we wanted.

The one thing that is still left to do is show that all the commitments that we
made are valid. For this we use the proof from [BDL+18], paying careful atten-
tion to the fact that the challenges have to come from a set whose differences are
all invertible. To make this set large, [BDL+18] proposed the use of a polynomial
ring R such that the underlying polynomial f(X) splits into a few high-degree
irreducible terms. But in our proof, we crucially need f(X) to fully split, and so
the largest set that we can use is {0,±Xi}, for 0 ≤ i < n, which is of size 2n+1.
Thus the commitment validity proof needs to be repeated 128/ log 2n times.

Decreasing the soundness error. Looking at the number of repetitions, the chal-
lenge c comes from the set Zq and therefore one would need 128/ log q such chal-
lenges for achieving 128-bit security. Since we mentioned above that the challenges
for proving the commitments are valid come from a set of size 2n, one may näıvely
assume that (128/ log q)·(128/ log 2n) (parallel) repetitions of the protocol will be
necessary – but this would be an overestimate. The prover does not have to con-
vince the verifier that each commitment is correct with overwhelming probability.
Intuitively, the probability of the verifier cheating is if he can guess the challenge c
(which is 1

q ) or he can create an invalid commitment and not get caught. If the lat-
ter probability is ρ, then the probability of the verifier cheating is less than 1

q + ρ.
It is therefore not very useful to decrease ρ below 1

q . Thus the commitment valid-
ity proof will need to be repeated (in parallel) a total of 128/ log 2n times (for the
whole protocol) and the number proofs of (1) that will need to be made, condi-
tioned on the commitment being valid, is 128/ log q.

Observations. One interesting observation is that our proof crucially uses poly-
nomial rings and the security of the commitment scheme in [BDL+18] based on
problems in polynomial rings, but the original problem instance in (1) is only
viewed as a linear equation over Zq. One could, of course, have (1) represent an
equation over some ring R′ (which is not the same as the ring R that we did the
proof over!) by having the matrix A be “structured”. For example if A consists
of concatenations of rotation matrices, then (1) is a polynomial equation over
Zq[X]/(Xm − 1). So our proof can also be seen as a way to give a more efficient
proof (of any kind, even relaxed) of a linear equation over Zq, though relying on
the hardness of problems over polynomial rings.

While the beginning of our proof may have some similarity to proofs of a relaxed
version of (1) (e.g. [Lyu09,Lyu12]), we believe that the resemblance is only superfi-
cial. Ignoring the NTT step (which is not present in other protocols), the extracted
values of ẑ and c in (4) somewhat resemble what one obtains in the final step of the
aforementioned protocols. In those protocols, the values of ẑ are constructed to be
small (but still larger than ŝ) by choosing the ŷ from a particular narrow distribu-
tion and using rejection sampling to keep the ẑ small. In the current proof, however,
the ẑ are not small and everything about the size of the secret ŝ is proved elsewhere
in the protocol by showing that the c3 term of (6) is 0.
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2 Preliminaries

2.1 Notation

The following Table summarizes the notation and parameters that will appear
in this paper (Table 1).

Table 1. Overview of parameters and notation

Parameter Explanation

q ≡ 1 (mod l) Prime modulus that splits completely in R
Zq = Z/qZ The field over which the linear system is defined

m ∈ Z The number of rows in the linear system

n ∈ Z The number of columns in the linear system and the rank of R
Φl ∈ Z[X] The l-th cyclotomic polynomial of degree n = ϕ(l)

R = Z[X]/(Φl) The ring of integers in the l-th cyclotomic number field

Rq = Zq[X]/(Φl) The ring of integers R modulo the fully splitting rational prime q

C ⊂ R A set of low-weight challenge polynomials

C̄ = (C − C) \ {0} The set of challenge differences excluding 0

T Bound for honest prover’s f�r in embedding norm

σ = 5T Standard deviation for sampling �y′

B = σ
√

12n Bound for honest prover’s �z′ in embedding norm

βn Error distribution on R in the RLWE problem

Dn
σ Discrete Gaussian distribution on R with standard deviation σ

We use bold letters f for polynomials in R, arrows as in �v for integer vectors
�v ∈ Z

k, bold letters with arrows �v for vectors of polynomials �v ∈ Rk and capital
letters A and A for integer and polynomial matrices, respectively. We write
x

$← S when x ∈ S is sampled uniformly at random from the set S and similarly
x

$← ρ when x is sampled according to the distribution ρ.
As is often the case in ring-based lattice cryptography, computation will be

performed in the quotient ring Rq modulo q of the ring of integers R of the
l-th cyclotomic number field. The geometry on R is inherited by embedding R
into the Minkowski space, an n-dimensional real subspace of Cn. Concretely, for
f ,g ∈ R, we have the scalar product and its induced norm

〈f ,g〉 =
∑

j∈Z
×
l

f(ζj)g(ζj) and

‖f‖2 =

⎛

⎝
∑

j∈Z
×
l

|f(ζj)|2
⎞

⎠

1
2

,
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where ζ is the primitive l-th complex root of unity ζ = e2πi/l. In the special
case where R is a power-of-two cyclotomic ring, i.e. l = 2r, the norm of f =
f0 + · · · + fn−1X

n−1 is identical, up to a scaling factor, to the �2-norm of the
coefficient vector �f = (f0, . . . , fn−1) ∈ Z

n; that is,

‖f‖2 =
√

n

(
n∑

i=1

|fi|2
) 1

2

=
√

n‖�f‖2.

The scalar product and norm are extended to vectors �v = (v1, . . . ,vk), �w =
(w1, . . . ,wk) ∈ Rk of polynomials in the natural way,

〈�v, �w〉 =
k∑

i=1

〈vi,wi〉,

‖�v‖2 =

(
k∑

i=1

‖vi‖22
) 1

2

.

2.2 Fully Splitting Primes and the Number Theoretic Transform

Our prime modulus q needs to be such that q splits completely in R; that is,
the cyclotomic polynomial Φl needs to factor into linear polynomials modulo q.
This is the case if and only if there exists a primitive l-th root of unity modulo
q, which in turn is equivalent to the condition q − 1 ≡ 0 (mod l).

Then, by the Chinese remainder theorem, we have that Rq = Zq[X]/Φl is
isomorphic Z

n
q . Concretely,

Zq[X]/(Φl) ∼= Zq[X]/(X − ζ1) × · · · × Zq[X]/(X − ζn)

where ζ1, . . . , ζn are the primitive l-th roots of unity modulo q. The isomorphism
is given by reduction modulo X − ζi. We write f̂ for the image of f ∈ Rq under
the isomorphism and call it the Number Theoretic Transform (NTT) of f .

When l is a product of powers of small primes then the NTT (and its inverse)
can be computed very efficiently in a divide an conquer fashion. Especially pop-
ular is the optimal case where l is a power of two and indeed many schemes in
lattice cryptography are instantiated over such a ring.

The existence of a fast NTT algorithm for computing the isomorphism
speeds-up and simplifies computation but is not crucial for our results. Therefore
we do not go into more details here.

2.3 Challenge Space

We define the challenge space C ⊂ R as

C = {0,Xi | 0 ≤ i < l}.



Algebraic Techniques for Short(er) Exact Lattice 183

The crucial property of this set is that the difference of any two members is
invertible in R and the multiplication of any element in R by any member of
the set does not increase the norm of the element.

In the area of lattice-based zero-knowledge proofs, when R is a power of
two cyclotomic ring, there is a sometimes-used stronger result stating that
2(Xi − Xj)−1 exists and has ternary coefficients in {−1, 0, 1}; c.f. [BCK+14,
Lemma 3.1]. In our application we do not need any condition on the smallness
of the inverse of a difference of challenges and hence we will not be concerned
with this property.

Lemma 2.1. The polynomials Xi − Xj ∈ Rq for i �≡ j (mod l) are invertible.

Proof. Let ζ ∈ Zq be one of the primitive l-th roots of unity. Then Xi − Xj

mod X − ζ = ζi − ζj . The latter is zero in Zq if and only if i ≡ j (mod l). ��

2.4 Error Distribution, Discrete Gaussians and Rejection Sampling

For sampling randomness in the commitment scheme that we use, and to define
a variant of the Ring Learning with Errors problem, we need to define an error
distribution βn on R. For general cyclotomic rings one has to be careful when
sampling error polynomials as one has to do it over the Minkowski space [LPR13].

For power-of-two cyclotomics, however, it is secure and much easier to
directly sample the polynomial coefficients. Moreover, we will need to bound
the norm of error polynomials and these bounds turn out to be slightly better
when sampling the coefficients using a uniform or binomial distribution on a
small interval instead of a small one-dimensional (discrete) Gaussian. Also this
is much easier to implement in practice. Therefore, in the power-of-two case we
sample the coefficients of the random polynomials in the commitment scheme
using the distribution β2 on {−1, 0, 1} where ±1 both have probability 5/16
and 0 has probability 6/16. This distribution is chosen (rather than the more
“natural” uniform one) because it is easy to sample given a random bitstring
by computing a1 + a2 − b1 − b2 mod 3 with uniformly random bits ai, bi. Now if
�v

$← βn
2 then we have the Chernov bound for 0 < δ ≤ 1 given by

Pr

[
‖�v‖2 <

√
(1 + δ)

10
16

n

]
≥ 1 − exp

(
−δ2

3
10
16

n

)
. (8)

In our zero-knowledge proof, the prover will want to output a vector �z whose
distribution should be independent of a secret randomness vector �r, so that �z
cannot be used to gain any information on the prover’s secret. During the proto-
col, the prover computes �z = �y + f�r where �r is the randomness used to commit
to the prover’s secret, f ← C is a challenge polynomial, and �y is a “masking”
vector. To remove the dependency of �z on �r, we use the rejection sampling tech-
nique by Lyubashevsky [Lyu09,Lyu12]. In the two variants of this technique the
masking vector is either sampled uniformly from some bounded region or using
a discrete Gaussian distribution. In the high dimensions we will encounter, the
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Gaussian variant is far superior as it gives acceptable rejection probabilities for
much narrower distributions. We first define the discrete Gaussian distribution
and then state the rejection sampling algorithm in Fig. 1, which plays a central
role in Lemma 2.4.

Definition 2.2. The discrete Gaussian distribution on Rk centered around �v ∈
Rk with standard deviation σ > 0 is given by

Dkn
v,σ(�z) =

e−‖�z−�v‖2
2/2σ2

∑
�z′∈Rk e−‖�z′‖2

2/2σ2 .

When it is centered around �0 ∈ Rk we write Dkn
σ = Dkn

�0,σ

We will use the following tail bound, which follows from [Ban93, Lemma
1.5(i)].

Lemma 2.3. Let �z $← Dkn
σ . Then

Pr
[
‖�z‖2 ≤ σ

√
2kn
]

≥ 1 − 2− log(e/2)kn/4.

Algorithm 1. Rej (�z, �v, σ)

u
$← [0, 1)

if u < 1
12

· exp
(

−2〈�z,�v〉+‖�v‖2
2σ2

)
then

return 0
else

return 1
end if

Lemma 2.4. Let ρ : Rk → [0, 1] be a probability distribution such that, for some

T > 0, ρ({�v ∈ Rk | ‖�v‖2 ≤ T}) ≥ 1 − 2−101 and let σ ≥ 5T . Sample �v $← ρ

and �y $← Dkn
σ , set �z = �y + �v, and run b ← Rej (�z, �v, σ). Then, the probability

that b = 0 is at least 1/12 − 2−104 and the distribution of (�v,�z), conditioned on
b = 0, is within statistical distance of 2−100 of the product distribution ρ × Dkn

σ .

The proof is essentially the same as in [Lyu12, Theorem 4.6], but we include
it here for the sake of completeness since the statement in [Lyu12] is slightly
different.

Proof. For every �v′ ∈ Rk let S�v′ ⊂ Rk be the set of vectors �z′ such that

Dkn
σ (�z′)

Dkn
�v′,σ(�z′)

≤ 12.
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By a simple variant of [Lyu12, Lemma 4.5] it follows that for all �v′ such that
‖�v′‖2 ≤ T ,

Dkn
σ (S�v′) ≥ 1 − 2−102.

Then,

Pr [b = 0] =
∑

�v′∈Rk

ρ(�v′)
∑

�z′∈Rk

Dkn
�v′,σ(�z′)min

(
1
12

Dkn
σ (�z′)

Dkn
�v′,σ(�z′)

, 1

)

≥
∑

‖�v′‖2≤T

ρ(�v′)
∑

�z′∈S�v′

1
12

Dkn
σ (�z′)

≥ 1
12

(1 − 2−101)(1 − 2−102) >
1
12

− 2−104.

And on the other hand,

Pr [b = 0] ≤ 1
12

∑

�v∈Rk

ρ(�v′)
∑

�z′∈S�v′

Dkn
σ (�z′) +

∑

�v∈Rk

ρ(�v′)
∑

�z′ �∈S�v′

Dkn
�v′,σ(�z′)

≤ 1
12

+
1
12

∑

‖�v‖2≤T

ρ(�v′)
∑

�z′ �∈S�v′

Dkn
σ (�z′)

+
1
12

∑

‖�v‖2>T

ρ(�v′)
∑

�z′ �∈S�v′

Dkn
σ (�z′)

≤ 1 + 2−102 + 2−101

12
=

1
12

+ 2−104

Therefore, we find for the statistical distance between the conditional distribu-
tion of (�v,�z) and the product distribution ρ × Dσ,

1
2

∑

�v′∈Rk

∑

�z′∈Rk

∣∣Pr [�v = �v′ ∧ �z = �z′ | b = 0] − ρ(�v′)Dkn
σ (�z′)

∣∣

=
1
2

∑

�v′∈Rk

∑

�z′∈S�v′

∣∣∣∣
ρ(�v′)Dkn

σ (�z′)
12Pr [b = 0]

− ρ(�v′)Dkn
σ (�z′)

∣∣∣∣

+
1
2

∑

�v′∈Rk

∑

�z′ �∈S�v′

∣∣∣∣∣
ρ(�v′)Dkn

�v′,σ(�z′)
Pr [b = 0]

− ρ(�v′)Dkn
σ (�z′)

∣∣∣∣∣

≤ 1
2

∣∣∣∣
1

12Pr [b = 0]
− 1
∣∣∣∣
∑

�v′∈Rk

ρ(�v′)
∑

�z′∈Rk

Dkn
σ (�z′)

+
1
2

∑

�v′∈Rk

ρ(�v′)
∑

�z′ �∈S�v′

Dkn
σ (�z′)

≤ 1
2

∣∣∣∣
1

12Pr [b = 0]
− 1
∣∣∣∣+ 3 · 2−103 ≤ 2−100 ��
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2.5 Lattice Problems

We will use the commitment scheme from [BDL+18] whose security can be based
on variants of the following two standard lattice problems.

Definition 2.5. The Ring Short Integer Solution problem RSISk,B with param-
eters k ≥ 1 and B > 0 is solved by finding a short, non-zero vector �s ∈ Rk+1

such that (1, �aT ) ·�s = 0 over Rq. We say that an algorithm A has advantage ε
in solving the RSISk,B problem if

Pr
[
‖�s‖2 ≤ B ∧ (1, �aT ) ·�s = 0 ∧ �s �= �0k+1

∣∣∣�a $← Rk
q ; �s ← A(�a)

]
≥ ε

Definition 2.6. In the Ring Learning with Errors problem RLWEm with
parameter m ≥ 1, an adversary A tries to distinguish (�a, �b) $← Rm

q × Rm
q from

(�a, �as + �e) with �a $← Rm
q and secret short s $← βn, �e $← βmn. We say that an

algorithm A has advantage ε in solving the RLWEm problem if
∣∣∣Pr
[
b = 1

∣∣∣�a $← Rm
q ; s $← βn ; �e $← βmn ; b ← A(�a, �as + �e)

]

−Pr
[
b = 1

∣∣∣�a $← Rm
q ; �b $← Rm

q ; b ← A(�a, �b)
]∣∣∣ ≥ ε

2.6 Commitment Scheme

A commitment scheme consists of a triple of algorithms (KeyGen, Com, Open)
which work as follows.

KeyGen(1λ) → pp is a probabilistic polynomial-time algorithm that produces
the public parameters pp for the commitment scheme, defines the message space
M , randomness space R and commitment space C, and implicitly includes the
security parameter λ.

Com(pp,m) → (c, r) is a probabilistic polynomial-time algorithm that takes a
message m and the public parameters pp as input and produces a commitment
c ∈ C and some randomness r ∈ R used to compute and open c.

Open(pp,m, c, r) → b is a deterministic polynomial-time algorithm that takes
the public parameters pp, a message m, randomness r, and a commitment c as
input, and produces a bit b ∈ {0, 1} as output.

A commitment scheme should be hiding and binding.

Definition 2.7 (Hiding). A commitment scheme is ε-hiding if for all algo-
rithms A

Pr

⎡

⎣b = b′

∣∣∣∣∣∣

pp ← Keygen(1λ), (m0,m1) ← A(pp)
b ← {0, 1}, (c, r) ← Com(pp,mb)

b′ ← A(pp, c)

⎤

⎦ < ε

where the probability is taken over the randomness of KeyGen, Com and A.
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Definition 2.8 (Binding). A commitment scheme is ε-binding if for all algo-
rithms A

Pr
[

m �= m′ and
Open(pp,m, c, r) = Open(pp,m′, c, r)

∣∣∣∣
pp ← KeyGen(1λ),

(m,m′, r, r′, c) ← A(pp)

]
< ε

where the probability is taken over the randomness of KeyGen and A.

If we restrict the algorithms A to probabilistic polynomial time algorithms in
the definition of the hiding or binding properties, then we say that the property is
computational. If we allow for arbitrarily powerful algorithms, then the property
is statistical.

In our protocol, we use a variant of the commitment scheme from [BDL+18]
which splits the message space into different components. This allows useful
manipulations on the different components as part of our zero-knowledge proof.

We will create public parameters that can be used to commit to messages
�m ∈ R4

q. Define the matrix B ∈ R5×6
q (with row vectors �bT

1 , . . . , �bT
5 ).

B =

⎛

⎜⎜⎜⎜⎜⎝

�bT
1

�bT
2

�bT
3

�bT
4

�bT
5

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

1 b1,2 b1,3 b1,4 b1,5 b1,6

0 1 0 0 0 b2,6

0 0 1 0 0 b3,6

0 0 0 1 0 b4,6

0 0 0 0 1 b5,6

⎞

⎟⎟⎟⎟⎠

where the polynomials bi,j ∈ Rq are chosen uniformly at random.
To commit to �m = (m2,m3,m4,m5)T ∈ R4

q, we choose a random polynomial

vector �r $← β6n from the error distribution and output the commitment

Com( �m;�r) = �t =

⎛

⎜⎜⎜⎜⎝

t1
t2
t3
t4
t5

⎞

⎟⎟⎟⎟⎠
= B ·�r +

⎛

⎜⎜⎜⎜⎝

0
m2

m3

m4

m5

⎞

⎟⎟⎟⎟⎠

A valid (relaxed) opening of such a commitment �t consists of a message
vector �m ∈ R4

q, a short vector �r ∈ R6
q with ‖�r‖2 ≤ 2B and a challenge difference

f̄ ∈ C̄ or f̄ = 1. The verifier checks that

f̄�t = B�r + f̄
(
0
�m

)

and that ‖�r‖2 ≤ 2B.

Remark. Although the commitment scheme allows relaxed openings to a multiple
of the original commitment, it is used incidentally in our protocol. We would like
to stress that our zero-knowledge proof shows that the prover knows an exact
solution to a system of linear equations.
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Lemma 2.9. C.f. [BDL+18, Lemma 6] For every algorithm A that has advan-
tage ε in breaking the hiding property of the commitment scheme, there exists
another algorithm A′ that runs in the same time and has advantage ε in distin-
guishing RLWE5.

Lemma 2.10. C.f. [BDL+18, Lemma 7] For every algorithm A that succeeds
with probability ε in breaking the binding property of the commitment scheme,
there exists another algorithm A′ that runs in the same time and solves RSIS5,8B

with probability ε.

3 The Main Protocol

We want to prove knowledge of a short integer vector �s that is a solution to a
linear equation A�s = �u over Zq with public matrix A and vector �u. We now
describe our protocol for this task. In the introduction, we made various simpli-
fications to make the key ideas easier to understand. We now give more precise
details.

Concretely, let A be an m × n matrix over Zq and �s have coefficients in
{−S, . . . , S}. First we transform the equation to an equation with vector �s′

having coefficients in {0, 1, 2}. The easiest way to achieve this is simply to write
the coefficients s1, . . . , sn of �s as

si = s′
i,0 + 3s′

i,1 + · · · + 3r−1s′
i,r−1 − 3rs′

i,r = �gT�s′
i

where r = �log3 S + 1�, the coefficients s′
i,j of �s′

i are in {0, 1, 2}, and �gT is the
gadget row vector �gT = (1, 3, . . . , 3r−1,−3r)T . Then we have �s = (In ⊗ �gT )�s′

and hence

A′�s′ = A(In ⊗ �gT )�s′ = A�s = �u

when we write A′ = A(In ⊗ �gT ) ∈ Z
m×rn
q .

As discussed in the introduction, our high level strategy is for the prover to
send the masked opening z = y + cs, and use commitments to y and s to show
that z was correctly formed. Then, the prover and verifier can use this masked
opening z, along with some extra commitments, to prove that the following
polynomial expression is a polynomial of degree 2, and not degree 3.

z(z− c)(z− 2c) = y3 + 3y2(s− 1)c+y(3s2 − 6s+ 2)c2 + s(s− 1)(s− 2)c3. (9)

The simplest way to do this would be to make 5 commitments, and check Eq. 9
in committed form, i.e.

t1 = Com(y) t2 = Com(s)

t3 = Com(y3) t4 = Com(3y2(s − 1))

t5 = Com(y(3s2 − 6s + 2))

Com(z) ?= t1 + ct2 Com(z(z − c)(z − 2c)) ?= t3 + t4c + t5c2
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In our protocol, we optimize the procedure so that the prover needs only commit
to 4 polynomials, instead of 5. Given that we will send z, and check that it was
correctly computed as y+cs, we can use z to help evaluate the left-hand side of
Eq. 9, and use the commitment to s to simplify the right hand side. After these
optimisations, our proof uses the following alternative expression.

(z − c)(z − 2c)s = zy(2s − 3) − y2(s − 3) + s(s − 1)(s − 2)c2. (10)

Our protocol is based around making 4 commitments and checking (10) in com-
mitted form.

t2 = Com(y) t3 = Com(s)

t4 = Com(y(2s − 3)) t5 = Com(y2(s − 3))

Com(z) ?= t1 + ct2 Com(0) ?= (z − c)(z − 2c)t3 − zt4 + t5

This is still a slight simplification of what takes place in the protocol, as the
commitment scheme given in Sect. 2.6 will actually commit to all four messages
at the same time, but fortunately, the commitment scheme nevertheless allows
us to manipulate the individual components and check the given equations.

The protocol uses two challenges, c ∈ Zq, and f ∈ C. The first challenge c is
used to embed s into a masked value, which is used to show that Aŝ = �u. The
second challenge f is used to embed the commitment randomness into a masked
value, which will help us to check important equations in committed form. Of
course, we cannot allow the verifier to see the commitment randomness without
any random masking, as this would leak information about the committed secret
s. This leads to two more extra terms when checking the equations, which are
given by x1 and x2 in the protocol.

We now discuss each step of the protocol, describing the actions of the prover
and verifier.

In the first move, the prover samples a random masking value y, which will
later be used to hide the secret s. Then they sample the randomness �r used to
commit to the four ring elements given in the polynomial equations above. They
also fix the random masking value ŷ by computing �w = Aŷ. The value ŷ will be
used to help verify that Aŝ = �u later on. The prover sends these to the verifier.

Next, the verifier sends a random challenge c ∈ Zq to the prover. As we have
seen, the challenge c is used to embed the secret s into z. The prover samples a
new masking value �y′ which will be used to hide the commitment randomness
�r. They also compute the values x1 and x2, which will later allow the verifier to
check Eq. (10) in committed form using a masked version of �r. They send these
values to the verifier.

Next, the verifier sends a random challenge f ∈ C to the prover. The prover
computes �z′, a masked version of the commitment randomness, and applies a
rejection sampling algorithm to make sure that this value does not leak any
information about r.
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Finally, the verifier checks a blinded version of the equation Aŝ = �u, and
blinded versions of the Eq. (10) and z = y+cs written in committed form, using
the extra terms which the prover sent earlier.

The full protocol is given in Fig. 1.

3.1 Security Analysis

Theorem 3.1. The protocol in Fig. 1 is complete, computational honest verifier
zero-knowledge if RLWE5 is hard and generalized special sound if RSIS5,8B is
hard.

More precisely, the honest prover P convinces the honest verifier V with
probability ε ≈ 1/12.

For zero-knowledge, there exists a simulator S, that, without access to secret
information, outputs a simulation of a non-aborting transcript of the protocol
between P and V. Then for every algorithm A that has advantage ε in distin-
guishing the simulated transcript from an actual transcript, there is an algorithm
A′ with the same running time that has advantage ε − 2−100 in distinguishing
RLWE5.

For knowledge-soundness, there is an extractor E with the following prop-
erties. When given rewindable black-box access to a deterministic prover P∗

that convinces V with probability ε > 2/q + 2/l, E either outputs a solution
�s∗ ∈ {0, 1, 2}n to A�s∗ = �u, or a RSIS5,8B solution for �bT

1 in expected time at
most 144/(ε − 2/q − 2/l) when running P∗ once is assumed to take unit time.

Notice that we only require the simulator S to simulate non-aborting tran-
scripts, i.e. the interaction between P and V conditioned on the prover not
aborting. The rationale behind this is that in the non-interactive version that
is relevant in practice one never gets to see the aborting proofs. In any case,
there is a standard technique which makes it possible to simulate the aborting
transcripts too, whereby the prover commits to the binding quantities w′, x1

and x2 and only opens the commitments if he does not abort.

Proof. Completeness. It follows directly from Lemma 2.4 that the honest prover
P does not abort with probability at least 1/12 − 2−100. Moreover, in this case
the distribution of the vector �z′ sent by P has statistical distance at most 2−100

from D6n
σ , and Lemma 2.3 implies that the bound ‖�z′‖2 ≤ B = σ

√
12n is true

with probability at least 1−2−0.66n −2−100. It is easy to see that all of the other
verification equations are always true for the messages sent by P. Therefore, the
honest prover convinces the honest verifier with probability ε ≈ 1/12.

Soundness. The extractor E needs to obtain accepting transcripts from P∗

for 3 different first challenges c1, c2, c3 ∈ Zq. Moreover, for each of the 3 ci, E
needs 2 accepting transcripts with first challenge ci and two different second
challenges fi,1 �= fi,2. So in total E needs 6 transcripts. To this end, he runs P∗,
sends uniformly random challenges c1 and f1,1 and repeats until he obtains a first
accepting transcript. This takes expected time 1/ε. Then, by a standard heavy
rows argument, with probability at least 1/2, the probability of obtaining an
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Fig. 1. Lattice-based proof of knowledge of a ternary solution to a linear equation over
Zq.

accepting transcript conditioned fixing the first challenge c1, but with uniformly
random second challenge, is at least ε/2. So conditioned on c1, the extractor
obtains a second accepting transcript with challenges c1 and f1,2 �= f1,1 with
probability at least ε/2 − 1/l, and he succeeds in getting such a transcript in
expected time at most (ε/2−1/l)−1. For the third transcript he sends uniformly
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random c2 �= c1 and f2,1 and succeeds in expected time at most (ε − 1/q)−1.
Then, using the heavy rows argument again, we can assume that the acceptance
probability for fixed first challenge c2 is at least ε/2 − 1/(2q), which is true
with probability at least 1/2. Therefore, in conditioned expected time (ε/2 −
1/(2q)−1/l)−1, the extractor receives the 4-th transcript with challenges c2 and
f2,2 �= f2,1. Continuing in the same way, the last two transcripts are obtained in
conditioned expected time at most 3/(ε − 2/q − 2/l).

In summary, with probability 1/8, the total expected time needed to obtain
the 6 transcripts is less than

T =
9

ε − 2/q − 2/l
.

With probability 7/8 the extractor is not so lucky and might run for a long
time or not terminate at all. We cope with this by limiting the runtime of E
to 2T . Then, by Markov’s inequality, the extractor gets hold of the 6 accepting
transcripts in time at most 2T with probability at least 1/16. By restarting in
case of failure we finally conclude that in expected time 16T the extractor indeed
has the 6 accepting transcripts needed.

Let us now see how to use the transcripts. Let �z′
i,j , i = 1, 2, 3, j = 1, 2, be the

last messages from P∗. Write �z′
i = �z′

i,1−�z′
i,2 and f̄i = fi,1−fi,2 for the difference of

these messages in the transcripts with the same first challenge and the difference
of the corresponding second challenges, respectively. The verification equation
�bT
1 �z′

i,j = w′ + fi,jt1 yields approximate solutions to the first equation of the
commitment �t by subtracting,

�bT
1 �z′

i = f̄it1.

Then we can compute openings m2 = y∗, m3 = s∗, m4 and m5 of �t. For
instance,

mk = tk − �bT
k

�z′
1

f̄1
.

Note these openings are valid relaxed openings of our commitment scheme with
‖�z′

1‖2 ≤ 2B. Therefore, when using �z′
2 and f̄2 or �z′

3 and f̄3 to compute openings
we either get the same mk or break the binding property of the commitment
scheme. The latter would translate to a RSIS5,8B solution; c.f. Lemma 2.10.
Concretely, if

mk �= m′
k = tk − �bT

2

�z′
2

f̄2
,

then f̄2�z′
1 − f̄1�z′

2 �= 0 and we get the RSIS5,8B solution

�bT
1

(
f̄2�z′

1 − f̄1�z′
2

)
= 0.

Here we have used the fact that ‖�z′
i‖2 ≤ 2B, which implies ‖f̄i�z′

i‖2 ≤ 2‖�z′
i‖2 ≤

4B and ‖f̄2�z′
1 − f̄1�z′

2‖2 ≤ 8B.
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Assume we did not break the commitment scheme and write zi for the mes-
sage z sent by the prover in the (2i−1)-th and (2i)-th transcript, which is equal
in the two transcripts. Consider the verification equations

(
�bT
2 + ci

�bT
3

)
�z′

i,j + fi,jzi = x1,i + fi,j (t2 + cit3) .

Subtract the equations with j = 1, 2 and the same i to obtain

(
�bT
2 + ci

�bT
3

) �z′
i

f̄i
+ zi = t2 + cit3.

Now substitute the opening

y∗ + cis∗ = m2 + cim3 = t2 + cit3 −
(
�bT
2 + ci

�bT
3

) �z′
i

f̄i

corresponding to t2 + cit3. This gives

zi = y∗ + cis∗. (11)

So we see that the messages zi are of the expected form with constant polynomi-
als y∗ and s∗ that are independent of the challenges ci. Next from the verification
equations

(
(zi − ci)(zi − 2ci)�bT

3 − zi
�bT
4 + �bT

5

)
�z′

i,j

= x2,i + fi,j ((zi − ci)(zi − 2ci)t3 − zit4 + t5)

we find by using the opening (zi − ci)(zi − 2ci)s∗ − zim4 +m5 corresponding to
(zi − ci)(zi − 2ci)t2 − zit4 + t5 and Eq. (11),

(zi − ci)(zi − 2ci)s∗ − zim4 + m5

= (y∗ + ci(s∗ − 1)) (y∗ + ci(s∗ − 2)) s∗ − y∗m4 − cis∗m4 + m5

=
(
(y∗)2s∗ − y∗m4 + m5

)
+ (y∗(2s∗ − 3) − m4) s∗ci + (s∗ − 1)(s∗ − 2)s∗c2i

= 0.

So we have a polynomial of degree 2 over Rq that evaluates to zero at the 3
points c1, c2 and c3. We can write this as a matrix-vector equation over Rq,

⎛

⎝
1 c1 c21
1 c2 c22
1 c3 c23

⎞

⎠

⎛

⎝
(y∗)2s∗ − y∗m4 + m5

(y∗(2s∗ − 3) − m4) s∗

(s∗ − 1)(s∗ − 2)s∗

⎞

⎠ =

⎛

⎝
0
0
0

⎞

⎠ .

The determinant of this well-known Vandermonde matrix is equal to (c1−c2)(c1−
c3)(c2 − c3) ∈ Z

×
q ⊂ R×

q and hence the matrix is invertible over Rq. Therefore,
s∗(s∗ − 1)(s∗ − 2) = 0. Applying the NTT to this last equation implies

ŝ∗ ◦ (ŝ∗ −�1) ◦ (ŝ∗ −�2) = �0
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in Z
n
q . So the coefficients of ŝ∗ are all in {0, 1, 2}. Finally, by subtracting copies of

the second verification equation from on another, we get A(ẑ1− ẑ2) = (c1−c2)�u.
But we know that

ẑ1 − ẑ2
c1 − c2

= ŝ∗

has only coefficients in {0, 1, 2} and is the solution to the linear equation with
matrix A that we wanted to find.

Zero-Knowledge. We can simulate a non-aborting transcript between the hon-
est prover and the honest verifier in the following way. First, note that in such
a transcript z = y + cs is uniformly random because the honest prover samples
y uniformly at random. Moreover, �z′ is statistically close to D6n

σ by Lemma 2.4.

So the simulator can just pick z $← Rq and �z′ ← D6n
σ . Next, by Lemma 2.4

again, we know that f�r is independent of �z′, and hence that f is independent of
�z′. The two challenges c and f are uniformly random since the honest verifier
chooses them in this way. Therefore, the simulator picks c

$← Zq and f $← C.
The commitment �t is computationally indistinguishable from a dummy com-
mitment if RLWE5 is hard (c.f. Lemma 2.9. In fact, the construction of the
commitment scheme is such that �t contains an additive term that is precisely
a RLWE5 sample. So the simulator can just take a uniformly random �t $← R5

q.
Now, in an honest transcript, the remaining messages �w, w′, x1 and x2 are all
uniquely determined by the verification equations because of completeness. We
see that if the simulator computes these messages so that the verification equa-
tions become true, then the resulting transcript is indistinguishable from the
honest transcript. More precisely, a simulated transcript has statistical distance
at most 2−100 from a distribution which differs from the actual transcripts only
in that �t is distributed differently. Therefore, if there is an algorithm A that has
advantage ε in distinguishing a simulated transcript from an actual transcript,
then this algorithm must be able to distinguish RLWE5 samples from random
with advantage ε − 2−100.

3.2 Repeating the Proof

For the moduli q and the dimensions n = ϕ(l) that occur when proving equations
from lattice-based cryptographic schemes, our proof does not have sufficiently
low soundness error as ε0 = 2/q + 2/l will be much larger than 2−128. Therefore
the proof needs to be repeated multiple times. If for t repetitions, every single
repetition succeeds with probability ε > (ε0)t, then it cannot be that each of
them has success probability less than ε0. Otherwise we would have ε < (ε0)t.
So one of the proofs will be extractable. Since l < q, the number of repetitions
necessary is determined by l. If l is considerably smaller than q then it is worth
repeating the lower half of the proof with challenge f a couple of times for
a single execution of the upper half with challenge c. The lower part of the
proof demonstrates knowledge of an opening of the commitment �t. Recall that
the extractor needs successful transcripts of the full protocol with the same
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challenge c and two different challenges f1 and f2. He gets these by obtaining a
first successful transcript and then running the prover with fixed challenge c and
random f2 �= f1. So if the lower part is repeated twice then the first successful
execution will have challenges c and (f1, f ′

1) and the extractor can choose fresh
challenges (f2, f ′

2) from the set C2 of size l2 and only needs that one of the two
f2 and f ′

2 is different from the corresponding f1 or f ′
1, i.e. that (f1, f ′

1) �= (f2, f ′
2).

Hence we see that the proof with two repetitions of the lower part will have
soundness error ε0 = 2/q + 2/l2.

3.3 Non-interactive Proof

In practice, the interactive protocol given in Fig. 1 is usually converted to a non-
interactive protocol by using the Fiat-Shamir heuristic. So the two challenges
c ∈ Zq and f ∈ C are computed by the prover from a hash of public information
and all previous messages, where the hash function is modelled as a random
oracle. Since our protocol does not have sufficiently low soundness error, it needs
to be repeated multiple times to be secure. In the non-interactive version this is
done by computing multiple proofs in parallel where all messages of all parallel
proofs are put into the hash function to derive the various challenges for the
parallel executions of the protocol. Here we allow for the lower half to be repeated
multiple times for each repetition of the upper half, as explained in Sect. 3.2.
Concretely, we repeat the upper half t times with challenges ci, i = 1, . . . , t, and
for each of the repetitions we perform the lower part t′ times with challenges fj ,
j = t′(i − 1) + 1, . . . , t′(i − 1) + t′.

If the rejection sampling on the vectors �z′
j in the parallel proofs was performed

individually, the whole proof would need to be restarted if only one of the �z′
j was

rejected, which would happen with probability about 1 − (1/12)tt′
. Therefore,

the runtime of the non-interactive prover would be very long. Instead, we mask
the concatenation of the t secret vectors fj�ri for i = 1, . . . , t and j = (i−1)t′ +k
with the same k by sampling the masking vectors �y′

j with a standard deviation
that is equal to 5T ′, where T ′ is a bound on the concatenation of those secret
vectors. Then we do rejection sampling on all of the corresponding �z′

j at once.
The downside of this is that the bound T ′ and hence the standard deviation
of the discrete Gaussian distribution for the �y′

j increases by a factor of
√

t. We
could also perform rejection sampling on all of the tt′ masking vectors at once
with another increase of the standard deviation by a factor of

√
t′. But usually t′

is at most two or three and hence the increase in prover time from not including
this optimisation this does not pose a problem.

As another improvement we make use of the fact that it is not necessary to
recommit to the constant secret polynomial s in all of the parallel executions of
the proof. Instead it is actually enough to recommit to all of the other messages
by sampling fresh RLWE errors r1, r2, r4, r5 for them and the first row of the
commitment. In this way, we actually give out 1+4t RLWE samples and require
RLWE1+4t to be a hard problem. The complete non-interactive prover algorithm
is given in Algorithm 2 and the corresponding verifier in Algorithm3.
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Apart from the improvements described, the non-interactive algorithms also
make use of the standard technique of sending the challenges ci and fj instead of
the large binding quantities �wi, w′

j , x1,j and x2,j . The verifier computes these as
the only missing terms in the verification equations, which allows him to check
the challenges. The functions G(·) and H(·) are the two hash functions, modelled
as random oracles, for sampling the challenges.

Algorithm 2. Non-Interactive Prover
1: Input: A, �u, ŝ
2: Output: (�ti)i∈[t], (ci)i∈[t], (zi)i∈[t], (fj)j∈[tt′], (�z

′
j)j∈[tt′]

3: r3, r6
$← βn

4: t3 = b3,6r6 + r3 + s
5: for i = 1, . . . , t do

6: yi
$← Rq

7: �wi = Aŷi

8: ri,1, ri,2, ri,4, ri,5
$← βn

9: �ri = (ri,1, ri,2, r3, ri,4, ri,5, r6)
T

10: ti,1 = �bT
1�ri

11: ti,2 = �bT
2�ri + yi

12: ti,4 = �bT
4�ri + yi(2s − 3)

13: ti,5 = �bT
5�ri + y2

i (s − 3)
14: �ti = (ti,1, ti,2, t3, ti,4, ti,5)

T

15: end for
16: (ci)i∈[t] = H(A, �u, (�ti)i, (�wi)i)
17: for i = 1, . . . , t do
18: zi = yi + cis
19: for j = (i − 1)t′ + 1, . . . , (i − 1)t′ + t′ do

20: �y′
j

$← D6n
σ

21: w′
j = �bT

1 �y′
j

22: x1,j = (�bT
2 + ci

�bT
3 )�y′

j

23: x2,j = ((zi − ci)(zi − 2ci)�b
T
3 − zi

�bT
4 + �bT

5 )�y′
j

24: end for
25: end for
26: (fj)j∈[tt′] = G((ci)i, (zi)i, (w

′
j)j , (x1,j)j , (x2,j)j)

27: for j = 1, . . . , tt′ do
28: �z′

j = �y′
j + fj�r�j/t′�

29: end for
30: for k = 1, . . . , t′ do
31: if Rej

(
(�z′

j)j=k,...,(t−1)t′+k, (f(i−1)t′+k�ri)i, σ
)

= 1 or
∥∥(�z′

j)j

∥∥
∞ > 6σ then

32: goto 3
33: end if
34: end for
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Algorithm 3. Non-Interactive Verifier
1: Input: A, �u, (�ti)i∈[t], (ci)i∈[t], (zi)i∈[t], (fj)j∈[tt′], (�z

′
j)j∈[tt′]

2: Output: b ∈ {0, 1}
3: for i = 1, . . . , t do
4: �wi = Aẑi − ci�u
5: for j = (i − 1)t′ + 1, . . . , (i − 1)t′ + t′ do
6: w′

j = �bT
1 �z′

j − fjti,1

7: x1,j = (�bT
2 + ci

�bT
3 )�z′

j + fjzi − fj(ti,2 + citi,3)

8: x2,j = ((zi − ci)(zi − 2ci)�b
T
3 − zi

�bT
4 + �bT

5 )�z′
j

9: − fj((zi − ci)(zi − 2ci)ti,3 − ziti,4 + ti,5)
10: end for
11: end for
12: (c′

i)i∈[t] = H(A, �u, (�ti)i, (�wi)i)
13: (f ′

j)j∈[tt′] = G((ci)i, (zi)i, (w
′
j)j , (x1,j)j , (x2,j)j)

14: if ‖�z′
j‖2 ≤ B ∧ c′

i = ci ∧ f ′
j = fj then

15: return 1
16: else
17: return 0
18: end if

3.4 Proof Size

We want to compute the size of the non-interactive proofs that are produced by
Algorithm 2. Each of the t polynomial vectors �ti consists of 5 uniformly random
polynomials ti,ν ∈ Rq of which one of them, namely ti,3, is the same in all �ti

and only needs to be transmitted once. The polynomials zi are also uniformly
random. So we need

(1 + 5t)n�log q�/8

bytes for (�ti)i and (zi)i. By contrast the vectors �z′
j sampled from discrete Gaus-

sian distributions with standard deviation σ = 5T ′ where T ′ is a bound on
the vector (f(i−1)t′+k�ri)i in dimension 6tn. Note that the embedding norm is
invariant under multiplication by the monomials fj and we do not need to take
them into account. The coefficients of a discrete Gaussian are smaller in absolute
value than 6σ with probability at least 1 − 2−24, c.f. [Lyu12, Lemma 4.4], and
our non-interactive prover enforces this. So the transmission of (�z′

j)j requires

6tt′n�log(12σ)�/8

bytes; that is, �log(6σ)� bits per coefficient for the absolute value and one sign bit
per coefficient. This does not make use of the fact that the coefficients of �zj are
distributed according to a (truncated) discrete Gaussian with known standard
deviation, which has less entropy than the uniform distribution. So to get slightly
smaller proof sizes one can encode the �zj using a Huffman code, for instance.
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Finally, the challenge polynomials (ci)i and (fj)j together require

t(�log q� + t′�log l�)/8

bytes.

4 Efficiency Comparison

The simplest application of our proof protocol is to prove knowledge of the
secret in LWE samples over Zq. Let’s consider the case of ternary error, mod-
ulus q below 232 such that 4096 | q − 1, and dimension d = 1024. Moduli of
around this size are used in FHE schemes and group signature schemes following
the hash-and-sign paradigm with Boyen [Boy10] or Ducas-Micciancio standard-
model signatures [DM14], for example. Now m such LWE samples �u are of the
form

�u = A′�s′ + �e

with A′ ∈ Z
m×d
q public and chosen uniformly at random, and �s ∈ {−1, 0, 1}d

and �e ∈ {−1, 0, 1}m secret. We can write A = (A′, Im) and then the above LWE
equation as �u = A(�s′ ‖ �e), which is of the form suitable for our proof system.
So let R = Z[X]/(Xn + 1) with n = 2d = 2048 and define s ∈ Rq to be the
polynomial whose NTT ŝ is given by the concatenation of the vectors �s′ and �e.

4.1 Our Proof System

With t′ = 3 lower repetitions, the protocol has soundness error 2/q +2/l3 which
is approximately 2−31. So we make t = 4 upper repetitions of the protocol to
reach the 128 bit security level.

As we are in the power-of-two case recall that we are sampling the random-
ness vectors �ri ∈ R6 using the binomial distribution β2 independently for each
coefficient. By the Chernov bound (8) it follows that T ′ =

√
1.1 · 0.625 · 6tn =

183.83 with probability at least 1 − 2−102. So we sample the vectors �y′
j with

σ = 5T ′ = 919.13.

Hardness. The security of the above instantiation of our protocol is based on the
hardness of the RSIS5,8B and RLWE1+4t problems over the ring Zq[X]/(X2048+
1) with q ≈ 232. We analyze known attacks against these problems and start
with the Ring SIS problem. Here one needs to find a short vector in the k = 6n-
dimensional lattice

Λ⊥(�bT
1 ) =

{
�x ∈ R6 | �bT

1 �x ≡ 0 (mod qR)
}

.

It has volume qn, as one can easily see by writing down a basis. By applying a
reduction algorithm to the basis that achieves a root Hermite factor δ0 we find a
short vector of length qn/kδk

0 . But it is actually sufficient to find a short vector in
a sublattice by omitting some of the columns of the matrix corresponding to �bT

1 .
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It turns out that the optimal dimension is k = 6509. There a root Hermite
factor of 1.0011 would be needed to find a vector of length 8B. This is out of
reach for current reduction algorithms.

For the Ring LWE problem RLWE1+4t we study the primal attack and use
the fact that the lattice

Λ⊥ =
{
�x ∈ R3+4t | (�a I1+4t

�t
)
�x ≡ �0 (mod qR)

}

of volume q(1+4t)n contains the unusually short vector (s,�eT ,−1)T of expected
length about

√
(2 + 4t)n10/16. Here we do not need to use all of the LWE

samples and can instead search for an unusually short vector in a lattice of
dimension k = (i + 1)n + 1 that we get from considering i samples, 1 ≤ i ≤
1 + 4t. Lattice reduction will succeed in finding the unusually short vector if
λ2/λ1 ≥ 0.3δk

0 where we assume that there is no other very short vector and
hence, by the Gaussian heuristic,

λ2 =

√
k

2πe
qin/k.

It follows that in our case we would need to achieve a root Hermite factor of
about δ0 = 1.0027, which is impossible.

Size. It follows from the formulas in Sect. 3.4 that the total size of the proof is
384.03 KB. Here we have not used the trivial encoding for the vectors �zj using
�log(12σ)� = 14 bits per coefficient. Instead we have computed the entropy of
the discrete Gaussian distribution with σ = 919.13, truncated to {−6σ, . . . , 6σ},
which is below 12 bits. So using a Huffman code the vectors �zj can be encoded
using 12 bits per coefficient on average.

4.2 Stern-Like Proofs

We compare our result against the Stern-type protocol presented in [KTX08,
LNSW13], as it is the only other lattice-based zero-knowledge protocol capable
of proving that a prover knows an exact solution to a system of linear equations,
rather than a solution to a related system.

The protocol of [LNSW13] proves knowledge of �s ∈ Z
n with coefficients in

{−S, . . . , S}, such that A�s = �u, where A is an m × n matrix over Zq. For the
analysis, we closely follow [LNSW13, Figure 1].

Set k = �log S� + 1. The protocol decomposes �s into k vectors �sj with coeffi-
cients in {−1, 0, 1} using a type of binary decomposition, and extends each �sj to
a longer vector �̃sj with a constant number of 0, 1 and −1 entries. The protocol
also uses a matrix A′ which is derived from A. Then, the protocol proves that
that all of the coefficients of the extended vectors do indeed lie in {−1, 0, 1}
and that A′∑k−1

j=0 �̃sj is equal to �u, which implies a short solution to the original
system using A.

The protocol involves choosing a random permutation, choosing random
masking vectors �rj for the �̃sj , and making three commitments.
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– The first commitment is a commitment to a random permutation and a
matrix-vector product involving A′ and the �rj . The random permutation can
be generated from a short seed of using a PRG. The result of the matrix-vector
product is n log q elements, but this value itself is never revealed.

– The second commitment is a commitment to permutations of the �rj . The �rj

can also be generated using a PRG.
– The third commitment is a commitment to permutations of the vectors �̃sj+�rj .

The prover sends these three commitments to the verifier. Using a simple com-
mitment scheme which commits by hashing and is secure in the random oracle
model, each of these commitments has size 256 bits.

The protocol uses challenges from the set {1, 2, 3}. As for the prover’s
responses to challenges, when the challenge is equal to 1, the prover sends the
permuted �rj and �̃sj to the verifier. This means sending 6kn + 3kn�log q� bits.
When the challenge is equal to 2, the prover sends the permutation seed and
the permuted �̃sj + �rj to the verifier. This means sending 256 + 3kn�log q� bits.
When the challenge is equal to 3, the prover sends the permutation seed and
the permuted �rj to the verifier. This means sending 512 bits, as it is sufficient
to send the random seed for the �rj alongside the permutation seed.

Summing up the challenge responses, dividing by 3, and adding the sizes of
the 3 commitments, a single execution of the protocol has an expected proof size
of 1024+kn(2�log q�+1) bits. A single execution has a soundness error of 2/3. For
a soundness error of λ bits, this means repeating the protocol t = �λ/(log 3 − 1)�
times, for a total proof size of 1024t + knt(2�log q� + 2) bits.

For the application above, with λ = 124 and k = 1, the result is a proof size
of 3.44 MB.
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Abstract. The need for high-quality randomness in cryptography
makes random-number generation one of its most fundamental tasks.

A recent important line of work (initiated by Dodis et al., CCS ’13)
focuses on the notion of robustness for pseudorandom number generators
(PRNGs) with inputs. These are primitives that use various sources to
accumulate sufficient entropy into a state, from which pseudorandom bits
are extracted. Robustness ensures that PRNGs remain secure even under
state compromise and adversarial control of entropy sources. However,
the achievability of robustness inherently depends on a seed, or, alterna-
tively, on an ideal primitive (e.g., a random oracle), independent of the
source of entropy. Both assumptions are problematic: seed generation
requires randomness to start with, and it is arguable whether the seed
or the ideal primitive can be kept independent of the source.

This paper resolves this dilemma by putting forward new notions of
robustness which enable both (1) seedless PRNGs and (2) primitive-
dependent adversarial sources of entropy. To bypass obvious impossibility
results, we make a realistic compromise by requiring that the source pro-
duce sufficient entropy even given its evaluations of the underlying primi-
tive. We also provide natural, practical, and provably secure constructions
based on hash-function designs from compression functions, block ciphers,
and permutations. Our constructions can be instantiated with minimal
changes to industry-standard hash functions SHA-2 and SHA-3, or key
derivation function HKDF, and can be downgraded to (online) seedless
randomness extractors, which are of independent interest.

On the way we consider both a computational variant of robustness,
where attackers only make a bounded number of queries to the ideal prim-
itive, as well as a new information-theoretic variant, which dispenses with
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this assumption to a certain extent, at the price of requiring a high rate of
injected weak randomness (as it is, e.g., plausible on Intel’s on-chip RNG).
The latter notion enables applications such as everlasting security. Finally,
we show that the CBC extractor, used by Intel’s on-chip RNG, is provably
insecure in our model.

Keywords: Provable security · Pseudorandom number generation ·
Symmetric cryptography

1 Introduction

Good random number generation is essential for cryptography and beyond. In
practice, this difficult task is solved by a primitive called pseudorandom number
generator with input (PRNG), whose aim is to quickly accumulate entropy from
various physical sources in the environment (such as keyboard presses, timing of
interrupts, etc.) into the state of the PRNG and then convert this high-entropy
state into (pseudo) random bits. In particular, entropy accumulation should never
stop since one may need to recover from occasional compromises of the PRNG
state. PRNGs are ubiquitous and have extensive applications. For example, vir-
tually all operating systems come equipped with a PRNG; e.g., /dev/random [48]
for Linux, Yarrow [34] for MacOs/iOS/FreeBSD, and Fortuna [24] for Windows
[23], where the latter two make use of standard cryptographic primitives as part
of their design. Still, as we will argue below in a much broader context, even these
widely used PRNGs lack adequate theoretical understanding and analysis, which
are critical if such PRNGs or their future tweaks continue to be used ubiquitously.

The situation is not better in terms of standardization efforts, where existing
PRNG standards [5,22,32,35] are less mature than those for most other cryp-
tographic primitives. For starters, there has not been any rigorous competition
soliciting PNRG designs, and big parts of the existing standards concentrate
on the difficult (ad-hoc and non-cryptographic) problem of entropy estimation
rather than entropy accumulation and extraction. More importantly, standard-
ized cryptographic PRNG constructions are rather ad-hoc, have no clear security
definition/model, often have confusing syntax, and sometimes have been broken
by subsequent analyses of the cryptographic community. The most widely known
example is the DualEC PRNG, which appeared in the first version of the NIST
SP 800-90A standard [5] in 2005 and remained there for years—despite early
warnings by [42,44] and allowing potential exploitation [12]—until Snowden’s
revelations finally led to its deprecation. Recent work [49] identified a lot of
gaps and imprecision (sometimes leading to attacks or security concerns) in the
existing analyses and deployment for the other 3 PRNGs from the NIST SP
800-90A standard. In a similar vein, [43] found several gaps and misconceptions
in previous analyses and security justifications for the popular Intel Secure Key
Hardware PRNG introduced in 2011.

One of the main goals of this work is to reverse this poor state of affairs and
to design a rigorous, theoretically sound model of PRNGs. This model should
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be general enough to incorporate practical entropy sources available in the real
world, as well as to formally prove security of “good,” widely used PRNGs
against realistic attackers.

1.1 Previous Theoretical Models for PRNGs: Seeds

In view of their practical importance, we are certainly not the first to formally
study PRNGs through a theoretical lens. Indeed, several theoretical models and
analyses of PRNGs have appeared in the literature [1,19,21,26,28,43]. While
differing in various details, these important works share two key principles:

(a) The PRNG should work even against adversarial entropy sources, as long
as such sources eventually provide enough entropy (such sources are called
“legitimate” [19]);

(b) assuming more structure beyond entropy is undesirable and brittle,1 as this
requires a rather detailed understanding of one’s entropy sources.

However, while such extremely minimalist assumptions make these PRNG mod-
els applicable to a wide variety of entropy sources, they also come with a sub-
tle, but very important caveat: the randomness extraction module cannot be
deterministic, as deterministic extraction from general entropy sources is impos-
sible [15]. As a result, the PRNGs studied by these works are seeded (with the
seed somehow chosen at initialization), but the entropy sources are assumed
to be independent of the seed. This modeling is inherited from the underlying
problem of randomness extraction, where seeded extractors [40] indeed overcome
the impossibility of deterministic (or “seedless”) extraction from general entropy
sources.

While natural and sufficient for some applications of extractors, we argue
that the need for a seed seems rather problematic in the deployment of PRNGs.
First, if the reason for random number generation is the lack of access to high-
quality random bits, then we may not have any way to generate the seed. More
importantly, even if we can generate a uniformly random seed, it is crucial for
the analysis that (potentially adversarial) entropy sources remain independent
of the seed, for otherwise the extractor guarantees are lost. For example, if
physical entropy sources inside the computer are used, these sources may be
affected by the internal computations of the PRNG itself, and thus there may
be correlations between the seed and the sources. Moreover, for many seeded
PRNGs, the attacker could obtain information about the seed by either directly
reading it from memory, or indirectly when the recently compromised or rebooted
RNG is called on “low-entropy” inputs (so the output is no longer random and
leaks information about the seed; this is called “premature next” attack by [21]).

This means that it is certainly an issue if the seed is just generated once and
for all (perhaps using an expensive source of randomness) and hard-coded within
implementations to be used for all future randomness extractions. Moreover, if
multiple entropy sources are used, it is natural that some of these sources are
1 We do, however, later discuss an interesting approach suggested by [3].
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adversarial and could depend on the seed (which is hard to protect against with
a dedicated attacker). Somewhat paradoxically (considering the common belief
that “more entropy cannot hurt”), the mixing of such seed-dependent sources
once again invalidates all the provable guarantees of seeded PRNGs, even if all
the entropy is obtained from other, seed-independent sources.

We thus face a dilemma:

We want to support general entropy sources, for which seedless extraction is
impossible, and seeded extraction is only possible under very dangerous and
hard-to-ensure independence assumptions, which we would rather avoid.

The goal of this work is to provide a meaningful solution to this dilemma,
by keeping the PRNG design seedless while respecting properties (a) and (b)
mentioned above.

1.2 Seedless PRNGs and Extractors from Cryptographic Hashing

We will achieve this goal by using popular cryptographic hash functions (CHF)
as our technical tool, and by carefully defining the notion of entropy in the
setting when certain components of these CHFs are assumed idealized.

Why cryptographic hashing? Before describing our solution in more detail,
we explain why using CHFs appears essential for the design of seedless2 PRNGs.
For starters, all general-purpose software PRNGs used today, as well as all rec-
ommendations in existing PRNG standards, are based on CHFs. Hence, this
setting must definitely be understood in order to provide results useful in the
real world.

However, there is a more glaring theoretical reason as well. The key com-
ponent of any PRNG is the shrinking function refresh which takes the current
PRNG state S as well as a new entropic input X and produces a new state
S′ ← refresh(S,X). The goal of this function is to absorb the potential entropy
of X into the PRNG state S, in which case the entropy of S′ should be higher
than the original entropy of S. In the extraction literature, this property is called
condensing. If one uses a seed, building such condensers is easy to accomplish
information-theoretically. For example, in the PRNG design of [19], the refresh
function is linear: S′ = aS + X, where a is a seed independent of X.

In the seedless/seed-dependent setting, it is not hard to see [20] that con-
densers must be built cryptographically, as they require at least some form of
preimage- and collision-resistance.3 For example, when used in iteration, the sim-
ple aS+X condenser function above—which yields (together with other building
blocks) a provably secure seeded PRNG construction [19]—can be broken in a
catastrophic way if the distribution of the input blocks X1,X2, . . . could depend

2 Or, in the non-uniform setting, “seed-dependent”.
3 For example, the ability to compute a random preimage of a given element, which

is known to imply one-way functions [31], allows the attacker to produce entropic
inputs whose entropy is completely lost by the refresh procedure.
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on the constant a: it is not hard to see that an attacker knowing a can rather
easily produce high-entropy inputs such that if the condenser is applied to it, the
resulting would have no entropy at all. In practice, one cannot imagine a PRNG
system which would risk such a catastrophic failure by critically depending on
the fact that the constant a must remain hidden for the lifetime of the PRNG.
Therefore, not surprisingly, all real-world PRNG designs—including those used
by Windows, MacOS, and FreeBSD—critically rely on CHFs, despite lacking
adequate theoretical justification.

Cryptographically secure condensers, which at an absolute minimum seed-
less PRNGs have to be, can be built using a (very strong form of) collision-
resistance [20]. However, the types of condensers needed for applications, called
average-case seedless condensers, seem to require non-standard cryptographic
assumptions. For example, a relatively weak form of such average-case condensers
(called “condensers for leaky sources”) are already sufficient for instantiating the
Fiat-Shamir heuristic for public-coin proof systems [20]—and it is a major open
problem to provide such an instantiation under standard cryptographic assump-
tions.

To put it differently, even ignoring the fact that we want our PRNGs to be
full-blown seedless extractors—a problem we will address next—just achieving
provably secure entropy accumulation appears to require the use of CHFs as
well as either (1) non-standard cryptographic assumptions (making the results
appear somewhat tautologous) or (2) some supporting justification argument in
an idealized model of computation, which is the approach taken by this work.

Our approach: new min-entropy notion. To describe our approach, it
is instructive to recall the basic impossibility of seedless extraction for general
entropy sources. Given any candidate (seedless) extractor G, an adversary can
perform a so-called extractor-fixing attack by sampling a random input X several
times until the first bit of G(X) is 0. The resulting distribution X has very
high entropy, but G(X) is clearly not uniformly random. Observe that with a
strong enough CHF G, one might be able to formally argue that the extractor-
fixing attack is the “most damaging” attack possible; for example by showing,
that G(X) has almost full entropy (i.e., is a good condenser) for any efficiently
samplable source X, as was done by [20]. In other words, using CHFs will protect
against the completely devastating attacks possible with information-theoretic
extractors.

However, our goal is to have a meaningful model where real randomness
extraction is possible, so that we can later extend it all the way to the full
PRNG system. Our solution will be to define a elegant and practically motivated
refinement of general min-entropy in settings where CHFs exist, so that:

(a) somewhat artificial sources resulting from intentionally performing extractor-
fixing will not have much entropy according to our notion (meaning they are
no longer “legitimate”); in fact, seedless extraction will become possible for
our notion of min-entropy;

(b) most natural entropy sources, including those used by major operating sys-
tems, will likely have good entropy according to our new measure.
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While our final constructions and interpretation of our security analyses will
apply to real-world CHFs, such as those derived from SHA-2, SHA-3, HMAC or
HKDF, at present the only rigorous way we know how to achieve our ambitious
goals (a) and (b) will be by going to the idealized models of computation, such
as the random oracle, the ideal cipher or the random permutation model. This
is quite standard for many areas of symmetric-key cryptography, and we already
indicated that doing provably secure (non-tautologous) seedless PRNG construc-
tions in the “standard model” appears beyond our current capabilities, even for
much simpler building blocks, such as (average-case) seedless condensers.

1.3 Toy Case: Monolithic Seedless Extraction from
Oracle-Dependent Sources

We start by presenting our new entropy notion for the simpler problem of “mono-
lithic randomness extraction,” where the entropy source X is assumed to come
in one piece (rather than slowly accumulated using a fixed-length PRNG state),
and a monolithic CHF G—modeled as a monolithic random oracle—is used to
output the value R = G(X) (so that we temporarily ignore any find-grained
structure inside G, such as Merkle-Damg̊ard or Sponge [8] iteration).

At first, it appears that we solved our problem in a totally trivial (and unin-
teresting) way, even without refining standard min-entropy. Namely, in the ran-
dom oracle model, the following folklore proof (see [18]) appears to show that a
(seedless) random oracle G is a good extractor: For any min-entropy γ∗ source
X, the probability the distinguisher D can distinguish G(X) is upper bounded
by the probability D queries G on X, which is at most q · 2−γ∗

, where q is the
number of random oracle queries allowed to A.4

Implicit in this simple proof, however, is the key assumption that the distri-
bution X is independent of the random oracle G, meaning that our (potentially
adversarial) sampler producing X is not allowed to call the random oracle G.
Thus, modeling G as a random oracle is but a fancy way of introducing an
exponentially long seed that is independent of the source, making extraction
trivial.5 Indeed, to capture PRNG sources X arising in the real world, we must
allow the source X to depend on the ideal primitive G. For example, if the tim-
ing of computer interrupts is used as our entropy source X—which is the most
common source of randomness in software PRNGs—it seems unreasonable to
assume that none of these interrupts could be affected by frequent hash function
computations done inside and outside the operating system.

4 In fact, if the length of G(X) is slightly less than γ∗, we can even let A query all of
G and use leftover-hash lemma [30] to get information-theoretic security.

5 Prior to our work, the above modeling of sources as being independent of the ideal
primitive, was the only way to overcome extractor-fixing attacks. Examples of this
approach include [18,36,49] and many others. While these results are non-trivial due
to the “non-monolithic” structure of their extractors G, none of these works model
the setting where the source could depend on the ideal primitive.
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Oracle-dependent sources. To fix this problem, in Sect. 3 we will explicitly
model our source as part of the attacker A, so that AG = (AG

1 ,AG
2 ), where AG

1

outputs the oracle-dependent source X and passes state Σ to the second state
attacker AG

2 (Σ), whose goal is to distinguish R = G(X) from uniform. Of course,
for this definition to make sense, we must require that X is “legitimate,” meaning
it has entropy at least γ∗ given the state information Σ (for some parameter γ∗).
In the standard model, this could be formalized by requiring H∞(X|Σ) ≥ γ∗ (see
Sect. 2). But this is too weak, as this still allows for extractor-fixing attacks, by
sampling a long random X and remembering a few bits of G(X) in the leakage
Σ. In fact, this extractor-fixing attack still works even if we condition on the
entire random oracle G (i.e., require H∞(X|Σ,G) ≥ γ∗). This leads to a central
question of this work:

What is the “right” notion of entropy for oracle-dependent sources X?

The key insight of our work comes from the fact that while it is reasonable to
assume that the source X could depend on the random oracle G, the natural
sources of entropy we want to extract from do not natively evaluate crypto-
graphic hash functions, but somehow add extra entropy in addition to all hash
function evaluations around them. For example, it is unreasonable to assume
that the timing of interrupts could not depend, even slightly, on various hash
function evaluations inside the computer. However, it seems that the real entropy
of interrupt timings comes from the fact that the attacker cannot perfectly pre-
dict the exact lower order bits of the timing measurements, even if the attacker
knew all the hash function evaluations. Indeed, instead of only requiring that
H∞(X|Σ,G) ≥ γ∗, our approach will make a stronger requirement that

H∞(X|(Σ,L)) ≥ γ∗ , (1)

where L is the input-output list of random oracle queries made by the sampler
A1 to the random oracle. Another, equivalent way to interpret this legitimacy
condition is to mandate that A1 cannot “forget” any of its random oracle queries
when passing its state Σ to A2, but must forget some other useful information
about X, to ensure that X has entropy conditioned on Σ and L.

Notice, our solution places a more stringent requirement than conditioning
on the entire G, as A1 did not touch anything outside L, so these un-queried
values do not reduce entropy of X beyond what is done by L. Also, when the
number of queries q is not too large, the extractor-fixing is no longer a legiti-
mate attack, since X will not have much entropy when conditioned on L (which
contains the pair (X,G(X))). In fact, we can easily show full extraction (see
Theorems 1 and 2), along the lines of the folklore proof for oracle-independent
sources mentioned above. The basic intuition comes from the fact that our condi-
tioning on the list L ensures that with overwhelming probability the sampler A1

did not himself evaluate G(X), which is essential for the extractor-fixing attack
to succeed.
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Did we go too far? Of course, the main question is whether the legitimacy
requirement H∞(X|(Σ,L)) ≥ γ∗ does not overly limit the class of high-entropy
sources from which we want to extract. We believe the answer is negative. First,
in the restrictive “folklore case” when X is independent of G (meaning L = ∅),
we get the best-possible min-entropy condition H∞(X|Σ) ≥ γ∗ we had in the
standard (non-random-oracle) model. Namely, our notion of min-entropy relative
to G includes all general min-entropy sources.6

Second, while we certainly allow the source X to substantially depend on
G, we ensure that non-trivial bulk of entropy must come from outside of the
actual oracle evaluation queries. In other words, while “nature,” who outputs
X, could conceivably be influenced by a couple of hash function evaluations, it
should generate some intrinsic entropy in addition to (but possibly dependent
on!) these evaluations. We feel that all practically used physical sources (timing
of interrupts, temperature, keystroke dynamics, etc.) have very little to do with
hash functions, and should easily satisfy this requirement.

Thus, we believe that our technical restriction on the legitimacy for extrac-
tion using CHFs—by conditioning min-entropy on the list of hash function
evaluations—strikes the right balance between allowing for seedless extraction,
and yet keeping the family of high-entropy sources large and realistic for appli-
cations.

1.4 Our Results

While the above toy example (analyzed in Sect. 3.2) illustrated the key technical
insight behind our approach, in practice it is uncommon to assume access to a
monolithic random oracle G. Instead, practical hash functions are usually built
from (public) compression functions, ciphers, or permutations. These underly-
ing primitives P have limited input length and will therefore not be able to
process inputs of arbitrary length m. Therefore, extractors and PRNGs should
be designed in such a way that they can process short m-bit input blocks (e.g.,
m = 256, 512, 1600) and accumulate their entropy in the internal state.

Online extractors and insecurity of CBC. Thus, in Sect. 3.3 we for-
malize the more realistic notion of online (seedless) extractors, which slowly
accumulate their long input into a fixed-length state (using access to a P ), and
then finalize their output once the whole input is processed. We also define both
computational and information-theoretic (IT) notions of online extractor secu-
rity, where in the latter notion the attacker is allowed to read the entire ideal
primitive P after it finished generating the oracle-dependent source X.

Turning to natural and widely used examples of such online extractors, we
show that the popular CBC mode of operation is insecure as a seedless extractor
in our framework. The details of our attack are given in Sect. 3.4, but the result
is a somewhat unexpected, since CBC is used as the extractor underlying the
CTR DRBG construction in the NIST PRNG standard NIST SP 800-90A Rev. 1 [4],
6 Of course, when we instantiate G with a real-world hash function, this is no longer

the case, as we discuss below.
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and also as the extractor for Intel’s on-chip RNG [38]. Moreover, its security was
formally shown by Dodis et al. [18], but in the setting where the entropy source
X was independent of the random permutation π. In contrast, we show that
once the latter assumption is relaxed to our oracle-dependent sources, the CBC
extractor is no longer secure (unless one generalizes it to the Sponge construction
in Sect. 5.3, where the input is only XORed to part of the state). Of course, our
attack is somewhat theoretical, and does not directly translate to attacking the
Intel on-chip RNG, for example. However, coupled with our positive results, we
feel our attack suggests using a different online extractor, if possible.

On a positive side, in the full version [17], we show several other (both com-
putational and information-theoretic) online extractors based on popular modes
of operations used inside hash functions SHA-2 and SHA-3, which are provably
secure in our framework: from Merkle-Damg̊ard with a random compression
function, from Merkle-Damg̊ard with the Davies-Meyer compression function,
and from Sponges. Hence, for the first time practitioners can use seedless extrac-
tors which are both practical and have firm theoretical foundation. The security
of these natural online extractors follows as special cases of more general PRNG
security results, which we describe next.

Full-scale seedless PRNGs. Finally, we take all our ideas together to solve
our main problem: defining and building practical, yet provably secure seedless
PRNGs. In Sect. 4 we introduce a novel security definition for PRNGs that differs
from previous notions [1,19,26] in several crucial ways. The detailed comparison
appears in the full version, but we present the highlights here.

First and foremost, our design is seedless. This is accomplished by carefully
defining the legitimacy condition (relative to the fixed-length ideal primitive P ),
by conditioning our entropy notion on the list L of the queries to P made by
the attacker. Second, our seedless design allows us to merge the “distribution
sampler” and the distinguisher used by [19,26] into a single attacker A,7 mak-
ing our notion much simpler to describe. Third, the works of [19,26] used a
much weaker notion of worst-case min-entropy; moreover, the final entropy of
the source X was defined as sum of individual worst-case min-entropies of the
individual blocks of X conditioned on all the other blocks (before and after). In
contrast, we use a much better notion of average-case min-entropy, and only look
at the global average-case min-entropy of the entire (long) vector X. Thus, our
notion of entropy is much less conservative: realistic entropy sources are likely to
have much higher entropy according to our definition, even when conditioning
on the list L. Fourth, the notion of [19,26] had explicit “entropy estimates” that
the attacker had to provide. Our notion gets rid of these estimates. Finally, and
somewhat surprisingly, we still managed to define our notion of legitimacy of
the entropy source in a manner which is construction-independent. This means
that one can potentially study the entropy properties of the source in a manner
independent of the PRNG used on this source.

7 Since we no longer need to hide the seed from the distribution sampler, forcing us
to separate it from the attacker.
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We also define both computational and information-theoretic (IT) notions of
PRNG security. As with on-line extractors, for IT-PRNGs the attacker is allowed
to read the entire ideal primitive P after it finished generating the last block of
it’s oracle-dependent source X used for extraction. Such a notion is important
for applications where privacy must hold well after the PRNG is finished its
operations, or where information-theoretic security is important.

Our PRNG constructions. In Sect. 5 we then present three main PRNGs
which are provably secure in our framework: based on Merkle-Damg̊ard with
a random compression function (see Fig. 2), based on Merkle-Damg̊ard with
the Davies-Meyer compression function (see Fig. 3), and based on Sponges (see
Fig. 4). All these constructions are extremely natural and practical, as Merkle-
Damg̊ard-based functions abstract SHA-2, while Sponges abstract SHA-3—two
most widely used cryptographic hash functions. Thus, our work (including new
notion of oracle-dependent entropy) could be used as theoretical justifications
why these popular hash functions yield good seedless PRNGs (as well as online
randomness extractors) even for a wide class of oracle-dependent entropy sources.

Moreover, for Merkle-Damg̊ard based variants we also proved the security
for the information-theoretic variant (the Sponge case is open, although we
defined the variant which we conjecture is IT-secure). Our three computa-
tional proofs heavily use the “coefficient-H” technique [13,41], while our two
information-theoretic proofs extend the framework of so-called “graph-counting”
proofs [7,18,25] to bound the collision probability of iterated hash constructions.
One novel challenge we had to solve here comes from the fact that the input
source could depend on the list L of the ideal primitive queries, which breaks
the “source-primitive” independence assumption crucially used in these already
subtle proofs.

We also showed numeric examples of how we propose to use our constructions.
Overall, we believe all of them are deployment ready, and we hope this work will
start influencing future PRNG deployments, and will be incorporated into next
RNG standards.

Implications to standard model. To overcome the impossibility of seedless
extraction, our entropy notion is defined relative to the ideal primitive P . As we
argued in detail in Sect. 1.2, working in the idealized model seems somewhat inher-
ent to our approach, provided we wish to avoid highly non-standard, and likely
tautological, cryptographic assumptions about the CHF we are using in the stan-
dard model. Still, it is good to ask what one might expect from our extractor
and PRNG constructions with real-world CHFs, such as those based on SHA-2,
SHA-3, HKDF, etc. As we already mentioned, we believe these constructions are
secure for real-world entropy sources, because our idealized notion of entropy
informally corresponds to sources which have fresh entropy, even given all the hash
function evaluations happening around the source. To state the counter-positive,
we believe that any real-world attack against our constructions with existing hash
functions will either require a highly artificial entropy source, or will find a sur-
prising weakness in the corresponding CHF.
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1.5 Other Related Work

We mention some important categories of related works, in particular with
respect to seedless extraction, PRNGs, and their security.

Seeded extractors and PRNGs. We already mentioned the extensive work
on seeded extractors started by the seminal paper of Nisan and Zuckerman [39],
and why they are problematic in our context. In the context of PRNGs, the
first seeded PRNG notion was defined and constructed by Dodis et al. [19], who
extended the prior “monolithic PRNG” definition of Barak and Halevi [1] (which
did not explicitly talk about the seed, assuming the extraction module is “good
enough” for the class of distributions produced by the entropy source). This line
of work was extended in various ways by [21,26,29], where the latter two works
were also analyzed in the random permutation model (in addition to the seed).
However, none of these works considered a seedless setting for general entropy
sources.

Extractors and PRNGs in ideal models. Extractors and PRNGs were
also studied in the ideal models by several works [9,18,43,49]. While not hav-
ing explicit seeds, these works nevertheless modeled the entropy source as being
independent of the ideal primitive. As we argued above, such oracle-independent
modeling seems to be too restrictive for many realistic scenarios. Also, from a
theory point of view, it effectively allows an exponentially long seed (the ran-
domness used to sample the corresponding ideal primitive), making the positive
results less interesting theoretically than the above-mentioned work on seeded
extractors and PRNGs.

Indeed, the main motivation of all these papers was not to design theoretically
optimal extractors and PRNGs, but to analyze the heuristic use of various cryp-
tographic hash functions and popular modes of operations (such as CBC, HMAC,
etc.) for randomness generation and extraction—a task these objects were not
natively designed for. From this perspective, and given their widespread use, ana-
lyzing their extraction properties was an important first step in understanding
their security, even under the restrictive oracle-independence assumption. Our
work could be viewed as making a critical leap forward, by dropping—for the
first time—the oracle-independence assumption, but instead carefully modeling
what constitutes entropy in the much more realistic, oracle-dependent setting.

Restricting the class of entropy sources. This line of work has pri-
marily focused on the question of extraction, by assuming that the source X has
more structure beyond entropy. Early examples [10,14,16,37,47] include vari-
ous bit-fixing and limited dependence sources, culminating with the question of
extracting from several independent sources [2,11]. While mathematically very
elegant, the types of sources studied by these works appear “too structured” to
be realistic in the PRNGs scenario.

A different kind of restriction on the entropy source was studied by Barak
et al. [3]. Rather than restrict sources by some property of their distribution, the
work of [3] allows for arbitrary min-entropy sources, but assumes they come from
an a-priori bounded number of distributions. While potentially promising for the
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setting of PRNGs, there are two disadvantages of the work of [3] as compared
to this work. First, the work of [3] concentrated on the “monolithic” extraction
setting, and did not address the question of entropy accumulation, where the
entropy in X might come slowly from a large number of samples, and has to
be accumulated into bounded state. In particular, it is unclear how to extend
their constructions to address entropy accumulation with a fixed-length state.
Second, the particular solutions offers by [3] used so called t-wise independent
hash functions for a large values of t (at least as large as the overall source
length). These functions are quite inefficient, and might not be fast enough for
general purpose PRNGs.

We note that our work could also be viewed as overcoming impossibility
of extraction by restricting the type of the source. However, we feel that our
modeling is more natural for (and, thus, applicable to) the existing entropy
sources, as used by the current PRNGs.

Low-Complexity Samplers. Introduced by Trevisan and Vadhan [46] and
later extended by [33], here one assumes that the entropy source producing input
X is unable to run the extractor/PRNG even once, thus making it impossible to
do extractor-fixing. While this might be useful for situations where the entropy
source is extremely simple, it is too restrictive for most applications, such as
general purpose PRNG design studied in this work. In contrast, in this work
the entropy source can easily run the extractor, but the legitimacy condition is
defined in a way that doing the trivial extractor-fixing attack—by running the
extractor—will result in a low-entropy, “illegitimate” source.

Randomness condensers. This approach, formalized by Dodis, Ristenpart
and Vadhan [20], relaxes the security guarantees of the randomness extractor
to only ensure that the output of the (seedless or “source-dependent-on-seed”)
condenser is almost full entropy, despite not being perfectly uniform. Indeed, this
weaker security turns out to be sufficient for several applications, such as key
derivation schemes for signature schemes. Unfortunately, if we want an extractor
rather than a condenser—which is essential for general purpose PRNGs—this
approach is not sufficient.

UCEs and public-seed pseudorandomness. The notion of universal compu-
tational extractors (UCEs) [6], and its generalizations [45], study a complemen-
tary problem to the one studies here: how to extract from any entropy source
which is only computationally-hard-to-predict, so it only has “computational
entropy”. On a positive, and similar to this work, when instantiated with con-
structions from an ideal primitive P , a UCE hash function yields a good extrac-
tor even if the inputs to it (the actual source) can be sampled depending on the
ideal primitive. The issue, however, is that the current UCE notion inherently
requires a seed, making in inapplicable for the PRNG scenario. An interesting
direction for future research could be to extend our work to deal with computa-
tional entropy, by defining and constructing seedless UCEs in idealized models,
and possibly extending them to full-blown seedless PRNGs for computational
entropy.
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2 Preliminaries

2.1 Statistical Distance and Min-Entropy

The statistical distance of two random variables X and Y is SD(X,Y ) =
1
2

∑
x |P[X = x] − P[Y = x]|. The prediction probability of a random vari-

able X is Pred(X) := maxx P[X = x], and we also denote Pred(X|y) :=
maxx P[X = x|Y = y]. The conditional version of prediction probability is
defined as

Pred(X|Y ) := Ey←Y

[
Pred(X|y)

]
.

The (average-case) conditional min-entropy is H∞(X|Y ) = − log(Pred(X|Y )).

2.2 Security Games

All of the security properties considered in this paper are captured by considering
a game between a challenger and an attacker A, both of which may have access
to an ideal primitive P . The goal of the attacker is to guess a random bit b
chosen by the challenger, who offers a set of oracles to the attacker to aid with
this task. The advantage of A is defined as

2 · ∣
∣ P[A wins] − 1/2

∣
∣ ,

where the probability is over the randomness of A, of the challenger, and of the
ideal primitive. The cases where b = 0 and b = 1 are referred to as the real world
and the ideal world, respectively. One may equivalently consider A’s advantage
at telling these two worlds apart, i.e.,

∣
∣ P[A = 1|b = 0] − P[A = 1|b = 1]

∣
∣ .

3 Seedless Extraction

As a warm-up for full-fledged seedless PRNGs, this section considers the simpler
property of extraction, i.e., producing uniformly random bits from weak high-
entropy sources. Extraction can be seen as corresponding to the post-compromise
security of PRNGs, and as such it will be implied by PRNG robustness (as
defined in Sect. 4.2).

The definition of extraction security in Sect. 3.1 considers the entropy of the
attacker’s input to the extractor conditioned on the attackers state and the
queries made to an ideal primitive P . A definition is provided for computational
or information-theoretic security. IT extractors differ from computational ones
in that the output of the extractor remains random even if the attacker, after
providing the input, is given the entire function table of the underlying ideal
primitive. That is, IT extractors achieve so-called everlasting security (cf. works
in the hybrid bounded-storage model by Harnik and Naor [27]).

Section 3.2 considers extracting with a monolithic random oracle. The corre-
sponding security proofs (for the computational and IT cases) are instructive for
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understanding the actual PRNG constructions provided in Sect. 5. Since consid-
ering a monolithic oracle is not motivated by any hash function used in prac-
tice, Sect. 3.3 introduces the concept of online extraction. An online extractor
accumulates the entropy of its inputs in an internal state, from which uniform
randomness can be produced. Finally, in order to illustrate the non-triviality
of online extraction, Sect. 3.4 shows that extractors based on the popular CBC
mode are not suitable for extraction.

3.1 Definition

In a model with idealized primitive P (chosen from some set P), seedless extrac-
tors are algorithms extP : X → Y with oracle access to P . The security defi-
nition for such extractors considers a two-stage attacker A = (A1,A2), where
both parts have access to P . The first stage A1 outputs a value x and some
state information σ for A2. The second stage takes an input y ∈ Y and outputs
a single bit (i.e., it acts as a distinguisher).

For an attacker A, denote by L1 and L2 the (random variables corresponding
to) the lists of the P -queries made by A1 and A2, respectively.

Definition 1. An attacker A = (A1,A2) is called a q-attacker if |L1 ∪ L2| ≤ q
always; it is called a q-IT-attacker if |L1| ≤ q always.

That is, for IT-attackers the second stage A2 may make an arbitrary number
of queries to P . Equivalently, A2 can be thought of as being given the entire
function table of P .

The security game for seedless extractors in the P -model roughly requires
that if the extractor is given a high-entropy input by A1, then A2 cannot tell
the extractor output apart from a random value in Y, even given the state
information σ and access to P . Formally, it proceeds as follows:

1. The challenger chooses b ← {0, 1} and P ← P uniformly at random.
2. A1 gets access to P and produces (σ, x) ← AP

1 .
3. The output of the extractor is computed as y0 ← extP (x). Moreover, the

challenger picks a value y1 ← Y uniformly at random.
4. The second-stage attacker A2 is given σ and yb and outputs a decision bit

b′ ← AP
2 (σ, yb). The attacker wins if and only if b′ = b.

The advantage of A in this extraction game is denoted by Advext,P
ext (A).

An attacker has to satisfy a legitimacy condition. Intuitively, this condition
requires that the output X of A1 have high min-entropy even conditioned on
the state information Σ and the list of queries L1.8

Definition 2. An attacker A = (A1,A2) is said to be γ∗-legitimate if, in the
extraction game above,

H∞(X|ΣL1) ≥ γ∗ .

8 Note, in the extraction game the definition of L1 is the same in the real and the ideal
worlds. For our future definitions of PRNGs, however, it will be important that the
notion of legitimacy is defined in the ideal world (i.e., conditioned on b = 1).
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The above finally leads to the following definition of seedless extractor in the
P -model:

Definition 3. An algorithm extP : X → Y with oracle access to P is an (γ∗, q, ε)-
(IT-)extractor in the P -model if for every γ∗-legitimate q-(IT-)attacker A,

Advext,P
ext (A) ≤ ε .

3.2 Seedless Extraction with a Monolithic Random Oracle

For instructive purposes it is useful to consider monolithic extraction, i.e., the
case where the ideal primitive P itself is used as an extractor. To exemplify
this, assume P is a random oracle, i.e., a function G : {0, 1}m → {0, 1}n chosen
uniformly at random. Then, the monolithic extractor is defined as follows:

Construction 1 (Monolithic extractor). The monolithic seedless extractor
monoG : {0, 1}m → {0, 1}n using a random oracle G : {0, 1}m → {0, 1}n is
defined by

monoG(x) := G(x) .

Theorem 1 (Monolithic seedless extraction). Construction mono is a
(γ∗, q, ε)-extractor in the G-model for

ε ≤ q

2γ∗ .

The proof of Theorem 1 is a straight-forward application of the H-coefficient
technique. The idea is to first show that unless A1 or A2 queries the input x
provided by A1, the real and ideal worlds (i.e., the cases where b = 0 and b = 1,
respectively) are indistinguishable. That is, the corresponding ratio of transcript
probabilities is 1. Transcripts where x is in the query list are defined to be bad
transcripts, and the second part of the proof shows that bad transcripts are
unlikely to occur due to the legitimacy of A. The latter proof crucially relies
on the fact that the H-coefficient technique enables performing the bad-event
analysis in the ideal world. The proof of the following theorem is deferred and
can be found in the full version.

Theorem 2 (Monolithic seedless IT-extraction). Construction mono is a
(γ∗, q, ε)-IT-extractor in the G-model for

ε ≤ 1
2

√
2−(γ∗−n)

1 − ρ
+ ρ ,

where ρ = q/2γ∗
.
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The proof of Theorem 2 proceeds by bounding the statistical distance of A2’s
views in the real and ideal experiments via the corresponding collision proba-
bilities (as done in the proof of the left-over hash lemma). In the proofs of the
actual PRNG constructions in the following sections, bounding said collision
probabilities constitutes the bulk of the proof and is quite involved. The formal
proof is deferred and can be found in the full version.

Parameter choices. In terms of concrete parameters, observe the following
for the constructions towards monolithic seedless extraction from above:

– Computational: If we let n = 512 and q = 280. We would need γ∗ ≈ 160 to
get 80 bits of security.

– Information Theoretic: We let n = 512. We also approximate 1/(1 − ρ) ≤ 2,
very generously Then, if we set for example q = 280. We would need the
entropy loss, i.e., γ∗ = 160 for 80 bits of security.

3.3 Online Extraction

An “accumulating” extractor ext satisfies the same security Definition 3, but its
syntax can be thought of as two algorithms ext = (refresh, finalize), where refresh
accumulates entropy in an internal state and finalize produces the extractor
output from the current state.

Definition 4. An online extractor construction consists of two algorithms ext =
(refresh, finalize), where

– refresh takes a state s and an input x ∈ {0, 1}m and produces a new state
s′ ← refreshP (s, x), and

– finalize takes a state s and produces an output y ∈ {0, 1}r, i.e., y ←
finalizeP (s).

An online extractor processing m-bit inputs and producing r-bit output is called
a (m, r)-online extractor.

The security definition for online extractors additionally considers the number �
of times refresh is called by the attacker, i.e., it considers (q, �)-attackers.

Definition 5. An algorithm extP : X → Y defined by two algorithms ext =
(refresh, finalize) with oracle access to P is an (γ∗, q, �, ε)-(IT-)online extractor
in the P -model if for every γ∗-legitimate (q, �)-(IT-)attacker A,

Advext,P
ext (A) ≤ ε .

Online extractors can be built just like the PRNG constructions in Sect. 5, and,
in fact, the corresponding security results follow as a special case of PRNG
security. Correspondingly, their treatment is deferred until Sect. 5, where such
online extractors (and, in fact, full-fledged PRNGs) can be obtained from Merkle-
Damg̊ard with a random compression function, from Merkle-Damg̊ard with the
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Davies-Meyer compression function, and from Sponges. For the reader’s con-
venience, the full version of this paper [17] contains the online extractor con-
structions along with the security bounds—for applications where extraction is
sufficient.

In contrast to Merkle-Damg̊ard and Sponges, as shown in the next section,
using the CBC paradigm (which can be thought of as an “extreme sponge”) will
not lead to a secure online extractor.

3.4 CBC-Based Extractors Are Insecure

A natural candidate for an online seedless extractor is using a permutation
in CBC mode. A CBC-based extractor construction uses a permutation π :
{0, 1}n → {0, 1}n to absorb n-bit inputs. Its refresh function is defined as

refreshπ(s, x) = π(s ⊕ x) .

However, it turns out that this approach does not lead to a secure extractor.
This section presents a simple attack against CBC-based extractors. The attack
works irrespective of how the finalization function is defined.

Theorem 3 (Attack against CBC Extractors). Let refresh as defined
above. There exists an �-legitimate q-attacker A with black-box access to a func-
tion finalize, such that for all CBC = (refresh, finalize)

Advext,π
CBC (A) = 1 − 2−(r−1) ,

where r is the output length of the extractor, q = 2� + 2α, and α is the query
complexity of finalize.

The idea of the attack is to have the attacker create the ith input block as either
πi(0n)⊕πi(1n) or 0, each with probability 1/2.9 After � such steps, the attacker
will have provided � bits of entropy (even conditioned on its π-queries), but only
a single bit will have accumulated in the state, which will be πi(0n) or πi(1n),
each with probability 1/2.

The proof can be found in the full version of this paper [17].

4 Pseudorandom Number Generators with Input

A pseudorandom number generator with input (PRNG) is a stateful crypto-
graphic primitive. It gradually accumulates entropy in its state by absorbing
inputs and can be used to output pseudorandom bits once the entropy of the
state is sufficiently high. Moreover, it is both forward and backward secure, i.e.,
past outputs remain random upon future state compromise, and, by absorbing
sufficient amounts of entropy, a PRNG can recover from state compromise.

9 Here, πi denotes the i-fold application of π.
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Fig. 1. Oracles for the PRNG robustness game.

This section introduces a novel security definition for PRNGs that differs
from previous notions in several crucial ways. Specifically, a comparison to the
original robustness notion by Dodis et al. [19], based on work by Barak and
Halevi [1], as well as to an adaptation of it by Gaži and Tessaro [26] for idealized
models is provided in the full version which is available on ePrint.

This paper considers two notions of PRNGs: computational PRNGs and
information-theoretically secure (IT) PRNGs. IT PRNGs differ from computa-
tional PRNGs in that once the attacker stops interacting with the PRNG, the
output of the PRNG remains random even if the attacker is given the entire
function table of the underlying ideal primitive. That is, IT PRNGs achieve so-
called everlasting security (cf. works in the hybrid bounded-storage model by
Harnik and Naor [27]). This distinction is analogous to that between seedless
extractors and IT seedless extractors (cf. Sect. 3).

4.1 Syntax

A PRNG consists of two algorithms: one for absorbing new inputs and one for
producing pseudorandom outputs. Formally, it is defined as follows:

Definition 6 (Syntax of PRNGs). A pseudorandom number generator with
input (PRNG) is a pair of algorithms PRNG = (refresh, next) having access to
an ideal primitive P and sharing an n-bit state s, where

– refresh takes a state s and an input x ∈ {0, 1}m and produces a new state
s′ ← refreshP (s, x), and

– next takes a state s and produces a new state and an output y ∈ {0, 1}r, i.e.,
(s′, y) ← nextP (s).

A PRNG processing m-bit inputs and producing r-bit output is called a (m, r)-
PRNG.

4.2 Security Game

Robustness game. PRNGs are expected to satisfy the so-called robustness
property, which captures the properties discussed at the beginning of Sect. 4. The
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corresponding security game is depicted in Fig. 1. The game initially chooses a
random bit b and initializes the state of the PRNG to 0n. Subsequently, it offers
the following oracles to A:

– adv-refresh(x) calls the refresh procedure to absorb x ∈ {0, 1}n into the
internal state of the PRNG;

– get-next and get-next* allow the attacker to get pseudorandom outputs
by calling the next procedure on the current state and returning the output
y. The difference between the two oracles is that get-next is supposed to
be called only when the state has high entropy, whereas get-next* can be
called prematurely, i.e., before the state has absorbed enough randomness for
the next function to output pseudorandom values (cf. definition of legitimate
attackers below).

– next-ror works like the get-next-oracle, except that it creates a challenge,
i.e., if b = 1, it outputs a uniform random value y1 ∈ {0, 1}r instead of the
PRNG output y0.

– get-state and set-state model state compromises by letting the attacker
learn the current state or set it to an arbitrary value, respectively.

The advantage of A in the robustness game is denoted by Advrob,P
PRNG(A).

Canonical attackers. It will be useful to define to following notion of canon-
ical attackers: Consider the interaction of an attacker A with the robustness
game. The following events are called entropy drains:

– the beginning of the game,
– calls to get-state or set-state, and
– calls to get-next*.

In other words, entropy drains are the events that cause the PRNG state to lose
its entropy, which includes premature calls to next. An attacker A is said to be
canonical if it does not make get-next* queries nor the following query pattern:
an entropy drain followed by one or more adv-refresh queries, followed by a
get-state query.

Considering canonical attackers only is without loss of generality. This is
because the above sequence of queries can be simulated by the attacker by mak-
ing a get-state query right away and computing the output of get-state or
get-next* itself. In particular, for every attacker A, there exists a canonical
attacker A with the same advantage. All attackers in the remainder of this work
are therefore assumed to be canonical.

Legitimate attackers. In order to obtain a sensible definition devoid of
trivial attacks, attackers must satisfy a “legitimacy” condition. The condition
roughly requires that an attacker only ask for challenges when it has sufficient
amount of uncertainty about the PRNG’s internal state.

Towards formalizing the legitimacy condition, consider the interaction of A
with a variant of the robustness game defined as follows: Whenever oracles next-
ror or get-next are called, instead of evaluating next, the game simply uses two
uniformly random and independent values (s, y) as the output of next.
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Observe that this variant of the robustness game, called the legitimacy game
corresponds to an interaction between A and an ideal PRNG, which produces
perfect randomness. Moreover, the legitimacy game is construction-independent.

In the legitimacy game, define now the following random variables immedi-
ately before A makes the ith call to oracle get-next or next-ror:

– Li: the list of P -queries by A and the corresponding answers;
– Σi: the state of A;
– Xi: vector of inputs provided by A since the the most recent entropy drain

(MRED); and
– Si: the state of the PRNG immediately after the MRED.

The legitimacy condition requires that A provide inputs that have high min-
entropy even conditioned on its current state, the queries so far, and the state
of the PRNG after the MRED.

Definition 7 (Legitimate attackers). An attacker A is said to be γ∗-
legitimate if for all i,

H∞(Xi|ΣiLiSi) ≥ γ∗ ,

where MREDs are defined as above.

In order to capture IT-legitimate attackers (against IT PRNGs), the set of
entropy drains is extended to include

– calls to get-next and next-ror.

With this definition of MRED and notation analogous to that in the previous
definition, IT-legitimate attackers are defined as follows:

Definition 8 (Legitimate IT attackers). An attacker A is said to be γ∗-
IT-legitimate if for all i,

H∞(Xi|ΣiLiSi) ≥ γ∗ ,

w.r.t. the extended definition of MRED.

Robust PRNGs. We are now ready to quantify the efficiency of attacker A,
and to define our final notion of PRNG robustness.

Definition 9 (Attacker efficiency). An attacker is called a (q, t, �)-attacker if

– q is the maximum number of P -queries it makes,
– � is the maximum number of adv-refresh calls between any entropy drain

and successive call to either next-ror or get-next, and
– t is the maximum total number of calls to any oracle in the robustness game

other than adv-refresh.

An attacker is called a (q, t, �)-IT-attacker if it satisfies the above conditions
but makes an arbitrary number of queries to P after the interaction with the
challenger ends.
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Definition 10 (Robustness of PRNGs). A PRNG construction PRNG =
(refresh, next) with oracle access an ideal primitive P is (γ∗, q, t, �, ε) -(IT-)robust
in the P -model if for every γ∗-(IT-)legitimate (q, t, �)-(IT-)attacker,

Advrob,P
PRNG(A) ≤ ε .

Observe that online extractors (cf. Definition 4) are a special case of robust
PRNGs. In terms of construction, the PRNG next algorithm can be replaced
by finalize, which simply discards the state output by next. If then the PRNG
robustness game is relaxed such that the only queries the attacker can make
are (a) arbitrarily many queries to adv-refresh followed by (b) t = 1 query to
next-ror, one obtains a notion equivalent to Definition 3.

5 Constructions of PRNGs

This section presents three simple, intuitive, and—most importantly—practical
PRNG constructions:

– a construction based on the Merkle-Damg̊ard paradigm using a public fixed-
length compression function;

– a construction based on the Merkle-Damg̊ard paradigm using the Davies-
Meyer compression function (as in SHA-2), which is built from any public
block cipher; and

– a construction based on the Sponge paradigm (as in SHA-3), which uses a
public permutation.

For each paradigm, there are in fact two constructions: one achieving nor-
mal, computational PRNG security and one achieving information-theoretic (IT)
security. The security analyses of these constructions can be found in the full
version of this paper, available online.

5.1 PRNGs from Merkle-Damg̊ard

A PRNG can be obtained from a compression function F as follows (cf. Fig. 2):10

Construction 2 (PRNG from Merkle-Damg̊ard). The (m, r)-PRNG con-
struction MD = (refresh, next) based on Merkle-Damg̊ard with a compression
function F : {0, 1}n × {0, 1}m → {0, 1}n is defined as follows:11

– refreshF (s, x) = F (s, x), and
– nextF (s) = (F (s, 0), F (s, 1)‖ · · · ‖F (s, r/n)).

10 To reduce notational clutter, the algorithms refresh and next of the PRNG construc-
tions are not “branded” with the design name. There will be no ambiguity as to
which construction is meant in any place in this paper.

11 The integer arguments to the compression function are to be naturally mapped to
{0, 1}n.
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Fig. 2. Procedures refresh (processing a single-block input xi) and next of Merkle-
Damg̊ard PRNG constructions with compression function F . Left: Computationally
secure Construction 2; right: IT secure Construction 3.

The security of Construction 2 is proved in the F -model, where F is a uniformly
random function.

Theorem 4 (Robustness of Merkle-Damg̊ard PRNGs). Construction 2
is a (γ∗, q, t, �, εrob)-robust PRNG in the F -model for

εrob ≤ 2t ·
(

q̃2 + q̃� + �2

2n
+

q̃

2γ∗

)

,

where q̃ = q + r/n + 1.

An IT-robust PRNG based on Merkle-Damg̊ard can be obtained if the next
function simply outputs the truncated state (and outputs 0n as the new state):

Construction 3 (IT-PRNG from Merkle-Damg̊ard). The (m, r)-PRNG
construction MDr = (refresh, next) based on Merkle-Damg̊ard with a compression
function F : {0, 1}n × {0, 1}m → {0, 1}n is defined as follows:

– refreshF (s, x) = F (s, x), and
– nextF (s) = (0n, s[1..r]).

The security of Construction 3 is proved in the F -model, where F is a uniformly
random function. To state the theorem for the IT construction, for an integer �,
let

d′(�) = max
�′∈{1,...,�}

|{d ∈ N : d|�′}| .

Observe that, asymptotically, d′(�) grows very slowly, i.e., as �o(1). Furthermore,
let F be a random compression function.
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Theorem 5 (IT-Robustness of Merkle-Damg̊ard PRNGs). Construc-
tion 3 is a (γ∗, q, t, �, εrob)-IT-robust PRNG in the F -model, where

εrob-it ≤ t

2

√
2r−γ∗

(1 − ρ)
+ � · d′(�) · 2r

2n
+ 64�4 · 2r

22n
+ 16�2 · q̃22r

22n
+ tρ ,

for ρ = q̃2

2r where q̃ = q + t�.

Parameter choices. In terms of concrete parameters, observe the following
for the Merkle-Damg̊ard constructions above:

– Computational PRNG: If one were to use SHA-512 as compression function
with n = 512, and, moreover, choose r = n. We let t = 1, q = 280 and let
γ∗ = �. This assumes that we get at least one bit of entropy from each block.
We would need γ∗ ≈ 160 to get 80 bits of security.

– IT PRNG: For example, assume SHA-512’s compression function is used, i.e.,
n = 512. If we let r = 256, then we get (we also approximate 1/(1 − ρ) ≤ 2,
very generously)

εrob-it ≤ t

2

√

2257−γ∗ +
� · d′(�)

2256
+ t

q2

2256
,

We let � = γ∗. Then, if we set for example q = 280. We would need the
entropy loss, i.e., γ∗ − r = 162 for 80 bits of security.

5.2 PRNGs from Merkle-Damg̊ard with Davies-Meyer

The Davies-Meyer compression function maps two inputs a ∈ {0, 1}m and b ∈
{0, 1}n to an n-bit string

E(b, a) ⊕ a ,

where E is an arbitrary block cipher (where b is the key and a the input).12

Correspondingly, a PRNG can be obtained from E as follows (cf. Fig. 3):

Construction 4 (PRNG from MD-DM). The (n, r)-PRNG construction
DM = (refresh, next) based on Merkle-Damg̊ard with Davies-Meyer (MD-DM)
uses a cipher E : {0, 1}k × {0, 1}n → {0, 1}n and is defined as follows:13

– refreshE(s, x) = E(x, s) ⊕ s, and
– nextE(s) = (E(0, s) ⊕ s,E(1, s) ⊕ s‖ · · · ‖E(r/n, s) ⊕ s).

The security of Construction 4 is proved in the E-model, where E is a cipher
chosen uniformly at random from the set of all ciphers and can be queried in
both the forward and backward direction.
12 A (block) cipher is an efficiently computable and invertible permutation E(k, ·) :

{0, 1}n → {0, 1}n for every key k ∈ {0, 1}n.
13 The integer arguments to the cipher are to be naturally mapped to {0, 1}n.
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Fig. 3. Procedures refresh (processing a single-block input xi) and next of Merkle-
Damg̊ard PRNG constructions with the Davies-Meyer compression function based
on a block cipher E. Left: Computationally secure Construction 4; right: IT secure
Construction 5.

Theorem 6 (Robustness of MD-DM PRNGs). Construction 4 is a
(γ∗, q, t, �, εrob)-robust PRNG in the E-model for

εrob ≤ 4t ·
(

q̃2 + q̃� + �2

2n
+

q̃

2γ∗

)

,

where q̃ = q + r/n + 1.

In the IT-secure variant of the MD-DM construction, refresh remains the same,
but next will truncate the input state to r bits, which it outputs, and then zero
out the state.

Construction 5 (IT-PRNG from MD-DM). The (n, r)-PRNG construc-
tion DMr = (refresh, next) using Merkle-Damg̊ard with Davies-Meyer (MD-DM)
uses a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n and is defined as follows:

– refreshE(s, x) = E(x, s) ⊕ s, and
– nextE(s) = (0n, s[1..r]).

The security of Construction 5 is proved in the E-model, where E is a cipher
chosen uniformly at random from the set of all ciphers and can be queried in
both the forward and backward direction. Let d′(�) be defined as in Sect. 5.1.
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Theorem 7 (IT-Robustness of MD-DM PRNGs). Construction 5 is a
(γ∗, q, t, �, εrob)-IT-robust PRNG in the E-model, where

εrob-it ≤ t

2

√
2r−γ∗

(1 − ρ)
+ � · d′(�)

2r

2n−1
+ 64�4 · 2r

22n−2
+ 16�2q̃2 · 2r

22n−2
+ tρ ,

for ρ = q̃2

2r where q̃ = q + t�.

Parameter choices. In terms of concrete parameters, observe the following
for the PRNG constructions from Merkle-Damg̊ard with Davies-Meyer above:

– Computational PRNG: SHA-512 is a 512-bit block cipher algorithm that
encrypts 512 bit hash value using the input as key. Therefore, we let n = 512
and set r = n. We let t = 1, q = 280 and let � = γ∗. This assumes that we get
at least one bit of entropy from each block. We would need γ∗ ≈ 163 to get
80 bits of security.

– IT PRNG: We again let n = 512. If we let r = 256, then we get (we also
approximate 1/(1 − ρ) ≤ 2, very generously)

εrob-it ≤ t

2

√

2129−γ∗ +
� · d′(�)

2127
+ t

q2

2128
,

We let � = γ∗. Then, if we set for example q = 280. We would need the
entropy loss, i.e., γ∗ − r = 162 for 80 bits of security.

5.3 PRNGs from Sponges

Let n ∈ N and n = r + c. In the following, for an n-bit string s, let s = s(r)‖s(c)

be decomposition of s into an r-bit and c-bit string. A PRNG using the Sponge
paradigm can be obtained from a permutation π as follows (cf. Fig. 4):

Construction 6 (PRNG from Sponges). The Sponge-based PRNG con-
struction Spg = (refresh, next) uses a permutation π : {0, 1}n → {0, 1}n to absorb
and produce r-bit inputs and outputs, respectively, and is defined as follows:

– refreshπ(s, x) = π(s ⊕ x‖0c), and
– nextπ(s) = (π(s) ⊕ 0r‖s(c), s(r)).

The next function design is due to Hutchinson [28], who simplified a proposal
by Gaži and Tessaro [26]. Recall that the Merkle-Damg̊ard constructions have a
“parallel” next function in order to produce r/n blocks of random output with
r/n+1 calls to the ideal primitive, where the additional call is used to produce a
new state. Were it not for this optimization, on order to obtain r bits of output,
one would have to apply the next function r/n times in a row, which would
results in twice the number of ideal-primitive calls.

The next function for Sponges, on the other hand, only makes a single call
to the ideal primitive to produce both a new state and the random output.
Therefore, no parallel next function is provided for the Sponge-based PRNG.
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Fig. 4. Procedures refresh (processing a single-block input xi) and next of Merkle-
Damg̊ard PRNG constructions with compression function F . Left: Computationally
secure Construction 2; right: IT candidate Construction 3.

The security of Construction 6 is proved in the π-model, where π is a uni-
formly random permutation, which can be queried in both the forward and
backward direction.

Theorem 8 (Robustness of Sponge PRNGs). Construction 6 is a (γ∗, q,
t, �, εrob)-robust PRNG in the π-model for

εrob ≤ 4t ·
(

q̃2 + q̃� + �2

2n
+

q̃

2γ∗ +
q̃2

2c

)

,

where q̃ = q + r/n + 1.

Observe that the bound in Theorem 8 is only reasonable when c is large enough,
which matches the fact that CBC-based PRNGs—which correspond to the case
c = 0, are not secure.

In the IT variant of the Sponge construction, refresh remains the same, but
next will truncate the input state to r bits, which it outputs, and then zero out
the state.

Construction 7 (IT-PRNG from Sponges). The Sponge-based PRNG con-
struction Spgr = (refresh, next) uses a permutation π : {0, 1}n → {0, 1}n to
absorb and produce r-bit inputs and outputs, respectively, and is defined as fol-
lows:

– refreshπ(s, x) = π(s ⊕ x‖0c), and
– nextπ(s) = (0n, s[1..r]).

Theorem 9 (IT-Robustness of Sponge PRNGs). Construction 7 is a (γ∗,
q, t, �, εrob)-IT-robust PRNG in the π-model for

εrob-it ≤ t

2

√
2r−γ∗

(1 − ρ)
+

� · (� + q̃)
2c−1

+ tρ ,

for ρ = q̃2

2c where q̃ = q + t�.
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Parameter choices. In terms of concrete parameters, observe the following
for the PRNG constructions from Sponges above: above:

– Computational PRNG: SHA-3 like parameters have n = 1600 and c = 1024.
We let t = 1, q = 280 and let � = γ∗. This assumes that we get at least one
bit of entropy from each block. We would need γ∗ ≈ 163 to get 80 bits of
security.

– IT PRNG: We let n = 1600 and c = 1024. In addition, we let t = 1 and
q = 280. We also let � = γ∗. Therefore, we incur an entropy loss of 160 bits
to get 80 bits of security.

6 Overview of Our Techniques

Due to paucity of space we defer the proofs of the various constructions to the
appendix. Due to paucity of space, the proofs have been deferred to the full
version of the paper which is now available on ePrint [17]. The proofs appear
in separate sections for the computational PRNG constructions and the IT con-
structions. In this section we give a brief overview of our techniques.

Computational PRNGs Proving Techniques. The main technique we use
in all the proofs is the “H-Coefficient” technique. In addition, it is instructive
to view the robustness game through the lens of simpler intermediate secu-
rity notions. We define two properties - recovering and preserving. The former
requires that the PRNG, after accumulating enough entropy after a drain, has
the output of the next function looking random. The latter defines the property
that when the start state is random, even after absorbing adversarially con-
trolled inputs, the output of next is still random. A formal proof showing how
they generically imply robustness can be found in the full version.

Further, we define the ideas of extraction security, maintaining security and
next security. The first of the three requires that the state of the PRNG is
indistinguishable from random when sufficient entropy has been absorbed. Main-
taining security requires that the PRNG state is indistinguishable from random
even in the face of adversarially chosen inputs, provided the initial state itself
was random. Next security requires that the output of next is indistinguishable
from random if the input itself was random. It is easy to see how these ideas
would imply the larger properties of recovering and preserving.

IT PRNGs Proving Techniques. The crux of our proofs is the idea of reduc-
ing the robustness game to online extraction. We then employ a graph counting
argument to bound the collision probability. The bound for the collision probabil-
ity is then used to compute an upper bound for the statistical distance of our dis-
tribution from uniform. To this end, we use three propositions to achieve the final
bound. Indeed, similar to the intermediate security notion for robustness of compu-
tational PRNGs, we define a notion of recovering security. This requires that, after
an entropy drain, the IT-PRNG can accumulate enough entropy thereby making
the output of next indistinguishable from (0n, Ur). It is easy to see that this con-
straint is a relaxation of the requirement posed by its computational counterpart.
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Abstract. We draw attention to a gap between theory and usage of
nonce-based symmetric encryption, under which the way the former
treats nonces can result in violation of privacy in the latter. We bridge
the gap with a new treatment of nonce-based symmetric encryption that
modifies the syntax (decryption no longer takes a nonce), upgrades the
security goal (asking that not just messages, but also nonces, be hidden)
and gives simple, efficient schemes conforming to the new definitions. We
investigate both basic security (holding when nonces are not reused) and
advanced security (misuse resistance, providing best-possible guarantees
when nonces are reused).

1 Introduction

This paper revisits nonce-based symmetric encryption, raising some concerns,
and then addressing them, via a new syntax, a new framework of security defi-
nitions, and schemes that offer both usability and security benefits.

Background. As the applications and usage of symmetric encryption have
evolved and grown, so has a theory that seeks to support and guide them.
A definition of symmetric encryption (as with any other primitive) involves a
syntax and then, for this syntax, definitions of security. In the first modern
treatment [10], the syntax asked the encryption algorithm to be randomized or
stateful. Security for these syntaxes evolved from asking for various forms of
privacy [10] to asking for both privacy and authenticity [11,14,33], inaugurat-
ing authenticated encryption (AE). The idea that encryption be a deterministic
algorithm taking as additional input a non-repeating quantity called a nonce
seems to originate in [50] and reached its current form with Rogaway [46,48].

NBE1 and AE1-security. We refer to the syntax of this current form of nonce-
based symmetric encryption [46,48] as NBE1. An NBE1 scheme SE1 specifies
a deterministic encryption algorithm SE1.Enc that takes the key K, a nonce
N , message M and a header (also called associated data) H to return what
we call a core ciphertext C1. Deterministic decryption algorithm SE1.Dec takes
K,N,C1,H to return either a message or ⊥.
c© International Association for Cryptologic Research 2019
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Security asks for privacy of M and integrity of both M and H as long as
nonces are unique, meaning not re-used. Rogaway’s formalization [46] asks that
an adversary given oracles for encryption (taking nonce, message and header) and
decryption (taking nonce, core ciphertext and header) be unable to distinguish
between the case where they perform their prescribed tasks under a hidden key,
and the case where the former returns random strings and the latter returns ⊥,
as long as the adversary does not repeat a nonce across its encryption queries.
We will refer to this as basic AE1-security.

NBE1 providing basic AE1-security has been the goal of recent schemes,
standards and proposed standards, as witnessed by GCM [22,40] (used in TLS),
OCB [35,47,50], CAESAR candidates [17] and RFC 5116 [39]. The security of
NBE1, which we revisit, is thus of some applied interest.

The gap. Our concern is a gap between theory and usage that can result in pri-
vacy vulnerabilities in the latter. Recall that the decryption algorithm SE1.Dec,
to be run by the receiver, takes as input not just the key K, core ciphertext C1

and header H, but also the nonce N . The theory says that how the receiver gets
the nonce is “outside of the model” [46] or that it is assumed to be communi-
cated “out-of-band” [48]. Usage cannot so dismiss it, and must find a way to
convey the nonce to the receiver. The prevailing understanding, reflected in the
following quote from RBBK [50], is that this is a simple matter—if the receiver
does not already have the nonce N , just send it in the clear along with the core
ciphertext C1:

The nonce N is needed both to encrypt and to decrypt. Typically it would be
communicated, in the clear, along with the (core) ciphertext.

RFC 5116 is a draft standard for an interface for authenticated encryption [39].
It also considers it fine to send the nonce in the clear:

... there is no need to coordinate the details of the nonce format between the
encrypter and the decrypter, as long the entire nonce is sent or stored with the
ciphertext and is thus available to the decrypter ... the nonce MAY be stored or
transported with the ciphertext ...

To repeat and summarize, the literature and proposed standards suggest trans-
mitting what we call the “full” ciphertext, consisting of the nonce and the core
ciphertext. Yet, as we now explain, this can be wrong.

Nonces can compromise privacy. We point out that communicating a nonce in
the clear with the ciphertext can damage, or even destroy, message privacy. One
simple example is a nonce N = F (M) that is a hash—under some public, collision-
resistant hash function F—of a low-entropy message M , meaning one, like a
password, which the attacker knows is likely to fall in some small set or dictio-
nary D. Given a (full) ciphertext C2 = (N,C1) consisting of the core ciphertext
C1 = SE1.Enc(K,N,M,H) together with the nonce N = F (M), the attacker can
recover M via “For M ′ ∈ D do: If F (M ′) = N then return M ′.” To take a more
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extreme case, consider that the nonce is some part of the message, or even the
entire message, in which case the full ciphertext clearly reveals information about
the message.

The concern that (adversary-visible) nonces compromise privacy, once iden-
tified, goes much further. Nonces are effectively meta-data. Even recommended
and innocuous-seeming choices like counters, device identities, disk-sector num-
bers or packet headers reveal information about the system and identity of
the sender. For example, the claim that basic-AE1-secure NBE1 provides
anonymity—according to [49, Slide 19/40], this is a dividend of the require-
ment that core ciphertexts be indistinguishable from random strings—is moot
when the nonce includes sender identity. Yet the latter is not only possible but
explicitly recommended in RFC 5116 [39], which says: “When there are multiple
devices performing encryption ... use a nonce format that contains a field that
is distinct for each one of the devices.” As another concrete example, counters
are not a good choice of nonce from a user privacy perspective, as indicated in
the ECRYPT-CSA Challenges in Authenticated Encryption report [5].

The above issues apply to all NBE1 schemes and do not contradict their
(often, proven) AE1-security. They are not excluded by the unique nonce require-
ment or by asking for misuse resistance [51], arising in particular for the encryp-
tion of a single message with a single corresponding nonce.

A natural critique is that the privacy losses we have illustrated occur only for
“pathological” choices of nonces, and choices made in practice, such as random
numbers or counters, are “fine.” This fails, first, to recognize the definitional
gap that allows the “pathological” choices. With regard to usage, part of the
selling point of NBE1 was exactly that any (non-repeating, unique) nonce is fine,
and neither existing formalisms [46] nor existing standards [39] preclude nonce
choices of the “pathological” type. Also, application designers and users cannot,
and should not, carry the burden of deciding which nonces are “pathological” and
which are “fine,” a decision that may not be easy. (And as discussed above, for
example, counters may not be fine.) Finally, Sect. 8 indicates that poor choices
can in fact arise in practice.

Our perspective is that the above issues reflect a gap between the NBE1
formalism and the privacy provided by NBE1 in usage. Having pointed out this
gap, we will also bridge it.

Contributions in brief. The first contribution of this paper is to suggest that
the way NBE1 treats nonces can result (as explained above) in compromise
of privacy of messages or users. The second contribution is to address these
concerns. We give a modified syntax for nonce-based encryption, called NBE2, in
which decryption does not get the nonce, a corresponding framework of security
definitions called AE2 that guarantee nonce privacy in addition to authenticity
and message privacy, and simple ways to turn NBE1 AE1-secure schemes into
NBE2 AE2-secure schemes.

AE2-secure NBE2 obviates application designers and users from the need to
worry about privacy implications of their nonce choices, simplifying design and
usage. With AE2-secure NBE2, one can use any nonce, even a message-dependent
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one such as a hash of the message, without compromising privacy of the message.
And the nonces themselves are hidden just as well as messages, so user-identifying
information in nonces doesn’t actually identify users.

Our NBE2 syntax. In an NBE2 scheme SE2, the inputs to the deterministic
encryption algorithm SE2.Enc continue to be key K, nonce N , message M and
header H, the output C2 now called a ciphertext rather than a core ciphertext.
The deterministic decryption algorithm SE2.Dec no longer gets a nonce, taking
just key K, ciphertext C2 and header H to return either a message M or ⊥.

Just as an interface, NBE2 already benefits application designers and users,
absolving them of the burden they had, under NBE1, of figuring out and archi-
tecting a way to communicate the nonce from sender to receiver. The NBE2
receiver, in fact, is nonce-oblivious, not needing to care, or even know, that
something called a nonce was used by the sender. By reducing choice (how to
communicate the nonce), NBE2 reduces error and misuse.

We associate to a given NBE1 scheme SE1 the NBE2 scheme SE2 = TN[SE1]
that sets the ciphertext to the nonce plus the core ciphertext: SE2.Enc(K,N,
M,H) = (N,SE1.Enc(K,N,M,H)) and SE2.Dec(K, (N,C1),H) = SE1.Dec(K,
N,C1,H). We refer to TN as the Transmit Nonce transform. This is worth defin-
ing because it will allow us, in Sect. 4, to formalize the above-discussed usage weak-
nesses in NBE1, but SE2 = TN[SE1] is certainly not nonce hiding and will fail to
meet the definitions we discuss next.

Our AE2-security framework. Our AE2 game gives the adversary an encryption
oracle Enc (taking nonce N , message M and header H to return a ciphertext
C2) and decryption oracle Dec (as per the NBE2 syntax, taking ciphertext
C2 and header H but no nonce, to return either a message M or ⊥). When
the challenge bit is b = 1, these oracles reply as per the encryption algorithm
SE2.Enc and decryption algorithm SE2.Dec of the scheme, respectively, using a
key chosen by the game. When the challenge bit is b = 0, oracle Enc returns a
ciphertext that is drawn at random from a space SE2.CS(|N |, |M |, |H|) that is
prescribed by the scheme SE2 and that depends only on the lengths of the nonce,
message and header, which guarantees privacy of both the nonce and message.
(This space may be, but unlike for AE1 need not be, the set of all strings of some
length, because NBE2 ciphertexts, unlike NBE1 core ciphertexts, may have some
structure.) In the b = 0 case, decryption oracle Dec returns ⊥ on any non-trivial
query. The adversary eventually outputs a guess b′ as to the value of b, and its
advantage is 2Pr[b = b′] − 1.

We say that SE2 is AE2[A]-secure if practical adversaries in the class A have
low advantage. Let Aae2

u-n be the class of unique-nonce adversaries, meaning ones
that do not reuse a nonce across their Enc queries. We refer to AE2[Aae2

u-n]-
security as basic AE2-security. As the nonce-hiding analogue of basic AE1-
security, it will be our first and foremost target.

Before moving to schemes, we make two remarks. First that above, for sim-
plicity, we described our definitions in the single-user setting, but the definitions
and results in the body of the paper are in the multi-user setting. Second, the
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framework of a single game with different notions captured via different adversary
classes allows us to unify, and compactly present, many variant definitions, includ-
ing basic, advanced (misuse resistance), privacy-only and random-nonce security,
and in Sect. 3 we give such a framework not just for AE2 but also for AE1.

Our transforms. In the presence of a portfolio of efficient AE1-secure NBE1
schemes supported by proofs of security with good concrete bounds [17,18,25,26,
30,31,35,40,43,50,53], designing AE2-secure NBE2 schemes from scratch seems
a step backwards. Instead we give simple, cheap ways to transform AE1-secure
NBE1 schemes into AE2-secure NBE2 schemes, obtaining a corresponding port-
folio of AE2-secure NBE2 schemes and also allowing implementors to more easily
upgrade deployed AE1-secure NBE1 to AE2-secure NBE2.

Since NBE2 schemes effectively take care of nonce communication, we expect
ciphertext length to grow by at least SE1.nl, the nonce length of the base NBE1
scheme. The ciphertext overhead is defined as the difference between the cipher-
text length and the sum of plaintext length and SE1.nl. All our transforms have
zero ciphertext overhead. One challenge in achieving this is that nonce lengths
like SE1.nl = 96 are widely-used but short of the block length 128 of many
blockciphers, precluding inclusion of an extra blockcipher output in the cipher-
text. With regard to computational overhead, the challenge is that it should
be constant, meaning independent of the lengths of the message and header for
encryption, and of the ciphertext and header for decryption. All our transforms
have constant computational overhead. Note that all overhead is in comparison
to transmitting the nonce in the clear (i.e. the TN transform).

The following discussion first considers achieving basic security and then
advanced security. Security attributes of our corresponding “Hide-Nonce (HN)”
transforms are summarized in Fig. 1.

Basic HN transforms. We prove that all the following transforms turn a basic-
AE1-secure NBE1 scheme SE1 into a basic-AE2-secure NBE2 scheme SE2.
(Recall basic means nonces are unique, never reused across encryption queries.)
Pseudocode and pictures for the transforms are in Fig. 4.

Having first produced a core ciphertext C1 under SE1, the idea of scheme
SE2 = HN1[SE1,F] is to use C1 itself as a nonce to encrypt the actual nonce in
counter mode under PRF F. A drawback is that this requires the minimal core-
ciphertext length SE1.mccl to be non-trivial, like at least 128, which is not true
for all SE1. Scheme SE2 = HN2[SE1, �,E,Spl] turns to the perhaps more obvious
idea of enciphering the nonce with a PRF-secure blockcipher E. The difficulty is
the typicality of 96-bit nonces and 128-bit blockciphers, under which näıve enci-
phering would add a 32-bit ciphertext overhead, which we resolve by ciphertext
stealing, � representing the number of stolen bits (32 in our example) and Spl
an ability to choose how the splitting is done. Scheme SE2 = HN3[SE1,F] uses
the result of PRF F on the actual nonce as a derived nonce under which to run
SE1. This is similar to SIV [43,51]; the difference is to achieve AE2 rather than
AE1 and to apply the PRF only to the nonce (rather than nonce, message and
header) to have constant computational overhead.
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Fig. 1. Security attributes of the NBE2 schemes defined by our Hide-Nonce (HN)
transforms. In the table SE1 denotes an NBE1 scheme, F a PRF, E a block cipher,
and TE a variable-length tweakable block cipher. Spl is a splitting function, and �, �t
are non-negative integer parameters. A blank entry in the Basic column means the
transform is not for that purpose. Note that HN1’s advanced security only holds
when ciphertexts have sufficiently large (e.g. 128 bits) minimum length, and HN2’s
depends on the length of the stolen ciphertext.

Advanced HN transforms. Unique nonces are easier to mandate in theory than
assure in practice, where nonces may repeat due to errors, system resets, or repli-
cation. In that case (returning here to NBE1), not only does basic AE1-security
give no security guarantees, but also damaging attacks are possible for schemes
including CCM and GCM [32,52]. Rogaway and Shrimpton’s misuse resistant
NBE1, which we refer to as advanced-AE1-secure NBE1, minimizes the damage
from reused nonces, retaining AE1-security as long as no nonce, message, header
triple is re-encrypted [51]. This still being for the NBE1 syntax, however, the con-
cerns with adversary-visible nonces compromising message and user privacy are
unchanged. We seek the NBE2 analogue, correspondingly defining and achieving
advanced-AE2-secure NBE2 to provide protection against reused nonces while
also hiding them.

With our framework, the definition is easy, calling for no new games; the
goal is simply AE2[Aae2

u-nmh]-security where Aae2
u-nmh is the class of unique-nonce,

message, header adversaries, meaning ones that do not repeat a query to their
Enc oracle. The presence of well-analyzed advanced-AE1-secure NBE1 schemes
[18,25,26,28,51] again motivates transforms rather than from-scratch designs.

We start by revisiting our basic-security preserving transforms, asking
whether they also preserve advanced security, meaning, if the starting NBE1
scheme is advanced-AE1-secure, is the transformed NBE2 scheme advanced-
AE2-secure? We show that for HN1, the answer is YES. We then show that
it is YES also for HN2 as long as the amount � of stolen ciphertext is large
enough. (In practical terms, at least 128.) For HN3, the answer is NO.

That HN1 and HN2 have these properties is good, but we would like to do
better. (Limitations of the above are that HN1 puts a lower bound on SE1.mccl
that is not always met, and setting � = 128 in HN2 with typical 96-bit nonces
will call for a 224-bit blockcipher.) We offer HN4 and HN5, showing they
provide advanced AE2-security. Pseudocode and pictures are in Fig. 5.
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Scheme SE2 = HN4[SE1, �,F] uses the result of PRF F on the actual nonce,
message and header as a derived nonce for SE1. The difference with SIV [43,51]
is that what is encrypted under SE1 includes the actual nonce in order to hide
it. The computational overhead stays constant because SE1 need provide only
privacy, which it can do in one pass. Scheme SE2 = HN5[TE, �, �t] is differ-
ent, using the encode-then-encipher paradigm [14] to set the ciphertext to an
enciphering, under an arbitrary-input-length, tweakable cipher TE, of the nonce,
message and �t-bits of redundancy, with the header as tweak. Instantiating TE
via the very fast AEZ tweakable block cipher [28] yields correspondingly fast,
advanced-AE2-secure NBE2.

Dedicated transforms. While our generic transforms are already able, with low
overhead, to immunize GCM [22,40]—by this we mean turn this basic-AE1-
secure NBE1 scheme into a basic-AE2-secure NBE2 scheme—we ask if a dedi-
cated transform—ones that exploit the structure of GCM—can do even better.
The goal is not just even lower overhead, but minimization of software changes.
We show that simply pre-pending a block of 0s to the message and then GCM-
encrypting provides basic-AE2-security, so neither the key nor the encryption
software need be changed. Decryption software however does need a change,
and, unlike with our generic transforms, we incur 32 bits of ciphertext overhead.

Related work. As a technical step in achieving security against release of unver-
ified plaintext (RUP), Ashur, Dunkelman and Luykx (ADL) [4] use a syntax
identical to NBE2, and their techniques bear some similarities with ours that we
discuss further in Sect. 7.

The CAESAR competition’s call for authenticated encryption schemes
describes a syntax where encryption receives, in place of a nonce, a public mes-
sage number (PMN) and a secret message number (SMN), decryption taking
only the former [19]. The formalization of Namprempre, Rogaway and Shrimpton
(NRS) [44] dubs this “AE5.” In this light, anNBE1 scheme is aAE5 schemewithout
a SMN and an NBE2 scheme is an AE5 scheme without a PMN.

Possible future work. The concerns we have raised with regard to a gap between
theory and usage, and privacy vulnerabilities created by adversary-visible nonces
in the latter, arise fundamentally from the choice of syntax represented by NBE1,
and as such hold also in other contexts where an NBE1-style syntax is used. This
includes AE secure under release of unverified plaintext [3], robust AE [28], online
AE [23,29], committing AE [21,24], indifferentiable AE [6], leakage-resilient
AE [7] and MiniAE [42]. A direction for future work is to treat these with an
NBE2-style syntax (decryption does not get the nonce) to provide nonce hiding.

While our transforms can be applied to promote the advanced-AE1-secure
AES-GCM-SIV NBE1 scheme [25] to an advanced-AE2-secure NBE2 scheme, the
bounds we get are inferior to those of [18]. Bridging this gap to get advanced-AE2-
secure NBE2 with security bounds like [18] is a direction for future work. Similarly,
while we have many ways to turn GCM into a basic-AE2-secure NBE2 scheme
with little overhead, one that matches the bounds of [30,38] would be desirable.
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2 Preliminaries

Notation and terminology. By ε we denote the empty string. By |Z| we denote
the length of a string Z. If Z is a string then Z[i..j] is bits i through j of Z
if 1 ≤ i ≤ j ≤ |Z|, and otherwise is ε. By x‖y we denote the concatenation
of strings x, y. If x, y are equal-length strings then x⊕y denotes their bitwise
xor. If i is an integer in the range 0 ≤ i < 2n then 〈i〉n ∈ {0, 1}n denotes the
representation of i as a string of (exactly) n bits. (For example, 〈3〉4 = 0011.) If
S is a finite set, then |S| denotes it size. We say that a set S is length-closed if,
for any x ∈ S it is the case that {0, 1}|x| ⊆ S. (This will be a requirement for
message, header and nonce spaces.) If D,R are sets and f : D → R is a function
then its image is Im(f) = { f(x) : x ∈ D } ⊆ R.

If X is a finite set, we let x ←$ X denote picking an element of X uniformly
at random and assigning it to x. Algorithms may be randomized unless other-
wise indicated. If A is an algorithm, we let y ← AO1,...(x1, . . . ;ω) denote running
A on inputs x1, . . . and coins ω, with oracle access to O1, . . ., and assigning the
output to y. By y ←$ AO1,...(x1, . . .) we denote picking ω at random and letting
y ← AO1,...(x1, . . . ;ω). We let [AO1,...(x1, . . .)] denote the set of all possible out-
puts of A when run on inputs x1, . . . and with oracle access toO1, . . .. An adversary
is an algorithm. Running time is worst case, which for an algorithm with access
to oracles means across all possible replies from the oracles. We use ⊥ (bot) as a
special symbol to denote rejection, and it is assumed to not be in {0, 1}∗.

Games. We use the code-based game-playing framework of BR [15]. A game
G (see Fig. 2 for an example) starts with an optional Initialize procedure,
followed by a non-negative number of additional procedures called oracles, and
ends with a Finalize procedure. If Finalize is omitted, it is understood to
be the trivial procedure that simply returns (outputs) its input. Execution of
adversary A with game G consists of running A with oracle access to the game
procedures, with the restrictions that A’s first call must be to Initialize (if
present), its last call must be to Finalize, and it can call these procedures at
most once. The output of the execution is the output of Finalize. By Pr[G(A)]
we denote the probability that the execution of game G with adversary A results
in this output being the boolean true. In games, integer variables, set variables
boolean variables and string variables are assumed initialized, respectively, to 0,
the empty set ∅, the boolean false and ⊥.

Multi-user security. There is growing recognition that security should be consid-
ered in the multi-user (mu) setting [8] rather than the traditional single-user (su)
one. Our main definitions are in the mu setting. The games provide the adver-
sary a New oracle, calling which results in a new user being initialized, with
a fresh key. Other oracles are enhanced (relative to the su setting) to take an
additional argument i indicating the user (key). We assume that adversaries do
not make oracle queries to users (also called sessions) they have not initialized.
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Fig. 2. Left: Games defining multi-user PRF security for function family F. Right:
Game defining multi-user stPRP security for tweakable cipher TE.

Function families. A function family F specifies a deterministic evaluation algo-
rithm F.Ev : {0, 1}F.kl×F.D → {0, 1}F.ol that takes a key K and input x to return
output F.Ev(K,x), where F.kl is the key length, F.D is the domain and F.ol is
the output length. We say that F is invertible if there is an inversion algorithm
F.In : {0, 1}F.kl × {0, 1}F.ol → F.D ∪ {⊥} such that for all K ∈ {0, 1}F.kl we have
(1) F.In(K,F.Ev(K,x)) = x for all x ∈ F.D, and (2) F.In(K, y) = ⊥ for all
y �∈ Im(F.Ev(K, ·)). We say that F is a permutation family if it is invertible and
F.D = {0, 1}F.ol. In that case, we also refer to F as a block cipher and to F.ol as
the block length of F, which we may denote F.bl.

PRF security. We define multi-user PRF security [9] for a function family F

and adversary A via the game Gprf
F (A) in Fig. 2. Here b is the challenge bit and

Y[·, ·] is a table, all of whose entries are assumed to initially be ⊥. It is required
that any Fn(i,X) query of A satisfies i ≤ v and X ∈ F.D. The multi-user PRF
advantage of adversary A is Advprf

F (A) = 2Pr[Gprf
F (A)] − 1.

Tweakable ciphers. A tweakable cipher TE [28,37] specifies a deterministic eval-
uation algorithm TE.Ev : {0, 1}TE.kl × TE.TS × {0, 1}∗ → {0, 1}∗ and a deter-
ministic inversion algorithm TE.In : {0, 1}TE.kl × TE.TS × {0, 1}∗ → {0, 1}∗.
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Here, TE.kl is the key length and TE.TS is the tweak space. We require that for
all K ∈ {0, 1}TE.kl, T ∈ TE.TS and X ∈ {0, 1}∗ we have |TE.Ev(K,T,X)| = |X|
and TE.In(K,T,TE.Ev(K,T,X)) = X.

stPRP security. We define multi-user stPRP (strong tweakable PRP) security
[37] for tweakable cipher TE and adversary A via the game Gstprp

TE (A) in Fig. 2. In
the game, b is the challenge bit and X[·, ·, ·], Y[·, ·, ·] are tables whose entries are
assumed initialized to ⊥. In this game, the adversary has access to an evaluation
oracle Fn and an inversion oracle FnInv. When b = 0, they sample without
replacement (within each session) from the set of strings of the same length as
the input. If b = 1 they evaluate TE.Ev and TE.In under game-chosen keys. It
is required that any Fn(i, T,X) or FnInv(i, T, Y ) query of A satisfies i ≤ v,
T ∈ TE.TS and X,Y ∈ {0, 1}∗. The multi-user stPRP advantage of adversary A
is Advstprp

TE (A) = 2Pr[Gstprp
TE (A)] − 1.

3 Two Frameworks for Nonce-Based Encryption

We give definitions for both AE1-secure NBE1—current nonce-based encryp-
tion [46,48,50]—andAE2-secureNBE2—our newnonce-based encryption. In each
case there is a single security game, different variant definitions thenbeing captured
by different adversary classes. This allows a unified and compact treatment.

NBE1. An NBE1 scheme SE1 specifies several algorithms and related quanti-
ties, as follows. Deterministic encryption algorithm SE1.Enc : SE1.KS×SE1.NS×
SE1.MS × SE1.HS → {0, 1}∗ takes a key K in the (finite) key-space SE1.KS, a
nonce N in the nonce-space SE1.NS, a message M in the message space SE1.MS
and a header H in the header space SE1.HS to return what we call a core cipher-
text C1. This is a string of length SE1.ccl(|N |, |M |, |H|), where SE1.ccl is the
core-ciphertext length function. SE1 also specifies a deterministic decryption
algorithm SE1.Dec : SE1.KS × SE1.NS × {0, 1}∗ × SE1.HS → SE1.MS ∪ {⊥}
that takes key K, nonce N , core ciphertext C1 and header H to return an
output that is either a message M ∈ SE1.MS, or ⊥. It is required that
SE1.NS,SE1.MS,SE1.HS are length-closed sets as defined in Sect. 2. Most often
nonces are of a fixed length denoted SE1.nl, meaning SE1.NS = {0, 1}SE1.nl.
Decryption correctness requires that SE1.Dec(K,N,SE1.Enc(K,N,M,H),H) =
M for all K ∈ SE1.KS, N ∈ SE1.NS, M ∈ SE1.MS and H ∈ SE1.HS.

AE1 game and advantage. Let SE1 be an NBE1 scheme and A an adversary. We
associate to them the game Gae1

SE1(A) shown on the top left of Fig. 3. (We use the
name “AE1” to associate the game with the NBE1 syntax). The AE1-advantage
of adversary A is Advae1

SE1(A) = 2Pr[Gae1
SE1(A)] − 1. The game is in the multi-user

setting, oracleNew allowing the adversary to initialize a new user with a fresh key.
It is required that any Enc(i,N,M,H) query of A satisfy 1 ≤ i ≤ v, N ∈ SE1.NS,
M ∈ SE1.MS and H ∈ SE1.HS. When the challenge bit b is 1, the encryption
oracle will return a core ciphertext as stipulated by SE1.Enc, using the key for the
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Fig. 3. Top Left: Game defining AE1-security of NBE1 scheme SE1. Top Right:
Game defining AE2-security of NBE2 scheme SE2. Bottom: Some classes of adver-
saries, leading to different security notions, where x ∈ {ae1, ae2}.

indicated user i. In the b = 0 case, Enc will return a random string of length
SE1.ccl(|N |, |M |, |H|). The array M is assumed to initially be ⊥ everywhere, and
holds core ciphertexts returned by Enc. It is required that any Dec(i,N,C1,H)
query of A satisfy 1 ≤ i ≤ v, N ∈ SE1.NS and H ∈ SE1.HS. When the challenge
bit b is 1, the decryption oracle will perform decryption as stipulated by SE1.Dec,
using the key for the indicated user i. In the b = 0 case, Dec will return ⊥ on any
core ciphertext not previously returned by the encryption oracle.
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AE1 security metrics. AE1-security is clearly not achievable without restrictions
on the adversary. For example, if A repeats a query i,N,M,H to Enc, then,
when b = 1 it gets back the same reply both times, while if b = 0 it likely
does not, allowing it to determine b with high probability. We define different
classes of adversaries, summarized by the table at the bottom of Fig. 3, with the
superscript “x” here being ae1. We say that NBE1 scheme SE1 is AE1[A]-secure
if adversaries in A have low AE1-advantage. The definition is in the multi-user
setting, but restricting attention to adversaries in the class Aae1

1 allows us to
recover the single-user setting. Different security notions in the literature are
then captured as AE1[A]-security for different classes of adversaries A, as we
illustrate below:

• Aae1
u-n is the class of adversaries whose Enc queries never repeat a user-nonce

pair. AE1[Aae1
u-n ∩ Aae1

1 ]-security is thus AEAD as defined in [46,48].
• AE1[Aae1

u-n]-security is the extension of this to the multi-user setting as defined
in [16], which we have referred to as basic AE1-security in Sect. 1.

• Adversaries in Aae1
u-nmh ⊇ Aae1

u-n are allowed to re-use a user-nonce pair across
Enc queries as long as they never repeat an entire query. AE1[Aae1

u-nmh∩Aae1
1 ]-

security is misuse resistant AE [51].
• AE1[Aae1

u-nmh]-security is the extension of this to the multi-user setting [18],
which we have referred to as advanced-AE1-security in Sect. 1.

• Adversaries in Aae1
r-n pick the nonces in their Enc queries uniformly and inde-

pendently at random from SE1.NS. (While the intent here is likely under-
standable, what precisely it means for an adversary to be in this class does
actually need a careful definition, which is given in [12].) No restriction is
placed on how the adversary picks nonces in Dec queries. AE1[Aae1

r-n ∩ Aae1
1 ]-

security is thus classical randomized AE [11] for schemes which make encryp-
tion randomness public, which is the norm.

• Sometimes, in the unique-nonce setting, we consider schemes that provide
only privacy, not authenticity, and, rather than giving a separate game, can
capture this as AE1[Aae1

priv ∩Aae1
u-n]-security. AE1[Aae1

priv ∩Aae1
u-n ∩Aae1

1 ]-security
is IND$-CPA security, as defined in [46].

Further adversary classes can be defined to capture limited nonce reuse [18] or
other resource restrictions.

The following says that AE1[Aae1
u-n]-security implies AE1[Aae1

r-n ]-security with
a degradation in advantage corresponding to the probability that a nonce repeats
for some user. We will refer to this later. We omit the (obvious) proof.

Proposition 1. Let SE1 be an NBE1 scheme. Given adversary Arn ∈ Aae1
r-n

making at most u New queries and at most q Enc queries per user, we construct
adversary Aun ∈ Aae1

u-n such that

Advae1
SE1(Arn) ≤ Advae1

SE1(Aun) +
uq(q − 1)

2SE1.nl
.

Adversary Aun preserves the resources of Arn.
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Saying Aun preserves the resources of Arn means that the number of queries to
all oracles are the same for both.

We believe our (above) AE1 framework (single game, many adversary classes)
is of independent interest, as a way to unify, better understand and compactly
present existing and new notions of security for NBE1 schemes. We give a similar
framework for AE2 next.

NBE2 syntax. An NBE2 scheme SE2 specifies several algorithms and related
quantities, as follows. Deterministic encryption algorithm SE2.Enc : SE2.KS ×
SE2.NS× SE2.MS× SE2.HS → {0, 1}∗, just like for NBE1, takes a key K in the
(finite) key-space SE2.KS, a nonce N in the nonce-space SE2.NS, a message M in
the message space SE2.MS and a header H in the header space SE2.HS to return a
ciphertext C2 that is in the ciphertext space SE2.CS(|N |, |M |, |H|). SE2 also spec-
ifies a deterministic decryption algorithm SE2.Dec : SE2.KS×{0, 1}∗×SE2.HS →
SE2.MS ∪ {⊥} that takes key K, ciphertext C2 and header H to return an
output that is either a message M ∈ SE2.MS, or ⊥. (Unlike in NBE1, it
does not take a nonce input.) It is required that SE2.NS,SE2.MS,SE2.HS are
length-closed sets as defined in Sect. 2. Most often nonces are of a fixed length
denoted SE2.nl, meaning SE2.NS = {0, 1}SE2.nl. Decryption correctness requires
that SE2.Dec(K,SE2.Enc(K,N,M,H),H) = M for all K ∈ SE2.KS, N ∈
SE2.NS,M ∈ SE2.MS and H ∈ SE2.HS.

AE2 game and advantage. Let SE2 be an NBE2 scheme and A an adversary. We
associate to them the game Gae2

SE2(A) shown on the top right of Fig. 3. (We use the
name “AE2” to associate the game with the NBE2 syntax). The AE2-advantage
of adversary A is Advae2

SE2(A) = 2Pr[Gae2
SE2(A)] − 1. The game is in the multi-

user setting, oracle New allowing the adversary to initialize a new user with a
fresh key. It is required that any Enc(i,N,M,H) query of A satisfy 1 ≤ i ≤ v,
N ∈ SE2.NS, M ∈ SE2.MS and H ∈ SE2.HS. When the challenge bit b is 1, the
encryption oracle will return a ciphertext as stipulated by SE2.Enc, using the
key for the indicated user i. When b = 0, Enc will return a random element of
the ciphertext space SE2.CS(|N |, |M |, |H|). The array M is assumed to initially
be ⊥ everywhere, and holds ciphertexts returned by Enc. It is required that
any Dec(i, C2,H) query of A satisfy 1 ≤ i ≤ v and H ∈ SE2.HS. When the
challenge bit b is 1, the decryption oracle will perform decryption as stipulated
by SE2.Dec, using the key for the indicated user i. When b = 0, Dec will return
⊥ on any ciphertext not previously returned by the encryption oracle.

AE2 security metrics. As with AE1-security, restrictions must be placed on
the adversary to achieve AE2-security, and we use adversary classes to capture
restrictions corresponding to different notions of interest. The classes are sum-
marized by the table at the bottom of Fig. 3, with the superscript “x” now
being ae2. The classes and resulting notions are analogous to those for AE1.
Thus, AE2[Aae2

1 ]-security recovers the single-user setting. Aae2
u-n is the class of

adversaries whose Enc queries never repeat a user-nonce pair, so AE2[Aae2
u-n]-

security is what we have referred to as basic AE2-security in Sect. 1. Adversaries
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in Aae2
u-nmh ⊇ Aae2

u-n are allowed to re-use a user-nonce pair across Enc queries as
long as they never repeat an entire query, so AE2[Aae2

u-nmh]-security is what we
have referred to as advanced AE2-security in Sect. 1. Adversaries in Aae2

r-n pick
the nonces in their Enc queries uniformly and independently at random from
SE2.NS. AE2[Aae2

priv]-security is privacy only.

Discussion. The main (small but important) change in the syntax from NBE1
to NBE2 is that in the latter, the decryption algorithm no longer gets the nonce
as input. It is up to encryption to ensure that the ciphertext contains everything
(beyond key and header) needed to decrypt. Nonces are thus no longer magically
communicated, making the interface, and the task of application designers, sim-
pler and less error-prone, reducing the possibility of loss of privacy from poor
choices of nonces and opening the door to nonce-hiding security as captured
by AE2. Another change is that, rather than a ciphertext length function, an
NBE2 scheme specifies a ciphertext space. The reason is that a ciphertext might
have some structure, like being a pair (C,C ′). Ciphertexts like this cannot be
indistinguishable from random strings, but they can be indistinguishable from
pairs of random strings, which is captured by defining the ciphertext space corre-
spondingly. This follows [24], in whose committing AE definition the same issue
arose.

Nonce-Recovering NBE2. A natural subclass of NBE2 schemes are those which
recover the nonce explicitly during decryption. We provide definitions to capture
such schemes. We say that an NBE2 scheme SE2 is nonce-recovering if there
exists a deterministic nonce-plus-message recovery algorithm SE2.NMR such that
for any (K,C2,H) ∈ SE2.KS×{0, 1}∗×SE2.HS, if SE2.NMR(K,C2,H) �= ⊥ then
it parses as a pair (M,N) ∈ SE2.MS×SE2.NS satisfying SE2.Dec(K,C2,H) = M
and SE2.Enc(K,N,M,H) = C2. Most of our transforms from NBE1 scheme to
NBE2 schemes yield nonce-recovering NBE2 schemes.

4 Usage of NBE1: The Transmit-Nonce Transform

With AE1-secure NBE1, the nonce is needed for decryption. But how does the
decryptor get it? This is a question about usage not addressed in the formalism.
The understanding, however, is that the nonce can be communicated in the
clear, with the core ciphertext. One might argue this is fine because, in the
AE1-formalism, the adversary picks the nonce, so seeing the nonce again in the
ciphertext cannot give the adversary an advantage.

We have discussed in the introduction why this fails to model cases where
the nonce is chosen by the user, and why, at least in general, nonce transmission
may violate message privacy. But the claim, so far, was informal. The reason
was that transmitting the nonce represents a usage of NBE1 and we had no
definitions to capture this. With AE2-secure NBE2, that gap is filled and we are
in a position to formalize the claim of usage insecurity.
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Some readers may see this is unnecessary, belaboring an obvious point.
Indeed, the intuition is clear enough. But formalizing it serves also as an intro-
duction to exercising our framework. We capture the usage in question as an
NBE2 scheme SETN = TN[SE1] built from a given NBE1 scheme SE1 by what
we call the transmit-nonce transform TN. We detail the (rather obvious) claim
that SETN fails to meet AE2-security, and discuss how it will also fail to meet
other, weaker privacy goals.

TheTN transform. Our TN (Transmit Nonce) transform takes an NBE1 scheme
SE1 and returns the NBE2 scheme SETN = TN[SE1], that, as the name suggests,
transmits the nonce in the clear, meaning the SETN ciphertext is the nonce
together with the SE1 core ciphertext. In more detail, encryption algorithm
SETN.Enc(K,N,M,H) lets C1 ← SE1.Enc(K,N,M,H) and returns ciphertext
C2 ← (N,C1). Decryption algorithm SETN.Dec(K,C2,H) parses C2 as a pair
(N,C1) with N ∈ SE1.NS—we write this as (N,C1) ← C2—returning ⊥ if the
parsing fails, and else returning M ← SE1.Dec(K,N,C1,H). NBE2 scheme SETN

has the same key space, message space and header space as SE1, and we define
its ciphertext space via SETN.CS(�n, �m, �h) = SE1.NS× {0, 1}SE1.ccl(�n,�m,�h) for
all �n, �m, �h ≥ 0. Usage of SE1 in which the nonce is sent in the clear (along
with the core ciphertext) can now be formally modeled by asking what formal
security notions for NBE2 schemes are met by SETN = TN[SE1].

Insecurity of TN[SE1]. Let SE1 be any NBE1 scheme. It might, like GCM,
be AE1[Aae1

u-n]-secure, or it might even be AE1[Aae1
u-nmh]-secure. Regardless, we

claim that NBE2 scheme SETN = TN[SE1] fails to be AE2[Aae2
priv ∩Aae2

u-n]-secure,
meaning fails to provide privacy even for adversaries that do not reuse a nonce.
This is quite obvious, since the adversary can test whether the nonce in its Enc
query matches the one returned in the ciphertext. In detail:

Adversary A

Initialize

Pick some (N,M,H) ∈ SE1.NS × SE1.MS × SE1.HS with |N | ≥ 1
New // Initialize one user
(N∗, C1) ←$ Enc(1, N,M,H) // Ciphertext returned is a pair
If (N∗ = N) then b′ ← 1 else b′ ← 0
Finalize(b′)

This adversary has advantage Advae2
SETN

(A) ≥ 1 − 1/2 = 1/2, so represents a
violation of AE2[Aae2

priv ∩ Aae2
u-n]-security.

Discussion. The attack above may be difficult to reconcile with SE1 being
AE1[Aae1

u-n]-secure, the question being that, in the AE1 game, the adversary
picks the nonce, and thus already knows it, so why should seeing it again in the
ciphertext give the adversary extra information? The answer is that in usage the
adversary does not know the nonce a priori and seeing may provide additional
information. This is not modeled in AE1 but is modeled in AE2. To be clear, the
above violation of AE2 security does not contradict the assumed AE1-security
of SE1.
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One might (correctly) argue that AE2 is a strong requirement so failing it
does not represent a concerning violation of security, but it is clear that SETN

will fail to meet even much weaker notions of privacy for NBE2 schemes that one
could formalize in natural ways, such as message recovery security or semantic
security. (The nonce could be message dependent, in the extreme equal to the
message.) One might also suggest that the losses of privacy occur for pathological
choices of nonces, and nonce transmission is just fine if the nonce is a random
number or counter, to which there are two responses. (1) The pitch and promise
of AE1[Aae1

u-n]-secure NBE1 is that any (non-repeating) nonce is fine. For example
RBBK [50] says “The entity that encrypts chooses a new nonce for every message
with the only restriction that no nonce is used twice,” and RFC 5116 says
“Applications SHOULD use the nonce formation method defined in Sect. 3.2,
and MAY use any other method that meets the uniqueness requirement.” It is
important to know (both to prevent misuse and for our understanding) that in
usage of NBE1, security requires more than just uniqueness of nonces; one must
be concerned with how they are conveyed to the receiver. (2) A counter nonce
can lead to loss of user privacy, for example revealing identity information, that
is resolved by moving to AE2[Aae2

u-n]-secure NBE2, which is nonce hiding.

5 Basic Transforms

We have explained that AE2-secure NBE2 offers valuable security and usability
benefits over current encryption. So we now turn to achieving it. We follow the
development path of NBE1, first, in this section, targeting basic AE2-security—
no user reuses a nonce, which in our framework corresponds to adversaries in
the class Aae2

u-n—and then, in Sect. 6, targeting advanced AE2-security—misuse
resistance, where nonce-reuse is allowed, which in our framework corresponds to
adversaries in the class Aae2

u-nmh.
Significant effort has gone into the design and analysis of basic-AE1-secure

NBE1 schemes. We want to leverage rather than discard this. Accordingly,
rather than from-scratch designs, we seek transforms of basic-AE1-secure NBE1
schemes into basic-AE2-secure NBE2 ones. This section gives three transforms
that are simple and efficient and minimize quantitative security loss.

Preliminaries. We assume for simplicity that the NBE1 schemes provided as
input to our transforms have nonces of a fixed length, meaning that SE1.NS =
{0, 1}SE1.nl. This holds for most real-world AE1-secure NBE1 schemes. All our
transforms can be adapted to allow variable-length nonces.

Core ciphertexts in practical NBE1 schemes tend to be no shorter than a cer-
tain minimal value, for example 96 bits for typical usage of GCM with AES [22].
We refer to this value as the minimal core-ciphertext length of the scheme SE1,
formally defining SE1.mccl = minN,M,H{SE1.ccl(|N |, |M |, |H|)} where the mini-
mum is over all (N,M,H) ∈ SE1.NS×SE1.MS×SE1.HS. This is relevant because
some of our transforms need SE1.mccl to be non-trivial to provide security.
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All transforms here use two keys, meaning the key for the constructed NBE2
scheme SE2 is a pair consisting of a key for a PRF and a key for SE1. An
implementation can, starting from a single overlying key, derive these sub-keys
and store them, so that neither key size nor computational cost increase. This
is well understood and is done as part of OCB, GCM and many other designs.

The ciphertext overhead is the bandwidth cost of the transform. We now
discuss how to measure it. In the NBE2 scheme SE2 constructed by any of our
transforms from an NBE1 scheme SE1, the ciphertext space is the set of strings
of some length, SE2.CS(�n, �m, �h) = {0, 1}SE2.cl(�n,�m,�h). Since NBE1 decryption
gets the nonce for free while NBE2 decryption must, effectively, communicate it
via the ciphertext, the “fair” definition of the ciphertext overhead of the trans-
form is the maximum, over all possible choices of �n, �m, �h, of

SE2.cl(�n, �m, �h) − SE2.ccl(�n, �m, �h) − SE1.nl .

Another way to put it is that the ciphertext overhead is how much longer cipher-
texts are in SE2 than in TN[SE1]. All our transforms have ciphertext overhead
zero, meaning are optimal in terms of bandwidth usage.

The HN1 transform. The idea of our first transform is that a piece of the core
ciphertext may be used as a nonce under which to encrypt the actual nonce. Let
SE1 be an NBE1 scheme and F a function family with F.ol = SE1.nl, so that out-
puts of F.Ev can be used to mask nonces for SE1. Assume SE1.mccl ≥ F.il, so that
an F.il-bit prefix of a core ciphertext can be used as an input to F.Ev. Invertibility
of F is not required, so it can, but need not, be a blockcipher. Our HN1 transform
defines NBE2 scheme SEHN1 = HN1[SE1,F] whose encryption and decryption
algorithms are shown in Fig. 4. A key (KF,K1) for SEHN1 is a pair consisting of
a key KF for F and a key K1 for SE1, so that the key space is SEHN1.KS =
{0, 1}F.kl × SE1.KS. The message, header and nonce spaces are unchanged.
The parsing Y ‖C1 ← C2 in the second line of the decryption algorithm SEHN1

is such that |Y | = SE1.nl. The ciphertext overhead is zero. The computational
overhead is one call to F.Ev for each of encryption or decryption. The following
says that if the starting NBE1 scheme SE1 is basic-AE1-secure and F is a PRF
then the NBE2 scheme SEHN1 returned by the transform is basic-AE2-secure.
The proof is in the full version.

Theorem 2. Let SEHN1 = HN1[SE1,F] be obtained as above. Then, given
adversary A2 ∈ Aae2

u-n, making qn queries to its New oracle, qe queries per user
to its Enc oracle, and qd queries per user to its Dec oracle, we construct adver-
saries A1 ∈ Aae1

u-n and B such that

Advae2
SEHN1

(A2) ≤ Advae1
SE1(A1) + Advprf

F (B) +
qn(qe + qd)(qe + qd − 1)

2F.il+1
.

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to
its New oracle and qe + qd queries per user to its Fn oracle. Adversary B has
about the same running time as A2.
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Splitting. Our next transform employs ciphertext stealing [41] to get zero cipher-
text overhead. There are many choices with regard to how to implement stealing,
for example whether one steals from the first part of the core ciphertext or the
last, and implementations may have different preferences. Accordingly, we do
not pin down a choice but instead parameterize the transform by a splitting
algorithm responsible for splitting a given string X (the core ciphertext) into
segments x (the stolen part, of a prescribed length �) and y (the rest). For-
mally, splitting scheme Spl specifies a deterministic algorithm Spl.Ev that takes
an integer � ≥ 0 and a string X with |X| ≥ �, and returns a pair of strings
(x, y) ← Spl.Ev(�,X) with |x| = �. If (x, y) ∈ Im(Spl.Ev(|x|, ·))—the image of a
function was defined in Sect. 2—then X ← Spl.In(x, y) recovers the unique X
such that Spl.Ev(|x|,X) = (x, y), and otherwise returns X = ⊥.

This isn’t enough because for security we want that if X is random then so
are x, y. A simple way to ensure this is to require that the split sets x to some
bit positions of X and y to the rest, with the choice of positions depending only
on |X|. Formally, we require that there is a (deterministic) function Spl.St that
given integers �, n with n ≥ � ≥ 0 returns a starting index s = Spl.St(�, n) in
the range 1 ≤ s ≤ n − � + 1, and Spl.Ev(�,X) returns x = X[s..(s + � − 1)]
and y = X[1..(s − 1)]‖X[(s + �)..|X|] for s = Spl.St(�, |X|). The most common
choices are that Spl.St(�, n) = 1, so that x = X[1..�] is the �-bit prefix of X and
y = X[(� + 1)..|X|] is the rest (corresponding to stealing from the first part of
X), or Spl.St(�, n) = n− �+1, so that x = X[(|X|− �+1)..|X|] is the �-bit suffix
of X and y = X[1..(|X| − �)] is the rest (corresponding to stealing from the last
part of X), but other choices are possible.

TheHN2 transform. The starting idea of this transform is that our NBE2 scheme
can encrypt under the given NBE1 scheme and then also include in the ciphertext
an enciphering, under a blockcipher E, of the nonce. We enhance this to encipher,
along with the nonce, � bits stolen from the core ciphertext. The stealing has two
dividends. First, nonces are often shorter than the block length of E—for example
SE1.nl = 96 and E.bl = 128 for AES-GCM and OCB [35,50]—so in the absence
of stealing, the nonce would be padded before enciphering, leading to ciphertext
overhead. Second, while we show here (Theorem 3) that the scheme preserves basic
security regardless of the amount � stolen, we show later (Theorem 6) that it pre-
serves even advanced security if � is non-trivial (128 bits or more). We now proceed
to the full description.

Let SE1 be an NBE1 scheme, Spl a splitting scheme and � ≥ 0 the prescribed
length of the stolen segment of the core ciphertext. We assume the minimal
core-ciphertext length of SE1 satisfies SE1.mccl ≥ �, which ensures that core
ciphertexts are long enough to allow the desired splitting. Let E be a blockcipher
with block length E.bl = SE1.nl + �. Our HN2 transform defines NBE2 scheme
SEHN2 = HN2[SE1, �,E,Spl] whose encryption and decryption algorithms are
shown in Fig. 4. The parsing in the second line of the decryption algorithm
SEHN2 is such that |N | = SE1.nl. A key (KE,K1) for SEHN2 is a pair consisting
of a key KE for E and a key K1 for SE1, so that the key space is SEHN2.KS =
{0, 1}E.kl × SE1.KS. The nonce, message and header spaces are unchanged.
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Fig. 4. Top: Encryption and decryption algorithms of the NBE2 schemes constructed
by our basic transforms. From top to bottom: SEHN1 = HN1[SE1,F], SEHN2 =
HN2[SE1, �,E, Spl] and SEHN3 = HN3[SE1,F]. Bottom: Diagrams illustrating the
encryption algorithms of the constructed schemes.

The length of ciphertext C2 is E.bl + |C1| − � = |C1| + SE1.nl, so the cipher-
text space is SEHN2.CS(�n, �m, �h) = {0, 1}SE1.nl+SE1.ccl(�n,�m,�h). The ciphertext
overhead is zero. The computational overhead is an extra blockcipher call for
encryption and a blockcipher inverse for decryption.

A typical instantiation for basic security is E = AES, so that E.bl = 128.
Nonces would have length SE1.nl = 96. We then set � = 32 and Spl.St(�, n) = 1
for all n. This means SE1.mccl must be at least 32, which is true for all real-world
schemes we know. This reduction in the required value of SE1.mccl for security is
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the benefit that HN2 offers over HN1. Recall the latter needs F.il ≥ SE1.mccl,
and hence by Theorem 2 needs SE1.mccl ≥ 128, for the same security that HN2
can offer with SE1.mccl ≥ 32.

The following says that if the starting NBE1 scheme SE1 is basic-AE1-secure
and E is a PRF, then the NBE2 scheme SEHN2 returned by the transform is
basic-AE2-secure. This holds regardless of the value of �. The proof is in the full
version of this paper [12].

Theorem 3. Let SEHN2 = HN2[SE1, �,E,Spl] be obtained as above. Then, given
adversary A2 ∈ Aae2

u-n, making qn queries to its New oracle, qe queries per user
to its Enc oracle, and qd queries per user to its Dec oracle, we construct adver-
saries A1 ∈ Aae1

u-n and B such that

Advae2
SEHN2

(A2) ≤ Advae1
SE1(A1) + Advprf

E (B) . (1)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to
its New oracle and qe queries per user to its Fn oracle. Adversary B has about
the same running time as A2.

The HN3 transform. Our third transform uses what we call nonce-based nonce-
derivation, in which encryption is performed under SE1 using as nonce the result
N1 = F(KF, N) of a PRF F on the actual nonce N . The idea comes from SIV [51]
but differences include that: (1) SIV constructs an AE1-secure NBE1 scheme
while we construct an AE2-secure NBE2 scheme. (2) SIV decryption needs to
have the original nonce. (3) Our synthetic nonce N1 is a function only of the
actual nonce while the one in SIV is also a function of the message and header.

Proceeding to the details, let SE1 be an NBE1 scheme. Let F be a function
family with F.ol = SE1.nl, meaning outputs of F.Ev can be used as nonces for SE1.
Invertibility of F is not required, so it can, but need not, be a blockcipher. Our
HN3 transform defines NBE2 scheme SEHN3 = HN3[SE1,F] whose encryption
and decryption algorithms are shown in Fig. 4. A key (KF,K1) for SEHN3 is a
pair consisting of a key KF for F and a key K1 for SE1, so that the key space is
SEHN3.KS = {0, 1}F.kl ×SE1.KS. The message and header spaces are unchanged,
and the nonce space is SEHN3.NS = {0, 1}F.il, meaning inputs to F are nonces for
SE2. The parsing in the second line of the decryption algorithm SEHN3 of Fig. 4
is such that |N1| = SE1.nl. Note that the decryption algorithm does not use F
or KF.

As with HN1 and HN2, the HN3 transform has zero ciphertext overhead.
The computational overhead for encryption is one invocation of F. Advantages
emerge with decryption, where there is now no computational overhead. Indeed
decryption in SEHN3 is effectively the same as in SE1. In particular, in the typical
case that F is a blockcipher on which SE1 is itself based, decryption (unlike
with HN2) no longer needs to implement its inverse, which can be a benefit in
hardware and for reducing code size.

It is natural and convenient here to assume SE1 is AE1[Aae1
r-n ]-secure. (Recall

this is AE1-security for the class of adversaries that pick the nonce at random.)
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By Proposition 1 this is implied by its being AE1[Aae1
u-n]-secure (that is, basic-

AE1-secure). Assuming additionally that F is a PRF, the following says that
HN3[SE1,F] is AE2[Aae2

u-n]-secure (that is, basic-AE2-secure). The proof is in
the full version.

Theorem 4. Let SEHN3 = HN3[SE1,F] be obtained as above. Then, given
adversary A2 ∈ Aae2

u-n that makes qn queries to its New oracle, qe queries to its
Enc oracle, and qd queries to its Dec oracle, we construct adversaries A1 ∈ Aae1

r-n
and B such that

Advae2
SE2(A2) ≤ Advae1

SE1(A1) + Advprf
F (B) .

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to
its New oracle and qe queries to its Fn oracle, respectively. Adversary B has
about the same running time as A2.

6 Advanced Transforms

We now turn to achieving AE2-security in the nonce-misuse setting, which we
formalized as AE2[Aae2

u-nmh]-security. We discuss various transforms for this pur-
pose.

Advanced security of HN1. We showed in Theorem 2 that HN1 preserves basic
security. It turns out that it also preserves advanced security. The following
says that if the starting NBE1 scheme SE1 is advanced-AE1-secure and F is a
PRF then the NBE2 scheme SEHN1 returned by the transform is advanced-AE2-
secure. The proof is in the full version.

Theorem 5. Let SEHN1 = HN1[SE1,F] be obtained as above. Then, given
adversary A2 ∈ Aae2

u-nmh, making qn queries to its New oracle, qe queries per
user to its Enc oracle, and qd queries per user to its Dec oracle, we construct
adversaries A1 ∈ Aae1

u-nmh and B such that

Advae2
SEHN2

(A2) ≤ Advae1
SE1(A1) + Advprf

F (B) +
qn(qe + qd)(qe + qd − 1)

2F.il+1
. (2)

Adversary A1 preserves the resources of A2. Adversary B makes qn queries to
its New oracle and qe + qd queries per user to its Fn oracle. Adversary B has
about the same running time as A2.

Advanced security of HN2. We showed in Theorem 3 that HN2 preserves basic
security regardless of the amount � of stolen core-ciphertext—even if � = 0.
For small �, HN2 may, however, leak information about the nonce in the
advanced (misuse resistance) setting. The transformation does therefore not pro-
vide AE2[Aae2

u-nmh]-security. This is easy to see when � = 0, in which case if two
different message-header pairs are encrypted with the same nonce, then the first
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Fig. 5. Top: Encryption and decryption algorithms of the NBE2 schemes constructed
by our advanced transforms. From top to bottom: SEHN4 = HN4[SE1, �,F] and
SEHN5 = HN5[TE, �, �t]. Bottom: Diagrams illustrating the encryption algorithms of
the constructed schemes.

part of the ciphertext is the same, leading to an Aae2
u-nmh-adversary with advan-

tage 1 − 2−E.bl. The advantage of this attack however decreases (exponentially)
as � increases. The following theorem says that once � is non-trivial (say, 128
bits or more), the transform actually preserves advanced security as well. In the
full version of this paper, we prove this theorem and describe the attack alluded
to above in detail, showing that the bound in Theorem 6 is tight [12].

Theorem 6. Let SEHN2 = HN2[SE1, �,E,Spl] be obtained as above. Then, given
adversary A2 ∈ Aae2

u-nmh, making qn queries to its New oracle and qe queries per
user to its Enc oracle, we construct adversaries A1 ∈ Aae1

u-nmh and B such that

Advae2
SEHN2

(A2) ≤ Advae1
SE1(A1) + Advprf

E (B) +
qnqe(qe − 1)

2�+1
. (3)
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Adversary A1 preserves the resources of A2. Adversary B makes qn queries to
its New oracle and qe queries per user to its Fn oracle. Adversary B has about
the same running time as A2.

This however is not ideal because security would need � = 128, which requires
SE1.mccl ≥ 128 (not always true) and also, assuming 96-bit nonces, would require
that the blockcipher E have block length 128 + 96 = 224, which precludes AES.
We now give further transforms that do better.

The HN4 transform. The HN3 transform clearly does not provide advanced-
AE2-security because, if a nonce is repeated, the resulting ciphertexts have the
same synthetic nonce, and hence the same first parts, which an adversary can
notice. The starting idea for HN4 is to obtain the synthetic nonce N1 by
applying the PRF F, not just to the actual nonce N as in HN3, but, as in
SIV [51], to (N,M,H). If we now encrypt with N1 under an NBE1 scheme
SE1, we can indeed show that AE2[Aae2

u-nmh]-security is achieved, assuming SE1
is AE1[Aae1

u-nmh]-secure. The latter assumption, however, is not satisfactory here
because AE1[Aae1

u-nmh]-security (typically achieved via SIV itself) already requires
two passes through the entire input, so our computation of N1 adds another
entire pass, resulting in significant (non-constant) computational overhead. To
avoid this we ask whether it would be enough for SE1 to provide only privacy,
meaning be AE1[Aae1

r-n ∩ Aae1
priv]-secure, because this can be achieved in one pass.

Indeed, this is what SIV assumes, but the difficulty is that SIV decryption makes
crucial use of the original nonce N to provide authenticity, recomputing it and
checking that it matches the one in the ciphertext. But to be nonce hiding,
we cannot transmit N . We resolve this by including N as part of the message
encrypted under SE1.

Proceeding to the details, let SE1 be an NBE1 scheme. Let F be a function
family with F.ol = SE1.nl, meaning outputs of F.Ev can be used as nonces for
SE1, and also with SE1.NS×SE1.MS×SE1.HS ⊆ F.D, meaning triples (N,M,H)
can be used as inputs to F. Let � ≥ 1 be an integer prescribing the nonce
length of the constructed scheme. Our HN4 transform defines NBE2 scheme
SEHN4 = HN4[SE1, �,F] whose encryption and decryption algorithms are shown
in Fig. 5. A key (KF,K1) for SEHN4 is a pair consisting of a key KF for F and a key
K1 for SE1, so that the key space is SEHN4.KS = {0, 1}F.kl×SE1.KS. The message
and header spaces are unchanged, and the nonce space is SEHN4.NS = {0, 1}�.
The parsing in the second line of the decryption algorithm SEHN4 of Fig. 4 is such
that |N1| = SE1.nl. The ciphertext overhead is zero, and if SE1 is a standard one-
pass privacy only scheme like counter-mode, then the computational overhead
is constant.

Security, as with SIV, requires that SE1 satisfies tidiness [43]. Formally, for
all K,N,C1,H, if SE1.Dec(K,N,C1,H) = M �= ⊥ then SE1.Enc(K,N,M,H) =
C1. We capture the assumption that SE1 provides only privacy in the nonce
respecting setting, and it continues to be convenient for this to be for adversaries
that pick the nonce at random, so our assumption for SE1 is AE1[Aae1

r-n ∩ Aae1
priv]-

security. By Proposition 1 this is implied by its being AE1[Aae1
u-n ∩ Aae1

priv]-secure.
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Assuming additionally that F is a PRF, the following says that HN4[SE1, �,F]
is AE2[Aae2

u-nmh]-secure. The proof is in the full version [12].

Theorem 7. Let SEHN4 = HN4[SE1, �,F] be obtained as above, and let SE1 sat-
isfy tidiness. Then, given adversary A2 ∈ Aae2

u-nmh making qn queries to its New

oracle and qe, qd encryption and decryption queries for each user, respectively,
we construct adversaries A1 ∈ Aae1

r-n ∩ Aae1
priv and B such that

Advae2
SE2(A2) ≤ Advae1

SE1(A1) + Advprf
F (B) +

qnqd

2SE1.nl
.

Adversary A1 makes qn queries to its New oracle, qe queries to its Enc oracle
per user, and no queries to its Dec oracle. B makes qn queries to its New

oracle, and qe + qd queries to its Fn oracle per user. Adversaries A1 and B both
have about the same running time as A2.

Our final transform HN5 is different. It does not start from an NBE1
scheme but rather from a (arbitrary-input-length) tweakable cipher, extend-
ing the encode-then-encipher paradigm [14] to provide advanced-AE2-security.
Instantiation via a fast tweakable cipher like AEZ [28] results in correspondingly
fast advanced-AE2-secure NBE2.

The HN5 transform. We encipher the nonce, message and some redundancy,
using the header as the tweak. The change from [28] is to move the nonce from
tweak to an input so as to hide it, which we will show is enough to confer
AE2-security.

Proceeding to the details, let TE be a tweakable cipher as defined in Sect. 2.
Let � ≥ 1 be an integer prescribing the nonce length of the constructed scheme.
Let �z ≥ 0 be the number of bits of redundancy we introduce to provide
authenticity [14]. Our transform defines NBE2 scheme SEHN5 = HN5[TE, �, �z]
whose encryption and decryption algorithms are shown in Fig. 5. The key space
of SEHN5 is the key space of TE. The message space is {0, 1}∗. The header
space SEHN5.HS is set to the tweak space TE.TS of TE. The nonce space
is SEHN5.NS = {0, 1}�. The length of ciphertext SEHN5.Enc(K,N,M,H) is
�z + |N | + |M |, so SEHN5.CS(�n, �m, �h) = {0, 1}�z+�+�m . Ciphertext overhead,
in this case, is not relative to an underlying NBE1 scheme, since there isn’t any,
but we see that ciphertexts are longer than message plus nonce by just �z bits,
which is effectively optimal [28].

The following theorem shows that SEHN5 is advanced-AE2-secure if tweakable
cipher TE is an stPRP (as defined in Sect. 2) and �z is sufficiently large.

Theorem 8. Let SEHN5 = HN5[TE, �, �z] be obtained as above. Let A ∈ Aae2
u-nmh

be an adversary making qn queries to its New oracle, qe queries per user to its
Enc oracle with minimum message length �1, and qd queries with minimum
ciphertext length �2 ≥ �z per user to its Dec oracle. We construct adversary B
such that

Advae2
SEHN5

(A) ≤ Advstprp
TE (B) +

qnqe(qe + 1)
2�z+�+�1+1

+
qnqd(qd + 1)

2�2+1
+

qnqd

2�z
.
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Adversary B makes qn queries to its New oracle, qe queries per user to its Fn

oracle, and qd queries per user to its FnInv oracle.

7 Dedicated Transform for GCM

We have shown that our generic transforms allow us to immunize NBE1 schemes
with low overhead. We now present a transform specific to a real-world NBE1
scheme: GCM. Our transform takes advantage of the underlying structure of
GCM to further minimize overhead. Crucially, we also minimize changes to the
scheme so that existing hardware and software can easily adapt.

Generalizing GCM to CAU1. Following Bellare and Tackmann [16], we generalize
GCM via a transform CAU1. (We add the “1” to indicate that it is an NBE1
scheme.)

Let E be a block cipher, H be a function family and � ≥ 1 be an integer
indicating the desired nonce-length. Then CAU1 = CAU1[E,H, �] is an NBE1
scheme. E.bl(2E.bl−� −2) is the maximum message length for CAU1 so we require
that 1 ≤ � < E.bl. Core ciphertexts returned by CAU1.Enc take the form τ‖C,
where τ is a tag of length E.bl. CAU1’s keys are keys to its underlying block
cipher E, meaning that CAU1.kl = E.kl. We use function family H to compute
the tag τ . H takes input of the form (C,H) and returns an output of length
E.bl. It uses a key which is generated by enciphering 0E.bl using E. This means
that we require that H.D = {0, 1}∗ × CAU1.HS and H.ol = H.kl = E.bl. The full
description of CAU1.Enc and CAU1.Dec is in the full version [12].

AES-GCM, as proposed by McGrew and Viega [40] and standardized by
NIST [22], is obtained by instantiating E = AES (so E.bl = 128), H = GHASH
and � = 96. It is widely used in practice and achieves basic AE1-security (i.e.
AE1[Aae2

u-n]-security). CAU1 has a fixed-length nonce, reflecting the standardized
version of GCM, but a variant with variable-length nonces can be obtained by
pre-processing the nonce, as discussed in [40].

AE2-secure CAU2. We exploit a feature of GCM, that the nonce can be derived
from the authentication tag τ . In particular, if τ‖C ← CAU1.Enc(K,N,M,H),
then τ = H.Ev(E.Ev(K, 0E.bl), (C,H))⊕E.Ev(K,N‖〈1〉E.bl−�). (Recall that, as
defined in Sect. 2, 〈i〉n is the n-bit representation of integer i.) Therefore, in
constructing our NBE2 variant CAU2, we make use of the fact that the sender
does not need to communicate the nonce—the receiver uses the tag to recover
it. In other words, we exploit the “parsimoniousness” of TN[CAU1] [13].

Unfortunately, the recovery procedure will succeed for any given ciphertext
with probability 2−E.bl+�, since this is the probability that some nonce with suffix
〈1〉E.bl−� is recovered. This would be unacceptable in GCM since an adversary
would be able to forge valid tags with probability 2−32.

So in order to make the scheme work, we add redundancy to the scheme by
prepending the message with 0�. CAU2 decryption will check that the message
returned by CAU1.Dec indeed starts with such a string; this check works because
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Fig. 6. Encryption and decryption algorithms of NBE2 scheme CAU2 = CAU2[E,H, �],
a special case of which is an AE2[Aae2

u-n]-secure variant of GCM.

a decryption with a “wrong” nonce leads to a random ciphertext. (For this
reason, the maximum message length of CAU2 is � bits shorter than CAU1.)
A similar technique is used by ADL [4] in their scheme, GCM-RUP, but for a
slightly different variant of GCM.

More formally, the transform CAU2 defines an NBE2 scheme CAU2 =
CAU2[E,H, �] whose encryption and decryption algorithms are shown in Fig. 6.
The parsing in the first and sixth line of CAU2.Dec is such that |τ | = E.bl and
|x| = �. If either parsing fails, CAU2.Dec will return ⊥.

The theorem below demonstrates that CAU2 achieves basic security assuming
that E is an sPRP and H is an (ε1, ε2)-AXU function family (as defined in
[2,16,34,36] and others). We refer the reader to the full version of this paper for
a description of these notions of security [12].

Theorem 9. Let CAU2 = CAU2[E,H, �] be the NBE2 scheme defined above
where H is an (ε1, ε2)-AXU function family. Let A ∈ Aae2

u-n be an adversary
making qn calls to its New oracle, qe calls to its Enc oracle per session and qd

calls to its Dec oracle per session. The total number of message blocks passed
to the encryption oracle by A for any single session does not exceed Q′ and
the lengths of C2,H passed to the decryption oracle by A do not exceed �′

1, �2,
respectively. Let Q = Q′+qe and �1 = �′

1+E.bl. Then we can construct adversary
B such that:

Advae2
CAU2(A) ≤2Advsprp

E (B) + qn(qeqd + q2d) · ε1(�1, �2) + qn(q2d − qd) · ε2(�1, �2)

+ qn

(
2Q2 + 2Q + q2d + 4qdQ + 3qd + 2

2E.bl+1
+

q2d + qd + 2qeqd

2�+1

)

B makes qn queries to its New oracle, no more than Q + 1 queries to its Fn

oracle for each user and no more than qd queries to its Dec oracle for each user.

The proof of the theorem is in the full version of this paper. Future work can
apply the techniques used in recent work to improve upon this bound [16,30,38].

CAU2 has some advantages over the schemes obtained through our basic
transforms described in Sect. 5. CAU2 only makes use of the same keys and (often
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extensively optimized) primitives already existing in CAU1. This allows for code
reuse, making it easy for existing hardware and software to adapt. In contrast
to the generic transforms, CAU2 has a (E.bl − �)-bit ciphertext overhead (for
reference, in AES-GCM this is 32-bits), but lower or comparable computational
overhead—a single block cipher call in both encryption and decryption.

8 A Real-World Perspective

In addition to bridging the gap between theory and usage, our framework allows
us to formalize weaknesses of real-world schemes which communicate nonces in
the clear.

First, it allows us to formalize an intuitive fact: pathologically chosen nonces
cannot be communicated in the clear. It may seem obvious that message or
key-dependent nonces violate security but such pathological nonce choices have
occurred in the wild. For instance, CakePHP, a web framework, used the key
as the nonce [1] when encrypting data. The use of a hash of a message has also
been proposed, and subsequently argued as insecure, in an Internet forum [45].

Second, it disallows metadata leakage through the nonce. Implicit nonces
with a device specific field, such as those recommended in RFC 5116 [39] enable
an adversary to distinguish between different user sessions. Even the “standard”
nonce choices are not safe against these adversaries. A counter will allow an
adversary distinguish between sessions with high traffic and low traffic, and a
randomly chosen nonce can detect devices with poor entropy (RSA public keys
were used to a similar end by HDWH [27]).
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Abstract. Pseudorandom functions are traditionally built upon block
ciphers, but with the trend of permutation based cryptography, it is a
natural question to investigate the design of pseudorandom functions
from random permutations. We present a generic study of how to build
beyond birthday bound secure pseudorandom functions from public ran-
dom permutations. We first show that a pseudorandom function based
on a single permutation call cannot be secure beyond the 2n/2 birthday
bound, where n is the state size of the function. We next consider the
Sum of Even-Mansour (SoEM) construction, that instantiates the sum of
permutations with the Even-Mansour construction. We prove that SoEM
achieves tight 2n/3-bit security if it is constructed from two independent
permutations and two randomly drawn keys. We also demonstrate a
birthday bound attack if either the permutations or the keys are iden-
tical. Finally, we present the Sum of Key Alternating Ciphers (SoKAC)
construction, a translation of Encrypted Davies-Meyer Dual to a public
permutation based setting, and show that SoKAC achieves tight 2n/3-bit
security even when a single key is used.

Keywords: RP-to-PRF · SoEM · SoKAC ·
Beyond the birthday bound

1 Introduction

In the seminal work of Luby and Rackoff [47], a paradigm of constructing a
pseudorandom permutation (PRP) from a pseudorandom function (PRF) was
introduced. Their work, motivated by the DES block cipher, consists of an
r-round Feistel construction involving independent invocations of a PRF. Soon
people realized that they actually needed the opposite construction, i.e., con-
structing a PRF from a PRP. The reason for this is two-fold: (i) PRPs are easier
to design than PRFs and (ii) many cryptographic schemes, such as counter mode,
are better off if instantiated with a PRF.

The classical PRP-PRF switch [6,8,19,38,41], which consists of taking an n-bit
block cipher EK as a PRF, is only secure up to the birthday bound: an attacker that
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can learn around 2n/2 evaluations of EK can distinguish it from random. Although
this bound is acceptable for large enough n, in light of the rise of lightweight block
ciphers [3,4,16,18,30,36,40,46,62,67] this bound is on the edge for certain appli-
cations. For example, for a 64-bit block cipher, breaking security requires approxi-
mately 232 ·64 bits of data, which is approximately 35GB. Of a similar kind, Bhar-
gavan and Leurent [13] performed practical attacks on TLS and OpenVPN when
a 64-bit block cipher is used.

Various approaches of turning a PRP into a PRF with beyond birthday
bound security have been introduced. Hall et al. [38] suggested truncation:
truncm(EK(M)), an approach that was later proven to be secure up to around
2n−m/2 queries [5,35]. Bellare et al. [7] proposed the sum of permutations (SoP),

EK1(M) ⊕ EK2(M) , (1)

a construction that is known to achieve q/2n security [5,28,48,57]. Cogliati
and Seurin [24] introduced the Encrypted Davies-Meyer (EDM) construction,
EK2(EK1(M) ⊕ M), and proved that it is 22n/3 secure. Mennink and Neves [50]
improved the security to be 2n using Patarin’s mirror theory [53,55,57,58]. They
also introduced the dual: EK2(EK1(M)) ⊕ EK1(M), called Encrypted Davies-
Mayer Dual (EDMD), and showed that its security is implied by that of the sum
of permutations.

All constructions, however, are yet based on block ciphers. Even stronger,
they only evaluate EK in the forward direction. As block ciphers are designed
to be efficient in both the forward and inverse direction, these are thus over-
engineered primitives for this purpose. This is in contrast with the modern trend
in cryptography, namely that of permutation based cryptography, where the
underlying permutations are particularly developed to be fast in the forward
direction, but not necessarily in the inverse direction. Examples of cryptographic
permutations include Keccak [12], Gimli [9], and SPONGENT [15].

So what we really need is a PRF designed from public permutations, but the
state of the art in this direction is scarce. To our knowledge, the only notable
approach in this direction are the keyed sponge [1,11,52] and Farfalle [10], how-
ever these constructions have been developed with different incentives in mind.
Most importantly, they are variable-length, and for small fixed length messages
better solutions may be possible.

Acknowledgedly, the state size of a permutation is typically larger than the
block size n of a message: whereas AES has a block size of 128 bits, making the
naive birthday bound PRP-PRF switch on the edge, the SHA-3 permutation is
of size 1600 bits, and a simple Even-Mansour [32] construction on top of it would
give a PRP that behaves like a PRF up to an attack complexity of 2800. However,
this example permutation is on the extreme end: lightweight permutations such
as SPONGENT [15] and PHOTON [37] go as low as 88 and 100 bits, respectively.
For these types of permutations, birthday bound solutions are inadequate.
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1.1 Towards Birthday Bound Security

Suppose we take the sum of permutations (1), and want to turn it into a PRF
conversion function for a public random permutation. Recall that the sum of
permutations is secure up to complexity 2n as long as the underlying block
ciphers are secure. A naive way of proceeding is to plug the Even-Mansour block
cipher construction

EMK(M) = π(M ⊕ K) ⊕ K ,

where π is an n-bit permutation, into the sum of permutations. However, the
Even-Mansour construction is known to be tightly 2n/2 birthday bound secure.
A simple modular reasoning, in turn, leaves us with an unsatisfiable birthday
bound security level.

One way to resolve this is by eschewing the Even-Mansour construction in
favor of multiple-round Even-Mansour. For example, 2-round Even-Mansour is
secure up to complexity around 22n/3, and the generic composition of the sum of
permutation with this construction guarantees security up to the same level as
well. On the other hand, the scheme has become twice as expensive in the number
of primitive evaluations: it is based on four permutation calls. Fortunately, the
poor bound of the composition of the sum of permutations with Even-Mansour
is not inherent to the scheme, but rather, it is due to a lossy composition. A
dedicated analysis can render an improved bound.

1.2 Our Contribution

We tackle the problem of designing a PRF from a public random permutation
from a generalized perspective. First, we consider the general design of a PRF
based on one and only one public permutation that is preceded and followed
by linear mappings, and demonstrate that such construction cannot be secure
beyond the birthday bound. The proof consists of considering different types of
linear mappings, and deriving attacks in the birthday bound (or faster) for all
variants. The result is given in Sect. 3.

Our second and main contribution centers around the sum of permutations
instantiated with Even-Mansour, a construction which we dub SoEM: (Sum of
Even Mansour). It is based on two permutations π1, π2, and it either takes two
keys K1,K2 (one before and after each permutation) or it takes a single key K
(added before each permutation, and to the final sum). We derive the following
results in Sect. 4:

(i) If π1 = π2, so if both Even-Mansour constructions are instantiated using
the same permutation, SoEM can be broken in complexity around 2n/2;

(ii) If π1 and π2 are independent, and the construction takes a single key K,
SoEM can again be broken in complexity around 2n/2;

(iii) If π1 and π2 are independent, and so are K1 and K2, the resulting construc-
tion is tightly secure up to complexity 22n/3.
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The proof of (iii) is performed in the ideal permutation model, using Patarin’s
H-coefficient technique [21,54,56]. It resembles ideas of the first iteration in
Patarin’s mirror theory [57], but difficulties appear in the fact that the permu-
tations π1, π2 can be queried by the distinguisher.

The result sparks curiosity on whether 2n/3-security is also achievable by a
construction based on a single key. We answer this question positively by intro-
ducing SoKAC (Sum of Key Alternating Ciphers) in Sect. 5. SoKAC reminds
of EDMD instantiated with Even-Mansour, barring subtle differences, but it
can likewise be seen as adding a 1-round Key Alternating Cipher (KAC) [17]
to a 2-round one. By putting the first permutation equal in both KACs, the
construction makes in total two permutation calls per evaluation. Whereas the
scheme is only birthday bound secure if the permutations are identical, i.e. if
π1 = π2, for the case of independent permutations the construction achieves
2n/3-security even though it only relies on a single n-bit key. The proof is based
on the sum-capture lemma [2,20,25,51,63].

1.3 Our Contribution in Bigger Perspective

Conversion from public or secret permutations to public or secret functions and
vice versa is a fundamental problem in symmetric key cryptography, and our
work fills the last remaining notable gap in the picture.

We already discussed the issue of PRF-to-PRP conversion: Luby and Rack-
off [47] described the Feistel network, a method still used to design block ciphers.
Reversely, PRP-to-PRF conversion was covered by SoP [7], EDM [24], and
EDMD [50].

One can consider similar techniques for conversion between public random
permutations (RPs) and public random functions (RFs). In this setting, the
functions are keyless, and one assumes ideality of the underlying primitives in
order to prove security in the indifferentiability framework [49]. The Feistel con-
struction has seen notable indifferentiability analysis [26,27,29], and so has the
sum of permutation construction [14,23,51].

Note that there is little incentive to investigate conversion from PRP/PRF
to RP/RF. The Even-Mansour construction [32] transforms an RP to a PRP; it
has been generalized in [17,21,31,39,44,64]. Gentry and Ramzan [34] proposed
the idea of combining the Feistel construction and the Even-Mansour cipher,
which was later named the Key Alternating Feistel (KAF) cipher by Lampe
and Seurin [45]. In the work of Gazi and Tessaro [33], a construction that turns
RFs into PRF has been introduced. Moreover, the Whitened Swap-or-Not con-
struction by Tessaro [65] provides another way of building nearly optimal n-bits
secure PRP from RPs or RFs.

This leaves the problem of RP-to-PRF conversion, i.e. the problem considered
in this work. The full picture of example conversion techniques is given in Fig. 1.
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Fig. 1. Conversion among PRP, PRF, RP, and RF. The given example constructions
are not exhaustive.

2 Preliminaries

For n ∈ N, we denote by {0, 1}n the set of bit strings of length n. For two
bit strings X,Y ∈ {0, 1}n, we denote their bitwise addition as X ⊕ Y . For a
value Z, we denote by A ← Z the assignment of Z to the variable A. For a
finite set S, we denote by S

$←− S the uniformly random selection of S from S.
We denote by Func(n) the set of all functions on {0, 1}n and by Perm(n) the
set of all permutations on {0, 1}n. We denote by 〈t〉n the encoding of a value
t ∈ {0, . . . , 2n − 1} as an n-bit string.

For k, n, r ∈ N, let F : {0, 1}k × {0, 1}n → {0, 1}n be a function that is based
on r n-bit permutations π1, . . . , πr. We will consider pseudorandom function
security of F , where we assume that π1, . . . , πr

$←− Perm(n), and where the
distinguisher D is given access to either (Fπ1,...,πr

K , π±
1 , . . . , π±

r ) for secret key
K

$←− {0, 1}k or (ϕ, π±
1 , . . . , π±

r ) for ϕ
$←− Func(n), where the superscript ± for

the πi’s indicates that the distinguisher has bi-directional access. Its goal is to
determine which oracle it is given access to:

Advprf
F (D) =

∣
∣
∣Pr

[

DF
π1,...,πr
K ,π±

1 ,...,π±
r = 1

]

− Pr
[

Dϕ,π±
1 ,...,π±

r = 1
]∣
∣
∣ , (2)

for K
$←− {0, 1}k, π1, . . . , πr

$←− Perm(n), and ϕ
$←− Func(n).

In the remainder of this work, we will focus on keys of size n or 2n bits.

3 Pseudorandom Functions with One Permutation Call

We will show that any pseudorandom function F that makes only one per-
mutation call and has linear pre- and post-processing functions cannot achieve
security beyond the birthday bound. Let n ∈ N, and let π ∈ Perm(n).
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Fig. 2. Function F1 based on two keys K1 and K2, and making one public random
permutations evaluation.

Let L1 : {0, 1}n ×{0, 1}n → {0, 1}n and L2 : {0, 1}n ×{0, 1}n ×{0, 1}n → {0, 1}n

be any two linear mappings (that only consist of modular addition and scalar
multiplication). Let F1: {0, 1}2n × {0, 1}n → {0, 1}n be the function of Fig. 2.
We will show that for independent K1,K2, there exists a distinguisher that can
distinguish any such function from random using at most 3 · 2n/2 construction
queries and at most 3 · 2n/2 primitive queries. Note that modular addition of
the input M to the output C does not influence the security of F1, as the
distinguisher knows the exact value of M .

Proposition 1. Let n ∈ N, and consider the function F1: {0, 1}2n × {0, 1}n →
{0, 1}n of Fig. 2 based on permutation π

$←− Perm(n) and two keys K1,K2
$←−

{0, 1}n, for any linear L1, L2. There exists a distinguisher D making at most
3 · 2n/2 construction queries and at most 3 · 2n/2 primitive queries such that

Advprf
F1(D) ≥ 1 − 1

e
. (3)

Proof. As the mixing functions L1, L2 are linear, we can represent these as

L1 =
(
l11 l12

)

L2 =
(
l21 l22 l23

)

,

where L1, L2 are evaluated on (K1,M) and (K2, x, y), respectively.
The distinguisher’s advantage satisfies

Advprf
F1(D) =

∣
∣
∣Pr

[

DF1π,π±
= 1

]

− Pr
[

Dϕ,π±
= 1

]∣
∣
∣ .

Subcase l12 = 0 ∨ l23 = 0. In this case, the input to or the output of the
permutation π is not related to M or C. When l12 = 0, the distinguisher selects
arbitrary M,M ′ to obtain C,C ′. If the event C = C ′ happens, then output 1;
otherwise, output 0. This gives a distinguisher in two construction queries with
a success probability of 1 − 1/2n. Similar for l23 = 0.
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Subcase l11 = 0 ∨ l21 = 0. In this case, the input to or the output of the
permutation π is independent of the keys. When l11 = 0, the distinguisher selects
arbitrary x, x′ to obtain y, y′. Then, it puts M = l−1

12 x and M ′ = l−1
12 x′ to obtain

C and C ′. If the event A happens, then output 1; otherwise, output 0:

A =

{

C ⊕ C ′ = l23y ⊕ l23y
′ if l22 = 0 ,

C ⊕ C ′ = l23y ⊕ l23y
′ ⊕ l22x ⊕ l22x

′ if l22 	= 0 .

This gives a distinguisher in two construction and two primitive queries with a
success probability of 1 − 1/2n. Similar for l21 = 0.

Subcase l22 = 0. In this case, the construction is a generalization of the Even-
Mansour cipher. We will construct a distinguisher D distinguishing the real world
oracle (F1π, π) from the ideal world oracle (ϕ, π) with significant probability. D
makes 2n/2 construction queries and no primitive queries and operates as follows.
For j = 1, . . . , 2n/2, the distinguisher selects arbitrary M (j)’s to obtain C(j). If
we have C(j̄) 	= C(j̄′) for all query indices j̄ 	= j̄′ , then output 1; otherwise,
output 0.

In the real world, F1 behaves as a PRP, and thus Pr
[

DF1π,π±
= 1

]

= 1. For
the ideal world, we have

Pr
[

Dϕ,π±
= 1

]

= Pr
[

∩j,j′ C(j) 	= C(j′)
]

≤ 1 −
(

1 − e−(q
2) 1

2n

)

= e−(q
2) 1

2n ,

where q = 2n/2.

Subcase l11, l12, l21, l22, l23 �= 0. This is the most general subcase. We will
construct a distinguisher D distinguishing the real world oracle (F1π, π) from
the ideal world oracle (ϕ, π) with significant probability. The distinguisher D
returns 1 if it guesses that it is interacting with the real world oracle and returns
0 otherwise. D makes 3 · 2n/2 construction queries, and 3 · 2n/2 primitive queries
to π in total and operates as follows.

(i) For j = 1, . . . , 2n/2, query M (j) = l−1
12 (〈j〉n/2 ‖ 0n/2) to obtain C(j), query

M∗(j) = l−1
12 (〈j〉n/2 ‖ 0n/2−11) to obtain C∗(j), and M∗∗(j) = l−1

12 (〈j〉n/2 ‖
0n/2−210) to obtain C∗∗(j);

(ii) For i = 1, . . . , 2n/2, query x(i) = 0n/2 ‖ 〈i〉n/2 to obtain y(i). Define
(x∗(i), y∗(i)) and (x∗∗(i), y∗∗(i)) as the tuples that satisfy x∗(i) = x(i)⊕0n−11
and x∗∗(i) = x(i) ⊕ 0n−210, respectively;

(iii) If there are two query indices j̄, ī such that C(j̄) ⊕C∗(j̄) = l22(x(̄i) ⊕x∗(̄i))⊕
l23(y(̄i) ⊕y∗(̄i)) and C(j̄) ⊕C∗∗(j̄) = l22(x(̄i) ⊕x∗∗(̄i))⊕ l23(y(̄i) ⊕y∗∗(̄i)), then
output 1; otherwise, output 0.

In the real world, there is exactly one (j̄, ī) such that l−1
11 (l12M (j̄) ⊕ x(̄i)) = K1,

leading to

C(j̄) = l22x
(̄i) ⊕ l23y

(̄i) ⊕ l21K2 .
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In addition, also l−1
11 (l12M∗(j̄) ⊕ x∗(̄i)) = K1 and l−1

11 (l12M∗∗(j̄) ⊕ x∗∗(̄i)) = K1,
leading to

C∗(j̄) = l22x
∗(̄i) ⊕ l23y

∗(̄i) ⊕ l21K2 ,

C∗∗(j̄) = l22x
∗∗(̄i) ⊕ l23y

∗∗(̄i) ⊕ l21K2 .

The equations imply that

Aj̄,̄i : C(j̄) ⊕ C∗(j̄) = l22(x(̄i) ⊕ x∗(̄i)) ⊕ l23(y(̄i) ⊕ y∗(̄i)) ,

Bj̄,̄i : C(j̄) ⊕ C∗∗(j̄) = l22(x(̄i) ⊕ x∗∗(̄i)) ⊕ l23(y(̄i) ⊕ y∗∗(̄i)) ,

and thus that Pr
[

DF1π,π±
= 1

]

= 1.
For the ideal world, we have

Pr
[

Dϕ,π±
= 1

]

= Pr [∪j,i Aj,i ∧ Bj,i] ≤ qp

22n
,

where q = p = 2n/2. ��

4 Sum of Even-Mansour

We consider the Sum of Even-Mansour construction, called SoEM, that com-
bines the sum of permutations of Bellare et al. [7] with the Even-Mansour
cipher [32]. Let n ∈ N, and let π1, π2 ∈ Perm(n). One can consider a generic
construction SoEM: {0, 1}2n × {0, 1}n → {0, 1}n as

SoEM(K1,K2,M) = π1(M ⊕ K1) ⊕ K1 ⊕ π2(M ⊕ K2) ⊕ K2 . (4)

See also Fig. 3. We will consider the construction for three variants: SoEM1 for
the case where π1 and π2 are identical in Sect. 4.1, SoEM21 for the case where
π1, π2 are independent but K1 and K2 are identical (so the key space is n bits) in
Sect. 4.2, and SoEM22 for the case where π1, π2 are independent and K1,K2 are
independent in Sect. 4.3. Note that for SoEM21, we will have to make a slight
adjustment, because by simply putting K1 = K2 in above equation, the addition
of the keys at the end of the permutation calls will cancel out. We will detail
this in Sect. 4.2.

4.1 One Permutation

We show that SoEM1, where π1 = π2 (but no a priori restriction on K1,K2 is
imposed) cannot achieve security beyond the birthday bound.

Proposition 2. Let n ∈ N, and consider SoEM1: {0, 1}2n × {0, 1}n → {0, 1}n

based on permutation π
$←− Perm(n) and two keys K1,K2

$←− {0, 1}n. There exists
a distinguisher D making 4 · 2n/2 construction queries such that

Advprf
SoEM1(D) ≥ 1 − 1

2n
. (5)
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Fig. 3. Encryption of SoEM based on two keys K1 and K2, and with π1 and π2 two
public random permutations.

Proof. We will construct a distinguisher D distinguishing the real world oracle
(SoEM1π, π±) from the ideal world oracle (ϕ, π±) with significant probability.
The distinguisher D returns 1 if it guesses that it is interacting with the real
world oracle and returns 0 otherwise. D makes 4 · 2n/2 construction queries and
no primitive queries and operates as follows.

(i) For j = 1, . . . , 2n/2, query M (j) = 〈j〉n/2 ‖ 0n/2 to obtain C(j), and query
M∗(j) = M (j) ⊕ 0n−11 to obtain C∗(j);

(ii) For j′ = 1, . . . , 2n/2, query M (j′) = 0n/2 ‖ 〈j′〉n/2 to obtain C(j′). Define
(M∗(j′), C∗(j′)) as the tuple that satisfies M∗(j′) = M (j′) ⊕ 0n−11;

(iii) If there are two query indices j̄, j̄′ such that C(j̄) = C(j̄′) and C∗(j̄) = C∗(j̄′),
then output 1; otherwise, output 0.

The distinguisher’s advantage satisfies

Advprf
SoEM1(D) =

∣
∣
∣Pr

[

DSoEM1π
K1,K2

,π±
= 1

]

− Pr
[

Dϕ,π±
= 1

]∣
∣
∣ .

In the real world, there is exactly one (j̄, j̄′) such that M (j̄) ⊕ M (j̄′) = K1 ⊕ K2,
leading to C(j̄) = C(j̄′) in the real world. In addition, also M∗(j̄) ⊕ M∗(j̄′) =
K1 ⊕ K2, and C∗(j̄) = C∗(j̄′) as well. Thus, Pr

[

DSoEM1π
K1,K2

,π±
= 1

]

= 1.
For the ideal world, we have

Pr
[

Dϕ,π±
= 1

]

= Pr
[

∪j,j′ C(j) = C(j′) ∧ C∗(j) = C∗(j′)
]

≤ q2

22n
,

where q = 2n/2. ��

Note that the cost of step (i) in the attack can be reduced by only querying M∗(j)

for j = j̄, but this would complicate the simple description of the distinguisher.
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4.2 Two Permutations, One Key

Let n ∈ N. Let π1, π2 : {0, 1}n → {0, 1}n be two independent random permuta-
tions. We define SoEM construction based on π1, π2 and using a single key K as
follows:

SoEM21π1,π2(K,M) = π1(M ⊕ K) ⊕ π2(M ⊕ K) ⊕ K , (6)

and we show that SoEM21 cannot achieve beyond the birthday bound security.

Proposition 3. Let n ∈ N, and consider SoEM21: {0, 1}n × {0, 1}n → {0, 1}n

based on two permutations π1, π2
$←− Perm(n) and one key K

$←− {0, 1}n. There
exists a distinguisher D making 3 · 2n/2 construction queries, 3 · 2n/2 primitive
queries to π1, and 3 · 2n/2 primitive queries to π2 such that

Advprf
SoEM21(D) ≥ 1 − 1

2n
. (7)

Proof. We will construct a distinguisher D distinguishing the real world oracle
(SoEM21π1,π2

K , π±
1 , π±

2 ) from the ideal world oracle (ϕ, π±
1 , π±

2 ) with significant
probability. The distinguisher D returns 1 if it guesses that it is interacting with
the real world oracle and returns 0 otherwise. D makes 3 · 2n/2 construction
queries, 3 ·2n/2 primitive queries to π1, and 3 ·2n/2 primitive query to π2 in total
and operates as follows.

(i) For j = 1, . . . , 2n/2, query M (j) = 〈j〉n/2 ‖ 0n/2 to obtain C(j), query
M∗(j) = 〈j〉n/2 ‖ 0n/2−11 to obtain C∗(j), and query M∗∗(j) = 〈j〉n/2 ‖
0n/2−210 to obtain C∗∗(j);

(ii) For i = 1, . . . , 2n/2, query x(i) = 0n/2 ‖ 〈i〉n/2 to π1 and π2 to obtain y
(i)
1

and y
(i)
2 . Define (x∗(i), y∗(i)

1 ) and (x∗∗(i), y∗∗(i)
1 ) as the tuples that satisfy

x∗(i) = x(i) ⊕ 0n−11 and x∗∗(i) = x(i) ⊕ 0n−210, respectively, and similarly
for the queries to π2;

(iii) If there are two query indices j̄, ī such that C(j̄) ⊕ C∗(j̄) = y
(̄i)
1 ⊕ y

∗(̄i)
1 ⊕

y
(̄i)
2 ⊕ y

∗(̄i)
2 and C(j̄) ⊕ C∗∗(j̄) = y

(̄i)
1 ⊕ y

∗∗(̄i)
1 ⊕ y

(̄i)
2 ⊕ y

∗∗(̄i)
2 , then output 1;

otherwise, output 0.

The distinguisher’s advantage satisfies

Advprf
SoEM21(D) =

∣
∣
∣Pr

[

DSoEM21π1,π2 ,π±
1 ,π±

2 = 1
]

− Pr
[

Dϕ,π±
1 ,π±

2 = 1
]∣
∣
∣ .

In the real world, there is exactly one (j̄, ī) such that M (j̄) ⊕ x(̄i) = K, leading
to

C(j̄) = y
(̄i)
1 ⊕ y

(̄i)
2 ⊕ K .

In addition, also M∗(j̄) ⊕ x∗(̄i) = K and M∗∗(j̄) ⊕ x∗∗(̄i) = K, leading to

C∗(j̄) = y
∗(̄i)
1 ⊕ y

∗(̄i)
2 ⊕ K ,

C∗∗(j̄) = y
∗∗(̄i)
1 ⊕ y

∗∗(̄i)
2 ⊕ K .
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The equations imply that

Aj̄,̄i : C(j̄) ⊕ C∗(j̄) = y
(̄i)
1 ⊕ y

∗(̄i)
1 ⊕ y

(̄i)
2 ⊕ y

∗(̄i)
2 ,

Bj̄,̄i : C(j̄) ⊕ C∗∗(j̄) = y
(̄i)
1 ⊕ y

∗∗(̄i)
1 ⊕ y

(̄i)
2 ⊕ y

∗∗(̄i)
2 ,

and thus that Pr
[

DSoEM21π1,π2 ,π±
1 ,π±

2 = 1
]

= 1.
For the ideal world, we have

Pr
[

Dϕ,π±
1 ,π±

2 = 1
]

= Pr [∪j,i Aj,i ∧ Bj,i] ≤ qp

22n
,

where q = p = 2n/2. ��

4.3 Two Permutations, Two Keys

We prove that SoEM22 for independent π1, π2 and independent K1,K2 is secure
up to attack complexity 22n/3. We also demonstrate an attack matching this
bound.

Theorem 1. Let n ∈ N, and consider SoEM22: {0, 1}2n × {0, 1}n → {0, 1}n

based on two permutations π1, π2
$←− Perm(n) and two keys K1,K2

$←− {0, 1}n.
For any distinguisher D making at most q construction queries, at most p prim-
itive queries to π±

1 and p primitive queries to π±
2 , we have

Advprf
SoEM22(D) ≤ q(p + q)2

22n
+

3qp2

22n
. (8)

The proof is given in Sect. 6.3.

Proposition 4. Let n ∈ N, and consider SoEM22: {0, 1}2n ×{0, 1}n → {0, 1}n

based on two permutations π1, π2
$←− Perm(n) and two keys K1,K2

$←− {0, 1}n.
There exists a distinguisher D making 4 ·22n/3 construction queries, and 4 ·22n/3

primitive queries to π1 and 4 · 22n/3 primitive queries to π2 such that

Advprf
SoEM22(D) ≥ 1 − 1

e
− 1

2n
. (9)

Proof. We will construct a distinguisher D distinguishing the real world oracle
(SoEM22π1,π2

K1,K2
, π±

1 , π±
2 ) from the ideal world oracle (ϕ, π±

1 , π±
2 ) with significant

probability. The distinguisher D returns 1 if it guesses that it is interacting with
the real world oracle and returns 0 otherwise. D makes 4 · 22n/3 construction
queries, 4 · 22n/3 primitive queries to π1, and 4 · 22n/3 primitive query to π2

in total and operates as follows.

(i) For j = 1, . . . , 22n/3, query M (j) = 〈j〉2n/3 ‖ 0n/3 to obtain C(j), query
M∗(j) = 〈j〉2n/3 ‖ 0n/3−11 to obtain C∗(j), query M∗∗(j) = 〈j〉2n/3 ‖
0n/3−210 to obtain C∗∗(j), and query M∗∗∗(j) = 〈j〉2n/3 ‖ 0n/3−211 to
obtain C∗∗∗(j);
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(ii) For i = 1, . . . , 22n/3, query u(i) = 0n/3 ‖ 〈i〉2n/3 to π1 to obtain v(i). Define
(u∗(i), v∗(i)), (u∗∗(i), v∗∗(i)), and (u∗∗∗(i), v∗∗∗(i)) as the tuples that satisfy
u∗(i) = u(i) ⊕ 0n−11, u∗∗(i) = u(i) ⊕ 0n−210, and u∗∗∗(i) = u(i) ⊕ 0n−211,
respectively;

(iii) For i′ = 1, . . . , 22n/3, query x(i′) at random to obtain y(i′), query x∗(i′) =
x(i′) ⊕0n−11 to obtain y∗(i′), query x∗∗(i′) = x(ī′) ⊕0n−210 to obtain y∗∗(i′),
and query x∗∗∗(i′) = x(ī′) ⊕ 0n−211 to obtain y∗∗∗(i′);

(iv) If there are three query indices j̄, ī, ī′ such that C(j̄) ⊕C∗(j̄) = v(̄i) ⊕ v∗(̄i) ⊕
y(ī′)⊕y∗(ī′), C(j̄)⊕C∗∗(j̄) = v(̄i)⊕v∗∗(̄i)⊕y(ī′)⊕y∗∗(ī′) and C(j̄)⊕C∗∗∗(j̄) =
v(̄i) ⊕ v∗∗∗(̄i) ⊕ y(ī′) ⊕ y∗∗∗(ī′), then output 1; otherwise, output 0.

The distinguisher’s advantage satisfies

Advprf
SoEM22(D) =

∣
∣
∣Pr

[

DSoEM22π1,π2 ,π±
1 ,π±

2 = 1
]

− Pr
[

Dϕ,π±
1 ,π±

2 = 1
]∣
∣
∣ .

Put q = p = 22n/3. First consider the real world. Define IK1 = {(j, i) : M (j) ⊕
u(i) = K1}, and note that |IK1 | = 2n/3. We denote by Ej,i′ the event that
M (j) ⊕ x(i′) = K2, for fixed j, i′ where (j, ·) ∈ IK1 . For each j, i′, we have
Pr [Ej,i′ ] = 1/2n, and we obtain from the union bound:

Pr [∪j,i′ Ej,i′ ] ≤ 2n/3p

2n
. (10)

For the lower bound, we denote by Dj the event that a fixed j with (j, ·) ∈ IK1

satisfies M (j)⊕x(i′) 	= K2 for all i′. Note that the Dj ’s are mutually independent
for different j, and the probability of any Dj is

Pr[Dj ] =
2n − p

2n
= 1 − p

2n
.

The probability of M (j) ⊕ x(i′) 	= K2 for all j, i′ can now be computed as

1 − Pr [∪j,i′ Ej,i′ ] =
2n/3
∏

j=1

Pr[Dj ] =
2n/3
∏

j=1

(

1 − p

2n

)

.

As p/2n ≤ 1, we can use the inequality 1 − x ≤ e−x for each term of above
expression, and find an upper bound

2n/3
∏

j=1

e− p
2n = e− 2n/3p

2n .

Putting all this together we get the lower bound

Pr [∪j,i′ Ej,i′ ] ≥ 1 − e− 2n/3p
2n . (11)
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Note that if there exist (j̄, ī) ∈ IK1 and ī′ such that M (j̄) ⊕ x(ī′) = K2, we also
have that

C(j̄) ⊕ v(̄i) ⊕ y(ī′) = K1 ⊕ K2 . (12)

We in addition have that (M (j̄) ⊕ Δ) ⊕ (u(̄i) ⊕ Δ) = K1 and that (M (j̄) ⊕ Δ) ⊕
(x(ī′) ⊕ Δ) = K2 for any Δ ∈ {0, 1}n. Due to our definition of M∗∗(j̄), M∗∗∗(j̄),
u∗∗(j̄), u∗∗∗(j̄), x∗∗(j̄), and x∗∗∗(j̄),, we thus obtain that also

C∗(j̄) ⊕ v∗(̄i) ⊕ y∗(ī′) = K1 ⊕ K2 ,

C∗∗(j̄) ⊕ v∗∗(̄i) ⊕ y∗∗(ī′) = K1 ⊕ K2 ,

C∗∗∗(j̄) ⊕ v∗∗∗(̄i) ⊕ y∗∗∗(ī′) = K1 ⊕ K2 .

Combining these three equations with (12), we can conclude that under the
premise that (12) holds, the following three events

Aj̄,̄i,ī′ : C(j̄) ⊕ C∗(j̄) = v(̄i) ⊕ v
∗(̄i)
1 ⊕ y(ī′) ⊕ y∗(ī′) ,

Bj̄,̄i,ī′ : C(j̄) ⊕ C∗∗(j̄) = v(̄i) ⊕ v∗∗(̄i) ⊕ y(ī′) ⊕ y∗∗(ī′) ,

Cj̄,̄i,ī′ : C(j̄) ⊕ C∗∗∗(j̄) = v(̄i) ⊕ v∗∗∗(̄i) ⊕ y(ī′) ⊕ y∗∗∗(ī′) ,

are satisfied in the real world. Therefore, for the real world, we can conclude the
following:

Pr
[
DSoEM22π1,π2 ,π±

1 ,π±
2 = 1

]

= Pr [∪j,i′ Ej,i′ ] + Pr [∪j,i,i′ Aj,i,i′ ∧ Bj,i,i′ ∧ Cj,i,i′ | ∩j,i′ ¬Ej,i′ ] · Pr [∩j,i′ ¬Ej,i′ ] .

From (10) and (11), we obtain

Pr
[

DSoEM22π1,π2 ,π±
1 ,π±

2 = 1
]

≥ 1 − e− 2n/3p
2n +

qp2

23n

(

1 − 2n/3p

2n

)

= 1 − e− 2n/3p
2n ,

where p = 22n/3.
For the ideal world, we have

Pr
[

Dϕ,π±
1 ,π±

2 = 1
]

= Pr [∪j,i,i′ Aj,i,i′ ∧ Bj,i,i′ ∧ Cj,i,i′ ] ≤ qp2

23n
,

where q = p = 22n/3. ��

5 Sum of Key Alternating Ciphers

Inspired by the result on SoEM22, we consider a sequential evaluation, which
we call the Sum of Key Alternating Ciphers (SoKAC). It reminds of the EDMD
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construction of Mennink and Neves [50] instantiated with Even-Mansour, but
it is not quite the same. Let n ∈ N, and let π1, π2 ∈ Perm(n). We define the
generic construction SoKAC: {0, 1}2n × {0, 1}n → {0, 1}n as

SoKAC(K1,K2,M) = π2(π1(M ⊕ K1) ⊕ K2) ⊕ K1 ⊕ π1(M ⊕ K1) ⊕ K2 , (13)

See also Fig. 4. We will consider the construction for two variants: SoKAC1 for
the case where π1 = π2 are identical in Sect. 5.1, and SoKAC21 for the case where
π1, π2 are independent but K1 = K2 are identical (so the key space is n bits)
in Sect. 5.2. As before, for SoKAC21, we will have to make a slight adjustment,
because by simply putting K1 = K2 in above equation, the addition of the keys
at the end of the permutation calls will cancel out. We will detail this in Sect. 5.2.

Fig. 4. Encryption of SoKAC based on two keys K1 and K2, and with π1 and π2 two
public random permutations.

5.1 One Permutation

We show that SoKAC1, where π1 = π2 (but no a priori restriction on K1,K2 is
imposed), cannot achieve security beyond the birthday bound.

Proposition 5. Let n ∈ N, and consider SoKAC1 : {0, 1}2n ×{0, 1}n → {0, 1}n

based on permutation π
$←− Perm(n) and two keys K1,K2

$←− {0, 1}n. There exists
a distinguisher D making 3 · 2n/2 construction queries such that

Advprf
SoKAC1(D) ≥ 1 − 1

2n
. (14)

Proof. The attack is identical to that of SoEM1 of Proposition 2, and henceforth
omitted. ��

5.2 Two Permutations, One Key

Let n ∈ N. Let π1, π2 : {0, 1}n → {0, 1}n be two independent random permuta-
tions. We define SoKAC construction based on π1, π2 and using a single key K
as follows:

SoKAC21π1,π2(K,M) = π2(π1(M ⊕ K) ⊕ K) ⊕ π1(M ⊕ K) ⊕ K , (15)

and we show that SoKAC21 is secure up to attack complexity 22n/3. We also
demonstrate an attack matching this bound.
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Theorem 2. Let n ∈ N, and consider SoKAC21: {0, 1}n × {0, 1}n → {0, 1}n

based on two permutations π1, π2
$←− Perm(n) and one key K

$←− {0, 1}n. For
any distinguisher D making at most q construction queries, at most p primitive
queries to π±

1 and p primitive queries to π±
2 , we have

Advprf
SoKAC21(D) ≤ q(p + q)2

22n
+

2
2n

+
qp2

22n
+

2p2
√

qp

22n
+

3
√

nqp2

2n
+

4
√

qp2

2n
.

(16)

The proof is given in Sect. 6.4.

Proposition 6. Let n ∈ N, and consider SoKAC21: {0, 1}n ×{0, 1}n → {0, 1}n

based on two permutations π1, π2
$←− Perm(n) and one key K

$←− {0, 1}n. There
exists a distinguisher D making 4 ·22n/3 construction queries, and 4 ·22n/3 prim-
itive queries to π1 and 4 · 22n/3 primitive queries to π2 such that

Advprf
SoKAC21(D) ≥ 1 − 1

e
− 1

2n
. (17)

Proof. The attack is identical to that of SoEM22 of Proposition 4, and henceforth
omitted. ��

6 Security Proofs

The security proofs of SoEM22 and SoKAC21 are given in Sects. 6.3 and 6.4. The
proofs are performed using Patarin’s H-coefficient technique, which we will recap
in Sect. 6.1. The proof of SoKAC21 relies on the sum-capture lemma, which we
revisit in Sect. 6.2. The analysis for good transcripts resembles ideas of the first
iteration in Patarin’s mirror theory, but difficulties appear in the fact that the
distinguisher can make direct queries to the permutations π1 and π2.

6.1 Patarin’s H-Coefficient Technique

In this work, we use the H-coefficient technique by Patarin [54,56], but we will
follow the modernization of Chen and Steinberger [21].

Let π1, π2, . . . , πr
$←− Perm(n), and ϕ

$←− Func(n). Let K
$←− {0, 1}k, and

F : {0, 1}k × {0, 1}n → {0, 1}n be a pseudorandom function based on public
random permutations π1, π2, . . . , πr. We consider a deterministic distinguisher D
that has query access to either the real world oracle O = (Fπ1,...,πr

K , π±
1 , , . . . , π±

r )
or the ideal world oracle P = (ϕ, π±

1 , . . . , π±
r ). The distinguisher’s goal is to

distinguish both worlds and we denote by

Adv(D) =
∣
∣Pr

[

DO = 1
]

− Pr
[

DP = 1
]∣
∣

its advantage. We summarize all query-response tuples learned by D during its
interaction with its oracle O or P in a transcript τ . We denote by XO (resp.
XP) the probability distribution of transcripts when interacting with O (resp.
P). We call a transcript τ ∈ T attainable if Pr[XP = τ ] > 0, or in other words
if the transcript τ can be obtained from an interaction with P.
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Lemma 1 (H-coefficient Technique). Consider a deterministic distinguisher
D. Define a partition T = Tgood ∪ Tbad, where Tgood is the subset of T which
contains all the “good” transcripts and Tbad is the subset with all the “bad”
transcripts. Let 0 ≤ ε ≤ 1 be such that for all τ ∈ Tgood:

Pr(XO = τ)
Pr(XP = τ)

≥ 1 − ε . (18)

Then, we have Adv(D) ≤ ε + Pr[XP ∈ Tbad].

6.2 Sum-Capture Lemma

We use the sum-capture lemma [20,25,51], which is built upon the work of
Babai [2] and Steinberger [63]. Such results typically state that for a random
subset Z of {0, 1}n of size p, the quantity

μ(Z,A,B) = |{(z, a, b) ∈ Z × A × B : z = a ⊕ b}|

is at most around p · |A| · |B| /2n for any possible choice of A and B,
except with negligible probability. In our setting, Z will consist of query-
response tuples from a permutation, i.e., Z consists of values u(i) ⊕ v(i) where
{(u(1), v(1)), . . . , (u(p), v(p))} is a permutation transcript. We will appeal to the
sum-capture theorem by Chen et al. [20].

Lemma 2 (Sum-Capture Lemma). Let n, p ∈ N such that 9n ≤ p ≤ 2n−1.
Let π

$←− Perm(n), let {(u(1), v(1)), . . . , (u(p), v(p))} be p tuples of π, and let Z =
{(u(1) ⊕ v(1)), . . . , (u(p) ⊕ v(p))}. For any two subsets A,B ⊆ {0, 1}n, we have

Pr

[

μ(Z,A,B) ≥ p |A| |B|
2n

+
2p2

√

|A| |B|
2n

+ 3
√

np |A| |B|
]

≤ 2
2n

.

6.3 Proof of Theorem 1 on SoEM22

Let K = (K1,K2)
$←− {0, 1}2n, π1, π2

$←− Perm(n), and ϕ
$←− Func(n). Consider

any distinguisher D that has access to three oracles: (SoEM22π1,π2
K , π±

1 , π±
2 ) in

the real world or (ϕ, π±
1 , π±

2 ) in the ideal world. We assume D is computational
unbounded and deterministic. The distinguisher makes q construction queries
to O0 ∈ {SoEM22π1,π2

K , ϕ}, and these are summarized in a transcript of the
form τ0 = {(M (1), C(1)), . . . , (M (q), C(q))}. It also makes p primitive queries
to O1 = π±

1 and p primitive queries to O2 = π±
2 , and like before, these are

respectively summarized in transcripts τ1 = {(u(1), v(1)), . . . , (u(p), v(p))} and
τ2 = {(x(1), y(1)), . . . , (x(p), y(p))}. We assume that τ0, τ1, and τ2 do not contain
duplicate elements. After D’s interaction with the oracles, but before it outputs
its decision, we disclose the keys K1,K2 to the distinguisher. In real world, these
are the keys used in the construction. In the ideal world K1,K2 are dummy
keys that are drawn uniformly at random. The complete view is denoted τ =
(τ0, τ1, τ2,K1,K2).
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Bad Events. We say that τ ∈ Tbad if and only if there exists a construction
query (M (j), C(j)) ∈ τ0 and primitive queries (u(i), v(i)) ∈ τ1 and (x(i′), y(i′)) ∈
τ2 such that one of the following conditions holds:

bad1 : M (j) ⊕ u(i) = K1 ∧ M (j) ⊕ x(i′) = K2 , (19)

bad2 : M (j) ⊕ u(i) = K1 ∧ C(j) ⊕ v(i) ⊕ y(i′) = K1 ⊕ K2 , (20)

bad3 : M (j) ⊕ x(i′) = K2 ∧ C(j) ⊕ v(i) ⊕ y(i′) = K1 ⊕ K2 . (21)

Note that any attainable transcript τ for which τ /∈ Tbad, implies that τ is a
good transcript.

We give an informal explanation of the definition of the bad event. In the
real world, every construction query j induces exactly one evaluation (u(j), v(j))
of the underlying public permutation π1, and exactly one evaluation (x(j), y(j))
of the underlying public permutation π2. These two queries naturally satisfy

M (j) ⊕ u(j) = K1 ,

M (j) ⊕ x(j) = K2 ,

C(j) ⊕ v(j) ⊕ y(j) = K1 ⊕ K2 .

Clearly, u(j) and x(j) are fixed by M (j), K1, and K2, but there is “freedom” in the
value v(j) ⊕ y(j). If it happens to be that the distinguisher queried u(j), i.e., that
(u(j), v(j)) ∈ τ1, it consequently fixes the tuple (x(j), y(j)) for π2. However, in
the ideal world, there is no such dependency. This means that if the adversary
had queried u(j) = M (j) ⊕ K1 to π1 and x(j) = M (j) ⊕ K2 to π2, with high
probability the third equation would not hold. An identical reasoning applies for
the case where the distinguisher happened to have set any other two out of three
equations.

Pr[XP ∈ T bad]. We want to bound the probability that an ideal world tran-
script τ satisfies either of (19)–(21). Therefore, the probability that τ ∈ Tbad is
given by

Pr[τ ∈ Tbad] ≤ Pr[bad1] + Pr[bad2] + Pr[bad3] .

We consider the first bad event bad1. For any possible construction query
(M (j), C(j)) ∈ τ0, any possible π1 primitive query (u(i), v(i)), and any possi-
ble π2 primitive query (x(i′), y(i′)), the only randomness in the first equation is
K1 and the only randomness in the second equation is K2. This means that the
probabilities that each of the equation holds in bad1 are independent of each
other. By the fact that the keys K = (K1,K2)

$←− {0, 1}2n are dummy keys gen-
erated independently of τ0, τ1 and τ2, the probability that bad1 holds for fixed
j, i, i′ is 1/22n. Summed over all q possible construction queries, p possible π1

primitive queries, and p possible π2 primitive queries, we have

Pr[bad1] ≤ qp2

22n
.
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For the second bad event bad2, note that we can replace K1 in the second
equation by M (j) ⊕ u(i). Hereby, the only randomness in the first equation is
K1 and the only randomness in the second equation is K2. The probabilities
that each of the equation holds in bad2 are independent of each other. Again,
summing over all the construction and the primitive queries, we have

Pr[bad2] ≤ qp2

22n
.

The same reasoning applies for bad3. Summing the three probabilities, we get

Pr[τ ∈ Tbad] ≤ 3qp2

22n
. (22)

Pr[XO = τ ]/Pr[XP = τ ]. Consider an attainable transcript τ ∈ Tgood. To
compute Pr[XO = τ ] and Pr[XP = τ ], it suffices to compute the probability of
oracles that could result in view τ . Denote by allO the set of all oracles in the
real world, and by compO(τ) the fraction of them compatible with τ , we see that
Pr[XO = τ ] = |compO(τ)| / |allO|. Similarly we have allP and compP(τ) for the
ideal world. We obtain

Pr[XO = τ ]
Pr[XP = τ ]

=
|compO(τ)| · |allP |
|allO| · |compP(τ)| . (23)

For the real world O, we have |allO| = 22n · (2n!)2, which is equal to the
number of possible keys K = (K1,K2) times the number of possible public
random permutations π1 and π2. Similarly, for the ideal world P, we have
|allP | = 22n · 2n2n

(2n!)2. The first term corresponds to the number of ran-
domly drawn keys, the second term is the number of possible random functions
ϕ ∈ Func(n), and the last term the number of possible public random permuta-
tions π1 and π2. For the computation of the number of oracles compatible with τ
in the ideal world, we see that there are 2n(2n−q) random functions ϕ ∈ Func(n)
compliant with τ0, (2n − p)! public random permutations π1 compliant with τ1,
and (2n − p)! public random permutations π2 compliant with τ2. We find

|compP(τ)| = 2n(2n−q) · (2n − p)!2 .

From (23), we have

Pr[XO = τ ]
Pr[XP = τ ]

=
|compO(τ)| · 22n2n2n

(2n!)2

22n(2n!)2 · (2n(2n−q))(2n − p)!2
=

|compO(τ)| · 2nq

(2n − p)!2
. (24)

What remains is the computation of the number of oracles compatible with τ in
the real world. As defined by the bad events, a transcript τ is bad if we get both
the same input or output to π1, and the same input or output to π2. This means
that for any τ ∈ Tgood, a construction query collides with at most one query in
τ1 ∪ τ2. We conclude this fact in the following claim:

Claim. For τ ∈ Tgood, any construction query (M (j), C(j)) ∈ τ0 collides with
at most one primitive query (u(i), v(i)) ∈ τ1 and at most one primitive query
(x(i′), y(i′)) ∈ τ2, but never with both a τ1 and τ2 query.
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We will use this claim to re-group the transcripts τ0, τ1, and τ2 into three new
transcripts τnew

0 , τnew
1 , and τnew

2 . We initially define τnew
0 = τ0, τnew

1 = τ1 and
τnew
2 = τ2. The trick will be to consider each individual construction query

(M (j), C(j)), and to operate as follows:

– if M (j) ⊕ K1 = u(i) for some i, then remove (M (j), C(j)) from τnew
0 , and add

(x, y) = (M (j) ⊕ K2, C
(j) ⊕ v(i) ⊕ K1 ⊕ K2) to τnew

2 ;
– if M (j) ⊕K2 = x(i′) for some i′, then remove (M (j), C(j)) from τnew

0 , and add
(u, v) = (M (j) ⊕ K1, C

(j) ⊕ y(i′) ⊕ K1 ⊕ K2) to τnew
1 .

Note that any good transcript will have to meet ¬bad1 ∧ ¬bad2 ∧ ¬bad3. We
know that if a construction query (M (j), C(j)) collides with (u(i), v(i)) ∈ τ1, then
M (j)⊕K2 cannot be a valid x(i′) value because of ¬bad1, and C(j)⊕v(i)⊕K1⊕K2

cannot be a valid y(i′) value because of ¬bad2, for any (x(i′), y(i′)) ∈ τ2. Similarly
for τnew

1 . This way, we will end up with soundly defined τnew
1 and τnew

2 for π1 and
π2, and a set of construction queries τnew

0 that does not collide with any tuple in
τnew
1 or τnew

2 . Let s2, s1 ≤ p be the number of construction queries that collides
with (u(i), v(i)) ∈ τ1 resp. (x(i′), y(i′)) ∈ τ2. The number of elements in the new
transcripts τnew

1 and τnew
2 are equal to p + s2 resp. p + s1, and the number of

construction queries that remains in τnew
0 is equal to q′ = q − s1 − s2.

The two sets of transcripts, τnew
1 and τnew

2 , define exactly p+s2 input-output
tuples for π1 and exactly p + s1 input-output tuples for π2. What remains is the
counting of the number of permutations π1, π2 that satisfy these p + s2 resp.
p + s1 tuples, and that could give the remaining transcript τnew

0 .
For a given transcript τnew

0 of q′ elements, our goal is to count the number
of n-bit permutations π1 : D1 → R1 with |D1| = |R1| = 2n − p − s2, and the
number of n-bit permutations π2 : D2 → R2 with |D2| = |R2| = 2n − p − s1. We
define Vout = {0, 1}n\R1 as the set of range values of π1 that are not permitted
(basically these are the v values from τnew

1 , τnew
2 ) and similarly for Yout.

For α = 0, . . . , q′ − 1, define λα+1 as the number of solutions

{v(1), . . . , v(α+1); y(1), . . . , y(α+1)}

that satisfy:

(1) {v(1), . . . , v(α); y(1), . . . , y(α)} satisfy λα;
(2) v(α+1) ⊕ y(α+1) = C(α+1) ⊕ K1 ⊕ K2;
(3) v(α+1) /∈ {v(1), . . . , v(α)} ∪ Vout;
(4) y(α+1) /∈ {y(1), . . . , y(α)} ∪ Yout.

Our goal is to derive a recursive formula for λα+1 that depends on λα, such that
a lower bound can be found for the expression λα+1/λα. Note that, by definition,

|compO(τ)| = λq′(2n − p − s2 − q′)!(2n − p − s1 − q′)! . (25)

Processing from (24), we obtain

Pr[XO = τ ]
Pr[XP = τ ]

=
λq′(2n − p − s2 − q′)!(2n − p − s1 − q′)! · 2nq

(2n − p)!2
. (26)
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We will derive a lower bound for λα+1/λα. Define by B(1,2) the set of solutions
that only comply with (1) and (2), with no side condition from (3) and (4).
Define by B(3:i) the set of solutions that comply with (1) and (2) of above,
and satisfy ¬(3 : i) for i = 1, . . . , α + |Vout|. It means that any solution in this
case satisfies (1) and (2), and v(α+1) ∈ {v(1), . . . , v(α)} ∪ Vout (nothing is said
about y(α+1) except for property (2)). Similarly for B(4 : i). By the principle of
inclusion-exclusion, we obtain

λα+1 =
∣∣B(1,2)

∣∣ −
∣∣∣∣∣∣

α+|Vout|⋃
i=1

B(3:i) ∪
α+|Yout|⋃

i=1

B(4:i′)

∣∣∣∣∣∣

≥ ∣∣B(1,2)

∣∣ −
α+|Vout|∑

i=1

∣∣B(3:i)

∣∣ −
α+|Yout|∑

i=1

∣∣B(4:i)

∣∣ +

α+|Yout|∑
i′=1

α+|Vout|∑
i=1

∣∣B(3:i) ∩ B(4:i′)
∣∣

≥ 2n · λα −
α+|Vout|∑

i=1

λα −
α+|Yout|∑

i=1

λα +

α+|Yout|∑
i′=1

α+|Vout|∑
i=1

∣∣B(3:i) ∩ B(4:i′)
∣∣ .

By the fact that

α+|Yout|∑

i′=1

α+|Vout|∑

i=1

∣
∣B(3:i) ∩ B(4:i′)

∣
∣ ≥ 0 ,

we get

λα+1 ≥ 2nλα − (α + p + s2)λα − (α + p + s1)λα .

Thus, we have obtained

λα+1

λα
≥ 2n − 2α − 2p − s1 − s2 , (27)

with λ0 = 1.
Processing from (26), we obtain

(26) =
s1−1∏

i=1

2n

(2n − p − i)
·

s2−1∏

i=1

2n

(2n − p − i)

·
q′−1
∏

i=0

λi+1

λi
· 2n

(2n − p − s2 − i)(2n − p − s1 − i)
. (28)
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Using that p, s1, s2 ≤ 2n, and combining (27) with (28), we obtain

(28) ≥
q′−1
∏

i=0

λi+1

λi
· 2n

(2n − p − s2 − i)(2n − p − s1 − i)

≥
q′−1
∏

i=0

(2n − 2i − 2p − s1 − s2)2n

(2n − p − s2 − i)(2n − p − s1 − i)

=
q′−1
∏

i=0

(

1 − (p + s2 + p)(p + s1 + p)
(2n − p − s2 − p)(2n − p − s1 − p)

)

≥
q′−1
∏

i=0

(

1 − (p + s2 + q′)(p + s1 + q′)
(2n − p − s2 − q′)(2n − p − s1 − q′)

)

≥
q′−1
∏

i=0

(

1 − (p + s2 + q′)(p + s1 + q′)
22n

)

=
(

1 − (p + s2 + q′)(p + s1 + q′)
22n

)q′

≥ 1 − q′(p + s2 + q′)(p + s1 + q′)
22n

≥ 1 − q(p + q)2

22n
. (29)

where we use that (1 − x)y ≥ 1 − xy and q′ + s1 + s2 = q. We conclude from
(28) and (29) that

Pr[XO = τ ]
Pr[XP = τ ]

≥ 1 − q(p + q)2

22n
=: 1 − ε .

Conclusion. Using Patarin’s H-Coefficient technique (Lemma 1), we obtain

Advprf
SoEM22(D) ≤ q(p + q)2

22n
+

3qp2

22n
.

6.4 Proof of Theorem 2 on SoKAC21

The proof is similar to the one of Theorem 1 (Sect. 6.3). Let K
$←− {0, 1}n,

π1, π2
$←− Perm(n), and ϕ

$←− Func(n). Consider any distinguisher D that
has access to three oracles: (SoKAC21π1,π2

K , π±
1 , π±

2 ) in the real world or
(ϕ, π±

1 , π±
2 ) in the ideal world. We assume D is computational unbounded

and deterministic. The distinguisher makes q construction queries to O0 ∈
{SoKAC21π1,π2

K , ϕ}, and these are summarized in a transcript of the form
τ0 = {(M (1), C(1)), . . . , (M (q), C(q))}. It also makes p primitive queries to
O1 = π±

1 and p primitive queries to O2 = π±
2 , and like before, these are

respectively summarized in transcripts τ1 = {(u(1), v(1)), . . . , (u(p), v(p))} and
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τ2 = {(x(1), y(1)), . . . , (x(p), y(p))}. We assume that τ0, τ1, and τ2 do not contain
duplicate elements. After D’s interaction with the oracles, but before it outputs
its decision, we disclose the key K to the distinguisher. In real world, this is the
key used in the construction. In the ideal world K is a dummy key that is drawn
uniformly at random. The complete view is denoted τ = (τ0, τ1, τ2,K).

Bad Events. We say that τ ∈ Tbad if and only if there exists a construction
query (M (j), C(j)) ∈ τ0 and primitive queries (u(i), v(i)) ∈ τ1 and (x(i′), y(i′)) ∈
τ2 such that one of the following conditions holds:

bad1 : K = M (j) ⊕ u(i) = v(i) ⊕ x(i′) , (30)

bad2 : K = M (j) ⊕ u(i) = C(j) ⊕ v(i) ⊕ y(i′) , (31)

bad3 : K = v(i) ⊕ x(i′) = C(j) ⊕ v(i) ⊕ y(i′) . (32)

Note that any attainable transcript τ for which τ /∈ Tbad, implies that τ is a
good transcript.

The bad events (30–32) match those of SoEM22, (19–21), with the difference
that one single key K is used instead of two different keys K1,K2. Indeed,
in SoKAC21π1,π2

K , every construction query j induces exactly one evaluation
(u(j), v(j)) of the underlying public permutation π1, and exactly one evaluation
(x(j), y(j)) of the underlying public permutation π2, and these two queries satisfy

M (j) ⊕ u(j) = K ,

v(j) ⊕ x(j) = K ,

C(j) ⊕ v(j) ⊕ y(j) = K .

As before, (M (j), C(j)) and K fix the value u(j), but there is “freedom” in the val-
ues v(j)⊕x(j) and v(j)⊕y(j). As before, if it happens to be that the distinguisher
queried u(j), this would fix the tuple (x(j), y(j)) for π2. If the distinguisher also
happened to have queried this one, in the real world it would match but in the
ideal world it would mismatch with high probability.

Pr[XP ∈ T bad]. We want to bound the probability that an ideal world tran-
script τ satisfies either of (30)–(32). Therefore, the probability that τ ∈ Tbad is
given by

Pr[τ ∈ Tbad] ≤ Pr[bad1] + Pr[bad2] + Pr[bad3] .

We denote

Ω1 =
∣
∣
∣

{

(j, i, i′)
∣
∣
∣ u(i) ⊕ v(i) = M (j) ⊕ x(i′)

}∣
∣
∣ ,

Ω2 =
∣
∣
∣

{

(j, i, i′)
∣
∣
∣ M (j) ⊕ C(j) = u(i) ⊕ v(i) ⊕ y(i′)

}∣
∣
∣ ,

Ω3 =
∣
∣
∣

{

(j, i, i′)
∣
∣
∣ C(j) = x(i′) ⊕ y(i′)

}∣
∣
∣ .

Clearly, as K
$←− {0, 1}n, for any i ∈ {1, 2, 3} and Ai ∈ N, we have

Pr[badi] ≤ Pr[Ωi ≥ Ai] +
Ai

2n
.
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For i = 1, we will use the sum-capture lemma of Sect. 6.2. Define

Z = {u(i) ⊕ v(i) : (u(i), v(i)) ∈ τ1} ,

A = {M (j) : (M (j), C(j)) ∈ τ0} ,

B = {x(i′) : (x(i′), y(i′)) ∈ τ2} .

Then, by Lemma 2 with Ω1 = μ(Z,A,B),

Pr
[

μ(Z,A,B) ≥ qp2

2n
+

2p2
√

qp

2n
+ 3

√

nqp2
]

≤ 2
2n

.

We thus set A1 = qp2

2n + 2p2√
qp

2n + 3
√

nqp2 and obtain

Pr[bad1] ≤ 2
2n

+
qp2

22n
+

2p2
√

qp

22n
+

3
√

nqp2

2n
.

For i = 2, the equation in Ω2 involves two random values (C(j) and u(i) ⊕ v(i)),
and we resort to a simple Markov bound:

Pr[Ω2 ≥ A2] ≤ qp2

2nA2
,

and obtain by setting A2 =
√

qp2:

Pr[bad2] ≤ 2
√

qp2

2n
.

For i = 3, Ω3 ≥ A3 means that

Ω′
3 =

∣
∣
∣

{

(j, i′)
∣
∣
∣ C(j) = x(i′) ⊕ y(i′)

}∣
∣
∣ ≥ A3/p .

By a simple Markov bound,

Pr[Ω′
3 ≥ A3/p] ≤ qp2

2nA3
,

and we obtain by setting A3 =
√

qp2:

Pr[bad3] ≤ 2
√

qp2

2n
.

Summing the three probabilities, we get

Pr[τ ∈ Tbad] ≤ 2
2n

+
qp2

22n
+

2p2
√

qp

22n
+

3
√

nqp2

2n
+

4
√

qp2

2n
. (33)

Pr[XO = τ ]/Pr[XP = τ ]. The analysis of good transcripts of Theorem 1
(Sect. 6.3) carries over verbatim with the difference that we generate the tran-
scripts τnew

0 , τnew
1 and τnew

2 in the following way. Consider each individual
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construction query (M (j), C(j)), if M (j) ⊕ K = u(i) for some i, then remove
(M (j), C(j)) from τnew

0 and add (x, y) = (v(i) ⊕ K,C(j) ⊕ v(i) ⊕ K) to τnew
2 . We

know that if a construction query (M (j), C(j)) collides with (u(i), v(i)) ∈ τ1, then
v(i)⊕K cannot be a valid x(i′) value because of ¬bad1, and C(j)⊕v(i)⊕K cannot
be a valid y(i′) value because of ¬bad2, for any (x(i′), y(i′)) ∈ τ2. Similarly for
τnew
1 .

Conclusion. Using Patarin’s H-Coefficient technique (Lemma 1), we obtain

Advprf
SoKAC21(D) ≤ q(p + q)2

22n
+

2
2n

+
qp2

22n
+

2p2
√

qp

22n
+

3
√

nqp2

2n
+

4
√

qp2

2n
.
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Abstract. The Modular Inversion Hidden Number Problem (MIHNP),
introduced by Boneh, Halevi and Howgrave-Graham in Asiacrypt 2001,
is briefly described as follows: Let MSBδ(z) refer to the δ most significant
bits of z. Given many samples

(
ti, MSBδ((α + ti)

−1 mod p)
)

for random
ti ∈ Zp, the goal is to recover the hidden number α ∈ Zp. MIHNP is an
important class of Hidden Number Problem.

In this paper, we revisit the Coppersmith technique for solving a class
of modular polynomial equations, which is respectively derived from the
recovering problem of the hidden number α in MIHNP. For any pos-
itive integer constant d, let integer n = d3+o(1). Given a sufficiently
large modulus p, n + 1 samples of MIHNP, we present a heuristic algo-
rithm to recover the hidden number α with a probability close to 1 when
δ/ log2 p > 1

d +1
+ o( 1

d
). The overall time complexity of attack is polyno-

mial in log2 p, where the complexity of the LLL algorithm grows as dO(d)

and the complexity of the Gröbner basis computation grows as (2d)O(n2).
When d > 2, this asymptotic bound outperforms δ/ log2 p > 1

3
which is

the asymptotic bound proposed by Boneh, Halevi and Howgrave-Graham
in Asiacrypt 2001. It is the first time that a better bound for solving
MIHNP is given, which implies that the conjecture that MIHNP is hard
whenever δ/ log2 p < 1

3
is broken. Moreover, we also get the best result

for attacking the Inversive Congruential Generator (ICG) up to now.
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1 Introduction

1.1 Background

In cryptography research, one focuses on whether a mathematical problem is
computationally hard, as the hard mathematical problem is the foundation of
constructing cryptographic secure schemes. In [4], Boneh, Halevi and Howgrave-
Graham introduced an algebraic complexity assumption called the Modular
Inversion Hidden Number Problem (MIHNP) in order to design a pseudorandom
number generator and message authentication code.

Definition 1 (Modular Inversion Hidden Number Problem(MIHNP)).
For a given prime p, consider a secret α ∈ Zp and n + 1 elements t0, t1, . . . , tn
∈ Zp\{−α}, chosen independently and uniformly at random. Given n+1 samples

{ (
ti,MSBδ((α + ti)−1 mod p)

) }n

i=0

where MSBδ(z) refers to the δ most significant bits of z, the goal is to recover
the hidden number α.

MIHNP is closely related to Hidden Number Problem (HNP), which was
introduced in [5] by Boneh and Venkatesan to prove the bit security of the
Diffie-Hellman key-exchange in Zp. Shparlinski [28] revealed that the primary
motivation of studying MIHNP is to expect the bit security result of the Elliptic
Curve Diffie-Hellman key-exchange. In PKC 2017, Shani [27] used ideas [4,20]
of solving MIHNP to get the first rigorous result about the bit security of the
Elliptic Curve Diffie-Hellman key-exchange.

1.2 Cryptanalysis

In Asiacrypt 2001, Boneh, Halevi and Howgrave-Graham gave two heuristic lat-
tice methods to solve MIHNP [4]. Let δ denote the given number of most sig-
nificant bits of (α + ti)−1 mod p’s. The first method works if δ > 2

3 log2 p. The
second method solves MIHNP if δ > 1

3 log2 p, i.e., the knowledge of significantly
fewer bits is needed. Moreover, Boneh, Halevi and Howgrave-Graham [4] conjec-
tured that MIHNP is hard whenever δ < 1

3 log2 p. In 2012, Ling et al. presented
a rigorous polynomial time algorithm for solving MIHNP [20]. The obtained
asymptotic result is δ > 2

3 log2 p, which is the same as that of the first method
in [4]. In 2014, Xu et al. [34] gave a heuristic lattice approach based on the Cop-
persmith technique, which has certain advantages when the number of samples
is sufficiently small. However, the corresponding asymptotic result is δ > 1

2 log2 p
which is still weaker than the second method in [4]. On the other hand, recently
Xu et al. [35] obtained the explicit lattice construction of the second method in
[4] and achieved the same asymptotic result δ > 1

3 log2 p.
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1.3 Our Contribution

We revisit the Coppersmith technique to solve the following system of multivari-
ate modular polynomial equations

f0j(x0, xj) := a0j + b0jx0 + c0jxj + x0xj = 0 (mod p) for 1 ≤ j ≤ n,

which is obtained from the recovering problem of the hidden number in MIHNP
[35]. In the polynomial selection strategy for the Coppersmith lattice, we use the
idea on helpful polynomials in [21,29] (see Sect. 2.2). The diagonals of helpful poly-
nomials in the basis matrix are smaller than the involved modulo. This criterion
enables helpful polynomials to facilitate the solution of modular equations. There-
fore, we should try our best to add helpful polynomials into the involved lattice.

Based on the lattice construction of [4,35], we find that new linearly inde-
pendent polynomials can still be added into the lattice by making full use of the
linear combination of multiplies of several f0j(x0, xj) with common monomials.
These newly added polynomials are helpful because their diagonal elements are
smaller than modulo. Because the number of newly added helpful polynomials
dominates the number of all the selected polynomials, it makes the Coppersmith
technique search the desired small roots much efficiently.

In this paper, we obtain the following results. For any positive integer
constant d, let integer n = d3+o(1). For a given sufficiently large modulus
p = 2ω(d3d+2), and n + 1 given samples of MIHNP, we present a heuristic
algorithm to recover the hidden number α with a probability close to 1 when
δ/ log2 p > 1

d+1 + o( 1d ). The overall time complexity of attack is polynomial in
log2 p, where the complexity of the LLL algorithm grows as dO(d) and the com-
plexity of the Gröbner basis computation grows as (2d)O(n2). When d = 2, our
asymptotic result of δ/log2 p is equal to 1

3 , which is same as the previous best
result [4,35]. When d > 2, the corresponding asymptotic bound is 1

d+1 < 1
3 .

This implies that our result is beyond the bound given by the second method in
[4]. Hence, we disprove the conjecture proposed by Boneh, Halevi and Howgrave-
Graham in [4]. This attack also applies to ICG, as in prior work [35].

In Table 1, we compare new bound of δ/log2 p and the corresponding time com-
plexity with the existing works (see AppendixA and Remark 4). Our results show
that new bound of δ/log2 p is equal to 0 in the asymptotic sense. This is to say that
MIHNPcanbe heuristically solved in polynomial timewhen δ is a constant fraction
of log2 p. However, for the practical solutions, it requires a huge lattice dimension

O
(

( log2 p
δ )O(

log2 p
δ )

)
in order to ensure that δ/ log2 p is close to 0.

1.4 Organization of the Paper

The rest of this paper is organized as follows. In Sect. 2, we recall some terminolo-
gies and preliminaries. In Sect. 3, we present a strategy for solving modular poly-
nomial equations and give the result for attacking MIHNP. Section 4 presents the
proof of triangle basis matrix. Section 5 gives the experimental result. Section 6
concludes the paper. In Appendices, we respectively give asymptotic time com-
plexities in previous works, the computation of lattice determinant and the anal-
ysis of bound of the desired small root.
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2 Preliminaries

2.1 Lattices

Let vectors b1, . . . ,bw be linearly independent in R
n. The set

L =
{ w∑

i=1

kibi, ki ∈ Z
}

is called a lattice with basis vectors b1, · · · ,bw. In this paper, the basis vectors
involved are row vectors. The dimension and determinant of L are respectively
dim(L) = w,det(L) =

√
det(BBT ), where B = [bT

1 , · · · ,bT
w]T is a basis matrix.

If B is a square matrix, then det(L) = |det(B)|.
In 1982, Lenstra, Lenstra and Lovász presented a deterministic polynomial-

time algorithm [19] in order to find a reduced basis of the lattice.

Lemma 1 ([19]). Let L be a lattice. Within polynomial time, the LLL algorithm
outputs reduced basis vectors v1, . . . ,vw that satisfy

‖v1‖ ≤ ‖v2‖ ≤ · · · ≤ ‖vi‖ ≤ 2
w(w − 1)

4(w +1 − i) det(L)
1

w +1 − i , 1 ≤ i ≤ w.

2.2 The Coppersmith Technique

In 1996, Coppersmith proposed lattice-based techniques [7–9] for finding the
small solution of univariate modular polynomials and bivariate integer polyno-
mials. In 2006, May et al. presented heuristic strategies for solving multivariate
polynomials [15]. The Coppersmith technique has been widely used in the field
of cryptanalysis such as attacking RSA and its variants (see the survey [21]
and recent results such as [16,25,30,31]) and analyzing pseudorandom num-
ber generators as well as computationally hard mathematical problems such as
[1,2,6,11,12,14,32,35].

We explain briefly how one can utilize the idea of the Coppersmith technique
to solve multivariate modular polynomials.

Definition of the Problem. Let f1(x0, x1, · · · , xn), · · · , fm(x0, x1, · · · , xn) be
m irreducible multivariate polynomials defined over Z, which have a common
root (x̃0, x̃1, · · · , x̃n) modulo a known integer p such that |x̃0| < X0, · · · , |x̃n| <
Xn. The question is to recover the desired root (x̃0, x̃1, · · · , x̃n) in polynomial
time. The analysis needs to establish bounds Xi’s to ensure recovery.

Step 1: Collection of Polynomials. One generates a collection of poly-
nomials g1(x0, x1, · · · , xn), · · · , gw(x0, x1, · · · , xn) such that (x̃0, x̃1, · · · , x̃n)
is a common modular root. For example, gi’s can be constructed as follows:
gi(x0, x1, . . . , xn) = pd−(βi

1+···+βi
m)x

αi
0

0 x
αi

1
1 · · · xαi

n
n f

βi
1

1 · · · fβi
m

m for i = 1, · · · , w,
where d ∈ Z

+, αi
0, α

i
1, · · · , αi

n, βi
1, · · · , βi

m are nonnegative integers and 0 ≤
βi
1 + · · · + βi

m ≤ d. It is easy to see that gi(x̃0, x̃1, · · · , x̃n) ≡ 0 mod pd for every
i ∈ [1, · · · , w].
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Step 2: Construction of Lattice. Let bi be the coefficient vector of the
polynomial gi(x0X0, x1X1, . . . , xnXn) for all 1 ≤ i ≤ w. Then one generates the

lattice L =
{ w∑

i=1

kibi, ki ∈ Z
}
.

Step 3: Generation of Reduced Basis. One runs a lattice reduction algo-
rithm, such as LLL algorithm, to obtain the n + 1 reduced basis vectors
v1, . . . ,vn+1 such that the corresponding polynomials h1(x0, x1, · · · , xn), · · · ,
hn+1(x0, x1, · · · , xn) have the desired common root (x̃0, x̃1, · · · , x̃n) over Z,
where vi is the coefficient vector of the polynomial hi(x0X0, x1X1, . . . , xnXn)
for i = 1, · · · , n + 1. Note that hi(x0, x1, . . . , xn) is a linear combination of
g1(x0, x1, . . . , xn), · · · , gw(x0, x1, . . . , xn). Hence, we have hi(x̃0, x̃1, · · · , x̃n) = 0
(mod pd) for every i ∈ [1, · · · , n + 1]. In order to obtain hi(x̃0, x̃1, · · · , x̃n) = 0
for all 1 ≤ i ≤ n, we need the following lemma in this process.

Lemma 2 ([13]). Let h(x0, x1, . . . , xn) be an integer polynomial that consists of
at most w monomials. Let d be a positive integer and the integers Xi be the upper
bound of |x̃i| for i = 0, 1, · · · , n. Let ‖h(x0X0, x1X1, . . . , xnXn)‖ be the Euclidean
norm of the coefficient vector of the polynomial h(x0X0, x1X1, . . . , xnXn) with
variables x0, x1, . . . , xn. Suppose that

1. h(x̃0, x̃1, · · · , x̃n) = 0 (mod pd),
2. ‖h(x0X0, x1X1, . . . , xnXn)‖ < pd

√
w

,

then h(x̃0, x̃1, · · · , x̃n) = 0 holds over Z.

To get the above n + 1 polynomials h1(x0, x1, · · · , xn), · · · hn+1(x0,
x1, · · · , xn), from Lemmas 1 and 2, one needs the Euclidean lengths of the n + 1
reduced basis vectors v1, . . . ,vn+1 satisfy the condition

2
w(w − 1)
4(w − n) · (

det(L)
) 1

w − n <
pd

√
w

, (1)

where w = dim(L).
Based on Condition (1), one can determine the bounds Xi for i =

0, · · · , n. In order to make the bounds Xi as large as possible, the polynomi-
als g1(x0, x1, · · · , xn), · · · , gw(x0, x1, · · · , xn) in Step 1 need to be constructed
carefully. It is a difficult step in the Coppersmith technique.

The strategy of choosing polynomials for our lattice construction is based on
the idea of helpful polynomials [21,29]. Neglecting low-order terms in (1), we can
rewrite condition (1) and obtain the simplified condition as follows:

(det(L))
1
w < pd.

For a triangular basis matrix, the left side of this simplified condition is regarded
as the geometric mean of all diagonals of the basis matrix. The polynomials
whose diagonals are less than pd are called helpful polynomials. For a polyno-
mial, for example, h(x0, · · · , xn), the diagonal of h(x0, · · · , xn) means the lead-
ing coefficient of h(x0X0, · · · , xnXn). A helpful polynomial contributes to the
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determinant with a factor less than pd. The more helpful polynomials are added
to the lattice, the better the condition for solving modular equations becomes.
This means that the Coppersmith technique of finding the wanted small root
becomes more and more effective, and the above bounds Xi become larger and
larger. Therefore, we should choose as many helpful polynomials as possible. In
this paper, our method can significantly improve previous results because the
number of helpful polynomials dominates the number of all selected polynomials.

Step 4: Recovering the Desired Root. We have no assurance that the n+1
obtained polynomials h1, · · · , hn+1 are algebraically independent. Under the fol-
lowing heuristic assumption that the n+1 polynomials define an algebraic variety
of dimension zero, the corresponding equations can be solved using elimination
techniques such as the Gröbner basis computation, and then the desired root
(x̃0, x̃1, · · · , x̃n) is recovered. In this paper, we justify the validity of our heuris-
tic attack by computer experiments.

Assumption 1. Let h1, · · · , hn+1 ∈ Z[x0, x1, · · · , xn] be the polynomials that
are found by the Coppersmith technique. Then the ideal generated by the polyno-
mial equations h1(x0, x1, · · · , xn) = 0, · · · , hn+1(x0, x1, · · · , xn) = 0 has dimen-
sion zero.

2.3 A Class of Modular Polynomial Equations

In this subsection, we translate the problem of recovering the hidden number in
MIHNP into solving modular polynomial equations with small root.

For a given prime p, consider a hidden number α ∈ Zp and n + 1 elements
t0, t1, . . . , tn ∈ Zp \ {−α}, chosen independently and uniformly at random. The
goal is to recover α, given n + 1 samples

(
ti,MSBδ((α + ti)−1 mod p)

)
.

Denote ui = MSBδ

(
(α + ti)−1 mod p)

)
and x̃i =

(
(α + ti)−1 mod p

) − ui,
where unknown x̃i satisfies 0 ≤ x̃i ≤ p

2δ for all 0 ≤ i ≤ n. Hence, we obtain
(α+ti)(ui+x̃i) = 1 mod p, eliminate α from these equations and get the following
relations

a0i + b0ix̃0 + c0ix̃i + x̃0x̃i = 0 mod p, 1 ≤ i ≤ n, (2)

where
a0i = u0ui + (u0 − ui)(t0 − ti)−1 mod p,
b0i = ui + (t0 − ti)−1 mod p,
c0i = u0 − (t0 − ti)−1 mod p.

(3)

If the corresponding x̃0, x̃1, · · · , x̃n are found out, then the hidden number α can
be recovered. Hence, our goal is to find the desired root (x̃0, x̃1, · · · , x̃n) of the
following modular polynomial equations

f0i(x0, xi) := a0i + b0ix0 + c0ixi + x0xi = 0 mod p, 1 ≤ i ≤ n, (4)

where n < p and |x̃0|, |x̃1|, · · · , |x̃n| are bounded by X. We take X = p
2δ where

δ is the number of known MSBs. Moreover, in the following analysis, we need
that all c01, · · · , c0n ∈ Zp are distinct.
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According to (3), we get c0i = u0 − (t0 − ti)−1 mod p for i = 1, · · · , n. Note
that elements t0, t1, . . . , tn ∈ Zp \ {−α}, chosen independently and uniformly,
where α is the hidden number. The probability that all c0i are distinct is equal

to
n−1∏

k=1

(1 − k
p ) ≈ e

−
n−1∑

k=1

k
p = e− n(n − 1)

2p ≈ 1 − n2−n
2p , which is close to 1 for a

sufficiently large p.

2.4 Order of Monomials

First, we describe reverse lexicographic order and graded lexicographic reverse
order respectively. Please refer to [33, Section 21.2] for more details of these
orders. Let (i1, · · · , in) and (i′1, · · · , i′n) be integer vectors, where im ≥ 0, i′m ≥ 0
for all 1 ≤ m ≤ n.

Reverse Lexicographic Order: (i′1, · · · , i′n) ≺revlex (i1, · · · , in) ⇔ the right-
most nonzero entry in (i′1 − i1, · · · , i′n − in) is negative.

Graded Reverse Lexicographic Order: (i′1, · · · , i′n) ≺grevlex (i1, · · · , in) ⇔
n∑

m=1
i′m <

n∑

m=1
im or

( n∑

m=1
i′m =

n∑

m=1
im and (i′1, · · · , i′n) ≺revlex (i1, · · · , in)

)
.

Next, we consider the following order of monomials.

x
i′
0
0 x

i′
1
1 · · · xi′

n
n ≺ xi0

0 xi1
1 · · · xin

n ⇔
(i′1, · · · , i′n) ≺grevlex (i1, · · · , in) or

(
(i′1, · · · , i′n) = (i1, · · · , in) and i′0 < i0

)
.

(5)

It is worth noting that we treat i0 differently than i1, · · · , in for vector
(i0, i1, · · · , in).

2.5 Elementary Symmetric Polynomials and Matrix

In this section, we first describe the definition of elementary symmetric polyno-
mials. Please refer to [26, Section 3.1] for more details.

The elementary symmetric polynomials on m variables {y1, · · · , ym}, written
as σk(y1, · · · , ym) for k = 0, 1, · · · ,m, are defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ0(y1, · · · , ym) = 1,
σ1(y1, · · · , ym) =

∑

1≤i≤m

yi,

σ2(y1, · · · , ym) =
∑

1≤i<j≤m

yiyj ,

σ3(y1, · · · , ym) =
∑

1≤i<j<k≤m

yiyjyk,

...
σm(y1, · · · , ym) =

∏

1≤i≤m

yi.

From the above formulas, we can see that σk(y1, · · · , ym) is the sum of all prod-
ucts of exactly k distinct yi’s.
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Next, we define the following s×s matrix whose entries depend on elementary
symmetric polynomials, which will be used in Sects. 3 and 4. Consider the matrix

Mj1,··· ,js
:=

⎛

⎜
⎜
⎝

σs−1(∧0) · · · σ1(∧0) σ0(∧0)
σs−1(∧1) · · · σ1(∧1) σ0(∧1)

· · ·
σs−1(∧s−1) · · · σ1(∧s−1) σ0(∧s−1)

⎞

⎟
⎟
⎠ ,

where σi(∧l) is the i-th elementary symmetric polynomial on

∧l := {c0,j1 , · · · , c0,js
} \ {c0,jl+1} with 0 ≤ i ≤ s − 1, 0 ≤ l ≤ s − 1.

Here 1 ≤ j1 < · · · < js ≤ n and c0,jl+1 is the coefficient of variable xjl+1 in the
polynomial f0,jl+1 in (4).

For indexes j1, · · · , js, row u and column v of matrix Mj1,··· ,js
is the eval-

uation of σs−v on all the variables c0,ji
except c0,ju

, where 1 ≤ u, v ≤ s. From
another perspective, we first let polynomials

Gu(x) := (x + c0,j1) · · · (x + c0,ju−1)(x + c0,ju+1) · · · (x + c0,js
) for all 1 ≤ u ≤ s.

For 1 ≤ v ≤ s, we have that the coefficient of Gu(x) on monomial xs−v is the
evaluation of σs−v on all the variables c0,ji

except c0,ju
. In other words, row u

and column v of matrix Mj1,··· ,js
is the coefficient of Gu(x) on monomial xs−v.

Lemma 3. For a given prime p and any integer s ≥ 2, define matrix Mj1,··· ,js
as

above. Then Mj1,··· ,js
is invertible over Zps−1 if c0,j1 , · · · , c0,js

are distinct in Zp.

Proof. Since p is a prime number, we get that Mj1,··· ,js
is invertible over Zps−1

if and only if Mj1,··· ,js
is invertible over Zp. Note that row u of matrix Mj1,··· ,js

is the coefficient vector of polynomial Gu(x) on the basis (1, x, · · · , xs−1) for
all 1 ≤ u ≤ s. Hence, Mj1,··· ,js

is invertible over Zp if and only if polynomials
G1(x), · · · , Gs(x) are linearly independent over Zp.

Suppose that there exist integers c1, · · · , cs satisfying

c1G1(x) + · · · + csGs(x) = 0. (6)

Note that Gu(x) = (x + c0,j1) · · · (x + c0,ju−1)(x + c0,ju+1) · · · (x + c0,js
) for 1 ≤

u ≤ s. Taking modulo x + c0,ju
on both sides of (6), we obtain that

cuGu(x) ≡ 0 mod (x + c0,ju
) for u = 1, · · · , s.

If c0,j1 , · · · , c0,js
are distinct in Zp, then the polynomials x + c0,j1 , · · · , x + c0,js

are pairwise coprime. Furthermore, we have gcd(x+c0,ju
, Gu(x)) = 1. Combining

this relation with the above equations, we deduce that c1 = · · · = cs = 0. Based
on (6), we have that the polynomials G1(x), · · · , Gs(x) are linearly independent
over Zp. In other words, Mj1,··· ,js

is invertible over Zps−1 if c0,j1 , · · · , c0,js
are

distinct in Zp. �
Note that the indexes j1, · · · , js satisfy 1 ≤ j1 < · · · < js ≤ n. We always

have that elements c0,j1 , · · · , c0,js
are from c01, · · · , c0n. According to the analysis

of Sect. 2.3, we know that c01, · · · , c0n are distinct with a probability close to
1 for a sufficiently large p. Hence, from Lemma 3, matrix Mj1,··· ,js

is invertible
over Zps−1 with a probability close to 1 for a sufficiently large p.
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3 The Strategy for Solving a Class of Modular
Polynomial Equations

In this section, we first present theorems to solve the equation system (4), and
then give the corresponding results for solving MIHNP.

Theorem 1. For any given positive integer d, take positive integer n = d3+o(1).
Given a sufficiently large prime p = 2ω(d3d+2), and polynomials f0j(x0, xj) with
1 ≤ j ≤ n in (4), under Assumption 1, one can compute the desired root
(x̃0, x̃1, · · · , x̃n) with a probability close to 1, if the bound X of |x̃0|, |x̃1|, · · · , |x̃n|
satisfies

X < p1− 1
d +1−o( 1

d ). (7)

The corresponding time complexity is polynomial in log2 p for any constant d,
where the complexity of the LLL algorithm grows as dO(d) and the complexity of
the Gröbner basis computation grows as (2d)O(n2).

Proof. For any given positive integer d, and integers n, t satisfying n ≥ d + 1,
0 ≤ t ≤ d, we first construct the polynomials Fi0,i1,...,in

(x0, x1, · · · , xn) for all
vectors (i0, i1, · · · , in) ∈ I(n, d, t), where

I(n, d, t) = {(i0, i1, · · · , in) | 0 ≤ i0 ≤ d, 0 ≤ i1, · · · , in ≤ 1, 0 ≤ i1 + · · · + in ≤ d}
∪ {(i0, i1, · · · , in) | 0 ≤ i0 ≤ t, 0 ≤ i1, · · · , in ≤ 1, i1 + · · · + in = d + 1}.

We will optimize integers n, t later. Denote the level s := i1 + · · · + in, where
0 ≤ s ≤ d + 1.

When s = 0, we construct Fi0,i1,...,in
(x0, x1, · · · , xn) = pdxi0

0 for i0 = 0, 1, · · · , d.
When s = 1, we construct

Fi0,i1,...,in
(x0, x1, · · · , xn) =

{
pdxi1

1 · · · xin
n for i0 = 0,

pd−1xi0−1
0 f i1

01 · · · f in
0n for 1 ≤ i0 ≤ d.

When 2 ≤ s ≤ d + 1, if s ≤ i0 ≤ d, we construct the polynomials

Fi0,i1,...,in
(x0, x1, · · · , xn) = pd−sxi0−s

0 f i1
01 · · · f in

0n.

If 0 ≤ i0 < s, we construct the polynomials Fi0,i1,...,in
(x0, x1, · · · , xn) as follows.

Notice that all integers i1, · · · , in are equal to 0 or 1. We can rewrite f i1
01

· · · f in
0n = f0,j1 · · · f0,js

, where j1, · · · , js are some integers satisfying 1 ≤ j1 <
· · · < js ≤ n. Define Mj1,··· ,js

as Sect. 2.5. Based on Lemma 3, we have that
Mj1,··· ,js

is invertible in Zps−1 with a probability close to 1 for a sufficiently
large p. Let M−1

j1,··· ,js
be the inverse of Mj1,··· ,js

modulo ps−1. Then we generate
s polynomials g0(x0, xj1 , . . . , xjs

), g1(x0, xj1 , . . . , xjs
), · · · , gs−1(x0, xj1 , . . . , xjs

)
according to the following way:

⎛

⎜
⎜
⎜
⎝

g0(x0, xj1 , . . . , xjs
)

g1(x0, xj1 , . . . , xjs
)

...
gs−1(x0, xj1 , . . . , xjs

)

⎞

⎟
⎟
⎟
⎠

= M−1
j1,··· ,js

·

⎛

⎜
⎜
⎜
⎝

xj1f0,j2 · · · f0,js

f0,j1xj2 · · · f0,js

...
f0,j1 · · · f0,js−1xjs

⎞

⎟
⎟
⎟
⎠

mod ps−1. (8)
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Here, g0(x0, xj1 , . . . , xjs
), g1(x0, xj1 , . . . , xjs

), · · · , gs−1(x0, xj1 , . . . , xjs
) are

treated as the corresponding polynomials over Z.
Further, we define

Fi0,i1,...,in
(x0, x1, · · · , xn) = pd+1−s · gi0(x0, xj1 , . . . , xjs

), (9)

where {
0 ≤ i0 ≤ s − 1 for 0 ≤ s ≤ d,
0 ≤ i0 ≤ t for s = d + 1.

Note that gi0(x̃0, x̃1, · · · , x̃n) = 0 mod ps−1. The corresponding

Fi0,i1,··· ,in
(x̃0, x̃1, · · · , x̃n) = 0 mod pd.

In fact, for all tuples (i0, i1, · · · , in) ∈ I(n, d, t), we always get

Fi0,i1,··· ,in
(x̃0, x̃1, · · · , x̃n) = 0 mod pd.

Next, we present the following lemma in order to construct a triangular lattice
basis matrix. The corresponding proof is given in Sect. 4.

Lemma 4. Define polynomials Fi0,i1,...,in
(x0, x1, · · · , xn) as above, where the

corresponding monomials are arranged according to the order (5). Let L(n, d, t)
be a lattice spanned by the coefficient vectors of polynomials

Fi0,i1,··· ,in
(x0X,x1X, · · · , xnX),

for all (i0, i1, · · · , in) ∈ I(n, d, t). Then the basis matrix becomes triangular if
these coefficient vectors are arranged according to the leading monomial of the
corresponding Fi0,i1,··· ,in

(x0, x1, · · · , xn) from low to high. Moreover, diagonal
elements of the triangular basis matrix of L(n, d, t) are as follows:

{
pd−sXi0+s for i0 ≥ s,
pd+1−sXi0+s for i0 < s,

(10)

where s = i1 + · · · + in.

We will provide an example for lattice L(n, d, t) in full version. It is easy to
see that the dimension of L(n, d, t) is equal to

dim(L(n, d, t)) = (d + 1)
d∑

s=0

(
n

s

)
+ (t + 1)

(
n

d + 1

)
. (11)

We compute the determinant of L(n, d, t) as

det(L(n, d, t)) = pα(n,d) · Xβ(n,d,t), (12)

where

α(n, d) = d(d + 1)
d∑

s=0

(
n
s

) − d
d∑

s=0
s
(
n
s

)
,

β(n, d, t) = d(d+1)
2

d∑

s=0

(
n
s

)
+ (d + 1)

d∑

s=0
s
(
n
s

)
+ (2d+ t+2)(t+1)

2

(
n

d+1

)
.
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The detailed computation is left in AppendixB. By the property of LLL algo-
rithm and Howgrave-Graham’s lemma, if Condition (1) is satisfied, namely,

2
w(w − 1)
4(w − n) · det(L(n, d, t))

1
w − n <

pd

√
w

, (13)

where w = dim(L(n, d, t)), after reduction of lattice we get n + 1 polynomials
which contain the root (x̃0, x̃1, · · · , x̃n) over integers. Under Assumption 1, we
can find x̃0, x̃1, · · · , x̃n.

Plugging (11) and (12) into (13), we obtain the condition

X <
(
2− w(w−1)

4β(n,d,t) w− w−n
2β(n,d,t)

) · pλ(n,d,t), (14)

where

λ(n, d, t) :=
d(w − n) − α(n, d)

β(n, d, t)
=

2d(t + 1)
( n

d+1

)
+ 2d

d∑

s=2
s
(n

s

)

(2d + 2 + t)(t + 1)
( n

d+1

)
+ d(d + 1)

d∑

s=0

(n
s

)
+ 2(d + 1)

d∑

s=0
s
(n

s

)
.

For a sufficiently large p = 2ω(d3d+2), the above condition reduces to X <
pλ(n,d,t). By taking the optimal t = 0 and n = d3+o(1), this condition further
becomes

X < p1− 1
d+1−o( 1

d ).

The detailed analysis is presented in AppendixC.
Finally, we analyze the time complexity of our algorithm. Note that the

running time of the LLL algorithm depends on the dimension and the maximal
bit size of input basis matrix. For the optimal case that t = 0 and n = d3+o(1),
the dimension of L(n, d, 0) is

(d + 1)
d∑

s=0

(
n

s

)
+

(
n

d + 1

)
= O(nd+1) = O(dO(d)).

The bit size of the entries in the basis matrix can be bounded by 2d log2 p based
on (10). Hence, according to [24], the time complexity of the LLL algorithm is
equal to

poly
(
2d log2 p,O(dO(d))) = O((log2 p)O(1)

dO(d)). (15)

Moreover, we use the Gröbner basis computation to solve the polynomials
obtained from the LLL algorithm. The running time of the Gröbner basis compu-
tation relies on degrees of the polynomials in the Gröbner basis and the number
of variables in these polynomials [10,18]. Under Assumption 1, these polynomials
generate a zero-dimensional ideal. Note that the maximal degree is 2d and the
number of variables is n + 1. Based on [10], we get that the time complexity of
the Gröbner basis computation is

poly((2d)(n+1)2) = (2d)O(n2). (16)
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Therefore, the overall time complexity is equal to O((log2 p)O(1)
dO(d)) +

(2d)O(n2), which is polynomial in log2 p for any constant d, where the com-
plexity of the LLL algorithm grows as dO(d) and the complexity of the Gröbner
basis computation grows as (2d)O(n2). �
Remark 1. Similar to [4,35], we choose the same polynomials Fi0,i1,...,in

(x0, x1, · · · , xn) where any (i0, i1, · · · , in) lies in the set {(i0, i1, · · · , in) | 0 ≤ i0 ≤
d, 0 ≤ i1, · · · , in ≤ 1, 0 ≤ i1 + · · · + in ≤ d}. The difference from [4,35] is that we
add new polynomials Fi0,i1,...,in

(x0, x1, · · · , xn) where any (i0, i1, · · · , in) belongs
to the set {(i0, i1, · · · , in) | 0 ≤ i0 ≤ t, 0 ≤ i1, · · · , in ≤ 1, i1 + · · · + in = d + 1},
where 0 ≤ t ≤ d. This corresponds to the case of s = d+1 in the proof ofTheorem 1.
When t = 0, the involved lattice L(n, d, t) is optimized.

According to (8) and (9), we get that newly added polynomials Fi0,i1,...,

in(x0, x1, · · · , xn) are linear combinations of d+1 polynomials xj1f0,j2 · · · f0,jd+1 ,
f0,j1xj2 · · · f0,jd+1 , · · · , f0,j1 · · · f0,jd

xjd+1 , which have common monomials. Con-
cretely speaking,

Fi0,i1,...,in
(x0, x1, · · · , xn) = gi0(x0, xj1 , . . . , xjd+1),

where 1 ≤ j1, · · · , jd+1 ≤ n satisfying xi1
1 · · · xin

n = xj1 · · · xjd+1 . These newly
added polynomials Fi0,i1,...,in

(x0, x1, · · · , xn) are linearly independent of previ-
ous Fi0,i1,...,in

(x0, x1, · · · , xn) according to the analysis of Lemma 4.
Finally, we explain why this method can work efficiently. Consider the opti-

mized case of t = 0, we have i0 = 0 according to 0 ≤ i0 ≤ t. Note that
i1, · · · , in satisfy 0 ≤ i1, · · · , in ≤ 1, i1 + · · · + in = d + 1. It implies that
we added

(
n

d+1

)
such polynomials Fi0,i1,...,in

(x0, x1, · · · , xn) into the involved
lattice L(n, d, t). Based on (7) and (10), we get that every newly added
polynomial Fi0,i1,...,in

(x0, x1, · · · , xn) contributes to a diagonal element Xd+1

(i1 = 0 and s = d + 1 in (10)), which is smaller than modulo pd. Such
a Fi0,i1,...,in

(x0, x1, · · · , xn) is called a helpful polynomial [21,29]. Hence, we
have

(
n

d+1

)
helpful polynomials for lattice L(n, d, t). Since dim(L(n, d, t)) =(

n
d+1

)
(1 + o(1)) for the optimized case of t = 0, we get that the number of

all selected polynomials for lattice L(n, d, t) is
(

n
d+1

)
(1 + o(1)). It implies that

newly added
(

n
d+1

)
helpful polynomials are dominant. This is the fundamental

reason behind the effectiveness of our approach.

Since X = p
2δ in the case of MIHNP, we give the following result.

Corollary 1. For any given positive integer d, let positive integer n = d3+o(1).
For a given sufficiently large prime p = 2ω(d3d+2) and n + 1 given samples in
MIHNP, the hidden number can be recovered with a probability close to 1 under
Assumption 1 if the number δ of known MSBs satisfies

δ

log2 p
≥ 1

d + 1
+ o(

1
d
). (17)

The involved time complexity is polynomial in log2 p for any constant d, where
the complexity of the LLL algorithm grows as dO(d) and the complexity of the
Gröbner basis computation grows as (2d)O(n2).
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Remark 2. The algorithm in Theorem 1 can be also applied to the attack case
of ICG, as described in prior work [35].

Remark 3. Taking d = 2, the asymptotic result of δ/log2 p is equal to 1
3 , which is

the same as the previous best result [4,35]. When d > 2, our asymptotic bound
is 1

d+1 < 1
3 , resulting in the best asymptotic result known so far.

Remark 4. Similar to AppendixA, we also use notations ρ = δ/log2 p and
k = log2 p, where 0 < ρ < 1. According to (17), namely, ρ ≥ 1

d+1 + o( 1d ).
In the asymptotic sense, we have ρ > 1

d+1 , i.e., d > 1
ρ − 1. Hence, we

can take d = 1/ρ asymptotically. Then, (15) and (16) respectively become

O(
kO(1)( 1ρ )O( 1

ρ )) and
(
2
ρ

)O(( 1
ρ )O(1))

. Hence, the overall time complexity is poly-
nomial in log2 p for any constant ρ (i.e., δ is a constant fraction of log2 p). Note
that ρ = δ/log2 p tends to 0 as d becomes large. It implies that the asymp-
totic lower bound of δ/log2 p is equal to 0. However, in order to ensure that
δ/log2 p is close to 0, a huge lattice dimension is required, which is because

that the dimension of the involved lattice is equal to O(dO(d)) = O(
( 1ρ )O( 1

ρ )) =

O(
( log2 p

δ )
O(

log2 p
δ ))

.

Figure 1 shows that the theoretical values of δ/log2 p for different lattice
dimension, where the smallest dimension is calculated among different n, d, t for
the fixed δ/log2 p. One can achieve δ/log2 p < 1

3 by using a lattice of dimen-
sion 209899. Theoretical value of the involved λ(n, d, t) in this case is 0.671.
Corresponding parameters are n = 45, d = 3, t = 0.

Fig. 1. Theoretical bound of δ/log2 p for different dimensions.
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4 Proof of Lemma4

Proof. First, we will show that the leading term of Fi0,i1,··· ,in
(x0, x1, · · · , xn)

according to the order (5) is as follows:

– pd−sxi0
0 xi1

1 · · · xin
n i0 ≥ s,

– pd+1−sxi0
0 xi1

1 · · · xin
n i0 < s,

where s = i1 + · · · + in.

For the case of s = 0, Fi0,i1,··· ,in
(x0, x1, · · · , xn) = pdxi0

0 for i0 ≥ 0. Obviously,
the corresponding leading term is pd−sxi0

0 xi1
1 · · · xin

n where i0 ≥ s = 0.

For the case of s = 1, we have

Fi0,i1,...,in
(x0, x1, · · · , xn) =

{
pdxi1

1 · · · xin
n for i0 = 0,

pd−1xi0−1
0 f i1

01 · · · f in
0n for 1 ≤ i0 ≤ d.

For i0 = 0, the leading term of Fi0,i1,...,in
(x0, x1, · · · , xn) = pdxi1

1 · · · xin
n

can be rewritten as pd+1−sxi0
0 xi1

1 · · · xin
n since s = 1. For i0 ≥ 1,

Fi0,i1,...,in
(x0, x1, · · · , xn) = pd−1xi0−1

0 f i1
01 · · · f in

0n. We analyze its leading term
as follows. Note that f0j = a0j + b0jx0 + c0jxj + x0xj for 1 ≤ j ≤ n. Based on
the order (5), we get

1 ≺ x0 ≺ xj ≺ x0xj for j = 1, · · · , n.

So the leading term of f0j is x0xj . Furthermore, the leading term of
Fi0,i1,...,in

(x0, x1, · · · , xn) = pd−1xi0−1
0 f i1

01 · · · f in
0n is equal to

pd−1xi0−1
0 (x0x1)i1 · · · (x0xn)in = pd−sxi0

0 xi1
1 · · · xin

n ,

where i0 ≥ s = 1.

For the case of 2 ≤ s ≤ d + 1, if s ≤ i0 ≤ d, we define

Fi0,i1,...,in
(x0, x1, · · · , xn) = pd−sxi0−s

0 f i1
01 · · · f in

0n.

In this situation, the leading term of Fi0,i1,...,in
(x0, x1, · · · , xn) is

pd−sxi0−s
0 (x0x1)i1 · · · (x0xn)in = pd−sxi0

0 xi1
1 · · · xin

n .

For the following situations
{

0 ≤ i0 ≤ s − 1 for 0 ≤ s ≤ d,
0 ≤ i0 ≤ t for s = d + 1,

where 0 ≤ t ≤ d, we define

Fi0,i1,...,in
(x0, x1, · · · , xn) = pd+1−s · gi0(x0, xj1 , . . . , xjs

).

Our goal is to show that pd+1−sxi0
0 xi1

1 · · · xin
n is the leading term of the corre-

sponding polynomial Fi0,i1,...,in
(x0, x1, · · · , xn). Note that f i1

01 · · · f in
0n is expressed



312 J. Xu et al.

as f0,j1 · · · f0,js
in this situation. It is easy to deduce that xi1

1 · · · xin
n = xj1 · · · xjs

by comparing terms of f i1
01 · · · f in

0n and f0,j1 · · · f0,js
. Hence we aim to prove that

xi0
0 xj1 · · · xjs

is the leading term of gi0(x0, xj1 , . . . , xjs
).

According to (8), i.e.,
⎛

⎜
⎜
⎜
⎝

g0(x0, xj1 , . . . , xjs
)

g1(x0, xj1 , . . . , xjs
)

...
gs−1(x0, xj1 , . . . , xjs

)

⎞

⎟
⎟
⎟
⎠

= M−1
j1,··· ,js

·

⎛

⎜
⎜
⎜
⎝

xj1f0,j2 · · · f0,js

f0,j1xj2 · · · f0,js

...
f0,j1 · · · f0,js−1xjs

⎞

⎟
⎟
⎟
⎠

mod ps−1,

we get that gi0(x0, xj1 , . . . , xjs
) is some linear combination of the following poly-

nomials
xj1f0,j2 · · · f0,js

, f0,j1xj2 · · · f0,js
, · · · , f0,j1 · · · f0,js−1xjs

.

Note that these polynomials have common monomials

xj1 · · · xjs
, x0xj1 · · · xjs

, · · · , xs−1
0 xj1 · · · xjs

. (18)

Let the polynomial g∗
l (x0, xj1 , . . . , xjs

) (0 ≤ l ≤ s−1) be composed of the terms
in the polynomial f0,j1 · · · f0,jl

xjl+1f0,jl+2 · · · f0,js
except the corresponding terms

of common monomials in (18). Then we can rewrite

f0,j1 · · · f0,jl
xjl+1f0,jl+2 · · · f0,js = xjl+1 ·

∏

k �=l+1

(c0,jk
xjk

+ x0xjk
) + g∗

l (x0, xj1 , . . . , xjs )

= (xj1 · · · xjs ) ·
∏

k �=l+1

(x0 + c0,jk
) + g∗

l (x0, xj1 , . . . , xjs )

= (xj1 · · · xjs ) ·
s−1∑

i=0

(
σi(∧l) · xs−1−i

0

)
+ g∗

l (x0, xj1 , . . . , xjs ),

where ∧l = {c0,j1 , · · · , c0,js
} \ {c0,jl+1} and σi is the i-th elementary symmetric

polynomial. Furthermore, we express the above equalities for all 0 ≤ l ≤ s − 1
by using the matrix equation as follows:

⎛

⎜
⎜
⎜
⎝

xj1f0,j2 · · · f0,js

f0,j1xj2 · · · f0,js

...
f0,j1 · · · f0,js−1xjs

⎞

⎟
⎟
⎟
⎠

= Mj1,··· ,js ·

⎛

⎜
⎜
⎜
⎝

xj1 · · · xjs

x0xj1 · · · xjs

...
xs−1
0 xj1 · · · xjs

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

g∗
0(x0, xj1 , . . . , xjs)

g∗
1(x0, xj1 , . . . , xjs)

...
g∗

s−1(x0, xj1 , . . . , xjs)

⎞

⎟
⎟
⎟
⎠

.

(19)
Plugging (19) into (8), we obtain
⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

g0(x0, xj1 , . . . , xjs)
...

gi0(x0, xj1 , . . . , xjs)
...

gs−1(x0, xj1 , . . . , xjs)

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

xj1 · · · xjs

...

xi0
0 xj1 · · · xjs

...
xs−1
0 xj1 · · · xjs

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

+ M−1
j1,··· ,js

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

g∗
0(x0, xj1 , . . . , xjs)

...
g∗

i0(x0, xj1 , . . . , xjs)
...

g∗
s−1(x0, xj1 , . . . , xjs)

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

(20)
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in the sense of modulo ps−1. According to (20), in order to prove that
xi0
0 xj1 · · · xjs

is the leading monomial of gi0(x0, xj1 , . . . , xjs
), we need to ana-

lyze that all monomials from the following polynomials

g∗
0(x0, xj1 , . . . , xjs

), g∗
1(x0, xj1 , . . . , xjs

), · · · , g∗
s−1(x0, xj1 , . . . , xjs

)

are lower than xi0
0 xj1 · · · xjs

based on the order (5).
From (19), we can deduce that the monomial set from these polynomials

g∗
0 , g

∗
1 , · · · , g∗

s−1 is equal to
{

xr0
0 xk1 · · · xkm

| 0 ≤ r0 ≤ d, {k1, · · · , km} � {j1, · · · , js}
}

.

It implies that for any monomial xr0
0 xk1 · · · xkm

from the above monomial set,
we have m < s. Therefore, we get xr0

0 xk1 · · · xkm
≺ xi0

0 xj1 · · · xjs
according to the

order (5). In other words, xi0
0 xj1 · · · xjs

is the leading monomial of gi0(x0, xj1 ,
. . . , xjs

). Hence, pd+1−sxi0
0 xi1

1 · · · xin
n is the leading term of Fi0,i1,...,in

(x0, x1,
· · · , xn) in this situation.

Next, we will show that the basis matrix of L(n, d, t) is triangular based on
the leading monomials of the polynomials Fi0,i1,··· ,in

(x0, x1, · · · , xn) from low to
high. Note that the basis matrix of L(n, d, t) consists of the coefficient vectors
of the polynomials Fi0,i1,··· ,in

(x0X,x1X, · · · , xnX). It is easy to see that there
is a one-to-one correspondence between the polynomials Fi0,i1,··· ,in

(x0, x1, · · · ,
xn) and Fi0,i1,··· ,in

(x0X,x1X, · · · , xnX). So, our goal is to prove that all poly-
nomials Fi0,i1,··· ,in

(x0, x1, · · · , xn) form a triangular matrix according to the
corresponding leading monomials from low to high.

For the case of s = 0, the corresponding polynomial Fi0,i1,··· ,in

(x0, x1, · · · , xn) is equal to pdxi0
0 , where i0 = 0, 1, · · · , d. According to the

order (5), we have pd ≺ pdx0 ≺ · · · ≺ pdxd
0. It is obvious that all polynomi-

als Fi0,i1,··· ,in
(x0, x1, · · · , xn) for the case of s = 0 generate a triangular matrix.

The remaining proof is inductive. Suppose that all Fi′
0,i′

1,··· ,i′
n
(x0, x1, · · · , xn)

satisfying x
i′
0
0 x

i′
1
1 · · · xi′

n
n ≺ xi0

0 xi1
1 · · · xin

n produce a triangular matrix as stated
in Lemma 4. Then, we show that a matrix is still triangular with a new
polynomial Fi0,i1,··· ,in

(x0, x1, · · · , xn). According to the above analysis, we get
that xi0

0 xi1
1 · · · xin

n is the leading monomial of Fi0,i1,··· ,in
(x0, x1, · · · , xn). With-

out loss of generality, let xk0
0 xk1

1 · · · xkn
n be any monomial of the polynomial

Fi0,i1,··· ,in
(x0, x1, · · · , xn) except its leading monomial xi0

0 xi1
1 · · · xin

n . Clearly,
we have xk0

0 xk1
1 · · · xkn

n ≺ xi0
0 xi1

1 · · · xin
n . Note that xk0

0 xk1
1 · · · xkn

n is the leading
monomial of the polynomial Fk0,k1,··· ,kn

(x0, x1, · · · , xn). It implies that these
monomials except xi0

0 xi1
1 · · · xin

n already appeared in the diagonals of a basis
matrix. Hence, all polynomials Fi0,i1,··· ,in

(x0, x1, · · · , xn) can produce a trian-
gular matrix. In other words, the corresponding basis matrix of L(n, d, t) is
triangular.

Since the leading term of Fi0,i1,··· ,in
(x0, x1, · · · , xn) is as follows:

{
pd−sxi0

0 xi1
1 · · · xin

n for i0 ≥ s,

pd+1−sxi0
0 xi1

1 · · · xin
n for i0 < s,
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where s = i1 + · · · + in, the diagonal elements of the triangular basis matrix of
L(n, d, t) are as follows:

{
pd−sXi0+i1+···+in = pd−sXi0+s for i0 ≥ s,
pd+1−sXi0+i1+···+in = pd+1−sXi0+s for i0 < s.

�

5 Experimental Results

We implemented our lattice-based algorithm in SAGE 8.2 on a desktop with
Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30 GHz, 3 GB RAM and 3 MB Cache
using the L2 reduction algorithm [23] from Nguyen and Stehlé. We tested the
algorithm up to lattice dimension 291. Table 2 shows the experimental results for
MIHNP with 1000 bit prime p. To confirm the claim that experimental outcome
is better than theoretical bound based on (14), 100 experiments each time have
been carried out. We see that the success rate of each time is 100% for most
cases. Total time means that sum of time for 100 experiments of LLL algorithm
and Gröbner basis computation respectively.

Table 2. Experimental results on low bounds of δ/log2 p for 1000-bit p

n d t Dimension Low bounds of δ/log2 p Total Time (sec.)

Theory Exp. Success LLL Gröbner

3 2 1 23 0.712 0.595 100 11.01 1.22

6 1 0 29 0.699 0.575 100 29.42 13.36

4 2 0 37 0.660 0.560 100 190.41 10.65

4 2 1 41 0.638 0.550 99 636.12 54.36

5 2 0 58 0.614 0.530 100 2555.91 182.38

5 2 1 68 0.592 0.525 100 7889.82 809.49

6 2 0 86 0.582 0.505 100 18896.34 2185.73

6 2 1 106 0.564 0.505 100 33276.93 4974.75

7 2 0 122 0.558 0.495 100 175276.85 29248.29

7 2 1 157 0.546 0.490 100 312450.32 23893.45

8 2 0 167 0.540 0.475 100 872078.62 128818.90

6 3 0 183 0.547 0.485 100 897793.07 14371.18

9 2 0 222 0.528 0.460 100 5440027.10 858799.13

10 2 0 288 0.519 0.450 87 18250890.61 3415266.53

7 3 0 291 0.521 0.465 100 9223260.81 287510.60
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We also perform one experiment for n = 11, d = 2 and t = 0. Corresponding
lattice dimension is 366. Here theoretical bound of δ

log2 p is 0.514. As for other
parameters, in this case also we get better experimental bound 0.445. Lattice
reduction takes 336895.32 s and Gröbner computation takes 191821.33 s.

One may see Fig. 2 for a comparison between theoretical and experimental
values of δ/log2 p for different dimensions. One can see from the figure that for
smaller lattice dimensions, experimental values substantially outperform their
theoretical values.

Fig. 2. Theoretical vs Experimental values of δ
log2 p

for different dimensions.

6 Conclusion

We presented a heuristic polynomial time algorithm to find the hidden number
in the modular inversion hidden number problem. After more than 15 years, we
improved the bound for solving modular inversion hidden number problem for
the first time. We also obtained the best attack result on the inversive congru-
ential generator till now.
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A Asymptotic Time Complexities in Previous Works

The running time functions for solving MIHNP or ICG are not fully presented
explicitly in previous works. For the sake of comparison, we analyze the corre-
sponding running time functions according to the following way. Let ρ = δ/ log2 p
and k = log2 p, where 0 < ρ < 1.

In [3, Theorem 1], the bound ρ > 3
4 is shown for solving ICG with known F

based on the SVP assumption. Since the involved lattice is 4-dimensional, the
time complexity of the SVP algorithm is kO(1), which is deterministic polynomial
in the bit size of a given basis of the lattice for the fixed dimension [17].

In [20, Corollary 1], the bound ρ ≥ 2
3 + ε is presented to solve MIHNP based

on the SVP assumption. By taking ε = ρ − 2
3 , the time complexity using SVP

algorithm becomes kO(1)2
O( 1

ρ − 2
3
)

[22].
In [1, Section 3.4 and Theorem 2], the asymptotic bound ρ ≥ 1

2 + 1
2n+3 is

obtained to solve ICG with known F based on the Coppersmith technique,
where n + 2 denotes the number of unknown variables. Let m = nO(1). The
involved lattice dimension can be expressed as O(mn), and the bit size of lat-
tice basis matrix is at most km. Hence, the time complexity of the LLL algo-
rithm is (O(mn))O(1) · (km)O(1) = O(

kO(1)nO(n)
)
. For the Gröbner basis, the

maximal degree of input polynomials is 2m, and the number of unknown vari-
ables of input polynomials is n + 2. Under Assumption 1, these polynomials
generate a zero-dimensional Gröbner basis. We have that the time complexity
of Gröbner basis computation is (n + 2)O((2m)2) = nO(n2) [10]. Based on the
above bound ρ ≥ 1

2 + 1
2n+3 , we can take n ≈ log2 ( 1

ρ − 1
2
). Hence, time complex-

ities of the LLL algorithm and the Gröbner basis computation are reduced to

O(
kO(1)

(
log2

1
ρ − 1

2

)O(log2
1

ρ − 1
2
))

and
(
log2

1
ρ − 1

2

)O
(
(log2

1
ρ − 1

2
)2

)

respectively.

In [34, Theorem 1], the asymptotic bound ρ ≥ 1
2 + 1

(n+1)! is obtained to
solve MIHNP according to the Coppersmith technique, where n denotes the
number of unknown variables. Similar to the above analysis, we can also get
that time complexities of the LLL algorithm and Gröbner basis computation
are O(

kO(1)nO(n)
)

and nO(n2) respectively. Further, from the above bound ρ ≥
1
2 + 1

(n+1)! , we can take n log2 n ≈ log2 ( 1
ρ − 1

2
) by the Stirling formula. Therefore,

time complexities of the LLL algorithm and the Gröbner basis computation are

reduced to O(
kO(1)

(
1

ρ − 1
2

)O(1)) and
(

1
ρ − 1

2

)o
(
log2

1
ρ − 1

2

)

respectively.

In [4, Section 3.2], the asymptotic bound ρ ≥ 1
3 + 2

3d+3 is obtained to solve
MIHNP based on the SVP assumption, where d is an integer satisfying some
requirement. Note that the dimension of the involved lattice is equal to O(dO(d)).
Thus, the time complexity to solve MIHNP is kO(1)2O(dO(d)) using the SVP algo-
rithm, such as [22]. According to the above bound ρ ≥ 1

3 + 2
3d+3 , we can take d ≈

2
3ρ − 1 . Then the above time complexity is reduced to kO(1)2O

(
( 2
3ρ − 1 )

O( 1
ρ − 1

3
))

.
In [35, Remark 4], the asymptotic bound ρ ≥ 1

3 + 2
3d+3 is given for solving

MIHNP and ICG based on the Coppersmith technique, where d is the same as
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that in [4]. Note that the dimension of the involved lattice is equal to O(dO(d))
and the maximal bit size of lattice basis matrix is at most 2dk. Hence, the time
complexity of the LLL algorithm is (O(dO(d)))O(1) · (2dk)O(1) = O(kO(1)dO(d)).
For the Gröbner basis, the maximal degree of input polynomials is 2d and the
number of variables is equal to dO(1). Thus, under Assumption 1, the time
complexity of the Gröbner basis computation is (2d)O(dO(1)) [10]. Based on
the above bound ρ ≥ 1

3 + 2
3d+3 , we can take d ≈ 2

3ρ − 1 . Then, time com-
plexities of the LLL algorithm and Gröbner basis computation are reduced to

O(kO(1)( 2
3ρ − 1 )

O( 1
ρ − 1

3
)
) and ( 4

3ρ − 1 )
O(( 1

ρ − 1
3
)O(1))

respectively.

B Computation of the Determinant of L(n, d, t)

Note that the determinant of L(n, d, t) is the product of the diagonal entries.
We will consider the following two cases.

For the case of i0 ≥ s, the contribution of Fi0,i1,··· ,in
(x0X,x1X, · · · , xnX) to

the determinant of L(n, d, t) is

d∏

s=0

d∏

i0=s

(
p(d−s)(n

s) · X(i0+s)(n
s)

)
.

For the case of i0 < s, the contribution of Fi0,i1,··· ,in
(x0X,x1X, · · · , xnX) is

d∏

s=1

s−1∏

i0=0

(
p(d+1−s)(n

s) · X(i0+s)(n
s)

)
·

t∏

i0=0

X(i0+d+1)( n
d+1).

To sum up, we get

det(L(n, d, t)) = pα(n,d) · Xβ(n,d,t),

where

α(n, d) = d(d + 1)
d∑

s=0

(
n
s

) − d
d∑

s=0
s
(
n
s

)
,

β(n, d, t) = d(d+1)
2

d∑

s=0

(
n
s

)
+ (d + 1)

d∑

s=0
s
(
n
s

)
+ (2d+ t+2)(t+1)

2

(
n

d+1

)
.

C Lower Bound in Theorem1

Our goal is to derive a lower bound of

2− w(w−1)
4β(n,d,t) w− w−n

2β(n,d,t) pλ(n,d,t),
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where w is the dimension of L(n, d, t). We now analyze its first two terms. Accord-
ing to the expressions of w and β(n, d, t), i.e.,

w = (t + 1)
(

n
d+1

)
+ (d + 1)

d∑

s=0

(
n
s

)
,

β(n, d, t) = (2d+ t+2)(t+1)
2

(
n

d+1

)
+ d(d+1)

2

d∑

s=0

(
n
s

)
+ (d + 1)

d∑

s=0
s
(
n
s

)
,

it is easy to deduce β(n,d,t)
w > d+2

2 . Then we have 2− w(w−1)
4β(n,d,t) ≥ 2− w

2(d+2) and

w− w−n
2β(n,d,t) ≥ w− 1

d+2 . Furthermore, we obtain

2− w(w−1)
4β(n,d,t) w− w−n

2β(n,d,t) pλ(n,d,t) ≥ p
λ(n,d,t)− w+2 log w

2(d+2) log2 p .

Note that d and w are independent of the modulus p. For a sufficiently large
p, the exponent term − w +2 log w

2(d+2) log2 p is negligible. In this case, we only consider
the exponent term λ(n, d, t). In other words, the right-hand side of the above
condition can be simplified as pλ(n,d,t) for a sufficiently large p.

Next, we further analyze the lower bound of λ(n, d, t). We rewrite

λ(n, d, t) =
2d(t + 1)

(
n

d+1

)
+ 2d

d∑

s=2
s
(
n
s

)

(2d + 2 + t)(t + 1)
(

n
d+1

)
+ d(d + 1)

d∑

s=0

(
n
s

)
+ 2(d + 1)

d∑

s=0
s
(
n
s

)

=
2d

2d + 2 + t
(1 − ε(n, d, t)),

where

ε(n, d, t) =
d(d + 1)

d∑

s=0

(
n
s

) − t
d∑

s=2
s
(
n
s

)
+ 2(d + 1)

(
n
1

)

(2d + 2 + t)(t + 1)
(

n
d+1

)
+ d(d + 1)

d∑

s=0

(
n
s

)
+ 2(d + 1)

d∑

s=0
s
(
n
s

)
.

Note that we have

ε(n, d, t) < d(d +1)
(2d +2+ t)(t +1)

·
d∑

s=0
(n

s)

( n
d+1)

+ 2(d +1)
(2d +2+ t)(t +1)

· (n
1)

( n
d+1)

< d
2

d∑

s=0

(n
s)

( n
d+1)

+
(n
1)

( n
d+1)

.

For any 0 ≤ s ≤ d, according to

(n
s)

( n
d+1)

= (d+1)!(n − d − 1)!
s!(n−s)! = d+1

n − d · d
n − d+1 · · · s+1

n − s ≤ ( d+1
n − d )d−s+1,

we deduce that

ε(n, d, t) <

(
d
2

d∑

s=0

( d +1
n − d

)d−s+1

)
+ ( d +1

n − d
)d = d(d +1)

2(n − 2d − 1)

(
1 − ( d +1

n−d
)d+1

)
+ ( d +1

n − d
)d.
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Then we obtain that

λ(n, d, t) = 2d
2d +2+ t (1 − ε(n, d, t)) > 2d

2d +2+ t

(

1 − d(d +1)
2(n − 2d − 1)

(
1 − ( d +1

n − d )d+1) − ( d +1
n − d )d

)

.

By taking the parameter t = 0, λ(n, d, t) is optimized as

λ(n, d, 0) > 1− 1
d + 1

−
(

d2

2(n − 2d − 1)
(
1− (

d + 1
n − d

)d+1
)
+

d

d + 1
(
d + 1
n − d

)d

)
.

Further, by taking the parameter n = d3+o(1), the above relation is expressed as

λ(n, d, 0) > 1 − 1
d + 1

− o
(1
d

)
.

Finally, we explicitly present how big the modulus p is in the asymptotic sense.
Based on the above analysis, we need that the term − w +2 log w

2(d+2) log2 p is negligible.
For the case of t = 0 and n = d3+o(1), we have that the dimension of L(n, d, t) is
equal to w = (d + 1)

∑d
s=0

(
n
s

)
+

(
n

d+1

)
= d3d+3(1 + o(1)). Hence, when log2 p =

ω(d3d+2), i.e., p = 2ω(d3d+2), the term − w +2 log w
2(d+2) log2 p is negligible.
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Abstract. The hardness of finding short vectors in ideals of cyclotomic
number fields (hereafter, Ideal-SVP) can serve as a worst-case assump-
tion for numerous efficient cryptosystems, via the average-case problems
Ring-SIS and Ring-LWE. For a while, it could be assumed the Ideal-SVP
problem was as hard as the analog problem for general lattices (SVP),
even when considering quantum algorithms.

But in the last few years, a series of works has lead to a quantum
algorithm for Ideal-SVP that outperforms what can be done for general
SVP in certain regimes. More precisely, it was demonstrated (under cer-
tain hypotheses) that one can find in quantum polynomial time a vector
longer by a factor at most α = exp( ˜O(n1/2)) than the shortest non-zero
vector in a cyclotomic ideal lattice, where n is the dimension.

In this work, we explore the constants hidden behind this asymp-
totic claim. While these algorithms have quantum steps, the steps that
impact the approximation factor α are entirely classical, which allows
us to estimate it experimentally using only classical computing. More-
over, we design heuristic improvements for those steps that significantly
decrease the hidden factors in practice. Finally, we derive new provable
effective lower bounds based on volumetric arguments.

This study allows to predict the crossover point with classical lat-
tice reduction algorithms, and thereby determine the relevance of this
quantum algorithm in any cryptanalytic context. For example we pre-
dict that this quantum algorithm provides shorter vectors than BKZ-300
(roughly the weakest security level of NIST lattice-based candidates) for
cyclotomic rings of rank larger than about 24000.
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1 Introduction

The shortest vector problem (hereafter, SVP), that is the problem of finding
the shortest vector of a Euclidean lattice, is a central hard problem in complex-
ity theory. An approximated version (approx-SIVP) can serve as a theoretical
foundation for many cryptographic constructions thanks to the worst-case to
average-case reductions of Ajtai [Ajt99]—a classical reduction from approx-SVP
to the Short Integer Solution (SIS) problem—and Regev [Reg09]—a quantum
reduction from approx-SIVP to Learning with Errors (LWE).

However, the efficiency of schemes based on plain SIS and LWE remains
unsatisfactory, and one may prefer to rely on certain structured lattices, namely
lattices that are also modules over certain rings, as done by the NTRU cryptosys-
tem [HPS98], and more recently by many more cryptosystems based on Ring-SIS
and Ring-LWE. The Ring-SIS and Ring-LWE problems also enjoy worst-case to
average-case reductions from a variant of approx-SIVP1 for lattices that are ide-
als in some ring [Mic07,SSTX09,LPR10,SS11,PRSD17]. The typical choice of
ring is the integer ring of a cyclotomic number field Q(ωm), of degree n = ϕ(m),
where ωm is a primitive m-th root of unity. One notable exception is the NTRU
Prime cryptosystem [BCLvV17], which was designed to mitigate the potential
cryptanalytic risk that we are about to discuss.

The assumption that approx-SIVP is as hard in ideal lattices as in general
lattices was challenged by Campbell et al. [CGS14], who sketched a quantum
polynomial-time attack against a few schemes using so-called principal ideals
(Soliloquy, and the fully-homomorphic encryption scheme of [SV10]). Following
the claims of Campbell et al., Biasse and Song [BS16] proved that the Principal
Ideal Problem could be efficiently solved using a quantum computer. In other
words, given a principal ideal, one may recover an arbitrary generator in quantum
polynomial time. Analyzing the geometry of cyclotomic units in the log-unit
lattice, Cramer et al. [CDPR16] also confirmed that the secret key (a short
generator) of the few aforementioned schemes could be recovered exactly, due to
their specific distribution.

Furthermore, it is also proven in [CDPR16] that from an arbitrary generator,
one could asymptotically recover a short one, with an approximation factor of
α = exp( ˜O(n1/2)). A generalization to all ideals (i.e., not necessarily principal)
was provided in [CDW17]. They showed that by exploiting the Stickelberger class
relations, one could efficiently find a sub-ideal b ⊂ a (i.e., an integral multiple)
such that b is principal, and such that |b/a| ≤ exp( ˜O(n3/2)) (i.e., the sub-ideal is
not much sparser than the original lattice). Putting both results together leads
to an approximation factor of α = exp( ˜O(n1/2)) also for non-principal ideals.

Nevertheless, the work of [CDW17] still leaves two obstacles for cryptanalytic
applications of their algorithm to the widespread hardness assumptions Ring-
SIS, Ring-LWE and NTRU:

1. The approximation factor in the worst-case is asymptotically too large to
affect any actual Ring-LWE based scheme, which typically rely on polynomial
approximation factors α = poly(n).

1 For cyclotomic ideal lattices, approx-SVP and approx-SIVP are trivially equivalent.
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2. Ring-SIS and Ring-LWE are known to be at least as hard as Ideal-
SIVP [Mic07,SS11,LPR13] but not known to be equivalent. In fact, problems
like Ring-SIS, Ring-LWE and NTRU, are naturally phrased as short vector
problems in module lattices of rank k ≥ 2. An approach for such a converse
reduction would be to generalize LLL over other rings than Z, but this seems
to fail since only a few cyclotomic rings of small degree are Euclidean [Len75].

This work. In this work, we are interested in precisely quantifying the obstacle 1
above. It is proven in [CDPR16] that the short generator that can be recovered is
asymptotically close to optimal, yet it is unclear how this asymptotic statement
translates in practice. One could fear that the hidden factors in α = exp( ˜O(n1/2))
make α small enough in practice to threaten concrete cryptosystems (assuming
obstacle 2 can also be tackled). Or, on the contrary, one could doubt that this
algorithm is ever to give better results than classical methods for reasonable
dimensions, given how small the Hermite factor η = 1.022n of LLL [LLL82]
already is in practice [NS06].2

After some preliminaries in Sect. 2, we recall in Sect. 3 the main steps for solving
Ideal-SVP [CGS14,EHKS14,CDPR16,BS16,CDW17].Wediscuss the slackness of
the bounds derived in these works, and we identify the more meaningful quanti-
ties that should be studied to predict more precisely the Hermite factor achieved
by the algorithm. We note that we do not need to resort to a quantum computer
to experiment with those meaningful quantities, at least by making an informed
assumption on the input distribution of the relevant steps (see Assumption 8 and
the subsequent discussion). All working hypotheses are summarized in Sect. 3.4.

We then propose in Sect. 4 several heuristic techniques, designed to improve
in practice the meaningful quantities determined above. First, we propose to
exploit the knowledge of Θ(d2) many short vectors of both the Stickelberger and
log-unit lattices and go beyond what can be done with just a basis (where d is
the dimension). To properly exploit a large number of short vectors, we propose
to use an approximate Voronoi-cell-based algorithm [MV10,Laa16,DLdW19],
adapted to our specific setting, where we wish to minimize some carefully deter-
mined meaningful quantities rather than the Euclidean distance.

In Sect. 5, we discuss our implementation, and report on the experimental
behavior of both the original algorithm, and our heuristically improved variant.
We observe that the experimental behavior asymptotically matches with the
upper bound, and we experimentally determine the hidden constants. We also
note that our heuristic variant indeed improves these hidden constants, especially
for the Approx-CVP step in the log-unit lattice.

Finally, we study in Sect. 6 the volumetric lower-bounds for the CVP instances.
We determine the effective asymptotic behaviour of those lower bounds (i.e., with-
out hidden constants). We note that our bound for the log-unit lattice is not only
effective, but also asymptotically better than the one of [CDPR16]. We also per-
form numerical experiments, which show that the convergence to the asymptotic
behaviour is sufficiently fast to allow reliable use of the estimates.
2 In the rest of this work, we prefer to use the so called Hermite factor η instead of

the approximation factor α; this is justified in Remark 1.
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We conclude in Sect. 7 with a summary of our effective asymptotic predic-
tions. Combining these results, we compare the predicted performance with that
of the classical lattice reduction algorithms LLL and BKZ, in Fig. 5. For a con-
crete example, we predict that the crossover point between the original algorithm
and LLL happens for cyclotomic ideals of rank around 4000, and our heuristic
improvement brings this crossover point down to rank 1000. We conclude our
work by summarizing the limits of the conclusions that can be drawn from this
work regarding cryptanalytic concerns.

Concurrent work. Recently, Pellet–Mary, Hanrot and Stehlé proposed [PMHS19]
a heuristic algorithm that should reach even lower approximation factors than
discussed above, but at the cost of a pre-computation using exponential time
and memory, and a computation using sub-exponential time and memory. It also
makes use of the approx-CVP algorithm of Laarhoven [Laa16,DLdW19,SD19],
but in a different regime, and in a lattice with much less structure. In would be
interesting to find an efficient simulation of their precomputation phase, so as to
be able to run more extensive experiments and estimate the hidden constants,
possibly using the heuristic improvements introduced in this paper.

2 Preliminaries

Vectors are to be read as column-vectors. Matrices are denoted by capital letters.
We write a matrix B as B = (b1, · · · , bn) where bi is the i-th column vector of
B. We denote by B� = (b�

0, · · · , b�
n−1) the Gram-Schmidt orthogonalization of

the matrix B.

2.1 Geometry

Norms, asymmetric norms, pseudo-norms. We will use the �1, �2
(Euclidean) and �∞ norms, respectively defined by ‖x‖1 =

∑ |xi|, ‖x‖2 =
√

∑

x2
i and ‖x‖∞ = max |xi|. Beware that, contrary to some of the litera-

ture, the notation ‖ · ‖ does not refer by default to the Euclidean norm, but is a
place-holder for any norm, asymmetric norm or pseudo-norm (defined below).

We will make use of two weakened notions of norm during this paper. We
recall that a norm ‖ · ‖ : V → [0,+∞) on a real vector space V is a function
satisfying the three following axioms:

1. Sub-additivity: ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ V ,
2. Absolute homogeneity: ‖ax‖ = |a| · ‖x‖ for all a ∈ R, x ∈ V ,
3. Positive definiteness: ‖x‖ = 0 ⇒ x = 0 for all x ∈ V .

An asymmetric norm ‖ · ‖ : V → [0,+∞) is a function verifying axioms 1
and 3 and the following positive homogeneity axiom:

4. Positive homogeneity: ‖ax‖ = a · ‖x‖ for all a ≥ 0, x ∈ V .

Finally, in this article we will call a pseudo-norm a function ‖·‖ : V → [0,+∞)
verifying the axiom 1 and the following linear monotonicity axiom:

5. Linear monotonicity: ‖ax‖ ≥ ‖x‖ for all a ≥ 1.
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Lattices. A lattice Λ is a discrete subgroup of a finite-dimensional Euclidean
vector space Rn (or Hermitian vector space Cn/2 
 R

n). A lattice admits a basis,
that is a matrix B ∈ R

d×n such that Λ = B · Zn for some n ≤ d; n is called the
dimension of the lattice. Its volume is defined by Vol(L) =

√

det(BtB) for any
basis B of Λ (this measure is independent of the choice of the basis).

To quantify the shortness of a vector v ∈ Λ, we use the so-called Hermite
factor η = ‖v‖2/Vol(Λ)1/n (where n = dim(Λ)) instead of the approximation
factor α = ‖v‖2/λ1(Λ) (where λ1(Λ) = minw∈Λ\{0} ‖w‖2), as the minimal length
of a lattice is typically not known exactly. Note that this choice does not affect
the comparison of reduction performances between different algorithms.

Remark 1. While the latter approximation factor α is often preferred in worst-
case complexity theory, the former Hermite factor η is typically more relevant and
convenient for average-case cryptanalysis. Note that from Minkowski’s theorem,
we have λ1(Λ) ≤ (1+O(1/n))

√

2n/πeVol(Λ)1/n; moreover, for cyclotomic ideal
lattices we also have λ1(Λ) ≥ Vol(Λ)1/n. Therefore, the ratio between both
measure is reasonably well controlled: α/η ∈ [1, (1+O(1))

√

2n/πe]. The extreme
case α/η = 1 is reached by orthogonal lattices, and for random lattices the
Gaussian heuristic predicts α/η ≈ √

n/2πe.

Close vector algorithm. We recall from [Bab86] two polynomial time algo-
rithms RoundOff and NearestPlane (as Algorithms 1 and 2) for solving the close
vector problem given a basis of short vectors. The output v is guaranteed to
lie in the parallelepiped t + P(B) for RoundOff and t + P(B�) for NearestPlane,
where

P(B) =
{

∑

αibi|αi ∈ [−1/2, 1/2)
}

.

This allows to bound ‖v − t‖, depending on the quality of the basis B, and
of considered norm ‖ · ‖.

Algorithm 1. RoundOff(B, t)
Require: A basis B of a full-rank lattice L ⊂ R

n, a target point t ∈ R
n.

Ensure: A lattice vector v ∈ L close to t: v − t ∈ P(B)
1: x ← B−1t
2: y ← (�x1�, . . . , �xn�)
3: v ← By
4: return v

2.2 Number Theory

Cyclotomic number fields. Throughout this paper, m denotes the power of
a prime, ωm is a primitive m-th root of unity, and K = Q(ωm) is the m-th
cyclotomic number field. It is a number field of degree n = ϕ(m) = Θ(m).



On the Shortness of Vectors to Be Found by the Ideal-SVP 327

Algorithm 2. NearestPlane(B, t)
Require: A basis B of a full-rank lattice L ⊂ R

n, a target point t ∈ R
n.

Ensure: A lattice vector v ∈ L close to t: v − t ∈ P(B�)
1: f ← t
2: v ← 0
3: for i = n downto 1 do
4: y ← 〈t, b�

i 〉/‖b�
i ‖2

5: zi = �y�
6: f ← f − zibi

7: v ← v + zibi

8: end for
9: return v

We denote by G its Galois group over Q, while τ ∈ G denotes complex con-
jugation. We recall that G 
 (Z/mZ)×, by constructing the automorphism
σi ∈ G : ω �→ ωi for any i ∈ (Z/mZ)×. Complex conjugation corresponds to −1,
i.e., τ = σ−1. The norm of an element x ∈ K is given by Nx =

∏

σ∈G σ(x), and
it holds that Nx ∈ Q for any element x ∈ K.

We recall that the discriminant ΔK of cyclotomic number fields K asymp-
totically satisfies log |ΔK | = O(n log n) [Was12]. More specifically, for any prime
power conductor m = pk, the discriminant of Q(ωpk) is ±ppk−1(pk−k−1).

Ideals of OK . The ring of integers of K is denoted OK = Z[ωm]. An integral
ideal h ⊂ OK is an additive subgroup closed under multiplication by any element
of the ring; more precisely ∀a ∈ OK , ah ⊂ h. A fractional ideal f ⊂ K is an ideal
of the form f = 1

sh for some scalar s ∈ Z. Unless specified to be integral, ideals
will be considered to be fractional.

The elements (g1, ..., gr) are generators of the ideal f when f =
∑

i giOK . In
particular, when the ideal is generated by a single element, it is called principal.
For an integral ideal h ⊂ OK , the quotient OK/h is finite and Nh = |OK/h|
is the norm of the ideal h. When h is principal, there is an element h such
that h = hOK , and the norm of h coincides with the algebraic norm of h, i.e.,
Nh = Nh.

Ideals as lattices. The field K is endowed with a canonical structure of
Hermitian vector space via its Minkowski embedding. That is, letting ζm =
exp(2ıπ/m) ∈ C, and letting ψi : K → C be the field morphism sending ωm to
ζi
m for each i ∈ (Z/mZ)× coprime to m, each elements e ∈ K is identified with

the vector ψ(e) = (ψi(e))i∈(Z/mZ)× ∈ C
n. By abuse of notation, we often identify

the elements e and ψ(e); in particular, ‖e‖α refers to ‖ψ(e)‖α for α ∈ {1, 2,∞}.
Any ideal h of OK can be viewed as a Euclidean lattice via the above embed-

ding. The volume of h as a lattice relates to its algebraic norm via the equation
Vol(h) =

√|ΔK |Nh.
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Class group. The class group ClK = IK/PK of K is the quotient of the
(abelian) multiplicative group of fractional ideals IK by the subgroup of principal
ideals. We denote by [h] the class of the ideal h in ClK . The trivial class [OK ]
is the class of principal ideals. The class group is written multiplicatively. The
minus-part Cl−K of the class group is defined as the kernel of the relative norm
map NK/K+ : ClK → ClK+ , [h] �→ [hhτ ], where K+ is the maximal real subfield
of K, and hτ denotes the complex conjugation of h.

The class number hm = |ClK | is the order of the class group. Denoting
h+

m = |ClK+ | and h−
m = |Cl−K | we have hm = h+

m · h−
m.

Galois group ring. The Galois group ring R = Z[G] is the set of formal linear
combinations of elements of G with integral coefficients. The group operation of
G is extended to a multiplication law in R, providing R with a ring structure.
The ring R acts naturally on the ideals of OK as follows: let s =

∑

σ∈G sσσ ∈ R
and let h be an ideal of OK , then we define the action of s on h as

hs =
∏

σ∈G

σ(h)sσ .

2.3 Cyclotomic Log-Unit Lattice

We abusively call units of K the elements of the group O×
K . The embeddings of

K are all complex, and such that ψi = ψ−i, hence |ψi| = |ψ−i|, so we define the
set of indices I = (Z/mZ)× /{±1}. The logarithmic embedding

Log : K× → R
n/2

x �−→ x = (log(|ψi(x)|))i∈I

defines a group homomorphism. The Dirichlet Unit Theorem ensures that Λ =
Log(O×

K) is a lattice (called the log-unit lattice) of rank n/2− 1. The projection
of the log-embedding of an element x on the all-1 vector 1 = (1, . . . , 1) directed
line is proportional to the logarithm of its algebraic norm log(Nx). In particular,
as the algebraic norm is multiplicative, the algebraic norm of a unit is ±1 and
Λ ⊥ Span(1). We denote by H the orthogonal complement of Span(1), the
minimal vector space supporting the log-unit lattice Λ. Conversely, we define a
reciprocal function to Log, that is

Exp : Rn/2 → R
n

(x1, . . . , xn/2) �→ (exp(x1), exp(x1), . . . , exp(xn/2), exp(xn/2))

Up to reordering of coefficients, we have that (|ψi(x)|)i∈(Z/mZ)× = Exp(Log(x)),
in particular ‖Exp(Log(x))‖2 = ‖x‖2.

Not only do we know the structure of the units of OK by Dirichlet’s Theorem,
but in the case of cyclotomic fields of prime-power conductor we also have an
explicit set of relatively short vectors (namely, the Log bij ’s defined below) which
generate a finite index sublattice of the log-unit lattice Λ.
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More precisely, with ζ ∈ K a primitive m-th root of unity, we define the
multiplicative group V generated by ±ζ and the elements zi = ζi − 1, for 1 ≤
i ≤ m− 1. Then, the cyclotomic units are defined as C = V ∩O×

K . The elements
bij = zi

zj
(when only one index is given bi, we refer to bi1) are units of OK .

Then, the sublattice LogC is generated by the vectors (Log bi)i∈I\{1}. The index
[Λ : LogC] and the length of the vectors Log bij are controlled by the following
results.

Theorem 1 (See [Was12] Thm. 8.2 and Exercise 8.5). For any prime
power m > 2, the index of the log-unit lattice Λ over LogC is

[Λ : LogC] = h+
m < ∞.

Corollary 2 (Corollary of [CDPR16], Lemma 6.7). Let m = pk be a prime
power. Then, ‖Log bij‖ = O(

√
m).

The two above statements allow to establish upper bounds on how well one
can solve the close vector problem in this lattice Λ. Lower bounds can also be
established by volumetric arguments, as done in [CDPR16]. In particular, they
established that Vol(Λ)1/(n/2−1) ≥ Ω(

√
m/ logm). We provide the following

better estimate.

Theorem 3. For prime powers m, we have Vol(Λ)
1

n/2−1 ∼ √
m/2.

The proof is deferred to Appendix B.

2.4 Stickelberger Lattice

Let us define the Stickelberger lattice S as the Z[G]-multiples in Z[G] of the
Stickelberger element

θ =
∑

a∈(Z/mZ)×

{ a

m

}

σ−1
a ∈ Q[G],

where {x} denotes the fractional part x−�x� of the rational number x. In other
words, S = Z[G] ∩ θZ[G].

Theorem 4 ([Was12]). The Stickelberger ideal S is such that for any fractional
ideal h of OK , and for any s ∈ S, the ideal hs is principal. In other words, S
annihilates the ideal class group of K.

Similarly to the log-unit lattice, we know a generating set of relatively short
vectors (namely, the wi’s defined below) of S. Let us define the vectors vi, 2 ≤
i ≤ n + 1 as vi = (ai − σai

)θ. The aforementioned vectors wi’s, 2 ≤ i ≤ n + 1
are defined by wi+1 = vi+1 − vi, and we have the following inequality on their
norms from [CDW17,Wes18].

Fact 5 ([Wes18]). For any 2 ≤ i ≤ n + 1, we have ‖wi‖2 ≤ 2
√

n.

In the case of prime conductors m, Schoof established in [Sch10] that all the
wi’s have ±1 coefficients, in particular ‖wi‖2 =

√
n.
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3 Approx-SVP on Cyclotomic Ideals

3.1 Overview

Building upon [CGS14,EHKS14,CDPR16,BS16], the Approx-SVP algorithm for
cyclotomic ideals of [CDW17] splits in the following 4 steps given below. A more
detailed overview of these recent works is given in [Duc17]. Some details have
been simplified by making use of several working hypotheses summarized at the
end of this section.

Step 1 (quantum): Class-Group Discrete Logarithm. The first step con-
sists in expressing the class [a] of the input ideal a in base B = {pσ|σ ∈ G} for
some prime ideal p, using the quantum poly-time algorithm of [BS16]. Under
Hypothesis 7, such a decomposition always exists. This algorithm is heavily
based on the quantum algorithm for the Hidden Subgroup Problem over R

n

from [EHKS14]. This provides an element e ∈ Z[G] such that [pe] = [a].

Step 2 (classical): Close Principal Multiple. The second step, introduced
in [CDW17] consists in finding a close principal multiple of a, that is a principal
ideal of the form b = ac where c ⊂ OK is an integral ideal of reasonably small
norm Nc ≤ F . This will allow to focus the search of a short vector to the
(principal) sublattice b ⊂ a.

This is done by finding a point v ∈ S close to e. Setting w = v − e gives
a ‘small’ ideal c = pw such that b = ac is principal. Indeed, [b] = [a][c] =
[p]e[p]v−e = [p]v, and [p]v = [OK ] by Stickelberger’s Theorem.

Yet c is not necessarily integral as coefficients of w ∈ Z[G] can be negative.
This is nevertheless easy to solve under Hypothesis 6, as it then holds that
[p−1] = [pτ ]. This gives the desired b ⊂ OK of bounded norm Nb ≤ p‖w‖1 .

Using the NearestPlane algorithm and an explicit short basis of the augmented
Stickelberger lattice S′ := S +(1+ τ), it is shown in [CDW17] that one can find
a close vector v ∈ S, at �1-distance at most B2

‖w‖1 = ‖v − e‖1 ≤ B2 = O(n3/2). (1)

Assuming Np = poly(n) leads to

Nb/Na = (Np)B2 = exp( ˜O(n3/2)). (2)

Step 3 (quantum): Principal Ideal Problem. The next step consists of
solving the Principal Ideal Problem (PIP) on the principal ideal b, that is, find-
ing a generator h of it: hOK = b. As for the Class-Group Discrete Logarithm
Problem, there is a quantum poly-time algorithm [BS16] for this task.



On the Shortness of Vectors to Be Found by the Ideal-SVP 331

Step 4 (classical): Short Generator Problem. The last step consists in
finding a unit u ∈ O×

K such that g = uh (which also generates b) has small
norm. As in Step 2, this again can be rephrased as a close-vector problem, this
time in the log-unit lattice Λ = LogO×

K .
Using a randomized variant of the RoundOff Algorithm with the explicit

short basis {Log bj , i ∈ I} of the log-unit lattice, it is shown [CDPR16, Theorem
6.3] that for any target H = Span(Λ), one can find a logarithmic unit l ∈ Λ at
distance at most B4 = O(

√
m logm)

‖l − t‖∞ ≤ B4. (3)

From any target t ∈ H. Setting t to be the orthogonal projection of Log h onto H,
and u such that l = Log u leads to a short generator h = gu, of norm bounded by

‖h‖∞ ≤ (Ng)1/n · exp(‖l − t‖∞) ≤ (Ng)1/n · exp(O(
√

n log n)). (4)

Conclusion. In conclusion, we have found a vector g ∈ b ⊂ a of norm at most:

‖h‖2 ≤ √
n‖h‖∞ ≤ √

n · (Ng)1/n · exp(B4)

≤ √
n · (Na)1/n · pB2/n · exp(B4)

≤ Vol(a)1/n · √
n · Δ

−1/2n
K · pB2/n · exp(B4)

≤ Vol(a)1/n · exp( ˜O(
√

n)),

that is, we have solved approx-SVP on the cyclotomic ideal a with an Hermite
factor of η = exp( ˜O(

√
n)).

3.2 Slackness of the Bounds of Step 4

Note that the 4th step from [CDPR16] makes use of a non-tight bound. Indeed
the exact length of h can be written as

‖h‖2 = (Ng)1/n · ‖Exp(l − t)‖2,

and [CDPR16] simply considers

‖Exp(l − t)‖2 ≤ √
n · exp(‖l − t‖∞).

For our concrete analysis, it is therefore more relevant to define the pseudo-norm
‖ · ‖� : H → [0,+∞)

‖x‖� := ln(‖Exp(x)‖2).
While it holds that ‖x‖� ≤ ‖x‖∞ + ln(

√
n), the slackness of this inequality is

not only induced by the typical �2 − �∞ slackness ‖x‖∞ ≤ ‖x‖2 ≤ √
n‖x‖∞, in

the sense that we can have ‖x‖� �≥ ‖x‖∞.
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x ∞ + ln(
√

n) x

minv L x − v ∞ + ln(
√

n) minv L x − v

Fig. 1. Greyscale plots comparisons of ‖ · ‖∞ and ‖ · ‖� on the space H for m = 7
(n = 6, dim(H) = n/2 − 1 = 2, H ⊂ R

n/2). The black arrows represent the projection
of the canonical axes of R3 onto H. The blue dots represent the points of the log-unit
lattice Λ = LogO×

K . The red cells represent Voronoi partitions. (Color figure online)

Indeed, negative coefficients in x contribute very little to ‖x‖�. This is
exemplified by having a pathologically negative coefficient: taking x = α(1 −
n/2, 1, . . . , 1) ∈ H where α > 0 we have

‖x‖∞ = α(n/2 − 1)
‖x‖� ≤ α + ln(n).

To represent things more pictorially, let us assume m = 7, for which n =
φ(m) = 6: the space H has dimension n/2 − 1 = 2 and is embedded in R

3:
H = {(x, y, z)|x + y + z = 0}. A graphical comparison of ‖ · ‖∞ and ‖ · ‖� is
provided in Fig. 1. As we can see, not only the ‖ · ‖∞ is pessimistic, but it can
also lead to a wrong choice for the optimal solution: the Voronoi partitioning
under ‖ · ‖∞ and ‖ · ‖� do differ.
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3.3 Concrete Estimation of the Hermite Factor

At the time of writing, the authors do not possess a quantum computer suf-
ficiently powerful to execute the full algorithm. Fortunately, it is nevertheless
possible to simulate the behavior of the Hermite factor, since it depends only
on the behavior of the classical steps 2 and 4. More precisely, assuming that
e mod S′ and t mod Λ are uniform and independent (Hypothesis 8), we can
study experimentally the average behavior of the whole algorithm.

More precisely, having introduced the appropriate pseudo-norm ‖ · ‖�, we can
now write the exact value of the Hermite factor as a function of intermediate
values v − e and l − t as follows:

η = Δ
− 1

2n

K · exp
(

ln p

n
· ‖v − e‖1 + ‖l − t‖�

)

. (5)

Therefore, we can predict the behavior of η simply by measuring experimen-
tally the distribution of ‖v − e‖1 and ‖l − t‖�. For comparison with LLL and
BKZ, it is more convenient to consider the root Hermite factor δ = η1/n.
For example, for LLL we have δ ≈ 1.022 according to [NS06], and for BKZ
with blocksize β ≥ 50, both heuristic arguments and experiments [CN11] give
δ2(β−1) ≈ (β/(2πe))(βπ)

1
β .

3.4 Working Hypotheses

Restriction on the conductor. While the algorithm above has been initially stud-
ied for all prime-power conductors m in [CDW17,CDPR16], and even generalized
to all conductors in [Wes18], the body of this paper will focus only on prime con-
ductors m. This avoids numerous case by case discussions. One may prefer to
directly study the case of power of 2 conductors, which is the most common in
applications. However, powers of 2 are too sparse to allow for reasonable extrap-
olation. We therefore defer it to Appendix A, where we will compare it to the
prime case.

Number-theoretic hypotheses. Two hypotheses are used in the works of [CDW17,
CDPR16] concerning the structure of the class-group. The first is that the size of
the plus-part of the class group h+

m (i.e. the size of the class group of the maximal
real subfield) is only polynomial in the conductor m. The second is that one can
construct (by random sampling) a small set of small-norm ideals that generate
the class group as a Z[G]-module.

While these assumptions are sufficient for asymptotic results, they are not
precise enough for a more effective study such as ours. We will therefore, as a
working hypotheses strengthen those assumptions.

Hypothesis 6. The plus-part of the class group is trivial, i.e. h+
m = 1.

Hypothesis 7. The class group is generated by the ideals above the smallest
totally split prime. That is, let p ∈ Z be the smallest prime such that p ≡ 1
mod m, and p ⊂ OK such that Np = p. We assume that [p] generates ClK as a
Z[G]-module, or equivalently that {[pσ]|σ ∈ G} generates ClK as a group.
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We will keep the notation p and p as a function of m for the rest of this paper.
For our final conclusion, we will need estimates on p. We note that for prime
conductors m, we necessarily have p ≥ 2m+1. On the other hand, prime density
suggest that “on average” over m we have p ≈ m lnm.

Because of these strengthened hypotheses, our final claims should be inter-
preted as a best-case scenario for the efficiency of those algorithms. We remind
that various computational results suggest that those assumptions are plausible
for a substantial fraction of conductors m [Was12,Sch98,Sch03]. In any case, the
failure of those two hypotheses would not invalidate our lower-bound.

Input distribution. In the light of the worst-case to average-case results of [Mic07,
SSTX09,LPR10,SS11,PRSD17], it would be interesting to study the worst-case
behavior of those algorithms. Alas, finding which input leads to the worst-case is
most likely an intractable problem. We therefore instead assume that the inputs
will be uniform modulo the respective lattices.

Hypothesis 8. The input e ∈ Z[G] of step 2 is uniform in Z[G]/(S + (1 +
τ)Z[G]), and the target t in step 4 is uniform in H/Λ.

Remark 2. The first part of the hypothesis essentially states that the class [a]
of the input ideal a is uniform over Cl = Cl−. Interestingly, the main theorem
of [JW18] allows to randomize the input so as to ensure its uniformity in the
class group, by randomly multiplying it by a few small prime ideals. This only
affects its norm by a factor exp( ˜O(n)), which asymptotically has a negligible
impact on the final approximation factor. This implies that we can re-randomize
any instance (even a worst-case one) to an average case one at a small cost.

The second part of the hypothesis can also be enforced by some random-
ization of t. A straightforward approach would be to simply add to t a (short)
random vector r of H uniformly distributed in H/Λ. Reducing r with the good
basis of Λ, this randomization has a limited impact on the final approximation
factor. More precisely, we end up with ‖t − l‖� ≤ ‖t + r − l‖� + ‖r‖� where both
‖r‖� and ‖t + r − l‖� follow the average case distribution studied in this paper
(yet are not independent). In particular, if the average case gives a solution of
length less than B with probability greater than 2/3, we can find solutions of
length at most 2B in the worst-case, by randomizing on average 3 times.

This loss of a factor 2 should only be read as a preliminary conclusion con-
cerning the worst case. Indeed, heuristically, randomizing the input ideal for the
first step will also rerandomize the target of the second step. Making such a
statement formal requires generalizing [JW18] to the Arakelov class group; this
is beyond the scope of the present article and left as future work.

4 Heuristic Improvement for the Close Vector Steps

In this section, we consider potential heuristic improvements for solving the close
vector problems relatively to the log-unit lattice and to the Stickelberger lattice.
Indeed, we note that [CDPR16,CDW17] focus on proving worst-case bounds,



On the Shortness of Vectors to Be Found by the Ideal-SVP 335

and therefore apply simple and easy to analyse close-vector algorithms, namely
NearestPlane and RoundOff. There are several reasons to think that this can be
improved in practice, as discussed below.

4.1 More Short Vectors to Be Exploited

We note that the NearestPlane and RoundOff algorithms are restricted to use
exactly d short vectors for a d-dimensional lattice, while in both cases, we actu-
ally know Θ(d2) short vectors in these lattices. Indeed, for the log-unit lattice
we know the following n/2(n/2 − 1) short units:

Log bij = Log
(

1 − ζi

1 − ζj

)

, i, j ∈ I, i �= j.

Similarly, in the Stickelberger lattice, we know the following n2 short class
relations:

wiσ, 2 ≤ i ≤ n + 1, σ ∈ G.

This extra knowledge can be exploited by using algorithms that can take advan-
tage of many short vectors to solve CVP. In fact, if one knows the set V of all
the Voronoi relevants vector of a lattice of dimension d, one can solve exact-
CVP in O(|V | · poly(d)) arithmetic operations [MV10,DB15]. This is described
as Algorithm 3 (VoronoiCVP). Unfortunately the size of V can be as large as
2d − 2, and the best known algorithm [MV10] to determine it takes time O(4d).
Yet it remains possible to run this algorithm with an approximation of the set
V ′; this has been proposed and analyzed in [Laa16,DLdW19,SD19]. We cannot
apply this analysis in our case because it uses heuristic arguments that are valid
for random lattices, and those heuristics are most likely invalid for the lattices
at hand which are somewhat close to orthogonal. Furthermore, this analysis is
strongly restricted to the Euclidean norm, while we are here interested in other
norms, or even pseudo-norms. But we can nevertheless apply a similar strategy
and see how it behaves experimentally.

Algorithm 3. VoronoiCVP(V, t) ([MV10, Laa16, DLdW19])
c ← 0
while ∃v ∈ ±V such that ‖t − c − v‖2 < ‖t − c‖2 do

c ← c + v
end while
return c

This algorithm can be viewed as a discrete gradient descent, and if V is
indeed the set of Voronoi relevant vectors this descent will stop at an exact
closest vector. Otherwise, the descent can get stuck in a discrete local minima,
and therefore it was also proposed in [Laa16,DLdW19] to randomize the starting
point c = 0 and to take the best results over several descents.
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Rather than re-starting from scratch, in practice it seems preferable to con-
tinue the search nearby the current local minima: indeed the descent is done on
a convex function, it is only because it is discretized that it can get stuck, and
we expect the closest point to be not that far from the current point. Proceeding
with such a strategy requires care to avoid looping over a cycle; this is easily
prevented by keeping track of the points visited so far. At last, we also accelerate
the descent by starting from either the NearestPlane or RoundOff approximation;
this also ensures that its result will be at least as good as that of the original
algorithm. The resulting algorithm is detailed in Algorithm 4 (HeuristicCVP),
after the following final tweak.

4.2 Norm Inadequacy

Another source of inefficiency comes from the fact that NearestPlane, RoundOff
and even the above VoronoiCVP are attempting to optimize the Euclidean dis-
tance, while for our application what we really want to optimize are the �1-
distance ‖ · ‖1 for Stickelberger lattice, and the pseudo-norm ‖ · ‖� for the
log-unit lattice.

This inadequacy is easily addressed in practice simply by replacing the
Euclidean norm ‖ · ‖2 used in our HeuristicCVP algorithm by the desired
(pseudo)-norm ‖ · ‖1 or ‖ · ‖�.

Algorithm 4. HeuristicCVP(B, V, t, S, ‖ · ‖)
c ← NearestPlane(B, t) or c ← RoundOff(B, t)
C ← {c}
for i ∈ {1, . . . , S} do

c ← argminc′ ‖c′ − t‖ where c′ ranges over (c + V ) \ C
C ← C ∪ {c}

end for
return argminc′ ‖c′ − t‖ where c′ ranges over C

4.3 Dimension-Halving for Step 2

Because the Stickelberger ideal S is not full rank as a Z-module in Z[G], the
augmented ideal S′ = S + (1 + τ)Z[G] was introduced in [CDW17], which also
annihilates the class group under the assumption that h+

m = 1. Alternatively, it
is proposed in [Wes18] to instead project the lattice and the target down to the
quotient ring Z[G]/(1 + τ). More specifically, let F ⊂ G be such that F and τF
form a partition of G. We define a projection morphism

π : Z[G] → Z
F

f ∈ F �→ f

f ∈ G \ F �→ −τf
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where Z
F 
 Z

n/2 is the Z-module of formal integral sums of elements of F . We
note that there is a reciprocal function π̂ such that for all x ∈ Z

F it holds that
π(π̂(x)) = x, π̂(x) has positive coordinates, and ‖π̂(x)‖1 = ‖x‖1: any x ∈ Z

F

can be lifted back to a positive exponent in Z[G] with the same �1 norm, as
needed to solve the Close Principal Multiple problem.

While this tweak from [Wes18] was originally mostly aesthetic as it didn’t
improve the asymptotic analysis, it effectively decreases the dimension of the
problem from n to n/2; we note experimentally that this trick noticeably
improved the average length of ‖v − e‖1.
Remark 3. We note during those experiments that the index Vol(S′) = |Z[G]/S′|
(or equivalently the index Vol(π(S)) = |ZF /π(S)|) is not equal to h−

m, but rather
to 2n/2−1 · h−

m (at least for all primes m ≤ 1000): the representation of a class of
Cl− as an element of Z[G]/S′ is not unique. And indeed, only a weaker statement
is known, namely the theorem of Iwasawa [Sin80,Was12] stating that |((1 −
τ)Z[G])/((1 − τ) ∩ S)| = h−

m.

5 Implementation and Experiments

5.1 Implementation Details

Sources. Our implementation was realized in python3, and exploits the library
numpy. It is provided in open-source for repeatability and review of our exper-
iments at https://github.com/lducas/Cyclotomic-QISVP-Effective. The algo-
rithms discussed above are implemented in stickelberger.py and logunit.py.
The script experiments.py provides a convenient command line interface for
running experiments. The script verifications.py provides sanity-checks, in
particular with respect to the construction of the Stickelberger and log-unit lat-
tices.

Optimizations. The critical computation regarding the performance of Algo-
rithm 4 is the evaluation of the pseudo-norm ‖ ·‖� of x+v. In this loop, x = c− t
is fixed, while v varies over the set V , of size Θ(n2).

Naively, the efficiency of evaluating the pseudo-norm is pretty terrible: not
only does it requires Θ(n) calls to transcendental functions (log, exp), but it also
requires to run the for v ∈ V loop at the python level, inducing interpretation
overheads. We note the following identity:

exp(‖x + v‖2� ) = ‖Exp(x + v)‖2 =
∑

e2xi · e2vi = 〈Exp(2x),Exp(2v)〉.
Since y �→ exp(y2) is monotonic over [0,+∞), this means that we can actually
determine the minimizing v using a matrix-vector product M · Exp(2x), where
the rows of M are the row vectors

{

Exp(−2v)T |v ∈ V
}

. Having precomputed
M , this step becomes very fast thanks to the optimized linear algebra library
included in numpy.

Another optimization consists in using a custom hash function H for testing
c′ �∈ C in Algorithm4. By making this function linear, we can accelerate the
computation of H(c′) = H(c) + H(v).

https://github.com/lducas/Cyclotomic-QISVP-Effective
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Numerical stability issues. In the experiment reported below, Fig. 2a has been
truncated at dimension 800: after this point the behavior started being erratic.
We strongly suspect that this is due to numerical stability issues during the
Gram-Schmidt Orthogonalization algorithm. Unfortunately, increasing floating
point precision seems difficult within our programming set-up, as python/numpy
does not support more than double precision floats. Perhaps surprisingly, step 4
showed no such issue, at least up to dimension 3000. It may be that matrix
inversion is more numerically stable than Gram-Schmidt, but also that the log-
unit basis is better conditioned than the Stickelberger basis.

5.2 Experimental Results

We now report on the behavior of the original algorithms of [CDW17,CDPR16]
and our heuristic improvements. Our experiments are depicted in Fig. 2. The
data points are averaged over 100 samples per prime conductor m. For certain
batches of experiments, we may have skipped some conductors so as to obtain
data points for larger conductors in reasonable time. The computation ran for
about a week, using 8 cores (Intel Xeon E5-2650v3 @2.3GHz).

Deviation from average. Before commenting on the average behavior, we first
note that, apart from the naive algorithms, the deviation from average was
extremely small: the standard deviation is smaller than the average by a factor
at least 20 for conductors m ≥ 200, and the gap seems to grow further with the
dimension. This may not entirely dismiss the possibility of rare outliers, but the
bounds from Sect. 6 will control the probability of outliers.

Experimental effective asymptotics. Our first remark is that the upper bounds
from [CDW17,CDPR16] ‖v − e‖1 = O(n3/2) and ‖l − t‖� = O(

√
n log n) seem to

be reached in practice, i.e., it seems very plausible that ‖v − e‖1 = Θ(n3/2) and
quite plausible ‖l−t‖� = Θ(

√
n log n). More precisely, for the original algorithms,

for large ranks n = ϕ(m) it seems to hold that:

‖v − e‖1 ≈ 0.039 · n3/2, and ‖l − t‖� ≈ 0.32 ·
√

n lnn. (6)

Our heuristically improved variant using HeuristicCVP with n3/2 iterations yields

‖v − e‖1 ≈ 0.032 · n3/2, and ‖l − t‖� ≈ 0.117 ·
√

n lnn. (7)

Increased number of iterations for HeuristicCVP. Of course, one would ideally
want to estimate how those constants evolve as the number of iterations for
HeuristicCVP increases. However, such experiments become impractical as this
number grows further than n3/2.

From Fig. 2c, we note that increasing the number of iterations beyond n does
not seem to provide significantly better solutions in the log-unit lattice. No such
conclusion can be drawn for the Stickelberger lattice (Fig. 2a). Fortunately, the
lower bound studied in Sect. 6.1, Fig. 3, will show that the solution found with
n3/2 iterations is already quite close to optimal.
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(a) Step 2
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(b) Step 4
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(c) Step 4 (zoomed in)
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Fig. 2. Average distance given by various CVP algorithms for steps 2 & 4, for prime
conductors m.
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6 Volumetric Lower Bounds

In this section, we provide probabilistic lower bounds using volumetric argu-
ments. More specifically, we compute a lower bound r := r(L, ‖ · ‖) for the
covering radius of a given lattice L under a given (asymmetric) norm ‖ · ‖. The
following proposition states that most points are at a distance almost r from L.

Proposition 1. Let L be a full-rank lattice in a euclidean vector space V of
dimension d, and let B = {x ∈ V |‖x‖ < 1} be the open unit ball associated to an
(asymetric) norm ‖ · ‖. Let r = (Vol(L)/Vol(B))1/d.

Then, for any α ∈ [0, 1], and for a random vector x such that x mod L is
uniformly distributed, the probability that

‖x − L‖ := min
v∈L

‖x − v‖ ≤ αr

is less than αd. In particular, there exists a vector x ∈ V such that minv∈L ‖x −
v‖ ≥ r.

Proof. We work over the torus V /L, whose total measure is Vol(L). The prob-
ability that ‖x − L‖ ≤ αr is given by

P =
Vol(αrB mod L)

Vol(L)
.

Note that Vol(αrB mod L) ≤ Vol(αrB), with equality if and only if the union
⋃

v∈L v + αrB is disjoint. In particular

P ≤ αdrd Vol(B)/Vol(L) = αd.

Remark 4. When comparing experimental results to those lower bounds, one
should keep in mind that a gap does not necessarily imply that the algorithm
fails to find the exact closest vector. Indeed, the above bound is tight only for
lattices that are a perfect packing with respect to the considered balls.

For example consider Z
n, for which CVP is easy to solve in any �p norm.

It is a perfect packing for the �∞ distance, and we have r(Zn, ‖ · ‖∞) = 1/2,
while the average �∞ distance of a point to Z

n is 1/2 − o(1). Now, consider Z
n

for the �1 distance, which is far from a perfect packing. We have r(Zn, ‖ · ‖1) =
(n!/2n)1/n ≈ n/2e ≈ 0.184 · n, yet the average �1 distance is n/4 = 0.25 · n.

6.1 Volumetric Bound for Step 2

Before we proceed, we must first discuss whether we should apply the lower
bound with or without the dimension halving trick, i.e., whether we should
apply it to the augmented Stickelberger lattice S′ = S + (1 + τ)Z[G], or to
the projected one π(S). While both have the same volume, the dimension of
S′ is twice the dimension of π(S), which would give a smaller lower bound.
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Yet, we note that π can only decrease �1 distances, so a lower bound for π(S)
will also apply to S′.

We have that dim(π(S)) = n/2 =: d and Vol(π(S)) = 2d−1h−
m. The volume

of the �1 unit ball in dimension d is given by Vol(B1) = 2d/d!. We need an
estimation of h−

m. Let

G(m) = 2m(m/4π2)ϕ(m)/4.

Kummer claimed, without publishing a proof, that for any prime m we have
h−

m ∼ G(m). Although this is now believed to be unlikely, Lepistö [Lep74] proved
a weaker (but sufficient here) explicit bound of the form

∣

∣

∣

∣

log
(

h−
m

G(m)

)∣

∣

∣

∣

= O(log(m)).

We deduce that h−
m = G(m)eO(log(m)), and therefore h−

m
1/d ∼ G(m)1/d. Such an

approximation is numerically satisfied up to a 1% error for primes m ∈ [100, 2000]
by our script verification.py. Using Stirling’s formula, and the facts that
d = n/2 ∼ m/2 (since m is prime) and (2m)1/d ∼ 1, we conclude that

r(π(S), ‖ · ‖1) ∼
(

2d · m(m/4π2)n/4
/

(2e/d)d
)1/d

∼ (m/4π2)1/2 · (d/e)

∼ 1
4eπ

· n3/2 ≈ 0.02927 · n3/2

Adjusting to the integral input setting. While these bounds hold asymptotically,
we note that our experiments violate them for dimensions below 200. The reason
is that in Step 2, the input is an integral vector, uniform in Z

F /π(S), and not
uniform in R

F /π(S) as required by Proposition 1. However, we can rather easily
adjust to this setting, by counting integral points Nd,b = |bB1 ∩ Z

d| in the ball
of radius b. Using dynamic programming, Nd,b is easily computed in polynomial
time thanks to the following recursion:

Nd,0 = 1, N1,b = 2b + 1, Nd,b = Nd−1,b + 2
b

∑

k=1

Nd−1,b−k.

For our concrete lower bound, we can therefore take r to be the largest
integer such that Nd,r ≤ |ZF /π(S)|. This is depicted in Fig. 3, and compared to
the performance of our algorithm HeuristicCVP. We note (as expected) that the
asymptotic behavior is similar to our continuous volumetric analysis above.
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Fig. 3. Numerically computed volumetric lower bounds: maximal r such that Nd,r ≤
|ZF /π(S)|, compared to the experimental behavior of HeuristicCVP.

Remark 5. In the above analysis, we have accounted for the factor 2n/2−1 that
separates the lattice of (augmented) Stickelberger class relations from the full lat-
tice of class relations (see Remark 3). While we are currently uncertain whether
or not this factor is unavoidable, we note that its impact is asymptotically very
simple: it contributes a factor 2 to our lower bound. Therefore, one may prefer
the rely on a halved lower bound.

6.2 Volumetric Bound for Step 4

We start by noting that we cannot apply Proposition 1 directly to our pseudo-
norm, the issue being the lack of homogeneity: {x ∈ H | ‖x‖� ≤ r} �= r · {x ∈
H | ‖x‖� ≤ 1}. Fortunately, there seems to be a reasonably close asymmetric
norm ‖x‖+∞ = maxi xi that can be used to bound the pseudo-norm ‖x‖�.3 Note
that, on the space H, it differs from the usual �∞ norm by ignoring negative
coefficients. For any x ∈ H, we have the inequalities

‖x‖+∞ + ln(
√

n) ≥ ‖x‖� ≥ ‖x‖+∞ + ln(
√
2) (8)

The asymmetric unit ball B+∞ for the ‖ · ‖+∞ asymmetric norm is the (d − 1)-
simplex whose d vertices that are a permutation of (1, . . . , 1, 1 − d). Its volume
is given by Vol(B+∞) = dd−1/2/(d − 1)!, and we have Vol(B+∞)1/(d−1) → e.

On the other hand, According to Theorem 3, the root volume of the
log-unit lattice satisfies Vol(Λ)1/(d−1) ∼ √

n/2 for any prime conductors m.
Such an approximation is numerically satisfied up to a 1% error for primes

3 To verify that ‖ · ‖+∞ is indeed an asymmetric norm over H, we recall that vector
space H is {x ∈ R

d| ∑ xi = 0}: there is always one coordinate that is positive.



On the Shortness of Vectors to Be Found by the Ideal-SVP 343

m ∈ [100, 2000], as can be verified with the script verification.py. We there-
fore conclude that:

r(Λ, ‖ · ‖+∞) ∼
√

n

2e
≈ 0.1839 · √n (9)

Remark 6. We note that our concrete lower bound is also asymptotically better
than the one given in [CDPR16]. The reason is that it is based on Theorem 3
stating that Vol(Λ)1/(d−1) ∼ √

n/2, while [CDPR16] relied on the inequality
Vol(Λ)1/(d−1) ≥ Ω(

√
n/ log n). This 1/ log(n) factor comes from cumulating the

approximation factors from Landau’s estimate for L-functions at 1 [Lan27] over
all non-trivial character. Our Theorem 3 shows that Landau’s approximations
essentially cancel out under geometric average over all characters.
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Fig. 4. Numerically computed lower bound r := r(Λ, ‖ · ‖+∞) + ln(
√
2), compared to

the experimental behavior of HeuristicCVP.

7 Conclusion

7.1 Summary

In Table 1 we summarize the asymptotic behavior of the algorithms and lower
bounds studied in the previous sections.

Recall from formula (5) that the Hermite factor is

η = Δ
− 1

2n

K · exp
(

ln p

n
· ‖v − e‖1 + ‖l − t‖�

)

,

where p is the smallest prime such that p ≡ 1 mod m. We can now predict the
concrete Hermite factor of the quantum algorithms for Ideal-SVP.
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Table 1. Asymptotic summary.

Step 2
‖v − e‖1

Step 4
‖l − t‖�

Naive algorithms from [CDW17,CDPR16] 0.039 · n3/2 0.32 · √
n lnn

HeuristicCVP with n3/2 iterations 0.032 · n3/2 0.117 · √
n lnn

Volumetric lower bound 0.02927 · n3/2 0.1839 · √
n

Halved volumetric lower bound (Remark 5) 0.01463 · n3/2 N/A
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Fig. 5. Quality of Quantum Ideal-SVP vs. LLL and BKZ.

7.2 Comparison with Classical Algorithms

We now compare our prediction to the classical algorithms LLL and BKZ. For
this comparison, we will consider the smallest possible value for p = 2m+1 and
the expected value p = m lnm derived from prime density. This comparison is
provided in Fig. 5, using the root Hermite factor δ = η1/n.

We provide the reference root Hermite factors for LLL and BKZ with block-
sizes β ∈ {80, 120, 160, 300}. The LLL algorithm is the cheapest lattice reduc-
tion available, and it should be noted that the quantum steps [EHKS14] 1 and 3
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also make several quantum calls to LLL: the computational cost of the quan-
tum algorithm is therefore bounded below by the cost of LLL.4 The cost of
BKZ grows exponentially or even super-exponentially with β, depending on the
choice of algorithm. Nevertheless, BKZ-80 remains a reasonably easy computa-
tion (say, about 8m core-minutes), while BKZ-120 is to be considered doable
(8m core-days). Running BKZ-160 is on the borderline of feasible: to this date,
computational records almost correspond to one out of the ≈8m steps of such a
lattice reduction [ADH+19,SG10]. Finally, BKZ-300 is roughly what is required
to break the weakest lattice-based candidates to the NIST post-quantum stan-
dardization [ACD+18].

7.3 Conclusion

Our first conclusion is that the naive version of the quantum algorithm is not rel-
evant for rings of ranks considered practical for use in cryptography, as it does
not outperform classically feasible computation (BKZ-120) before prime con-
ductor m ≈ 32000. Nevertheless, our heuristic improvements allow to decrease
this cross-over point down to m ≈ 6000. Such a dimension is still one order
of magnitude larger than what is used for NIST post-quantum standardization
candidates, but is within the range of what is used by certain concrete Fully
Homomorphic Encryption schemes, for example [HS15].

Finally, one may fear that further tricks could improve the heuristic CVP
steps within [CDPR16,CDW17], and maybe reach the lower bound.5 The con-
clusion is somewhat reassuring for NIST candidates, as the cross-over point with
BKZ-300 should not happen before ring rank n ≈ 6000, even given a perfect CVP
oracle for the Log-unit lattice and the Stickelberger lattice: NIST candidates use
cyclotomic rings of rank at most n = 1024.

While the body of this article is focused on prime conductors m, we also
considered the powers of 2 conductors, and found that both the experimental
behavior and the numerical lower bounds were slightly worse in the powers of 2
case. This is reported in Appendix A.

7.4 Limitations

To avoid any over-interpretation of our results, we summarize here the limits of
what can be concluded from the present work.

4 Unfortunately, while proved polynomial time, the algorithms of [EHKS14,BS16]
have, to our knowledge not been the subject of refined complexity analysis. But
already, one can note that the lower bound we suggest is far from tight, considering
the overheads of running LLL quantumly rather than classically, and this, many
times.

5 We recall that this bound is plausibly not tight, that is, even a perfect CVP oracle
may not be able to reach it; see Remark 4.
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Limitation of the lower bounds. We first remind that this lower-bound is only
probabilistic, i.e., Proposition 1 states that the probability that a target falls
closer to the lattice by a factor α < 1 is at most αd. That is, it may not be
impossible to rerandomize the input to bruteforce a better solution, but it will
raise the cost of the algorithm to exponential time.

Moreover, it should be noted that these lower bounds apply only to algo-
rithms that are slight variations of [CDPR16,CDW17]. It has been proved that
ideas beyond this framework make it asymptotically possible to go below those
lower bounds [PMHS19], but at the cost of a sub-exponential running time,
together with an exponential amount of precomputation.

Limitation of the cryptanalytic impact. On the other hand, we also remind the
reader that we have made several working assumptions for the sake of simplicity,
putting ourselves in the most favorable set-up. In particular, if one were to need
not 1 but 2 ideals to generate the class group, this would asymptotically double
the constant for Step 2.

Most importantly, we also recall that this work only studies the concreteness
of the first obstacle discussed in our introduction, while the second obstacle
remains unsolved. That is, these results concern only Ideal-SVP, and it remains
unclear how they could be generalized to Ring-SIS, Ring-LWE, or NTRU.

A The Power of 2 Case

In this section we compare the power of 2 case to the prime case. The experi-
mental behavior and lower bounds for step 2 and step 4 are given in Fig. 6. We
see that the asymptotic lower bounds for the power of 2 case is similar to the
prime case, yet for both step 2 and 4, the experimental behavior is slightly worse
for the power of 2 case.

We also need to account for the inverse root discriminant, which is also a
factor in final Hermite factor η given by Formula (5). A quick calculation shows
that this factor is a similar function of the rank n in both cases. Indeed, when
m is prime, the inverse root discriminant |ΔK |−1/2n appearing in the formula
for the root Hermite factor (5) is given by

|ΔK |−1/2n = m−(n−1)/2n ∼ 1/
√

m ∼ 1/
√

n.

On the other hand for m = 2k we have

|ΔK |−1/2n = 2−n(k−1)/2n = 2(1−k)/2 =
√

2/m = 1/
√

n.

In conclusion, we expect that the quantum algorithm for Ideal-SVP at hand pro-
vides vectors slightly longer for power of 2 conductors than for prime conductors.

B Estimation of the Regulator

In this appendix we prove Theorem 3, which states that for any prime power
m = pk, we have (Vol(Λ)/h+)

1
n/2−1 ∼ √

m/2. First, we recall that the volume of
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Fig. 6. Comparison of the prime conductors and power of 2 conductor.

the log-unit lattice is related to the so-called regulator R of K by the formula6

Vol(Λ) =
R

√

n/2
2n/2−1

.

Therefore Vol(Λ)
1

n/2−1 ∼ R
1

n/2−1 /2, and it remains to estimate Rh+. Let
ΔK+ denote the discriminant of K+, the maximal real subfield of K. We have
that |ΔK+ | = |ΔK/p|1/2 when m is a power of p �= 2 (for p = 2, the following
results should adjust for the fact that |ΔK+ | = |ΔK/4|1/2). From [Was12, p. 42],

6 The denominator 2n/2−1 may not be standard in the litterature, and is due to our
definition of the logarithmic embedding. Indeed since the field at hand is totally
complex, we only use one embedding from each pair of conjugate embeddings.
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we get
Rh+ = |ΔK/p|1/4

∏

χ�=1 even

L(1, χ),

where the product is over all non-trivial even Dirichlet characters modulo m. We
have

log

⎛

⎝

∏

χ�=1 even

L(1, χ)

⎞

⎠ = −
∑

χ

∑

q

log
(

1 − χ(q)
q

)

=
∑

χ

∑

q

∞
∑

i=1

χ(qi)
iqi

=
∑

q

∞
∑

i=1

1
iqi

∑

χ

χ(qi).

Since
∑

χ

χ(a) =

{

n/2 − 1 if a ≡ ±1 mod m,

−1 otherwise,

we deduce that

log

⎛

⎝

∏

χ�=1 even

L(1, χ)

⎞

⎠ = lim
x→∞

⎛

⎜

⎜

⎜

⎝

n − 2
2

∑

qi≤x
qi≡±1 mod m

1
iqi

−
∑

qi≤x
qi �≡±1 mod m

1
iqi

⎞

⎟

⎟

⎟

⎠

.

Let us first deal with the terms where i = 1. From [Pom77], for any a such that
(a,m) = 1, we have

∑

q≤x
q≡a mod m

1
q
=

log log(x)
n

+
1

P (m,a)
+ O

(

log(m)
n

)

,

where P (m,a) is the first prime q such that q ≡ a mod m. We get

lim
x→∞

⎛

⎜

⎜

⎝

n − 2
2

∑

q≤x
q≡±1 mod m

1
q

−
∑

q≤x
q �≡±1 mod m

1
q

⎞

⎟

⎟

⎠

=
n − 2

2P (m, 1)
+

n − 2
2P (m,−1)

−
∑

a∈{2,...,m−2}
(a,m)=1

1
P (m,a)

+ O(log(m))

= O(log(m)).
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For the terms where i ≥ 2, we have from [AC49] that
∑

i≥2

∑

qi≤x
qi≡±1 mod m

1
iqi

= O(1/m).

The proof in [AC49] is given for m prime, but is easily adapted to powers of
primes. We deduce that

log

⎛

⎝

∏

χ�=1 even

L(1, χ)

⎞

⎠ = O(log(m)).

We get the estimate

(

Rh+
)

1
n/2−1 = p

pk−1(pk−k−1)−1
2(n−2) eO( log(m)

n ) = m
1
2+o(1),

from which we conclude that (Vol(Λ)/h+)
1

n/2−1 ∼ √
m/2.
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Abstract. In this paper we provide a formal treatment of proof of repli-
cated storage, a novel cryptographic primitive recently proposed in the
context of a novel cryptocurrency, namely Filecoin.

In a nutshell, proofs of replicated storage is a solution to the follow-
ing problem: A user stores a file m on n different servers to ensure that
the file will be available even if some of the servers fail. Using proof of
retrievability, the user could check that every server is indeed storing
the file. However, what if the servers collude and, in order to save on
resources, decide to only store one copy of the file? A proof of replicated
storage guarantees that, unless the (potentially colluding) servers are
indeed reserving the space necessary to store n copies of the file, the user
will not accept the proofs. While some candidate proofs of replicated
storage have already been proposed, their soundness relies on timing
assumptions i.e., the user must reject the proof if the prover does not
reply within a certain time-bound.

In this paper we provide the first construction of a proof of replication
which does not rely on any timing assumptions.

1 Introduction

Consider a scenario where a user A wants to use the cloud or some other decen-
tralized network of servers to store and distribute some file m to other users. To
make sure she and other users will be able to access the file later on, A stores
several replicas of m in different locations. However, A suspects that the servers
she is using are adversarial and may collude, for instance to save on costs by
using less space than they are supposed to. So she will be interested in checking
that indeed unique space has been dedicated to each replica, and it is natural to
require that this can be verified, even if all servers are controlled by an adversary.
We will call this proof of replication.

A first issue to note is that the well-known notions of proof of retrievability or
proof of space (which we discuss in more detail below) do not solve the problem if
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each replica is simply a copy of m. Such proofs allow a user to check that a given
file is retrievable from a server, much more efficiently than by simply retrieving
the file. However, even if A asks for a proof of retrievability of m from each of
the servers and all these proofs are successful, this may simply be because the
user is actually talking to the adversary who stores only a single copy of m.

Another idea that comes to mind is that A could let each replica be an
encryption of m under some key K, but with fresh randomness for each replica.
If the encryption is IND-CPA secure, the adversary cannot distinguish this from
encryptions of random independent messages, and hence it seems they are forced
to store all replicas in order for them to be retrievable later. While this intuition
can in fact be proved, this would not be a satisfactory solution: recall that we
want that anyone, not just A, can retrieve the original file, so A would have
to share K with other users. However, if any of these users collude with the
adversary, the security breaks down. Besides, a solution that does not require A
to store secret information for later is clearly more practical.

The idea of proof of replication was introduced in Filecoin [Lab17a,Lab17b],
a decentralized storage network1. They articulate a list of properties that they
desire from such a notion. They define a Sybil attack which is exactly what
we discussed above: if an honest client wishes to store the same file m on n
different servers, an adversary can store these using sybil identities (all servers
are controlled by one adversary) and successfully pass the storage audit, while
essentially storing only one copy of the file.

While the Filecoin paper does not give a formal treatment of proof of repli-
cation, they propose a construction for what they call a time-bounded proof
of replication. In such a notion, the file to be stored is encoded so that the
encoding process is slow: slow enough for a client to distinguish between honest
proving time, and potentially adversarial proving time which includes the time to
re-encode. Thus, the encoding process is, by design, distinguishably more expen-
sive than honest proving time. This notion is realized by using a block-cipher
and slowing it down by block chaining, and a time-bounded proof of replication
is a proof of storage of a replica that is encoded in this way.

The basic problem with all time-bounded schemes is the handling of recomput-
ing attack: the encoding has to be made so slow that even a powerful server cannot
encode faster than the time a proof takes. This is harder than it may seem at first:
even if we know for sure how many operations are needed to encode for a given value
of security parameter, the actual time it takes depends on the hardware held by the
adversarial parties, and so is beyond the control of honest users. This makes a con-
crete choice of parameters very difficult: should we compensate for the adversary
being more powerful than we expect and choose a very slow encoding thus making
life harder also for honest clients when they encode? Or should we choose param-
eters more aggressively and run a bigger risk of being cheated? It would clearly be
better if we did not have to make such a choice.

1 Other related notions in the context of data replication have been studied earlier in
the cryptographic literature; we discuss the connection and differences in the related
work section.
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We ask if we can do better in all the above aspects: can we have a proof
of replication scheme that provably resists sybil attacks, and is not time-
bounded?

Our Results. We give a formal treatment of proofs of replication, by giving a
definition that captures the desired properties as well as a construction which we
prove secure according to the definition. The construction works in the random
oracle model and can be instantiated from any one-way permutation. We con-
centrate on the case where the client doing the encoding is honest, as this seems
to be the most important case in practice, and is in line with the definitions of
proof of retrievability and storage.

Each replica of the file m to be stored in our construction has size O(|m|+κ),
where |m| is the length of m and κ is the security parameter. To verify replication,
the user conducts a proof of retrievability with each server. Any such proof can
be used, so we inherit whatever communication complexity that proof has.

Very roughly speaking, the idea in our solution is that the adversary first
receives each of the replicas to store, where each replica is a special encoding of
m. The adversary may now store a state for later use, which in the honest case
would contain all replicas. What we show is that, no matter how the adversary
computes the state, if it is significantly smaller than the combined size of all
replicas, then some of the proofs of retrievability will fail, unless the adversary
breaks a computational assumption.

Let us consider what this exactly guarantees us. Since the proofs of retriev-
ability are extractable, the above guarantees that the replicas cannot be com-
pressed i.e., the adversary must reserve enough space to store all replicas,
and this space must contain some data which is equivalent (up to polynomial
time computation) to the replicas of the file. But is this the best we can do?
Why don’t we ask that the adversary in fact stores a concatenation of all the
replicas? Unfortunately, this is impossible to achieve: even honest servers will
most likely store the same information in different formats (think of little- vs.
big-endian representation). So we certainly cannot expect that the adversary
will store exactly the same data that was received from the client. However, this
should not matter from a security point of view, as long as the original data can
be efficiently recovered.

In conclusion: it is impossible to force the corrupted servers to store exactly
the n replicas or n copies of the file. Therefore, the best we can hope for is
what we do in this paper: no matter how the corrupted servers behave, it is
possible to recover n distinct, incompressible encodings of the same file, thus the
servers cannot pass the verification unless they reserve the necessary space for
all replicas. Note, however, that in such a scenario, the corrupted servers have
no incentive to do anything else than simply store the replicas.

The main difference between our work and previously proposed solutions to
the problem, is that our solution does not require the use of time: while the
original, informal definition of proof of replication states that it should be hard
for the server to recompute the encodings of the file in the time it takes to verify
the proof, our definition is much stronger as it rules out that any polynomially
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bounded attacker who uses less storage than claimed can pass the verification.
As discussed above, this makes implementing proof of replications much easier,
since one does not need to worry about finding an appropriate value for the
verifier timeout.

To avoid misunderstandings, we emphasize that even if our definitions and
proof work with a single adversary that handles all replicas, the actual use case
includes several servers that each store one replica (if they are honest). Since it
is clearly impossible to check if a server stores something without talking to that
server, the communication complexity of our protocol must be proportional to
the number of servers2.

Finally, our main construction achieves public verifiability in the sense that
if the encoder is honest, then anyone can interact with the servers and verify the
proofs. At the end of the paper we discuss extensions which allow to cope with
malicious encoders.

1.1 Related Work

Proofs of retrievability. A lot of user data today is outsourced for storage on
the cloud both because of large volumes of data, and for reliability in case of
failure of local storage. The problem with cloud storage is that of maintaining
integrity of data and enforcing accountability of the storage provider. Proofs of
retrievability, first formalized by Juels and Kaliski in [JK07] address this problem
by allowing for audits. In a proof of retrievability, a client can store a file on the
server, while storing (a short) verification string locally. In an audit protocol,
the client acts as the verifier and the server proves that it possesses the client’s
file. The property that the server “possesses” a file is formalized by the existence
of an extractor that retrieves the client’s file from a server that makes a client
accept in the audit protocol. Since their introduction, there have been several
works [SW08,DVW09] constructing proof of retrievability schemes with a proof
of security and efficient audit procedures. One property we prioritize in this
work is public verifiability where any party can take the role of the verifier in the
audit protocol, not just the client who originally stored the file. This means the
client’s state storing any verification information for the file should not contain
any secrets. The construction of [SW08] gives a proof of retrievability scheme
secure in the random oracle model that allows public verifiability.

Proofs of space. A proof of space is a protocol where a prover convinces a verifier
that it has dedicated a significant amount of disk-space. Proofs of space were
introduced in [DFKP15] as an alternative to proof of work (PoW), and further
studied in [RD16,AAC+17]. There have been proposals based on proof of space
like chia network [chi17] and Spacemint [PPK+15]. Very roughly, a proof of
space gives the guarantee that it is more “expensive” for a malicious server that
dedicates less space than an honest server to successfully pass an audit.
2 Of course, if a single server would store all replicas, we can optimize the communi-

cation needed, this is also easy to see for our protocol, but this hardly seems like an
interesting use case.
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Data replication. Curtmola et al. [CKBA08] and Barsoum et al. [BH11] propose
protocols that enable proofs of data replication in the private verifier model,
where the client stores a secret key that is used for verification. The work of Hao
and Yu [HY10] allows public verifiability but nevertheless requires the client
to store a secret. The work of Etemad and Küpçü [EK13] studies replicated
provable data possession, but does not formalize replicated storage, and the
client need not be aware of any replication. Finally, the protocol of Armknecht
et al. [ABBK16] is also in the private verification model, and in addition, uses
RSA time-lock puzzles which results in a protocol with a time-bounded property
that we elaborate on below.

Filecoin. Filecoin is a decentralized storage network [Lab17a]. Essentially this
can be seen as a network of independent storage providers that offer verifiable
file storage and retrieval services. In the Filecoin protocol, miners earn protocol
tokens by providing data storage services.

To be used in the Filecoin context, a proof of replicated storage should sat-
isfy several properties. First, the scheme should protect against Sybil attacks as
described above e.g., a corrupt server should not be able to impersonate n dif-
ferent servers while storing a single copy of the file. Then, the scheme should be
publicly verifiable, meaning that any user (not only the original encoder) should
be able to verify the proof. It is also crucial that the security definition allows
the adversary to choose the file m. This is because an adversary could request
for m to be stored, and then prove that m was stored to collect network rewards.
Finally, the scheme should be resilient against generation attacks, meaning that
the adversary should not be able to reconstruct an encoding “on the fly” when
a proof of storage is requested.

Our main construction cannot be directly used in the Filecoin context since
the soundness of the proof relies on the encoder being honest. Thus, a malicious
encoder colluding with malicious servers could perform a generation attack i.e.,
persuade other users that some servers are storing several copies of a file without
reserving any space. At the end of the paper, we discuss how to extend our
solution to handle malicious clients too.

Time-bounded Proofs of Replication. In a recent work by Pietrzak [Pie18], a
construction for proof of replication based on proof of space is given. A proof of
replication is not formally defined, and therefore it is not clear what is the repli-
cation property that the construction satisfies. In addition, since a proof of space
is the starting point of the construction, it has the same “time-bounded” prop-
erty as the Filecoin construction, since a malicious server can pass the audit by
recomputing data. More recently, [FBBG18,BBBF18,CFMJ18,Fis18] construct
proofs of replication based on slow encodings. They have the same time-bounded
flavour of other recent works and is thus significantly different from ours.
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Comparison with Hourglass scheme [VDJO+12]. We note that our construction
and the construction of [VDJO+12] are reminiscent of each other; at a high level
both involve repeated applications of inversion of a trapdoor permutation and
a random permutation. However, there are differences in both the goals and the
details of the constructions.

The difference between the goal of the present work and the Hourglass
schemes can be summarized as follows: Hourglass only tries to guarantee incom-
pressibility of a single encoding (such that the original file can be recovered),
whereas the goal of our proof of replicated storage is to get different incompress-
ible encodings to be stored on independent servers, such that the original file
can be recovered interacting with a single server. Regarding the constructions,
our work applies the random permutation over all blocks of the file and produces
randomized and independent encodings to be stored on each server, which makes
a notable difference in the our analysis3.

1.2 Technical Overview

The existing time-bounded proofs use a public deterministic encoding function.
The problem is that this always allow a malicious server to recompute encoded
data and this may lead to a successful recomputation attack if the server has
sufficient computational resources. Our observation is that one can instead make
the encoding be probabilistic. Now the adversary will only see the encoded data
but not the randomness that the client used to encode. One may therefore hope
that recomputing an encoding is not only slow, but completely unfeasible. On
the other hand, decoding must still be easy for anyone.

To illustrate the idea of our solution, we start with a toy example: we assume
that we are given oracle access to a random permutation T , and its inverse4, act-
ing on strings {0, 1}n. As is well known (and discussed in detail later) we can
instantiate such an oracle in the standard random oracle model. In order to
create replicas of a file, A will generate an instance of a one-way trapdoor per-
mutation f : {0, 1}n �→ {0, 1}n, with trapdoor tf . For simplicity, we assume that
the file m to store is an (n − log n)-bit string. Then the i’th replica is defined to
be (f, f−1(T (m||i))), where || denotes concatenation and f is a specification of
the 1-way permutation. Clearly, anyone can easily compute m from a replica by
computing f in the forward direction and calling T−1. It turns out that this con-
struction is secure if the adversary computes the state to store for later in a very
restricted way, namely he forgets all information about at least one replica, say
the i’th one. Namely, the adversary forgets both the encoding (f, f−1(T (m||i)))
and the intermediate value T (m||i).

3 It is hard to compare our analysis with that of Hourglass since in [VDJO+12] only
an informal security argument of incompressibility is given.

4 One can think of the random permutation T as a random oracle which can be invoked
in both directions.
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We can now argue that if the adversary is nevertheless able to produce the i’th
replica, he will have to invert the one-way permutation: from the output of the
adversary (f, f−1(T (m||i))) we can (as the encoding can be decoded efficiently),
extract T (m||i). But, we assumed that the state did not contain any information
about this value (except for a negligible amount following from the fact that it
must be different from other outputs). Hence he must call the oracle to get
T (m||i). Therefore, in a security reduction, we can take a challenge value y and
reprogram T such that T (m||i) = y. Now, the i’th replica (that we assumed the
adversary could produce) is exactly the preimage of y under f .

Of course, we cannot reasonably assume that the adversary behaves in this
simple-minded way. As mentioned, we only want to assume that the state stored
is smaller than the combined size of the replicas, say by a constant factor. To
overcome this problem, we iterate the above construction several times, so that
T is called several times while preparing a replica. Now there are many more
outputs from T than the adversary can remember, and we show that by the
setting the parameters right, at least one of these is almost uniform in the view
of the adversary. Now we can place a challenge value for the one-way permutation
in this position by an argument similar to the above.

2 Preliminaries

Notation. We denote the concatenation of two bit strings x and y by x||y.
Throughout, we use κ to denote the security parameter. We denote a probabilis-
tic polynomial time algorithm by PPT. A function is negligible if for all large
enough values of the input, it is smaller than the inverse of any polynomial. We
use negl to denote a negligible function. We use [1, n] to represent the set of
numbers {1, 2, . . . , n}. For a randomized algorithm Alg, we use y ← Alg(x) to
denote that y is the output of Alg on x. We write y

R← Y to mean sampling a
value y uniformly from the set Y.

2.1 Trapdoor Permutations

A collection of trapdoor permutations is a family F = {fpk : Dpk → Dpk} such
that:

– There exists a PPT algorithm KeyGen such that (pk, sk) ← KeyGen(1κ), fpk

is a permutation.
– There exists a PPT algorithm that given pk samples uniformly from Dpk.
– There exists a PPT algorithm that on input pk and x ∈ Dpk, computes fpk(x).
– There exists a PPT algorithm that on input sk and fpk(x), computes x, that

is, f−1
sk (fpk(x)) = x.

Definition 1. A trapdoor permutation family F = {fpk : Dpk → Dpk} is said
to be hard to invert if the following holds: for all PPT algorithms A, there exists
a negligible function negl such that

Pr[fpk(z) = y : (pk, sk) ← KeyGen(1κ), x ← Dpk, y ← fpk(x),
z ← A(pk, y)] ≤ negl(κ)
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When the domain and range is clear from context, we omit the subscript pk
and only write D.

Definition 2. We call a trapdoor permutation family a B-leakage trapdoor per-
mutation if the following holds: For all PPT algorithms (A1, A2), there exists a
negligible function negl such that

Pr[fpk(z) = y : (pk, sk) ← KeyGen(1κ), x ← Dpk,

L ← A1(x, pk), y ← fpk(x), z ← A2(y, L(x))] ≤ negl(κ)

where the output length of L is bounded by B bits.

Note that every trapdoor function family is also a B-leakage trapdoor per-
mutation family for B = log κ.

RSA trapdoor permutation. The RSA trapdoor permutation is given by:

– KeyGen(1κ): Choose κ-bit primes p, q, let N = pq. Choose e such that
gcd(e, (p − 1)(q − 1)) = 1, let d be such that ed = 1 mod (p − 1)(q − 1).
Return (pk = (e,N), sk = d)

– For x ∈ Z
∗
N , given pk = (e,N), compute fpk(x) = y = xe mod N .

– For y ∈ Z
∗
N , and sk = d, compute f−1

sk (y) = yd mod N

The RSA inversion problem is assumed to be hard for any A running in time
polynomial in κ.

Invertible Random Oracle. We assume the algorithms of the construction and
the adversary have access to an invertible random oracle (IRO): that is oracle
access to Π : D → D and Π−1 : D → D.

We discuss here how to plausibly implement such an oracle: The indifferentia-
bility framework, first proposed by Maurer et al. [MRH04], informally says that
given ideal primitives G and F , a construction CG is indifferentiable from F , if
there exists a simulator S with oracle access to F such that (CG, G) is indistin-
guishable from (F, SF ). Coron et al. [CHK+16] showed that a 14-round Feistel
network where the round functions are independent random oracles is indifferen-
tiable from a random permutation. A series of subsequent works [DKT16,DS16]
show that 8 rounds is sufficient. Thus, using a Feistel network appears like a
plausible way of instantiating the oracle we need.

Unfortunately, the indifferentiability composition theorem is not known
to apply to security notions that are captured by games that have multiple
stages [RSS11]. Our security notion of proof of replication is captured using a
multi-stage game, and therefore the result of [RSS11] applies.

Therefore, the construction described below should only be seen as a plausible
instantiation of an invertible random oracle.
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A plausible oracle instantiation. In our constructions, we make use of an invert-
ible random oracle H that acts on strings of arbitrary length, and an invert-
ible random oracle T that has the same domain as a trapdoor permutation. H
is instantiated using a regular Feistel network. In the following we discuss an
heuristic instantiation of T on pairs of outputs of RSA and obtain trapdoor
permutation f and IRO T with the same domain.

We define a trapdoor permutation f : (ZN )2 → (ZN )2 as follows: f(x1, x2) =
(f ′(x1), f ′(x2)) where f ′ is the RSA permutation f ′ : ZN → ZN . Note that N is
part of the public key of the RSA permutation. The input and output of T are
elements in (ZN )2. We note that we can instantiate the Feistel construction in
this domain as well by replacing XOR with multiplication modulo N i.e., given
a random oracle G that maps inputs in Z

∗
N to strings that are twice the length,

we can define F : (ZN )2 → (ZN )2 on pairs of values modulo N as follows:

FH(L||R) = s||t, where s = L · G(R) mod N, t = R · G(s) mod N

where · is product modulo N . Note that G(x) mod N is close to uniform in
Z

∗
N , therefore, F is invertible except with negligible probability i.e., if F is not

invertible then a non-trivial factor of N is found.

2.2 Proof of Retrievability

Proofs of retrievability, introduced by Juels and Kaliski [JK07] allow a client to
store data on a server that is untrusted, and admit an audit protocol in which
the server proves to the client that it is still storing all of the data. A scheme
without random oracle was given in [DVW09], whereas [SW08] allows public
verifiability. A proof of retrievability (PoR) scheme consists of three algorithms,
Gen,P,V. We recall the definition from [SW08,DVW09] below.

– The generation algorithm takes as input a file F ∈ {0, 1}∗ and outputs a file
to be stored on the server and a tag (verification information) for the client.

(F ∗, τ) ← Gen(F )

– The P,V algorithms define an audit protocol to prove retrievability of the
file. The P algorithm takes as input the processed file F ∗ and the V algorithm
takes the tag τ . At the end of the audit protocol, the verifier outputs a bit
indicating whether the proof succeeds or not.

{0, 1} ← 〈P(F ∗),V(τ)〉

A PoR scheme needs to satisfy correctness and soundness. Correctness requires
that for all file F ∈ {0, 1}∗, and for all (F ∗, τ) output by Gen(F ), an honest
prover will make the verifier accept in the audit protocol.

〈P(F ∗),V(τ)〉 = 1
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Informally, a PoR scheme is sound if for any prover that convinces the verifier
that it is storing the file, there exists an algorithm called the extractor that
interacts with the prover and extracts the file. We give the formal definition
below.

Experiment ExptPoR-sound
A (κ)

– The adversary A picks a file F {0, 1}n.
– The challenger creates (F , τ) Gen(F ) and returns F to A.
– A can interact with V(τ) by running many proofs and seeing whether V out-

puts 0 or 1.
– A outputs a prover algorithm (ITM) P and returns this to the challenger.
– The challenger runs b ,V(τ) , and runs the extractor, F̃ = extP (τ, n, κ)
– Output 1 if b = 1 F̃ = F , or 0 otherwise.

Fig. 1. Soundness for Proofs of Retrievability.

Definition 3 (Soundness for Proof of Retrievability). A proof of retriev-
ability (PoR) Gen,P,V satisfies soundness if for any PPT adversary A, there
exists an extractor ext such that the advantage of A

AdvPoR-Sound
A (κ) = Pr[ExptPoR-Sound

A (κ) = 1]

in the experiment described in Fig. 1 is negligible in κ.

The definition in [DVW09] discusses the notion of knowledge soundness versus
information soundness. If the definition holds for the class of efficient extractors,
the scheme satisfies knowledge soundness. A somewhat weaker notion is that of
information soundness where the running time of the extractor is not restricted.

2.3 Min Entropy

Recall that the predictability of a random variable X is maxx Pr[X = x] and its
min-entropy H∞(X) is − log (maxx Pr[X = x]). The average case min-entropy is
defined as follows. Let X and Y be random variables.

H̃∞(X|Y ) = − log
(
Ey←Y

(
2−H∞(X|Y =y)

))

We make use of the following lemma which states that the average min-
entropy of a variable (from the point of view of an adversary) does not go down
by more than the number of bits (correlated with the variable) observed by the
adversary. We recall the entropy weak chain rule for average case min entropy
below in Lemma 1.
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Lemma 1. ([DORS08]) Let X and Y be random variables. If Y has at most 2λ

values, then
H̃∞(X|Y ) ≥ H∞(X) − H0(Y ) = H∞(X) − λ

where H0(Y ) = log |support(Y )|.

3 Defining Proof of Replication

While several candidates of proof of replication have already been proposed, they
all use timing assumptions, and we are not aware of any formal definition of the
security properties that such a proof should satisfy without timing assumption.
It is indeed non-trivial to come up with the “right” definition, due to the fact
that we ask the adversary to store many copies of the same file. Thus simply
requiring the existence of an extractor algorithm (as in proof of knowledge or
proof of storage) is not sufficient: it is not enough that the adversary knows the
file, the adversary should know multiple replicas of the same file. But what does
it mean for an extractor to extract replicas of the same file? Before providing our
definition, we introduce some notions of encodings which will be used to build
up our solution.

3.1 Replica Encodings

We now define ReplicaEncoding as a tuple of algorithms (rEnc, rDec) where rEnc
takes a message m ∈ {0, 1}∗ and outputs a replica encoding of m ∈ {0, 1}∗,

y ← rEnc(κ,m)

The rDec algorithm takes a replica encoding and returns a message i.e., m ←
rDec(y).

Definition 4 (Replica encoding). Apair (rEnc, rDec) is a secure replica encod-
ing if the following holds:

– Completeness: The probability of incorrect decoding is negligible i.e.,

Pr[rDec(rEnc(κ,m)) 
= m] < negl(κ)

– Soundness: Consider the game soundA1,A2 between an adversary and a chal-
lenger defined in Fig. 2. A replica encoding scheme is c-sound (for a constant
c, 0 < c < 1) if for any (A1,A2), there exists a negligible function negl such
that the following holds.

Pr [|state| < cvβ|v ← soundA1,A2 ] ≤ negl(κ)

where β is the bit-length of an encoding y.
– Efficiency: |y| = |m| + O(κ).
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Experiment soundA1,A2

– The adversary A1 chooses a file m {0, 1}k

– The challenger outputs n encodings of m

y(i) rEnc(κ, m)

for i [1, n] and returns (y(1), . . . , y(n)) to A1.
– A1 outputs a state state A1(y(1), . . . , y(n))
– The challenger runs A2 on state.

(ỹ(1), . . . , ỹ(n)) A2(κ, state)

– Let vi = 1 if ỹ(i) = y(i), and 0 otherwise. Output v = n
i=1 vi.

Fig. 2. Soundness of a Replica Encoding scheme

Discussion. The main measure of efficiency for a replica encoding is its expansion
factor, in other words the ratio |y|/|m|. Clearly, the smaller the expansion factor
the more interesting the scheme is. Looking ahead, all our constructions will
have |y| = |m| + O(κ).

We motivate here some of the choices in our definition. First note that the
completeness requirement allows the file to be reconstructed from a single replica
encoding. This captures the functional requirement in the honest usage of proofs
of replication, where a client would store different encodings of the file on differ-
ent servers and should be able to recover the file as long as one server is storing
their encoding.

When defining soundness, we consider a monolithic adversary A which con-
trols all colluding servers. To be able to meaningfully talk about the space that
the adversary uses for storing the file, we split the adversary A into two parts A1

and A2, where A1 receives the replica encoding from the challenger (represent-
ing the honest client) and A2 is the part of the adversary returning (some of)
the encodings to the client at a later stage, using the state that A1 transferred
to A2. We do not require that A2 outputs all of the received encoding, instead,
we use the variable v to count how many of the replica encodings A2 is able to
return. The definition of soundness then intuitively states that the adversary can
at most return the number of replicas that “fit” into the state (where we allow
for a constant “slack” c, to avoid trivial attacks where the adversary forgets few
bits and then “guesses” them right before returning the encodings – in practice
one should think of c as any constant close to 1).

As a sanity check of our definition, let’s consider a construction of replica
encoding that is “too trivial”: define y(i) = (m, ri) i.e., every replica is simply
the message concatenated with some random string ri. Due to incompressibility
of random data the adversary needs to store all the ri’s, but clearly only needs
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to store one copy of m and can still recompute all encodings. This is of course
not desirable, so our definition had better not accept this construction. Indeed it
does not: the adversary can break the soundness property because he can choose
to return v ≥ 2 encodings using storage only |m|+v|r| < cv|y| - which is trivially
true for any interesting case (remember in efficient encodings |y| ≈ |m| and c is
close to 1).

3.2 Proof of Replication

We now use the notion of encodings to meaningfully capture the replication prop-
erty. A proof of replication scheme consists of a tuple of algorithms create, retrieve
and an audit protocol defined by two algorithms, P,V for the prover and ver-
ifier respectively. create is a randomized algorithm that takes as input a file
m ∈ {0, 1}∗, that is to be replicated and stored, a replication factor n; and pro-
duces n replicas y(1), . . . , y(n) together with verification information ver. Each
replica y(i) is sent the server i to be stored, and ver with the client to be used
for verification in the audit protocol. retrieve is a deterministic algorithm run by
anyone that takes as input a replica y(i) and outputs a file m∗.

In the audit protocol, each server (prover) has a replica y(i), and the client
(verifier) has ver. At the end of the audit, the verifier outputs a bit b indicating
whether the audit was successful or not. We denote the protocol executing the
prover and verifier algorithms by 〈Pi(ỹ(i)),V(ver, i)〉.

We require the scheme to satisfy completeness and soundness properties as
defined below. Note that when considering the honest usage of the our protocol
(e.g., completeness), each server is able to prove to the client that they are
storing the file independently5. On the other hand, when considering adversarial
behaviour (e.g., soundness), we assume that all servers are under the control of
a monolithic adversary.

All our algorithms below are parametrized by a security parameter, even
when omitted as in the description below.

Definition 5 (Proof of Replication). A scheme PoRep = (create, retrieve,
P,V) where,

(y(1), . . . , y(n), ver) ← create(m,n), for m ∈ {0, 1}∗, n ∈ Z

m∗
i = retrieve(y(i)), i ∈ [1, n]

{0, 1} ← 〈Pi(ỹ(i)),V(ver, i)〉
is a proof of replication scheme if the following properties are satisfied.

5 For instance, an honest server does not need to communicate with the other servers,
nor know that they exist.
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– Completeness. For an honest client and honest server,
• for (y(1), . . . , y(n), ver) ← create(m,n),m∗

i = retrieve(y(i)),m∗
i = m ∀i ∈

[1, n]
• The audit protocol interaction between honest client and honest server

succeeds, that is, the client accepts and outputs b = 1.

〈Pi(ỹ(i)),V(ver, i)〉 = 1

– Soundness. We define the soundness game soundE
A1,A2

between an adversary
and a challenger in Fig. 3. The scheme PoRep is c-sound (for a constant
c, 0 < c < 1) if for any (A1,A2), there exists an extractor E and a negligible
function negl such that the following holds.

Pr
[
u < v ∨ |state| < cvβ|(u, v) ← soundE

A1,A2

]
≤ negl(κ)

where β is the bitlength of an encoding y.

Experiment soundEA1,A2

• The adversary A1 chooses a file m {0, 1}k

• The challenger runs (y(1), . . . , y(n), ver) create(m, n) and returns
(y(1), . . . , y(n)) to A1.

• A1 outputs a state state A1(y(1), . . . , y(n))
• The challenger runs A2(state),V(ver, i) , let vi be the output of V for all

i [1, n] and v = n
i=1 vi.

• The challenger runs the extractor.

(ỹ(1), . . . , ỹ(n)) = EA2(κ, ver, k)

• For all i [1, n], define ui = 1 if ỹ(i) = y(i), and u = n
i=1 ui

The output of the game soundEA1,A2 is (u, v).

Fig. 3. Soundness of a proof of replication scheme

The definition above guarantees that the malicious servers, even colluding,
cannot make the verifier accept more proofs than the storage they have used.

4 Constructing Proof of Replication

We begin by giving a high-level overview of our construction. Following the
idea behind our definition, we create many independent encodings, and use a
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proof of retrievability on the encodings. Even though each encoding can inde-
pendently be decoded to the same file without any secret information, the proof
of retrievability on the encodings enforces that the server stores each encoding
and therefore dedicates space for each replica. Recall that in Sect. 1.2 we have
already described a simple solution which works in a restricted model in which
the adversary is restricted to either store or delete entire replicas. Of course this
is not a realistic threat model and a malicious server could choose to forget arbi-
trary parts of each encoding (say, a constant fraction). Now, to pass the audit,
the server would have to compute a preimage of the underlying trapdoor permu-
tation, but given a constant fraction of bits of the preimage. Unfortunately, the
definition of security for trapdoor permutation does not allow us to say that this
is not possible; in other words, we cannot construct a reduction for this kind of
adversaries.

To address this problem, we use the following approach: we start by applying
an (invertible) random oracle (IRO) on the message concatenated with a short
seed (which is different for each replica), and then we use the trapdoor permu-
tation on the result. We then iterate the IRO and the trapdoor permutation as
a round function sufficiently many times. Intuitively the trapdoor permutation
of the round function ensures that the adversary has to do something “hard” in
every round, while the IRO of the round function is used to make sure that the
“hard tasks” are all independent.

Again, in any given round, we cannot rule out that the adversary might
have stored some (small) information that allows to easily invert the trapdoor
permutation. However, since we repeat this for many rounds and the adversary
must store some pre-image information at every round to potentially break the
trapdoor permutation, eventually the total information that the adversary would
have to store will exceed the bound necessary for replicated storage.

When dealing with large files (e.g., larger than the size of the input/output of
T ), we split the file in blocks. To make sure that all blocks depend on the entire
file (for instance, to prevent the server from “de-duplicating” individual blocks
which might appear in multiple files), we first apply a “large” IRO on the entire
file. Then, in the round function, we apply a “small” IRO on each individual
block. Thanks to this, the number of rounds in the encoding only needs to be
proportional to the block size, instead of the entire file size (as it was the case
in an earlier version of this paper).

Note that our combination of the RSA trapdoor permutation with a random
oracle is reminiscent of full domain hash-signatures and, to a greater extent, CCA
secure encryption via RSA and OAEP. Note however that, in our construction,
we apply the oracle and the trapdoor permutation for multiple rounds, and the
domain of the random oracle is a pair of blocks for the RSA permutation. The
idea of iterating a combination of RSA with a random oracle was used before
in [VDJO+12], however (apart from their work having a less in-depth treatment)
there are two major differences, namely that they did not consider replication
as an application, and that they use a strictly weaker notion of security, namely
“near-incompressibility”.
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Efficiency of decoding. We note that, when instantiating the construction with
the RSA trapdoor permutation, it is possible to use a small exponent (i.e., e = 3).
Now decoding would be much faster then encoding, which is a desirable property
in applications where a single user uploads a file which is then retrieved by a
large number of users.

4.1 Replica Encodings

We now proceed to describe our construction in detail, and first construct a
replica encoding scheme ReplicaEncoding = (rEnc, rDec) in Figs. 4 and 5.

Let m {0, 1}k be a message to be encoded.

– Choose a string γ uniformly at random from {0, 1}κ, and let y0 = H(m||γ),
where H : {0, 1}λ {0, 1}λ is a invertible random oracle (IRO), and λ =
k + κ.

– Let (KeyGen, f−1, f) be trapdoor permutation over domain D. (sk, pk)
KeyGen(1κ). Divide y0 into s blocks such that each block is in D. That is,
y0 = Y10|| · · · ||Ys0. Let T : D D be an IRO over D. We then iterate the
following round function: For each round j from 1 to r, and for each block
t [1, s] define
• Apply the IRO T ,

Ztj = T (Ytj−1)

• Invert the trapdoor permutation block-wise,

Ytj = f−1
sk (Ztj)

Let yj = Y1j || · · · ||Ysj

– Let R = (yr, pk)
– Return R

Fig. 4. The Replica Encoding Algorithm rEnc(κ, m)

Soundness of the scheme. Before formally proving the soundness of the scheme,
we give an overview of the proof idea. If the state state that is passed from A1

to A2 is small, then the adversary A2 cannot “remember” all the answers to
the queries that A1 made in the first part of the game since the outputs of a
random oracle are incompressible. However, we can extract the outputs of the
random oracle used during the encoding from the adversary since the replica
encodings can be efficiently decoded. This implies that the adversary must make
some queries to the random oracle in phase 2 of the game. Now, for each of the
queries the adversary makes, there are two options: either the response to the
query has full entropy in the view of the adversary, or it doesn’t. If it has full
entropy, i.e., if the state contained no (or very little) information about what the
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For a replica R = (yr, pk), Parse yr as Y1r|| · · · ||Ysr. For each round j from r down
to 1, and each block t [1, s], compute

– Round j:
• Apply the trapdoor permutation block-wise,

Ztj = fpk(Ytj)

• Invert the IRO,
Ytj−1 = T−1(Ztj)

– Let y0 = Y10|| · · · ||Ys0. Compute H−1(y0) and parse the output as m||γ where
m is the first k bits. Return m.

Fig. 5. The replica decoding algorithm rDec(R)

oracle would answer, then we are done, as we will elaborate next. But first let us
consider if not; that is, the response to the query made did not have full entropy
in A2’s view. This means that the state must have contained some information
about the answer to the query. Now, since the encoding uses the random oracle
in each round, and since the state that the adversary is allowed to remember
is small, by carefully accounting for the entropy budget for each query made,
we argue that after a certain round, the entropy in the state is exhausted and
therefore there is at least one query that the adversary had to make to the
oracle whose response has full entropy in order to win the game. Finally, once
we have found such a query for which we know that the output of the oracle
has full entropy that A2 had to make to win the game, we can reprogram the
random oracle with a challenge for the trapdoor permutation. Thus since A2 is
nevertheless able to produce the replicas, we use it to break the assumption and
reach a contradiction.

Theorem 1. Assuming T,H are invertible random oracles, the construction
ReplicaEncoding = (rEnc, rDec) using trapdoor permutation f is a secure replica
encoding scheme, replication parameter n as per Definition 4. For number of
rounds r > (cn+1)k

B , it is complete and c-sound with soundness error

ε ≤
(
ε′ + 2−k(1−c) + qs22−k

)
nrs

where k = log |D|, D is the domain of f and T , s is the number of blocks, q
the number of queries to the RO and the advantage of any adversary in B-leakage
inversion of the permutation f is at most ε′.

Proof. We use the notation R(i) to identify the encoding stored on server i.

Completeness. For n encodings that are created honestly, R(i) ← rEnc(m,κ),
m∗ = rDec(R(i)). Then, due to the invertibility of T,H and the trapdoor per-
mutation f , m∗ = m, ∀i.
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Soundness. Assume there exists an adversary (A1,A2) such that

Pr [|state| < cvβ|v ← soundA1,A2 ] > ε.

Therefore, the adversary AT
2 outputs R(i1), · · · , R(iv), where each ij ∈ [1, n].

Let I ⊂ [1, n], |I| = v be the set of indices indicating the replicas that A2 outputs
correctly. We argue that if the state is too small, then the adversary does not
have enough entropy to store information about R(i), ∀i ∈ I and therefore one of
the R(i) must have been recomputed, (by making relevant queries to T ), which
we use to invert the B-leakage trapdoor permutation. The proof idea is that
since the state is small, in round r, A2 must have learned some of the Z values
of round r from responses of T . If the response of T to these queries do not have
full entropy in A2’s view given the state, then this deficit must be accounted
for in the size of the state. We continue this argument for every round going
backwards from the last round, by reasoning about the set of relevant queries
made in each round, and accounting for every query made that did not have
entropy in A2’s view with B bits in the state. We then hit a round where the
response of T for one of A2’s queries must have high enough entropy from A2’s
point of view. Such a query is guaranteed to exist since the state size is used
up after enough queries of the former kind. We use the response to this query
to embed a challenge and invert the trapdoor permutation. We now proceed to
give the reduction.

Let B be an adversary whose task is to invert the trapdoor permutation.
B receives a challenge (p̂k, x̂), and wins if it outputs ŷ such that fp̂k(ŷ) = x̂. B
interacts with (A1,A2) in the soundness game. B receives a file m ∈ {0, 1}k′

from
A1. B creates encoded replicas honestly, except for one of the replicas chosen at
random (call its index i∗ ∈ [1, n]), in which the challenge will be embedded. For
now we only use the public key p̂k. Since B does not know the corresponding
secret key, B cannot compute this encoding honestly. Thus, B defines the encod-
ing R(i∗) as (p̂k, yr) for a uniformly random yr. Then it “decodes” yr down to y0
(by following the decoding procedure) and finally programs the random oracle
H such that H−1(y0) = (m||γ(i∗)) for some random string γ(i∗). More in detail:

– Choose random y
(i∗)
r ∈ {0, 1}λ.

– For each round j from r down to 1, parse y
(i∗)
j = Y1j || · · · ||Ysj and, for each

block t ∈ [1, s], compute:
• Apply the trapdoor permutation block-wise,

Ztj = fp̂k(Ytj)

• Invert the IRO,
Ytj−1 = T−1(Ztj)

– Let y0 = Y10|| · · · ||Ys0.
– Pick a random value γ ∈ {0, 1}κ and program the IRO H to output y0 on

input (m, γ).
– Return R(i∗) = (y(i∗), p̂k)
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B responds to any other oracle queries of A1 honestly, and finally gives
(R(1), · · · , R(n)) to A1, where R(i) for i 
= i∗ is created honestly. A1 outputs
a state state. Now, B interacts with A2. It runs A2 on state, and receives and
responds to A2’s oracle queries in the following way. B chooses a random round
j∗ ∈ [1, r], and a random block t∗ ∈ [1, s] to embed the challenge x̂ in. If A2

queries T on Y
(i∗)
t∗j∗−1, B sets the response to embed its challenge x̂ in the following

way. Set Zt∗j∗ = x̂ and,

T (Y (i∗)
t∗j∗−1) = Zt∗j∗

The rest of the queries are answered honestly. If A2 makes a query Y
(i∗)
t∗j∗ = ŷ

such that, fp̂k(ŷ) = x̂, B outputs ŷ. If there is no such query, B outputs ⊥. We
now compute the probability that B wins in the trapdoor permutation inversion
game. Consider the case when (m||γ) fits into D, and therefore there is only
one block in the encoding. We later show how the argument extends to multiple
blocks. Let k be the block length, that is, the bit length of elements in D. We
therefore have |state| < cvk, c < 1. Consider the min-entropy of the random
variable state, which is at most the bit length, H∞(state) ≤ cvk. A2 on state
returns,

{R(i)}i∈I ← A2(state)

for R(i) = (y(i)
r , pki). Since there is only one block in the encoding, y

(i)
r ∈ D and

can be decoded to obtain z
(i)
r = fpki

(y(i)
r ).

Let Yr = y
(i1)
r || · · · ||y(iv)

r and Zr = z
(i1)
r || · · · ||z(iv)r , ij ∈ I.

Since each replica is computed by using independent randomness γi, the
queries to the oracle are different for each replica, and therefore each z

(i)
r is

unpredictable. We have,

H∞(z(i)r |z(1)r , · · · , z(i−1)
r , z(i+1)

r , · · · , z(n)r ) = k

and therefore, H∞(Zr) = vk. Since Zr can be extracted from AT
2 (state) by decod-

ing, either the state contains information about each z(i) in z(1)|| · · · ||z(v), or A2

must make relevant RO queries, that is, query the RO on the inputs correspond-
ing to z(i). By the conditional rule for average case min-entropy (Lemma 1),

H̃∞(Zr|state) ≥ H∞(Zr) − H0(state)

H̃∞(Zr|state) ≥ H∞(Zr) − cvk = vk − cvk

Zr is extracted by making no RO queries only with probability less than
2−vk(1−c) < 2−k(1−c) which is negligible for constant c (even in the worse case
where the adversary replies with a single replica). Therefore, there is at least one
RO query. Let Qr be the indices in I that indicates the queries which are y-values
of round r. That is, ∀u ∈ Qr, A2 queried T on y

(u)
r−1, and T (y(u)

r−1) = z
(u)
r . Let

qr = |Q| denote the number of “relevant” r-round queries. For each query, either
the state contains information about the response or not; we consider the two
cases where the state stores < B bits of information or ≥ B of information of a
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query response. If the state contains < B bits of information about responses in
round r, then B wins if the challenge is embedded in that response and we are
done. Otherwise, the state contains information about each z

(u)
r which means

the state stores at least B bits of information for each query.

H∞(state) ≥ qrB

Now, let us consider the set of queries made with indices in Qr. For each
y
(u)
r−1, u ∈ Qr, we can extract z

(u)
r−1 by computing the decoding. That is, z

(u)
r−1 =

fpku
(y(u)

r−1), for y
(u)
r−1 ∈ D. These qr elements are outputs of RO on different

inputs, and therefore have full entropy. Let Zr−1 = z
(u1)
r−1 || · · · ||z(uqr )

r−1 where each
ui ∈ Qr. We have H∞(Zr−1) = qrk. If Zr−1 can be extracted from AT

2 (state),
either the state contains information about z

(i)
r−1,∀i ∈ Qr, or A2 must make more

RO queries. If there are no more queries, then H∞(state) ≥ vk. Therefore, there
must be more queries on inputs corresponding to the indices in Qr.

Let qr−1 be the number of relevant round (r−1) queries. Define a set of query

indices Qr−1, from which we can extract Zr−2 = z
(u1)
r−2 || · · · ||z(uqr−1 )

r−2 , for ui ∈
Qr−1. Again, for each query, either the state dedicates < B bits of information,
in which case B wins if the challenge is embedded in that response and we are
done. Otherwise, the state stores at least B bits of information about each y

(u)
r−1,

and therefore we have,

H∞(state) ≥ qrB + qr−1B

Making a similar argument as before, there must be more RO queries corre-
sponding to the indices in set Qr−1. Thus, we have, after r rounds, Zr, . . . ,Z1

are extracted from A2(state), and we have

H∞(state) ≥
r∑

i=1

qiB

Let A2 make RO queries in each round j for the replicas given by the indices
in Qj such that the reduction could not successfully embed a challenge in any
of the responses. Then after r rounds, setting,

r∑
i=1

qiB − cvk = k

We get H̃∞(Z1|state) ≥ k, when r > k(cv + 1)/B.
Therefore, at some round 	 ≤ r, the entropy of the response is full when

making an RO query at round 	. That is, ∃	 ∈ [1, r], w ∈ [1, n] such that,

H̃∞(z(w)
� |state) = k
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When there are multiple blocks, we have |state| < cvβ. Since the permutation
H is applied to the entire file concatenated with a random string γ, before r
rounds of T and f , the adversary can find files such that the output of H results
in the same blocks only with probability ((qs)2 + 1)/2k where q is the number
of queries and s the number of blocks. Then the above argument holds for each
block independently.

The probability that the challenge is programmed into the RO response of one
of the blocks of z

(w)
� is the probability that i∗ = w, j∗ = 	 which is 1/vrs > 1/nrs

(in the worse case where n = v). Thus the probability that B wins is at least
ε

nrs − 2−k(1−c) − qs22−k. ��
As any trapdoor function is also trivially B-leakage secure for B = log(k),

we obtain the following corollary.

Corollary 1. Assuming T,H are invertible random oracles, the construction
ReplicaEncoding = (rEnc, rDec) using trapdoor permutation f is a secure replica
encoding scheme for replication parameter n as per Definition 4. For number of
rounds r > (cn+1)k

log k , it is complete and c-sound with soundness error

ε ≤
(
ε′ + 2−k(1−c) + qs22−k

)
nrs

where k = log |D|, D is the domain of f and T , s is the number of blocks, q the
number of queries to the RO and the advantage of any adversary in inverting
the permutation f is at most ε′.

Of course, for specific trapdoor permutations, it might be possible to assume
B-leakage security for larger values of B thus achieving better round complexity.

4.2 From Replica Encodings to Proofs of Replication

We now construct a proof of replication scheme create, retrieve,P,V. The idea
is very simple: to construct a proof of replication we use the replica encoding
scheme from the previous section to create replicas, and then apply a proof of
retrievability on the encoded replicas. The proof of security is also simple, as an
adversary that breaks soundness for the proof of replication can be used to break
the soundness property of the proof of retrievability scheme or the soundness of
the replica encoding scheme.

The create procedure is formally described in Fig. 6. The prover, and verifier
algorithms P,V are the same as the prover and verifier in the proof of retriev-
ability. Finally, the retrieve algorithm simply runs the replica decoding algorithm
rDec if the proof of retrievability accepts.

Theorem 2. PoRep = (create, retrieve,P,V) is a proof of replication scheme for
replication parameter n secure as per Definition 5. It is complete and c-sound
with soundness error γ ≤ δ + ε where the underlying PoR scheme has soundness
error δ, and the replica encoding scheme has soundness error ε.
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Let PoR = (Gen,P,V) be a proof of retrievability scheme. Given a file m {0, 1}k ,
and a replication factor n:

– For each i [1, n]
• Run R(i) rEnc(m, κ)
• ({R̃(i)}i, τi) = PoR.Gen(R(i))

– Set ver = {τi}i

– R̃(i) is sent to the server i for storage and ver is returned to the client.

Fig. 6. create(m, n): Create replicated storage

Proof. We first argue completeness: Given R(i) and pk, for encodings that are
created honestly, an honest server can recover m∗ = retrieve(R(i)). By complete-
ness of the replica encoding scheme rEnc, we have rDec(R(i)) = rDec(y(i), pk(i)) =
m, ∀i.

We now argue the soundness of the construction. Let (A1,A2) be an adver-
sary, that wins the soundness game soundE

A1,A2
with advantage γ. Let (u, v) ←

soundE
A1,A2

. We consider the two cases:

Case 1. u < v. Let ext be the extractor of the PoR scheme, and let the file
output by ext be {R̃(i)}n

i=1. By assumption that u < v there must be an
index i ∈ [1, n] such that the adversary A2 succeeds in the audit protocol
(i.e., vi = 1), but R̃(i) 
= R(i) (i.e., ui = 0). By the soundness of the proof of
retrievability scheme PoR, this happens only with probability δ.

Case 2. |state| ≤ cvβ. In this case the adversary AT
2 succeeds in v audit pro-

tocols, and since u ≥ v, the extractor E outputs R̃(i) = R(i) for i ∈ I ⊂
[1, n], |I| = v. Let (B1,B2) be an adversary whose task is to break the sound-
ness of the replica encoding scheme rEnc. B1 interacts with (A1,A2) in the
soundness game. B1 receives a file m ∈ {0, 1}k′

from A1, and outputs m
to its challenger. B1 receives n replica encodings (R(1), · · · , R(n)) from the
challenger, where the bit length of each encoding is β. B1 runs the PoR on
the replicas. ({R̃(i)}i, ver) ← PoR.Gen{R(i)}i and returns {R̃(i)}i to A1. B1

outputs as state whatever A1 outputs with |state| ≤ cvβ. For every successful
audit proof given by A2, B2 runs the extractor E(ver, n, κ) of the scheme.
Thus B2 outputs R̃(i) = R(i) for each i ∈ I with probability at least γ.

5 Dealing with Malicious Clients

We discuss here some limitations and possible extensions of our approach.
Our definition and construction so far has concentrated on the case where the

client is honest. This is not a problem for our base use-case where a user wants to
make sure they will be able to retrieve their files in the future, but it is a problem
in the Filecoin use case where servers are rewarded for the files they store.
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In this case, we need to prevent against the so called generation attack and it is
therefore important to have some security guarantees when the client is corrupt
and might work with a set of corrupt servers to convince honest users that they
store many replicas whereas in fact the replicas are generated “on-the-fly” for
each proof.

Our solution from the previous section does not work in this case, as a corrupt
user could share the trapdoor function secret key with the servers and now they
can indeed encode a replica on the fly. If the client who owns the file is corrupt
and is the only user involved in the encoding process, then the adversary knows
everything about the encoding process, and a different solution is needed. One
way to go is to involve several users in the encoding process and work under the
assumption that at least one of them is honest.

In a Filecoin-like scenario one could implement such a solution by rewarding
users for helping others to encode. We now describe two different approaches to
such multi-user encoding.

Parallel Encoding. Given one-way trapdoor functions f1, ..., fn that act on
k-bit strings, we define a new function F on kn bit strings by F (x1, ..., xn) =
(f1(x1), ..., fn(xn)), where each xi is a k-bit string. It is clear that F is a one-way
trapdoor function even with respect to an adversary who knows all but one of
the trapdoors for f1, ..., fn. Namely, if the j’th trapdoor is unknown, we can take
a challenge yj , choose yi = fi(xi) for i 
= j and random xi and give (y1, ..., yn) to
the adversary. If he computes a preimage, then the j’th component is the answer
to challenge yj .

Note that our main result gives a construction that is secure based on any
one-way trapdoor function and so it also works for F .

Now, in the practical use-case, we will assume that n users are involved, such
that user i has fi as part of his public key and knows the corresponding trapdoor.
A public-key infrastructure is one of several ways to realize this. Then the n users
can collaborate to encode: whenever we need to compute F , we can assume the
input to the current round is known (initially it will be the file to encode), so
each user i can apply the permutation oracle and compute and broadcast f−1

i

on his part of the result.
It follows immediately from the above that if at least one user is honest,

then this construction results in a secure replica encoding. Note also that the
contributions of each user can be verified by computing his function in the for-
ward direction. Moreover, the overhead in encoding size and the cost per bit of
encoding and decoding is the same as for the single honest user case. On the
other hand, we need a number of rounds for the encoding protocol that equals
the number of rounds in the encoding process.

Sequential Encoding. An obvious alternative is to do the encoding sequentially.
Namely, the first user does an encoding of the input file using his (set of) trapdoor
functions and broadcasts the result. The second user encodes the output of the
first, etc. In the end, we have an encoding that is essentially done just like our
original construction, only with more rounds. Note that one can decode the
output of each user and check the result is correct.
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The intuition behind the security of this approach is the following: under
the assumption that at least one user is honest, we have the same security as
in the original construction assuming that at least one of the users is honest.
This is simply because the adversary does not know the trapdoors for the honest
member, and his encoding process involves the same number of random oracle
responses that we considered in the original proof. This approach increases the
size of the encodings but not significantly (the complexity would grow from
O(|m| + κ) to O(|m| + n · κ) with n users). The cost of encoding and decoding
in this solution is a factor n larger than for the single honest user case. On the
other hand, the number of rounds in the encoding protocol is n, which may be
better than parallel encoding, depending on the concrete scenario.

6 Conclusions and Future Work

We gave two possible solutions to multi-user encoding above. However, there is
also a solution of a different nature that comes to mind: namely we can share
a trapdoor (say, an RSA key) between a set of users and have them collaborate
to compute the encoding using that trapdoor function securely. This has the
advantage that an encoding looks just like what an honest client would produce,
we are not forced to have larger block size when many users are involved. Also,
decoding is as fast as in the honest client case, and one can set up the proto-
col such that just one participating client needs to be honest in order for the
secret key to not leak. On the other hand, encoding requires more work. For
the encoding protocol, one can take advantage of the huge body of literature
on distributed RSA key generation and distributed signing. Finding the optimal
solution for this approach is left for future work.

We also leave as an open question the problem of finding a secure replica
encoding where the number of rounds in the encoding process does not depend
on the number of replicas.
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Abstract. We introduce a new cryptographic primitive: Proofs of
Space-Time (PoSTs) and construct an extremely simple, practical pro-
tocol for implementing these proofs. A PoST allows a prover to convince
a verifier that she spent a “space-time” resource (storing data—space—
over a period of time). Formally, we define the PoST resource as a trade-
off between CPU work and space-time (under reasonable cost assump-
tions, a rational user will prefer to use the lower-cost space-time resource
over CPU work).

Compared to a proof-of-work, a PoST requires less energy use, as the
“difficulty” can be increased by extending the time period over which
data is stored without increasing computation costs. Our definition is
very similar to “Proofs of Space” [ePrint 2013/796, 2013/805] but, unlike
the previous definitions, takes into account amortization attacks and
storage duration. Moreover, our protocol uses a very different (and much
simpler) technique, making use of the fact that we explicitly allow a
space-time tradeoff, and doesn’t require any non-standard assumptions
(beyond random oracles). Unlike previous constructions, our protocol
allows incremental difficulty adjustment, which can gracefully handle
increases in the price of storage compared to CPU work. In addition, we
show how, in a crypto-currency context, the parameters of the scheme
can be adjusted using a market-based mechanism, similar in spirit to the
difficulty adjustment for PoW protocols.

1 Introduction

A major problem in designing secure decentralized protocols for the internet is a
lack of identity verification. It is often easy for an attacker to create many “fake”
identities that cannot be distinguished from the real thing. Several strategies
have been suggested for defending against such attacks (often referred to as
“sybil attacks”); one of the most popular is to force users of the system to spend
resources in order to participate. Creating multiple identities would require an
attacker to spend a correspondingly larger amount of resources, making this
attack much more expensive.
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Any bounded resource can be used as the “payment”; one of the more com-
mon is computing resources, since they do not require any additional infras-
tructure beyond that already needed to access the Internet. In order to ensure
that users actually do spend the appropriate resource payment, the users must
employ a “proof of work”.

Proofs of work have been used for reducing spam [9], for defending against
denial-of-service attacks [23] and fairly recently, as the underlying mechanism
for implementing a decentralized bulletin-board—this is the technical heart of
the Bitcoin protocol [17].

While effective, proofs-of-work have a significant drawback; they require
energy in direct proportion to the resource used (i.e., the amount of electric-
ity required to run the CPU during the proof of work generally depends linearly
on the amount of work being performed). This is especially problematic in the
context of the Bitcoin protocol, since the security of the system relies on all
honest parties constantly performing proofs of work. In addition to having an
environmental impact, this also sets a lower bound on transaction fees (since
rational parties would only participate in the protocol if their reward exceeds
their energy cost). Motivated in large part by the need to replace proofs-of-work
as a basis for crypto-currencies, two (very similar) proposals for Proofs of Space
(PoS) have been published [5,10]. Park et al. also designed an alternative crypto-
currency that is based on Proofs of Space [18], and several new crypto-currency
companies are also basing their protocols on similar ideas [1,2,15].

A PoS is a two-phase protocol1: it consists of an initialization phase and
(sometime later) an execution phase. In an (N0, N1, T )-PoS the prover shows
that she either (1) had access to at least N0 storage between the initialization
and execution phases and at least N1 space during the execution phase, or (2)
used more than T time during the execution phase.

At first glance, this definition might seem sufficient as a replacement for
proof-of-work. However, in contrast to work, space can be reused. Using the PoS
definition as a “resource payment” scheme thus violates two properties we would
like any such scheme to satisfy:

1. Amortization-Resistance: A prover with access to max (N0, N1) space can,
without violating the formal PoS security guarantee, generate an arbitrary
number of different (N0, N1, T )-PoS proofs while using the same amount of
resources as an honest prover generating a single proof; thus, the amortized
cost per proof can be arbitrarily low.

2. Rationally Stored Proofs: Loosely speaking, in a rationally stored proof a
verifier is convinced that a rational prover has expended a space resource over
a period of time. There may exist a successful adversarial strategy that does
not require the adversary to expend space over time, but this strategy will be
more costly than the honest one. If we are interested in designing a crypto-
currency that replaces CPU work with a space-based resource, our proof of
resource consumption must be a rationally stored proof, otherwise rational

1 For the purposes of this paper, we use the formal definitions of [10].
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parties will prefer to use the adversarial strategy, and we can no longer claim
that the crypto-currency is energy-efficient.
The cost of storage is proportional to the product of the storage space and
the time it is used (e.g., in most cloud storage services, it costs the same
to store 10 TB for two months or 20 TB for one month2). Under the PoS
definition, a prover can pay an arbitrarily small amount by discarding almost
all stored data after the initialization phase and rerunning the initialization in
the execution phase (the prover only needs to store the communication from
the verifier in the initialization phase). More generally, a rational prover will
prefer to use computation over storage whenever the cost of storing the data
between the phases is greater than the cost of rerunning the initialization;
when this occurs the PoS basically devolves into a standard proof-of-work in
terms of energy usage.
Even if we ignore energy use, this is a problem if the PoS is used in a protocol
where the prover must generate many proofs, but only some will be verified:
the dishonest prover will not have to expend resources on the unverified proofs
in this case.

We note that though the definition of a PoS is insufficient to guarantee ratio-
nal storage, the existing PoS constructions actually do achieve this under some
parameters. However, this is more than just a definitional problem. Almost all
previous PoS constructions [5,10,12,21,22] are based on the memory-hardness
of labeling a specially-constructed directed graph, such that the label of each
vertex is a hash (random-oracle) of its predecessors in the graph. The construc-
tions use graph-pebbling games to show that correctly answering the verifier’s
challengers forces the prover to have either used the required amount of space
or a much larger amount of oracle queries.

In all of these constructions, the work performed by the honest prover in the
initialization phase is proportional to the work required to access the graph (i.e.,
O(N0)). It’s not clear how to increase the initialization costs without increasing
either the memory size or verification cost linearly. This strongly bounds the time
that can be allowed between the initialization and execution phases if we want
rational provers to use space resources rather than CPU work. In the Spacemint
protocol, for example, the authors suggest running the proofs every minute or
so [18]. If one wanted to run a proof only once a month, a rational miner might
prefer to rerun the initialization phase each time.

1.1 Our Contributions

“Fixed” Definition. In this paper, we define a new proof-of-resource-payment
scheme: a “Proof of Spacetime” (PoST), that we believe is better suited as a

2 Of course, this is also true for a local disk; during the interval in which we are using
the disk to store data A, we can’t use it to store anything else, so our “cost” is the
utility we could have gained over the same period (e.g., by renting out the disk to a
cloud-storage company).
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scalable energy-efficient replacement for proof-of-work. Our definition is similar
to a Proof of Space, but addresses both amortization and rationality of storage.

In a PoST, we consider two different “spendable” resources: one is CPU
work (i.e., as in previous proofs-of-work), and the second is “spacetime”: filling
a specified amount of storage for a specified period of time (during which it
cannot be used for anything else); we believe spacetime is the “correct” space-
based analog to work (which is a measure of CPU power over time). Like work,
spacetime is directly convertible to cost.

Rational Storage vs. Space. Rather than require the prover to show exactly
which resource was spent in the execution phase, we allow the prover to choose
arbitrarily the division between the two, as long as the total amount of resources
spent is enough.

That is, the prover convinces a verifier that she either spent a certain amount
of CPU work, or reserved a certain amount of storage space for some specified
period of time or spent some linear combination of the two. However, by setting
parameters correctly, we can ensure that rational provers will prefer to use space-
time over work; when this is the case we say that a PoST is Rationally Stored
(we give a formal definition in Sect. 2.2). In situations where it is reasonable to
assume rational adversaries (such as in crypto-currencies), our definition opens
the door to new constructions that might not satisfy the PoS requirements. For
example, the PoS definition essentially requires a memory-hard function, while
our construction is rationally stored but is not memory-hard!

Simple, Novel Construction. We construct a PoST based on incompressible
proofs-of-work (IPoW); a variant of proofs-of-work for which we can lower-bound
the storage required for the proof itself. We give two simple candidate construc-
tions based on the standard “hash preimage” PoW and on storing part of a single
hash output. Our protocols and proofs use a very different technique than exist-
ing proofs of space, and are much simpler to implement. (We note that although
the constructions are extremely simple, proving their security is non-trivial.)

Incremental Difficulty Adjustment. Since the relative price of CPU and
storage may change over time, use of a PoST (or PoS) protocol in a crypto-
currency setting could require adjusting the parameters (in particular, if the
relative price of storage increases, it may no longer be rational to use storage
as the preferred resource). In existing PoS constructions, this appears to require
rerunning the entire initialization protocol. In contrast, our PoST construction
supports simple incremental difficulty adjustment—that is, users only have to
pay the marginal work cost between difficulty levels.

Market-Based Parameter Adjustment. A related issue when designing a
crypto-currency based on PoST (or PoS) is deciding when and how to adjust
the initialization difficulty. We show how to do this automatically via a market-
based mechanism (similar in spirit to the difficulty adjustment in PoW-based
crypto-currencies). The idea is to incentivize users to honestly report whether
they are recomputing or storing data (see Sect. 7 for details), allowing us to build
protocols that automatically increase the difficulty when the price of storage rises
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sufficiently (in which case we’d expect to see more users choosing computation
over storage). The detection technique is general, and may be of independent
interest—it can be applied to existing PoS constructions as well.

Different Parameter Regimes. In comparison with existing PoS construc-
tions, we think of the time between the initialization and proof phases as weeks
rather than minutes (this could enable, for example, a crypto-currency in which
the “miners” could be completely powered off for weeks at a time). One can
think of our constructions as complementary to the existing PoS constructions
for different parameter regimes—On the one hand, the proof phase of our PoST
protocol is less efficient (it requires access to the entire storage, so a proof might
take minutes rather than seconds, as is the case for the pebbling-based construc-
tions. This means it is not as well suited to very short periods between proofs).
On the other hand—unlike the existing PoS constructions—the computational
difficulty of our initialization phase is tunable independently of the amount of
space, so it is possible to use it to prove reasonable storage size over long periods
(e.g., weeks or months). In this parameter regime, a proof that takes several
minutes would be reasonable.

Compared to pebbling-based constructions, the big loss of efficiency is on
the prover ’s side. In our construction, the prover must read the entire table in
order to generate a valid response to a challenge. This is indeed much worse
asymptotically. Of course this is a drawback of our construction, and improving
this is certainly a worthwhile goal. In practical terms, however, our efficiency
doesn’t preclude the use-cases we describe (e.g., even on a mid-range consumer
HDD, sequential throughput is about 150 MB/s; this means reading through a
100 GB table in about 10 min, which is reasonable even if challenges occur every
few hours, much less every few weeks).

Improvements to Spacemint. Finally, we propose a modification to the
Spacemint crypto-currency protocol that removes some restrictions on the types
of PoS protocols it can use—allowing it to use PoSTs rather than the specific
PoS constructions it is currently based on (for reasons of space, this description
is omitted here, but can be found in the eprint version).

1.2 Related Work

Random-Function-Inversion PoS. A recent work by Abusalah et al. [3] shows
how to construct a PoS protocol based on inverting a random function. This con-
struction is significantly simpler than the pebbling-based constructions (although
still more complex than our construction). However, the initialization difficulty
is also fixed, and it does not seem trivial to increase initialization difficulty with-
out at the same time increasing verification difficulty linearly, and it does not
appear to support incremental difficulty adjustment. Hence it does not appear
suitable for long intervals between proofs.

Proofs of Storage/Retrievability. In a proof-of-storage/retrievability a prover
convinces a verifier that she is correctly storing a file previously provided by the



386 T. Moran and I. Orlov

verifier [6,7,13,14,20]. The main motivation behind these protocols is verifiable
cloud storage; they are not suitable for use in a PoST protocol due to high
communication requirements (the verifier must send the entire file to the server
in the first phase), and because they are not publicly verifiable. That is, if the
prover colludes with the owner of the file, she could use a very small amount of
storage space and still be able to prove that she can retrieve a large amount of
pseudorandom data.

Proofs of Replication. In a Proof of Replication [11], a party would like to prove
that they are storing multiple redundant copies of a file. The PoRep definitions
combine a PoS and a Proof of Retrievability. Similarly to the PoST definition,
PoReps don’t (and can’t) guarantee that the prover actually stores redundant
copies of the data, but instead make it an ε-Nash equilibrium (so a rational prover
does not lose much by doing so). The existing constructions of PoReps depend
on depth-robust graphs for the PoS and on sequential timing assumptions (the
prover must respond to a challenge quickly, and the timing assumptions ensure
that the prover cannot recompute its data in that time).

Memory-Hard Functions. Loosely speaking, a memory-hard function is a func-
tion that requires a large amount of memory to evaluate [4,19]. One of the main
motivations for constructing such functions is to construct proofs-of-work that
are “ASIC-resistant” (based on the assumption that the large memory require-
ment would make such chips prohibitively expensive). Note that the proposed
memory-hard functions are still proofs-of-work ; the prover must constantly uti-
lize her CPU in order to produce additional proofs. PoSTs, on the other hand,
allow the prover to “rest” (e.g., by turning off her computer) while still expend-
ing space-time (since expending this resource only requires that storage be filled
with data for a period of time).

Filecoin. Filecoin [15] is a crypto-currency protocol based on Proofs of Repli-
cation, whose underlying idea is to base the consensus algorithm resource on
“useful” space. The Filecoin whitepaper also defines a “Proof of Spacetime”,3

however in their definitions the proof must include a proof of the elapsed time
(requiring assumptions such sequential work timing assumptions). Moreover,
their constructions make use of very heavy cryptographic machinery (such as
zkSNARKS).

Permacoin. Miller, Juels, Shi, Parno and Katz proposed the Permacoin proto-
col, a cryptocurrency that includes, in addition to the standard PoWs, a spe-
cial, distributed, proof of retrievability that allows the cryptocurrency to serve
as a distributed backup for useful data [16]. In strict contrast to PoSTs, the
Permacoin construction is amortizable by design—an adversary who stores the
entire dataset can reuse it for as many clients as it wishes. Thus, Permacoin
still requires regular PoWs, and cannot be used to replace them entirely with a

3 We note that the our PoST definitions precede theirs.
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storage-based resource. Also by design, clients require a large amount of com-
munication to retrieve the data they must store, in contrast to PoSs and PoSTs
in which clients trade computation for communication.

2 Proofs of Spacetime

A PoST deals in two types of resources: one is processing power and the other
is storage. All our constructions are in the random oracle model—we model
processing power by counting the number of queries to the random oracle.

Modeling storage is a bit trickier. Our purpose is to allow an energy-efficient
proof-of-resource-consumption for rational parties, where we assume that the
prover is rewarded for each successful proof (this is, roughly speaking, the case
in Bitcoin). Thus, simply proving that you used a lot of space in a computation
is insufficient; otherwise it would be rational to perform computations without
pause (reusing the same space). Instead, we measure spacetime—a unit of space
“reserved” for a unit of time (and unusable for anything else during that time).
To model this, we separate the computation into two phases; we think of the
first phase as occurring at time t = 0 and the second at time t = 1 (after a unit
of time has passed). After executing the first phase, the prover outputs a state
σ ∈ {0, 1}∗ to be transferred to the second phase; this is the only information
that can be passed between phases. The size of the state |σ| (in bits) measures
the space used by the prover over the time period between phases.

Informally, the soundness guarantee of a PoST is that the total number of
resource units used by the adversary is lower bounded by some specified value—
the adversary can decide how to divide them between processing units and space-
time units.

We give the formal definition of a PoST in Sect. 2.2, in Sect. 3 we present a
simple construction of a PoST, and in Sect. 3.1 we prove its security.

2.1 Units and Notation

Our basic units of measurement are CPU throughput, Space and Time. These
can correspond to arbitrary real-world units (e.g., 230 hash computations per
minute, one Gigabyte and one minute, respectively). We define the rest of our
units in terms of the basics:

– Work: CPU× time; A unit of CPU effort expended (e.g., 230 hash computa-
tions).

– Spacetime: space × time; A space unit that is “reserved” for a unit of time
(and unusable for anything else during that time).

In our definitions, and in particular when talking about the behavior of ratio-
nal adversaries, we would like to measure the total cost incurred by the prover,
regardless of the type of resource expended. To do this, we need to specify the
conversion ratio between work and spacetime:
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Real-world Cost. We define γ to be the work-per-spacetime cost ratio in terms of
real-world prices. That is, in the real-world one spacetime unit costs as much as
γ work units (the value of γ may change over time, and depends on the relative
real-world costs of storage space and processing power).

We define the corresponding cost function, the real-world cost of a PoST to
be a normalized cost in work units: a PoST that uses |σ| spacetime units and x
work units has real-world cost c = γ|σ| + x.

2.2 Defining a PoST Scheme

A PoST scheme consists of two phases, each of which is an interactive protocol
between a prover P = (Pinit, Pexec) and a verifier V = (Vinit, Vexec).4 (for brevity,
we drop the init and exec subscripts when they are clear from the context.) Both
parties have access to a random oracle H(work).

Initialization Phase Both parties receive as input an id string id ∈ {0, 1}∗.
At the conclusion of this phase, both the prover and the verifier output state
strings (σP ∈ {0, 1}∗ and σV ∈ {0, 1}∗, respectively):

(σP , σV ) ←
〈
PH(work)

init (id), V H(work)

init (id)
〉

.

Execution Phase Both parties receive the id and their corresponding state
from the initialization phase. At the end of this phase, the verifier either
accepts or rejects (outV ∈ {0, 1}, where 1 is interpreted as “accept”). The
prover has no output:

(·, outV ) ←
〈
PH(work)

exec (id, σP ), V H(work)

exec (id, σV )
〉

.

The execution phase can be repeated multiple times without rerun-
ning the initialization phase. This is critical, since the initialization phase
requires work, while the execution phase is energy-efficient. Thus, although a
single execution of the PoST does not give any advantage over proof-of-work,
the amortized work per execution can be made arbitrary low.

PoST Parameters. A PoST has three parameters: w, the Honest Initialization
Work, m, the Honest Storage Space, and f , the Soundness Bound.

Honest Initialization Work (w). This is the expected work performed by the
honest prover in the initialization phase. This should be “tunable” to ensure
that storing the output remains the rational choice rather than recomputing the
initialization as the space-time to work cost ratio changes.

If the cost of the initialization phase is too low, the adversary can generate a
proof more cheaply than an honest prover by deleting all data after initialization,
4 Although the definition allows general interaction, in our construction the first phase

is non-interactive (the prover sends a single message) and the second consists of a
single round.
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then rerunning the initialization just before the proof phase. In this case, the
adversary does not store any data between phases, so does not pay any space-
time cost. We formalize this in Definition 8 as a rationality attack. Note that
this is a general attack that also applies to PoS schemes—hence they
must also have a lower bound on the work required for initialization.

Honest Storage Space (m). This is the amount of storage the honest prover must
expend during the period between the initialization and execution phases (and
between successive execution phases).

Definition 1 (PoST). A protocol (P, V ) as defined above is a (w,m, ε, f)-PoST
if it satisfies the properties of completeness and f-soundness defined below.

Completeness

Definition 2 (PoST η-Completeness). We say that a PoST is η-complete if
for every id ∈ {0, 1}poly(k) and every oracle H(work),

Pr
[
outV = 1 : (σP , σV ) ←

〈
PH(work)

init (id), V H(work)

init (id)
〉

,

(·, outV ) ←
〈
PH(work)

exec (id, σP ), V H(work)

exec (id, σV )
〉]

≥ η .

When η = 1 completeness is perfect (in this case we sometimes omit the η).

Soundness. We define a security game with two phases; each phase has a
corresponding adversary. We denote the adversary A = (A1,A2), where A1 and
A2 correspond to the first and the second phases of the game. A1 and A2 can
coordinate arbitrarily before the beginning of the game, but cannot communicate
during the game itself (or between phases).

Definition 3 (PoST (n, s, T1, T2)-Security Game). Each phase of the secu-
rity game corresponds to a PoST phase:

1. Initialization. A1 chooses a set of ids {id1, . . . , idn} where idi ∈ {0, 1}∗. It
then interacts in parallel with n independent (honest) verifiers executing the
initialization phase of the PoST protocol, where verifier i is given idi as input.
Let σA be the output of A1 after this interaction and (σV1 , . . . , σVn

) be the
outputs of the verifiers.

2. Execution. The adversary A2(id1, . . . , idn, σA) interacts with n independent
verifiers executing the execution phase of the PoST protocol, where verifier i
is given (idi, σVi

) as input.5

We say the adversary has succeeded if |σA | ≤ s, A1 makes at most T1 queries
to the oracle H(work), A2 makes at most T2 queries to the oracle and all of the
verifiers output 1 (we denote this event Succn,s,T1,T2)

5 Each of the verifiers runs a copy of the honest verifier code with independent random
coins; A2, however, can correlate its sessions with the verifiers.
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Definition 4 (PoST f-Soundness). We say a PoST protocol is ε, f -sound if
for all T1, T2, s,≥ 0 and all n ≥ 1, every adversary A = (A1,A2) must satisfy
the following conditions in the PoST security game:

1. Rational Storage: If A1 made less than ε · w queries to the work oracle, then
the probability of success is negligible (in the security parameter).

2. Space-Time Trade-Off: Pr [Succn,s,T1,T2 ] ≤ f(n, s, T1, T2).

The first condition checks that the adversary spends at least an ε fraction of
the honest work in the initialization phase. This prevents the adversary from
launching a “rationality attack”: if the initialization phase requires very little
computational effort, the prover can “throw out” the stored data from the ini-
tialization phase and rerun the phase to regenerate any needed data during the
execution phase. This would make its total space-time cost negligible (since the
“time” component vanishes).

The second condition bounds the trade-off between space-time and work.
Intuitively, a PoST satisfying this definition forces an adversary to trade space
for queries. The use of n ids rather than just one prevents an amortization
attack, wherein the adversary reuses the same space for different proofs. Näıvely,
to generate n proofs the prover would require n times the queries, splitting the
storage equally between them. Ideally using anything less we’d like the adversary
to fail with overwhelming probability. However, this is impossible to achieve, even
if it might be true for an individual PoST. This is because the adversary can
always “forget” the entire data for a subset of the n instances, and rerun the
initialization phase for those instances in the proof phase.

Rationally Stored Proofs of Work. Our high-level goal in this paper is to
construct energy-efficient proofs, by forcing provers to use storage rather than
work. Unfortunately, our definitions (and constructions) don’t allow a prover to
prove they used storage (this is actually impossible if the adversary can simulate
the initialization phase without a lot of storage—which is always the case unless
communication in the initialization phase is proportional to storage or we use
non-standard assumptions). However, we can still give conditions under which a
rational prover (whose goal is to minimize expected total cost) would prefer to
use storage. As long as these conditions are met, it seems reasonable to assume
that real-world users would choose storage over work (especially in a crypto-
currency setting, where profit is the main motive for participating).

Definition 5 ((γ, ε′)-Rationally-Stored PoST). We say a PoST is (γ, ε′)-
rationally stored if, when the real-world cost of a space unit is less than γ, then
for any given resource budget C, the optimal execution strategy (maximizing the
expected number of successful PoST proofs for that budget) requires that at least
an ε′-fraction of the budget be used for storage).

We don’t count the initialization cost in Definition 5. This is because it is only
incurred once, while the cost of the execution phase is incurred repeatedly.
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We can identify a sufficient condition for a PoST to be rationally stored:

Lemma 1. If a (w,m, ε, f)-PoST is η-complete, and for all C > 0, s < ε′ ·C/γ
it holds that ∞∑

i=1

f(i, s, C − γ · s) < η · C/(γ · m)

then it is (γ, ε′)-Rationally-Stored.

(Note that we assume f(i, s, T ) ≤ 1 for all values i, s and T—otherwise we use
instead f∗(i, s, T ) = min {1, f(i, s, T )}.)

Proof. Denote #G the random variable for the number of successful PoST proofs
produced by the adversary. Then

E [#G] =
∞∑

i=1

i · Pr [#G = i] =
∞∑

i=1

i ·
(
Pr [#G ≥ i] − Pr [#G ≥ i + 1]

)

=
∞∑

i=1

Pr [#G ≥ i] .

By the definition of f -soundness, for an adversary using s space and C − γ · s
oracle queries, the expectation is thus bounded by

E [#G] ≤
∞∑

i=1

f(i, s, C − γ · s)

On the other hand, using the honest proof strategy, and allocating the entire
C budget to space will give C/(γ ·m) proofs, each successful with probability at
least η, hence the expected number of successful proofs for the honest space-only
strategy is η · C/(γ · m).

Thus, the honest proof strategy generates, in expectation, more successful
proofs (i.e., higher reward) than any adversarial strategy that spends less than
an ε′ fraction of its budget on storage space. ��

Note that the adversary can always rerun the initialization phase instead of
storing data, so for any η-complete, (w,m, ε, f)-PoST we must have f(i, 0, i·w) ≥
η, hence if γ · m > w the condition of Lemma 1 cannot be satisfied.

Comparison with the PoS definition. As we remarked in the introduc-
tion, an (N0, N1, T )-PoS does not give any formal security guarantees with
respect to the PoST definition (even if we ignore amortization), since it does
not address rationality attacks at all. In the other direction, even an optimally-
sound (w,m, f)-PoST can’t guarantee a (x, x, w)-PoS, for any x ∈ (0, w), since
we don’t place any lower bound on the space required to generate a proof—the
adversary can always trade space for polynomial work. Thus, the parameters are
not truly comparable.
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Note that even if we did add a space lower bound, similar to the PoS defi-
nition, in order to make use of it in practice one would have to add additional
non-standard assumptions (such as timing assumptions); this is because the
adversary can perform the space-time tradeoff at the level of entire PoS instances
(e.g., generate n instances, but use space for only a single instance at a time).

Thus, one can think of the two definitions as being targeted at different
“regimes”: a PoS forces the prover to use a lot of space, but is not well suited to
high storage costs and requires frequent proof phases (to prevent a space/time
tradeoff), while the PoST definition does allow long periods of elapsed time
between proofs (with a suitably hard initialization step), but relies on the ratio-
nality of the adversary to enforce use of storage rather than work.

Non-Interactive Proofs of SpaceTime (NIPSTs)

Sigma-PoST. A Sigma-PoST is a PoST scheme that has the form of a Sigma-
protocol: Pinit(id) sends a single commitment message to the verifier; Vinit

responds with a random challenge string, after which Pinit sends a single response
message. For the execution phase, the commitment message is the same as the
initialization commitment (hence does not need to be resent); Vexec sends a ran-
dom challenge string, and Pexec responds in turn with a single message.

We note that our PoST construction is a Sigma-PoST.

Making Sigma-PoSTs Non-Interactive. The initialization phase of a Sigma-PoST
can be made non-interactive in the random oracle model by using the Fiat-
Shamir heuristic (replacing the verifier’s response with a hash of the commitment
message). However, interaction cannot be removed entirely—the execution phase
requires a challenge that cannot be predicted by the prover at initialization
time—hence, under standard assumptions it cannot be solely a function of the
prover’s inputs.

Using Proofs of Sequential Work. By introducing a sequential timing assump-
tion, we can make the proof entirely non-interactive; the idea is to use the output
of the initialization phase (or the previous execution phase if we’re running mul-
tiple times) as the input to a publicly-verifiable proof of sequential work (PoSW).
We can then use (a hash of) the output of the PoSW as the challenge to the
execution phase. If we assume a lower bound on the elapsed time for an adver-
sary to perform a given amount of sequential work, this construction ensures
that the adversary must have used sufficient spacetime resources between the
initialization and execution phases.

This NIPST construction appears to violate our main goal—it requires con-
tinuous CPU work even for an honest user. The trick is that a single PoSW
instance can be shared between an arbitrary number of provers, so the amor-
tized CPU cost vanishes as the number of users grows. Instead of using the
previous proof directly as the input to the PoSW, we create a Merkle tree whose
leaves are the inputs from each prover, and use the root of the tree as the input
to the single, shared PoSW.
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The full NIPST consists of (1) the initialization phase output, (2) a Merkle
path from the output to the root of the tree, (3) a PoSW whose input is the
Merkle root and (4) the execution phase proof, with the PoSW as the challenge.

Wenote that somePoSWconstructions (such as that ofCohen andPietrzak [8])
don’t have unique proofs; an adversary can generate multiple different proofs for
the same input that will all be accepted by a verifier. When used in a NIPST, this
means the PoST execution-phase challenges come from a distribution that can be
biased by the adversary. However, our PoST construction can handle this as long as
the distribution has enough min-entropy (which must be the case, since otherwise
an adversary could solve the PoSW by trying to guess the result and running the
verifier to check—this can be done in parallel, so would violate the sequential work
security of the PoSW).

2.3 Constructing a PoST: High-Level Overview

Our proof of spacetime has each prover generate the data they must store on
their own. To ensure that this data is cheaper to store than to generate (and
to allow public verifiability), we require the stored data to be a proof-of-work.
We construct our protocol using the abstract notion of an incompressible-proof-
of-work (IPoW); this is a proof-of-work (PoW) that is non-compressible in the
sense that storing n different IPoWs requires n times the space compared to
storing one IPoW (we define them more formally below; see Sect. 2.4).

As long as the cost of storing an IPoW proof is less than the cost of recomput-
ing it, the prover will prefer to store it. However, this solution is very inefficient:
it requires the prover to send its entire storage to the verifier. In order to verify
the proof with low communication, instead of one large proof of work, we gen-
erate a table containing τ entries; each entry in the table is a proof of work that
can be independently verified.

Why the Näıve Construction Fails. At first glance, it would seem that there is
an easy solution for verifying that the prover stored a large fraction of the table:

1. In the initialization phase: the prover commits to the table contents (using a
Merkle tree whose leaves are the table entries)

2. In the execution phase: the verifier sends a random set of indices to the prover,
who must then respond with the corresponding table entries and commitment
openings (merkle paths to the root of the tree).

Unfortunately, this doesn’t work: the prover can discard the entire table and
reconstruct only those entries requested by the verifier during the execution
phase.

A Simple Solution. Our construction overcomes this problem by forcing the
prover to commit to the entire table at the time of the challenge, and only then
learn the random entries to be sent back (this is made non-interactive using
the Fiat-Shamir heuristic). Intuitively, the prover is forced to either reconstruct
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a large fraction of the table (in which case it must either store many IPoWs,
or recompute them), or spend a lot of computational work trying to find a
commitment that will produce a “good” challenge. By setting the parameters
correctly, we can ensure that in the second case the amount of work the prover
must do is more than the initialization cost (see Sect. 3 for details).

2.4 Incompressible Proofs of Work

The standard definitions of PoWs do not rule out an adversary that can store a
small amount of data and can use it to regenerate an entire table of proofs with
very low computational overhead. Thus, to ensure the adversary must indeed
store the entire table we need a more restrictive definition:

An Incompressible Proof of Work (IPoW) can be described as a protocol
between a verifier V and a prover P :

1. The prover P is given a challenge ch as input, and outputs a “proof” π:
2. The verifier receives (ch, π) and outputs 1 (accept) or 0 (reject).

For simplicity, we denote IPoW (ch) the output of the honest prover on chal-
lenge ch (this is a random variable that depends on the random oracle and the
prover’s coins).

Defining an IPoW. Let q#P denote the number of oracle calls made by P in
the protocol (this is a random variable that depends on ch and the random coins
of P ).

Definition 6 ((w′,m, f)-IPoW). A protocol is a (w′,m, f)-IPoW if:

1. E

[
q#P

]
≤ w′ (the honest prover’s expected work is bounded by w′),

2. |π| ≤ m (the honest prover’s storage is bounded by m) and
3. The IPoW is complete (c.f. Definition 7) and f-sound (c.f. Definition 8).

Definition 7 (IPoW Completeness). An IPoW protocol is complete if, for
every challenge ch, the probability that the verifier rejects is negligible in the
security parameter (the probability is over the coins of the prover and the random
oracle).

Definition 8 (IPoW f(n, s, T )-Soundness). We say A = (A1,A2) is an
[n, s, T ]-adversary if A1 outputs a string σ with length |σ| ≤ s, while A2 gets
σ as input, makes at most T queries to the random oracle and outputs n pairs
(ch1, π1, . . . , chn, πn).

Denote Succ the event (over the randomness of A and the random oracle)
that all the challenges are distinct and ∀i ∈ [n] : V (chi, πi) = 1. An IPoW
protocol is f -sound if for every adversary and all n ≥ 1, s ≥ 0 and T ≥ 0

Pr [Succ] < f(n, s, T )
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Note that we don’t restrict the number of queries A1 makes to the oracle.
As in the PoST definition, this condition bounds the trade-off between space-

time and work for the IPoW adversary. Ideally, we’d like f to be negligible when
s < n · m and T < n · w′ (this implies that the adversary must either store the
same amount as the honest prover, or do enough work to reconstruct the proof
from scratch). Unfortunately, we can’t hope to achieve this; for example, for any
i ∈ (0, n). if an adversary stores only i IPoWs, and reconstructs the remaining
n − i, it will have overwhelming probability of success while storing i · m bits
and doing (n − i) · w′ work. Moreover, the adversary can always “forget” j bits
of storage and guess them correctly with 2−j probability. Thus, in any f -sound
IPoW, we must have, for all j ≥ 0 and i ∈ (0, n) that f(n, i·m−j, (n−i)·w′, T ) ≥
2−j −ε for some negligible ε (that depends on the completeness of the protocol).

3 Our Simple PoST Construction: The Details

Formally, we describe the protocol in the presence of two types of random oracles,
a “work” oracle H(work) and “Merkle” oracles Hi (for i 	= j, Hi and Hj are
independent random oracles).6 We assume the work oracle has a much higher
cost than the calls to the Merkle oracles (in implementation, we can think of the
Merkle oracles as a single iteration of a fast hash function, while the work oracle
can be implemented by a slower hash function or multiple sequential iterations).
In the analysis, we track the number of calls separately, using T to denote the
number of calls to H(work) and T ∗ the number of calls to the Merkle oracles.

The formal PoST protocol description appears as Protocol 1. To construct
it, we use a (w′,m, f)-IPoW. (We construct two oracle-based IPoW schemes in
Sect. 4.)

The soundness of our Simple PoST protocol is summarized in the following
theorem. (For our construction we allow A1 unbounded access to the work oracle,
so we don’t include a T1 parameter.)

Theorem 1 (PoST Soundness). Let kch be the min-entropy of the distri-
bution from which PoST challenges are sampled. The Simple PoST protocol,
instantiated with an f ′-sound IPoW, is f-sound for

f(n, s, T ∗
1 , (T, T ∗)) = min{

min
ε∈(0,1)

{
f ′(ε · n · τ, s + n · (kH + log T ∗ + τ), T ) + T ∗ · εk

}
+ (T ∗)2 · 2−kH + T ∗

1 · 2−kch ,

2−kH ·(n−max{T ∗
1 ,T ∗})} .

(Note that the second term in the outer min is relevant only when n >
max {T ∗

1 , T ∗}.)

6 This is just for convenience of notation, we can implement them all using a single
oracle by assigning a unique prefix to the oracle queries (e.g., Hi (x) = H (i||x).).
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Protocol 1. Simple-PoST
Public Parameters: kH : hash output size, k: security parameter, τ : table size and

IPoW (ch) is a (w′, m, f)-IPoW.
Storing Phase: (Performed by the prover P )
Inputs: id ∈ {0, 1}∗.
1. Generate an array G of size τ as follows:

For each 0 ≤ i < τ , set G[i]
def
= IPoW (id||i) (where the IPoW is given access to

H(work) as its underlying work oracle).
2. Run the proof phase with fixed challenge 0.
3. Publish the string id and the initial proof.

Proof Phase: (Performed by the prover P )
Upon receiving a challenge ch from the verifier V :

1: Construct a Merkle tree whose leaves are labeled with the entries of G, and
each internal node’s label is the output of the random oracle Hch on the con-
catenation of its children’s labels. Let com be the root label.

2: Parse Hch (com) as a set of k indices (i1, . . . , ik) ∈ {0, τ − 1}k.
3: Let πj be the Merkle path from the table entry G[ij ] to the root com. // The

first element of πj is the table entry itself.
4: Output com, π1, . . . , πk. // This can be made more communication efficient

by eliminating common labels.

The honest prover does not need any calls to H(work), but needs up to 2τ calls to the
Merkle oracle (or temporary space to store the Merkle tree).

Proof Phase: (Performed by the verifier V )
Generate a random challenge ch and send it to the prover. Wait to receive the list
com, π1 . . . , πk

1: Parse Hch (com) as a set of k indices (i1, . . . , ik) ∈ {0, τ − 1}k.
2: for all j ∈ {1, . . . , k} do
3: Verify that G[ij ] (the first element of πj) is a valid IPoW for the challenge

id||ij (using the oracle H(work)).
4: Verify that πj is a valid Merkle path from the leaf ij to the root com (using

the oracle Hch ).
5: end for

Corollary 1. When instantiated with the m-Partial-Hash IPoW, the Simple
PoST is f-sound for

f(n, s, T ∗
1 , (T, T ∗)) = min

ε∈(0,1)

{
2−(ε·n·τ ·m−(T ·m+s+n·(kH+log T ∗+τ)) + T ∗ · εk

}
+

(T ∗)2 · 2−kH + T ∗
1 · 2−kch .

3.1 Security Proof

Proof (of Theorem 1). Let A = (A1,A2) be an adversary that wins the
(n, s, T ∗

1 , (T, T ∗))-PoST security game with probability p. For every ε < 1, we
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can use A to construct an IPoW adversary A(IPoW ) = (A(IPoW )
1 ,A(IPoW )

2 ) as
follows:

Let ch1, . . . , chn be random challenges independently selected from a distri-
bution with min-entropy kch.7

IPoW Adversary Initialization (A(IPoW )
1 ):

1. Execute A1, recording the n ids id1, . . . , idn and storing its output σ.
2. Execute A2, with inputs id1, . . . , idn, σ and challenges ch1, . . . , chn. While

executing, keep track of all calls to Hchi . Denote com1, . . . , comn the first
elements of each A2 proof (which, for an honest prover, would each correspond
to the root of a merkle tree).

3. For all i ∈ [n]:
(a) Denote Qi the set of queries to Hchi

.
(b) For every q ∈ Qi, attempt to reconstruct a merkle tree with root Hchi

(q).
Obviously, this may not be possible for every query q, and even when
possible may not result in a full tree. We will say a leaf (i, j) exists for q
if some subset of Qi comprises a valid Merkle path from the leaf j to the
root Hchi

(q). (Note that the reconstruction doesn’t make any additional
calls to the Merkle oracle, it just uses the stored results.)

(c) For all q, and every existing leaf (i, j) for q, run the IPoW verifier with
challenge idi||j to check if the leaf is a valid IPoW proof. In this case, we
say the leaf (i, j) is valid for q.

(d) We say a query q is ε-good if there exist ε · τ different leaves that are valid
for q.

(e) If there does not exist an ε-good query in Qi, output ⊥ and abort. Oth-
erwise, denote gi the index of the first ε-good query in Qi, and let vi be a
bit-vector indicating the valid leaves (vi,j = 1 iff (i, j) is a valid leaf for qgi

).
4. Output (σ, id1, . . . , idn, g1, . . . , gn, v1, . . . , vn).

Note that the output length for A(IPoW )
1 is s + n · kH + n · log T ∗ + n · τ =

s + n · (kH + log T ∗ + τ) bits (since for all i, |Qi| < T ∗, and assuming, w.l.o.g,
that the id size is kH—we can always use a hash of the id if its larger).

IPoW Adversary Prover (A(IPoW )
2 ):

1. Run Steps 2 and 3 from the execution of A(IPoW )
1 .

2. For each i ∈ [n], reconstruct the Merkle tree rooted at Hchi
(qgi

) and for every
valid leaf (i, j), as indicated by vi, output idi||j as an IPoW challenge and
leaf (i, j) as the corresponding proof.

Note that A(IPoW )
2 makes at most T calls to the work oracle and T ∗ calls to the

Merkle oracle, since it executes A2 exactly once.

7 These can be chosen by hardwiring a seed in the code of both A(IPoW )
1 and A(IPoW )

2 ,
and computing chi using the Merkle oracle, which is not counted against the query
budget of A(IPoW )

2 .
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When A(IPoW )
2 succeeds, we’re guaranteed that for each of the n challenges

it can extract an ε-fraction of valid leaves, hence it outputs at least ε ·n · τ valid
IPoW proofs.

The storage space it requires is at most s + n · (kH + log T ∗ + τ) bits. Thus,
A(IPoW ) is an (ε · n · τ, s + n · (kH + log T ∗ + τ), T )-IPoW adversary.

IPoW Adversary Success Probability: To bound the probability of success, we
first rule out two “catastrophic” events:

– A1 makes a query to Hchi
. Since A1 makes at most T ∗

1 queries in total to the
Merkle oracles, and chi is chosen from a distribution with min-entropy kch,
the probability of this occurring for challenge chi is at most T ∗

1 · 2−kch .
– A2 finds a collision in Hchi

for some i. Since the Merkle oracle has output
length kH , and A2 makes at most T ∗ queries to Hchi , by the Birthday Bound
the probability of finding any collision is less than (T ∗)2 · 2−kH .

Now, consider instance i of the PoST proofs generated by A2. We claim that
unless p < 2−kH , comi must be the result of a query A2 makes to Hchi

. To see
this, recall that we assume A1 did not query Hchi on any input. Thus, if A2

did not receive comi as the result of an oracle query, the probability that it can
generate a valid Merkle path that terminates at comi is at most 2−kH .

Since A2 can make at most T ∗ Merkle queries, each execution of A2 can have
at most T ∗ potential Merkle roots for instance i.

Denote Badi the event that there are no ε-good queries in Qi. Denote Succ
the event that A2 is successful (for all n instances). We claim that for all i,
T ∗
1 , . . . , T ∗

n such that Pr
[
Badi

∧n
j=1 |Qj | = T ∗

j

]
> 0, it holds that

Pr

⎡
⎣Succ

∣∣∣∣∣∣
Badi

n∧
j=1

|Qj | = T ∗
j

⎤
⎦ < T ∗

i · εk .

To see this, consider an execution of A2. In order for A2 to be successful, it
must output a good PoST proof for instance idi. This means it must output a
Merkle root comi and the k merkle paths from valid leaves that are selected by
Hchi

(comi).
For every new query qi made by A2, conditioned on Badi the probability

that Hchi (qi) selects k valid leaves in any Merkle tree in A2’s view is at most εk;
this is because, conditioning on Badi, no Merkle tree in A2’s view has more than
an ε-fraction of valid leaves. Since qi has not been previously queried, Hchi

(qi) is
independent of the view up to that point, hence the probability that k random
indices are all valid is at most εk. Since there are exactly T ∗

i queries to Hchi
, the

claim follows by the union bound.
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Denote Bad = Bad1 ∨ · · · ∨ Badn the event that for some i there did not
exist an ε-good query. Since A is bounded by T ∗ queries to the Merkle oracles,
it must hold that

∑n
i=1 |Qi| ≤ T ∗. Thus,

Pr [Succ ∧ Bad]

= Pr

[
Succ ∧ Bad ∧

n∑
i=1

|Qi| ≤ T ∗
]

= Pr

[
Succ ∧ (Bad1 ∨ · · · ∨ Badn) ∧

n∑
i=1

|Qi| ≤ T ∗
]

=
∑

T ∗
1 ,...,T ∗

n

Pr

[
n∧

i=1

|Qi| = T ∗
i

]
·

Pr

[
Succ ∧ (Bad1 ∨ · · · ∨ Badn) ∧

n∑
i=1

|Qi| ≤ T ∗
∣∣∣∣∣

n∧
i=1

|Qi| = T ∗
i

]

=
∑

T ∗
1 ,...,T ∗

n |∑n
i=1 T ∗

i ≤T ∗

Pr

[
n∧

i=1

|Qi| = T ∗
i

]
Pr

[
Succ ∧ (Bad1 ∨ · · · ∨ Badn)

∣∣∣∣∣
n∧

i=1

|Qi| = T ∗
i

]

By the union bound,

≤
∑

T ∗
1 ,...,T ∗

n |∑n
i=1 T ∗

i ≤T ∗

Pr

[
n∧

i=1

|Qi| = T ∗
i

]
n∑

i=1

Pr

⎡
⎣Succ ∧ Badi

∣∣∣∣∣∣
n∧

j=1

|Qj | = T ∗
j

⎤
⎦

By the definition of conditional probability,

=
∑

T ∗
1 ,...,T ∗

n |∑n
i=1 T ∗

i ≤T ∗

Pr

[
n∧

i=1

|Qi| = T ∗
i

]
·

n∑
i=1

⎛
⎝Pr

⎡
⎣Badi

∣∣∣∣∣∣
n∧

j=1

|Qj | = T ∗
j

⎤
⎦ Pr

⎡
⎣Succ

∣∣∣∣∣∣
Badi

n∧
j=1

|Qj | = T ∗
j

⎤
⎦

⎞
⎠

Since Pr [Badi] ≤ 1,

≤
∑

T ∗
1 ,...,T ∗

n |∑n
i=1 T ∗

i ≤T ∗

Pr

[
n∧

i=1

|Qi| = T ∗
i

]
n∑

i=1

Pr

⎡
⎣Succ

∣∣∣∣∣∣
Badi

n∧
j=1

|Qj | = T ∗
j

⎤
⎦
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By our bound on Pr [Succ|Badi] above,

≤
∑

T ∗
1 ,...,T ∗

n |∑n
i=1 T ∗

i ≤T ∗

Pr

[
n∧

i=1

|Qi| = T ∗
i

]
n∑

i=1

(
T ∗

i · εk
)

= εk
∑

T ∗
1 ,...,T ∗

n |∑n
i=1 T ∗

i ≤T ∗

Pr

[
n∧

i=1

|Qi| = T ∗
i

]
n∑

i=1

T ∗
i

≤ εk
∑

T ∗
1 ,...,T ∗

n |∑n
i=1 T ∗

i ≤T ∗

Pr

[
n∧

i=1

|Qi| = T ∗
i

]
T ∗

≤ T ∗ · εk .

Therefore

Pr [¬Bad] ≥ Pr [Succ ∧ ¬Bad] = Pr [Succ] − Pr [Succ ∧ Bad] ≥ p − T ∗ · εk .

Note that if the event Bad did not occur, and neither catastrophic event
occurred, then A(IPoW )

1 does not abort and A(IPoW )
2 is guaranteed to be suc-

cessful.
Since A(IPoW ) is a (ε ·n · τ, s+n · (kH +log T ∗ + τ), T )-IPoW adversary that

succeeds with probability p−T ∗ · εk, by the f ′-soundness of the IPoW it follows
that p < f ′(ε ·n ·τ, s+n ·(kH +log T ∗ +τ), T )+T ∗ ·εk +(T ∗)2 ·2−kH +T ∗

1 ·2−kch.
Finally, note that if n > max {T ∗

1 , T ∗}, then there are at least n −
max {T ∗

1 , T ∗} challenges which the adversary did not query at all; in this case
its success probability is bounded by 2−kH ·(n−max{T ∗

1 ,T ∗}). ��

4 Hash-Preimage IPoW

One of the most popular proofs of work is the hash-preimage PoW: given a
challenge ch ∈ {0, 1}k

H , interpret the random oracle’s output as a binary fraction
in [0, 1] and find x ∈ {0, 1}k

H s.t.

H(work)(ch||x) < p (1)

p is a parameter that sets the difficulty of the proof. For any adversary, the
expected number of oracle calls to generate a proof-of-work of this form is at
least 1/p.

At first glance, this might seem to be an incompressible PoW already—after
all, the random oracle entries are uniformly distributed and independent, so
compressing the output of a random oracle is information-theoretically impossi-
ble. Unfortunately, this intuition is misleading. The reason is that we need the
proof to be incompressible even with access to the random oracle. However, given
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access to the oracle, it’s enough to compress the input to the oracle. Indeed, the
hash-preimage PoW is vulnerable to a very simple compression attack: Incre-
ment a counter x until the first valid solution is found, but don’t store the zero
prefix of the counter. Since the expected number of oracle calls until finding a
valid x is only 1/p, on average that means only log 1

p bits need to be stored
(rather than the full length of an oracle entry).

We show that this is actually an optimal compression scheme. Therefore,
to make this an incompressible PoW, we instruct the honest user to use this
strategy, and store exactly the

⌈
log 1

p

⌉
least significant bits of the counter. We

note that 1
p is the expected number of attempts—in the worst case the prover

may require more; thus, we allow the prover to search up to k
p entries; the

verifier will check k possible prefixes for the log 1
p bits sent by the prover (with

overwhelming probability, there will be a valid solution in this range). Thus, the
verifier may have to make k oracle queries in the worst case in order to check a
proof (however, in expectation it will be only slightly more than one).8

Formally,

Definition 9 (w′-Hash-Preimage IPoW). The honest prover and verifier are
defined as follows: Set p = 1/w′.

Prover Given a challenge y, calls H(work) on the inputs {y||x}
x∈{0,1}log k

p
in

lexicographic order, returning as the proof π the least significant log 1
p bits of

the first x for which H(work)(y||x) < p.
Verifier Given challenge y and proof π, verifies that |π| ≤ log 1

p and that there
exists a prefix z of length log k such that H(work)(y||z||π) < p (where π is
zero-padded to the maximum length).

The security of the Hash-Preimage IPoW is summarized in the following
theorem:

Theorem 2. The w′-hash-preimage protocol is a (w′, log w′, f)-IPoW for
f(n, s, T ) = 2−(n log w′−s−n(2+log �T/n	)).

(The proof appears in Sect. 6.1.)

5 Partial Hash IPoW

Our choice of parameters for the IPoW is constrained by several real-world vari-
ables:

– The maximal time period between proofs that we would like to support
– The amount of storage we would like to fill
– The cost of storage per time period
8 We note that this computation can be performed by the prover instead, but it will

simplify our analysis to assume the verifier performs the checks.
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– The cost of a hash invocation
– The maximum cost we can tolerate for PoST initialization.

For the Hash Preimage IPoW, given a maximum initialization cost and the
cost of a hash invocation, we can upper bound the amount of storage we can fill:
each hash invocation can “contribute” at most a single bit to the total storage
(this is because the amount of space needed to store a single Hash-Preimage
IPoW is logarithmic in the expected number of hash invocations needed to gen-
erate the proof; hence the largest space is taken when each proof requires on
average only a single invocation).

If we would like to fill more space without increasing our initialization cost,
we need to use a different IPoW.

The Partial Hash IPoW is a simple solution that can fill up to k bits per
hash invocation (but at least one bit per invocation). In this case, the amount
of work per IPoW is always a single hash invocation, as is the verification cost.
We parameterize with the amount of space required to store an IPoW.

Formally,

Definition 10 (m-Partial-Hash IPoW). The honest prover and verifier are
defined as follows (where m is the space required to store an IPoW for the honest
user):

Prover Given a challenge y, calls H(work)(y) and returns as the proof the m
least-significant bits of H(work)(y).

Verifier Given challenge y and proof π, verifies that π consists of the m least-
significant bits of H(work)(y).

The security of the Partial-Hash IPoW is summarized in the following
theorem:

Theorem 3. The m-partial-hash IPoW protocol is a (1,m, f(n, s, T ) =
2−(n·m−(T ·m+s)))-IPoW.

(For reasons of space, the proof is omitted here, but can be found in the eprint
version.)

6 IPoW Security Analysis

In the proofs of security for both of our IPoW schemes, we use the following
simple claim bounding the probability to compress a random string.

Let (Compress,Decompress) be an arbitrary pair of probabilistic algo-
rithms (possibly computationally unbounded), such that Compress : {0, 1}k →{

{0, 1}k−m
, bot

}
and Decompress : {0, 1}k−m → {0, 1}k, and for all (x, y) ∈

{0, 1}k × {0, 1}k−m, if y ∈ �(Compress(x)) then Decompress(y) = x. (That is,
if Compress “succeeds” then decompression is perfect).
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Claim 1. Let Uk be a uniformly selected from {0, 1}k. Then Pr[Compress(Uk)
	= ⊥] ≤ 2−m.

Proof. Denote Y = �(Compress) \ {⊥}. Then |Y | ≤ 2k−m. Note that since
decompression is perfect, for any y ∈ Y there can be only a single pre-image
(if we have x1 	= x2 such that Compress(x1) = y = Compress(x2), then for
at least one of them Decompress(y) will fail with non-zero probability). Let
X = {x|Compress(x) ∈ Y }. Then |X| ≤ 2k−m. By the definitions of p and X,
p = Pr [Compress(Uk) 	= ⊥] = Pr [Uk ∈ X], but since |X| ≤ 2k−m and Uk is
uniform, we have p ≤ 2−m. ��

6.1 Proof of Theorem 2

Proof. The honest prover uses w′ expected queries, by the setting of p = 1/w′

and stores log 1
p = log w′ bits. Given an (n, s, T )-adversary A = (A1,A2)

that succeeds with probability p, we can construct a compression algorithm as
described in Protocols 2 and 3.

Protocol 2. Hash-IPoW Decompression algorithm
1: function Decompress(Z)
2: Parse Z as (σ, Δ1, . . . , Δ|X′|, Δ|X′|+1, H(q1), . . . , H(qT ·n), H|X\Q, H|¬(X∪Q))

3: Reconstruct X̂ = {i|qi ∈ X ′} from Δ1, . . . , Δ|X′|: X̂i =
∑

j = 1iΔi. (note: we
know when we’ve reached Δ|X′|+1 when the sum is exactly T · n)

4: Execute A2 with σ as input
– For the ith query made by A2(σ):

• If i ∈ X̂ then reconstruct H(qi) by reading the k−m next bits and treating
them as a k-bit value with m zero MSBs

• If i /∈ X̂ then reconstruct H(qi) by reading the k next bits
The execution will give Q and X as output.

5: Reconstruct H|X \ Q by reading the next (n − |X ′|)(k − m) bits and treating
them as (n − |X ′|) values

6: Reconstruct H|¬(X∪Q) by reading the next (2� − (n + T · n − |X ′|))k bits.
7: end function

This algorithm can, with probability p, compress a string of length 2� · kH

into a string of length 2�kH − (n log w′ − s − n(2 + log �T/n�)) (the analysis of
the encoding length appears in the algorithm description). Thus, by Claim 1, we
must have p ≤ 2−(n log w′−s−n(2+log �T/n	)). ��

7 Market-Based Mechanisms for Difficulty Adjustment

One of the very nice properties of PoW-based cryptocurrency schemes is that
the tunable parameter of PoWs—their difficulty—can be set dynamically using
a market-based solution: by counting the number of published PoW solutions,
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Protocol 3. Hash-IPoW Compression algorithm

1: function Compress(H) // Treat H ∈ {0, 1}2�·k as the truth table of a function:
H : {0, 1}� �→ {0, 1}k

2: Run A1 to get σ. // Assume w.l.o.g that |σ| = s
3: Run A2 with σ and H as input.
4: Let X = (ch1||x1, . . . , chn||xn) be the outputs of A2, sorted lexicographically.
5: Let Q = (q1, . . . , qT ) be the set of oracle queries made by A2, sorted lexico-

graphically. (We can assume w.l.o.g. that |Q| = T .)
6: if ∀i, the log w′ MSBs of H(chi||xi) are all 0s then // the output of A2 verifies;

occurs w.p. p
7: Let X ′ = X ∩ Q = (x′

1, . . . , x
′
|X′|), the subset of outputs that were also

queried.
8: for all j ∈ {1, . . . , |X ′|} do
9: Denote idx(j) the index of x′

j in Q (i.e., qidx(j) = x′
j).

10: Let Δj = idx(j) − idx(j − 1) // we define idx(0) = 1
11: end for
12: Let Δ|X′|+1 = T − ∑|X′|−1

j=1 Δj //
∑|X′|

j=1 Δj = T
13: return (σ, Δ1, . . . , Δ|X′|, Δ|X′|+1, H(q1), . . . , H(qT ), H|X\Q, H|¬(X∪Q))

– We will represent Δj in the following way:

•
⌊

Δj

�T/n�

⌋
represented in unary (between 0 and 
T/n� one bits)

• a zero bit.
• Δj mod (
T/n�) represented in binary (log 
T/n� bits)

Since
∑

j Δj ≤ T , the total number of bits in the unary representations

is at most n. Thus, in total we use at most n + |X ′|(1 + log 
T/n�) bits.
– We represent H(qi) as follows:

• If qi ∈ X ′, we store the k − log w′ LSBs of H(qi)
• Otherwise, we store the full k bits.

In total, this uses |X ′|(k − log w′) + (|Q| − |X ′|)k bits.
– We represent H|X\Q by storing the k − log w′ LSBs of each entry. The

entries are stored consecutively without padding. This uses (n−|X ′|)(k −
log w′) bits.

– We will represent H|¬(X∪Q) by storing the full entries. The entries are
stored consecutively without padding. This uses (2� − n − |Q| + |X ′|)k
bits.

All together, since |X ′| ≤ n, the length of the encoding is at most

Z = s + n + |X ′|(1 + log 
T/n�) + |X ′|(k − log w′)+

(|Q| − |X ′|)k + (n − |X ′|)(k − log w′) + (2� − n − |Q| + |X ′|)k
≤ 2�k − (n log w′ − s − n(2 + log 
T/n�)) .

14: else
15: return ⊥
16: end if
17: end function
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we can estimate the total computational power expended on producing PoWs,
and thus update the difficulty accordingly.

A PoST scheme has two main tunable parameters—the amount of space it
requires (m), and the computational cost of initialization, or difficulty parame-
ter (w). The first parameter determines the cost of generating a good proof (since
amortized over multiple proofs, the initialization cost becomes irrelevant). This
parameter can be set dynamically in a similar fashion to the PoW-based schemes,
by counting the total amount of space invested over a specified time period.

The difficulty parameter, on the other hand, determines the rationality of
storage: the higher the cost of storage, the higher the difficulty parameter must be
set in order to ensure that rational provers will prefer storage over recomputing
the PoST. Unfortunately, the price of storage (relative to computation cost)
can’t readily be estimated simply by observing the PoST proofs (in particular,
the proofs generated by recomputing the initialization are identical to “honest”
proofs).

However, by choosing an appropriate incentive scheme, it turns out that
we can dynamically set the difficulty. The main idea is to give a prover two
identifiable options for generating proofs: the standard, storage-based PoST,
and an alternative that is computation-based. By giving a small “bonus” reward
for solutions that use the computation-based proofs, we incentivize users to
identify themselves as “computational solvers” when the price of storage is high
enough to make computation a more attractive option. When we observe that the
fraction of computational solvers changes, we can adjust the difficulty parameter
to compensate.

The challenge in instantiating such a scheme is that we must ensure that (1)
the difficulty of the alternative proof is equivalent to the difficulty of recomputing
the PoST proof and (2) that the work expended in the alternative proof is tied
to a specific instance of the PoST proof phase (i.e., that it can’t be amortized
across multiple instances).

To solve both of these problems, we use the PoST initialization itself as
the basis for the alternative proof. However, instead of allowing an arbitrary id
string, we require the id for the proof to be a function of the original id and the
challenge from the PoST proof phase.

7.1 PoSTs with Computation Bonus

More formally, we define a PoST with Computational Bonus to be a PoST
scheme with an additional “computational” prover Pbonus and corresponding
verifier Vbonus.

Definition 11 (PoST with Computational Bonus). P = (Pinit, Pexec,
Pbonus), V = (Vinit, Vexec, Vbonus) is a (w,m, ε, f)-PoST with a computational
bonus if P ′ = (Pinit, Pexec) and V ′ = (Vinit, Vexec) comprise an (w,m, ε, f)-PoST
and the prover Pbonus and verifier Vbonus comprise a w′-PoW such that w′ ≤ w.
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Computational Solvers Will Self-Identify. To receive the computational
bonus, we will require the prover to send the proof for Pbonus. The expected
cost to compute this proof is w′, while the expected cost to recompute the
PoST initialization is w ≥ w′. Thus, the strategy of using Pbonus dominates the
strategy of recomputing the PoST, meaning that rational computational solvers
will self-identify.

Rational Storage is Still Preferred. The adversary’s expected cost for using
the computational proof is w′. Thus, the expected number of successful proofs
for a given budget C using the bonus proof method is C/w′. Denote β the bonus
multiplier (i.e., a successful “standard” proof gets reward 1, while a computa-
tional bonus proof gets reward β).

Lemma 2. If a PoST is (γ, ε′)-rationally stored and β < η·w′

γ·m then the PoST
with a β computational bonus is (γ, ε′)-rationally stored.

Proof. Suppose the adversary uses α · C of its budget for the standard PoST
proofs (using an optimal adversarial strategy) and (1 − α) · C for computational
bonus proofs.

For every choice of α, if the adversary allocates less than ε′ · α · C of the
budget to storage, then the expected reward for the adversary is bounded by

E [#G] ≤ β · (1 − α) · C/w′ + max
s∈[0,ε′·α·C/γ)

{ ∞∑
i=1

f(i, s, α · C − γs)

}

using the (γ, ε′)-rational storage property:

< β · (1 − α) · C/w′ + η · α · C/(γ · m)

By our assumption about β

:≤ η · w′

γ · m
· (1 − α) · C/w′ + η · α · C/(γ · m)

= η · (1 − α) · C/(γ · m) + η · α · C/(γ · m) = η · C/(γ · m) .

In particular, this holds for α = 1, which gives the desired result. ��

7.2 Constructing PoSTs with Computational Bonus (Sketch)

Given any (w,m, ε, f)-PoST with a non-interactive initialization phase (e.g.,
as can be construction from a Sigma-PoST), we can extend it to a PoST with
computational bonus by defining the following computational prover and verifier:

Let id be the id used in the PoST initialization phase. The computational
prover/verifier are defined to be

Pbonus(id, ch) := Pinit(id||ch) and Vbonus(id, ch) := Vinit(id||ch)
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The security of this construction (with w = w′)) follows immediately from
the rational storage condition of PoST soundness: this implies that PoST initial-
ization is a proof of work. Moreover, since we use the same parameters as the
underlying PoST (just with a different id), the cost is identical to initializing the
PoST.

7.3 Incremental Difficulty Adjustment

Although in our analysis we treat the initialization phase as a one-time operation
(and hence can amortize away its complexity), if we increase the difficulty, the
data generated by a previous init phase will no longer be valid (since the IPoWs
in our PoST table will not satisfy the new difficulty level).

However, a nice property of the hash-based Simple-PoSTs is that we can
incrementally increase the difficulty. For the Hash-Preimage IPoW, if we increase
difficulty from p to p′ < p, then on average p/p′ of the entries will already satisfy
the new difficulty level. Moreover, for those that do not, since we stored the last
index we reached in the search for a good solution, we can simply “continue”
running the Hash-IPoW solver where it left off. Thus, the total work we expend
(including the first initialization phase) will be only 1/p′. For the Partial-Hash
IPoW, increasing the difficulty means reducing the number of bits stored per
IPoW; this requires the prover to delete some data, and generate additional
IPoWs (increasing the number of table entries) in order to maintain the same
amount of space.

8 Discussion and Open Questions

Improving Proving Complexity. Compared to PoS, our prover complexity (at
least asymptotically) is much worse: the PoST prover has read the entire table
in order to generate a proof. It might be possible to combine the PoS pebbling-
based protocols with our IPoW construction to get both fast proving time and
finely-tunable difficulty—by having each pebble be an IPoW (whose challenge
is given by the hash of its predecessor pebbles).9 Proving the security of this
construction appears to be non-trivial, however.

Best-of-Both-Worlds? All the existing PoS constructions that don’t require the
prover to read its entire data don’t support incremental difficulty adjustment.
An interesting open question is whether it is possible to get a “best of both
worlds” construction, combining low prover complexity with incremental diffi-
culty adjustment.

Constructing additional IPoW constructions using different techniques is also
an interesting open question.

Acknowledgements. The authors would like to thank Siyao Guo for some very help-
ful discussions on compression arguments.

9 Thanks to the anonymous reviewer who suggested this idea!
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Abstract. We construct efficient, unconditional non-malleable codes
that are secure against tampering functions computed by decision trees of
depth d = n1/4−o(1). In particular, each bit of the tampered codeword is
set arbitrarily after adaptively reading up to d arbitrary locations within
the original codeword. Prior to this work, no efficient unconditional non-
malleable codes were known for decision trees beyond depth O(log2 n).

Our result also yields efficient, unconditional non-malleable codes that
are exp(−nΩ(1))-secure against constant-depth circuits of exp(nΩ(1))-size.
Prior work of Chattopadhyay and Li (STOC 2017) and Ball et al. (FOCS
2018) only provide protection against exp(O(log2 n))-size circuits with
exp(−O(log2 n))-security.

We achieve our result through simple non-malleable reductions of deci-
sion tree tampering to split-state tampering. As an intermediary, we
give a simple and generic reduction of leakage-resilient split-state tam-
pering to split-state tampering with improved parameters. Prior work
of Aggarwal et al. (TCC 2015) only provides a reduction to split-state
non-malleable codes with decoders that exhibit particular properties.

1 Introduction

Motivated by applications in tamper-resilience, non-malleable codes were first
introduced by Dziembowski, Pietrzak, and Wichs [DPW10] as an extension of
error-correcting codes that give meaningful guarantees even when every bit of a
codeword may be altered. To define the non-malleability of an encoding scheme
(Enc,Dec) for a class of tampering functions F , consider the following experi-
ment for any f ∈ F : (1) encode a message x via Enc, (2) tamper the resulting
codeword with f , and (3) decode the tampered codeword with Dec. Roughly,
(Enc,Dec) is non-malleable if x̃ = Dec(f(Enc(x))) is either completely unre-
lated to the original message x or identical to x, for any x. In particular, the
outcome of the experiment should be simulatable without any knowledge of x,
up to allowing the simulator to output a special symbol “same” to indicate that
the message is unchanged.

The initial work of Dziembowski et al. [DPW10] observed that achieving
non-malleability against arbitrary tampering is strictly impossible. The goal, as
c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11692, pp. 413–434, 2019.
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in many coding tasks, is to construct a code against as large a class of tampering
functions (channels) as possible with best information rate and strongest secu-
rity guarantees. And, since 2010 a flurry of work has done just that, studying
this object in a variety of models. Of particular interest, both at large and in
this work, is explicit constructions of statistically secure non-malleable codes for
specific families of tampering functions and the efficiency of these constructions
(in both information rate and computational complexity).

Much of the work on explicit constructions has focused on split-state tam-
pering, where the codeword is broken into blocks according to some (fixed
a priori) partition and each block may be tampered with independently
of all other blocks [DKO13,CG14,CZ14,ADL14,Agg15,CGL16,AB16,KOS17,
Li17,Li18]. However, a recent strand of work has focused on tampering func-
tions that aren’t restricted to fixed partitions. Since initial work on tampering
via permutations and bit-flipping [AGM+15] many of these works have looked
at tampering functions that are restricted under some measure of computational
complexity.

In 2016, Ball et al. [BDKM16] constructed non-malleable codes for �-local
tampering functions (functions where each output only depends on � inputs)
for � = o(n/ log n) with rate proportional to � restriction and negligible error.
This class contains NC0, functions computed by circuits composed from a con-
stant depth of constant fan-in gates. In 2017, Chattopadhyay and Li [CL17]
constructed non-malleable codes for AC0 (polynomial size circuits of constant
depth, unbounded fan-in AND and OR gates, as well as NOT gates). Their
construction achieved a negligible error, but had exponentially larger codewords
of length n = 2

√
k for messages of length k.1 In 2018, Ball et al. [BDG+18]

constructed non-malleable codes for AC0 with negligible error and codewords of
almost linear length (n = k1+o(1)).2

However, none of the known constructions for small-depth circuits can sup-
port tampering via large size small-depth circuits nor can they provide security
guarantees beyond exp(−ω(log2 n)) even for AC0 itself. This leads to the follow-
ing problem which we address in this work:

Construct non-malleable codes for AC0 with error bounds exp(−ω(log2 n)).

In fact, the techniques of [BDG+18] immediately suggest a path to improving
non-malleable codes for small-depth circuits, by resolving another open question
which is interesting, independent of the above motivation:

Construct non-malleable codes for decision trees of depth d = ω(log2 n),
or ideally d = nΩ(1).

1 [CL17] also gave a construction for local functions with polynomial length codewords
and sub-exponential error.

2 Actually, the construction of [BDG+18] can handle a slightly wider range of parame-
ters including polynomial size circuits of depth o(log n/ log log n) and constant depth
circuits of size nO(log n). Note that depth d decision trees are also a strict subclass of
2d-local functions. Accordingly, Ball et al.’s codes for n1−ε-local tampering handle
decision tree tampering of depth up to (1 − ε) log n.
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Decision trees of depth d capture tampering where each output bit is set
arbitrarily after adaptively reading d locations of the input, where the choice
of which input location to read next at any point in time can depend on the
values of all the previous locations read. While tampering via decision trees
has been studied in the Common Reference String (CRS) model under crypto-
graphic assumptions [BDKM18], prior to the present work no efficient or explicit
information-theoretic codes were known for decision trees of ω(log2 n) depth.3

1.1 Our Results

Theorem 1 (Informal). There exists an explicit, efficient, information theo-
retic non-malleable code for decision trees of depth n1/4−o(1).

Given the above, the following theorem is a straightforward corollary to a lemma
of [BDG+18] that reduces small-depth circuit tampering to tampering functions
that may adaptively leak limited information from the codeword before selecting
local functions to modify the codeword with. It is easy to observe that this class
is subsumed by decision tree tampering of sufficient depth (See Lemma 8 in
Sect. 5 for more details).

Theorem 2 (Informal). For d ≤ c1 log n/ log log n, there exists an explicit,
efficient, information theoretic non-malleable code for d-depth circuits (of
unbounded fan-in) of size exp(nc2/d) with error exp(−nΩ(1/d)) and encoding
length n = k1+c, where c, c1, c2 ∈ (0, 1) are constants.

In particular, for constant-depth circuits, our result yields efficient, uncondi-
tional non-malleable codes that are exp(−nΩ(1))-secure against exp(nΩ(1))-size
circuits. Prior work [BDG+18,CL17] only provides protection against circuits of
size exp(O(log2 n)) with exp(−O(log2 n)) security.4

It is easy to observe that a non-malleable code (Enc,Dec) with error ε for
most classes C implies a strong average-case lower bound on the power of that
class – in particular, Dec is ε-hard to compute on average via C with respect to
the distribution Enc(b) where b is uniformly chosen.5 For this reason, explicit
constructions of non-malleable codes (with good error) for even a slightly larger
class AC0[2] (AC0 with the addition of mod 2 gates) would necessitate a better
structural understanding of this class than is currently known.

Along the way, we also construct new leakage-resistant split-state codes. Our
construction allows up to a 1/4-fraction of the codeword to be leaked which, to
our knowledge, is the best known.6

3 Note that any decision tree of depth d can also be represented by a 2d-local function
or as a DNF with 2d clauses of width d.

4 Note that if security 2−λ is required, these codes will no longer be efficient. In
particular, the codeword lengths in both cases will be super-polynomial in λ.

5 For tampering functions such that each output bit is in the class C, the implications
follows so long as C contains the constant functions and is closed under negation.

6 [CL18] does not give an explicit bound on leakage and [ADKO15b] allows 1/12-
fraction leakage (or 1/6 in a more restricted model where the leakage amount from
each side has to be the same).
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Theorem 3 (Informal). There is an explicit split-state non-malleable code
supporting leakage of up to a 1/4-fraction of the bits with rate Ω(log log n/ log n)
and error exp(−Ω(n log log n/ log n)).

In particular, our construction allows one to reduce leakage-resilient split-
state tampering to any split-state tampering with just a constant factor increase
in codeword size. Previously, such reductions were only known with worse param-
eters and if the underlying split-state code had decoder with certain proper-
ties [ADKO15b]. On the other hand, [CL18] show that certain split-state seed-
less non-malleable extractors are, in fact, leakage-resilient, yielding codes with
rate comparable to that of the present work (but the leakage bound is left
unspecified). Unlike either of these previous construction, our reduction would
yield improved leakage-resilient split-state non-malleable codes from any future
improvement in the rate of explicit split-state non-malleable codes. Finally, our
analysis is much simpler than that of [ADKO15b].

1.2 Our Techniques

We construct our codes for decision trees by constructing a non-malleable reduc-
tion from decision tree tampering to split-state tampering. A non-malleable
reduction, first defined in [ADKO15a], from F to G is simply an encoding scheme,
(Enc,Dec) such that for any f ∈ F and any message x, the value Dec(f(Enc(x)))
is statistically close to g(x) for g chose from some distribution over functions in
G. In particular a non-malleable code for F is a non-malleable reduction from F
to the family G consisting of the identity function and constant functions.

Both the reduction and its analysis are surprisingly simple. We also note that
our reduction can be seen as distillation of the core ideas behind the construc-
tion for local tampering from [BDKM16,BDG+18]. One can view the reduc-
tions in these papers as, in fact, performing two reductions: local tampering to
leaky split-state tampering, and leaky split-state tampering to split-state tam-
pering. Viewed this way, these works implicitly construct a very weak form
a leakage-resilient split-state code. It is weak in that it can only handle the
leakage of a few bits chosen in advance, in particular it is not robust enough
to handle even adaptive choices of the bits. While leakage-resilient split-state
codes are already known [ADKO15b,CL18], this alone is not enough. In partic-
ular, the implicit reduction from local tampering to leaky split-state tampering
in [BDKM16,BDG+18] does not seem to hold for decision trees. However, this
modular perspective simplifies the analysis tremendously, even for this original
case of local tampering.

We will outline our new reduction for decision tree tampering. The key idea
here, as in [BDKM16,BDG+18], is to exploit size differences. Our encoder and
decoder will work independently on the left and right pieces of the message, so
we will in turn think of having left and right encoders, decoders, codewords, and
tampering functions (corresponding to the respective outputs).

First, let us suppose that the right piece of the message (corresponding to the
right split-state codeword) is much longer than that of the left. Then, suppose
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both the right and left encoders and decoders are simply the identity function.
Then, all the left tampering functions together will make a number of queries to
the right codeword that is below our leakage threshold.

However, because the right is much longer than the left, the above analysis
won’t help in simulating tampering on the right with low leakage from the left.
Instead, we modify the left encoder/decoder to make it much longer than the
right, but while retaining the property that the left can be decoded from just a
few decision trees. To do so, we sample a random small set, whose size is that
of the message, in a much larger array. We plant the message in these locations
and zero everything else out. Then, we bit-wise secret share a description of the
small set (i.e., its seed) such that the secrecy threshold is relatively large. To
decode, we can simply extract the seed and output what is in the corresponding
locations of the array.

Now, note that decoding the left still only requires at most relatively few
queries to the right: decision tree depth times both encoded seed length plus
message length. But we can’t make the encoded seed too long or we will be dead
again. Instead, we critically use the fact that tampering is by a forest of decision
trees. In particular, for any small set of tampering functions on the right, the
seed remains uniformly chosen regardless of what queries the set makes, so we
expect only a small fraction of any queries made to the array to actually hit the
message locations. Strong concentrations bounds guarantee that this is more or
less what actually happens. Finally we simply union bound over all such subsets
to guarantee that collectively the right tampering function makes few queries to
the left with overwhelming probability.

Finally, we apply the same style of encoding used on the left to the right side
to fix the syntactic mismatch and reduce to the case where the right and left
messages are the same size.

As mentioned above, non-malleable codes for leakage-resilient split-state
are known from prior work [ADKO15b,CL18]. However, we give a new reduc-
tion from leakage-resilient split-state tampering to split-state tampering that,
when combined with the state-of-the-art split-state non-malleable codes [Li18],
improves on the (explicit) parameters of what was known before.

Our leakage-resilient reduction is quite intuitive. We show that given a
statistically-secure leakage-resilient encryption scheme (where an adversary can
receive bounded leakage from both ciphertext and the key used to encrypt it) it
suffices to simply encrypt the left and right split-state codewords independently
(with their own keys) and place the keys in the opposite state. By the strong
security property of the encryption scheme, the ciphertext hides each underlying
split-state codeword piece, whatever (bounded amount) is leaked from the key
in the opposite state.

To complete the reduction, we construct such a statistically-secure leakage-
resilient encryption scheme from extractors. Our notion of leakage-resilience
essentially combines the notions of “forward-secure storage” [Dzi06] and “leakage-
resilient storage” [DDV10] to get the best of both worlds, and our construction
essentially combines the ideas behind the constructions of the above two objects.
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Related Work in Other Models. The aforementioned work of [BDKM18] con-
structs a generic framework for converting correlation bounds into non-malleable
codes. They instantiate their framework to construct non-malleable codes both
for decision trees and large small-depth circuits. However, this work (a) requires
a Common Reference String, and (b) is secure in a game-based model against
efficient adversaries, assuming unproven cryptographic assumptions. In fact, one
of the assumptions, public key encryption with decryption in AC0, necessarily
limits their error term to be at most exp(− logO(1)(n)).

A very recent follow-up work, [BDSK+18], improves upon [BDKM18] show-
ing how to remove the Common Reference String, but still does not achieve
unconditional or statistical guarantees.

2 Preliminaries

For a positive integer n, we use [n] to denote {1, . . . , n}. For x = (x1, . . . , xn) ∈
{0, 1}n and i ≤ j ∈ [n], we define xi:j := (xi, . . . , xj). For a set S ⊆ [n] or a
string S ∈ {0, 1}n, xS denotes the projection of x to S. For x, y ∈ {0, 1}n, if
they disagree on at least ε · n indices, we say they are ε-far, otherwise, they are
ε-close to each other.

For a set Σ, we use ΣΣ to denote the set of all functions from Σ to Σ. Given a
distribution D, z ← D denotes sample z according to D. For two distributions D1,
D2 over Σ, their statistical distance is defined as Δ(D1,D2) := 1

2

∑
z∈Σ |D1(z)−

D2(z)|.

2.1 Non-malleable Reductions and Codes

Non-malleable codes were first defined in [DPW10]. Here we use a simpler, but
equivalent, definition based on the following notion of non-malleable reduction
by Aggarwal et al. [ADKO15a].

Definition 1 (Non-Malleable Reduction [ADKO15a]). Let F ⊂ AA and
G ⊂ BB be some classes of functions. We say F reduces to G, (F ⇒ G, ε), if
there exists an efficient (randomized) encoding function Enc : B → A, and an
efficient decoding function Dec : A → B, such that

(a) ∀x ∈ B,Pr[Dec(Enc(x)) = x] = 1 (over the randomness of E).
(b) ∀f ∈ F ,∃G s.t. ∀x ∈ B, Δ(Dec(f(Enc(x)));G(x)) ≤ ε, where G is a distri-

bution over G and G(x) denotes the distribution g(x), where g ← G.

If the above holds, then (Enc,Dec) is an (F ,G, ε)-non-malleable reduction.

Definition 2 (Non-Malleable Code [ADKO15a]). Let NMk denote the set of
trivial manipulation functions on k-bit strings, consisting of the identity function
id(x) = x and all constant functions fc(x) = c, where c ∈ {0, 1}k. (Enc,Dec)
defines an (Fn(k), k, ε)-non-malleable code, if it defines an (Fn(k),NMk, ε)-non-
malleable reduction. Moreover, the rate of such a code is taken to be k/n(k).
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The following useful theorem allows us to compose non-malleable reductions.

Theorem 4 (Composition [ADKO15a]). If (F ⇒ G, ε1) and (G ⇒ H, ε2),
then (F ⇒ H, ε1 + ε2).

2.2 Tampering Function Classes

Definition 3 (Split-State Model [DPW10]). The split-state model, SSk,
denotes the set of all functions:

{f = (f1, f2) : f(x) = (f1(x1:k) ∈ {0, 1}k, f2(xk+1:2k) ∈ {0, 1}k), x ∈ {0, 1}2k}.

One natural extension of split-state model is leaky/bounded-communication
split-state functions considered by Aggarwal et al. [ADKO15b] and Chattopad-
hyay et al. [CL18].

Definition 4 (Leaky/Bounded-Communication Split-State Model). Let
α ∈ [0, 1] be a parameter. We say f ∈ {0, 1}2k → {0, 1}2k is in α-leaky split-
state model, α−SSk if there exists a communication protocol between Alice and
Bob such that for x = (x1:k, xk+1:2k) ∈ {0, 1}2k, f(x) can be computed by a
communication protocol with parameter α between Alice and Bob where Alice
has access to x1:k, Bob has access to xk+1:2k. Alice and Bob send information
back and forth depending on their own inputs and the current transcript of the
communication so far. Overall the total communication is at most αk bits and
finally Alice outputs f(x)1:k and Bob outputs f(x)k+1:2k.

Definition 5 (Decision Trees). A decision tree with n input bits is a binary
tree whose internal nodes have labels from x1, . . . , xn and whose leaves have
labels from {0, 1}. If a node has label xi then the test performed at that node is
to examine the i-th bit of the input. If the result is 0, one descends into the left
subtree, whereas if the result is 1, one descends into the right subtree. The label
of the leaf so reached is the output value on that particular input. The depth of
a decision tree is the number of edges in a longest path from the root to a leaf.
Let DT(t) denote decision trees with depth at most t.

Definition 6 (Small Depth Circuits). A Boolean circuit with n input bits is
a directed acyclic graph in which every node (also called gate) is either an input
node of in-degree 0 labeled by one of the n input bits, an AND gate, an OR gate,
or a NOT gate. One of these gates is designated as the output gate. The size
of a circuit is its number of gates and the depth of a circuit is the length of its
longest path from an input gate to the output gate. Let ACd(S) denote depth d
circuits of size at most S with unbounded fan-in.

For a set of boolean circuits C (respectively decision trees), we say that a
boolean function f is in C, if there exists a C ∈ C which agrees with f on every
input. We say that a multiple output function f = (f1, . . . , fm) is in C if
fi ∈ C for any i ∈ [m].
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2.3 Pseudorandom Objects

Extractors

Definition 7 (Weak Random Sources). The min-entropy of a distribution
X over {0, 1}n is H∞(X) := − log(maxx∈{0,1}n Pr[X = x]). A distribution X
over {0, 1}n is called an (n, k) source if H∞(X) ≥ k.

Definition 8 (Strong Extractors [NZ96]). A function Ext : {0, 1}n+d →
{0, 1}m is a (k, ε) extractor if for every (n, k) source X, Y,Ext(X,Y) is ε-close
to Y,Um where Y is uniformly distributed over {0, 1}d and Um is uniformly dis-
tributed over {0, 1}m. An extractor is explicit if it is computable in polynomial
time.

Theorem 5 (Explicit Strong Extractors [GUV09]). For every constant α >
0, and all positive integers n, k and all ε > 0, there is an explicit construction of
a (k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n + log(1/ε))
and m ≥ (1 − α)k.

Definition 9 (Two Source Extractors [CG88]). A function 2Ext : {0, 1}n ×
{0, 1}n → {0, 1}m is a (k, ε) two source extractor if for independent source X and
sources Y such that H∞(X)+H∞(Y ) ≥ k, (Y, 2Ext(X,Y)) is ε-close to (Y,Um)
and (X, 2Ext(X,Y)) is ε-close to (X,Um) where Um is uniformly distributed over
{0, 1}m. An extractor is explicit if it is computable in polynomial time.

Theorem 6 (Explicit Two Source Extractors [CG88]). For all positive
integers m,n such that n is a multiple of m and for all ε ≥ 0, there exists
an efficient (n+m+2 log 1/ε, ε) 2-source extractor with n-bit sources and m-bit
output.7

Binary Ramp Secret Sharing Encoding Schemes

Definition 10 (Binary Ramp Secret Sharing Encoding Schemes). We
say (Enc,Dec) is a binary ramp secret sharing encoding scheme with parameters
(k, n, csec), where k, n ∈ N, 0 ≤ csec < 1, if it satisfies the following properties:

1. Reconstruction. Enc: {0, 1}k → {0, 1}n is an efficient probabilistic proce-
dure, which maps a message x ∈ {0, 1}k to a distribution over {0, 1}n, and
Dec: {0, 1}n → {0, 1}k is an efficient procedure. For any x ∈ {0, 1}k, it holds
that Pr[Dec(Enc(x)) = x] = 1.

2. Secrecy of partial views. For any x ∈ {0, 1}k and any non-empty set
S ⊂ [n] of size ≤ �csec · n, Enc(x)S is identically distributed to the uniform
distribution over {0, 1}|S|.

As observed by Ball et al. [BDG+18] (cf. Lemma 2), such a coding scheme can
be constructed efficiently from any linear error correcting code. We reproduce
their construction here for convenience and refer the reader to [BDG+18] for
further discussion.
7 [CG88] implies this theorem and the parameters have been taken from [ADKO15b].
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Lemma 1 ([BDG+18]). Suppose there exists a binary linear error correcting
code with parameters (k, n, d), then there is a binary ramp secret sharing scheme
with parameters (k, n, (d − 1)/n).

Proof. For a linear error correcting code with (k, n, d), let A denote its encoding
matrix, H denote its parity check matrix. Let B be a matrix so that BA = I
where I is the k×k identity matrix (such B exists because A has rank k and can
be found efficiently). By property of parity check matrix, HA = 0 and Hs �= 0
for any 0 < ||s||0 < d where 0 is the (n − k) × k all 0 matrix.

We define (Enc,Dec) as follows: for x ∈ {0, 1}k and randomness r ∈
{0, 1}n−k, Enc(x; r) := BT x + HT r, for c ∈ {0, 1}n; Dec(c) := AT c.

(Enc,Dec) is an encoding scheme because Dec ◦ Enc = AT BT = IT = I. For
secrecy property, note that for any non-empty S ⊆ [n] of size at most d − 1,
(Hr)S is distributed uniformly over {0, 1}|S|, because for any a ∈ {0, 1}|S|,

Pr
r

[(HT r)S = a] = E[Πi∈S
1 + (−1)(H

T r)i+ai

2
]

= 2−|S| ∑

S′⊆S

E[Πi∈S′(−1)(H
T r)i+ai ] = 2−|S|,

where the last equality is because the only surviving term is S′ = ∅ and for
other S′,

∑
i∈S′ HT

i �= 0 so E[Πi∈S′(−1)(H
T r)i ] = 0. It implies Enc(x)S is also

distributed uniformly over {0, 1}S . Hence (Enc,Dec) is a binary ramp secret
sharing encoding scheme with parameters (k, n, (d − 1)/n).

The following lemma is an immediate consequence of the former and any
construction of a good code, such as a Justesen code.

Lemma 2. For any k ∈ N, there exist constants 0 < crate, csec < 1 such that
there is a binary RSS scheme with parameters (k, cratek, csec).

To achieve longer encoding lengths n, with the same csec parameter, one can
simply pad the message to an appropriate length.

2.4 Concentration Inequalities

Theorem 7 (Generalized Chernoff Bound [PS97]). Let X1, . . . , Xn be bool-
ean random variables such that, for some 0 ≤ δ ≤ 1, we have that, for every
subset S ⊆ [n], E[Πi∈SXi] ≤ δ|S|. Then Pr[

∑n
i=1 Xi ≥ 2δn] ≤ exp(−nδ/3).

3 Decision Trees to Leaky Split-State Model

In this section, we give a non-malleable reduction from decision tree tampering
to leaky split-state tampering.

Lemma 3. For any constant α ∈ (0, 1) and t = O(n1/4/ log3/2 n), there is a
(DT(t) ⇒ α − SSk, ε)-non-malleable reduction with rate Ω(1/t2 log3 n) where
ε ≤ exp(−Ω(n/t4 log5 n)).
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A single decision tree from {0, 1}n to {0, 1} of depth t can be viewed as
an adversary (or computation) that first adaptively queries at most t input
coordinates, and then outputs a bit. Given a tampering function f from {0, 1}n

to {0, 1}n such that each output bit is computed by a decision tree of depth t
(i.e., each output is the result of adaptively querying at most t coordinates from
the input, here a codeword), we will non-malleably reduce f to a special subclass
of leaky split-state functions.

Recall that an α-leaky split-state function g = (gL, gR) from {0, 1}2k to
{0, 1}2k can be computed by a communication protocol with parameter α
between Alice and Bob where Alice has access to xL := x1:k and Bob has access
to xR := xk+1:2k. Alice and Bob send information back and forth depending
on their own inputs and the current transcript of the communication so far.
And finally, Alice outputs gL(xL, xR) and Bob outputs gR(xL, xR). We consider
a special subclass of α-leaky split-state function where Alice and Bob simply
make a bounded number of adaptive queries to each other’s input. In particular,
when Alice (resp. Bob) makes a query to xR (resp. xL), Alice (resp. Bob) sends
location i ∈ [k] and ask Bob (resp. Alice) to send back the ith coordinate of xR

(resp. xL).
Note that the communication cost for each query (and answer) is �log k� + 1

bits. (For the remainder of this section, we will assume that both k and n are
powers of 2.) So if both Alice and Bob make at most αk/(2(log k + 1)) queries
to each other’s input, the total communication is at most αk and g is an α-
leaky split-state function. We will show that our reduction reduces decision tree
tampering functions (of appropriate depth) to this subclass of leaky split-state
functions.

Our reduction relies on a ramp secret sharing scheme over binary alphabet.
For parameter m, let (EncRSS ,DecRSS) be an efficient coding scheme such that
EncRSS maps an m-bit to a (random) 4m-bit string so that for any ζ ∈ {0, 1}m

and subset S �= ∅ of size at most m, EncRSS(ζ)S distributes uniformly and ran-
domly over {0, 1}|S|. As observed by Ball et al. [BDG+18] (see Lemma 2), such
a coding scheme can be constructed efficiently from any linear error correcting
code from m bits to 4m bits with minimal distance m + 1. We choose constant
4 to simplify the presentation.

Based on (EncRSS ,DecRSS), we define a coding scheme that hides a message
in random locations. Let Gk,n be the function that given a short “seed,” ζ, of k
distinct indices in [n] expands it to the corresponding n-bit string with hamming
weight k (where the ones are in locations indexed by ζ). Let Dk,n be a distribution
such that Gk,n(Dk,n) is uniform over n-bit strings with hamming weight k. Note
that Gk,n can be computed efficiently and Dk,n can be sampled efficiently by sim-
ply sampling k locations from [n] without replacement. For k, n and m ≥ k log n,
we define an encoding Enc∗

n,k,m : {0, 1}k → {0, 1}4m × {0, 1}n, as follows: on a k-
bit string x, sample a random seed ζ ← Dk,n for Gk,n, and output (EncRSS(ζ), c)
so that c is 0 everywhere except cG(ζ) = x. Dec∗

n,k,m is defined in the straightfor-
ward way (it first decodes ζ using DecRSS , then outputs cG(ζ)).
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Given f = (fL, fR) ∈ DT(t), we sample an α-split state g from the distribution Gf

as follows: sample and hardwire the randomness required for EncL,EncR. Let ζL
and ζR be the respective seeds used for G in EncL and EncR. Then, g = (gL, gR)
is defined as follows: on input x = (xL, xR)

– gL(x) simulates DecL(fL(EncL(xL),EncR(xR))) with at most αk/2(log k +1)
queries to xR (*)
1. Decode the tampered seed ˜ζL by computing the first 4mL outputs of

fL(EncL(xL),EncR(xR)) then applying DecRSS .
(To evaluate the necessary portion fL the simulator evaluates the corre-
sponding decision trees. When a bit is queried in EncR(xR) we have three
cases (recall that these encodings consist of two parts, EncRSS(ζR) and
cR): (a) if the index corresponds to a location in EncRSS(ζR), it is hard-
wired already in gL; (b) if the index corresponds to cR and a location
specified by ζR, query/request the relevant bit from xR; (c) if the index
corresponds to cR and a location not specified by ζR, simply use 0.)

2. Compute the output bits of fL(EncL(xL),EncR(xR)) indexed by set
G(˜ζL).
(The decision trees corresponding to indices specified by ˜ζL are evaluated
identically to the preceeding step.)

(*) whenever gL(x) makes more than αk/(2(log k + 1)) queries to xR, abort
and output 0k.

– gR(x) simulates DecR(fR(EncL(xL),EncR(xR))) with at most αk/2(log k+1)
queries to xL (*)
1. Compute ỹR = fR(EncL(xL),EncR(xR)).

(The corresponding decision trees in fR are evaluated in a symmetric
manner to those needed for gL.)

2. Compute DecR(ỹR).
(*) whenever gR(x) makes more than αk/(2(log k + 1)) queries to xL, abort
and output 0k.

Fig. 1. Simulator for (Enc, Dec)

The high level idea of our reduction is to use two copies of Enc∗ to hide
inputs xL and xR independently inside two long messages (with different length).
Let nL,mL, nR,mR be parameters to be determined later. We define Enc as
Enc(xL, xR) = (EncL(xL),EncR(xR)) where EncL = Enc∗

nL,k,mL
and EncR =

Enc∗
nR,k,mR

. And we define Dec as Dec(yL, yR) = (DecL(yL),DecR(yR)) where
DecL = Dec∗

nL,k,mL
and DecR = Dec∗

nR,k,mR
.

Now we show (Enc,Dec) non-malleably reduces DT(t) to α-SSk and prove
Lemma 3. First observe that Dec ◦ Enc is the identity function due to the cor-
rectness of (EncL,DecL) and (EncR,DecR). It remains to show that for any
f : {0, 1}n → {0, 1}n ∈ DT(t), Dec ◦ f ◦ Enc becomes α-split state functions.
In fact, in Fig. 1, we reduce decision trees to a simpler subclass of α-SSk where
Alice and Bob, in parallel, make at most αk/(2(log k + 1))-bounded number of
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adaptive queries to locations of the other party’s inputs, then output tampered
values.

By the special condition (∗) in gL, gR, g = (gL, gR) is indeed α-split state
function because Alice and Bob communicates at most log k + 1 bits per query
(including the answer). Moreover, for any x, Gf (x) distributes identically to Dec◦
f ◦ Enc(x) conditioning on that (∗) doesn’t happen. Therefore ε, the difference
between the simulation and the real experiment, is at most the probability that
(∗) happens. To bound the event that (∗) happens, we begin by proving the
following more general proposition.

Proposition 1. For integers n, k,m ≥ k log n. Let A be an arbitrary algorithm
that makes at most m adaptive queries to (EncRSS(ζ), G(ζ)). Let Y denote the
number of distinct 1’s in G(ζ) which are queried by A. It holds that over the
randomness of ζ and EncRSS,

Pr[Y ≥ 2mk/n] ≤ exp(−mk/3n).

Proof. Note that, for any fixed ζ, any A that makes at most m adaptive queries
cannot distinguish (EncRSS(ζ), G(ζ)) and (U,G(ζ)) where U is uniformly dis-
tributed over {0, 1}4m. That’s because (U,G(ζ)) generates any possible tran-
script (i1, b1, . . . , im, bm), (EncRSS(ζ), G(ζ)) with exactly the same probability
due to the secrecy property of EncRSS . Because U and ζ are independent, it
suffices to bound the probability that AU,G(ζ) queries more than 2mk/n number
of 1’s for an arbitrary fixed choice of U and a random ζ.

Without loss of generality, we assume A queries m distinct locations of G(ζ)
because any algorithm can be made into one which sees more ones from G(ζ)
by querying distinct locations. Let Y1, . . . , Ym be indicators that G(ζ) returns 1
for these m queries made by A. Note that Y = Y1 + · · · +Ym and E[Y ] ≤ mk/n.
In addition, observe that for any b1, . . . , bm ∈ {0, 1}, Pr[∀i ∈ [m], Yi = bi] =
(

n−m
k−|b|0

)
/
(
n
k

)
. It follows that for any set S ⊆ [m], E[Πi∈SYi] =

(
n−|S|
k−|S|

)
/
(
n
k

) ≤
(k/n)|S|. By the generalized Chernoff bound by Theorem 7 with δ = k/n, we
obtain the desired conclusion.

We then apply Proposition 1 in following two claims to bound (*), the prob-
ability that the number of bits required from the opposite side exceeds some
threshold for either half of the simulated tampering function. We will handle
each side separately. In particular, these claims will bound the number of queries
or probes made to bits on the opposite side that depend on the input (if we fix
the randomness of encoding). Because in the simulated tampering, both Alice
and Bob jointly know the randomness of encoding, if a bit on the opposite side is
not dependent on the input, then both Alice and Bob know this and do not need
to request its value. So, in order to complete the proof we only need to bound
queries the simulator makes to the opposite side that additionally correspond to
locations specified by the respective ζ (in the respective Enc∗).

Claim. Suppose mR ≥ (4mL + k)t, then for any x ∈ {0, 1}2k, the event that gL

makes more than 2(4mL + k)tk/nR queries to xR happens with probability at
most exp(−(4mL + k)tk/3nR).
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Proof. Fix any xL, xR and the randomness for EncL(xL). Note that DecL reads
at most 4mL + k coordinates from its input, 4mL to reconstruct the tampered
“seed” ζ̃ and then the at most k locations specified by G(ζ̃). Each decision tree
tampering one of these bits makes at most t queries EncR(xR) (it makes at most
t queries total). Therefore gL, in order to simulate the tampering of the bits DecL

requires, makes at most (4mL+k)t queries to EncR(xR) = (EncRSS(ζR), G(ζR)).
By Proposition 1, gL queries more than 2(4mL+k)tk/nR locations happens with
probability at most exp(−(4mL + k)tk/3nR).

Claim. Suppose mL ≥ t, then for any x ∈ {0, 1}2k, the event that gR makes
more than 2(4mR + nR)tk/nL queries to xL happens with probability at most
(nR + 4mR)t/mL · exp(−mLk/3nL).

Proof. Fix any xL, xR and the randomness for EncR(xR). Note that any subset
of mL/t outputs of fR makes at most mL queries to EncL(xL). By Proposi-
tion 1, the probability that 2mLk/nL ones in G(ζL) are queried is at most
exp(−mLk/3nL). We partition the output bits of fR into (nR + 4mR)t/mL dis-
joint subsets of size mL/t. By a union bound over these subsets, the even that
fR makes more than 2(4mR +nR)tk/nL queries to xL happens with probability
at most (nR +4mR)t/mL · exp(−mLk/3nL). The number of queries made by gR

to xL is at most the queries made by fR and the desired conclusion follows.

Then for fixed α, there exists constants c1, c2, c3 (only dependent on α)
such that if we set mL = c1k log n, nR = mR = c2tk log n log k and nL =
c3t

2k log n log2 k, then (*) (the event that the number of queries to either oppos-
ing side exceeds αk/(2(log k + 1)) happens with probability at most (t2 log k) ·
exp(−Ω(k/t2 log2 k)). Note that it follows that the rate is k/n = Ω(1/t2 log3 n)
and for t = O(n1/4/ log3/2 n), the error can be simplified to exp(−Ω(n/t4 log5 n))
because Ω(n/t4 log5 n) = Ω(log n) and t2 log k = exp(O(log n)).

4 Leaky Split-State to Split-State Model

In this section, we show how to reduce leaky split-state to split-state non-
malleability. In other words, we show how to add leakage-resilience generically
to any split-state non-malleable code. Our construction handles up to 1

4 fraction
leakage. Concretely, we prove the following lemma, where the tampering classes
SSk (split-state) and α-SSn (leaky split-state) are defined in Definitions 3 and 4
respectively.

Lemma 4. For any constant α ∈ [0, 1/4), α-SSn non-malleably reduces to SSk

with loss exp(−Ω(n))
)

and constant rate.

Our main tool is new notion of (information-theoretic, one-time) leakage-
resilient encryption defined below.

Definition 11 (Leakage-Resilient Encryption). We consider a (random-
ized) encryption scheme (Encrypt,Decrypt) which encrypts message x of length
|x| = k using a key of size |key| = m. For some message x ∈ {0, 1}k we consider
the following randomized experiment GameLRENC(x):
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– Choose key ← {0, 1}m, ct ← Encrypt(key, x).
– Alice gets ct and Bob gets key. They can run an arbitrary protocol with each

other subject to the total communication being at most �1 bits. Let trans ∈
{0, 1}�1 be the transcript.

– At the end of the protocol, Alice also outputs an additional value aux ∈
{0, 1}�2 .

– The output of the game is key, trans, aux.

We say that an encryption scheme is (�1, �2, ε)-leakage-resilient if for any adver-
sarial strategy of Alice and Bob and for any x0, x1 the outputs of GameLRENC(x0)
and GameLRENC(x1) have statistical distance at most ε.

The above definition is similar to the “forward-secure storage” of Dziem-
bowski [Dzi06], which corresponds to our notion with �1 = 0 (there is only leak-
age on the ciphertext; it is completely independent of the key but can be much
larger than the key). It is also similar to the notion of “leakage-resilient storage”
of Davi, Dziembowski and Venturi [DDV10], which corresponds to our notion
with �2 = 0 (there is back-and-forth leakage on the ciphertext and the key but
the total leakage is smaller than either the ciphertext or the key). Our definition
combines the two notions. We will crucially rely on a setting of parameters where,
if the key size is m and the message size is k then we need �1 < m ≤ �2 < k.
In other words, we allow �1 bits of back-and-forth leakage between the cipher-
text and the key where �1 is smaller than either component, but then allow and
additional �2 bits of leakage on the ciphertext where �2 is larger than the key.

Reduction via Leakage-Resilient Encryption. We first show how to use leakage-
resilient encryption as defined above to construct a reduction from leaky split-
state to split-state tampering. We do so by encrypting the two states xL, xR using
leakage-resilient encryption and storing the key with the other state (i.e., the key
used to encrypt the left state is stored on the right sides and vice versa). Intu-
itively, the leakage-resilient encryption ensures that the leakage is independent
of the actual states xL, xR. However, we face the challenge that, by tampering
the key on the right side we can influence how the left side is decrypted and
vice versa. We get around this by thinking of the tampered keys as additional
leakage (aux).

Let E = (Encrypt,Decrypt) be a leakage-resilient encryption with message
size k and key length m. We define our reduction (Enc,Dec) below:

– Enc(xL, xR): Sample keyL ← {0, 1}m, ctL ← Encrypt(xL), keyR ← {0, 1}m,
ctR ← Encrypt(xR). Output (yL, yR) where yL = (ctL, keyR), yR =
(ctR, keyL).

– Dec(yL, yR): Parse yL = (ctL, keyR), yR = (ctR, keyL) and output xL =
Decrypt(keyL, ctL) and xR = Decrypt(keyR, ctR).

Lemma 5. Assume E is an (�1, �2, ε)-leakage-resilient encryption with message
length k, key length m ≤ �2 and ciphertext length c. Then (Enc,Dec) defined
above is a 2ε-non-malleable reduction from (�1/(c+m))-leaky split-state to split-
state. For a messages (xL, xR) of length 2k, the resulting codeword Enc(xL, xR)
has length 2(c + m).
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Proof. Consider the following game: GameNM(xL, xR):

1. Compute (yL = (ctL, keyR), yR = (ctR, keyL)) ← Enc(xL, yL)
2. Give Alice yL and Bob yR. They can run an arbitrary protocol with each other

subject to the total communication being at most �1 bits. Let trans ∈ {0, 1}�1

be the transcript.
3. At the end of the protocol Alice outputs y′

L = (ct′L, key′
R) and Bob outputs

y′
R = (ct′R, key′

L).
4. The output of the game (x′

L, x′
R) = Dec(y′

L, y′
R),

so that x′
L = Decrypt(key′

L, ct′L) and x′
R = Decrypt(key′

R, ct′R).

To prove the Lemma, we fix an arbitrary strategy of Alice and Bob and
need to show that there exist some distribution G over functions (gL, gR) such
that for every xL, xR the output of GameNM(xL, xR) is 2ε-statistically close to
gL(xL), gR(xR) where (gL, gR) ← G.

Let us define the distribution z ← D(xL, xR) to be the distribution of the
values

z = (keyL, keyR, trans, key′
L, key′

R)

in the context of GameNM(xL, xR). We make two observations, which we then
combine to prove our lemma.

Observation 1. In GameNM(xL, xR), if we condition on some particular choice
of z ← D(xL, xR), then the distribution of x′

L a is completely independent of
(xR, x′

R) and similarly x′
R is independent of (xL, x′

L). In particular, we can define
the randomized process gz

L which has z hard-coded and samples x′
L ← gz

L(xL) by
first sampling Alice’s view in the game conditioned on z and xL, computing her
output ct′L and setting x′

L = Decrypt(key′
L, ct′L). We can define the randomized

process x′
R ← gz

R(xR) analogously. It is easy to see that the distribution of
GameNM(xL, xR) is then identical to sampling z ← D(xL, xR) and outputting
x′

L ← gz
L(xL), x′

R ← gz
R(xR).

Observation 2. For any xL, xR the distribution of D(xL, xR) is 2ε-statistically
close to D(0k, 0k). We argue that this holds via two steps. We first argue that
D(xL, xR) is ε-close to D(0k, xR) and then argue that D(0k, xR) is ε-close to
D(0k, 0k). For the first step, we can fix any worst case choice of keyR, ctR and use
the security of leakage-resilient encryption to argue that the joint distribution of
keyL, trans, key′

R is ε-close between D(xL, xR) and D(0k, xR); we set aux = key′
R

in this argument and use the fact that |key′
R| = m ≤ �2. We then note that key′

L

is just a function of ctR, keyL and trans and therefore the total distribution of
(keyL, keyR, trans, key′

L, key′
R) is ε close between D(xL, xR) and D(0k, xR). The

argument that D(0k, xR) is ε-close to D(0k, 0k) is identical.
By combining observations 1 and 2, we see the distribution of

GameNM(xL, xR) is 2ε statistically close to sampling z ← D(0k, 0k) and out-
putting x′

L ← gz
L(xL), x′

R ← gz
R(xR). This concludes our reduction as desired; we

define the distribution G over functions (gL, gR) by sampling z ← D(0k, 0k) and
setting gL = gz

L and gR = gz
R. The output of GameNM(xL, xR) is 2ε-statistically

close to gL(xL), gR(xR) where (gL, gR) ← G.
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Construction of Leakage-Resilient Encryption. Let Ext be a seeded strong extrac-
tor with r-bit source, d-bit seed and output size k which is (r−�1−�2, ε1)-secure.
Let 2Ext be a strong two-source extractor with m-bit sources and d-bit output
which is (2m − �1, ε2)-secure.

Define the scheme (Encrypt,Decrypt) as follows:

– Encrypt(key, x):
Choose u ← {0, 1}r, y ← {0, 1}m, s = 2Ext(key, y), z = Ext(u; s) ⊕ x.
Output ct = (u, y, z).

– Decrypt(key, ct = (u, y, z)):
Compute s = 2Ext(key, y) and output z ⊕ Ext(u; s).

Claim. Consider a variant of the leakage-resilient encryption game, which we
denote “weak leakage resilience”, where Alice does not get the z part of the
ciphertext during the game but the output of the game is key, trans, aux, z. If the
scheme is (�1, �2, ε)-“weak leakage resilient” then it also satisfies (�1, �2, ε · 2k)-
leakage resilience.

Proof. Assume there exists some (Alice, Bob, Distinguisher) strategy in the orig-
inal game such that the Distinguisher has an ε2k advantage in distinguishing the
game with x0 and x1. We convert this into an (Alice’, Bob, Distinguisher’) strat-
egy for the weak game by guessing a random value v ← {0, 1}k at the beginning
of the game and having Alice’ run Alice with v in place of z. Then Distinguisher’
gets z and if v = z it runs the original Distinguisher else outputs 0. It’s easy
to see that the advantage of Distinguisher’ is the same as that of Distinguisher
when v = z, which happens with probability 2−k, and 0 otherwise. Therefore,
Distinguisher’ has advantage 2−k smaller than Distinguisher which proves the
claim.

Lemma 6. (Encrypt,Decrypt) is (�1, �2, (ε1 + ε2)2k+1)-leakage-resilient.

Proof. It suffices to show that the scheme is (�1, �2, 2(ε1 + ε2)) weak leakage
resilient and the rest follows by the preceding claim. We use a statistical hybrid
argument.

Hybrid 1: This is the weak leakage resilient game with message x0. Recall that
in the game Alice gets (u, y) and Bob gets key. They run a protocol with �1
bits of communication resulting in transcript trans. At the termination of the
protocol, Bob also outputs an additional �2-bit value aux. The output of the
protocol is key, trans, aux, z where z = Ext(u; s) ⊕ x0 and s = 2Ext(key, y).

Hybrid 2: Note that, in Hybrid 1, conditioned on the random variable V1 =
(s, y, trans) the random variables V2 = (u, aux, z) and V3 = key are indepen-
dent. Therefore, we can define Hybrid 2 to run the same game as Hybrid
1, which defines (V1, V2, V3), but then, instead of key, output a freshly re-
sampled key′ from the correct distribution of V3 conditioned on V1. This is
distributed identically to Hybrid 1.
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Hybrid 3: In this hybrid, we choose s uniformly at random instead of s =
2Ext(key, y) and set z = Ext(r; s) ⊕ x0. We still sample key′ from the same dis-
tribution of V3 conditioned on V1 at the end of the game, just like in Hybrid 2.
The statistical distance between Hybrid 2 and Hybrid 3 is ε2. We rely on the fact
that 2Ext is a strong extractor and that trans amounts to �1 bits of entropy loss
from key to argue that, even given (u, y, trans) the value s is ε2-close to uniform.

Hybrid 4: In this hybrid, we set z to uniform instead of z = Ext(u; s) ⊕ x0.
The statistical distance between Hybrid 3 and Hybrid 4 is ε1. This follows
from the strong-extractor property of Ext and the fact that trans, aux gives
�2 + �1 bits of leakage on u.

Hybrid 5, 6, 7: Are the same as 3, 2, 1 with x0 replaced by x1. In particular
Hybrid 7 is the weak leakage resilience game with message x1.
Hybrids 4,5 are ε1 close (same argument as Hybrids 3, 4), Hybrids 5, 6 are ε2
close (same argument as Hybrids 2, 3) and Hybrids 6, 7 are identical (same
argument as 1, 2).

Combining the above we get a total distance of 2(ε1 + ε2) between Hybrids
1 and 7 as we wanted to show.

We can now plug in parameters using the inner-product two-source extrac-
tor [CG88], and the strong extractor [GUV09] to prove the main Lemma of this
section:

Proof (Proof of Lemma 4). For ε ∈ (0, 1), let ε1 = ε2 = ε/2k+3 and �2 = m. By
Theorem 5, there exists some constant c1, c2 ≥ 1 and explicit Ext such that for
r − �1 − �2 ≥ c1 · k, Ext can extract k bits from (r, r − �1 − �2) source with d =
c2 log(r/ε1)-bit seed and error ε1. By Theorem 6, for 2m−�1 ≥ m+d+2 log(1/ε2),
there exists explicit 2Ext that extracts d bits with error ε2 from m-bit sources
with entropy 2m − �1. Plugging in Ext and 2Ext, by Lemma 6 and Lemma 5, we
obtain (�1, �2, (ε1+ε2)2k+1) leakage-resilient encryption and a (ε1+ε2)2k+2-non-
malleable reduction from (�1/n)-split state to split state with n = r + 2m + k.
By setting r = �1 + m + c2k, m = �1 + d + 2 log(1/ε2) and d = c2(log(r/ε1)),
we obtain that n ≤ 4�1 + c3(k + log 1/ε) for some constant c3 ≥ 1. Therefore for
any α < 1/4 and �1 = αn, we can set n = Θ(k+log(1/ε)

1/4−α ). The desired conclusion
follows from setting ε = exp(−Ω(k)) and n = Θ(k).

5 Putting Things Together

Combining Lemmas 3 and 4, we obtain a non-malleable reduction from decision
trees to split-state model.

Lemma 7. For t = O(n1/4/ log3/2 n), there is a (DT(t) ⇒ SSk, ε) non-
malleable reduction with rate Ω(1/t2 log3 n) where ε ≤ exp(−Ω(n/t4 log5 n)).
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Plugging in the construction of non-malleable codes for split state model [Li18]
with rate Ω(log log n/ log n) and error exp(−Ω(n log log n/ log n)), we obtain our
main theorem.

Theorem 8. For any t = O(n1/4/ log3/2 n), there is an explicit and efficient
non-malleable code that is unconditionally secure against depth-t decision trees
with codeword length n = O(kt2 log4 n/ log log n) and error exp(−Ω(n/t4 log5 n))
for a k-bit message.

Ball et al. [BDG+18] gave a non-malleable reduction from small-depth cir-
cuits to a leaky variant of decision trees, LLd,m,n[DT(t)] (See Definition 12).

Lemma 8. [BDG+18] For S, d, n, t ∈ N, p, δ ∈ (0, 1), there exist

σ = poly(t, log(2tS), log(1/δ), log(1/p))8

and m = O(σ log n) such that, for any 2m ≤ k ≤ n(p/4)d,

(ACd(S) =⇒ LLd,m,n[DT(t)], dε)

where
ε = nS

(
22t+1(5pt)t + δ

)
+ exp(− σ

2 log(1/p) ).

Ball et al. [BDG+18] used the fact that for t < log n, leaky depth-t decision
trees is a subclass of leaky 2t-local functions and gave a non-malleable code for
leaky local functions based on a construction of Ball et al. [BDKM16]. Their
approach only works for t < log n. This limits the error of the composed code to
be n−O(log n) which, in turns, requires S = nO(log n). (The same restrictions also
appear in [CL17], but for other reasons.)

We note that the “leakage” is simply a restricted form of dm adaptive queries
to depth-t decision trees. Thus, LLd,m,n[DT(t)] ⊆ DT(dmt). Therefore a non-
malleable code for large depth decision trees immediately yields a new non-
malleable code for small depth circuits (with improved error). In particular,
LLd,m,n[DT(t)] gives decision trees that are identical excepting (up to) the last
t queries before output (and that the last t-queries must be consistent with one
of n depth-t decision trees). Combining Lemma 8 and our new non-malleable
reduction from decision trees to split-state functions, we obtain an improved
non-malleable reduction from small-depth circuits to split-state functions.

Lemma 9. For S, d, n, t ∈ N, p, δ ∈ (0, 1), there exist

σ = poly(t, log(2tS), log(1/δ), log(1/p))

and m = O(σ log n) such that, for t′ = dmt = O(n1/4/ log3/2 n), k ≥ O(σ log n)
and k = Ω(n(p/4)d/(t′)2 log3 n),

(
ACd(S) =⇒ SSk, dε + exp(−Ω(n/(t′)4 log5 n))

)

8 The exponent of this polynomial is a fixed absolute constant independent of all other
parameters.
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where
ε = nS

(
22t′+1(5pt′)t′

+ δ
)

+ exp(− σ

2 log(1/p)
).

For constant-depth polynomial-size circuits (i.e., AC0), by setting p =
n−O(1/d) (such as n−1/100d), t′ = 1/40p and δ = exp(n−Ω(1/d)), we improve
the error of the non-malleable reduction from AC0 to split-state from n− log n to
exp(−nΩ(1)).

Corollary 1.
(
AC0 =⇒ SSk, exp(−nΩ(1))

)
for n = k1+c for a constant 0 <

c < 1.

The same setting of parameters lead to non-malleable reduction for circuits
of depth as large as Θ(log(n)/ log log(n)) and size S = exp(nO(1/d)) with error
exp(−nΩ(1/d)). Combining the non-malleable code for split state from [Li18] with
rate Ω(log log n/ log n) and error exp(−Ω(n log log n/ log n)), we obtain our main
theorem.

Theorem 9. For any constant c ∈ (0, 1), there exist constants c1, c2 ∈ (0, 1)
such that for any d ≤ c1 log n/ log log n and S = exp(nc2/d) there is an explicit,
efficient, information theoretic non-malleable code for depth d size S circuits
with error exp(−nΩ(1/d)) and encoding length n = k1+c.
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A Leaky Function Classes

Ball et al. [BDG+18] considered a leaky variant of a given tampering class C.

Definition 12 (Leaky Function Families). [BDG+18] Let LLi,m,N [C] denote
tampering functions generated via the following game:

1. The adversary first commits to N functions from a class C, F1, . . . , FN = F .
(Note: Fj : {0, 1}N → {0, 1} for all j ∈ [N ].)

2. The adversary then has i-adaptive rounds of leakage. In each round j ∈ [i],
– the adversary selects s indices from [N ], denoted Sj,
– the adversary receives F (x)Sj

.
Formally, we take hj : {0, 1}m(j−1) → [N ]m to be the selection function such
that

hj(F (X)S1 , . . . , F (X)Sj−1) = Sj .

Let h1 be the constant function that outputs S1.
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3. Finally, selects a sequence of n functions (Ft1 , . . . , Ftn) (T = {t1, . . . , tn} ⊆
[N ] such that t1 < t2 < · · · < tn) to tamper with.

Formally, we take h : {0, 1}mi → [N ]n such that h(F (X)S1 , . . . , F (X)Si
) = T .

Thus, any τ ∈ LLi,m,N [C] can be described as (F , h1, · · · , hi, h) and denote the
tampering function described above via τ = Eval(F , h1, · · · , hi, h).
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Abstract. This paper constructs high-rate non-malleable codes in the
information-theoretic plain model against tampering functions with
bounded locality. We consider δ-local tampering functions; namely, each
output bit of the tampering function is a function of (at most) δ
input bits. This work presents the first explicit and efficient rate-1 non-
malleable code for δ-local tampering functions, where δ = ξ lg n and
ξ < 1 is any positive constant. As a corollary, we construct the first
explicit rate-1 non-malleable code against NC0 tampering functions.

Before our work, no explicit construction for a constant-rate non-
malleable code was known even for the simplest 1-local tampering func-
tions. Ball et al. (EUROCRYPT–2016), and Chattopadhyay and Li
(STOC–2017) provided the first explicit non-malleable codes against
δ-local tampering functions. However, these constructions are rate-
0 even when the tampering functions have 1-locality. In the CRS
model, Faust et al. (EUROCRYPT–2014) constructed efficient rate-1
non-malleable codes for δ = O(log n) local tampering functions.

Our main result is a general compiler that bootstraps a rate-0 non-
malleable code against leaky input and output local tampering functions
to construct a rate-1 non-malleable code against ξ lg n-local tampering
functions, for any positive constant ξ < 1. Our explicit construction
instantiates this compiler using an appropriate encoding by Ball et al.
(EUROCRYPT–2016).

1 Introduction

Dziembowski, Pietrzak, and Wichs [18] introduced the notion of non-malleable
codes as an extension of the standard objective of error-correction. Non-malleable
codes provide message-integrity assurances even when error-detection, let alone
error-correction, is impossible. Suppose a sender encodes a message m ∈ {0, 1}�

and transmits the codeword over a channel. If the channel adds an error that
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has a small Hamming weight, then the sender can encode the message using an
error-correcting code and the receiver can error-correct and retrieve the original
message. Algebraic Manipulation Detection codes [16] help the receiver detect
if the transmitted codeword is tampered using algebraic operations. For more
sophisticated classes of tampering function F , demanding manipulation detec-
tion or error-correction might be far-fetched. For example, suppose the channel
replaces the original codeword with a fixed valid codeword. In this case, error-
correction or error-detection is impossible. Non-malleable codes provide a mean-
ingful message integrity assurance against sophisticated tampering families.

Let us fix an encoding and a decoding scheme (Enc,Dec), and a tampering
function family F . Non-malleable codes ensure that for any message m ∈ {0, 1}�

and tampering function f ∈ F , the tampered message Dec(f(Enc(m))) is either
identical to the original message m or a simulator Simf can simulate this distri-
bution (that is, it is independent of the original message). Even such a weak mes-
sage integrity assurance turns out to be cryptographically useful, for example, in
storing secret-keys for cryptographic primitives [18,28] and non-malleable mes-
saging [22,23]. Naturally, we measure the quality of non-malleable codes using
the following two parameters.

1. Rate. The ratio of the length of the message to the length of its encoding.
2. Sophistication of the tampering family. The complexity of the tampering

attacks captured by the tampering functions in this family.

Constructing explicit non-malleable codes with high rate against sophisticated
tampering function families is the guiding principle for the research in non-
malleable codes. However, both these objectives, even independently, have been
significantly non-trivial to achieve. Only recently, using elegant probabilistic
arguments, [13,20] constructed rate-1 non-malleable codes in the CRS model
for tampering families of bounded size.1

In this paper, for any positive constant ξ < 1, we present the first rate-
1 explicit non-malleable codes against any tampering function that has ξ lg n
output locality, i.e., at most ξ lg n input-bits influence any output bit of the
tampering function. Note that there is no bound on the input locality, i.e., the
number of output positions one input bit can influence during tampering. Here
lg represents the logarithm with base 2, and n represents the length of the
codeword. Notably, our construction is in the information-theoretic plain model.
We emphasize that our construction does not rely on any computational hardness
assumption or a CRS.

1.1 Prior Relevant Works

Note that it is impossible to construct a non-malleable code (NMC) that is
secure for all tampering functions. Consider a tampering function that obtains
an advantage in predicting the first bit m1 of the message m. Then, the tamper-
ing function f overwrites the codeword with a fixed encoding of m�

1, which we
1 Tampering functions can access the CRS; however, they cannot tamper the CRS.
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hardwire into it. This result indicates that, given the codeword c, no tampering
function f ∈ F should have an advantage in predicting any bit of the message
m ∈ {0, 1}�. Consequently, we fix the class of tampering function family F , and
construct a non-malleable encoding scheme (Enc,Dec) for that tampering family.

Monte-Carlo Constructions. Dziembowski et al. [18], introduced the notion
of non-malleable codes and showed the existence of rate-1 NMC against bit-
wise tampering (each output bit is a function of the corresponding input bit).
Next, Faust et al. [20] showed the existence of rate-1 non-malleable codes against
any tampering family of size 2poly(n).2 Cheraghchi and Guruswami [13] proved
that there exists (possibly inefficient) (1 − α)-rate NMC against any tampering
function family of size 22

αn

. These results are probabilistic in nature and it is
unknown whether we can derandomize them to obtain explicit constructions in

the plain model. Note that there are (roughly)
((

n
δ

)
22

δ

)n

≈ 2n2δ

distinct δ-

local tampering functions. If δ = O(log n) then [20] indicates the existence of
an efficient rate-1 non-malleable code. Further, for δ = o(n), [13] implies the
existence of a (possibly inefficient) rate-1 non-malleable code.

Explicit Constructions. A famous line of research explores designing NMCs
against k-split-state tampering functions where k different locations store the
k shares of the encoding. The tampering of each share is performed arbitrarily,
albeit independently. The maximum achievable rate in this setting is R � 1 −
1/k [13]. Dziembowski et al. [17] constructed NMC for one-bit messages in the
2-split-state model. A sequence of highly influential works have constructed near-
optimal constant-rate NMCs using only k = 3 shares of the encoding [2,3,10,
12,24,27,28]. Currently, Li’s construction [29,30] achieves the highest rate R =
O(log log log n/ log log n) for 2-split-state tampering.

Another research direction allows the tampering function to tamper the entire
codeword but constrains its computational power. For example, local tampering
functions have an a priori upper bound of how many input bits influence each
output bit. [7,11] construct explicit NMC for local tampering functions. The rate
of [7] is at most the product of inverse of locality and rate of the 2-split-state
NMC. Hence, their construction has rate-0 even for constant locality. Recently,
[6] consider constant depth circuits and construct the first explicit NMC against
AC0 tampering. Both [11] and [6] have inverse-polynomial rate.

Explicit Rate-1 Constructions. Explicit rate-1 NMC constructions are even
more scarce. Cheraghchi and Guruswami [14,18] construct a rate-1 NMC for
bit-wise tampering. Agrawal et al. [4,5] provide an explicit rate-1 NMC against
tampering functions that perform bit-wise tampering after permuting the input
bits. Both these constructions amplify the rate of a base NMC (possibly, with
additional properties) that has sub-optimal rate into a rate-1 NMC using a
compiler. We emphasize that these two particular tampering families are not
only 1-local but also have the constraint that each input bit influences at most

2 This construction is also an efficient rate-1 construction in the CRS model.
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one output bit (that is, 1-input local). Note that the focus of this work is δ-local
tampering functions with δ > 1 and no bound on input locality.

In the computationally bounded setting, [1] construct a rate-1 NMC against
2-split-state tampering based on the existence of one-way functions. Further-
more, there are constructions of NMC that rely on a CRS [8,20,31].

Non-malleable codes have also been considered in the continual tampering
model, for example, [19,26,33]; covering which is beyond the scope of this work.

1.2 Our Contribution

Our work focuses on constructing non-malleable codes, in the information-
theoretic plain model, against tampering functions that are δ-local, i.e., at most
δ input bits influence any output bit. We emphasize that δ can be a function of
n, the size of the codeword. Our work, for any positive constant ξ < 1, constructs
explicit rate-1 NMC against δ-local tampering functions, where δ = ξ lg n, which
has a tampering family of size 2n1+o(1)

. In our case, the locality δ = ω(1) and,
hence, the set of all δ-local tampering functions subsumes the family of NC0

tampering functions.
We present a general black-box compiler that takes three ingredients as input

and constructs a non-malleable code for local functions. At an intuitive level, we
prove the following result.

Informal Theorem 1. For any positive constant ξ < 1, there exists an explicit
and efficient rate-1 NMC against ξ lg n-local tampering functions using the fol-
lowing primitives in a black-box manner (refer to Fig. 2).

1. Rate-1 linear error-correcting code3 with (near) linear distance and dual-
distance (see Definition 7),

2. Rate-1/ηo(1) NMC against leaky input and output local tampering for message
length η (referred to as the base NMC) (see Definition 6), and

3. A pseudorandom generator for finite state machines with super-polynomial
stretch (see Definition 9).

The compiler (refer to Fig. 1 for an outline) encodes the message m using
the error-correcting code. Then, it samples a few entries of the codeword (at a
suitable rate) and adds errors at half of them. The compiler tabulates all the sam-
pled entries (both the erroneous and unaltered ones) along with their respective
locations. The erroneous codeword forms the primary payload of the message m.
The list of tabulated entries is appropriately encoded using a combination of the
base NMC and the PRG and is juxtaposed (at the end) for consistency checks
during decoding. If the rate of subsampling is sufficiently low, then the overall
construction is rate-1. The security argument proceeds by demonstrating that if
the subsampling rate is sufficiently high, then any local function cannot change

3 Error-correcting codes can be converted into error-correcting secret sharing schemes
using standard share-packing techniques [9,21,34].
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the payload without being inconsistent with the tabulated entries themselves.
Section 1.3 provides an intuitive overview of our compiler’s construction.

Finally, we instantiate the respective primitives using (1) Reed-Solomon
Codes over characteristic 2 fields, (2) An appropriate encoding introduced by
Ball et al. [7], and (3) Nisan’s PRG [32]. As a consequence, we construct explicit
efficient rate-1 NMC against ξ lg n-local tampering functions, for any positive
constant ξ < 1, with negligible simulation error (refer Theorem 2).

Remark. We note that the resulting decoding function for our construction
is randomized. However, the randomization stems solely from the randomized
decoding function of the base NMC construction of [7]. Given an appropriate
NMC against leaky input and output local tampering with deterministic decod-
ing, our construction will have deterministic decoding.

Remark. If the base NMC is only rate-1/poly n, then our compiler with suit-
ably modified parameters, constructs an explicit rate-1 NMC against o(log n)-
local tampering functions. We defer this modification to the full version.

1.3 Technical Overview

As a starting point, it is instructive to understand the construction of
Agrawal et al. [5] for a rate-1 NMC against tampering functions with input
and output locality 1. The conceptual hurdles in generalizing this approach to
δ-local functions, we believe, motivates the components used in our construction.

Construction of Agrawal et al. [5]. The construction of Agrawal et al. [5]
encodes the message m with an error correcting secret sharing (ECSS) scheme
to obtain a. Then, it samples a small number of bits from a indexed by E, which
are represented by aE , and replaces aE with a (uniformly random) error e. This
creates an erroneous codeword c. Observe that half of the bits of e match the
original entries in aE and the remaining do not. Next, an NMC of rate-1/poly
encodes the consistency checks (E, e) as cerr, and the final encoding is (c, cerr).
The decoding algorithm error-corrects c to obtain a (and hence, m) and checks
the consistency between a, c, cerr. For an appropriately chosen size of the set E,
the encoding (c, cerr) is non-malleable and has rate-1.

We represent the tampered codeword and error, respectively, by c̃ and c̃err.
The security argument proceeds, roughly, as follows.

(1) The tampering on cerr is independent of the message m. This argument
crucially relies on the output-locality of the tampering function. The indepen-
dence4 of the ECSS is sufficiently high to permit the simulation of the tampering
on cerr independent of the message m.

(2) The non-malleability of the encoding cerr ensures that c̃err encodes either
(a) the original (E, e), or (b) an entirely unrelated (E∗, e∗). The case of the
tampering function creating an invalid encoding is not particularly insightful.
4 An ECSS of independence t has the property that any t shares are uniformly and

independently random.
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(3.a.) Consider the case where the tampering function preserves error;
namely, the same* case. In this case, they argue that the only way to get a valid
tampered codeword is by keeping c̃ identical to c and that the probability of
encoding being valid independent of the original message m. For this argument,
they perform a case analysis based on the number of bits that the tampering
function does not directly copy from the codeword (a.k.a., the not-copied-bits).
The tampering function, by definition, directly copies the remaining bits from
the codeword into the tampered codeword.

If the number of not-copied-bits in the tampering function is small, then
the simulation proceeds as follows. Since the tampering function has a small
number of not-copied-bits, most bits in c̃ are identical to their corresponding
bits in c. These copied bits define a unique codeword (using the high distance
property of ECSS5). Decoding succeeds if every not-copied-bit of c̃ matches the
corresponding bit in c. Moreover, decoding fails if any not-copied bit of c̃ does not
match the corresponding input bit in c. Since, the number of the not-copied-bits
is small and they have output locality 1, we can simulate this check independent
of the original message m by leveraging the (sufficiently large) independence of
the ECSS.

On the other hand, if the number of not-copied-bits is large, then they argue
that the tampered codeword is invalid (w.h.p.). The following intuition underlies
their argument. Due to the input-locality 1 of the tampering functions, the error
cerr can influence only a few bits in c̃. Consequently, there still remains a large
number of bits in c̃ that are not-copied-bits and are not influenced by cerr.
Therefore, the subset of these bits that is sampled in E is also large (over the
random choice of E). Among these indices, leveraging the high independence of
the ECSS and input locality 1 of the tampering function, there is a large subset
where each indexed bit in the tampered codeword independently disagrees with
the tabulated (E, e) with probability (at least)6 1/2. So, with high probability,
the tampered codeword fails the consistence check.

(3.b.) Consider the case where the tampering function replaces the error
with an unrelated (E∗, e∗). In this case, they argue that the only way to get
valid tampered codeword is by replacing c by an unrelated c∗ that is consistent
with (E∗, e∗). For this argument, they perform a case analysis based on the
number of output-bits of the tampering function that are non-constant (a.k.a.,
the non-constant-bits). If the number of non-constant-bits is small, then the
tampered message is simulatable independent of the message due to the high
independence of the ECSS and output locality 1 of tampering function. On the
other hand, if the number of non-constant-bits is large, then the decoding fails
with high probability. In this case, each bit in c̃ that is influenced by a bit in c
risks creating an independent inconsistency with (E∗, e∗) with probability 1/2.
Hence, if there is a large number of these bits where each of them is inconsistent

5 An ECSS with distance d ensures that, for two different secrets, at least d secret
shares are different.

6 If the tampering function flips the input bit then the probability of disagreement is
1; otherwise, the probability of disagreement is 1/2.
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with (E∗, e∗) independently with probability 1/2, then the overall codeword will
be invalid with high probability. Similar to case 3.a., this argument relies on
leveraging the high independence of the ECSS, input locality 1 of the tampering
function, and the fact that E is randomly chosen.

To summarize, two key properties are crucial to our arguments.

(A) Being non-committal to the errors. We rely on randomness of errors to argue
inconsistency with tabulated errors in cerr.

(B) Independence of failure. Our objective is to identify output bits that cause
decoding failure independently.

Consequently, we have the following objective.

“Find a large subset of bits in c̃ that independently fail the consistency check” while,
simultaneously, “remaining noncommittal to (most of) the error (E, e)”

In the sequel, we elaborate the unique challenges to achieve this objective
against δ-local functions, with δ > 1, and no a priori bound on the input-locality.

Intuition underlying Our Construction. For a tampering function with
output locality δ (referred to as a δ-local function), intuitively, every bit in the
tampered codeword is influenced by some bits in c and some bits in cerr. The 2-
local tampering functions suffice to capture these two influences and we use these
to illustrate some primary challenges and key components of our construction.

Using the output locality of the tampering function, we can argue that tam-
pering on cerr would be independent of the message m. Next, we use non-
malleablity of encoding cerr to simulate whether c̃err encodes (a) the original
errrors, (2) an unrelated (E∗, e∗), or (3) ⊥. Let us consider the case when the
tampering function preserves the original errors. In this case, we perform a case
analysis on the number of not-copied-bits. So the first (somewhat minor) hurdle
is how to define not-copied-bits for δ-local functions. Since a bit in c̃ can be
influenced by δ bits, it is a not-copied-bit if it is not a copy for (at least) 1 out
of the 2δ possible inputs. Hence, in the final argument, this bit shall fail the
consistency check with probability 1/2δ. Thus, as δ increases, we need to find
exponentially more bits that independently fail to be consistent.

The second hurdle is that, unlike Agrawal et al. [5], our tampering functions
are not input-local. So, for instance, one bit in the (c, cerr) can influence every
bit of the tampered codeword. Therefore, even though there might be many
not-copied-bits, their probability of being inconsistent is possibly correlated. To
resolve this challenge, Viola [35] proposed a technique to fix the values of the
highly influential input bits (sampled from an appropriate distribution) of the
tampering function. This technique, intuitively, transforms an output local tam-
pering function into a convex combination of tampering function that are both
input and output local. We use this technique to fix the highly influential bits
in c to be uniform random bits (relying on output locality of tampering func-
tion and independence of ECSS). However, as we discuss below, many challenges
remain related to the bits in cerr that are highly influential for c̃.
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Consider the following representative 2-local tampering function. Each bit is
c̃ is influenced by corresponding bit in c and a bit in cerr while ensuring that all
bits in cerr have an identical number of output neighbors.

(1) If the threshold to identify “highly influential” input bits is set too low,
then the procedure mentioned above might fix the entire cerr, because the size
of cerr is very small. Consequently, the error (E, e) gets fixed. Thereafter, it
is unclear how to proceed and catch any non-trivial tampering of c. So, the
threshold to identify “highly influential” cannot be too low. Therefore, in this
case, it is possible that no bit in cerr is fixed and cerr cumulatively influences a
lot of bits in c̃.

(2) Ideally, we would like that the bits we pick from c̃ to argue failure do not
depend on cerr. However, in this case, all the bits in c̃ depend on cerr.

(3) Furthermore, there is another subtle issue. Conditioning on the fact that
the tampered c̃err encodes the same error or a fixed (E∗, e∗) distorts the distri-
bution of cerr, which, in turn, influences the distribution of the tampered c̃. To
summarize, the distributions c̃ and (E, e) are correlated when conditioned on
whether the c̃err encodes the same cerr or a fixed cerr.

Message m

Valid Codeword a
Random errors e at
random indices E

cL cR

(sL, αL) (sR, αR)Main codeword c

Replace
aE with e

Hide cL inside αL

using Nisan’s PRG
[32] with seed sL

Hide cR inside αR

using Nisan’s PRG
[32] with seed sR

Encode (E, e) using
NMC against leaky
local tampering [7]

ECSS scheme

Rate-0 NMC against
local tampering [7]

Fig. 1. Block diagram of the compiler to construct NMC against local tampering.

To resolve these concerns simultaneously, the high level idea is to hide the
informative bits about (E, e), i.e., cerr, in a polynomially larger string, say α
(refer to Fig. 1 for a block diagram of our compiler). We use a PRG with a
super-polynomial stretch to determine the positions with informative bits inside
α and store the PRG seed s along with α as the new payload. So our final
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codeword is (c, s, α).7 We argue that for any tampering function, the number of
bits from cerr that are highly influential for c̃ is small. To simulate these bits,
we perform a small leakage on cerr. Since our base NMC from [8] is resilient to
small leakage, we stay non-committal to (E, e) even conditioned on this leakage.
Note that the rest of the bits in cerr have a bounded input locality onto c̃ and
hence, cerr influences only a small subset of bits in c̃.

Now, if we had a large number of not-copied-bits in c̃, we have a large number
of not-copied-bits in c̃ that are not influenced by cerr. But these bits might share
input neighbors in c and have correlated probability of failing consistency checks.
Recall that we have already fixed the highly influential bits in c. Finally, we can
use the bounded input and output locality to identify independent bits in c̃
(using the greedy neighbor-of-neighbor argument of Viola [35]).

This section presents only the intuitive rationale underlying the crypto-
graphic primitives needed for our construction. There are further subtleties
involved in the security arguments. Section 5.1 presents the full proof of our
compiler using a hybrid argument.

Remark: Limit of Our Approach. We present a simple rationale for why our
construction works for δ-local functions, where δ = ξ lg n and ξ < 1 is a positive
constant. Note that in steps 3.a. and 3.b., the probability of inconsistency with
the tabulated error was at least 1/2 in a 1-local tampering function. However,
the probability of inconsistency in a δ-local tampering function can be as low
as 2−δ. The probability of u independent consistency checks to simultaneously
pass is (1 − 2−δ)u. We need u = ω(2δ log n) for this quantity to be negligible.
On the other hand, we have u � n. Consequently, we must have 2δ � n/ log n,
or, in particular, δ � lg n.

2 Preliminaries

We use [n] to denote the set {1, 2, . . . , n}. For x = (x1, x2, . . . , xn) and S ⊆ [n],
we use xS to denote (xs1 , xs2 , . . . , xsk

), where S = {s1, s2, . . . , sk} and s1 <
s2 < · · · < sk. For brevity, we write x−i for x[n]\{i}. We use US to represent
the uniform distribution over the set S. If D is a distribution, we write x ∼
D to denote that x is sampled according to distribution D. The support of a
distribution D, represented by Supp(D), is the set {x : Pr[D = x] > 0}. For any
binary strings x, y ∈ {0, 1}n, we use HD(x, y) to denote their Hamming distance
defined by HD(x, y) := |{i : xi �= yi and 1 � i � n}|.

2.1 Local Functions

Let f : {0, 1}n → {0, 1}n be a deterministic function. We write f as
(f1, f2, . . . , fn) such that f(x) = (f1(x), f2(x), . . . , fn(x)), where each

7 Similar to [6], hash function families with sufficiently high independence also suffice
in this context.
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fi : {0, 1}n → {0, 1} and 1 � i � n. We say that the i-th bit (of the input)
has influence on the j-th bit (of the output) if there exists an x∗

−i such that

fj(x∗
1, . . . , x

∗
i−1, 0, x∗

i+1, . . . , x
∗
n) �= fj(x∗

1, . . . , x
∗
i−1, 1, x∗

i+1, . . . , x
∗
n)

For every output position 1 � j � n, we define the input neighbors Inpf (j) to be
{i|1 � i � n, i has influence on j}. Similarly, for an input position 1 � i � n, we
define its output neighbors Outf (i) to be {j|1 � j � n, i has influence on j}. We
extend this notion naturally to a set of indices. We write Inpf (S) = ∪s∈S Inpf (s)
and Outf (S) = ∪s∈S Outf (s).

A function f has input locality δ, if, for all 1 � i � n, we have |Outf (i)| � δ.
Similarly, a function f has output locality δ, if for all 1 � j � n, we have
|Inpf (j)| � δ.

Definition 1 (Local Functions). A function f : {0, 1}n −→ {0, 1}n is called
a δ-local function if it has output locality δ.

We use Localδ to represent the set of all such functions because n shall be
implicit from our context.

Recall that NC0 is the set of all functions f such that for all i, fi can be
computed by a circuit of fan-in 2 and constant depth. Trivially, NC0 ⊆ LocalO(1).

We follow the convention in the literature and define the restriction of boolean
functions as follows.

Definition 2 (Restriction). Let g : {0, 1}n → {0, 1} be a boolean function and
(I, Ī) be a partition of [n]. Let x ∈ {0, 1}I . Then, we write gI|x : {0, 1}n → {0, 1}
for function g with input of indices in I being restricted to x. For function
f : {0, 1}n → {0, 1}n such that f = (f1, f2, . . . , fn) we write fI|x to denote
((f1)I|x, (f2)I|x, . . . , (fn)I|x). We say that i ∈ Ī has influence on j if there exists
a x∗

−i such that x∗
I = x and

(fI|x)j(x∗
1, . . . , x

∗
i−1, 0, x∗

i+1, . . . , x
∗
n) �= (fI|x)j(x∗

1, . . . , x
∗
i−1, 1, x∗

i+1, . . . , x
∗
n)

Note that for all j ∈ [n], InpfI|x(j) = {i|1 � i � n, i has influence on j} ⊆ Ī.

2.2 Non-malleable Codes

We define non-malleable codes below similar to previous works.

Definition 3 (Coding Schemes). Let Enc: {0, 1}� → {0, 1}n and
Dec: {0, 1}n → {0, 1}� ∪ {⊥} be randomized functions (that is, they has access
to private randomness). The pair (Enc,Dec) defines an encoding scheme with
block length n and message length � if it satisfies perfect (resp., statistical) cor-
rectness. That is, for all m ∈ {0, 1}�, over the randomness of Enc and Dec,
Pr[Dec(Enc(m)) = m] = 1 (resp., Pr[Dec(Enc(m)) = m] = 1 − negl(�)). The
rate R of this encoding scheme is defined as R = �/n.

Let Fn denote the set of all functions f : {0, 1}n → {0, 1}n. Non-malleable
codes are defined w.r.t. a family of tampering functions, say F ⊆ Fn, as follows.
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Definition 4 ((n, �, ε)-Non-malleable Codes). A coding scheme (Enc,Dec)
with block length n and message length � is said to be non-malleable against
tampering family F ⊆ Fn with (simulation) error ε, if for all functions f ∈ F ,
there exists a distribution Sim(f) over {0, 1}� ∪ {⊥} ∪ {same*} such that for all
messages m ∈ {0, 1}�,

Tamperm
f ≈ε copy (Sim(f),m)

where Tamperm
f stands for the following distribution of the tampered message

Tamperm
f :=

{
c ∼ Enc(m), c̃ = f(c), m̃ = Dec(c̃)

Output: m̃.

}

and

copy(x, y) =

{
y, if x = same*;
x, otherwise.

2.3 Hypergeometric Distribution

Consider a universe of size N with K success samples. An (N,K, n)-
hypergeometric distribution is the probability distribution of number of success
samples picked when n random samples are picked from the universe without
replacement. Specifically, we define the distribution as follows.

Definition 5. A distribution D over the sample space [n] is an (N,K, n)-
hypergeometric distribution if, for any k ∈ [n], we have

Pr[D = k] =
(

K

k

)(
N − K

n − k

)(
N

n

)−1

Using standard coupling arguments, it is known that the hypergeometric
distribution is more concentrated than the corresponding Bernoulli distribution.
Consequently, we have the following tail bound.

Lemma 1. ([15,25]) Let X be a random variable sampled from a (N,K, n)-
hypergeometric distribution. Then for any ε ∈ (0, K

N ),

Pr [X � (K/N − ε) · n] � exp
(−2ε2n

)
The following corollary suffices for our proof.

Corollary 1. Let A ⊆ [n] be an arbitrary subset of size a. Let B ⊆ [n] be a
random subset of size b. Then

Pr [|A ∩ B| � ab/2n] � exp
(−a2b/2n2

)
Note that |A ∩ B| is an (n, a, b)-hypergeometric distribution. The corollary

follows from the previous lemma with ε = a/2n.
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3 Building Blocks

In this section we describe the building blocks of our compiler.

3.1 Non-malleable Codes Against Leaky Input and Output Local
Tampering

Our construction relies on an encoding scheme that satisfies non-malleability
against leaky input and output local tampering that we define below.

Definition 6. Let (Enc,Dec) be a coding scheme such that Enc : {0, 1}k →
{0, 1}nL × {0, 1}nR and Dec : {0, 1}nL × {0, 1}nR → {0, 1}k. We call (Enc,Dec)
a (λ, μ, �i, �o)-non-malleable code against leaky input and output local tampering
with simulation error ε if it satisfies the following conditions.

Let LL ⊆ [nL] and LR ⊆ [nR] be arbitrary subsets of size at most λnL and
λnR, respectively. Consider any function F with domain {0, 1}|LL| × {0, 1}|LR|

that outputs a tampering function g : {0, 1}nL × {0, 1}nR → {0, 1}nL × {0, 1}nR

such that for any x ∈ {0, 1}|LL|, y ∈ {0, 1}|LR|, and g = F (x, y)

1. The output locality of the tampering function g is at most �o, and
2. All but (at most) μnL input-bits of the first nL input-bits of g have input

locality (at most) �i.

Then, there exists a distribution Sim(LL,LR, F ) over
(
{0, 1}k ∪ {⊥, same*}

)
×

{0, 1}|LL| × {0, 1}|LR| such that for any message m ∈ {0, 1}k,

Tamperm
LL,LR,F ≈ε copy(Sim(LL,LR, F ), m), where

Tamperm
LL,LR,F :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(cL, cR) ∼ Enc(m), x := cL
LL , y := cR

LR

g := F (x, y)

(c̃L, c̃R) = g(cL, cR), m̃ = Dec(c̃L, c̃R)
Output (m̃, x, y)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Intuitively, leaky input and output local tampering allows the adversary to
first pick a subset of indices and peek into the codeword at those places, then
use this leakage as an advice to select a output-local, (almost) input-local tam-
pering function. Then, non-malleability against leaky input and output local
tampering guarantees that the tampered message and the leakage are simulat-
able independent of the original message only given the position of leaked indices
and the map F from leakage to the tampering function. Ball et al. [7] construct
this non-malleable code as an intermediate step toward their final rate-0 non-
malleable codes against local tampering. As a corollary of their results, we have
the following lemma, which suffices for our construction.
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Lemma 2 ([7]). There exist constants λ, μ such that, for any �i, �o = O(log k),
there exists an explicit and efficient (λ, μ, �i, �o)-non-malleable code against leaky
input and output local tampering with simulation error ε = negl(k) and rate
1/ko(1), where k is the length of the message.

Remark 1. Note that [7] reduces the problem of constructing non-malleable
codes against leaky input and output local tampering to the problem of con-
structing non-malleable codes against 2-split-state tampering family. The rate
of their final construction will be the product of the rate of the reduction, which
is inverse of the locality (i.e., 1/max(�i, �o)) and the rate of the given 2-split-state
non-malleable code. Instantiated with the state-of-the-art 2-split-state construc-
tion by Li [29,30], which has rate Ω(log log log k/ log log k), the final rate of [7]’s
construction can be as high as 1/polylog(k), which is 1/ko(1) and satisfies this
lemma.

3.2 Error-Correcting Secret-Sharing Schemes

Definition 7. An encoding scheme (Enc,Dec) with block length n and message
length � is said to be an (n, �, d, t)-error-correcting secret sharing scheme (ECSS
scheme) if it satisfies the following conditions.

1. Distance d. For any two codewords c, c′, HD(c, c′) > d.
2. Independence t. For any message m ∈ {0, 1}� and a subset S ⊆ [n] such that

|S| � t, the distribution of Enc(m)S is identical to the uniform distribution
U{0,1}|S| .

3. Error Correction d/2. There exists an error-correcting function ECorr such
that for any c ∈ {0, 1}n, ECorr(c) outputs a codeword c∗ such that HD(c, c∗) �
d/2. If no such codeword exists, then it outputs ⊥.

Lemma 3. For every ζ ∈ (0, 1), there exists an explicit (n, �, d, t)-ECSS scheme
with n = (1 + o(1))� and d, t � n1−ζ .

Standard Reed-Solomon codes over characteristic 2 fields achieve the prop-
erties required by Lemma 3. We defer such a construction to the full version.

3.3 Pseudorandom Generator for Finite State Machines

Definition 8 (Finite State Machine). A finite state machine (FSM) Q with
space w over the alphabet Σ satisfies the following properties.

1. There exists a state-transition function q : {0, 1}w × Σ → {0, 1}w that takes
as input the current state s ∈ {0, 1}w and an alphabet x ∈ Σ, and outputs the
new state q(s, x).

2. There exists a subset S ⊆ {0, 1}w such that if the final state s ∈ S then the
FSM accepts the input and outputs 1. Otherwise, it outputs 0.
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Definition 9. A function G : {0, 1}p → Σu is a pseudorandom generator for
FSMs with space w and alphabet Σ with error ε if for any distinguisher FSM Q
with space w and alphabet Σ we have

∣∣∣Pr [Q (UΣu) = 1] − Pr
[
Q

(
G(U{0,1}p)

)
) = 1

]∣∣∣ � ε

Lemma 4 ([32]). There exists a constant κ > 0 such that for all integers d > 0
and u � κd, there is an explicit pseudorandom generator G : Σ3u → Σ2u

for
FSMs with alphabet Σ = {0, 1}d and space κd with error 2−κd.

4 Our Compiler

In this section, we will present our compiler. That is, for all constants ξ < 1, given
a rate-1 ECSS scheme, a rate 1/ηo(1) non-malleable code against leaky input and
output local tampering (for η length messages) and a PRG secure against finite
state machines with appropriate parameters, we construct a rate-1 non-malleable
coding scheme against all δ-local tampering family Localδ for δ = ξ · lg n. Here
n is the length of the codeword. We begin by giving some notation, specifying
the building blocks used followed by our construction overview.

Notation: Throughout our construction and proof, we use the notation that after
the tampering is done, any variable of original codeword, for example, a, will
have a tilde on it, i.e., ã. For example, c is the original main codeword and c̃
would be the tampered version of the main codeword. Thus, when we talk about
bits from c, it refers to the input-bits of the tampering function and on the other
hand, bits from c̃ are output-bits of the tampering function.

Building blocks used. We use the following three building blocks. Let δ = ξ · lg n
for ξ < 1 be the locality of the tampering function.

1. An (n, �, d, t)-ECSS scheme with d, t � n1−ζ and n = (1 + o(1))� for an
appropriate constant ζ to be fixed later. This is provided by Lemma 3.

2. For any constant λ, μ and η = nΘ(1), a (λ, μ, �i, �o)-NMC against leaky
input and output local tampering for messages in {0, 1}η, rate 1/ηo(1),
�o = δ = O(log η), �i = 4δ/μ = O(log η), simulation error negligible in η.
This is provided by Lemma 2. We denote the corresponding simulator by
Sim0.

3. A PRG G : ({0, 1}log2 n)3Λ log n −→ ({0, 1}log2 n)nΛ

that is secure against all
FSMs with alphabet Σ = {0, 1}log2 n and space κ log2 n with error 2−κ log2 n

for an appropriate constant Λ to be fixed later. Here, κ is a constant provided
by Lemma 4 for u = Λ log n and d = log2 n.
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Building blocks:
◦ (ECSS.Enc,ECSS.Dec) is an (n, �, d, t) ECSS scheme.
◦ (NMEnc0,NMDec0) is a (λ, μ, �i, �o)-non-malleable code against leaky input and

output local tampering.
◦ G : ({0, 1}log2 n)3Λ log n ({0, 1}log2 n)n

Λ

is a PRG that fools all FSMs with
space κ log2 n. We set Λ below.

NMEnc1(m):
1. Sample a random E ⊆ [n] of size

n1−ε1 , where ε1 is a small constant.
2. For all i ∈ E, sample ei ∼ U{0,1}.
3. Sample a ∼ ECSS.Enc(m)

4. Define c as ci =

{
ai, i /∈ E

ei, i ∈ E

5. Let (cL, cR) ∼ NMEnc0(E, e)
6. Pick seeds sL, sR $ {0, 1}3Λ·log3 n.
7. Let EmbedL,EmbedR be as below.

◦ αL = EmbedL(sL, cL)
◦ αR = EmbedR(sR, cR)

8. Output (c, sL, αL, sR, αR)

NMDec1(c̃, s̃L, α̃L, s̃R, α̃R):
1. Let RecoverL,RecoverR be as below.

◦ c̃L = RecoverL(s̃L, α̃L)
◦ c̃R = RecoverR(s̃R, α̃R)

2. If NMDec0(c̃L, c̃R) = ⊥, output ⊥
3. (Else) (Ẽ, ẽ) = NMDec0(c̃L, c̃R)
4. If ECSS.ECorr(c̃) = ⊥, output ⊥
5. (Else) ã = ECSS.ECorr(c̃)

6. Define c′ as c′
i =

{
ãi, i /∈ Ẽ

ẽi, i ∈ Ẽ

7. if c′ �= c̃, output ⊥
8. (Else) m̃ = ECSS.Dec(ã)
9. Output m̃

Let lengths of cL and cR be nβ1 and nβ2 , respectively. First, picka a constant γ s.t.
max(β1, β2) < γ < 1. Next, let τ > 0 be a constant s.t. Λ = γ + 2τ < 1.

EmbedL,RecoverL Let ρL : {0, 1}log2 n {0, 1} be any function with biasb

2n−(Λ−β1). First, compute G(sL) = (y1, y2, . . . , ynΛ) s.t. each yi ∈ {0, 1}log2 n and
AdvL = (ρL(y1), ρL(y2), . . . , ρL(ynΛ)). Then, αL = EmbedL(sL, cL) is defined as:

αL
i :=

{
cL

j If AdvL
i is the jth 1 in AdvL

0 Otherwise.

To recover during decoding, compute G(s̃L) = (ỹ1, ỹ2, . . . , ỹnΛ) and

Ãdv
L
= (ρL(ỹ1), . . . , ρL(ỹnΛ)). Then, if Ãdv

L
does not contain � nβ1 many 1’s, quit

decoding by outputing ⊥. Otherwise, c̃L = RecoverL(s̃L, α̃L) is defined as:

c̃L
j := α̃L

i where Ãdv
L

i is the jth 1 in Ãdv
L

EmbedR,RecoverR Let ρR : {0, 1}log2 n {0, 1} be any function with bias
2n−(Λ−β2). Now EmbedR,RecoverR are defined analogously to above using ρR.

a This is possible because (E, e) has length η = n1−ε1(logn + 1) and
(NMEnc0,NMDec0) is a 1/ηo(1) rate coding scheme.

b Bias of a function is the probability that output is 1 for a uniformly sampled input.

Fig. 2. Our rate-1 non-malleable codes against δ-local functions
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Construction Overview. Our construction starts with encoding the message m ∈
{0, 1}� using ECSS scheme a ∼ ECSS.Enc(m) such that a ∈ {0, 1}n. Next, we
sample a random subset E ⊆ [n] of size n1−ε1 for a small constant ε1 specified
later. Next, for each index i ∈ E, we sample a random bit ei. These will be
our planted errors. Then, all bits at E in codeword a are replaced by these
random bits ei to produce c. We refer to this an erroneous codeword c as the
main codeword. We note that a bit at index in E has probability 1/2 of being
an error.

Next, for the second part of our codeword, we record the error indices E
as well as planted errors e = (e1, e2, . . . , e|E|) using (poor-rate) non-malleable
codes against leaky input and output local tampering. We sample (cL, cR) ∼
NMEnc0(E, e). Finally, we hide the codeword (cL, cR) inside a larger code
(αL, αR) at pseudorandom locations as follows: We will sample two seeds sL, sR

of appropriate length (See Fig. 2). And invoke our pseudorandom generator G
on sL (resp., sR) and use appropriate bias function ρL (resp., ρR) to generate
advice string AdvL (resp., AdvR). At a high level, positions having a 1 in the
advice string will store an actual bit of the code, and positions with 0 will store a
redundant 0. Intuitively, this step ensures that when bits from αL or αR are used
for tampering, most of these bits would be redundant 0’s. Our final codeword is
(c, sL, αL, sR, αR).

Conversely, to decode, we use seeds s̃L, s̃R to determine the indices of c̃L, c̃R

in α̃L, α̃R. Then, we decode (c̃L, c̃R) to get the error index set Ẽ and error bits
ẽ. Next, we compare c̃ with planted errors (Ẽ, ẽ) to check (1) whether all the
bits from c̃ with index in Ẽ and ẽ are equal; (2) we error correct c̃ to obtain
correct codeword ã and check whether all the errors in c̃ were recorded in Ẽ.
If both conditions are satisfied, we will consider the codeword valid and output
the decoding of ã as the decoded message.

Setting the parameters. Next, we will set the various constants used in our
construction (as well as proof of non-malleability).

◦ λ, μ: We pick constants λ, μ arbitrarily.
◦ Λ, γ, τ : Let |cL| = nβ1 and |cR| = nβ2 . Since η = |(E, e)| = n1−ε1(log n) and
rate of NMEnc0 is 1/ηo(1), we have that max(β1, β2) < 1. We pick positive
constants γ, τ such that max(β1, β2) < γ < 1 and γ +2τ < 1. Set Λ = γ +2τ .
◦ ε1, ε2: The number of erroneous indices |E| = n1−ε1 . In our security hybrids,
we have another small constant ε2 and we require ε1 + 2ε2 < 1 − ξ, where
ξ is defined by the tampering family. Hence, given ξ, we pick two positive
constants satisfying the condition.
◦ ζ: In our construction, we use an (n, �, d, t)-ECSS scheme with d, t � n1−ζ .
In our security proof, we require ζ < min(ε1, ε2, τ, 1−Λ) and hence, ζ can be
picked as a sufficiently small positive constant satisfying the constraint.

Theorem 1. Let {0, 1}� be the message space and δ = ξ · lg n, for some constant
ξ < 1. There exists an explicit and efficient rate-1 NMC against Localδ with
simulation error that is negligible in n and uses the following primitives in a
black-box manner.
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1. For appropriate ζ > 0, an (n, �, d, t)-ECSS scheme with d, t � n1−ζ and
n = (1 + o(1))�.

2. For some constant λ, μ and η = nΘ(1), a (λ, μ, �i, �o)-NMC against leaky
input and output local tampering for messages in {0, 1}η, rate 1/ηo(1), �o =
O(log η), �i = O(log η), simulation error negligible in η.

3. For some constant Λ > 0, a PRG G : ({0, 1}log2 n)3Λ log n −→ ({0, 1}log2 n)nΛ

that is secure against FSM with alphabet size log2 n and space Θ(log2 n) with
error that is negligible in n.

The above theorem when instantiated with Lemmas 3, 2 and 4 gives following
theorem.

Theorem 2. For all constants ξ < 1, there exists an explicit rate-1 non-
malleable code against Localξ·lg n with negligible in n simulation error, where
n is the length of the codeword.

In particular, this implies an explicit rate-1 non-malleable code against NC0

tampering.

4.1 Proof of Theorem 1

Here, we will prove that the our construction has rate-1 and perfect correctness.
We provide proof of non-malleability in the next section.

Rate of our construction. Our codeword is (c, sL, αL, sR, αR). Note that our
main codeword c has length n = � + o(�). Next, |sL| = |sR| = 3Λ log3 n. And,
—αL| = |αR| = nΛ. Since, Λ = γ + 2τ < 1 (see parameter setting above), the
overall codeword has length � + o(�).

Correctness. We first argue that our scheme has statistical correctness, and then
show how the scheme in Fig. 2 can be tweaked slightly to give perfect correctness.
It is easy to see that the correctness of our scheme in Fig. 2 is broken only when
AdvL does not have enough number of 1’s to store all of cL in αL or similarly,
when AdvR does not have enough number of 1’s to store all of cR in αR. If this
happens, the decoding algorithm would output ⊥. Note that whether this event
happens or not depends on the choice of seeds sL and sR only. We prove the
following lemma that states that probability of this event happening is negligible.

Lemma 5. With probability at least 1 − 2−Ω(log2 n) over the random choice of
sL and sR, αL and αR will contain all the bits from cL and cR.

Proof. We will prove the lemma for (sL, αL) and same argument holds for
(sR, αR). We first show that the lemma holds when G is a random function.
Next, we argue that if lemma does not hold for a PRG G, then there exists a
distinguisher FSM Q with space κ log2 n that breaks PRG security with non-
negligible probability in n.
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Firstly, when G(sL) outputs uniform random string, the expected number
of 1’s in AdvL is nΛ · 2n−(Λ−β1) = 2nβ1 . Next, using Chernoff bound, with
probability at least 1 − exp(−Θ(nβ1)), there are at least nβ1 many 1’s in AdvL

and hence, αL will contain all the bits from cL.
Now suppose that the lemma does not hold when we use PRG G that

fools FSMs with space κ log2 n. Consider the following FSM Q that takes
(y1, y2, . . . , ynΛ) as input and a state in Q stores ctr, which denotes number
of indices i for which ρL(yi) output 1. The final output of Q is 1 when ctr � nβ1 .
Clearly, by our argument above, on a true uniform string, Q will output 1 with
probability at least 1 − exp(−Θ(nβ1)). If this lemma is incorrect for a PRG G,
Q will output 1 with probability at most 1 − 2−Ω(log2 n) and hence Q will break
the underlying PRG with success probability greater than 2−Ω(log2 n). Finally,
note that Q only needs Λ log n < κ log2 n space to record A. This completes the
proof. �

Getting perfect correctness. We can tweak our scheme slightly to give perfect
correctness as follows: If sL or sR is bad, i.e., (αL, αR) will not contain all bits in
(cL, cR), then we ignore AdvL,AdvR and store the codeword in default location.
More precisely, we store cL in first |cL| locations in αL and similarly for cR. It is
easy to see that this gives perfect correctness. In the proof of non-malleability,
our simulator can simply give up when this case happens. (Since sL, sR are
uniform seeds independent of the message, it is easy to check for this case.) This
would increase the simulation error by the probability of this event occurring.
But, above Lemma 5 proves that this happens with negligible probability. Hence,
this only increases the simulation error by negl(n).

5 Proof of Non-malleability of Our Compiler

Non-malleability. Recall that to prove non-malleability of the resulting scheme
against δ-local tampering family Localδ, we need to show that for any f ∈ Localδ,
there exists a simulator Sim1(f) such that, for all message m ∈ {0, 1}�, we have
the following

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(c, sL, αL, sR, αR) ∼ NMEnc1(m)

(c̃, s̃L, α̃L, s̃R, α̃R) = f(c, sL, αL, sR, αR)

m̃ = NMDec1(c̃, s̃L, α̃L, s̃R, α̃R)
Outputm̃

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= Tamperm
f ≈ε copy(Sim1(f),m)

Our simulator is formally defined in Fig. 3. In the simulator and the hybrids,
ne = |(sL, αL, sR, αR)|. A detailed proof using a sequence of indistinguishable
hybrids is presented in the next section. We shall use the following lemma in our
hybrid argument. We defer the proof of this lemma to the full version.



Explicit Rate-1 Non-malleable Codes for Local Tampering 453

Fig. 3. Simulator Sim1(f)
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Lemma 6. For any δ-local tampering function, with probability at least 1 −
2−Ω(log2 n) over the random choice of sL and sR, the following conditions hold.
(1) At most μnβ1 bits from cL will have input locality higher than 4δ/μ onto α̃R;
(2) Number of bits in cL and cR that have greater than n1−γ−τ input locality
onto c̃ are bounded by 4δnβ1−τ and 4δnβ2−τ , respectively.
And as a consequence, we have
(3) Number of bits in c̃ that are influenced by low input locality bits from cL

and cR are bounded by nβ1 · n1−γ−τ = o(n1−τ ) and nβ2 · n1−γ−τ = o(n1−τ ),
respectively.

5.1 Detailed Hybrid Argument

In this section, we are going to use a series of statistically close hybrids to
prove that Tamperm

f and copy
(
Sim1(f),m

)
are indistinguishable. Through-

out this subsection, we use the following color/highlight notation. In a current
hybrid, the text in red denotes the changes from the previous hybrid. The text
in shaded part represents the steps that will be replaced by red part of the
next hybrid. We call c (resp., c̃) the main codeword and (sL, αL, sR, αR) (resp.,
(s̃L, α̃L, s̃R, α̃R)) the error codeword.

H1(f,m) : Our first hybrid is the real world Tamperm
f , we simply open up the

definition of NMEnc1 and NMDec1 and write tampering function f as (f1, f2).
Both functions are given as input the entire codeword and f1 is doing the tam-
pering on the main codeword, i.e., outputs c̃, while f2 is doing the tampering on
the error codeword, i.e., outputs (s̃L, α̃L, s̃R, α̃R). This way of writing f would
be useful in later hybrids.

H2(f,m) : In the next hybrid H2, we change the way we sample ECSS codeword
of m. We define two subsets of indices P and Q. Intuitively, P is the popular
input bits of the main codeword, i.e., bits in c that influence more than nε2

bits of c̃. And Q is the set of bits in main codeword c that influence the error
codeword (s̃L, α̃L, s̃R, α̃R). Now, let X = P ∪ Q. We first sample a uniform
string aX of length |X| and then sample a ∼ ECSS.Enc(m) condition on that
ECSS.Enc(m)X = aX . We argue that this does not change the distribution of
a and hence it is identical to the previous hybrid.

To argue this we use the independence property of our ECSS scheme. In
particular, since t � n1−ζ , the distribution of aX is indeed uniform as long as
|X| = o(n1−ζ). Now, |P | can be bound as follows: The total number of input
neighbors of c̃ is δn and at most δn1−ε2 many bits in c can influence more than
nε2 bits from c̃. Hence |P | = o(n1−ζ) as long as we pick ζ < ε2 . Next, the length
of the error codeword is |sL| + |αL| + |sR| + |αR| = O(nΛ) and hence, by output
locality δ, the size of Q is at most δ · O(nΛ) = o(n1−ζ) as long as ζ < 1 − Λ .
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H1(f, m):

1. Sample a random E ⊆ [n] of size n1−ε1

2. For all i ∈ E, sample ei ∼ U{0,1}
3. Sample a ∼ ECSS. Enc(m)

4. Define c as ci =

{

ai, i /∈ E

ei, i ∈ E

5. Let (cL, cR) ∼ NMEnc0(E, e)

6. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

7. αL = EmbedL(sL, cL) and αR = EmbedR(sR, cR)
8. c̃ = f1(c, s

L, αL, sR, αR)

9. (˜sL, ˜αL, ˜sR, ˜αR) = f2(c, s
L, αL, sR, αR)

10. ˜cL = RecoverL(˜sL, ˜αL) and ˜cR = RecoverR(˜sR, ˜αR)

11. If NMDec0(˜cL, ˜cR) = ⊥, output ⊥; (Else) ( ˜E, ẽ) = NMDec0(˜cL, ˜cR)
12. If ECSS. ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS. ECorr(c̃)

13. Define c′ as c′
i =

{

ãi, i /∈ ˜E

ẽi, i ∈ ˜E

14. If c′ �= c̃, output ⊥; (Else) m̃ = ECSS. Dec(ã)
15. Output m̃

H2(f, m):

1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| � nε2}
2. Let Q = {i|i ∈ [n], Outf (i)\[n] �= ∅}
3. Let X = P ∪ Q. Sample aX ∼ U{0,1}|X|
4. Sample a ∼ ECSS. Enc(m)|(ECSS. Enc(m))X = aX

5. Sample a random E ⊆ [n] of size n1−ε1

6. For all i ∈ E, sample ei ∼ U{0,1}

7. Define c as ci =

{

ai, i /∈ E

ei, i ∈ E

8. Let (cL, cR) ∼ NMEnc0(E, e)

9. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

10. αL = EmbedL(sL, cL) and αR = EmbedR(sR, cR)

11. c̃ = f1(c, s
L, αL, sR, αR)

12. (˜sL, ˜αL, ˜sR, ˜αR) = f2(c, s
L, αL, sR, αR)

13. ˜cL = RecoverL(˜sL, ˜αL) and ˜cR = RecoverR(˜sR, ˜αR)

14. If NMDec0(˜cL, ˜cR) = ⊥, output ⊥; (Else) ( ˜E, ẽ) = NMDec0(˜cL, ˜cR)

15. If ECSS. ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS. ECorr(c̃)

16. Define c′ as c′
i =

{

ãi, i /∈ ˜E

ẽi, i ∈ ˜E

17. If c′ �= c̃, output ⊥; (Else) m̃ = ECSS. Dec(ã)
18. Output m̃
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H3(f, m):

1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| � nε2}
2. Let Q = {i|i ∈ [n], Outf (i)\[n] �= ∅}
3. Let X = P ∪ Q. Sample aX ∼ U{0,1}|X|
4. Sample a ∼ ECSS. Enc(m)|(ECSS. Enc(m))X = aX

5. Sample a random E ⊆ [n] of size n1−ε1

6. For all i ∈ E, sample ei ∼ U{0,1}

7. Define c as ci =

{

ai, i /∈ E

ei, i ∈ E

8. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

9. Given sL (resp., sR), indices of cL (resp., cR) in αL (resp., αR) are determined.
Let BadL={Indices of cL with more than n1−γ−τ output neighbors in c̃},

LeakL={Indices of cL with output neighbors in either ˜sL or ˜sR},
BadR={Indices in cR with more than n1−γ−τ output neighbors in c̃}, and

LeakR={Indices in cR with output neighbors in either ˜sL or ˜sR}
10. Let LL = BadL ∪ LeakL and LR = BadR ∪ LeakR.
11. Let f0 be the following mapping from leakage at (LL, LR) to tampering function

g for NMEnc0: First, use (sL, sR), leakage at (LeakL, LeakR) and cQ to compute
˜sL and ˜sR. These determine indices of ˜cL and ˜cR in ˜αL and ˜αR. Then, define g

to be the tampering function from indices of (cL, cR) to indices of (˜cL, ˜cR).
12. If (|LL| � λnβ1) or (|LR| � λnβ2) or (f0 does not satisfy Definition 6), output ⊥
13. (Else) ( ˜E, ẽ, x, y) = Tamper

(E,e)

LL,LR,f0

14. If ( ˜E, ẽ) = ⊥, output ⊥
15. (cL, cR) ∼ NMEnc0(E, e) s.t. NMDec0(g(cL, cR)) = ( ˜E, ẽ) and cL

LL = x, cR
LR = y

16. αL = EmbedL(sL, cL), αR = EmbedR(sR, cR)
17. c̃ = f1(c, s

L, αL, sR, αR)
18. If ECSS. ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS. ECorr(c̃)

19. Define c′ as c′
i =

{

ãi, i /∈ ˜E

ẽi, i ∈ ˜E

20. If c′ �= c̃, output ⊥; (Else) m̃ = ECSS. Dec(ã)
21. Output m̃

H3(f,m) : In the next hybrid H3, we rewrite the way how (Ẽ, ẽ) is generated
from (E, e) given seeds sL and sR. Here, we would generate (Ẽ, ẽ) as output
of a tampering experiment on (E, e) with an appropriate tampering function
from the leaky input and output local tampering family. Note that (E, e) is first
encoded to (cL, cR) and then is hidden among (αL, αR) using seeds sL, sR. We
note that if we are given the seed sL and sR, the places where cL are cR are
stored among αL and αR is known. Similarly, if we know s̃L and s̃R, the places
where c̃L and c̃R are stored among α̃L and α̃R are also known. Therefore, we
define LeakL and LeakR as the input neighbors of both s̃L and s̃R from cL and cR

respectively. Now let f0 be the mapping that given the leakage LeakL and LeakR,
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first computes8 s̃L and s̃R, and then outputs the tampering function g. Now that
we know indices of (cL, cR) and (c̃L, c̃R), function g maps (cL, cR) to (c̃L, c̃R).9

We note that leaking bits at BadL and BadR from cL and cR would be used in
later hybrids. So the total leakage from cL and cR are LL = LeakL ∪BadL and
LR = LeakR ∪BadR. Now we need to argue that the tampering f0 and leakage
LL,LR forms a valid tampering experiment onto our base NMC against leaky
input and output local tampering. It is easy to see that if it is valid, then the
two hybrids are identical. When they are not valid we output ⊥ in this hybrid
and we need to argue that probability of output ⊥ due this is negligible.

H4(f, m):

1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| � nε2}
2. Let Q = {i|i ∈ [n], Outf (i)\[n] �= ∅}
3. Let X = P ∪ Q. Sample aX ∼ U{0,1}|X|

4. Sample a ∼ ECSS. Enc(m)|(ECSS. Enc(m))X = aX

5. Sample a random E ⊆ [n] of size n1−ε1

6. For all i ∈ E, sample ei ∼ U{0,1}

7. Define c as ci =

{

ai, i /∈ E

ei, i ∈ E

8. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

9. Given sL, define: BadL, LeakL as in H3(f, m)
Given sR, define: BadR, LeakR as in H3(f, m)

10. Let LL = BadL ∪ LeakL and LR = BadR ∪ LeakR.
11. Define mapping f0 and its output g as in H3(f, m)
12. If (|LL| � λnβ1) or (|LR| � λnβ2) or (f0 does not satisfy Definition 6), output ⊥
13. (Else) (ans, x, y) = Sim0(LL, LR, f0)

14. If ans = ⊥, output ⊥; (Else) ( ˜E, ẽ) = copy(ans, (E, e))

15. (cL, cR) ∼ NMEnc0(E, e) s.t. NMDec0(g(cL, cR)) = ( ˜E, ẽ) and cL
LL = x, cR

LR = y
16. αL = EmbedL(sL, cL), αR = EmbedR(sR, cR)
17. c̃ = f1(c, s

L, αL, sR, αR)
18. If ECSS. ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS. ECorr(c̃)

19. Define c′ as c′
i =

{

ãi, i /∈ ˜E

ẽi, i ∈ ˜E

20. If c′ �= c̃, output ⊥; (Else) m̃ = ECSS. Dec(ã)
21. Output m̃

Firstly, f0 might not satisfy Definition 6 if one of the following happens: (i)
Not all the bits from cL, cR are contained in αL and αR, respectively and thus,
f0 cannot produce function g; (ii) g has output locality higher than �o = δ;
(iii) under g, more than μnβ1 many bits from cL have input locality higher than

8 Note that at this point, the original seed sL and sR and their input neighbors cQ

from main codeword c is already fixed.
9 If ˜cL or ˜cR are not contained in ˜αL or ˜αR, f0 will simply set g to be a ⊥ function.
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�i = 4δ/μ to c̃R. Note that our tampering function f is δ-local and therefore,
the output function g will also be δ-local, thus (ii) will never happen. And the
probability of (i) or (iii) happening is negligible as guaranteed by Lemma 5 and
(1) from Lemma 6, respectively.

We bound the size of the leakage |LL| = |LeakL ∪BadL | by o(nβ1). First,
we observe that our seeds sL and sR are of length O(log3 n) and hence |LeakL|
is at most O(δ log3 n) = o(nβ1). And the size of BadL is o(nβ1) is guaranteed by
(2) of Lemma 6. The argument for LR is analogous to LL. This proves that this
hybrid and the previous one are 2−Ω(log2 n)-close.

Note that we still need the error codeword (sL, αL, sR, αR) to do the tam-
pering f1 onto c̃. Hence, we sample cL and cR under the condition that the
tampering experiment outputs (Ẽ, ẽ, x, y) and construct the error codeword as
defined by our compiler.

H5(f, m):

1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| � nε2}
2. Let Q = {i|i ∈ [n], Outf (i)\[n] �= ∅}
3. Let X = P ∪ Q. Sample aX ∼ U{0,1}|X|

4. Sample a random E1 ⊆ X s.t. |E1| ∼ (n, |X|, n1−ε1)-hypergeometric distribution
5. For all i ∈ E1, sample ei ∼ U{0,1}
6. For all i ∈ E1, replace ai with ei, we get cX

7. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

8. Given sL, define: BadL, LeakL as in H3(f, m)
Given sR, define: BadR, LeakR as in H3(f, m)

9. Let LL = BadL ∪ LeakL and LR = BadR ∪ LeakR.
10. Define mapping f0 and its output g as in H3(f, m)
11. If (|LL| � λnβ1) or (|LR| � λnβ2) or (f0 does not satisfy Definition 6), output ⊥
12. (Else) (ans, x, y) = Sim0(LL, LR, f0).
13. If ans = ⊥, output ⊥
14. Sample a ∼ ECSS. Enc(m)|(ECSS. Enc(m))X = aX

15. Sample a random E2 ⊆ [n]\X of size n1−ε1 − |E1|, Let E = E1 ∪ E2

16. For all i ∈ E2, sample ei ∼ U{0,1}

17. Define c as ci =

{

ai, i /∈ E

ei, i ∈ E

18. ( ˜E, ẽ) = copy(ans, (E, e))

19. (cL, cR) ∼ NMEnc0(E, e) s.t. NMDec0(g(cL, cR)) = ( ˜E, ẽ) and cL
LL = x, cR

LR = y
10. αL = EmbedL(sL, cL), αR = EmbedR(sR, cR)
21. c̃ = f1(c, s

L, αL, sR, αR)
22. If ECSS. ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS. ECorr(c̃)

23. Define c′ as c′
i =

{

ãi, i /∈ ˜E

ẽi, i ∈ ˜E

24. If c′ �= c̃, output ⊥; (Else) m̃ = ECSS. Dec(ã)
25. Output m̃
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H4(f,m) : In the next hybrid H4, we simply replace the tampering experiment
onto our base non-malleable codes with its corresponding simulator Sim0 and
incur a negligible error by Lemma 2.

H5(f,m) : In this hybrid, we break the error indices E into two parts: E1 = E ∩
X and E2 = E\E1. Next, we note that cQ is needed to define the tampering on
the error codeword. Hence, we sample E1 and the error bits from E1 early before
defining tampering on error codeword. However, rest of errors, i.e., E2 is not used
before we invoke simulator Sim0. Based on these observations, we re-arrange
parts of the hybrids and this hybrid is identical to the previous one. Note that
the size of E1 and E2 are distributed according to (n, |X| , n1−ε1)-hypergemetric
distribution and (n, n − |X| , n1−ε1)-hyper geometric distribution, respectively.
By Corollary 1, it is easy to see that with probability 1 − exp(−Θ(n1−ε1)), the
size of E2 is at least n1−ε1/2.

H6(f,m) : In this hybrid, we only introduce some new notation to be used in
later hybrids and hence, this hybrid is identical to the previous one.

We focus on the tampering of the main codeword using function f1. Note
that so far in the previous hybrid, we have already fixed certain bits in the input
main codeword c (that is, cX), picked PRG seeds sL, sR and also leaked certain
parts of cL, cR, i.e., LL,LR.10 Using this information, we define a restriction h
of function f1 that fixes all the above bits in the input.

We next define three subsets of [n] corresponding to h, namely, V , W and Z
as follows. V is the subset of bits i such that c̃i is not fixed given the fixing of
bits done so far. And W is the subset of bits that are influenced by some bits in
the error codeword (that have not been leaked and fixed so far). And Z is the
subset of bits i, such that the output of hi is not always the i-th input bit (In
the definition of Z, recall that ne = |(sL, αL, sR, αR)|).

Intuitively, Z is the set of bits that are not-copied-bits under the tampering
function h, V is the set of non-constant-bits and W is the set of bits that are
influenced by the error codeword. As we explained in technical overview Sect. 1.3,
if ans = same* and the size of Z\W is large or if ans = (E∗, e∗) and the size
of V \W is large, then the tampered codeword will be invalid with probability
1 − negl(n). This intuition is formally proved in the next hybrid.

H7(f,m) : In the next hybrid H7, we add a sanity check right after we define
V,W,Z. (a) When ans = ⊥, we will output ⊥ immediately. This is the same as
the previous hybrid. (b) When ans = same*, we check the size of Z\(W ∪X). If it
is larger than n1−ε2 , we directly output ⊥ without any further computation. On
the other hand, if it is less than n1−ε2 , we only compare c and c̃ at locations Z.
If they are the same, we output same*, otherwise, we output ⊥. (c) When ans =
(E∗, e∗), we check the size of V \W . If |V \W | � n1−ε2 , we directly output ⊥
without further computation. Below, we prove that the previous hybrid H6(f,m)
and copy(H7(f,m),m) are statistically close. We break the proof into two parts:
ans = same* case and ans = (E∗, e∗) case.

10 Note that those places in αL, αR that are not used to store cL and cR are also fixed
(to be 0 by the compiler).
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H6(f, m):

1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| � nε2}
2. Let Q = {i|i ∈ [n], Outf (i)\[n] �= ∅}
3. Let X = P ∪ Q. Sample aX ∼ U{0,1}|X|

4. Sample a random E1 ⊆ X s.t. |E1| ∼ (n, |X|, n1−ε1)-hypergeometric distribution.
5. For all i ∈ E1, sample ei ∼ U{0,1}
6. For all i ∈ E1, replace ai with ei, we get cX

7. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

8. Given sL, define: BadL, LeakL as in H3(f, m)
Given sR, define: BadR, LeakR as in H3(f, m)

9. Let LL = BadL ∪ LeakL and LR = BadR ∪ LeakR.
10. Define mapping f0 and its output g as in H3(f, m)
11. If (|LL| � λnβ1) or (|LR| � λnβ2) or (f0 does not satisfy Definition 6), output ⊥
12. (Else) (ans, x, y) = Sim0(LL, LR, f0).
13. Let SL, SR denote indices of sL, sR. Define function h as a restriction of f1

(Definition 2): h := (f1)(X,SL,SR,LL,LR)|(cX ,sL,sR,x,y)

14. V := {i ∈ [n]| Inph(i) �= ∅}.
15. W := {i ∈ [n]| Inph(i)\[n] �= ∅}.
16. Z := {i ∈ [n]|∃z ∈ {0, 1}n+ne , z(X,SL,SR,LL,LR) = (cX , sL, sR, x, y), hi(z) �= zi}.
17. If ans = ⊥, output ⊥
18. Sample a ∼ ECSS. Enc(m)|(ECSS. Enc(m))X = cX

19. Sample a random E2 ⊆ [n]\X of size n1−ε1 − |E1|, let E = E1 ∪ E2

20. For all i ∈ E2, sample ei ∼ U{0,1}

21. Define c as ci =

{

ai, i /∈ E

ei, i ∈ E

22. ( ˜E, ẽ) = copy(Sim0(LL, LR, f0), (E, e))

23. (cL, cR) ∼ NMEnc0(E, e) s.t. NMDec0(g(cL, cR)) = ( ˜E, ẽ) and cL
LL = x, cR

LR = y
24. αL = EmbedL(sL, cL), αR = EmbedR(sR, cR)
25. c̃ = f1(c, s

L, αL, sR, αR)

26. If ECSS. ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS. ECorr(c̃)

27. Define c′ as c′
i =

{

ãi, i /∈ ˜E

ẽi, i ∈ ˜E

28. If c′ �= c̃, output ⊥; (Else) m̃ = ECSS. Dec(ã)

29. Output m̃

Case ans = same*: Let us first look at that the case when |Z\(W ∪ X)| <
n1−ε2 . Note that by the definition of Z, all the bits of c̃ in [n]\Z are identical
to those in c. Recall c is obtained by planting |E| = n1−ε1 errors into a valid
ECSS codeword a. We have HD(c̃, a) � HD(c̃, c) + HD(c, a) = |Z| + |E| �
(|Z\(W ∪ X)| + |W | + |X|) + |E|. Using |W | = o(n1−τ ) from (3) of Lemma 6,
|X| = o(n1−ζ) from hybrid 2, and |E| = n1−ε1 , we get HD(c̃, a) � n1−ε2 +
o(n1−τ ) + o(n1−ζ) + n1−ε1 = o(n1−ζ) by setting ζ < ε2 , ζ < τ and ζ < ε1 .
Hence, using the fact that the distance of the ECSS scheme, d � n1−ζ , we get
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ECSS.ECorr(c̃) = a. Consequently, if we error-correct c̃ and plant in the original
errors (E, e), we get c. Hence, experiment would output ⊥ iff c̃ �= c. This happens
only when c̃Z �= cZ .

Now consider the case when |Z\(W ∪ X)| � n1−ε2 . We begin by computing
a lower bound on number of error indices in Z\(W ∪ X), i.e., size of set A =
(Z\(W ∪X))∩E2. First, note that E2 is a random subset of [n]\X of size at least
n1−ε1/2 with probability 1 − exp(−Ω(n1−ε1)) by Corollary 1. Next, we observe
that sets Z,W,X are defined independent of E2 and hence, by Corollary 1, |A| �
1
4 · n1−ε1−ε2 with probability at least 1 − exp(−Ω(n1−ε1−2ε2)).

Next, we pick a subset A′ ⊆ A such that bits in A′ have disjoint input
neighbors. That is, ∀i, j ∈ A′, Inph(i) ∩ Inph(j) = ∅. We use following two
properties to ensure that we can pick A′ of sufficiently large size. First, for every
bit i ∈ A, Inph(i) ⊆ [n] (because A ∩ W = ∅). Second, all the bits in [n] with
more than nε2 output neighbors in [n] belong to subset P and have already
been fixed. This implies that for any bit i ∈ A, all bits in Inph(i) have at most
nε2 output neighbours in [n]. Therefore, it is guaranteed that we can pick a set
A′ ⊆ A s.t. |A′| � |A|

δnε2 = n1−ε1−2ε2

4δ . (This can be done greedily by picking an
arbitrary index i ∈ A and discarding all the bits in A that are influenced by
Inph(i). Since h has at output locality δ and each bit in Inph(i) influences at
most nε2 -many bits in A, we discard at most δnε2 indices from A for picking one
index in A′. Now, we recurse on the remaining indices in A.)

For the rest of the proof, we consider such a set A′ of size exactly n1−ε1−2ε2

4δ .
We note that for all indices i ∈ A′ following conditions are satisfied (1) ci is a
planted error ei (A′ ⊆ E2); (2) hi does not always output ei (A′ ⊆ Z); (3) the
input neighbors of i are all in [n] (A′ ∩W = ∅). For the tampered main codeword
to be consistent with recorded errors, we need that for all i ∈ A′, The i-th bit
after tampering, i.e. c̃i needs to be equal to ei. We show that this happens with
probability at most (1−1/2δ)n1−ε1−2ε28δ, which is negligible for δ = ξ · lg n when
ε1 + 2ε2 < 1 − ξ . Hence, it suffices to output ⊥ always.

We first argue that all of A′ input neighbors are independent uniform bits. We
use the fact that A′ is of size n1−ε1−2ε2

4δ and its (at most δ · n1−ε1−2ε2

4δ -many) input
neighbors are all from our ECSS codeword with planted errors. Since we have
only fixed X of size o(t) from c so far and our ECSS has independence t � n1−ζ

and n1−ε1−2ε2 = o(t), all the input neighbors of A′ are indeed independent
uniform bits. Given the uniformly random input, we examine the bits from A′

one by one. For any i ∈ A′, there are following two possibilities

◦ If ci (i.e., ei) is the input neighbor of c̃i, then since hi does not always output
ci, there exists a setting of the other (at most) δ − 1 neighbors, such that c̃i

is either fixed 0, fixed 1, or flipped ei. Because of uniformity of value at input
neighbors, this setting happens with probability at least 1

2δ−1 and when it
happens, with probability at least 1/2, c̃i �= ei. Hence, c̃i = ei with probability
at most 1 − 1

2δ . We remove i from A′ and recurse on remaining bits.
◦ If ci (i.e., ei) is not the input neighbor of c̃i, then since all of the input neighbors

are independent of uniform bit ei, the probability c̃i = ei is at most 1/2.
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However, we need to address a small subtlety here. Since ei is not the input
neighbor of itself, it can be in the input neighbor of another bit in A′. To
keep failure probabilities independent, if such a bit j exists (s.t. ei is an input
neighbor of c̃j), we only include i in our witness set of failed indices but we
remove both indices i and j before recursing to remaining bits in A′.

H7:

1. Let P = {i|i ∈ [n], |Outf (i) ∩ [n]| � nε2}
2. Let Q = {i|i ∈ [n], Outf (i)\[n] �= ∅}
3. Let X = P ∪ Q. Sample aX ∼ U{0,1}|X|

4. Sample a random E1 ⊆ X s.t. |E1| ∼ (n, |X|, n1−ε1)-hypergeometric distribution
5. For all i ∈ E1, sample ei ∼ U{0,1}
6. For all i ∈ E1, replace ai with ei, we get cX

7. Sample seeds sL, sR uniformly from {0, 1}3Λ log3 n

8. Given sL, define: BadL, LeakL as in H3(f, m)
Given sR, define: BadR, LeakR as in H3(f, m)

9. Let LL = BadL ∪ LeakL and LR = BadR ∪ LeakR.
10. Define mapping f0 and its output g as in H3(f, m)
11. If (|LL| � λnβ1) or (|LR| � λnβ2) or (f0 does not satisfy Definition 6), output ⊥
12. (Else) (ans, x, y) = Sim0(LL, LR, f0).
13. Let SL, SR denote indices of sL, sR. Then, h := (f1)(X,SL,SR,LL,LR)|(cX ,sL,sR,x,y)

14. V := {i|i ∈ [n], Inph(i) �= ∅}
15. W := {i|i ∈ [n], Inph(i)\[n] �= ∅}
16. Z := {i ∈ [n]|∃z ∈ {0, 1}n+ne , z(X,SL,SR,LL,LR) = (cX , sL, sR, x, y), hi(z) �= zi}
17. If ans = ⊥, output ⊥

If ans = same* and |Z\(W ∪ X)| � n1−ε2 , output ⊥
If ans = (E∗, e∗) and |V \W | � n1−ε2 , output ⊥

18. Sample a ∼ ECSS.Enc(m) |(ECSS. Enc(m))X = cX

19. Sample a random E2 ⊆ [n]\X of size n1−ε1 − |E1|, let E = E1 ∪ E2

20. For all i ∈ E2, sample ei ∼ U{0,1}

21. Define c as ci =

{

ai, i /∈ E

ei, i ∈ E

22. ( ˜E, ẽ) = copy(Sim0(LL, LR, f0), (E, e))

23. (cL, cR) ∼ NMEnc0(E, e) s.t. NMDec0(g(cL, cR)) = ( ˜E, ẽ) and cL
LL = x, cR

LR = y
24. αL = EmbedL(sL, cL), αR = EmbedR(sR, cR)
25. c̃ = f1(c, s

L, αL, sR, αR)
26. If ans =

◦ same*: If c̃Z = cZ , output same*
(Else) Output ⊥.

◦ (E∗, e∗): If ECSS. ECorr(c̃) = ⊥, output ⊥; (Else) ã = ECSS. ECorr(c̃)

Define c′ as c′
i =

{

ãi, i /∈ ˜E

ẽi, i ∈ ˜E

If c′ �= c̃, output ⊥; (Else) m̃ = ECSS. Dec(ã)
Output m̃
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Now, we have shown that either a bit has probability at most 1 − 1
2δ to be

consistent or two bits have probability at most 1/2 to be consistent at the same
time. And all of those events are independent, hence, the probability that all the
bits are consistent with errors (E, e) is at most (1 − 1

2δ )|A′|/2.

Case ans = (E∗, e∗): For the case when ans = (E∗, e∗), this hybrid is only dif-
ferent from previous one when |V \W | � n1−ε2 . We show that if this happens,
the output of previous hybrid is not ⊥ with only negligible probability.

We first pick a B ⊆ (V \W ) such that ∀i, j ∈ B, Inph(i)∩Inph(j) = ∅. Similar
to above, all the input neighbors of V \W are contained in [n] and have output
locality at most nε2 in [n]. Hence, it is guaranteed that we could pick B such that
|B| = n1−2ε2

δ . (Similar to same* case, this can be done greedily by picking an
arbitrary index from V \W into B and removing all the bits its input neighbors
have influence on. We only discard at most δnε2 bits for picking one bit.)

Note that B ⊆ V implies that for all i ∈ B, Inph(i) �= ∅ and since all the
bits in B has disjoint input neighbors, we have |Inph(B)| � |B|. Now, consider
a subset B′ ⊆ B such that each bit in B′ has an input neighbour in errors E2.
That is,

B′ =
{

i
∣∣∣i ∈ B, Inph(i) ∩ E2 �= ∅

}

Again E2 is a random subset of size at least n1−ε1/2 with probability 1 −
exp(−Ω(n1−ε1)) and is independent of B. Thus, by Corollary 1, with probability
at least 1 − exp(−Ω(n1−ε1−4ε2)), |Inph(B) ∩ E2| � 1

4δ n1−ε1−2ε2 . Hence, |B′| �
n1−ε1−2ε2

4δ2 (Because of δ-locality).
For the rest of proof, we consider such a set B′ of size exactly n1−ε1−2ε2

4δ2 . Next,
we argue that input neighbors of B′ (at most δ ·n1−ε1−2ε2/(4δ2) in number) are
independently uniformly distributed. This is because they are all from our ECSS
codeword with planted errors. Since we have only fixed X of size o(t) from c so
far and our ECSS has independence t = n1−ζ with ζ < ε1 + 2ε2 , all the input
neighbors of B′ are indeed independent uniform bits. So, bits in B′ satisfy the
following conditions: its input neighbors (1) are disjoint; (2) contain at least one
bit from E2; (3) are contained in [n]; (4) are independently uniform bits.

Next, we define M = Outh(Inph(B′)). This is the set of all indices that is
being influenced by the input neighbor of B′. Obviously B′ ⊆ M . And the size of
M is bounded by nε2 · δ ·n1−ε1−2ε2/(4δ2) = n1−ε1−ε2/(4δ). We first observe that
fix any c∗

[n]\M , there is at most one c∗
M that is consistent with c∗

[n]\M and the

fixed errors E∗, e∗. This is because if there exist two c(1), c(2) s.t. c
(1)
[n]\M = c

(2)
[n]\M ,

their distance is bounded by n1−ε1−ε2/(4δ) which is smaller than the distance
d � n1−ζ as long as ζ < ε1 + ε2 . Therefore, those two codewords will be error-
corrected to the same correct codeword and after being reconstructed from errors
(E∗, e∗), they will be the same. Therefore, for every fixing c∗

[n]\M , there is at most
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one codeword c∗ (equivalently, one c∗
M ), which is consistent with (E∗, e∗). Since

B′ ⊆ M , there is at most one choice for c∗
B′ as well.

Finally, we prove that the probability that c∗
B′ takes the fixed value needed

to be consistent is negligible. Now,for any i ∈ B′, we know some bit Ej is the
input neighbors of i. Therefore, at least one out of at most 2δ−1 possible settings
of all the other input neighbors Inph(i)\[j], flipping the value of ej will flip the
output of hi. Note that by definition of M , Ej cannot be the input neighbors of
any bits in [n]\M , hence ej is independent of c∗

[n]\M . And thus, whenever this
setting happens, with probability 1/2, the output at i will not be consistent with
(E∗, e∗). Therefore, since the input neighbors of i are uniformly distributed, the
probability that c̃i is not consistent with fixed errors (E∗, e∗) is at least 1

2δ . Since
all the input neighbors of B′ are all independent uniform bits, the probability
that all the bits from B′ are consistent is at most (1 − 1

2δ )n1−ε1−2ε2/(4δ2), which
is negligible when δ = ξ · lg n with ε1 + 2ε2 < 1 − ξ .

H8(f,m) : Our final hybrid is identical to our simulator Fig. 3. In this final
hybrid, we simply switch message m with 0�.

Note that the only bits from ECSS.Enc(m) that affect the output of the
hybrid is (1) the neighbors of Z and also cZ when ans = same* and |Z\(W ∪
X)| < n1−ε2 ; (2) the neighbors of V , when ans /∈ {same*,⊥} and |V \W | <
n1−ε2 .11 For (1), as shown in hybrid 7, the size of Z is o(t) when |Z\(W ∪X)| <
n1−ε2 and hence the neighbor of |Z| is of size at most δ · |Z| = o(t). For (2),
|V | � |V \W | + |W |. Both are o(t) as require in hybrid 7 and therefore so is |V |
and the size of the neighbors of V . Hence the number of bits in c that influence
the hybrid output is at most o(t). Any o(t) bits from ECSS.Enc(m) condition
on cX is uniformly distributed. Hence, we can switch the encoding of m with
encoding of 0�.

This completes our hybrid argument.
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Abstract. Non-malleable codes are encoding schemes that provide pro-
tections against various classes of tampering attacks. Recently Faust et
al. (CRYPTO 2017) initiated the study of space-bounded non-malleable
codes that provide such protections against tampering within small-space
devices. They put forward a construction based on any non-interactive
proof-of-space (NIPoS). However, the scheme only protects against an a
priori bounded number of tampering attacks.

We construct non-malleable codes that are resilient to an unbounded
polynomial number of space-bounded tamperings. Towards that we
introduce a stronger variant of NIPoS called proof-extractable NIPoS
(PExt-NIPoS), and propose two approaches of constructing such a prim-
itive. Using a new proof strategy we show that the generic encod-
ing scheme of Faust et al. achieves unbounded tamper-resilience when
instantiated with a PExt-NIPoS. We show two methods to construct
PExt-NIPoS:
1. The first method uses a special family of “memory-hard” graphs,

called challenge-hard graphs (CHG), a notion we introduce here. We
instantiate such family of graphs based on an extension of stack of
localized expanders (first used by Ren and Devadas in the context
of proof-of-space). In addition, we show that the graph construction
used as a building block for the proof-of-space by Dziembowski et
al. (CRYPTO 2015) satisfies challenge-hardness as well. These two
CHG-instantiations lead to continuous space-bounded NMC with
different features in the random oracle model.

2. Our second instantiation relies on a new measurable property, called
uniqueness of NIPoS. We show that standard extractability can be
upgraded to proof-extractability if the NIPoS also has uniqueness.
We propose a simple heuristic construction of NIPoS, that achieves
(partial) uniqueness, based on a candidate memory-hard function
in the standard model and a publicly verifiable computation with
small-space verification. Instantiating the encoding scheme of Faust
et al. with this NIPoS, we obtain a continuous space-bounded NMC
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that supports the “most practical” parameters, complementing the
provably secure but “relatively impractical” CHG-based construc-
tions. Additionally, we revisit the construction of Faust et al. and
observe that due to the lack of uniqueness of their NIPoS, the result-
ing encoding schemes yield “highly impractical” parameters in the
continuous setting.

We conclude the paper with a comparative study of all our non-malleable
code constructions with an estimation of concrete parameters.

1 Introduction

Non-malleable codes and tamper-resilience. The notion of non-malleable codes
(NMC) was put forward by Dziembowski, Pietrzak and Wichs [20] as an abstract
tool for protecting cryptographic devices against tampering attacks (e.g. [12]).
Intuitively, an encoding scheme (Encode,Decode) is called non-malleable with
respect to a class of tampering adversaries (modeled as functions or algorithms)
A if for any adversary A ∈ A and any message x, the output Decode ◦ A ◦
Encode(x) is independent of x, unless it is equal to x. It is straightforward to
see that A can not contain all efficiently computable functions because in that
case it is always possible to just decode a codeword c to x, modify (for example
add 1) and re-encode x + 1; hence one must consider a restricted class A which
excludes functions able to encode or decode. Therefore, the NMC literature
(for example [1,2,15,16,24,25,29,32]) focuses on constructing encoding schemes
that are non-malleable against a meaningful, broad class of tampering functions;
notice that non-malleability against a broader A translates to protection against
stronger tampering attacks.

Leaky NMC for space-bounded tampering. One such interesting tampering class
is space-bounded tampering, in that the only restriction on A is that any (effi-
cient) tampering algorithm in this class can only use a limited amount of memory.
Space-bounded tampering captures the essence of mauling attacks performed by
malware that infect small-space devices like mobile phones. However, as noticed
by Faust et al. [22] (henceforth FHMV), for such tampering class it is unrea-
sonable to assume that a tampering algorithm can not decode. For example,
if decoding requires more space than what is available for the attacker, then
the encoded secret becomes unusable inside the device. The encoding algorithm,
on the other hand, can be reasonably space-intense and performed outside the
device. Therefore, it is possible to assume the space-bounded adversary cannot
perform encoding, therefore avoiding the aforementioned impossibility.

Moreover, even if A includes only Decode, “full-fledged” non-malleability is
still not achievable. To see this, consider an attacker that decodes c, learns the
message x and based on the first bit of x overwrites the memory of the device with
a precomputed encoding—leaking the first bit (this can be easily extended to an
attack that leaks any log(|x|) bits by tampering once). However, Faust et al. [22]
observed that all hope may not be lost if it is possible to guarantee that the
leakage is “not too much”. Formally FHMV defines a weaker notion called leaky
non-malleability, which guarantees that an encoding scheme satisfying the notion



Continuous Space-Bounded Non-malleable Codes from Stronger POS 469

would leak only a limited amount of information about x. FHMV also showed
that this is sufficient for many applications. For example, they showed how one
can use such leaky NMC by trading-off tampering with leakage when x comes
from a high-entropy distribution (see Section 7 of [23] for more details).

Continuous space-bounded tampering. Traditional NMC (as defined in [20]) guar-
antees non-malleability when the attacker tampers only once. To use such NMC
for tamper-resilience (see [20] for more details), one needs to refresh the encod-
ing after each tampering. To combat this issue, in 2014, Faust et al. [24] pro-
poses the notion of continuous non-malleable codes that tolerates an unbounded
number of tampering attempts, which consequently removes the necessity of
re-encoding in the tampering application. Though FHMV’s definition of (leaky)
non-malleability allows continuous tampering, their construction (see Theorem 3
of [23]) only allows an a priori bounded number of tampering attempts (say θ)
because their parameters are related in a way that the leakage (say, �) is directly
proportional to θ. Hence, after a few tampering attempts, the leakage becomes
as large as |x|. Coming up with a construction that tolerates an unbounded
(polynomially large) θ was left open in FHMV (see Remark 2 of [23]).

1.1 Our Work

Leaky NMC for continuous space-bounded tampering. In this work we address
the open problem by proposing various constructions of non-malleable codes,
in all of which the leakage � is proportional to the logarithm of the number of
tamperings, i.e. log(θ).1 No prior bound is required for θ in this case. However,
we do not claim that our solutions are strictly stronger than that provided in
FHMV, because we assume a “self-destruct” mechanism similar to the prior
works on continuous non-malleability (e.g. [24]). Roughly speaking, the “self-
destruct” mechanism requires the small-space device to erase its entire state
(or make it non-functional) once a tampering is detected. As already shown
by FHMV, this is a necessary requirement for achieving unbounded continuous
space-bounded tampering.

Our approach: Stronger non-interactive proof-of-space. FHMV’s encoding
scheme relies on any extractable non-interactive proof of space (simply called
NIPoS) In contrast, we introduce a new and stronger property of NIPoS called
proof-extractability and prove that when FHMV’s encoding scheme is instan-
tiated with a proof-extractable NIPoS (PExt-NIPoS), then we obtain a con-
tinuous space-bounded NMC (CSNMC). We take two different approaches to
construct PExt-NIPoS — in the following few paragraphs we choose to outline
them through the natural flow of our attempts, instead of dividing strictly into
two distinct approaches.

1 In the rest of the paper whenever we say that an encoding scheme satisfies continuous
space-bounded non-malleability or is a CSNMC, we mean that the encoding scheme
is a leaky NMC for space-bounded tampering with � ∝ log(θ).
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Proof-extractability from any NIPoS with uniqueness. Our starting point is the
construction of FHMV [22] which is based on any NIPoS. We show that any
NIPoS can be upgraded to a PExt-NIPoS if it has a special property called
uniqueness, which we define as a quantitative measure of a NIPoS. We notice
that the parameters of the resulting PExt-NIPoS (and consequently the CSNMC
scheme yielded via FHMV’s generic construction) is directly related to the
uniqueness parameter of the starting NIPoS. For example, if a NIPoS has “max-
imal uniqueness”, then the resulting CSNMC incurs “minimal leakage”, which
is equal to p − |c| bits, where |c| is the codeword length and p is the available
(persistent) space. Unfortunately, we do not know of a provably secure NIPoS
construction with maximal, or even a “reasonably good measure” of uniqueness
(later we propose a construction that satisfies partial uniqueness based on heuris-
tic assumptions). In fact, we show that the NIPoS used in FHMV (which is in
turn based on the PoS proposed by Ren and Devadas in [38]) has poor unique-
ness parameters and thus, when adapted to our proof-extractability technique,
yields a CSNMC which suffers from a leakage that is as large as ≈ p − |x|.

Modeling space-bounded adversary with bounded description. The lack of a NIPoS
with “good uniqueness” drives us to revisit the adversarial model of FHMV, in
particular, how they formalize the notion of space. In FHMV, which in turn fol-
lows the notion introduced by Dziembowski et al. [19], the adversary is separated
into two parts: a “big adversary” which is a PPT adversary with no space-bound,
and a “small adversary” that is a space-bounded poly-time adversary. In a secu-
rity game, the big adversary starts interacting with the challenger, and then
outputs small adversaries which will then have access to the target codeword (or
the proof, in case of NIPoS) and execute tampering in a space-bounded manner.

We notice that FHMV assumes that the small adversary can have arbitrary
amount of auxiliary information hardcoded in its description (see Page-5 of [23]).
In reality this seems to be an overkill, because if the small adversary (e.g. mal-
ware) has a huge description, it might not even fit into a small-space device (e.g.
a mobile device), let alone executing tampering. So, it is reasonable to assume
that such adversary has a bounded size description. In particular, we define a
class of space-bounded adversaries as As,f

space containing all poly-time adversaries
that have a description of size at most f -bit and which require at most s-bit to
execute.

PExt-NIPoS from Challenge-hard Graphs (CHG). We define a new family of
“memory-hard graphs” called challenge-hard-graphs and construct PExt-NIPoS
for the class of space-bounded adversaries As,f

space from that. We provide two
instantiations of CHG: (i) The first one extends the stack of local expanders
(SoLEG), used by Ren and Devadas [38] in the context of proof-of-space. We uses
a novel technique to connect a gadget with a standard SoLEG in order to amplify
crucial challenge-hardness parameters. This technique may be of independent
interest. (ii) The second one uses the graph designed by Paul et al. [37] and used
by Dziembowski et al. [17], who use the notion of challenge-hardness implicitly to
construct proof-of-space. Both of the constructions use standard graph-pebbling
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techniques to ensure memory-hardness (and challenge-hardness) and work in the
random oracle model. Plugging-in these PExt-NIPoS constructions into FHMV’s
encoding scheme, we obtain CSNMC schemes with “almost minimal leakage”
� ≈ p − |c|.

A NIPoS with partial uniqueness based on heuristics. The constructions men-
tioned above all come with rigorous security proofs (in the random oracle model).
However, it turns out that in order to achieve reasonable security, the concrete
parameters of these constructions are fairly impractical. For example, for a mes-
sage of size 1 MB, the size of a codeword is almost 800 MB for the CHG-based
NMC constructions. To complement this, we take a step back on our initial idea
of constructing NIPoS with “good uniqueness”, and propose a simple and prac-
tical instantiation of NIPoS based on heuristic assumptions. The construction
uses a concrete instantiation of a memory-hard-function (MHF), and applies a
(non-interactive) publicly verifiable computation where the verification requires
small space. When the MHF is instantiated with the SoLEG-based construction
of Ren and Devadas [38], the resulting NIPoS has extractability and a “good
measure of uniqueness”. This yields a PExt-NIPoS with very good parameters
and, consequently, plugging-in that to FHMV’s encoding scheme we obtain a
CSNMC with very small proof size (in kilobytes), that also allows a leakage, as
small as p − 0.99|c|, in certain settings.

While the above scheme is practical, it is not provably secure, since we can
not assume that the hash-functions within the MHF are random oracles, as the
prover needs to access the circuit of the MHF to produce a proof of computa-
tion. Note that any MHF, while used in practice with concrete hash functions
(for example SHA3) for important practical applications [39], provides provable
guarantees only in the random oracle model (see, e.g. [6]). Instead, we rely on
heuristic assumptions that intuitively state that the MHF remains memory-hard
when the random oracle is instantiated with a standard hash function like SHA3.

Roadmap. We summarize our contributions below in Sect. 1.2. In Sect. 1.3
we provide an elaborative technical overview. Then, after providing prelimi-
naries in Sect. 3 and basic definitions of Continuous Space-bounded Tamper-
ing in Sect. 4, we define the new NIPoS properties (uniqueness and proof-
extractability) in Sect. 5 where we also discuss their relations. In Sect. 6, we
show that the FHMV’s encoding scheme satisfies continuous space-bounded non-
malleability when instantiated with PExt-NIPoS. Section 7 introduces the notion
of challenge-hard-graphs and shows how to use them to construct PExt-NIPoS.
We provide a heuristic construction of NIPoS with (partial) uniqueness relying
on memory-hard functions in Sect. 8 and finally in Sect. 9, we conclude with a
instantiations and comparison of the important concrete parameters of different
encoding schemes we constructed.
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1.2 Summary of Our Contributions

Our overall contributions can be summarized as follows:

– We propose the first constructions of continuous space-bounded (leaky) non-
malleable codes (with a necessary “self-destruct” mechanism) and thus resolve
an open problem posed by FHMV [22]. Overall we propose four different
constructions of different merits; we provide a comparison in Table 1:

Table 1. Among the above constructions, the MHF-based one is the most practical one
whereas the SoLEG-based one has the best concrete parameters among the provably-
secure constructions. For a detail comparison of the concrete parameters please see
Table 2 in Sect. 9.

Approach PExt-NIPoS type Assumptions Leakage Size of A

CHG
SoLEG-based RO ≈ p − |c| Bounded

PTC-based RO ≈ p − |c| Bounded

Uniqueness
FHMV-based RO ≈ p − |x| Unbounded poly

MHF-based Heuristic ≈ p − 0.99|c| Unbounded poly

– We introduce various abstract notions of NIPoS, like proof-extractability and
uniqueness, and show relations among them. The abstractions are targeted
towards constructing CSNMC as the main end goal, but may be of indepen-
dent interests. We prove that the FHMV encoding scheme is a CSNMC when
instantiated with any PExt-NIPoS.

– We propose different techniques to construct a PExt-NIPoS. We introduce the
notion of challenge-hard graphs and show how to build PExt-NIPoS from that.
We propose a novel technique to bootstrap the important challenge-hardness
parameters of a CHG by carefully connecting a gadget to a special type of
memory-hard graphs (SoLEG). Furthermore, we provide a simple construc-
tion of partially unique NIPoS that yields “reasonably practical” parameters
for the resulting PExt-NIPoS and CSNMC. It is based on heuristic assump-
tions on memory-hard functions and complements the provably secure but
“relatively impractical” CHG-based constructions.

– Finally we provide a comparative study of the most important parameters of
all our CSNMC constructions with respect to concrete instantiations. This
helps us to understand the practical impacts of different techniques and con-
structions proposed in this work.

1.3 Technical Overview

Revisiting FHMV’ s construction. We start by briefly revisiting the construction
of FHMV [22]. Recall that FHMV’s generic encoding scheme is based on any
extractable (non-interactive) proof-of-space (NIPoS).

First let us briefly recall the notion of proof-of-space introduced in [7,17].
In an interactive proof-of-space (PoS) protocol, a prover P interactively proves
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that she has “sufficient amount of space/memory” to a space-bounded verifier V.
One can use Fiat-Shamir transformation [27] to make it non-interactive, in that
the entire proof can be represented as one single string, say πid , with respect
to an identity id . The verifier is able to verify the pair (id , πid) within bounded
space. Extractability of NIPoS guarantees that: given an honestly generated pair
(id , πid), if a space-bounded “small adversary” A is able to compute another
valid (i.e. correctly verified) pair (id ′, πid′) such that id �= id ′, then id ′ can be
efficiently extracted from the RO queries made by the “big adversary” B (that
has no space-restriction and may be represented by a PPT algorithm) given a
“small hint”2.

Given a NIPoS, FHMV’s encoding scheme works as follows. On input a mes-
sage x, the space-intense encoding algorithm runs the prover of NIPoS on an iden-
tity x to generate a proof πx. The codeword c is simply the pair (x, πx). The space-
bounded decoding algorithm, on receiving c = (x, πx), runs the (space-bounded)
verifier. If the verification passes, it returns x, otherwise it returns ⊥ denoting the
invalidity of c. Intuitively, non-malleability follows from the guarantee provided
by NIPoS; namely, whenever the small adversary tampers to a valid codeword
(x′, πx′), the new message x′ must be independent of the input message x.

To be slightly more formal, to show that this encoding scheme is non-
malleable against space-bounded attacker, one needs to simulate the tampering
experiment with “a small leakage” on x. Given the extractability, the simulator
can be constructed as follows: the leakage is obtained using the “small hint”. As
guaranteed by the extractability of NIPoS, since the “small hint” (of length η,
say) is sufficient to extract id ′, each tampering can be simulated by first obtain-
ing the hint as a leakage and then running the NIPoS-extractor to obtain id ′.
Clearly, this strategy runs into problem for unbounded continuous tampering as
the overall leakage � becomes proportional to θ · η (where θ denotes the number
of tampering queries).

Proof-extractability to the recovery. The above discussion shows that we possibly
need a stronger guarantee from the underlying NIPoS to make FHMV’s encoding
scheme a CSNMC. Towards that, we introduce a stronger property of a NIPoS
called proof-extractability (PExt-NIPoS). It guarantees that, given a “small hint”
(of length η′, say), it is possible to construct a stronger extractor that extracts
not only the changed identity, but also the changed proof: (id ′, πid ′). Intuitively,
this means that if a small adversary computes a valid pair (id ′, πid ′), then the
“big adversary” must have computed the entire proof πid′ (as opposed to a
part of the proof as for NIPoS) outside the small-space device; hence, enabling
extracting the entire proof from the RO queries made by B only.
2 Note that we made some syntactical change to FHMV’s definition of extractability

by introducing an explicit hint-producing function. We introduce the length of the
hint as a new extractability parameter which must be small for making the definition
meaningful. For example, if the leakage function leaks the entire pair (id ′, π′

id), then
the definition would be trivially satisfied. Looking ahead, in the proof of CSNMC
this hint will be used by the NMC simulator as a leakage to simulate the tampering
experiment. For more details we refer to Sect. 5.
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Given the proof-extractor, the new NMC simulator works as follows: it uses
the hint to get a “small leakage” and then runs the proof-extractor to obtain
(id ′, πid′). Furthermore, the simulator also needs an extra leakage, which consists
of the “extra persistent space” (of size p − |c|)—now the simulator reconstructs
the entire persistent tampered state and can continue the rest of the tampering
experiment without having to make any further leakage query. However, to avoid
any leakage before the first tampering takes place (for example, if the first 100
tampering functions are identities), the simulator needs to know the index when
the target codeword changes for the first time in the sequence of tampering and
for that the leakage becomes proportional to log(θ). Overall, the simulator only
needs to make a constant number of leakage queries (two, to be precise) to sim-
ulate any (polynomial) number of tampering, as opposed to making one leakage
query for each tampering. The overall leakage becomes � ∝ log(θ) + η′ + (p − |c|)
thereby achieving CSNMC. Therefore, the main question that remains is how to
construct PExt-NIPoS, which will be described in the next few paragraphs.

Uniqueness and Proof-extractability. We observe that, if a NIPoS has a spe-
cial property, called uniqueness, then it satisfies proof-extractability. Intuitively,
uniqueness means for a fixed identity id , there exists exactly one string πid such
that πid verifies correctly with respect to id . Unfortunately, we do not know how
to construct a NIPoS with such property (even under heuristic assumptions).
Therefore, to have a more relaxed and fine-grained notion, we define unique-
ness as a quantitative measure: a NIPoS has upos-uniqueness means that, for any
identity id , the first upos bits of any valid πid are fixed and can be computed
efficiently with overwhelming probability.

We then show (in Lemma 1) that any upos-unique NIPoS satisfies proof-
extractability, where the size η′ of the hint required for PExt-NIPoS depends on
upos as: η′ = η + npos − upos, where η denotes the size of the hint of the starting
NIPoS and npos denotes the size of the proof. This follows naturally from the
construction of the hint-producing function of PExt-NIPoS, as the hint for the
proof extractor needs to contain enough information to extract both id ′ and
πid′ . Now id ′ can be extracted from the hint produced via the starting NIPoS
(by standard extractability); given id ′ the proof-extractor can compute the first
upos bits of πid′ ; but the remaining part, which has length npos − upos, must be
separately output by the hint-producing function of PExt-NIPoS. Notice that,
maximal uniqueness means upos = npos which in turn implies η′ = η. Hence, if
FHMV’s encoding scheme is instantiated with a maximally unique NIPoS, part
of the leakage of the resulting CSNMC would be determined by only η and hence
would be minimal. We leave the task of constructing a maximally unique NIPoS
as an interesting open problem. On the other hand, we observe that the NIPoS
considered by FHMV has upos ≈ 0 and hence the leakage is largely dominated
by η + npos, resulting in much worse parameters.

Partially unique-NIPoS from memory-hard functions. We are able to construct
an NIPoS with reasonably large upos from heuristic assumptions on memory-hard
functions. The construction is very simple: let M be a concrete instantiation of a
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memory-hard function, which guarantees that any space-bounded adversary can
not compute the function on a randomly chosen input in polynomial time. Let
us assume a verifiable computation scheme (VC) where the verification can be
done in small-space. Then the NIPoS prover works as follows: given an identity
id , first compute a hash (that is assumed to be a random oracle) to generate
a random value x := H(id), then compute y := M(x) and finally run the VC
prover to produce a proof πvc to prove that y is indeed obtained by computing
M(x). The proof-of-space is then defined to be the pair (M(x), πvc). The NIPoS
verifier works naturally by first computing x = H(id) and then verifying the
proof πvc in small-space.

To see that the construction above yields a NIPoS with good uniqueness, first
note that the extractability follows from the fact that the function M is memory-
hard and can not be computed on a random input by a space-bounded “small
adversary”; hence, the “big adversary” must have queried on id ′ beforehand
enabling extraction of id ′ from B’s RO queries. Note that here we also need to
rely on the soundness of VC as otherwise the small adversary could just compute
a different “memory-easy” function and “fake” the proof of computation to fool
the verifier. Moreover, note that, the first part of the NIPoS proof is indeed
uniquely determined (with overwhelming probability any other string would fail
to verify as guaranteed by the soundness of the VC scheme), whereas the second
part, i.e. the proof πvc, is not. So, overall we have a NIPoS with upos = |y|.
Since the VC produces a short proof to enable small-space verification (we use
Pinocchio [36] to instantiate), we are able to have a NIPoS with fairly large upos,
which in turn leads to a CSNMC with very good parameters.

PExt-NIPoS from Challenge-hard graphs (CHG). In addition to the heuristic
construction above, we also construct a provably secure PExt-NIPoS in the ran-
dom oracle model, albeit with an additional restriction on the class of space-
bounded adversaries, namely assuming that the description size of a small-space
adversary is also bounded (as discussed in Sect. 1.1).

To do so, we define a new notion of memory-hard graphs, called challenge-
hard graphs (CHG). Recall that, special types of DAGs are used for memory-
hardness and for constructing proof-of-space via graph-labeling games. Usually,
labels are the output of the hash functions modeled as random oracles (therefore
are not “compressible”). In a graph-based proof of space constructions (e.g. [38]),
an honest prover computes the labeling of the entire graph ensuring the usage
of significant amount of space. Small-space verification is done by checking the
labels of a few randomly selected nodes (or challenge nodes) of the graph—this
guarantees that the “small adversary” cannot put too many fake labelings (a.k.a.
faults) without storing them and thereby ending up using less memory.

However, such verification leaves room for computing a small part of the proof
inside the small-space device—for example, consider a multi-layered DAG (e.g.
a stack of bipartite graphs), for which a “big adversary” computes the labeling
of the entire graph except for a single node in the last layer, and the “small
adversary” easily computes the label of the node inside the small-space device.
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As a result the entire proof can not be extracted only from B’s RO queries,
making proof-extractability impossible.

To remedy this issue, we replace the traditional memory hard graphs with
CHG, which contains another carefully chosen set of challenges and guarantees
that, even if a “big adversary” computes the labeling of the entire graph except
for a few nodes and send a bounded hint to the “small adversary”, it is still
infeasible to compute the labels of the new challenge nodes with a small-space
device. Let us remark that such a guarantee is only possible when the small
adversary has a small description size (i.e., the hint from the “big adversary” is
small), as otherwise the small adversary, for example, can hard-code the entire
labeling for whole graph including all possible challenges, making challenge hard-
ness impossible. As discussed in Sect. 1.1, we propose two instantiations of CHGs
with different merits with respect to their parameters.

2 Related Works

Our work can be categorized among the work on non-malleable codes against
global tampering, where the entire codeword is subject to tampering, as opposed
to granular tampering, where the codeword is split into independently tamper-
able parts. In the NMC literature, majority of work, e.g. [1,2,13,15,28,30–32]
falls into the the later category; among them [13] considers, a weaker notion
(non-malleability with replacement) of NMC like us (leaky-NMC). A few other
works, e.g. [5,9,10,26] consider global tampering. Moreover, most of these work
consider one-time tampering. Continuous tampering, first proposed in [24], is
addressed also in [3,4,21,25,35]. Except FHMV [22], the recent work by Ball et
al. [10] also considers space-bounded NMC, albeit in a streaming model. Our
modeling of space-bounded adversary, which is also adapted in FHMV is used
in earlier woks like [18,19] for constructing different schemes. For more detail on
different NMC-based compilers for tamper-resilience we refer to [34].

3 Preliminaries

3.1 Notation

For a string x, we denote its length by |x|; a truncated string from i-th bit
to j-th bit is denoted by x[i . . . j]; for a a ∈ N, bit(a) ∈ {0, 1}∗ is its boolean
representation and bit−1 is the corresponding inverse function; if X is a set, |X |
represents the number of elements in X . When x is chosen randomly in X , we
write x ←$ X . When A is an algorithm, we write y ← A(x) to denote a run of
A on input x and output y; if A is probabilistic, then y is a random variable
and A(x; r) denotes a run of A on input x and randomness r. An algorithm A is
probabilistic polynomial-time (PPT) if A is probabilistic and for any input x and
a randomly chosen r ∈ {0, 1}∗ the computation of A(x; r) terminates in at most
a polynomial (in the input size) number of steps. We often consider oracle-aided
algorithms AO(·), with access to an oracle O(·).
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For any string x, and any hash function H, we use the notation Hx to denote
the specialized hash function that accepts only inputs with prefix equal to x.
Often the hash function is modeled as a random oracle.

We consider Turing Machine as our model of computation where any algo-
rithm A is formally represented as a binary string. Any string w hardwired into
A is denoted in the subscript as Aw and also becomes part of its description. An
algorithm A has a state stA ∈ {0, 1}∗ that does not include the description of A.
stA is typically initialized with the input x and (optionally) some other auxil-
iary information. At each time step stA is updated. At termination A returns an
output y also denoted as A(x). If A is a stateful algorithm then it also outputs
the state stA.

We denote with λ ∈ N the security parameter. In the rest of the paper λ
will always be an implicit security parameter and any other parameter will be a
function of λ. A function ν : N → [0, 1] is negligible in the security parameter (or
simply negligible), denoted ν(λ) ∈ negl(λ), if it vanishes faster than the inverse
of any polynomial in λ, i.e. ν(λ) = λ−ω(1). A function μ : N → R is a polynomial
in the security parameter, written μ(λ) ∈ poly(λ), if, for some constant c ≥ 1,
we have μ(λ) ∈ O(λc).

We defer a few basic definitions to the full version [14].

3.2 Bounded Algorithms

In this paper we will be dealing with algorithms that are restricted in terms of
different resources. In particular we consider two main types of resource: time
and space. Importantly, in contrast with [22] we split the space-usage into two
parts: (i) the space required to store the algorithm and (ii) additional space
used by it. Faust et al. [22] only assumes concrete measure of the latter one and
the former one was implicitly assumed to be an unbounded polynomial in the
security parameter. We formalize the notion of bounded algorithms below.

Definition 1 (Bounded algorithms). Let A be an algorithm such that (i) f-
bits are sufficient to describe the code of A, (ii) at any time during its execution,
the state of A can be described by at most s bits and (iii) on any input, A runs for
at most t time-steps. Then we say that A is a (s, f, t)-bounded algorithm. For such
algorithms we have fA ≤ f, sA ≤ s and tA ≤ t (with the obvious meaning). Some-
times, for simplicity, we will call an (s,poly(λ),poly(λ))-bounded algorithm just
s-space-bounded, an (s,poly(λ), t)-bounded algorithm (s, t)-space-time bounded
and an (s, f,poly(λ))-bounded algorithm (s, f)-total-space-bounded.

Note that the bound f the size of A is also an upper bound on the hardwired
auxiliary information. We stress that, similarly to previous works [18,19], in
case A is modeled as a Turing machine, we count the length of the input tape
and the position of all the tape heads within the space bound s. Given an input
x ∈ {0, 1}n, and an initial configuration σ ∈ {0, 1}s−n, we write (y, σ̃) := A(x;σ)
for the output y of A including its final configuration σ̃ ∈ {0, 1}s−n.

Intuitively, a coding scheme can be decoded in bounded space if the decoding
algorithm is space bounded. A formal definition is deferred to full version [14].
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4 Continuous Space-Bounded Tampering

Space-bounded Tampering algorithms. We assume that tampering algo-
rithms are deterministic3, sequential and (s, f)-total-space-bounded, where
s, f ∈ N are tunable parameters and are usually functions of the security parame-
ter λ. Let us denote the class of all such algorithms by As,f

space. When the context
is clear, we might just refer to As,f

space by Aspace for simplicity. Generally any
A ∈ As,f

space will be often referred to as a space-bounded tampering algorithm.

Oracles. Next we define space-bounded tampering oracle with self-destruct. In
contrast with [22] (Definition 5) our tampering oracle has the “self-destruct”
mechanism.

Definition 2 (Space-bounded Tampering Oracle with Self-destruct). A
space-bounded tampering oracle with self-destruct OΠ,x,pp,s,f,p

real-sd is parametrized
by a (k, n)-code Π = (InitH,EncodeH,DecodeH), a string x ∈ {0, 1}k, public
parameters pp ∈ {0, 1}∗ and integers s, p ∈ N (with s ≥ p ≥ n). Initially,
the oracle assigns a flag sd := 0, and sets a state st := (c, σ), where c :=
EncodeH(pp, x), and σ := σ0||σ1 := 0p−n||0s−p. Given input a space-bounded
tampering algorithm A ∈ As,f

space, the oracle works as follows:

OracleOΠ,x,pp,s,f,p
real-sd (A):

Parse st = (c, σ0, σ1)
(c̃, σ̃0, σ̃1) := AH(c;σ0||σ1)
Update st := (c̃, σ̃0, 0s−p)
x̃ := DecodeH(pp, c̃); If x̃ = ⊥ then sd := 1
If sd = 1 return ⊥
Return x̃.

We recall from [22] the definitions of the leakage O�,x
leak that can be queried in

order to retrieve up-to � bits of information about x and the simulation oracle
which would use the leakage oracle to simulate the output of the tampering
experiment.

Definition 3 (Leakage oracle). A leakage oracle O�,x
leak is a stateful oracle that

maintains a counter ctr that is initially set to 0. The oracle is parametrized by
a string x ∈ {0, 1}k and a value � ∈ N. When O�,x

leak is invoked on a polynomial-
time computable leakage function L, the value L(x) is computed, its length is
added to ctr, and if ctr ≤ �, then L(x) is returned; otherwise, ⊥ is returned.

Definition 4 (Simulation oracle). A simulation oracle OS2,�,x,s,f,pp
sim is an ora-

cle parametrized by a stateful PPT algorithm S2, values �, s ∈ N, some string
x ∈ {0, 1}k, and public parameters pp ∈ {0, 1}∗. Upon input a space-bounded
tampering algorithm A ∈ As,f

space, the output of the oracle is defined as follows.

3 This is without loss of generality, as in the tampering setting A is chosen by PPT
distinguisher D (“big adversary” in our case) who can just hardwires its truly random
coin to A.
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OracleOS2,�,x,s,f,pp
sim (A):

Let x̃ ← S
O�,x

leak(·)
2 (1λ, pp,A)

If x̃ = same� set x̃ := x.
Return x̃.

Space-bounded Continuous Non-malleability. Our definition is broadly the same
as in [22] with slight modifications: here the real tampering oracle Oreal-sd has
self-destruct in it and we consider a concrete non-malleability error-bound εnm.

Definition 5 (Space-bounded continuous non-malleability with self-
destruct). For parameters k, n, �, s, f, p, θ, d, nH ∈ N (with s ≥ p ≥ n) and
εnm ∈ [0, 1) let H : {0, 1}∗ → {0, 1}nH be a random oracle, then we say a
(k, n)-code Π = (InitH,EncodeH,DecodeH) is an �-leaky (s, f, p)-space-bounded4

(θ, εnm)-continuously non-malleable code with self-destruct with d-space-bounded
decoding (or (�, s, f, p, θ, d, εnm)-SP-NMC-SD) in the ROM if Π satisfies the fol-
lowing conditions:

– Space-bounded decoding: DecodeH is d-space-bounded.
– (�, θ, εnm)-continuous non-malleability: For any PPT distinguisher D that

makes at most θ queries to the tampering oracle Oreal-sd, there exists a pair
of PPT algorithms (also called the simulator) S = (S1,S2), such that for all
x ∈ {0, 1}k and λ ∈ N,

∣
∣Pr

[

DH(·),OΠ,x,pp,s,f,p
real-sd (·)(pp) = 1 : pp ← InitH(1λ)

]

− Pr
[

DS1(·),OS2,�,x,s,f,pp
sim (·)(pp) = 1 : pp ← InitS1(1λ)

] ∣
∣ ≤ εnm,

the randomness coming from H, Init, D, S = (S1,S2) and encoding of Oreal-sd.

We are interested in constructing an encoding scheme which satisfies Defi-
nition 5 with any choice of θ = poly(λ). Recall from Section 3.2 of [22] that, in
this case, self-destruct is necessary in order to achieve a meaningful notion of
non-malleability as otherwise whenever θ ≥ n it is impossible to achieve space-
bounded non-malleability for any non-trivial5 leakage �.

5 Non-Interactive Proof of Space (NIPoS)

As in [22], the main building block of our NMC construction is Non-Interactive
Proof of Space (for short NIPoS). Intuitively, a NIPoS allows a prover to convince
a verifier that she has a lot of space/memory. Importantly, the verification done
on the verifier’s side is space efficient.
4 Note that the terminology “space-bounded” is slightly overloaded as we use it both

for an encoding scheme as well as for an algorithm (cf. Definition 1).
5 Recall that for any non-trivial leakage we must have � ≤ k − ω(log k) as otherwise

the tampering adversary learns (almost) all information about the input rendering
the notion useless.
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We start by recalling the definition of NIPoS from [22] adjusted to (s, f, t)-
bounded algorithms. We split the definitions completeness and extractability
here. Then we define property called proof-extractability. We made some syn-
tactical changes to the definition of extractability to align it with the proof-
extractability definition. Finally we define a new quantitative measure of NIPoS
called uniqueness and show that uniqueness, when combined with extractability
gives proof-extractability.

Definition 6 (Non-interactive proof of space (NIPoS)). For parameters
sP, sV, kpos, npos ∈ N with sV ≤ s < sP an (kpos, npos, sP, sV)-non-interactive
proof of space scheme (NIPoS for short) in the ROM consists of a tuple of PPT
algorithms (SetupH,PH,VH) with the following syntax.

– SetupH(1λ): This is a randomized polynomial-time (in λ) algorithm with no
space restriction. It takes as input the security parameter and outputs public
parameters pppos ∈ {0, 1}∗.

– PH
pppos

(id): This is a probabilistic polynomial-time (in λ) algorithm that is sP-
space-bounded. It takes as input an identity id ∈ {0, 1}kpos and hard-wired
public parameters pppos, and it returns a proof of space π ∈ {0, 1}npos .

– VH
pppos

(id , π): This algorithm is sV-space-bounded and deterministic. It takes
as input an identity id, hard-wired public parameters pppos, and a candidate
proof of space π, and it returns a decision bit.

We require completeness to hold:

Completeness: For all id ∈ {0, 1}kpos , we have that

Pr
[

VH
pppos

(id , π) = 1 : pppos ← SetupH(1λ);π ← PH
pppos

(id)
]

= 1,

where the probability is taken over the internal random coins of the algorithms
Setup and P, and over the choice of the random oracle.

We define the extractability of a NIPoS separately as follows.

Definition 7 (Extractability of NIPoS). Let NIPoS = (SetupH,PH,VH) be
an (kpos, npos, sP, sV)-non-interactive proof of space scheme. Let s, f, t, η ∈ N

and εpos ∈ [0, 1) be parameters with sV ≤ s < sP. Then we say that NIPoS is
(s, f, t, η, εpos)-extractable (Ext-NIPoS) if there exists a polynomial-time deter-
ministic algorithm K (the knowledge extractor) and a deterministic efficiently
computable function Fhint : {0, 1}∗ → {0, 1}η such that for any probabilistic po-
lynomial-time algorithm B, we have

Pr[Gext
B,id(λ) = 1] ≤ εpos,

for the game Gext
B,id(λ) defined as follows:

GameGext
B,id(λ) :

1. Sample pppos ← SetupH(1λ) and π ← PH
pppos

(id).
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2. Let A ← BH
pppos

(id , π) such that A ∈ As,f
space (if this condition fails, then

output 0 and stop).
3. Let (ĩd , π̃) := AH(id , π).
4. Let z := Fhint(pppos,QH(B), ĩd).
5. Let α := K(pppos,QH(B), z).
6. Output 1 if and only if: (i) VH

pppos
(ĩd , π̃) = 1; (ii) ĩd �= id and (iii)

ĩd �= α; otherwise output 0,

where the set QH(B) contains the sequence of queries of B to H and the cor-
responding answers, and where the probability is taken over the coin tosses of
Setup,B,P and over the choice of the random oracle.

Extractability guarantees that if the space bounded adversary A successfully
tampers to a new pair (ĩd , π̃), the identity ĩd can be extracted from the query
table of the algorithm B, i.e., the pair (ĩd , π̃) was (partially) precomputed by
B. Let us stress that knowledge of ĩd does not generally imply knowledge of the
entire pair (ĩd , π̃). This is because there might be many different π̃ for which
VH
pppos

(ĩd , π̃) = 1, unless, of course, there is a unique such π̃. In order guaran-

tee extraction of the entire pair (ĩd , π̃), we need NIPoS to satisfy a stronger
extractability property, which we call Proof-Extractability and define next.

Definition 8 (Proof-Extractability of NIPoS). Let NIPoS := (SetupH,PH,
VH) be a (kpos, npos, sP, sV)-non-interactive proof of space scheme. Let s, f, t, η ∈
N and εp-ext ∈ [0, 1) be parameters such that sV ≤ s < sP. Then NIPoS is called
(s, f, t, η, εp-ext)-proof extractable (PExt-NIPoS) if there exists a polynomial time
deterministic algorithm K (the proof-extractor) and an efficiently computable
deterministic function Fhint : {0, 1}∗ → {0, 1}η such that for any PPT algorithm
B and any identity id ∈ {0, 1}kpos , it holds that

Pr[Gpext
B,id(λ) = 1] ≤ εp-ext,

for the game Gpext
B,id(λ) defined as follows:

GameGpext
B,id(λ) :

1. Sample pppos ← SetupH(1λ) and π ← PH
pppos

(id).
2. Let A ← BH

pppos
(id , π) such that A ∈ As,f

space (if this condition fails, then
output 0 and stop).

3. Let (ĩd , π̃) := AH(id , π).
4. Let z := Fhint(pppos,QH(B), (ĩd , π̃))
5. Let α := K(pppos,QH(B), z)
6. Output 1 if and only if: (i) VH

pppos
(ĩd , π̃) = 1; (ii) ĩd �= id and (iii)

(ĩd , π̃) �= α; otherwise output 0,

where the set QH(B) is the random oracle query table of B.6 The probability is
over the choice of the random oracle, and the coin tosses of Setup,B.
6 Note that B does not make RO queries after outputting the small adversary A.
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Remark 1. Note that, in the above definition the hint-producing function takes
the pair (ĩd , π̃) as opposed to only ĩd as in Definition 7. Intuitively this means
that, given some small hint, the extractor does not only return the changed
identity, but the identity-proof pair. Clearly this makes the latter definition
stronger.

As mentioned above, when there is a unique valid proof corresponding to each
identity, then proof-extractability reduces to simply extractability. Nevertheless,
it may also be possible that only a part of the proof is uniquely determined. We
formalize this by the following definition.

Definition 9 (Uniqueness of NIPoS). Let NIPoS := (SetupH,PH,VH) be
a (kpos, npos, sP, sV)-NIPoS. Then NIPoS is called (upos, εunique)-unique (where
upos ≤ npos, upos ∈ N and εunique ∈ negl(λ)) if for any λ ∈ N, there is a determin-
istic function J : {0, 1}∗×{0, 1}kpos → {0, 1}upos such that for pppos ← SetupH(λ),
any identity id ∈ {0, 1}kpos and any π ∈ {0, 1}npos , if VH

pp(id , π) = 1, then
J(pppos, id) = π[1 . . . upos] with probability at least 1 − εunique (where the prob-
ability is over the randomnesses of SetupH and PH).

Remark 2. Intuitively, the definition says that for a valid proof π, a part of π
(first upos bits in this case) can be uniquely and efficiently determined given the
id and the public parameters pp with overwhelming probability.

In the following lemma, we formally show that uniqueness and extractabil-
ity together imply proof-extractability. To see this, observe that, e.g., maximal
uniqueness implies that given ĩd , the corresponding πĩd is fixed and hence it
suffices to provide the PExt-NIPoS hint-producer only with ĩd .

Lemma 1. Let NIPoS := (SetupH,PH,VH) be a (kpos, npos, sP, sV)-NIPoS that
is (upos, εunique)-unique and (s, f, t, η, εpos)-extractable. Then NIPoS is (s, f, t, η′,
εp-ext)-proof-extractable where

η′ = η + npos − upos εp-ext ≤ εpos + εunique

The proof is deferred to the full version [14].

6 Space-Bounded NMC from Proof-Extractable NIPoS

The following theorem, which is proven in the full version [14], states that the
above construction is a continuous non-malleable code for any θ ∈ poly(λ).

Theorem 1. Let λ be a security parameter and H : {0, 1}∗ → {0, 1}nH

be a hash function modeled as a random oracle. Let {PRFχ : {0, 1}∗ →
{0, 1}nH}χ∈{0,1}nkey be any (∗, nH, nkey, εpr)-PRF, (defined formally in full ver-
sion [14]) where nkey ∈ poly(λ). Let (SetupH,PH,VH) be any (kpos, npos, sP, sV)-
NIPoS that is (s, f,poly(λ), η, εp-ext)-proof-extractable. Then for any θ ∈ poly(λ),
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the (k, n)-code Π = (InitH,EncodeH,DecodeH) defined above is an (�, s, f, p, θ,
sV, εnm)-SP-NMC-SD in the ROM, where

k = kpos n = kpos + npos kpos + npos ≤ p < n + k − O(log(λ))
� = p − n + log θ�+η + 2 εnm = εpr + εp-ext

The above theorem together with Lemma 1 imply that the encoding scheme of
Faust et al. satisfies Definition 5 also when instantiated with any Ext-NIPoS
with (partial) uniqueness. This is formalized in the following corollary:

Corollary 1. Let λ be a security parameter and H : {0, 1}∗ → {0, 1}nH

be a hash function modeled as a random oracle. Let {PRFχ : {0, 1}∗ →
{0, 1}nH}χ∈{0,1}nkey be any (∗, nH, nkey, εpr)-PRF where nkey ∈ poly(λ). Let
(SetupH,PH,VH) be any (kpos, npos, sP, sV)-NIPoS that is (s,poly(λ),poly(λ), η,
εpos)-extractable and (upos, εunique)-unique. Then for any θ ∈ poly(λ), the (k, n)-
code Π = (InitH,EncodeH,DecodeH) of FHMV is an (�, s,poly(λ), p, θ, sV, εnm)-
SP-NMC-SD in the ROM, where

k = kpos n = kpos + npos kpos + npos ≤ p < n + k − O(log(λ))
� = p − k − upos + log θ� + η + 2 εnm = εpr + εpos + εunique.

7 Constructing Proof-Extractable NIPoS from CHG

7.1 Challenge-Hard Graphs (CHG)

In this section we introduce the concept of challenge-hard graphs (CHG for
short) which we use it to construct proof-extractable NIPoS. We remark that
the notion of challenge hardness has similarities with a notion introduced in [17].
In particular, in Section 4 of [17], the authors informally described a pebbling
game which is similar to the game in our notion (Definition 10).

Challenge hard graphs are parameterized by the following variables: Nc, β,N,
τc, t, ε, where N is the size of the graph; τc is the number of challenge nodes,
where all the challenges are in a pre-defined target set Vc; Nc is the size of the
target set Vc; β ·Nc = Ω(Nc) is the budget on the number of pebbles available; t
is an upper bound on the running time of pebbling strategies; and ε is an upper
bound on the winning probability of the pebbling challenge game.

Definition 10 (Challenge Hard Graphs (CHG)). A family of directed
acyclic graphs {Gλ}λ∈N (with constant in-degree)7 is (β,Nc, N, τc, t, ε)-challenge-
hard (where β ∈ (0, 1) is a constant, and other parameters are functions of λ),
7 We require the in-degree of the graph to be a constant, because for graph-labeling in

the ROM this captures the essence of the standard model. To see this assume that
H is implemented by an iteration-based scheme (e.g., Merkle-Damg̊ard extension),
and thereby to compute the hash output, it is sufficient to store only a few labels
at each iteration step. However, while in the ROM computing a label label(v) :=
H(v, label(pred(v))) is only possible if the entire labeling label(pred(v)) is stored. If the
in-degree is high (e.g. super-constant) this distinction would affect the parameters.
We refer to Appendix B.3 in [11] for more discussions.
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if for every λ ∈ N and graph G = Gλ = (V,E) (with N = N(λ) vertices), there
exist τc target sets (possibly with overlapping) V

(1)
c , . . . , V

(τc)
c ⊆ V such that the

union of the target sets

Vc := V (1)
c ∪ · · · ∪ V (τc)

c ⊆ V

has Nc vertices, and the following property is satisfied:

For any pebbling strategy B = (B1,B2) it holds that

AdvpebB,β,t,τc,G(λ) := Pr
[

Gpeb
B,β,t,τc,G(λ) = 1

]

≤ ε ,

where the pebbling game Gpeb
B,β,t,τc,G(λ) is defined as follows.

GameGpeb
B,β,t,τc,G(λ) :

1. Let P0 ← B1 be a pebbling configuration, where |P0| ≤ β · Nc.
2. Let chal ← Dτc be τc random challenge vertices (possibly with overlap-

ping), where Dτc is the uniform distribution over V 1
c × · · · × V

(τc)
c .

3. Let P = (P0, . . . , Pt(P)) ← B2(P0, chal) be a pebbling strategy.
4. Output 1 iff

– P follows the rule of a sequential pebbling strategy.
– For every i ∈ {0, . . . , t(P)}, it holds that |Pi| ≤ β · Nc.
– chal ⊆ P0 ∪ · · · ∪ Pt(P).
– t(P) ≤ t.

We define Nc/τc and N/Nc as the challenge sparseness and graph com-
pactness of G.

Intuitively, challenge sparseness defines what fraction of the target nodes will be
challenged. Graph compactness determines what fraction of all node in the graph
are in the target set. Looking ahead, these two metrics of CHG will play crucial
roles in determining the parameters of the NIPoS and the encoding schemes.

7.2 Construction of PExt-NIPoS from CHG

Now we present our main PExt-NIPoS construction based on challenge-hard
graphs and show that it satisfies proof-extractability. The construction is quite
similar to the one presented in [22] with only a few minor modifications.

The scheme consists of three algorithms (SetupH,PH,VH) that use the fol-
lowing ingredients:

– a DAG G = (V,E) with N = |V | vertices and maximal in-degree deg ∈ O(1),
which has τc target sets V

(1)
c , . . . , V

(τc)
c ⊆ V such that

Vc := V (1)
c ∪ · · · ∪ V (τc)

c ⊆ V

and Vc has Nc vertices.
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– a set of random oracles {Hid}id∈{0,1}kpos ∪ {Hcom} ∪ {Hchal} defined as fol-
lows: Hid : {0, 1}≤log N+deg·nH → {0, 1}nH for every id ∈ {0, 1}kpos ; Hcom :
{0, 1}2nH → {0, 1}nH ; Hchal takes as input a {0, 1}kpos+nH -bit string and out-
puts a random challenge set check plus τc challenge nodes:

(check, chal := (chal1, . . . , chalτc
)) ∈ V τ × V (1)

c × · · · × V (τc)
c .

For simplicity of explanation, we assume that the output length of Hchal is
exactly nH (where nH ≥ τ · log |V | + τc · log |Vc|), and we define the corre-
sponding challenge sets (check, chal) as the first τ · log |V | + τc · log |Vc| bits
of the RO output.8 Note that by a typical domain separation technique (e.g.,
used in [7] and [33]), we can instantiate the three random oracles using a
unified random oracle H : {0, 1}∗ → {0, 1}nH .

The construction is presented in detail in Fig. 1. We provide a high-level
overview here. The prover first computes the labeling of a graph G = (V,E),
and then commits the labeling using a Merkle tree. From the merkle root value
φ̃�, the prover computes the Fiat-Shamir challenge H(φ̃�), which consists of two
sets (check, chal). The set check contains τ random nodes in V , and the set chal
has τc random nodes in a target set Vc ⊆ V . The proof is the Merkle tree opening
paths for nodes in check ∪ pred(check) ∪ chal, where pred(check) are the parents
of nodes in check.

Memory usage of the prover and the verifier. In our PExt-NIPoS construction,
the honest prover has to store the complete labeling of the graph G plus the
entire Merkle tree, thus the size of the prover’s space is

sP := N · nH + (N − 1) · nH ,

where nH is the random oracle output length. On the other hand, the verifier
only needs to store a single proof-of-space, which consists of a Merkle root value,
two challenge sets, and τ · (deg + 1) + τc tree paths. Since each tree path is of
length log N , the size of the verifier’s space is given by:

sV := nH + τ · log N + τc · log Nc + (τ · (deg + 1) + τc) · log N · nH .

It is not hard to see that our PExt-NIPoS scheme satisfies completeness.

Theorem 2. Let λ be a security parameter. Suppose G := Ghard is a
(β,Nc, N, τc, t, εpeb)-challenge hard graph with indegree deg = O(1), let γsp =
Nc/τc and γcp = N/Nc denote the challenge sparseness and graph compactness
of G. H : {0, 1}∗ → {0, 1}nH is a hash function modeled as a random oracle;
and ΠG is a (τc, τ, ν)-Merkle-tree-based PExt-NIPoS scheme (defined in Fig. 1)
built upon G, where

ν := (τ · (deg + 1) + τc) · log N + 1 ≈ Nc log N/γsp .

8 For ease of explanation, we assume that |V | and |Vc| are powers of 2.
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Fig. 1. Our PExt-NIPoS construction: Denoting by ν the number of RO input-output
pairs in the proof we call this construction a (τc, τ, ν)-Merkle-tree-based PExt-
NIPoS scheme built upon the DAG G.

For any s, f ∈ N such that there exists a constant δ∗ ∈ (0, 1) where

s + f ≤ (β − δ∗ − 0.01) · Nc · nH ,
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it holds that ΠG is a (kpos, npos, sP, sV)-NIPoS that is (s, f, t, η, εp-ext)-proof-
extractable, as long as9

sP ≥ kpos + (2N − 1) · nH s ≥ sV ≥ kpos + ν · nH η = O(ν log λ)

npos = ν · nH εp-ext ≤ poly(λ) · (

2−nH + exp(−κ) + εpeb
)

,

where κ = τ · δ∗ · Nc/N = τ · δ∗/γcp.

Remark 3. To guarantee that the verifier space sV ≈ ν · nH is smaller than the
tampering space s ≈ Nc · nH, we need the underlying CHG to be at least
Ω(log N)-challenge sparse (defined as Nc/τc).

7.3 Instantiating CHG

We propose two instantiations (details deferred to full version [14]). First, we
provide a new construction of CHG from Stack of Localized Expander Graphs
(SoLEG) (see the full version [14] for details on SoLEGs) used by Ren and
Devadas [38] in the context of proof-of-space. We use a novel technique to con-
struct an extension of SoLEG by connecting a gadget in order to “boot-strap”
challenge sparseness. Second, as observed by [17] (in Section 6.1 of [17]), the
graph introduced by Paul, Tarjan and Celoni [37] (in short, PTC’s graph)
does satisfy challenge hardness.

7.4 Instantiations of PExt-NIPoS from CHGs

We obtain two PExt-NIPoS constructions by plugging-in the parameters from
two CHG constructions, namely the SoLEG-extension and the PTC’s graph
respectively into Theorem 2. The details of the concrete instantiations and the
comparison of the two PExt-NIPoS constructions are deferred to full version [14].

8 PExt-NIPoS from Memory-Hard Functions

In this section we propose a simple construction of NIPoS with extractability.
Our construction is based on memory-hard functions (MHF for short) and veri-
fiable computations.

8.1 Memory-Hard Functions

Here we formalize memory-hard functions. The definition of our second building
block, publicly verifiable computation, can be found in full version [14].

Definition 11 (Memory-hard Functions (MHF)). Let H : {0, 1}∗ →
{0, 1}k be a random oracle. For parameters k, n, smhf , tmhf , s, f, t ∈ N and
εmhf ∈ [0, 1), where smhf ≥ s, a function M : {0, 1}k → {0, 1}n is called a (k, n,
smhf , tmhf , s, f, t, εmhf)-memory-hard function (or MHF for short) in the ROM if:
9 The polynomial factor in εp-ext depends on the number of RO queries made by the

adversary. We refer to full version [14] for the exact probability upper bound.
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– M is computable by a (smhf , tmhf)-space-time-bounded algorithm.
– for any (s, f, t)-bounded deterministic algorithm AH, any x ∈ {0, 1}∗ we have

that:
Pr
H

[M(H(x)) = AH(x)] ≤ εmhf

Remark 4. It is worth noting that, though our definition is in the ROM, the
function M itself does not have access to random oracles, but in the security
game the adversary A has access to the random oracle.

8.2 Partially-Unique Ext-NIPoS from MHF and VC

In this section, we construct a partially-unique NIPoS with extractability based
on a MHF and a VC with space-bounded verification. At a high level, the
NIPoS scheme is designed as follows. Let M be a memory-hard function and
(Gen,Prove,Ver) a publicly verifiable scheme. The NIPoS prover on input id
first queries the random oracle to obtain x := H(id) and then runs the algo-
rithm Prove on input x and outputs whatever the algorithm outputs, i.e. the
value y := M(x) and the proof of correct computation πvc. The NIPoS verifier
on input id and the proof of space (y, πvc) first queries the random oracle to
obtain x := H(id) and the runs the algorithm Ver on input x, y, πvc and outputs
whatever the algorithm outputs.

Our Construction. Let M be a (k, n, smhf , tmhf , s, f, t, εmhf)-MHF, (Gen,Prove,
Ver) be a (smhf , tmhf , s

vc
P , tvcP , svcV , tvcV , k, n, nvc, εvc)-VC scheme for M and H :

{0, 1}∗ → {0, 1}k be a hash-function modeled as random oracle such that
tmhf , t

vc
P , tvcV ∈ poly(λ) and svcV ≤ s < svcP . Then define the following algorithms:

Setup(1λ): On input the security parameter, run (vkM , ekM ) ← GenM (1λ) and
set pppos := (vkM , ekM ).

PH
pppos

(id): Given public parameters pppos := (vkM , ekM ) and an identity id ∈
{0, 1}kpos , compute the proof-of-space as follows:
1. Obtain x := H(id) by querying H.
2. Compute (y, πvc) := ProveekM

(x).
3. Return π := (y, πvc).

VH
pppos

(id , π): Given public parameters pppos := (vkM , ekM ) an identity id ∈
{0, 1}kpos and a candidate proof π ∈ {0, 1}npos , check the correctness of π with
respect to id as follows:
1. Obtain x := H(id) by querying H.
2. Parse (y, πvc) := π.
3. Return VervkM

(x, y, πvc).

Lemma 2. The above construction is (kpos, npos, sP, sV)-NIPoS with (upos,
εunique)-uniqueness and (s, f, t, η, εpos)-extractability as long as:

kpos ∈ poly(λ) npos = n + nvc sP ≥ max(svcP , kpos)
sV ≤ svcV + k + n + kpos + nvc η = log |QH(B)|

upos = n εunique ≤ εvc εpos ≤ εvc + εmhf +
1

2k − |QH(B)|
where |QH(B)| is the total number of random-oracle query made by B.
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8.3 Instantiating MHF

Our MHF instantiation is a slight variant of a graph-based proof of space con-
struction;10 in particular, we choose the one provided in [38] (also used in [22]).
However, similar formal arguments of space-hardness does not work in our case.
Instead, we rely on a heuristic assumption (and also Assumption 1) that our
construction, provided below, satisfies our definition of MHF (cf. Definition 11)
for useful parameters.

Our construction MG,Hash: On input x ∈ {0, 1}k, define the MHF MG,Hash as
follows: consider the SoLEG GNc,kG,γ1,γ2 ; recall that the number of nodes of
GNc,kG,γ1,γ2 is given by N = Nc(kG + 1) and the in-degree is deg ∈ O(1). Let
Hash : {0, 1}∗ → {0, 1}nhs be a standard hash function (for example SHA3) with
collision-probability εhs. On input x ∈ {0, 1}k, first compute a Hashx-labeling of
GNc,kG,γ1,γ2 . Denote the labeling by z = (z1, . . . , zN ) ∈ {0, 1}nhsN , where each
zi ∈ {0, 1}nhs . Output y where y := Hx(z) ∈ {0, 1}nhs .

For a standard instantiation of H, we assume the following facts about label-
ing a SoLEG. (For basic definitions and facts about graph labeling we refer to
full version [14].)

Assumption 1 (Efficient labeling with Hash). Let GNc,kG,γ1,γ2 be a SoLEG
and H : {0, 1}∗ → {0, 1}nH be a “standard hash function” like SHA3. There
exists a polynomial time algorithm A that computes the H-labeling of the graph
GNc,kG,γ1,γ2 in at most NcnH-space.

Assumption 2 (Memory-hardness of Graph-labeling with Hash). Sup-
pose that Assumption 1 is true for the hash function Hash : {0, 1}∗ → {0, 1}nhs

(with collision-probability εhs). Then for any k, smhf , tmhf , s, f, t ∈ poly(λ) such
that t < 2kGγ1Nc and s ≤ δNcnhs for some δ ∈ [0, γ2 − 2γ1), the above construc-
tion is (k, n, smhf , tmhf , s, f, t, εmhf)-MHF where:

n = nhs smhf ≥ k + nhs(Nc+ log(N) + 1) + n

εmhf ≤ exp
(−nhsNc(β − δ)

N log(N)

)

+(s + f)εhs + 2−γhsnhs + 2−k

for β = γ2 − 2γ1 and a constant γhs ∈ (0, 1
2 ].

We defer some important notes on the above assumptions to full version [14].
From Assumption 2 we get the following corollary about our MHF-

candidate:11

Corollary 2. Suppose that Assumption 1 holds for the hash function Hash :
{0, 1}∗ → {0, 1}nhs and based on that Assumption 2 holds for our construction

10 Since popular memory-hard functions like SCrypt [39] are not conjectured to provide
exponential space-time trade-off, we are unable to use them here.

11 We remark that this corollary is very similar to Corollary 1 of [23] as one may expect.
However the parameters here are much better in terms of efficiency.
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based on a SoLEG GNc,kG,γ1,γ2 with N = Nc(kG + 1) nodes and deg = O(1)
in-degree such that:

nhs = λ2 β = γ2−2γ1 ∈ (0, 1) kG = λ − 1

Nc = λ3 εhs ∈ negl(λ).

Then, for any δ ∈ (0, β), any ε > 0 and any γhs ∈ (0, 1
2 ] our construction is a

(k, n, smhf , tmhf , s, f, t, εmhf)-MHF for t, f, tmhf ∈ poly(λ) and:

k = O(λε) n = λ2 smhf = O(λ5)

s ≤ δ · λ5 εmhf ≤ exp
(−(β − δ)λ

log(λ)

)

+ negl(λ) ∈ negl(λ)

Furthermore, for making εmhf ≈ 2−80, we need to have λ ≈ 2300. Choosing stan-
dard values for other parameters, δ = 0.1, β = 0.9, γhs = 0.001 we get concrete
parameters for our MHF-construction as:

k ≥ 80 n ≈ 670 KB smhf ≈ 8000 TB s ≤ 800 TB εmhf ≈ 2−80

8.4 Instantiating VC

Our NIPoS construction can be instantiated with any VC for which the verifica-
tion can be done in small space (compared to computing the function itself). In
this work we concretely consider such a scheme, known as Pinocchio [36].

Space requirements of Pinocchio Verifier. Without giving formal arguments on
the space-bound, we rely on the following assumption on the Pinocchio verifica-
tion algorithm. Note that these bounds are independent of the space-bound of
the function (in this case that is MG,Hash) to be verified. We briefly provide some
justifications of that afterwards. We refer the reader for more details about the
algorithm and the time complexity to the original paper [36].

Assumption 3 (Space-bounded Verification). Let G be a (as considered
in [36]) cyclic subgroup of points in E(Fp); E(Fp) denotes an elliptic curve over
Fp where p ∈ exp(λ) is a prime.12 Then for a function F : {0, 1}k → {0, 1}n, the
Pinocchio verification algorithm (see Protocol 2 of [36]) requires k+n+O(λ)-bit
space asymptotically and ≈ k + n + 300 · log p� bits concretely.

We defer some important notes on the above assumptions to full version [14].

Assumption 4 (Lower-bound on Prover’s space). Let G be a (as con-
sidered in [36]) cyclic subgroup of points in E(Fp), where E(Fp) denotes an
elliptic curve over a Fp where p ∈ exp(λ) is a prime. Consider a function F
that is computable by a (sF , tF )-bounded algorithm for sF , tF ∈ poly(λ) and
also assume that sF � 16 log(p)�. Then the Pinocchio prove algorithm (see
Protocol 2 of [36]) requires at least sF -bit space.
12 To achieve 128-bits of security, as suggested by [8], we will set �log(p)� ≈ 1536.
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Combining Assumptions 3 and 4 we conclude:

Corollary 3. Let λ ∈ N be the security parameter and let F : {0, 1}k → {0, 1}n

be a deterministic function that is computable by an (sF ,poly(λ))-space-time
bounded algorithm. Then there exists an explicit (sF ,poly(λ), svcV ,poly(λ), svcP ,
poly(λ), k, n, nvc,negl(λ))-non-interactive publicly verifiable computation con-
struction, where:

svcV = k + n + O(λ) svcP ≥ sF nvc = O(λ)

Furthermore, in concrete terms, to get εvc ≈ 2−128, choosing log p� ≈ 1536
(following [8]) we can have estimations of the verifier’s space svcV ≈ 58 KB+k+n
and the proof-size nvc ≈ 3 KB.

8.5 Instantiating Partially Unique NIPoS and PExt-NIPoS

Putting together the instantiations of MHF and VC, we can get a (partially)
unique extractable NIPoS based on four heuristic assumptions (Assumptions 1–
4). Plugging in the parameters from Corollaries 2 and 3 into Lemma 2, we obtain
the following corollary:

Corollary 4 (MHF-based NIPoS with uniqueness). For any ε > 0 and a
δ ∈ (0, 1) there is an explicit construction of (kpos, npos, sP, sV)-NIPoS which has
(upos, εunique)-uniqueness and (s, f, t, η, εpos)-extractability for any f, t ∈ poly(λ)
as long as:

kpos ∈ poly(λε) npos = O(λ2) sP = Ω(λ5) s ≤ δλ5

sV = O(λ2) upos = λ2 εunique ∈ negl(λ) η = O(log(λ)) εpos ∈ negl(λ).

9 Instantiating and Comparing Our NMC Constructions

9.1 Instantiations from Different PExt-NIPoS

We obtain four constructions in total, two of them through CHG and other two
(including FHMV one) through the uniqueness. For more details we refer to the
full version [14].

9.2 Comparing Concrete Parameters

We propose four constructions of space-bounded (leaky) non-malleable codes
that support unbounded tampering. All of them are based on NIPoS. Two of
them (described in Sect. 7) require proof-extractability whereas other two can be
based on standard extractability (described in Sects. 6 and 8). Our constructions
have different merits. While the asymptotic bounds for the parameters have
already been provided, we believe that a comparison with respect to the concrete
values is important.
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Our setting. Since our constructions are obtained from different techniques and
achieve different bounds, it is important to fix a common measure with respect to
which a comparison makes sense. We choose to fix a standard security measure.
In particular, we set εnm = 2−80 in the Definition 5—that is how we can estimate
the values of the other parameters (namely, k, n, �, s, f, p, d) to get 80-bit security.
We also choose a reasonable values for the number of tampering queries: θ =
216.13 Whenever there is a term that depends on the number of RO queries
made by a poly-time adversary, (for example |QH(A)|) we set that to 264. We
assume that a poly-time adversary runs for 280 time steps. Since in our setting
� is always as big as p−n we compare the parameters considering p ≈ n to have
minimal leakage. We choose small values for k (close to �) within the supported
range, although for most of our constructions much higher k is supported. Using
concrete instantiations of PExt-NIPoS (see the full version [14] for detail) and
plugging-in them to Theorem 1 we get the concrete parameters for the resulting
CSNMCs: we provide a comparative study in Table 2.

Table 2. This table shows approximate concrete parameters for the setting when p ≈ n.
Note that for PExt-NIPoS-based constructions the last column has bound on s + f ,
whereas for Ext-NIPoS-based constructions the bound is only on s as f can be set to
arbitrary large value.

Technique NIPoS-type k n, (≈ p) � d s(+f)

CHG
SoLEG-based 1 MB 801MB 0.8 MB 801 MB 1.1 GB(+f)

PTC-based 257 MB 256 GB 256 MB 256GB 256GB(+f)

Ext
FHMV-based 226TB 415 TB 225TB 452TB 800TB

MHF-based 4 KB 677 KB 3 KB 740 KB 800TB

Assumptions. The first three constructions are based on “memory-hard graphs”.
The hardness can be proven in the random oracle model via standard peb-
bling games. The main proof relies on combinatorial arguments. In contrast
Construction-4 relies on heuristic arguments for space bounds. The main assump-
tions are (Assumption 2 and 1) that memory-hard graphs retain their space-
hardness when instantiated with concrete hash functions. This is needed because
the standard pebbling arguments fall short when the hash function is not mod-
eled as a random oracle. We also rely on a few other assumptions (namely
Assumption 3 and 4) regarding the underlying verfiable computation. For all
of the above constructions we need a PRF with standard security as the proofs
depend on the pseudorandomness guarantee of the PRF.

13 We stress that this value can be set much higher without affecting the main param-
eters significantly.
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Abstract. Murphy, Murky, Mopey, Moody, and Morose decide to write
a paper together over the Internet and submit it to the prestigious
CRYPTO’19 conference that has the most amazing PC. They encounter
a few problems. First, not everyone is online every day: some are lazy
and go skiing on Mondays; others cannot use git correctly and they are
completely unaware that they are losing messages. Second, a small subset
of the co-authors may be secretly plotting to disrupt the project (e.g.,
because they are writing a competing paper in stealth).

Suppose that each day, sufficiently many honest co-authors are online
(and use git correctly); moreover, suppose that messages checked into git
on Monday can be correctly received by honest and online co-authors on
Tuesday or any future day. Can the honest co-authors successfully finish
the paper in a small number of days such that they make the CRYPTO
deadline; and perhaps importantly, can all the honest co-authors, includ-
ing even those who are lazy and those who sometimes use git incorrectly,
agree on the final theorem?

1 Introduction

The “synchronous” model is one of the most commonly studied models in the
past 30 years of distributed computing and cryptography literature. In the syn-
chronous model, it is assumed that whenever an honest node sends a message,
an honest recipient is guaranteed to have received it within a bounded delay Δ,
and the protocol is aware of the maximum delay Δ.

We love the synchronous model because it allows us to achieve robustness
properties that would otherwise be impossible. For example, assuming synchrony,
we can achieve distributed consensus even when arbitrarily many nodes may
be malicious [8]. In comparison, it is well-known that if message delays can
be arbitrarily long [9], consensus is impossible in the presence of 1

3 fraction of
corrupt nodes. On the other hand, the synchrony assumption has been criticized
for being too strong [3,19]: if an honest node ever experiences even a short outage
(e.g., due to network jitter) during which it is not able to receive honest messages
within Δ delay, this node is now considered as corrupt. From this point on, a
consensus protocol proven secure under a synchronous model is not obliged to
provide consistency and liveness to that node any more, even if the node may
wake up shortly afterwards and wish to continue participating in the protocol.
c© International Association for Cryptologic Research 2019
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Similarly, as soon as P has even a short-term outage, a multi-party computation
(MPC) protocol proven secure under a synchronous model is not obliged to
provide privacy for party P ’s inputs—for example, some protocols that aim to
achieve fairness and guaranteed output would now have the remaining online
parties reconstruct P ’s secret-shared input and thus P loses its privacy entirely.

We stress that this is not just a theoretical concern. Our work is in fact
directly motivated by conversations with real-world blockchain engineers who
were building and deploying a fast cryptocurrency and pointed out what seems
to be a fatal flaw in a blockchain protocol [20] that was proven secure in the
classical synchronous model: even when all nodes are benign and only a few
crash in a specific timing pattern, transactions that were “confirmed” can be
“undone” from the perspective of an honest node who just experienced short-
term jitter possibly unknowingly (see the online full version [14] for a detailed
description of this real-world example).

Not only so, in fact to the best of our knowledge, all known classical-style, syn-
chronous consensus protocols [2,15,18] are underspecified and unimplementable
in practice: if a node ever experiences even a short-term outage and receives
messages out of sync, these protocols [2,15,18] provide no explicit instructions
for such nodes to join back and continue to enjoy consistency and liveness!

Of course, one known solution to this problem is to simply adopt a partially
synchronous [9] or asynchronous [6] model. In a partially synchronous or asyn-
chronous model, a short-term outage would be treated in the same way as a long
network delay, and a node that is transiently offline will not be penalized. For
this reason, partially synchronous (or asynchronous) protocols are known to be
arbitrarily partition tolerant; while synchronous protocols are not. Unfortunately,
as mentioned, partially synchronous or asynchronous protocols can tolerate only
1/3 fraction of corruptions!

Can we achieve the best of both worlds, i.e., design distributed computing
protocols that resist more than 1/3 corruption and meanwhile achieve a practical
notion of partition tolerance?

1.1 Definitional Contribution: A “Weak Synchronous” Network

At a very high level, we show that synchrony and partition tolerance are not
binary attributes, and that we can guarantee a notion called “best-possible par-
tition tolerance” under a quantifiable measure of synchrony. To this end, we
propose a new model called a χ-weakly-synchronous network.

A natural but overly restrictive notion. One natural way to quantify the degree
of synchrony is to count the fraction of nodes that always respect the synchrony
assumption. For example, we may want a distributed computing protocol to
satisfy desired security properties (e.g., consistency, liveness, privacy), as long
as more than χ fraction of nodes are not only honest but also always have good
connectivity (i.e., bounded Δ delay) among themselves. This model, however, is
overly restrictive especially in long-running distributed computing tasks such as
a blockchain: after all, no node can guarantee 100% up-time [1], and over a few
years duration, it could be that every node was at some point, offline.
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χ-weak-synchrony. We thus consider a more general model that allows us to
capture network churn. We now require only the following:

[χ-weakly-synchronous assumption:] In every round, more than χ fraction
nodes are not only honest but also online; however, the set of honest and
online nodes in adjacent rounds need not be the same.

Throughout the paper we use the notation Or to denote a set of at least �χn�+1
honest nodes who are online in round r—henceforth Or is also called the “honest
and online set of round r”. Note that the remaining set [n]\Or may contain a
combination of honest or corrupt nodes and an honest node in [n]\Or is said to
be offline in round r.

We assume that the network delivery respects the following property where
multicast means “send to everyone”:

[network assumption:] when a node in Or multicasts a message in round r,
every node in Ot where t ≥ r + Δ must have received the message in round t.

We allow the adversary to choose the honest and online set of each round (even
after observing the messages that honest nodes want to send in the present round),
and delay or erase honest messages, as long as the above χ-weak-synchrony and
network delivery constraints are respected. For example, the adversary may choose
to delay an honest but offline node’s messages (even to online nodes) for as long
as the node remains offline. The adversary can also selectively reveal an arbitrary
subset of honest messages to an honest and offline node.

Therefore, our weak synchrony notion can be viewed as a generalization of
the classical synchronous notion (henceforth also called strong synchrony). In a
strongly synchronous network, it is required that the honest and online set of
every round must contain all honest nodes.

We ask whether we can achieve secure distributed computing tasks under
such a χ-weakly-synchronous network. With the exception of liveness (or guar-
anteed output) which we shall discuss shortly, we would like to guarantee all secu-
rity properties, including consistency and privacy, for all honest nodes, regardless
of whether or when they are online/offline. Defining liveness (or guaranteed out-
put) in the χ-weakly-synchronous model, however, is more subtle. Clearly we
cannot hope to guarantee liveness for an honest but offline node for as long as it
remains offline. Therefore, we aim to achieve a “best-effort” notion of liveness:
a protocol has T -liveness iff for any honest node that becomes online in some
round r ≥ T , it must have produced output by the end of round r.

The challenges. We are faced with a few apparent challenges when designing
distributed protocols secure under χ-weak-synchrony. First, the online nodes
may change rapidly in adjacent rounds. For example, if χ = 0.5 and everyone is
honest, the honest and online sets belonging to adjacent rounds can be almost
disjoint. Second, we stress that offline nodes may not be aware they are offline,
e.g., a DoS attack against a victim’s egress router clearly will not announce itself
in advance. Further, the adversary can selectively reveal a subset of messages
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to offline nodes such that they cannot detect they are offline from the protocol
messages they receive either. Because of these facts, designing protocols in our
χ-weakly-synchronous model is significantly more challenging than the classical
synchronous model (or even the above restrictive model where we may assume
a sufficiently large set of honest and persistently online nodes).

1.2 Results: Consensus in a Weakly Synchronous Network

We consider the feasibility and infeasibility of achieving Byzantine Agreement
(BA) in a χ-weakly-synchronous network. In a BA protocol, a designated sender
has an input bit that it wants to convey to all other nodes. We would like to
achieve the following guarantees for all but a negligible fraction of executions:
(1) consistency, i.e., all honest nodes must output the same bit; (2) validity, i.e.,
if the designated sender is honest and online in the starting round (i.e., round 0)
of the protocol, every honest node’s output (if any) must agree with the sender’s
input bit; and (3) T -liveness, i.e., every node in Or where r ≥ T must have
produced an output by the end of round r. Note that if the designated sender is
honest but offline initially, the protocol cannot make up for the time lost when
the sender is offline—thus validity requires that the sender not only be honest
but also online in the starting round.

As mentioned, we are primarily interested in protocols that tolerate more
than 1/3 corruptions since otherwise one could adopt a partially synchronous or
asynchronous model and achieve arbitrary partition tolerance. To avoid a well-
known lower bound by Lamport et al. [17], throughout the paper we will assume
the existence of a public-key infrastructure (PKI).

Impossibility when minority are honest and online. Unfortunately, we show
that it is impossible to have a χ-weakly-synchronous consensus protocol for
χ < 0.5 − 1/n, i.e., if the honest and online set of each round contains only
minority number of nodes (and this lower bound holds even assuming any rea-
sonable setup assumption such as PKI, random oracle, common reference string
(CRS), or the ability of honest nodes to erase secrets from memory). The intu-
ition for the lower bound is simple: there can be two honest well-connected com-
ponents that are partitioned from each other, i.e., the minority honest nodes
inside each component can deliver messages to each other within a single round;
however messages in between incur very long delay. In this case, by liveness of the
consensus protocol, each honest well-connected component will reach agreement
independently of each other. We formalize this intuition later in Sect. 4.

Best-possible partition tolerance. Due to the above impossibility, a consen-
sus protocol that achieves consistency, validity, and liveness under 0.5-weak-
synchrony is said to be best-possible partition tolerant.

A refinement of synchronous consensus. First, it is not hard to see that any best-
possible partition tolerant Byzantine Agreement (BA) protocol (i.e., secure under
0.5-weak-synchrony) must also be secure under honest majority in the classical,
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strong synchronous model. On the other hand, the converse is not true. Interest-
ingly, we examined several classical, honest-majority BA protocols [2,15,18,20]
and found none of them to satisfy best-possible partition tolerance. In this sense,
our notion of best-possible partition tolerance can also be viewed as a refinement
of classical honest-majority BA, i.e., we can tease out a proper subset of honest-
majority BA protocols that satisfy good-enough partition tolerance in practice—
and we strongly recommend this robust subset for practical applications.

Round-efficient, best-possible partition tolerant BA. Of course, to show that our
notion is useful, we must show existence of a best-possible partition tolerant BA
that is efficient; and this turns out to be non-trivial.

Theorem 1 (Informal). Assume the existence of a PKI and enhanced trapdoor
permutations. Then, there exists an expected constant-round BA protocol secure
under 0.5-weak-synchrony.

Note that here, expected constant-round means that there is a random variable
T whose expectation is constant, such that if an honest node becomes online in
round r ≥ T , it must have produced an output in round r.

We additionally show how to extend the above result and construct a best-
possible partition tolerant BA protocol that is optimistically responsive [20]:
specifically, under the following optimistic conditions, the honest and online
nodes in O will produce an output in O(δ) amount of time where δ is the actual
maximum network delay (rather than the a-priori upper bound Δ):

O := “there exists a set O containing at least 3n/4 honest and persistently
online nodes, and moreover, the designated sender is not only honest but also
online in the starting round”

Corollary 1 (Informal). Assume the existence of a PKI and enhanced trap-
door permutations. Then, there exists an expected constant-round BA protocol
secure under χ-weak-synchrony; moreover, if the optimistic conditions O speci-
fied above also holds, then the honest and online nodes in O would produce output
in O(δ) time where δ is the actual maximum network delay.

Classical, corrupt-majority BA protocols inherently sacrifice partition tolerance.
As is well-known, in the classical, strongly synchronous model, we can achieve
BA even when arbitrarily many nodes can be corrupt. We show, however, the set
of corrupt-majority protocols are disjoint from the set of best-possible partition
tolerant protocols. Not only so, we can show that the more corruptions one
hopes to tolerate, the less partition tolerant the protocol becomes. Intuitively,
the lower bound is simple because in a corrupt majority protocol, a minority
honest well-connected component must independently reach agreement among
themselves in a bounded amount of time; and obviously there can be two such
components that are disconnected from each other and thus consistency among
the two components is violated (with constant probability).
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This simple observation, however, raises another philosophical point: if we
adopted the classical synchronous model, it would be tempting to draw the con-
clusion that corrupt-majority BA is strictly more robust than honest-majority
BA. However, we show that one must fundamentally sacrifice partition toler-
ance to trade for the ability to resist majority corruption and this tradeoff is,
unfortunately, inherent.

1.3 Results: MPC in a Weakly Synchronous Network

We next consider the feasibility of realizing multi-party computation in a χ-
weakly-synchronous network. Imagine that n parties would like to jointly evalu-
ate the function f(x1, . . . , xn) over their respectively inputs x1, x2, . . . , xn such
that only the outcome is revealed and nothing else. Again, a couple of subtleties
arise in formulating the definition. First, one cannot hope to incorporate the
inputs of offline nodes if one would like online nodes to obtain outputs quickly.
Thus, we require that at least �χn� + 1 number of honest nodes’ inputs be
included and moreover, every honest node who has always been online through-
out the protocol should get their inputs incorporated. Concretely, we require
that the ideal-world adversary submit a subset I ⊆ [n] to the ideal functionality,
such that I ∩ Honest ≥ �χn� + 1 where Honest denotes the set of honest nodes,
and moreover I must include every honest node who has been online throughout
the protocol. Henceforth, the subset I is referred to as the “effective input set”:

– for every i ∈ I that is honest, the computation should use node i’s true inputs;
– for every i ∈ I that is corrupt, we allow the ideal-world adversary to replace

the input to any value of its choice; and
– for every i /∈ I, the computation simply uses a canonical input ⊥ as its input.

Second, the notion of guaranteed output must be treated in the same manner
as liveness for BA since we cannot hope that honest but offline nodes can obtain
output for as long as they remain offline. We say that an execution of the multi-
party protocol completes in T rounds, iff for any honest node in Ot where t ≥ T ,
it must have produced an output by the end of round t.

Under the above definition, we prove the following theorem (informally
stated):

Theorem 2 (Informal). Assume the existence of a PKI, enhanced trapdoor
permutations, and that the Learning with Errors (LWE) assumption holds.
Then, there is an expected constant-round protocol that allows multiple parties
to securely evaluate any function f under 0.5-weak-synchrony.

We further extend our results in a non-trivial manner and achieve optimisti-
cally responsive MPC in the online full version [14].

Additional related work. We provide comparison with additional related work in
our online full version [14].



Synchronous, with a Chance of Partition Tolerance 505

2 Technical Roadmap

The most technically non-trivial part of our result is how to realize Byzan-
tine Agreement (BA) under 0.5-weak-synchrony. Existing synchronous, honest-
majority protocols [15,18] completely fail in our model. Since the honest and
online set can change rapidly in every round, it could be that by the end of the
protocol, very few or even no honest nodes have been persistently online, and
everyone honest was offline at some point. In other words, it could be that from
the view of every honest node, message delivery was asynchronous at some point
in the protocol. Indeed, interestingly many of our core techniques are in fact
reminiscent of asynchronous consensus rather than synchronous approaches.

Although at a very high level, we follow a well-known recipe that constructs
BA from a series of building blocks:

Reliable Broadcast (RBC) ⇒ Verifiable Secret Sharing (VSS)
⇒ Leader Election (LE) ⇒ Byzantine Agreement (BA)

as it turns out, for all these building blocks, even how to define them was
non-trivial: the definitional subtleties arise partly due to the new χ-weakly-
synchronous model, and partly due to compositional issues.

2.1 Reliable Broadcast (RBC)

Definition. Reliable broadcast (RBC) allows a designated sender to convey a
message to other nodes. The primitive can be viewed as a relaxed version of BA:
assuming 0.5-weak-synchrony, RBC always guarantees the following for all but a
negligible fraction of executions:

1. Consistency: if two honest nodes output x and x′ respectively, it must be that
x = x′. For technical reasons that will become clear later, we actually need a
strengthening of the standard consistency notion, requiring that an efficient
extractor can extract the value that honest nodes can possibly output, given
honest nodes’ transcript in the initial T rounds of the protocol.

2. Validity: if the sender is honest, then honest nodes’ output must be equal to
the honest sender’s input;

3. T -liveness (under an honest and initially online sender): if the sender is not
only honest but also online in the starting round, then every node in Ot where
t ≥ T must have produced an output by the end of round t;

4. Close termination: if any honest node (even if offline) produces and output in
round r, then anyone in Ot where t ≥ r + 2Δ must have produced an output
by the end of round t too.

Interestingly, note that the T -liveness property is reminiscent of classical syn-
chronous definitions whereas the close termination property is reminiscent of
asynchronous definitions.

Construction. At a very high level, our RBC construction combines techniques
from classical synchronous “gradecast” [10,15] and asynchronous “reliable broad-
cast” [5,6]. We defer the concrete construction to Sect. 5; the construction is
constant round, i.e., achieves T -liveness where T = O(1).
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2.2 Verifiable Secret Sharing (VSS)

Definition. Verifiable secret sharing (VSS) allows a dealer to share a secret among
all nodes and later reconstruct it. We propose a new notion of (a computation-
ally secure) VSS that is composable and suitable for a 0.5-weakly-synchronous
network. Somewhat imprecisely, we require the following properties:

– Binding (formally referred to as Validity in Sect. 6.2). Standard notions of
VSS [6] require that the honest transcript of the sharing phase binds to the
honestly reconstructed secret. For technical reasons needed later in the proof
of the Leader Election (LE), we require a stronger notion: an efficient extractor
E , knowing honest nodes’ public and secret keys, must be able to extract this
secret from the honest transcript during the sharing phase, and the honestly
reconstructed secret must agree with the extractor’s output.

– Secrecy and non-malleability. If the dealer is honest, then the shared value
must remain secret from the adversary before reconstruction starts. Not only
so, we also need a non-malleability: an adversary, after interacting in VSS
instances each with an honest dealer, cannot act as a dealer in another VSS
instance and share a secret that is related to the honest secrets.

– Liveness. For liveness, we require that if the dealer is honest and online in
the initial round of the sharing phase, for t ≥ T , everyone in Ot must have
output “sharing-succeeded”. Even when the dealer is corrupt or initially
offline, if any honest node (even if offline) ever outputs “sharing-succeeded”
in some round r, then everyone in Ot where t ≥ r + 2Δ must have output
“sharing-succeeded” by the end of round t. If some honest node has out-
put “sharing-succeeded”, then reconstruction must be successful and will
terminate in T rounds for honest and online nodes.

Just like the RBC definition, our VSS definition also has both synchronous and
asynchronous characteristics.

Construction. Informally our construction works as follows:

– Share. In the starting round of the sharing phase, the dealer secret splits
its input s into n shares denoted s1, s2, . . . , sn using a (�n/2� + 1)-out-of-n
secret-sharing scheme. It then encrypts the share sj to node i’s public key pkj

using a public-key encryption scheme—let CTj be the resulting ciphertext.
Now, the node proves in zero-knowledge, non-interactively, that the cipher-
texts CT1, . . . ,CTn are correct encryptions of an internally consistent sharing
of some secret—let π denote the resulting proof. Assuming PKI and hon-
est majority, we can realize a Non-interactive Zero-Knowledge Proof (NIZK)
system (without CRS) using a technique called multi-string honest majority
NIZK proposed by Groth and Ostrovsky [13] (see online full version [14]).
Finally, the dealer invokes an RBC instance (henceforth denoted RBC0) to
reliably broadcast the tuple (sid , {CTj}j∈[n], π) to everyone—here sid denotes
the current instance’s unique identifier and this term is needed here and also
included in the NIZK statement for compositional reasons.
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Suppose that the RBC scheme employed satisfies Trbc-liveness. Now in round
Trbc (assuming that the starting round is renamed to round 0), if a tuple has
been output from the RBC0 instance with a valid NIZK proof, then reliably
broadcast the message “ok”; otherwise reliably broadcast the message ⊥—
note that here n instances of RBC are spawned and each node i will act as the
designated sender in the i-th instance. Finally, output “sharing-succeeded”
iff not only RBC0 has output a tuple with a valid NIZK proof but also at
least �n/2� + 1 RBC instances have output “ok”—note that at this moment,
the node (denoted i) can decrypt its own share s′

i from the corresponding
ciphertext component contained in the output of RBC0.

– Reconstruct: If the sharing phase has output “sharing-succeeded” and more-
over the reconstruction phase has been invoked, then node i multicasts the
decrypted share s′

i as well as a NIZK proof that the decryption was done
correctly (in a way that is consistent with its public key). Finally, as soon
as �n/2� + 1 decryption shares with valid NIZK proofs are received, one can
reconstruct the secret.

2.3 Leader Election (LE)

Definition. Leader Election (LE) is an inputless protocol that allow nodes to
elect a leader denoted L ∈ [n] among the n nodes. For the outcome of LE to be
considered “good”, we want that not only every honest node must agree on the
leader, but also that this leader belongs to Or for some a-priori known round
r—jumping ahead, later in our BA protocol, everyone would attempt to propose
a value during this round r and the proposal of the elected leader will be chosen.

Intuitively, we would like that the LE achieves a good outcome with O(1) prob-
ability. Our actual definition turns out to be tricky due to compositional issues that
arise due to multiple LE instances sharing the same PKI. We would like that even
when multiple LE instances share the same PKI, roughly speaking, almost surely
there is still independent constant probability that each individual instance’s out-
come is good. In formal definition (see Sect. 7), we will precisely specify which sub-
set of honest coins that are freshly chosen in each LE instance allow us to capture
this desired independence.Note that this independence property is desired because
later in our BA protocol, we need to argue that after a bounded number of trials,
an honest leader must be elected except with negligible probability.

Construction. Our LE protocol is in fact inspired by the asynchronous leader
election protocol by Canetti and Rabin [6]. Since our LE construction is rather
technical, we explain a high-level intuition here while deferring the full protocol
to Sect. 7. The idea is for everyone i to choose n coins denoted ci,1, . . . , ci,n ∈ F,
one for each person. All these coins will be committed to using a VSS proto-
col such that corrupt nodes cannot choose their coins after seeing honest coins.
Each person j’s charisma is the product of the coins chosen for him by at least
�n/2� + 1 others, i.e.,

∏
i∈Dj

ci,j where Dj ⊆ [n] and |Dj | ≥ �n/2� + 1—in this
way, at least one in Dj is honest and has chosen a random coin. In our protocol,
every person j will announce this set Dj itself through an RBC protocol. Ideally
we would like nodes to agree on a set of candidates that contain many nodes in
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Or for some r, and elect the candidate with the maximum charisma (lexicograph-
ically) from this set—unfortunately at this moment we do not have Byzantine
Agreement yet. Thus we must accomplish this task without reaching agreement.
Our idea is for each node to independently calculate a sufficiently large set of can-
didates; and although honest nodes may not agree on this candidate set, honest
nodes’ candidate sets must all contain every node in Or. We stress that the chal-
lenge is that honest offline nodes’ candidate sets must also satisfy this property
even though they are receiving only an arbitrary subset of messages chosen by
the adversary—note that these nodes basically have “asynchronous” networks.
Perhaps more challengingly, it could be that every honest node may be offline in
some round, and thus everyone’s network may be asynchronous at some point.

Towards this end, we adapt Canetti and Rabin’s leader election idea [6] to
our weakly synchronous setting: specifically, everyone first reliably broadcasts
a tentative candidate set S, but they keep maintaining and growing a local
candidate set denoted S∗ ⊇ S. They would keep adding nodes that they newly
deem eligible to their local set S∗, until at some point, they decide that their local
set S∗ is sufficiently inclusive based on sufficiently many tentative candidate sets
that have been reliably broadcast. At this moment, the node stops growing its
local candidate set and outputs the candidate with maximum charisma from its
current local set. We refer the reader to Sect. 7 for a detailed description.

2.4 Byzantine Agreement (BA)

The next question is how to construct BA given weakly synchronous LE. This step
turns out to be non-trivial too. In particular, we stress that existing synchronous
BA protocols [2,15,18] are broken under 0.5-weak-synchrony, not only because
they lack a good leader election (or common coin) algorithm—in fact even if we
replaced the leader election in existing schemes with an ideal version (e.g., our
own leader election scheme in Sect. 7), the resulting BA schemes would still be
broken under 0.5-weak-synchrony. All existing synchronous BA schemes make
use of synchrony in a strong manner: they rely on the fact that if an honest node
i sees some message m in round t, then i is surely able to propagate the message
to every honest node by the end of round t + Δ. This assumption is not true in
our model since our model does not provide any message delivery guarantees for
offline honest nodes. Instead, our protocol makes use of only weak synchrony and
specifically the following observation (and variants of it): if �n/2� + 1 number
of nodes declare they have observed a message m by the end of round t, then at
least one of them must be in Ot and if all of these nodes try to propagate the
message m to others in round t, then everyone in Ot∗ where t∗ ≥ t + Δ must
have observed m by the end of round t∗.

At a very high level, our protocol proceeds in epochs. We make the following
simplifying assumptions for the time being: (1) Δ = 1, and (2) every node keeps
echoing every message they have seen in every round (in our later technical
sections we will remove the need for infinite echoing):

– Propose: For the first epoch, the designated sender’s signature on a bit is con-
sidered a valid proposal. For all other epochs, at epoch start a leader election
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protocol is invoked to elect a leader. Recall that with constant probability, the
leader election algorithm guarantees the following “good” event G: (1) the LE
protocol guarantees that the elected leader is in Or for some pre-determined
round r; and (2) no two honest nodes output inconsistent leaders. Now imag-
ine that in precisely round r of this epoch, everyone tentatively proposes a
random bit b—and if the node indeed gets elected as a leader the proposed
bit will be recognized as a valid proposal1.

– Vote (formally called “Prepare” later): Let Tle be the liveness parameter of
the LE scheme. In round Tle of the epoch e, a node votes on the elected
leader’s proposal if in epoch e − 1 majority nodes complained of not having
received majority votes for either bit—in this case no honest node can have
made a decision yet. Otherwise if the node has observed majority votes for
some bit b′ from the previous epoch e − 1, it votes for b′—in this case some
honest node might have made a decision on b′ and thus we might need to
carry on the decision. Henceforth the set of majority votes for b′ from epoch
e − 1 is said to be an epoch-e pseudo-proposal for b′.

– Commit: In round Tle + 1 of the epoch e, a node sends an epoch-e commit
message for a bit b, iff it has observed majority epoch-e votes on b, and no
epoch-e proposal or pseudo-proposal for 1 − b has been seen.

– Complain: In round Tle + 2 of the epoch e, send a complaint if neither bit
gained majority votes in this epoch.

At any time, if �n/2� + 1 number of commits from the same epoch and for
the same bit b have been observed, output b and continue participating in the
protocol (we describe a termination technique in the online full version [14]).

Remark 1. We point out that although our BA protocol might somewhat resem-
ble the recent work by Abraham et al. [2], their protocol is in fact broken under
0.5-weak-synchrony (even if they adopted an ideal leader election protocol) for a
couple of reasons. In their protocol, in essence a node makes a decision if the node
itself has seen majority votes and no conflicting proposal. To ensure consistency
under weak synchrony, our protocol makes a decision when majority votes have
been collected and moreover, majority nodes have declared that they have not seen
a conflicting proposal (or pseudo-proposal). Finally, we introduce a “complain”
round, and technically this (and together with the whole package) allows us to
achieve liveness under 0.5-weak-synchrony—in comparison, Abraham et al.’s pro-
tocol [2] appears to lack liveness under weak synchrony.

2.5 Multi-party Computation

We now consider multi-party computation in a weakly synchronous network.
Specifically, we will consider the task of secure function evaluation (SFE).
Imagine that n nodes each has an input where node i’s input is denoted xi.

1 This is necessary because if a single proposer made a proposal after being elected,
the adversary could make the proposer offline in that precise round.
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The nodes would like to jointly compute a function f(x1, . . . , xn) over their
respective inputs. The privacy requirement is that besides learning the outcome,
each node must learn nothing else (possibly in a computational sense). Recall
that earlier in our Byzantine Agreement (BA) protocols, there is no privacy
requirement, and therefore our goal was to ensure that honest nodes who drop
offline do not risk inconsistency with the rest of the network. With SFE, we would
like to protect not only the consistency but also the input-privacy of those who
are benign but drop offline or have unstable network connection.

Of course, in a weakly synchronous environment, if we would like online nodes
to obtain outputs in a bounded amount of time, we cannot wait forever for offline
honest nodes to come online. Thus, in our definition, we require that (1) at least
n/2 honest nodes’ inputs be included in the computation; and (2) every honest
node that remains online during the protocol must get their inputs incorporated.
Note that the second requirement ensures that our notion is strictly stronger (i.e.,
more robust) than classical synchronous MPC under honest majority.

Construction. Our goal is to construct an expected constant-round SFE protocol
secure under 0.5-weak-synchrony. The näıve approach of taking any existing
MPC and replacing the “broadcast” with our weakly synchronous BA (see earlier
subsections of this section) may not solve the problem. Specifically, we need to
additionally address the following challenges:

1. Classical synchronous MPC protocols are not required to provide secrecy for
honest nodes who even temporarily drop offline. Once offline, an honest node’s
input may be reconstructed and exposed by honest nodes who still remain
online.

2. Many standard MPC protocols [4,11] require many pairs of nodes to have
finished several rounds of pairwise interactions to make progress. Even if
such protocols required only constant number of rounds in the classical syn-
chronous model, they may suffer from bad round complexity in our model—
recall that in a weakly synchronous network, nodes do not have persistent
online presence; thus it can take (super-)linear number of rounds for suffi-
ciently many pairs of nodes to have had an opportunity to rendezvous.

To tackle these challenges we rely on a Threshold Multi-Key Fully Homo-
morphic Encryption (TMFHE) scheme [3,12]. In a TMFHE scheme [3],

1. Each node i can independently generate a public key denoted pki and register
it with a PKI.

2. Now, each node i can encrypt its input xi resulting in a ciphertext CTi.
3. After collecting a set of ciphertexts {CTi}i∈S corresponding to the nodes

S ⊆ [n], any node can independently perform homomorphic evaluation (for
the function f) on the ciphertext-set {CTi}i∈S and obtain an encryption
(denoted C̃T) of f({xi}i∈S).

4. Now, each node i can evaluate a partial decryption share of C̃T such that if
sufficiently many partial decryption shares are combined, one can reconstruct
the plaintext evaluation outcome f({xi}i∈S).
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In our protocol, in round 0, every node i will compute an TMFHE ciphertext
(denoted CTi) that encrypts its own input and compute a NIZK proof (denoted
πi) attesting to well-formedness of the ciphertext. The pair (CTi, πi) will be
broadcast by invoking an instance of our BA protocol described in Sect. 8. Let
Tba be the liveness parameter of BA. Now, every honest node in OTba will have
obtained outputs from all BA instances at the beginning of round Tba. From
the outputs of these BA instances, nodes in OTba can determine the effective-
input set I—specifically if any BA instance that has produced a well-formed
output with a valid NIZK proof, the corresponding sender will be included in the
effective-input set. Observe that everyone in O0 will be included in I. Now, in
round Tba, any node who has produced outputs from all n BA instances will per-
form homomorphic evaluation independently over the collection of ciphertexts
{CTi}i∈I. They will then compute and multicast a partial decryption share and
a NIZK proof vouching for the correctness of the partial decryption share. Now,
everyone in Ot for t ≥ Tba will have received sufficiently many decryption shares
in round t to reconstruct the evaluation outcome.

Comparison with “lazy MPC”. Interestingly, the recent work by Badrinarayanan
et al. [3] propose a related notion called “lazy MPC”; and their goal is also to
safeguard the inputs of those who are benign but drop out in the middle of the
protocol. Their model, however, is overly restrictive:

1. first, Badrinarayanan et al. [3] require that a set of majority number of honest
nodes to be online forever;

2. not only so, they also make the strong assumption that nodes who drop offline
never come back (and thus we need not guarantee liveness for nodes who ever
drop offline).

As mentioned, in long-running distributed computation environments (e.g.,
decentralized blockchains where a secure computation task may be repeated
many times over the course of years), most likely no single node can guarantee
100% up-time (let alone majority). From a technical perspective, the existence
of a majority “honest and persistent online” set also makes the problem signifi-
cantly easier. For example, for BA, there is in fact a simple compiler that compiles
any existing honest-majority, strongly synchronous BA to a setting in which the
existence of majority “honest and persistent online” set is guaranteed: basically,
simply run an honest-majority, strongly synchronous BA protocol denoted BA0.
If BA0 outputs a value v, multicast a signed tuple (finalize, v). Output v iff
�n/2� + 1 number of (finalize, v) messages have been received with valid sig-
natures from distinct nodes. In fact, this simple protocol also ensures liveness
for drop-outs who come back online.

Under our definition of weak synchrony, realizing BA is highly non-trivial
(see earlier subsections of this section). Once we realize BA, our approach for
realizing MPC is reminiscent of Badrinarayanan et al. [3]. There is, in fact, a
notable difference in a low-level subtlety: in Badrinarayanan et al. [3]’s lazy
MPC model, they can afford to have sufficiently many pairs of nodes engage
in several rounds of pairwise interaction, whereas in our model, it can take
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(super-)linear number of rounds for sufficiently many pairs of nodes to have had
an opportunity to rendezvous. For this reason, we need to use a strengthened
notion of Threshold Multi-Key Fully Homomorphic Encryption (TMFHE) in
comparison with Badrinarayanan et al. [3]. More detailed discussion of these
technicalities are included in the online full version [14].

3 Defining a Weakly Synchronous Execution Model

A protocol execution is formally modeled as a set of Interactive Turing Machines
(ITMs). The execution proceeds in rounds, and is directed by a non-uniform
probabilistic polynomial-time (p.p.t.) environment denoted Z(1κ) parametrized
by a security parameter κ ∈ N. Henceforth we refer to ITMs participating in the
protocol as nodes and we number the nodes from 1 to n(κ) where n is chosen by
Z and may be a polynomial function in κ.

3.1 Modeling Corruption and Network Communication

We assume that there is a non-uniform p.p.t. adversary A(1κ) that may com-
municate with Z freely at any time during the execution. A controls a subset of
nodes that are said to be corrupt. All corrupt nodes are fully within the control
of A: A observes a node’s internal state the moment it becomes corrupt and
henceforth all messages received by the corrupt node are forwarded to A; fur-
ther, A decides what messages corrupt nodes send in each round. In this paper,
we assume that corruption is static, i.e., the adversary A decides which nodes
to corrupt prior to the start of the protocol execution.

Nodes that are not corrupt are said to be honest, and honest nodes faithfully
follow the prescribed protocol for as long as they remain honest. In each round,
an honest node can either be online or offline.

Definition 1 (Honest and online nodes). Throughout the paper, we shall
use the notation Or to denote the set of honest nodes that are online in round
r. The set Or is also called the “honest and online set” of round r. For i ∈ Or,
we often say that i is honest and online in round r.

We make the following assumption about network communication—note that
our protocol is in the multicast model, i.e., every protocol message is sent to the
set of all nodes:

Assumption 1 (Message delivery assumption). We assume that if some-
one in Or multicasts a message m in round r, then everyone in Ot where
t ≥ r + Δ will have received m at the beginning of round t.

In other words, an honest and online node is guaranteed to be able to
deliver messages to the honest and online set of nodes Δ or more rounds later.
The adversary A may delay or erase honest messages arbitrarily as long as
Assumption 1 is respected.
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Remark 2 (Offline nodes’ network communication). Note that the above mes-
sage delivery assumption implies that messages sent by honest but offline nodes
can be arbitrarily delayed or even completely erased by the adversary. Further,
the adversary can control which subset of honest messages each offline node
receives in every round; it can omit an arbitrary subset of messages or even all
of them from the view of honest offline nodes for as long as they remain offline.

Remark 3. We stress that a node is not aware whether it is online or offline.
This makes protocol design in this model more challenging since the adversary
can carefully choose a subset of messages for an offline (honest) node to receive,
such that the offline node’s view can appear perfectly “normal” such that it is
unable to infer that it is offline. Jumping ahead, a consensus protocol secure in
our model should guarantee that should an offline node make a decision while it is
offline, such decisions would nonetheless be safe and would not risk inconsistency
with the rest of the network.

Our protocol needs to be aware of the parameters Δ and n. Throughout
we shall assume that Δ and n are polynomial functions in κ. Formally, we can
imagine that Z inputs Δ and n to all honest nodes at the start of the execution.
Throughout the paper, we assume that (A,Z) respects the following constraints:

Z always provides the parameters n and Δ to honest nodes at the start of the
execution such that n is the total number of nodes spawned in the execution,
and moreover, the adversary A respects Assumption 1.

Schedule within a round. More precisely, in each round r, the following happens:

1. First, each honest node receives inputs from Z and receives incoming messages
from the network; note that at this moment, A’s decision on which set of
incoming messages an honest node receives will have bearings on whether
this honest node can be included in Or;

2. Each honest node then performs polynomially bounded computation and
decides what messages to send to other nodes—these messages are imme-
diately revealed to A. Further, after the computation each honest node may
optionally send outputs to Z.

3. At this moment, A decides which nodes will belong to Or where r denotes
the current round. Note that A can decide the honest and online set Or of
the present round after seeing what messages honest nodes intend to send in
this round.

4. A now decides what messages each corrupt node will send to each honest
node. Note also that A is rushing since it can see all the honest messages
before deciding the corrupt nodes’ messages.

5. Honest nodes send messages over the network to other nodes (which may be
delayed or erased by A as long as Assumption 1 is satisfied).

Definition 2 (χ-weak-synchrony). We say that (A,Z) respects χ-weak-
synchrony (or that A respects χ-weak-synchrony), iff in every round r, |Or| ≥
�χ · n� + 1.
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To aid understanding, we make a couple of remarks regarding this definition.
First, observe that the set of honest and online nodes need not be the same in
every round. This allows us to model churns in the network: nodes go offline and
come online; and we wish to achieve consistency for all honest nodes, regardless
of whether they are online or offline, as long as sufficiently many nodes are
online in each round. Second, the requirement of χ-weak-synchrony also imposes
a corruption budget. As an example, consider the special case when χ = 0.5 and
n is an even integer: if (A,Z) respects 0.5-weak-synchrony, it means that the
adversary controls at most n/2 − 1 nodes. It could be that the adversary in fact
controls fewer, say, n/3 number of nodes. In this case, up to n/2−1−n/3 honest
nodes may be offline in each round, and jumping ahead, in a consensus protocol
we will require that consistency hold for these honest but offline nodes as well.

Finally, note also that our weakly-synchronous model is a generalization of
the classical synchronous model: in the classical synchronous model, it is addi-
tionally required that for every r, Or must be equal to the set of all nodes that
remain honest till the end of round r (or later).

3.2 Modeling Setup Assumptions

In the plain model without any setup assumptions, Lamport et al. [17] showed
that no consensus protocol could tolerate 1/3 or more corruptions; however
for < 1/3 corruptions, one can construct protocols that tolerate arbitrary net-
work partitions by adopting the partially synchronous model [7,9,16]. It is also
known that assuming a public-key infrastructure (PKI) and computationally
bounded adversaries, one can construct consensus protocols that tolerate arbi-
trarily many corruptions in the classical fully synchronous model. Thus the
interesting open question is whether, assuming the existence of a PKI and com-
putationally bounded adversaries, we can construct protocols that tolerate more
than 1/3 corruptions and yet provide some quantifiable degree of partition tol-
erance. Therefore, throughout this paper we shall assume the existence of a
PKI and computationally bounded adversaries. We assume that the adversary
chooses which nodes to corrupt before the PKI is established.

3.3 Weakly Synchronous Byzantine Agreement

We now define Byzantine Agreement (BA) in a weakly synchronous network.
The consistency definition is standard except that now we require consistency
for honest nodes regardless of whether they are online or offline. For validity,
if the sender is honest but offline initially, we cannot hope that the protocol
will somehow make up for the time lost waiting for the sender to come online,
such that honest and online nodes would output by the same deadline. Thus we
require validity to hold only if the sender is not only honest but also online in
the starting round. For liveness, we cannot hope that honest but offline nodes
obtain outputs quickly without the risk of being inconsistent with the rest of
the network. Thus, we require that as soon as an honest node is online at time
T or greater (where T is also called the liveness parameter), it must produce an
output if it has not done so already.
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Syntax. A Byzantine Agreement (BA) protocol must satisfy the following syntax.
Without loss of generality, we assume that node 1 is the designated sender. Before
protocol start, the sender receives an input bit b from Z; and all other nodes
receive no input. The nodes then run a protocol, and during the protocol every
node may output a bit.

Security. Let T (κ, n,Δ) be a polynomial function in the stated parameters. For
P ∈ {consistency, validity, T -liveness}, a BA protocol is said to satisfy property
P w.r.t. some non-uniform p.p.t. (A,Z) that is allowed to spawn multiple pos-
sibly concurrent BA instances sharing the same PKI, iff there exists a negligible
function negl(·) such that for every κ ∈ N, except with negl(κ) probability over
the choice of protocol execution, the corresponding property as explained below
is respected in all BA instances spawned—henceforth we rename the starting
round of each BA instance to be round 0 and count rounds within the same
instance accordingly afterwards:

– Consistency. If honest node i outputs bi and honest node j outputs bj , it
must be that bi = bj .

– Validity. If the sender is in O0, any honest node’s output must be equal to
the sender’s input.

– T -liveness. Any node in Or for r ≥ T must have output a bit by the end of
round r.

We say that a BA protocol satisfies property P ∈ {consistency, validity, and
T-liveness} under χ-weak-synchrony if it satisfies the property P w.r.t. any
non-uniform p.p.t. (A,Z) that respects χ-weak-synchrony and is allowed to
spawn multiple possibly concurrent BA instances sharing the same PKI. Hence-
forth, if a BA protocol satisfies consistency, validity, and T -liveness under χ-
weak-synchrony, we also say that the protocol is a “χ-weakly-synchronous BA
protocol”.

Remark 4 (Worst-case vs expected notions of liveness). We note that T -liveness
defines a worst-case notion of liveness. In the remainder of the paper, we some-
times use an expected round complexity notion. We say that our BA protocol is
expected constant round, iff there is a random variable R whose expectation is
constant such that everyone in Or where r ≥ R should have produced an output
by the end of round r.

Multi-valued agreement. The above definition can be extended to multi-valued
agreement where nodes agree on a value from the domain {0, 1}�(κ) rather than
a single bit. Multi-valued agreement can be obtained by parallel composition
of � instances of BA. In this paper, we will refer to the multi-valued version as
Byzantine Agreement (BA) too.
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4 Lower Bounds

4.1 Impossibility of Weakly-Synchronous Consensus for χ ≤ 0.5

First, we show that for any χ ≤ 0.5 − 1
n , it is impossible to achieve BA under

χ-weak-synchrony. The intuition for this lower bound is simple: if a BA protocol
allows a minority set of online nodes to reach agreement without hearing from
the offline nodes, then two minority camps could independently reach agreement
thus risking consistency. We formalize this intuition in the following theorem.

Theorem 3. For any χ ≤ 0.5 − 1
n , for any polynomial function T , no BA pro-

tocol Π can simultaneously achieve consistency, validity, and T -liveness under
χ-weak-synchrony.

Proof. Please refer to the online full version [14].

We point out that the above the lower bound holds even if A is restricted
to scheduling the same honest and online set throughout, i.e., O0 = O1 =
. . ., has to decide the message delivery schedule in advance, and even when no
node is corrupt. Moreover, the lower bound holds even for randomized protocols,
allowing computational assumptions, and allowing additional setup assumptions
(e.g., PKI, random oracle, or the erasure model).

Best-possible partition tolerance. In light of Theorem 3, a BA protocol secure
under 0.5-weak-synchrony is also said to be best-possible partition tolerant.

4.2 Corrupt-Majority Protocols Sacrifice Partition Tolerance

It is well-known that there exist Byzantine Agreement protocols that toler-
ate arbitrarily many byzantine faults [8] under the classical synchronous model
henceforth referred to as strong synchrony. If we adopted the classical strong syn-
chrony model we might be misled to think that protocols that tolerate corrupt
majority are strictly more robust than those that tolerate only corrupt minority.
In this section, however, we show that corrupt-majority protocols (under strong
synchrony) in fact sacrifice partition tolerance in exchange for tolerating cor-
rupt majority, and this is inherent. As explained earlier, in real-world scenarios
such as decentralized cryptocurrencies, partition tolerance seems to be a more
important robustness property.

It is not too difficult to see that any corrupt-majority, strongly-synchronous
protocol cannot be secure under 0.5-weak-synchrony. Specifically, with a corrupt-
majority strongly-synchronous protocol, if the network partitions into multiple
minority connected components, each component will end up reaching its own
independent decision. We can generalize this intuition and prove an even stronger
statement: any strongly-synchronous protocol that tolerates more than ν ≥ 0.5
fraction of corruptions cannot be secure under ν-weak-synchrony, i.e., such a pro-
tocol cannot guarantee consistency for all honest nodes (including offline ones)
even if we make the strong assumption that at least ν fraction of honest nodes are
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online. In other words, the more corruptions the protocol tolerates under strong
synchrony, the less partition tolerant it becomes. To state our theorem precisely,
we introduce the following notation:

– We say that (A,Z) respects μ-strongly-synchronous iff at least �μn�+1 nodes
are honest and moreover all honest nodes are forever online. We say that a BA
protocol satisfies property P ∈ {consistency, validity, and T−liveness} under
μ-strong-synchrony iff it satisfies property P w.r.t. any non-uniform p.p.t.
(A,Z) that respects μ-strong-synchrony.

– Let BA{μ} be the family that contains every protocol Π satisfying the follow-
ing: ∃ a polynomial function T (·, ·, ·) s.t. Π that satisfy consistency, validity,
and T (κ, n,Δ)-liveness under μ-strong-synchrony.

– Let BA+{χ} be the family that contains every protocol Π satisfying the
following: ∃ a polynomial function T (·, ·, ·) s.t. Π that satisfy consistency,
validity, and T -liveness under χ-weak-synchrony.

Theorem 4. ∀0 < μ < 0.5, χ ≤ 1 − μ − 2/n, BA{μ} ∩ BA+ {χ} = ∅.
Proof. Please refer to the online full version [14].

5 Reliable Broadcast (RBC)

In our upper bound sections (Sects. 5, 6.2, 7, 8, and the MPC upper bound in
the online full version [14]) for convenience, we will make a slightly stronger
assumption on the underlying network—but in fact this stronger assumption
can be realized from Assumption 1 described earlier.

Assumption 2 (Strong message delivery assumption). If i ∈ Or and i
has multicast or received a message m before the end of round r, then everyone
in Ot where t ≥ r + Δ will have received m at the beginning of round t.

In the online full version [14], we describe how to realize Assumption 2 through
a simple echo mechanism: roughly speaking, nodes echo and retry sending mes-
sages they have seen until they believe that the message has become part of the
honest and online nodes’ view.

5.1 Definition

We define a primitive called reliable broadcast (RBC) that allows a designated
sender to broadcast a message, guaranteeing consistency regardless of whether
the sender is honest or online, and additionally guaranteeing liveness when the
sender is not only honest but also online in the starting round. We also require
a “close termination” property: even when the designated sender is corrupt, we
require that if some honest node outputs in round r, then everyone in Ot where
t ≥ r + 2Δ must have output by the end of round t too. The liveness notion is
defined in a similar fashion as in Sect. 3.3: since under weak synchrony we cannot
guarantee progress for offline nodes, we require that any honest node who comes
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back online in some time T or greater will have received output (assuming an
honest and initially online sender). For technical reasons that will be useful later
in the proof of our Leader Election (LE) protocol, we need a stronger version of
the standard consistency property: not only must honest nodes’ outputs agree,
there must be an efficient extractor that outputs either a bit b ∈ {0, 1} or ⊥
when given the PKI and the honest nodes’ transcript in the initial T rounds as
input. If any honest node indeed makes an output, the output must be consistent
with the extractor’s output b.

Syntax. An RBC protocol consists of the following algorithms/protocols:

– PKI setup: at the very beginning every node i registers a public key pki

with the PKI;
– RBC protocol: all instances of RBC share the same PKI. In each RBC

instance, a designated sender (whose identifier is pre-determined and publicly-
known) receives a value x from the environment Z whereas all other nodes
receive nothing. Whenever a node terminates, it outputs a value y. Hence-
forth we shall assume that an admissible Z must instruct all nodes to start
protocol execution in the same round2;

– Extractor E : a polynomial-time deterministic extractor E that is needed
only in our security definitions and proofs, not in the real-world protocol.

Security. Let T (n,Δ, κ) be a polynomial function in the stated parameters. For
P ∈ {T -consistency, validity, T -liveness, close termination}, we say that an RBC
protocol Π satisfies property P under χ-weak-synchrony iff for any non-uniform
p.p.t. (A,Z) that respects χ-weak-synchrony and can spawn multiple instances
of RBC sharing the same PKI, there exists a negligible function negl(·) such that
for every κ ∈ N, except for negl(κ) fraction of the executions in the experiment
EXECΠ(A,Z, κ), the following properties hold for every RBC instance:

– T -consistency. Let y := E({pki}i∈[n],Tr) where Tr denotes the transcript of
all honest nodes in the initial T rounds of the RBC instance. Then, if any
honest node ever outputs y′, it must be that y′ = y.

– Validity. If the sender is honest and its input is x, then if any honest node
outputs x′, it must be that x′ = x.

– T -liveness (under an honest and initially online sender). If the sender is not
only honest and but also online in the starting round of this RBC instance
(henceforth the starting round is renamed to be round 0 for convenience),
then every node that is honest and online in round r ≥ T will have produced
an output by the end of round r.

– Close termination. If an honest node outputs in some round r, then every
node that is honest and online in round r′ ≥ r + 2Δ will have output by the
end of round r′.

2 Later in our VSS and LE protocols that invoke RBC, the fact that the RBC’s envi-
ronment Z is admissible is guaranteed by construction.
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Remark 5. Although in general, consistency and liveness can be parametrized
by different delay functions, without loss of generality we may assume that two
parameters are the same T (since we can always take the maximum of the two).

5.2 Construction

During the PKI setup phase (shared across all subsequent RBC instances), every
node calls (vk, ssk) ← Σ.K(1κ) and registers the vk with the PKI. The portion ssk
is kept secret and henceforth the node will use ssk to sign protocol messages in
all future RBC instances. Henceforth, although not explicitly noted, we assume
that every message is by default tagged with the current session’s identifier
denoted sid . Every signature computation and verification will include the sid .
We also assume that each message is tagged with the purported sender such that
a recipient knows under which public key to verify the signature.

1. Propose (round 0): In round 0, the sender multicasts (propose, x) where
x is its input, attached with a signature on the tuple.

2. ACK (round Δ): At the beginning of round Δ, if a tuple (propose, y) with
a valid signature has been received from the sender, multicast (ack, y) along
with a signature on the tuple.

3. Commit (round 2Δ): At the beginning of round 2Δ, if the node has
observed �n/2� + 1 number of (ack, y) messages for the same y and with
valid signatures from distinct nodes, and moreover, it has not received any
conflicting (propose, y′) message (with a valid signature from the sender) for
y′ �= y, then multicast (commit, y) along with a signature on the tuple.

4. Finalize (any time): At any time, if the node has received �n/2� + 1
valid (commit, y) messages for the same y and from distinct nodes, multicast
(finalize, y) along with a signature on the tuple. At any time, if a collection
of �n/2� + 1 (finalize, y) messages with valid signatures from distinct nodes
have been observed, output y.

We defer the constructor of the extractor E to the proofs since it is needed
only in the security definitions and proofs and not in the real-world protocol.

Theorem 5. Suppose that the signature scheme employed is secure, then the
above RBC protocol satisfies 2Δ-consistency, validity, 4Δ-liveness, and close ter-
mination under 0.5-weak-synchrony.

Proof. Please refer to the online full version [14].

6 Verifiable Secret Sharing (VSS)

6.1 Definitions

A Verifiable Secret Sharing (VSS) allows a dealer to share a secret among all
nodes and later reconstruct the secret. Standard notions of VSS [6] require that
the honest transcript of the sharing phase binds to the honestly reconstructed
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secret. For technical reasons needed later in the proof of the Leader Election
(LE), we require a stronger notion, i.e., an efficient extractor E , knowing hon-
est nodes’ public and secret keys, must be able to extract this secret from the
honest transcript during the sharing phase (and later the honestly reconstructed
secret must agree with the extractor’s output). We need a composable notion
of secrecy which we call non-malleability—note that composition was a non-
issue in previous works that achieve security against unbounded adversaries [6].
Finally, for liveness, we require that if the dealer is honest and online in the initial
round, for t ≥ T , everyone in Ot must have output “sharing succeeded”. Even
when the dealer is corrupt or offline, if any honest node ever outputs “sharing
succeeded” in some round r, then everyone in Ot where t ≥ r + 2Δ must have
output “sharing succeeded” by the end of round t. If some honest node has
output “sharing succeeded”, then reconstruction must be successful and will
terminate in T rounds for honest and online nodes.

Syntax. A Verifiable Secret Sharing (VSS) scheme for a finite field F consists
of a setup algorithm K that is run once upfront and henceforth shared among
all protocol instances where each protocol instance contains two sub-protocols
called Share and Reconstruct:

1. (pki, ski) ← K(1κ): every node i calls this algorithm to generate a public and
secret key pair denoted pki and ski; and pki is registered with the PKI.

2. Share: A designated node called the dealer receives an input s ∈ F from Z and
all other nodes receive no input. Now all nodes execute the Share sub-protocol
for the dealer to secret-share its input. We assume that for the same VSS
instance, an admissible Z always instructs all honest nodes to start executing
Share in the same round. Should execution of Share successfully terminate, a
node would output a canonical output “sharing succeeded”.

3. Reconstruct: All nodes execute the Reconstruct sub-protocol to reconstruct a
secret that is shared earlier in the Share sub-protocol. We assume that an
admissible Z always instructs all honest nodes to start executing Reconstruct
in the same round. Should execution of Reconstruct successfully terminate, a
node would output a reconstructed secret s′ ∈ F.

Besides these real-world algorithms, a VSS scheme additionally has a
polynomial-time extractor algorithm E that is needed later in the security defini-
tions (including the definitions of validity and non-malleability). We shall explain
the extractor E later when we define security.

T -Liveness. Consider a pair (A,Z) that may spawn multiple (concurrent or
sequential) VSS instances all of which share the same n, PKI setup, and the same
Δ. Let T (n,Δ, κ) be a polynomial function in n, Δ, κ. We say that a VSS protocol
satisfies T -liveness under χ-weak-synchrony iff for any non-uniform p.p.t. (A,Z)



Synchronous, with a Chance of Partition Tolerance 521

that respects χ-weak-synchrony (and may spawn multiple instances sharing the
same PKI), there exists negl(·) such that for any κ ∈ N, such that except with
negl(κ) probability, the following holds for every VSS instance spawned:

1. Termination of Share under honest and initially online dealer: suppose that
the Share sub-protocol is spawned in round r0, and moreover the dealer is
in Or0 , then any node in Or for r ≥ r0 + T must have output “sharing
succeeded” by the end of round r;

2. Close termination of Share: if an honest node i has terminated the Share
sub-protocol outputting “sharing succeeded” in round r, then for every
r′ ≥ r + 2Δ, every node in Or′ must have terminated the Share sub-protocol
outputting “sharing succeeded” by the end of round r′;

3. Termination of Reconstruct: if by the end of some round r, some honest node
has terminated the Share sub-protocol outputting “sharing succeeded”, and
moreover honest nodes have been instructed to start Reconstruct, then, any-
one in Ot for t ≥ r + T must have terminated the Reconstruct sub-protocol
outputting some reconstructed value in F by the end of round t.

T -Validity. As before, we consider an (A,Z) pair that is allowed to spawn mul-
tiple (concurrent or sequential) VSS instances, all of which share the same n, PKI
setup, and Δ. Let T (n,Δ, κ) be a polynomial function in its parameters. Hence-
forth let Honest ⊆ [n] denote the set of honest nodes. We say that a VSS proto-
col satisfies T -validity under χ-weak-synchrony, iff for every non-uniform p.p.t.
(A,Z) that respects χ-weak-synchrony (and may spawn multiple VSS instances
sharing the same PKI where each instance has a unique sid), there exists a neg-
ligible function negl(·) such that except with negl(κ) probability, the following
holds for every VSS instance spawned: let s′ := E({pki}i∈[n], {ski}i∈Honest,Tr)
where Tr denotes the transcript observed by all honest nodes in the initial T
rounds of the Share sub-protocol; it must be that

(a) if an honest node ever outputs a reconstructed secret, the value must agree
with s′;

(b) if E outputs ⊥, then no honest node ever outputs “sharing succeeded”3;
(c) if the dealer is honest and online in the round in which the Share sub-protocol

was invoked, and moreover it received the input s from Z, then s′ = s.

Non-malleability. Consider the following experiment ExptA(1κ, s) involving an
adversary A and a challenger C, as well as a challenge input s ∈ F. We assume
that throughout the experiment, if an honest node outputs a string in any VSS
instance, the adversary A is notified of the node’s identifier, the identifier of the
VSS instance, as well as the corresponding output.

1. Setup. First, A chooses which set of nodes to corrupt. Henceforth the chal-
lenger C acts on behalf of all honest nodes and interact with A. The hon-
est nodes run the honest key generation algorithm such that each picks a
public/secret-key pair. The public keys are given to A. A now chooses cor-
rupt nodes’ public keys arbitrarily and sends them to C.

3 Note that (a) implies that if E outputs ⊥, then no honest node will ever output a
reconstructed secret.
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2. Queries. The adversary A is now allowed to (adaptively) instruct C to spawn
as many VSS instances as it wishes. The queries can be issued at any time,
including before, during, or after the challenge phase (see the Challenge
paragraph later).

– Whenever A sends C a tuple (sid ,Share, u, x) where sid ∈ {0, 1}∗ and
u ∈ [n], C spawns instance sid with node u as the dealer. If u is honest,
A must additionally specify the honest dealer u’s input x in this instance
(otherwise the field x is ignored). Now, C invokes the instance’s Share
sub-protocol (if this has not been done already);

– Whenever A sends C a tuple (sid ,Reconstruct) where sid ∈ {0, 1}∗, C
does the following: if the instance sid has been spawned, then invoke the
Reconstruct sub-protocol for that instance (if this has not been done).

– Whenever A sends C a tuple (sid ,Extract) and instance sid has executed
for at least T rounds, then C computes E({pki}i∈[n], {ski}i∈Honest,Tr)
where Tr is the transcript of honest nodes in the initial T rounds of the
Share sub-protocol; C returns the result to A.

3. Challenge. At any time, A may send the tuple (challenge, sid , u) to C
where u must be an honest node and the challenge sid must not be specified
in any Extract or Reconstruct query throughout the experiment (in the past or
future). C then spawns a challenge VSS instance identified by sid where u is
the designated dealer and receives the input s; further C invokes the challenge
instance’s Share sub-protocol.

4. Output. Whenever the adversary A outputs a bit b ∈ {0, 1}, this bit is
defined as the experiment’s output.

We assume that an admissible A never attempts to create two VSS instances
with the same sid , i.e., A chooses distinct session identifiers for all instances.
Further, throughout the experiment, A is allowed to decide which honest nodes
are online/offline in each round (after seeing the messages honest nodes want to
send in that round). A also controls the message delivery schedule4.

Definition 3 (Non-malleability for VSS). We say that a VSS scheme satis-
fies non-malleability under χ-weak-synchrony iff for any non-uniform p.p.t. A
that respects χ-weak-synchrony, there exists a negligible function negl(·) such that
for any s, s′ ∈ F,

∣
∣
∣Pr[ExptA(1κ, s) = 1] − Pr[ExptA(1κ, s′) = 1]

∣
∣
∣ ≤ negl(κ).

6.2 A 0.5-Weakly-Synchronous VSS Scheme

We show how to construct a 0.5-weakly synchronous VSS scheme. We will rely
on the following cryptographic primitives:

1. let NIZK := (K, K̃,P,V) denote multi-CRS NIZK scheme that satisfies com-
pleteness, zero-knowledge, and simulation soundness (see the online full ver-
sion [14]);

4 Specifically, when honest nodes running inside C want to send messages, the messages
are forwarded to A, and A tells C when each honest node receives what message.
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2. let PKE := (K,Enc,Dec) denote a perfectly correct public-key encryption
scheme that preserves IND-CCA security; and

3. let RBC denote a reliable broadcast scheme that satisfies Trbc-consistency,
Trbc-liveness, validity, and close termination under 0.5-weak-synchrony for
some polynomial function Trbc.

PKI setup (shared across all VSS instances): During the PKI setup phase,
every node i performs the following:

– let (epki, eski) ← PKE.K(1κ); (vki, sski) := Σ.K(1κ); crsi ← NIZK.K(1κ);
and let (rpki, rski) ← RBC.K(1κ);

– node i registers its public key pki := (epki, crsi, vki, rpki) with the PKI;
and it retains its secret key comprised of ski := (eski, sski, rski).

Share (executed by the dealer): Let s be the input received from the environ-
ment, the dealer does the following:

– it splits s into n shares using a (�n/2�+1)-out-of-n Shamir Secret Sharing
scheme, where the i-th share is henceforth denoted si;

– for i ∈ [n], it computes CTi := PKE.Encepki(sid , si) where sid is the
identifier of the current instance;

– it calls NIZK.P({crsi}i∈[n], x, w) to compute a proof π where x and w are
defined as below: x := (sid , {pki,CTi}i∈[n]) is the statement declaring
that there is a witness w := (s, {si}i∈[n]) such that for each i ∈ [n], CTi

is a valid encryption5 of (sid , si) under epki (which is part of pki); and
moreover, the set of shares {si}i∈[n] is a valid sharing of the secret s.

– finally, the dealer relies on RBC to reliably broadcast the tuple
(sid , {CTi}i∈[n], π)—henceforth this RBC instance is denoted RBC0.

Share (executed by everyone): Every node i does the following (where the start-
ing round of Share is renamed round 0):

– Any time: whenever the RBC0 instance outputs a tuple of the form
(sid , {CTj}j∈[n], π), call NIZK.V to verify the proof π w.r.t. the statement
(sid , {pki,CTi}i∈[n]); and if the check succeeds, set flag := 1 (we assume
that flag was initially 0).

– Round Trbc: if flag = 1, reliably broadcast the message “ok”; else reliably
broadcast the message “⊥”;

– Any time: whenever more than �n/2� + 1 RBC instances have output
“ok” and RBC0 has output a tuple; decrypt CTi contained in the tuple
output by RBC0 using secret key eski; let ( , si) be the decrypted outcome;
now record the share si and output “sharing-succeeded”;

Reconstruct (executed by everyone): when the Reconstruct sub-protocol has
been invoked, every node i waits till the instance’s Share sub-protocol has
output “sharing-succeeded” and then performs the following where the set
S is initially empty:

– let si be the share recorded at the end of the Share sub-protocol;

5 For simplicity, we omit writing the randomness consumed by PKE.Enc which is also
part of the witness.



524 Y. Guo et al.

– call NIZK.P({crsi}i∈[n], x, w) to compute a proof (henceforth denoted πi)
for the following statement x := (sid , i, si,CTi) declaring that there is
random string that causes PKE.K to output the tuple (epki, eski) where
epki ∈ pki; and moreover, (sid , si) is a correct decryption of CTi using
eski—the witness w includes the randomness used in PKE.K, eski, and
the randomness of PKE.Dec.

– multicast the tuple (sid , i, si, πi);
– upon receiving a tuple (sid , j, sj , πj) such that πj verifies w.r.t. the state-

ment (sid , j, sj ,CTj) where CTj was the output of RBC0 during the Share
sub-protocol, add sj to the set S.

– whenever the set S’s size is at least �n/2� + 1, call the reconstruction
algorithm of Shamir Secret Sharing to reconstruct a secret s, and if recon-
struction is successful, output the result.

Since the extractor algorithm E is only needed in the proofs, we defer its pre-
sentation to the online full version [14].

Theorem 6. Without loss of generality, assume that Trbc ≥ 3Δ (if not, we
can simply define Trbc := 3Δ); and moreover assume that the RBC scheme
employed satisfies Trbc-liveness, validity, Trbc-consistency, and close termination
under 0.5-weak-synchrony; the NIZK scheme employed satisfies zero-knowledge
and simulation soundness; and the PKE scheme satisfies IND-CCA security and
is perfectly correct. Then, the above VSS protocol satisfies 2Trbc-liveness, Trbc-
validity, and non-malleability under 0.5-weak-synchrony.

Proof. Please refer to the online full version [14].

7 Leader Election (LE)

7.1 Definition

A leader election (LE) protocol is an inputless protocol such that when a node
terminates, it outputs an elected leader L ∈ [n]. For the outcome of LE to be
considered good, we want that not only every honest node must agree on the
leader, but also that this leader belongs to Or for some a-priori known round r.
We would like that the LE achieves a good outcome with O(1) probability. Our
actual definition below is somewhat tricky due to compositional issues that arise
due to multiple LE instances sharing the same PKI. We would like that even when
multiple LE instances share the same PKI, roughly speaking, almost surely there
is still independent constant probability that each individual instance’s outcome
is good. In our formal definition below, we will precisely specify which subset of
honest coins that are freshly chosen in each LE instance allow us to capture this
desired independence. Note that this independence property is desired because
later in our BA protocol, we need to argue that after super-logarithmically many
trials, an honest leader must be elected except with negligible probability. We
formalize the definitions below.
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T -liveness. Consider an (A,Z) pair that is allowed to spawn multiple concurrent
or sequential LE instances all of which share the same n, PKI setup, and Δ.

Let T (n,Δ, κ) be a polynomial function in its parameters. We say that an LE
protocol denoted Π satisfies T -liveness under χ-weak-synchrony if for every non-
uniform p.p.t. (A,Z) that respects χ-weak-synchrony and may spawn multiple
LE instances sharing the same PKI, there exists a negligible function negl(·)
such that for every κ ∈ N, except with negl(κ) probability, the following holds
for every LE instance spawned (for the LE instance of interest, we rename its
starting round to round 0):

every node in Or for r ≥ T must have output by the end of round r.

(T ∗, q)-quality. We consider an (A,Z) pair who can spawn m(κ) LE instances
possibly running concurrently. Henceforth let ρ∗

� denote the collection of the
following randomness:

for each node honest and online in the starting round (i.e., round 0) of the
�-th instance: the first d(κ, n) bits of randomness consumed by this node in
this round,

where d(κ, n) is an appropriate polynomial function that depends on the con-
struction. Let ρ be all randomness consumed by the entire experiment (including
by (A,Z) and by honest nodes and the randomness of the PKI), and let ρ\ρ∗

�

denote all other randomness besides ρ∗
� .

We say that a leader election (LE) protocol satisfies (T ∗, q)-quality under
χ-weak-synchrony, iff for any polynomial function m(κ), for any non-uniform
p.p.t. (A,Z) that respects χ-weak-synchrony and spawns m(κ) LE instances
possibly executing concurrently, there exists a negligible function negl(·) such
that for all κ ∈ N, for every 1 ≤ � ≤ m(κ), except for a negl(κ) fraction of
choices for ρ\ρ∗

� , there exist at least q fraction of choices for ρ∗
� , such that the

experiment (determined by the joint randomness choice above) would guarantee
the following good events for the �-th instance:

1. Consistency: if an honest node outputs L and another honest node outputs
L′, it holds that L = L′; and

2. Fairness: let L be the leader output by an honest node, we have that L ∈ OT ∗

(assuming that the start round of the �-th instance is renamed round 0).

7.2 Construction

The construction is a bit involved and thus we refer the reader to Sect. 2.3 for
an intuitive explanation of our protocol. Below we focus on a formal description.

Let VSS denote a verifiable secret sharing scheme for inputs over the finite
field F. (see Sect. 6.2) and let Tvss be its liveness parameter. We now show how
to construct leader election from verifiable secret sharing. In our protocol below,
there are n2 instances of VSS. Henceforth we use VSS[i, j] to denote the j-th
instance where node i is the designated dealer. Additionally, let RBC denote
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a reliable broadcast protocol (see Sect. 5) whose liveness parameter is denoted
Trbc. Let Σ := (K,Sign,Ver) denote a digital signature scheme.

The following protocol is executed by every node, below we describe the
actions taken by node i ∈ [n]—for simplicity we implicitly assume that every
message is tagged with its purported sender:

– PKI setup (shared across all LE instances): each node i calls (rpki, rski) ←
RBC.K(1κ); (vpki, vski) ← VSS.K(1κ); and (vki, sski) ← Σ.K(1κ). Now its
public key is (rpki, vpki, vki) and its secret key is (rski, vski, sski).
In the following, we describe the leader election (LE) protocol. We assume
that all LE protocols share the same PKI. Moreover, whenever a node i uses
sski to sign messages, the message to be signed is always tagged with the
session identifier sid of the current instance and signature verification also
verifies the signature to the same sid .

– Round 0: Node i chooses n random coins ci,1, . . . , ci,n ∈ F. For instances
VSS[i, 1], . . ., VSS[i, n] where node i is the dealer, node i provides the inputs
ci,1, . . . , ci,n respectively to each instance. Then, node i invokes the Share
sub-protocol of all n2 instances of VSS.

– Any round: At any time during the protocol, if in node i’s view, all n VSS
instances where node j is the dealer has terminated outputting “sharing
succeeded”, we say that node i now considers j as a qualified dealer.

– Round Tvss: If in round Tvss, at least �n/2� + 1 qualified dealers have been
identified so far: let D be the current set of all qualified dealers; reliably
broadcast the message (qualified-set, D) using RBC. Henceforth, we use
RBC[j] to denote the RBC instance where j is the sender. If not enough
qualified dealers have been identified, reliably broadcast the message ⊥.

– Any round: In any round during the protocol, if RBC[j] has output
(qualified-set, Dj) such that Dj is a subset of [n] containing at least
�n/2� + 1 nodes, and moreover every node in Dj has become qualified w.r.t.
node i’s view so far, then node i considers j as a candidate, and node i records
the tuple (j,Dj).

– Round Tvss + Trbc: In round Tvss + Trbc, do the following:
• invoke the Reconstruct sub-protocol of all VSS instances;
• if at least �n/2�+1 nodes are now considered candidates: let S be the set

of all candidates so far; now multicast (candidate-set, S) along with a
signature on the message.

– Any round: At any time, if a node i has observed a (candidate-set, Sj)
message with a valid signature from the purported sender j where Sj ⊆ [n] is
at least �n/2� + 1 in size, and moreover, every node in Sj is now considered
a candidate by node i too, we say that node i becomes happy with j.

– As soon as node i becomes happy with at least �n/2� + 1 nodes, let S∗
i be

the current set of nodes that are considered candidates;
– As soon as the relevant VSS instances (needed in the following computation)

have terminated the reconstruction phase outputting a reconstructed secret—
henceforth let c′

u,v be the secret reconstructed from instance VSS[u, v]:
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• For every u ∈ S∗
i : let (u,Du) be a previously recorded tuple when u first

became a candidate; compute node u’s charisma as Cu :=
∏

v∈Du
c′
v,u.

• Output the node u∗ ∈ S∗
i with maximum charisma (where ordering

between elements in F is determined using lexicographical comparisons).

Theorem 7. Suppose that the VSS scheme satisfies Tvss-liveness, Tvss-validity,
and non-malleability under 0.5-weak-synchrony; the RBC scheme satisfies Trbc-
consistency, Trbc-liveness, validity, and close termination under 0.5-weak-
synchrony, and the signature scheme satisfies existential unforgeability under
chosen-message attack. Then, the above LE scheme satisfies (2Tvss + Trbc)-
liveness and (Tvss, 1/2)-quality under 0.5-weak-synchrony.

Proof. Please refer to the online full version [14].

8 Byzantine Agreement

Let LE be a leader election scheme that satisfies Tle-liveness and (T ′
le, 1/2)-quality

under 0.5-weak-synchrony where Tle > T ′
le.

PKI setup. Upfront, every node performs PKI setup as follows: every node
calls (LE.pk, LE.sk) ← LE.K(1κ); further, it calls (vk, ssk) ← Σ.K(1κ). The tuple
(LE.pk, vk) is the node’s public key and registered with the PKI, and the tuple
(LE.sk, ssk) is the node’s secret key.

As before we assume that all messages, excluding the ones within the LE
instance6, are signed (using each node’s ssk) and tagged with the purported
sender, and honest recipients verify the signature (using the purported sender’s
vk) upon receiving any message. To allow multiple BA instances to share the
same PKI, we assume that a message is always tagged with the current instance’s
session identifier sid before it is signed and the verification algorithm checks the
sid accordingly. Messages with invalid signatures are discarded immediately.

Protocol. In the following, an epoch-e commit evidence for b ∈ {0, 1} is a
set of signatures from �n/2� + 1 number of distinct nodes on the message
(prepare, e, b). Our protocol works as follows. For each epoch e = 1, 2, . . ., do
the following (henceforth the initial round of each epoch is renamed round 0 of
this epoch):

– Propose. For the initial Tle rounds in each epoch, do the following:
1. If the current epoch is e = 1, then in round 0 of epoch 1, the sender

multicasts a signed tuple (propose, b) where b is its input bit.
2. Round 0 of every epoch: invoke an instance of the LE protocol.
3. Round T ′

le of every epoch: every node i ∈ [n] flips a random coin
bi←${0, 1}, and multicasts a signed tuple (propose, bi)

6 Recall that the LE instance deals with its own message signing internally.
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– Prepare (round Tle + Δ of each epoch). If e = 1 and a node has heard
an epoch-1 proposal for b from the sender, then it multicasts the signed tuple
(prepare, e, b). Else if e > 1, every node performs the following:
1. if an epoch-e proposal of the form (propose, e, b) has been heard from an

eligible epoch-e proposer which is defined by the output of LE and more-
over, either an epoch-(e−1) commit evidence vouching for b or �n/2� + 1
epoch-(e − 1) complaints from distinct nodes have been observed, multi-
cast the signed tuple (prepare, e, b).
If LE has not produced an output in the range [n] at the beginning of this
round, act as if no valid proposal has been received.

2. else multicast the signed tuple (prepare, e, b) if the node has seen an
epoch-(e − 1) commit evidence vouching for the bit b (if both bits satisfy
this then send a prepare message for each bit).

– Commit (round Tle + 2Δ of each epoch). If by the beginning of the
commit round of the current epoch e, a node
1. has heard an epoch-e commit evidence for the bit b;
2. has not observed a valid epoch-e proposal for 1 − b (from an eligible

proposer); and
3. has not observed any epoch-(e − 1) commit evidence for 1 − b;

then multicast the signed tuple (commit, e, b).
– Complain (round Tle + 3Δ of each epoch). If no epoch-e commit evidence

has been seen, multicast the signed tuple (complain, e).
– End of this epoch and beginning of next epoch (round Tle + 4Δ).

Finalization. At any time during the protocol, if a node has collected �n/2� + 1
commit messages (from distinct nodes) for the same epoch and vouching for the
same bit b, then output b if no bit has been output yet and continue participating
in the protocol (we devise a termination technique in the online full version [14]).

Theorem 8. Suppose that the LE scheme satisfies Tle-liveness and (Tle
′, 1/2)-

quality under 0.5-weak-synchrony, the digital signature scheme employed is secure,
and let λ be any super-logarithmic function in the security parameter κ. Then, the
BA scheme above satisfies consistency, validity, and λ · (Tle + 4Δ)-liveness under
0.5-weak-synchrony.

Proof. Please refer to the online full version [14].
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Abstract. We put forward the notion of subvector commitments (SVC): An SVC
allows one to open a committed vector at a set of positions, where the opening size
is independent of length of the committed vector and the number of positions to
be opened. We propose two constructions under variants of the root assumption
and the CDH assumption, respectively. We further generalize SVC to a notion
called linear map commitments (LMC), which allows one to open a committed
vector to its images under linear maps with a single short message, and propose
a construction over pairing groups.

Equipped with these newly developed tools, we revisit the “CS proofs”
paradigm [Micali, FOCS 1994] which turns any arguments with public-coin ver-
ifiers into non-interactive arguments using the Fiat-Shamir transform in the ran-
dom oracle model. We propose a compiler that turns any (linear, resp.) PCP into a
non-interactive argument, using exclusively SVCs (LMCs, resp.). For an approx-
imate 80 bits of soundness, we highlight the following new implications:

1. There exists a succinct non-interactive argument of knowledge (SNARK)
with public-coin setup with proofs of size 5360 bits, under the adaptive root
assumption over class groups of imaginary quadratic orders against adver-
saries with runtime 2128. At the time of writing, this is the shortest SNARK
with public-coin setup.

2. There exists a non-interactive argument with private-coin setup, where
proofs consist of 2 group elements and 3 field elements, in the generic bilin-
ear group model.

1 Introduction

Commitment schemes are one of the fundamental building blocks and one of the most
well-studied primitives in cryptography. Due to their pivotal importance in the design of
cryptographic protocols, even small efficiency improvements have magnified repercus-
sions in the field. In a recent work, Catalano and Fiore [27] put forth the notion of Vector
Commitments (VC): A VC allows a prover to commit to a vector x of � messages, such
that it can later open the commitment at any position i ∈ [�] of the vector, i.e., reveal
a message and show that it equals to the i-th committed message. The distinguishing
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feature of VCs is that the size of the commitments and openings is independent of �.
A VC scheme is required to be position binding, meaning that no efficient algorithm
can open a commitment at some position i to two distinct messages xi �= x′

i. Catalano
and Fiore [27] constructed two VC schemes based on the CDH assumption over pair-
ing groups and the RSA assumption, respectively. In both schemes, a commitment and
an opening both consist of a single group element (in the respective groups). Further-
more, the scheme based on the RSA assumption has public parameters whose size is
independent of the length of the vectors to be committed.

This concept was later generalized by Libert et al. [48], who formalized the notion
of functional commitment (FC). Intuitively, an FC allows the prover to commit to a vec-
tor x, and to open the commitment to function-value tuples (f, y) such that y = f(x).
Libert et al. [48] proposed a construction for linear forms1 based on the Diffie-Hellman
exponent assumption over pairing groups, where a commitment and an opening both
consist of a single group element. VCs and FCs for linear forms are very versatile tools
and turned out to be useful for a variety of applications, such a zero-knowledge sets [54],
polynomial commitments [44], accumulators, and credentials, to mention a few.

While a short commitment is certainly an appealing feature, there are contexts where
there is still a lot to be desired. For example, in case the prover wants to reveal multiple
locations of the committed vector (resp. multiple function outputs) the best known solu-
tion is to repeat the above protocol in parallel. This means that the size of the openings
grows linearly with the amount of revealed locations (resp. function outputs).

1.1 Commitments with Even Shorter Openings

We introduce the notion of subvector commitments (SVCs). An SVC allows one to
commit to a vector x of length � and later open to a subvector of an arbitrary length
≤ �. Given an ordered index set I ⊆ [�], we define the I-subvector of x as the vector
formed by collecting the i-th component of x for all i ∈ I . While a VC is required to
be succinct, namely the commitment size and the size of the proof of the opening are
independent of the length of the committed vector, an SVC has a stronger compactness2

property which additionally requires that these sizes do not depend on the length of
the subvector to be opened. This difference is going to be critical for our applications
(explained later). Improving upon the VC constructions of Catalano and Fiore [27], we
propose two constructions of SVCs based on the CDH assumption over pairing groups
and the RSA assumption, respectively. We further generalize the RSA-based scheme to
work over modules over Euclidean rings [51], where variants of the root assumption
are conjectured to hold. Loosely speaking, the root assumption states that it is hard
to find the e-th root of a random ring element, for any non-trivial e. In these settings
we obtain public-coin-setup instantiations of SVCs using class groups of imaginary
quadratic orders.

1 A linear form is a linear map from a vector space to its field of scalars. Libert et al. [48] used
the more general term linear functions to refer to linear forms.

2 The term “compactness” is borrowed from the literature of randomized encodings (RE) and
functional encryption, and not to be confused with the compactness notion of homomorphic
encryption. For example, a compact RE of a computation with n outputs should have size
independent of n [49].
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We then generalize the notion of SVCs to allow the prover to reveal arbitrary linear
maps f : F

� → F
q computed over the committed vector. We call such class of schemes

linear map commitments (LMC). As in SVC, it is important to require an LMC to be
compact, meaning that both the commitment and the proofs are of size independent of
� and q, whereas succinctness only requires their size to be independent of �. Note that
an SVC can be viewed as an LMC restricted to the class of linear maps whose matrix
representation has exactly one 1 in each row and 0 everywhere else.

Table 1. Comparison of subvector and linear map commitments for messages of length �, with
binding against adversaries of runtime 2λ. All constants are omitted. pp: public parameters, C:
commitment, Λ: proof, Pub: public-coin, Pri: private-coin, CRH: collision-resistant hash, Root:
strong or adaptive root, SD: subgroup decision, GGM: generic bilinear group model.

Scheme |pp| |C| |Λ| time(Com) time(Open) time(Verify) Setup Assumption

Merkle Tree [52] 1 λ λq log � λ� λq log � λq log � Pub CRH

VC (RSA) [27] λ3� λ3 λ3q λ3� λ3q�2 λ3q Pri RSA

VC (CDH) [27] λ�2 λ λq λ� λq� λq Pri CDH

SVC (Class Group) λ2� λ2 λ2 λ2� λ2(� − q2) λ2q Pub Root

SVC (CDH) λ�2 λ λ λ� λq� λq Pri CDH

FC (linear form) [48] λ3� λ3 λ3q λ3� λ3q� λ3q� Pri SD

LMC λq� λ λ λ� λq�2 λq� Pri GGM

Naively, one may attempt to generalize position binding for LMC by requiring that
the prover cannot open a commitment to (f,y) and (f,y′) with y �= y′, where f is
a linear map and y,y′ ∈ F

k are now vectors. This turns out to be insufficient for our
applications: This is because the prover may be able to open to (f,y) and (f ′,y′) where
f �= f ′ and y �= y′ such that they form an inconsistent system of linear equations, yet
the attack is not captured by the definition. We tackle this issue by defining a more
general function binding notion which requires that no efficient algorithm can produce
openings for Q function-value tuples {(fk,yk)}k∈[Q] for any Q ∈ poly(λ), such that
there does not exist x with fk(x) = yk for all k ∈ [Q].

We then modify the construction of Libert et al. [48] to support batch openings to
linear forms or, equivalently opening to a linear map. Since the verification equation
of their construction is linear, a natural way to support batch openings is to define the
new verification equation as a random linear combination of previous ones. With this
observation, we embed a secret linear combination in the public parameters, and show
that the resulting construction is function binding in the generic bilinear group model.
In Table 1 we compare our SVC and LMC constructions with existing schemes.

1.2 The Quest of Constructing Ever Shorter Arguments

In addition to enabling batching in the original applications of VCs and FCs for linear
forms mentioned above, the compactness of SVCs and LMCs opens the new possibili-
ties of application in constructing succinct argument systems.
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Background. An argument system for an NP language L allows a prover, with a wit-
ness w, to convince a verifier that a certain statement x is in L. In contrast with proof
systems, argument systems are only required to be computationally sound. Due to this
relaxation, it is possible that the interaction between the prover and the verifier is suc-
cinct, i.e., the communication complexity is bounded by some polynomial poly(λ) in
the security parameter and is independent of the size of w. Other desirable properties of
an argument system are:

– “of knowledge”: a successful prover implies an extractor that can recover the witness;
– non-interactive: the protocol consists of a single message from the prover;
– (verifier) public-coin: messages from the verifier are sampled from public domains.

Recently, much progress has been made both in theory and practice to construct suc-
cinct non-interactive arguments of knowledge (SNARK) for general NP languages. We
distinguish between SNARKs in the public-coin-setup model and the pre-processing
model. In the public-coin-setup model, the prover and the verifier do not share any
input other than the statement x to be proven. In the pre-processing model, they share
a common reference string, generated by a trusted third party, which may depend on
the language L and the statement x. In general, existing SNARKs in the pre-processing
model are more efficient, in terms of both communication and computation, than those
in the public-coin-setup model. This reflects the intuition that pushing the majority of
the verifier’s workload to the offline pre-processing phase reduces its workload in the
online phase. On the other hand, in some applications, such as cryptocurrencies, it is
crucial to have a public-coin setup, which can be publicly initialized via, e.g., a random
oracle [8].

Public-Coin-Setup SNARKs. While it is known that public-coin-setup non-interactive
arguments for NP do not exists in the standard model [15], one can circumvent this
impossibility by working in the random oracle model [8]. A common way to obtain
public-coin-setup SNARKs is through the “CS proofs” paradigm [45,53] based on
probabilistically checkable proofs (PCP) [3]. To recall, a q-query 2−σ-soundness PCP
scheme allows the prover to efficiently compute a PCP string which encodes the wit-
ness of the statement to be proven. The verifier can then decide whether the statement
is true with probability close to 1−2−σ by inspecting q entries of the PCP string. Given
a PCP, a SNARK under the CS proofs paradigm are constructed in two steps. First, the
PCP is turned into an interactive argument system: The prover first commits to the PCP
string, typically using a Merkle-tree commitment. The verifier then sends the indices
of the entries to be inspected. Next, the prover opens the commitment at these entries.
Finally, by inspecting the revealed entries, the verifier can decide whether the statement
is valid. Typically, an argument system constructed this way has a public-coin verifier
and can be made non-interactive using the Fiat-Shamir transform [35].

Under the CS proofs paradigm, a proof (e.g., in the scheme by Micali [53]) consists
of a λ-bit Merkle-tree commitment of a �-bit PCP string, q bits of the PCP string, and
q openings of the commitment, each of size λ log � bits. For concreteness, assuming
a 3-query PCP and � = 230, for 2−80-soundness against a 2128-time adversary, the
proof size is around 113 KB. Despite having linear verification time (hence not being a
SNARK) Bulletproof [21,26] is arguably the most practically efficient non-interactive
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argument to date. A proof in [26] consists of 2 log n + 13 (group and field) elements,
where n is the number of multiplication gates in the arithmetic circuit representation of
the verification algorithm of L. In their instantiation over the curve secp256k1, each of
the group elements and integers can be represented by ∼256 bits, thus a proof consists
of roughly 512 log n + 3328 bits.

Pre-Processing SNARKs. In the pre-processing model, there exist plenty of SNARK
constructions originated by [37] based on pairings and linear interactive proofs (LIP),
where the latter can be constructed from linear PCPs. To recall, linear PCPs [42] gen-
eralizes traditional PCPs in the sense that the PCP string now encodes a linear form.
In a q-query linear PCP, the verifier, who is given oracle access to the linear form, can
decide the veracity of the statement with overwhelming probability by making only q
queries. SNARK constructions in this category typically have a computationally expen-
sive statement-dependent pre-processing phase, meaning that one set of public param-
eters has to be generated per statement to be proven.

In this setting, the scheme with the shortest proofs (4 group elements) in the standard
model is due to Danezis et al. [32]. In the generic bilinear group model, Groth [40]
proposed a scheme [60] with only 3 group elements, and showed that proofs constructed
from LIP must consist of at least 2 group elements. These schemes can be instantiated
over pairing-friendly elliptic curves. A popular choice is the 256-bit Barreto-Naehrig
curve [7], in which a group element can be represented using 256 bits.

Our Approach. Equipped with our newly developed tools, we revisit the CS proofs
paradigm. In previous schemes following this paradigm, the proof size is dominated by
the factor q log � due to the q Merkle-tree commitment openings. Moreover, due to the
lack of structure of a Merkle-tree commitment, prior schemes do not work with linear
PCPs. The main idea is thus to replace the Merkle-tree commitment with an SVC/LMC,
so that the q openings can be compressed into a single one which has size independent
of � and q. By doing so, we obtain a compiler which compiles any (resp. linear) PCP
into an interactive argument using an SVC (resp. LMC).

We highlight two interesting instantiations of our construction. The first instantia-
tion is with classical PCPs and our public-coin-setup SVC based on Cl(Δ), the class
group of imaginary quadratic order with discriminant Δ.

Instantiation 1. If the adaptive root assumption holds in Cl(Δ), then there exist
public-coin-setup SNARKs for NP with soundness error 2−σ in which a proof con-
sists of 2 Cl(Δ) elements and q bits in the random oracle model, using any q-query
2−σ-soundness PCP.

If one aims for an extremely short proof and is willing to accept expensive prover com-
putation, then a 3-query 2−1-soundness PCP can be amplified into a 3σ-query 2−σ-
soundness PCP and gives the shortest SNARK. Based on the best known attacks on the
root problem in class groups [41], for a soundness error of 2−80 against a 2128-time
adversary, we obtain a proof size of 5360 bits, which is shorter than that of Bullet-
proof [26] for n > 16, i.e., the verification circuit has more than 16 multiplication
gates. We view this instantiation as a feasibility for extremely succinct proofs and a
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step forward towards optimal (O(λ)-sized) public-coin-setup SNARKs. Next we turn
our attention to the instantiation with linear PCPs and our pairing-based LMCs.

Table 2. Comparison of SNARKs with 2−λ-soundness against adversaries of runtime 2128.
All constants are omitted. pp: public parameters, π: proof, n: size of circuit, �PCP: length of
PCP proof, �LPCP: length of linear PCP proof, Pub: public-coin, Pri: private-coin, Pre-Proc: pre-
processing, Root: strong or adaptive root assumption, GGM: generic group model.

Scheme |pp| |π| Setup Assumption

CS Proof (Merkle Tree Compiler) [45,53] 1 λ2 logn Pub ROM

Bulletproof [21,26] λn λ logn Pub DLog, ROM

Aurora [12] 1 λ log2 n Pub ROM

SVC Compiler (Class Group) λ2�PCP λ2 Pub Root, ROM

Groth [40] λn λ Pre-Proc GGM

SVC Compiler (CDH) λ�2LPCP λ Pri CDH, ROM

LMC Compiler λ�LPCP λ Pri GGM, ROM

Instantiation 2. In the generic bilinear group and random oracle model, there exist
pre-processing non-interactive arguments for NP in which a proof consists of 2 G ele-
ments and q field elements, using any q-query linear PCP.

Using a 3-query linear PCP (e.g. [17]) and instantiating the pairing group over the 256-
bit Barreto-Naehrig curve yields a proof consisting of 5 elements or 1280 bits. Com-
pared to other pairing-based compilers from linear PCPs to preprocessing SNARKs
(e.g., [40]), our compiler has the advantages that it supports any linear PCPs, but not
only those where the verifier is restricted to only evaluate quadratic polynomials. More-
over the setup phase is independent of the statements to be proven, and thus the same
public parameters can be reused for proving many statements.

A comparison with the shortest succinct arguments from the literature is given in
Table 2. To summarize, our approach yields extremely short proofs in exchange for a
higher prover complexity and the usage of public-key cryptography. We also stress that
our compiler is compatible with a broader class of PCPs, when compared with schemes
under the CS proofs paradigm and pairing-based schemes. Being a very active area
of research, we expect significant advancements in the design of more efficient PCPs,
which are going to benefit from the generality of our approach.

Other Applications. Catalano and Fiore [27] suggested a number of applications of
VC, including verifiable databases with efficient updates, updatable zero-knowledge
elementary databases, and universal dynamic accumulators. In all of these applications,
one can gain efficiency by replacing the VC scheme with an SVC scheme which allows
for batch opening and updating. When instantiated with our first construction of SVC,
one can further avoid the private-coin setup, which is especially beneficial to database
applications as trusted third parties are no longer required.
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The notion of SVC has already attracted the attention of the community. A follow
up work by Boneh et al. [20] shows how SVCs can be used as a drop-in replacement for
Merkle-trees in SNARKs based on interactive oracle proofs (IOPs) which generalizes
PCPs. They leverage the structure of class group-based SVCs to reduce the proof size
to (r + 1) group elements and r integers, where r is the number of iterations of the
underlying IOP. They also propose a technique to improve the efficiency of the verifica-
tion algorithm and they estimate a decrease in verification time of ∼80%. Finally, they
discuss how to use SVCs to improve the current design of blockchain-based transaction
ledger in such a way that no user has to store the entire state of the ledger in memory.

1.3 Related Work

Succinct arguments were introduced by Kilian [45,46] and later improved, in terms of
round complexity, by Lipmaa and Di Crescenzo [34]. Succinct non-interactive argu-
ments, or computationally sound proofs, were first proposed by Micali [53]. These
early approaches rely on PCP and have been recently extended [9] to handle interac-
tive oracle proofs [13] (also known as probabilistic checkable interactive proofs [57]),
largely improving the efficiency of the prover. A recent manuscript by Ben-Sasson
et al. [10] improves the concrete efficiency of interactive oracle proofs. The first usage
of knowledge assumptions to construct SNARKs appeared in the work of Mie [55].
Later, Groth [39] and Lipmaa [50] upgraded this approach to non-interactive proofs.

Ishai, Kushilevitz, and Ostrovsky [42] observed that linear PCPs can be com-
bined with a linearly homomorphic encryption to construct more efficient arguments,
with pre-processing. The also introduced a new (interactive) commitment scheme with
private-coin verifier for linear functions. However, in contrast with LMC, their bind-
ing definition does not ensure that the committed function is actually linear. Gennaro
et al. [37] presented a very elegant linear PCP that gave rise to a large body of work to
improve the practical efficiency of non-interactive arguments [5,11,14,28,29,33]. All
of these constructions assume a highly structured and honestly generated common ref-
erence string (of size proportional to the circuit to be evaluated) and rely on some variant
of the knowledge of exponent assumption. Recently, Ames et al. [2] proposed an argu-
ment based on the MPC-in-the-head [43] paradigm to prove satisfiability of a circuit
C with proofs of size O(λ

√|C|). Zhang et al. [64] show how to combine interactive
proofs and verifiable polynomial delegation schemes to construct succinct interactive
arguments. The scheme requires a private-coin pre-processing and the communication
complexity is O(λ log |w|). A recent result by Whaby et al. [62] introduces a prover-
efficient construction with proofs of size O(λ

√|w|). Recent works [1,36] investigate
on the resilience of SNARKs against a subverted setup. Libert, Ramanna, and Yung [48]
constructed an accumulator for subset queries. Although similar in spirit to SVC, the
critical difference is that accumulators are not position binding, which is crucial for the
soundness of our argument system.

2 Preliminaries

Throughout this work we denote by λ ∈ N the security parameter, and by poly (λ)
and negl(λ) the sets of polynomials and negligible functions in λ, respectively. We
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say that a Turing machine is probabilistic polynomial time (PPT) if its running time
is bounded by some polynomial function poly(λ). An interactive protocol Π between
two machines A and B is referred to as (A,B)Π . Given a set S, we denote sampling
a random element from S as s ←$ S and the output of an algorithm A on input x is
written as z ← A(x). Let � ∈ N, the set [�] is defined as [�] := {1, . . . , �}. Vectors are
written vertically.

2.1 Subvectors

We define the notion of subvectors. Roughly speaking, a subvector (xi1 , . . . , xi|I|)
T is

an ordered subset (indexed by I) of the entries of a given vector (x1, . . . , x�)T .

Definition 1 (Subvectors). Let � ∈ N, X be a set, and (x1, . . . , x�)T ∈ X � be a vector.
Let I = (i1, . . . , i|I|) ⊆ [q] be an ordered index set. The I-subvector of x is defined as
xI := (xi1 , . . . , xi|I|)

T .

2.2 Arguments of Knowledge

Let R : {0, 1}∗ ×{0, 1}∗ → {0, 1} be an NP-relation with corresponding NP-language
L := {x : ∃w s.t . R(x,w) = 1}. We define arguments of knowledge [22] for interac-
tive Turing machines [38]. To be as general as possible, we define an additional setup
algorithm S, which is executed once and for all by a possibly trusted party. If the argu-
ment is secure without a setup, then such an algorithm can be omitted.

Definition 2 (Arguments of knowledge). A tuple (S, (P,V)Π) is a 2−σ-sound (suc-
cinct) argument of knowledge for R if the following conditions hold.

(Completeness). If R(x,w) = 1 then Pr
y←S(1λ)

[(P(x,w, y),V(x, y))Π = 1] = 1.

(Soundness). For any PPT adversary A, all x /∈ L, and all z ∈ {0, 1}∗,
Pr

y←S(1λ)
[(A(x, z, y),V(x, y))Π = 1] < 2−σ.

(Argument of Knowledge). For any PPT adversary A, there exists a PPT extractor
E , such that for all x, z ∈ {0, 1}∗, Pr

y←S(1λ)
[(A(x, z, y),V(x, y))Π = 1] > negl(λ),

then Pr[R(x,w) = 1|w ← EA(x)] > negl(λ) .
(Succinctness). The communication between P and V is at most poly(λ, log |x|).

2.3 Probabilistically Checkable Proofs

One of the principal tools in the construction of argument systems is probabilistic
checkable proofs (PCP) [3]. It is known that any witness w for an NP-statement can
be encoded into a PCP of length poly(|w|) bits such that it is sufficient to probabilisti-
cally test O(1) bits of the encoded witness.

Definition 3 (Probabilistically Checkable Proofs). A pair of machines (PPCP,VPCP)
is a �-long q-query 2−σ-sound PCP for an NP-relation R if the following hold.
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(Completeness). If R(x,w) = 1, then Pr [Vπ
PCP(x) = 1|π ← PPCP(x,w)] = 1.

(Soundness). For all x /∈ L, Pr [Vπ
PCP(x) = 1|π ← PPCP(x,w)] < 2−σ.

(Proof Length). If R(x,w) = 1, then for all π ∈ PPCP(x,w), |π| ≤ �.

(Query Complexity). For all x,π ∈ {0, 1}∗, Vπ
PCP(x) queries at most q locations of π.

The notation Vπ
PCP(x) means that VPCP does not read the entire string π directly, but is

given oracle access to the string. On input a position i ∈ [|π|], the oracle returns the
value πi. It is well known that one can diminish the soundness error to a negligible func-
tion by repetition. We additionally require that the witness can be efficiently recovered
from the encoding of the witness π [61].

Definition 4 (Proof of Knowledge). A PCP is of knowledge if there exists a PPT algo-
rithm EPCP such that, given any strings x and π with Pr [Vπ

PCP(x) = 1] > negl(λ),
Eπ
PCP(x) extracts an NP witness w for x.

Linear PCPs. Ishai et al. [42] considered the notion of linear PCP, where the string π
is instead a vector in F

� for some finite field F (or in general a ring) and positive
integer �. The oracle given to the verifier is modified, such that on input f ∈ F

�, it returns
the inner product 〈f ,π〉. Note that this generalizes the classical notion of PCP as one
can recover the original definition by restricting the queries f to be unit vectors. In this
paper we are interested in the notion of linear PCP where soundness is only guaranteed
to hold against linear functions (same as considered in [17]).

3 Mathematical Background and Assumptions

To capture the minimal mathematical structure required for one of our constructions,
we follow the module-based cryptography framework of Lipmaa [51].

Background. A (left) R-module RD over the ring R (with identity) consists of an
Abelian group (D,+) and an operation ◦ : R × D → D, denoted r ◦ A for r ∈ R and
A ∈ D, such that for all r, s ∈ R and A,B ∈ D, we have

– r ◦ (A + B) = r ◦ A + r ◦ B,
– (r + s) ◦ A = r ◦ A + s ◦ A,
– (r · s) ◦ A = r ◦ (s ◦ A), and
– 1R ◦ r = r, where 1R is the multiplicative identity of R.

Let S = (s1, . . . , s�) ⊆ N be an ordered set, and r = (rs1 , . . . , rs�
)T ∈ R� and

A = (As1 , . . . , As�
)T ∈ D� be vectors of ring and group elements respectively. For

notational convenience, we denote
∑

i∈S ri ◦ Ai by 〈r,A〉.
A commutative ring R with identity is called an integral domain if for all r, s ∈ R,

rs = 0R implies r = 0R or s = 0R, where 0R is the additive identity of R. A ring
R is Euclidean if it is an integral domain and there exists a function deg : R → Z

+,
called the Euclidean degree, such that (i) if r, s ∈ R, then there exist q, k ∈ R such
that r = qs + k with either k = 0R, k �= 0R and deg(k) < deg(q), and (ii) if
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r, s ∈ R with rs �= 0R and r �= 0R, then deg(r) < deg(rs). The set of units U(R) :=
{u ∈ R : ∃v s.t . uv = vu = 1R} contains all invertible elements in R. An element
r ∈ R\({0R}∪U(R)) is said to be irreducible if there are no elements s, t ∈ R\{1R}
such that r = st. The set of all irreducible elements of R is denoted by IRR(R). An
element r ∈ R\({0R}∪U(R)) is said to be prime if for all s, t ∈ R, whenever r divides
st, then r divides s or r divides t. If R is Euclidean, then an element is irreducible if
and only if it is prime.

Adaptive Root. The adaptive root assumption (over unknown order groups, and
in particular over class groups of imaginary quadratic orders) was introduced by
Wesolowski [63] and re-formulated by Boneh et al. [19] to establish the security of the
verifiable delay function scheme of Wesolowski [63]. Here we state the same assumption
over modules in two variants – with private and public coins. Note that Wesolowski [63]
and Boneh et al. [19] implicitly considered the public-coin-setup variant.

Definition 5 ((Public-Coin) Adaptive Root). Let I be some ordered set. Let RD =
((Ri)Di

)i∈I be a family of modules. Let MGen(1λ;ω) be a deterministic algorithm
which picks some i ∈ I (hence some RD = (Ri)Di

∈ RD) and some element A ∈ D.
For a ring R, let IRRλ(R) ⊆ IRR(R) be some set of prime elements in R of size
2λ. The adaptive root assumption is said to hold over the family of modules RD with
respect to IRRλ, if for any PPT adversary A = (A1,A2) there exists ε(λ) ∈ negl(λ)
such that

Pr

[
e ◦ Y = X

∣∣∣
∣

ω ←$ {0, 1}λ; (RD, A) := MGen(1λ;ω)
X ← A1(RD, A , ω ); e ←$ IRRλ(R);Y ← A2(e)

]
≤ ε(λ),

where A is not given ω (highlighted by the dashed box). If the inequality holds even if
A is given ω, then we say that the assumption is public-coin.

Strong Distinct-Prime-Product Root. We define the following variant of the “strong
root assumption” [30] over modules over Euclidean rings, which is a generalization of
the strong RSA assumption. Let RD be a module over some Euclidean ring R, and A be
an element of D. The strong distinct-prime-product root problem with respect to A asks
to find a set of distinct prime elements {ei}i∈S in R and an element Y in D such that(∏

i∈S ei

) ◦ Y = A. We define the assumption in two variants depending on whether
RD and A are sampled with public coins.

Definition 6 ((Public-Coin) Strong Distinct-Prime-Product Root). Let I be an
ordered set, RD = ((Ri)Di

)i∈I be a family of modules, and MGen(1λ;ω) be a deter-
ministic algorithm which picks some i ∈ I (hence some RD = (Ri)Di

∈ RD) and
some element A ∈ D. The strong distinct-prime-product root assumption is said to
hold over the family RD, if for any PPT adversary A there exists ε(λ) ∈ negl(λ) such
that

Pr

⎡

⎣

(∏
i∈S ei

) ◦ Y = A
∀i ∈ S, ei ∈ IRR(R)
∀i �= j ∈ S, ei �= ej

∣∣∣∣
∣∣

ω ←$ {0, 1}λ

(RD, A) := MGen(1λ;ω)
({ei}i∈S , Y ) ← A(RD, A , ω )

⎤

⎦ ≤ ε(λ),
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where A is not given ω (highlighted by the dashed box). If the inequality holds even if
A is given ω, then we say that the assumption is public-coin.

Lipmaa [51] defined several variants of the (strong) root assumption with respect to a
random element in D sampled with private coin, given the description of the module
RD sampled with public coin. Note that the (resp. public-coin) strong distinct-prime-
product root assumption is weaker than the (resp. public-coin) strong root assumption,
where the latter requires the adversary to simply output (e, Y ) such that e �= 1R and
e ◦ Y = A. It is apparent that the strong distinct-prime-product root assumption over
RSA groups is implied by the strong RSA assumption.

4 Subvector Commitments

In the following we define the main object of interest for our work. Subvector commit-
ments are a generalization of vector commitments [27], where the opening is performed
with respect to subvectors.

Definition 7 (Subvector Commitments (SVC)). A subvector commitment scheme
SVC over X consists of the following PPT algorithms (Setup,Com,Open,Verify):

Setup(1λ, 1�;ω): The deterministic setup algorithm inputs the security parameter 1λ,

the vector size 1�, and a random tape ω. It outputs a public parameter pp. We assume
that all other algorithms input pp which we omit.
Com(x): The committing algorithm inputs a vector x ∈ X �. It outputs a commitment
string C and some auxiliary information aux.
Open(I,x′

I , aux): The opening algorithm inputs an index set I , an I-subvector x′
I ,

and some auxiliary information aux. It outputs a proof ΛI that x′
I is the I-subvector of

the committed vector.
Verify(C, I,x′

I , ΛI): The verification algorithm inputs a commitment string C, an
index set I , an I-subvector x′

I , and a proof ΛI . It accepts (i.e., it outputs 1) if and
only if C is a commitment to x and x′

I is the I-subvector of x.

The definition of correctness is given as follows.

Definition 8 (Correctness). A subvector commitment SVC over X is said to be correct
if, for any security parameter λ, � ∈ N, random tape ω ∈ {0, 1}λ, public param-
eters pp ∈ Setup(1λ, 1�;ω), x ∈ X �, index set I ∈ [�], (C, aux) ∈ Com(x),
ΛI ∈ Open(I,xI , aux), there exists ε(λ) ∈ negl(λ) such that

Pr [Verify(C, I,xI , ΛI) = 1] ≥ 1 − ε(λ).

The distinguishing property for SVCs is compactness. Loosely speaking it says that the
size of the commitment strings C and the proofs ΛI are not only independent of the
length of the committed vector x, but also that of xI .
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Definition 9 (Compactness). A subvector commitment SVC over X is compact if there
exists a universal polynomial p ∈ poly(λ) such that for any � ∈ poly(λ), random tape
ω ∈ {0, 1}λ, public parameters pp ∈ Setup(1λ, 1�;ω), vector x ∈ X �, index set
I ∈ [�], (C, aux) ∈ Com(x), ΛI ∈ Open(I,xI , aux), it holds that |C| ≤ p(λ) and
|ΛI | ≤ p(λ).

We consider the notion of position binding for subvector commitments with public-coin
setup. Recall that position binding for vector commitments requires that it is infeasible
to open a commitment with respect to some position i to two distinct messages xi and
x′

i. We extend this notion to subvector commitments, by requiring that it is infeasible to
open a commitment with respect to some index sets I and J to subvectors xI and x′

J ,
respectively, such that there exists an index i ∈ I ∩ J where xi �= x′

i. Furthermore, we
require this property to hold even if the setup algorithm is public coin.

Definition 10 ((Public-Coin) Position Binding). A subvector commitment SVC over
X is position binding if for any PPT adversary A, there exists a negligible function
ε(λ) ∈ negl(λ) such that

Pr

⎡

⎣
Verify(C, I,xI , ΛI) = 1
Verify(C, J,x′

J , Λ′
J ) = 1

∃i ∈ I ∩ J s.t . xi �= x′
i

∣∣∣∣
∣∣

ω ←$ {0, 1}λ

pp ← Setup(1λ, 1�;ω)
(C, I, J,xI ,x

′
J , ΛI , Λ

′
J ) ← A(pp , ω )

⎤

⎦ ≤ ε(λ)

where A is not given ω (highlighted by the dashed box). If the inequality holds even if
A is given ω, then we say that SVC is function binding with public coins.

We do not define hiding as it is not needed for our purpose. However, as discussed
in [27], one can construct a hiding VC generically by committing to (normal) commit-
ments using VC. This naturally extends to SVC as well.

4.1 Linear Map Commitments

Functional commitments for linear functions, specifically for linear forms f : F
� → F

for some field F, were introduced by Libert, Ramanna and Yung [48] and is a general-
ization of vector commitments (VC) introduced by Catalano and Fiore [27]. Here we
refine the notion to capture a more general class of function families, which allows the
prover to open a commitment to the output of multiple linear forms or, equivalently, to
the output of a linear map f : F

� → F
q. Note that any linear map from F

� to F
q can be

represented by a matrix F ∈ F
q×�.

Definition 11 (Linear Map Commitments (LMC)). A linear map commitment
scheme LMC over F consists of the following PPT algorithms (Setup,Com,
Open,Verify):

Setup(1λ,F ;ω): Let �, q ∈ poly(λ) be positive integers, and F ⊆ {f : F
� → F

q} be a
family of linear maps. The deterministic setup algorithm inputs the security parameter
1λ, the description of the family F , and a random tape ω. It outputs a public parameter
pp. We assume that all other algorithms input pp which we omit.
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Com(x): The committing algorithm inputs a vector x ∈ F
�. It outputs a commitment

string C and some auxiliary information aux.
Open(f,y, aux): The opening algorithm inputs an f ∈ F , an image y ∈ F

q, and some
auxiliary information aux. It outputs a proof Λ that y = f(x).
Verify(C, f,y, Λ): The verification algorithm inputs a commitment stringC, an f ∈ F ,
an image y, and a proof Λ. It accepts (i.e., it outputs 1) if and only if C is a commitment
to x and y = f(x).

In the following we define correctness and compactness for LMCs.

Definition 12 (Correctness). A linear map commitment scheme LMC over F is
said to be correct if, for any security parameter and length λ, �, q ∈ N, ran-
dom tape ω ∈ {0, 1}λ, linear map family F ⊆ {

f : F
� → F

q
}
, public parame-

ters pp ∈ Setup(1λ,F ;ω), x ∈ F
�, linear map f ∈ F , (C, aux) ∈ Com(x),

Λ ∈ Open(f, f(x), aux), there exists ε(λ) ∈ negl(λ) such that

Pr [Verify(C, f, f(x), Λ) = 1] ≥ 1 − ε(λ).

Definition 13 (Compactness). A linear map commitment LMC over F is compact if
there exists a universal polynomial p ∈ poly(λ), such that for any �, q ∈ poly (λ),
family of linear maps F ⊆ {f : F

� → F
q}, random tape ω ∈ {0, 1}λ, public param-

eters pp ∈ Setup(1λ,F ;ω), vector x ∈ F
�, linear map f ∈ F , (C, aux) ∈ Com(x),

Λ ∈ Open(f, f(x), aux), it holds that |C| ≤ p(λ) and |Λ| ≤ p(λ).

We next generalize the notion of function binding for linear maps. The original defini-
tion, as considered by Libert, Ramanna and Yung [48], requires that it is hard to open
a commitment to (f, y) and (f, y′) where y �= y′. When considering broader classes of
functions, such as linear maps where the target space is multidimensional, each open-
ing defines a system of equations. Note that in this case one might be able to generate
an inconsistent system with just a single opening, or generate openings to (f, y) and
(f ′, y′) with f �= f ′ but the systems defined by the tuples are inconsistent. Therefore,
our definition explicitly forbids the adversary to generate inconsistent equations.

Definition 14 ((Public-Coin) Function Binding). A linear map commitment LMC
over F is function binding if for any PPT adversary A, positive integers Q, �, q ∈
poly(λ), and family of linear maps F ⊆ {f : F

� → F
q}, there exists a negligible

function ε(λ) ∈ negl(λ) such that

Pr

⎡

⎣∀k ∈ [Q],
fk ∈ F ∧ yk ∈ F

q∧
Verify(C, fk,yk, Λk) = 1

�x ∈ X � s.t . ∀k ∈ [Q], fk(x) = yk

∣∣∣∣
∣∣

ω ←$ {0, 1}λ

pp ← Setup(1λ,F ;ω)
(C, {(fk,yk, Λk)}k∈[Q]) ← A(pp , ω )

⎤

⎦

≤ ε(λ)

where A is not given ω (highlighted by the dashed box). If the inequality holds even if
A is given ω, then we say that LMC is function binding with public coins.

As for SVC, we omit the hiding definition as it is not needed for our purpose.
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5 Constructions for SVCs

We propose two direct constructions of SVC, one from modules over Euclidean rings
where certain variants of the root assumption hold, and one from pairing groups where
the CDH assumption holds. Both schemes allow one to commit to binary strings (i.e.,
we consider the field X = F2). Our constructions are inspired by the work of Cata-
lano and Fiore [27] and extend the opening algorithms of their vector commitment
schemes to simultaneously handle multiple positions. These modifications introduce
several complications in the security proofs that require a careful manipulation of the
exponents.

5.1 SVC from Modules over Euclidean Rings

Our first SVC scheme relies on modules over Euclidean rings where some variants
of the root problem (the natural generalization of the RSA problem) is hard. Let � ∈
poly(λ) be a positive integer. Let MGen be an efficient module sampling algorithm as
defined in Sect. 3 and let R be an Euclidean ring sampled by MGen. Let IRRλ(R) be a
set of prime elements in R of size 2λ. Let H : {0, 1}∗ → IRRλ(R)� be a prime-valued
function which maps finite bit strings to tuples of � distinct elements in IRRλ(R). That
is, for all string s ∈ {0, 1}∗, if (e1, . . . , e�) = H(s), then ei �= ej for all i, j ∈ [q] where
i �= j. Let X := {0R, 1R}3 where 0R and 1R are the additive and multiplicative identity
elements of R respectively. We construct our first subvector commitment scheme in
Fig. 1. Note that in the opening algorithm, it is required to compute

ΛI :=

(
∏

i∈I

ei

)−1

◦ 〈x[�]\I ,S[�]\I〉.

Fig. 1. SVC from the root assumption.

3 In general, X can be set such that for all x, x′ ∈ X , gcd(x − x′, ei) = 1 for all i ∈ [q].
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Although multiplicative inverses of ring elements do not exist in general, and if so, they
may be hard to compute, the above are efficiently computable because, for all i ∈ [�]\I
and hence for all i ∈ J \ I , we have

Si :=

⎛

⎝
∏

j∈[�]\{i}
ej

⎞

⎠ ◦ X =

⎛

⎝
∏

j∈I

ej

∏

j∈[�]\(I∪{i})
ej

⎞

⎠ ◦ X.

The correctness of the construction follows straightforwardly by inspection. Depending
on the instantiation of H , we can prove our scheme secure against different assump-
tions:

– H is a (non-cryptographic) hash: Our construction is secure if the strong distinct-
prime-product root assumption (introduced in Sect. 3) holds over the module family
RD. This is shown in Theorem 1.

– H is a random oracle: Our construction is secure if the adaptive root problem (intro-
duced in [19]) is hard over the module family. This is shown in Theorem 2.

Theorem 1. If the (resp. public-coin) strong distinct-prime-product root assumption
holds over the module family RD, then the scheme in Fig. 1 is (resp. public-coin) posi-
tion binding.

Proof. Suppose not, let A be a PPT adversary such that

Pr

⎡

⎣
Verify(C, I,xI , ΛI) = 1
Verify(C, J,x′

J , Λ′
J ) = 1

∃i ∈ I ∩ J s.t . xi �= x′
i

∣∣∣
∣∣∣

ω ←$ {0, 1}λ

pp ← Setup(1λ, 1�;ω)
(C, I, J,xI ,x

′
J , ΛI , Λ

′
J ) ← A(1λ, pp , ω )

⎤

⎦ >
1

f(λ)

for some polynomial f(λ) ∈ poly(λ), where A gets ω as input (highlighted by the
dashed box) only in the public-coin variant. We construct an algorithm C as follows,
whose existence contracts the fact that RD is a (public-coin) strong distinct-prime-
product root modules family.

In the private-coin setting, C receives as input (RD, A) generated by MGen(1λ;ω)
for some ω ←$ {0, 1}λ. It sets X := A, and computes (e1, . . . , e�) ← H(RD,X). It

then sets Si :=
(∏

j∈[�]\{i} ej

)
◦ X for all i ∈ [�], S := (S1, . . . , Sq)T , and e :=

(e1, . . . , e�). It sets pp := (RD,X,S,e) and runs A on input (1λ, pp). In the public-
coin setting, C receives additionally ω and runs A on (1λ, pp, ω) instead. In any case, it
is clear that pp and ω obtained above distribute identically as

{(pp, ω) : ω ←$ {0, 1}λ; pp ← Setup(1λ, 1�;ω)}λ.

Hence, with probability at least 1/f(λ), C obtains (C, I, J,xI ,x
′
J , ΛI , Λ

′
J ) such that

〈xI ,SI〉 +
(

∏

i∈I

ei

)

◦ ΛI = 〈x′
J ,SJ 〉 +

(
∏

i∈J

ei

)

◦ Λ′
J



Subvector Commitments with Application to Succinct Arguments 545

which implies

〈xI\J ,SI\J 〉 − 〈x′
J\I ,SJ\I〉 + 〈xI∩J − x′

I∩J ,SI∩J 〉

=

(
∏

i∈I∩J

ei

) ⎛

⎝

⎛

⎝
∏

i∈J\I

ei

⎞

⎠ ◦ Λ′
J −

⎛

⎝
∏

i∈I\J

ei

⎞

⎠ ◦ ΛI

⎞

⎠ .

Recall that Si =
(∏

j∈[�]\{i} ej

)
◦ A. Define δi :=

⎧
⎪⎨

⎪⎩

xi i ∈ I \ J

−x′
i i ∈ J \ I

xi − x′
i i ∈ I ∩ J

and

Λ :=
((∏

i∈J\I ei

)
◦ Λ′

J −
(∏

i∈I\J ei

)
◦ ΛI

)
. C obtains

⎛

⎝
∑

i∈I∪J

δi

∏

j∈[�]\{i}
ej

⎞

⎠ ◦ A =

(
∏

i∈I∩J

ei

)

◦ Λ.

Let K0 := {i ∈ I ∩ J : δi = 0R} and K1 := {i ∈ I ∪ J : δi �= 0R}. Next, we

show that d := gcd
(∑

i∈I∪J δi

∏
j∈[�]\{i} ej ,

∏
i∈I∩J ei

)
=

∏
j∈K0

ej . Furthermore,

suppose that this is the case, we have (I ∩J)\K0 �= ∅ since there exists i ∈ I ∩J such
that δi = xi − x′

i �= 0R. To prove the above, we first note that

∑

i∈I∪J

δi

∏

j∈[�]\{i}
ej =

∑

i∈K1

δi

∏

j∈[�]\{i}
ej =

∏

j∈[�]\(I∪J)

ej

⎛

⎝
∑

i∈K1

δi

∏

j∈(I∪J)\{i}
ej

⎞

⎠ .

Hence

d = gcd

⎛

⎝
∑

i∈K1

δi

∏

j∈(I∪J)\{i}
ej ,

∏

i∈I∩J

ei

⎞

⎠

=
∏

j∈K0

ej · gcd
⎛

⎝
∑

i∈K1

δi

∏

j∈(I∪J)\(K0∪{i})
ej ,

∏

i∈(I∩J)\K0

ei

⎞

⎠ .

It remains to show that d′ := gcd
(∑

i∈K1
δi

∏
j∈(I∪J)\(K0∪{i}) ej ,

∏
i∈(I∩J)\K0

ei

)

= 1R. Suppose not, let d′ =
∏

i∈L ei for some L ⊆ (I ∩ J) \ K0. Suppose � ∈ L �= ∅.
This means δ� �= 0R and hence � ∈ K1. Then there exists r ∈ R such that

e� · r =
∑

i∈K1

δi

∏

j∈(I∪J)\(K0∪{i})
ej

= δ�

∏

j∈(I∪J)\(K0∪{�})
ej + e�

∑

i∈K1\{�}
δi

∏

j∈(I∪J)\(K0∪{i})
ej .
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Let r′ := r − ∑
i∈K1\{�} δi

∏
j∈(I∪J)\(K0∪{i}) ej . We have

e� · r′ = δ�

∏

j∈(I∪J)\(K0∪{�})
ej .

Since δ� �= 0R, i.e., δ� ∈ {−1R, 1R}, the above contradicts the fact that e� is a prime
element. Thus we must have L = ∅ and hence d′ = 1R.

Now that we have concluded d = gcd
(∑

i∈I∪J δi

∏
j∈[�]\{i} ej ,

∏
i∈I∩J ei

)
=

∏
j∈K0

ej , C can use the extended Euclidean algorithm to find a, b ∈ R such that

a
∑

i∈I∪J

δi

∏

j∈[�]\{i}
ej + b

∏

i∈I∩J

ei =
∏

j∈K0

ej .

Multiplying this to A, it gets
⎛

⎝
∏

j∈K0

ej

⎞

⎠ ◦ A =

⎛

⎝a
∑

i∈I∪J

δi

∏

j∈[�]\{i}
ej + b

∏

i∈I∩J

ei =
∏

j∈K0

ej

⎞

⎠ ◦ A

=

(

a
∏

i∈I∩J

ei

)

◦ Λ +

(

b
∏

i∈I∩J

ei

)

◦ A

=

(
∏

i∈I∩J

ei

)

(a ◦ Λ + b ◦ A) .

Since (I ∩ J) \ K0 �= ∅, C can set S := (I ∩ J) \ K0 and Y := (a ◦ Λ + b ◦ A), and
output ({ei}i∈S , Y ) as a solution to the strong distinct-prime-product root problem. ��
Theorem 2. If the (resp. public-coin) adaptive root assumption holds over the module
familyRD with respect to IRRλ, then the scheme in Fig. 1 is (resp. public-coin) position
binding in the random oracle model.

Due to space constraints, we refer to [47] for a full proof.

Efficiency and Optimizations. Our construction admits two complementary instanti-
ations, discussed in the following.

– Efficient Verifier (assuming random access to public parameters): The vectors S
and e are explicitly included in the public parameters (as it is currently described).
In this case, and suppose the verifier has random access to each ei and Si, the com-
putational effort of the verifier is only proportional to |I|, the size of the subvector.
The shortcoming of this scheme is that the size of the public parameters is linear in
�, which can be very large depending on the application.

– Short Public Parameters: One can reduce the size of the public parameters to a con-
stant by including only the module description (RD,X) and letting each algorithm
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recompute the terms of S needed for the computations. This however increases the
computational complexity of the verifier, since the computation needed for each
element of S is linear in the vector length �. This can be partially amortized by
observing that the values (S1, . . . , S�) do not depend on the committed vector and
can be precomputed by both parties.

Another possible tradeoff is given by the assumption that one is willing to rely on: Note
that the main workload for the verifier (in the verifier-optimized variant) is to compute
the term

(∏
i∈I ei

)◦ΛI . Assuming R = Z and the term is computed by repeated squar-
ing, the complexity of the computation depends on the bit-length of the primes ei. In the
adaptive root assumption, the primes (e1, . . . , e�) are sampled randomly from a set of
primes of size 2λ, therefore representing each prime requires at least λ bits. On the other
hand, under the strong distinct-prime-product root assumption we can set (e1, . . . , e�)
to be the smallest � primes. Since � ∈ poly (λ), each prime can be represented by
O(log λ) bits. This greatly reduces the computational effort of the verifier.

5.2 SVC from the Computational Diffie-Hellman Assumption

Next we present our SVC construction from pairing groups. In favor of a simpler
presentation and a more general result we describe our scheme assuming symmetric
pairings. However, we stress that the scheme can be easily adapted to work over the
more efficient asymmetric (type III) bilinear groups without affecting computational
efficiency nor opening size by, e.g., replicating all public parameters in both source
groups.

The public parameters consist of a set of random elements {Gi = Gzi}i∈[q] and
their pairwise “Diffie-Hellman products” Hi,i′ = Gzizi′ with i �= i′. To commit
to a vector x one computes C :=

∏
i Gxi

i . The opening of a subvector xI is then∏
i∈I

∏
i′ /∈I H

xi′
i,i′ . Note that since i ∈ I and i′ /∈ I , it is always true that i �= i′.

Fig. 2. SVC from CDH.
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Therefore the product is efficiently computable for an honest prover. Assuming that the
verifier has random access to each Gi in the public parameters, it can check the relation
by accessing |I| entries in the public parameters, and computing 2 · |I| group operations
and 2 pairings (which are independent of �). Since the public parameters are highly
structured, this scheme does not admit an instantiation with short public parameters,
which grow quadratically with the vector size �.

Let GGen be an efficient bilinear group sampling algorithm. Let (p, G, GT , G, e) be
a group description output by GGen. Let X := Zp. Our second subvector commitment
scheme is shown in Fig. 2. In the following we show that our SVC scheme is position
binding with a private-coin setup.

Theorem 3. If the computational Diffie-Hellman (CDH) assumption holds with respect
to GGen, then the scheme in Fig. 2 is position binding.

Proof. Suppose not, let A be a PPT adversary such that

Pr

⎡

⎣
Verify(C, I,xI , ΛI) = 1
Verify(C, J,x′

J , Λ′
J ) = 1

∃i ∈ I ∩ J s.t . xi �= x′
i

∣∣∣∣∣∣

ω ←$ {0, 1}λ

pp ← Setup(1λ, 1�;ω)
(C, I, J,xI ,x

′
J , ΛI , Λ

′
J ) ← A(1λ, pp)

⎤

⎦ >
1

f(λ)

for some f(λ) ∈ poly(λ). We construct a square-DH solver C, which implies a CDH
solver [6], as follows.

C receives as input (p, G, GT , G,H, e), where (p, G, GT , G, e) ← GGen(1λ)
and H = Gz for some random z ←$ Zp, and must output Gz2

. It picks an index
i∗ ←$ [�] and set Gi∗ := H . Symbolically, let zi∗ := z, which is not known by C.
For the other indices i, i′ ∈ [�] \ {i∗}, it samples zi ←$ Zp and sets Gi := Gzi

and Hi,i′ := Gzizi′ . It also sets Hi∗,i = Hi,i∗ = Gzzi for each i ∈ [�] \ {i∗}.
It then sets pp = (p, G, GT , G, {Gi}i∈[�], {Hi,i′}i,i′∈[�],i 	=i′ , e), which is identically
distributed as pp output by Setup. C runs A on input (1λ, pp). With probability at
least 1/f(λ), it obtains (C, I, J,xI ,x

′
J , ΛI , Λ

′
J ) such that Verify(C, I,xI , ΛI) = 1,

Verify(C, J,x′
J , Λ′

J ) = 1, and ∃i ∈ I ∩ J s.t . xi �= x′
i. Conditioning on the above,

with probability 1/�, it holds that i∗ ∈ I ∩ J and xi∗ �= x′
i∗ . By examining the verifica-

tion equations, we have

e

(
∏

i∈I

Gxi
i ,

∏

i∈I

Gi

)

· e(ΛI , G) = e

(
∏

i∈J

G
x′

i
i ,

∏

i∈J

Gi

)

· e(ΛJ , G)

e

(
∏

i∈J

G
x′

i
i ,

∏

i∈J

Gi

)

· e

(
∏

i∈I

G−mi
i ,

∏

i∈I

Gi

)

= e(Λ,G), where Λ := ΛI/ΛJ

(
∑

i∈J

zix
′
i

) (
∑

i∈J

zi

)

−
(

∑

i∈I

zixi

) (
∑

i∈I

zi

)

= logG Λ

αz2i∗ + βzi∗ + γ = logG Λ
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where

α := (x′
i∗ − xi∗) β :=

∑

i∈J\{i∗}
zi(x′

i + x′
i∗) −

∑

i∈I\{i∗}
zi(xi + xi∗)

γ :=

⎛

⎝
∑

i∈J\{i∗}
zix

′
i

⎞

⎠

⎛

⎝
∑

i∈J\{i∗}
zi

⎞

⎠ −
⎛

⎝
∑

i∈I\{i∗}
zixi

⎞

⎠

⎛

⎝
∑

i∈I\{i∗}
zi

⎞

⎠

are computable by C since they do not depend on z = zi∗ . C then outputs Gz2
=

(
Λ

HβGγ

)1/α
which is the solution to the square-DH instance. ��

6 Construction for LMC

Our LMC construction is inspired by the scheme presented in [48] and it is based upon
the following observations. First, when the vectors x,f ∈ F

� for some field F are
encoded as the polynomials pf (α) :=

∑
j∈[�] fjα

�+1−j and px(α) :=
∑

j∈[�] xjα
j

with variable α respectively, their inner product is the coefficient of the monomial
α�+1 in the polynomial product pf (α)px(α). Second, due to linearity of polyno-
mial multiplication, if a matrix F ∈ F

q×� is encoded in the polynomial pF (α) :=∑
i∈[q],j∈[�] fi,jziα

�+1−j with variables (α, z1, . . . , zq), then the matrix-vector product

Fx is given in the coefficients of the monomials ziα
�+1 for i ∈ [q] in the polynomial

pF (α)px(α).
With the above observations, we give an overview of our construction. We let the

commitment C to x be Gpx (α), which is computable by combining elements of the form

Fig. 3. LMC from bilinear pairings.
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Gαj

given in the public parameters. Given (F,y), to verify that Fx = y, the verifier
computes via pairing e(GpF (α,z1,...,zq), Gpx (α)), where the left-input is computable by
combining elements of the form Gziα

j

given in the public parameters. If the relation
Fx = y indeed holds, then the coefficients of y must be encoded as the coefficients of
the (lifted) monomials Gziα

�+1
. To convince the verifier that this is the case, it suffices

for the prover to provide the remaining terms of the product polynomial.
Let GGen be an efficient bilinear group sampling algorithm. Let (p, G, GT , G, e)

be a group description output by GGen. Let F = Zp, �, q ∈ N, and F be the set of all
linear maps from Z

�
p to Z

q
p. Our LMC for Zp is given in Fig. 3. For full generality we

present the construction over symmetric pairings, however one can easily convert it to
the more efficient asymmetric pairing groups via standard techniques, without affecting
the size of the openings. Although we do not aim to achieve the hiding property, our
construction can be easily modified to be hiding, by introducing randomness similar to
that in Pedersen commitment [56]. Indeed this is how the FC of [48] achieves hiding.
We show that our construction is function binding (in the generic bilinear group model)
in the following.

Theorem 4. Let �, q ∈ poly(λ) and 1/p ∈ negl(λ). The scheme in Fig. 3 is function
binding in the generic bilinear group model.

Proof. The proof uses the generic group model abstraction of Shoup [59] and we refer
the reader to [18] for a comprehensive introduction to the bilinear group model. Here
we state the central lemma useful for proving facts about generic attackers.

Lemma 1 (Schwartz-Zippel). Let F (X1, . . . , Xm) be a non-zero polynomial of
degree d ≥ 0 over a field F. Then the probability that F (x1, . . . , xm) = 0 for ran-
domly chosen values (x1, . . . , xm) in F

n is bounded from above by d
|F| .

Fix Q ∈ N. Suppose there exists an adversary A, who only performs generic bilinear
group operations, such that there exists a polynomial f ∈ poly(λ) with

Pr

⎡

⎣ ∀k ∈ [Q],
Fk ∈ Z

q×�
p ∧ yk ∈ Z

q
p∧

Verify(C, fk,yk, Λk) = 1
� ∃x ∈ Z

�
p s.t . ∀k ∈ [Q], Fk(x) = yk

∣
∣∣∣∣∣

pp ← Setup(1λ,F)
(C, {(Fk,yk, Λk)}k∈[Q]) ← A(1λ, pp)

⎤

⎦

> 1
f(λ) .

Since A is generic, and C and each of Λk are G elements, we can write logG C and
each logG Λk in the following form:

logG C = γ0 +
∑

j∈[�]

γjα
j +

∑

i∈[q]
j∈[2�]\{�+1}

γi,jziα
j

logG Λk = λk,0 +
∑

j∈[�]

λk,jα
j +

∑

i∈[q]
j∈[2�]\{�+1}

λk,i,jziα
j
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for some integer coefficients γj , γi,j , λk,j , and λk,i,j for i, j, and k in the appropriate
ranges. Since for each k ∈ [Q], Verify(C,Fk,yk, Λk) = 1, the following relations hold:

(logG C)

⎛

⎝
∑

i∈[q]

∑

j∈[�]

fk,i,jziα
�+1−j

⎞

⎠ =
∑

i∈[q]

yk,iziα
�+1 + logG Λk.

Note that the above defines a (n+1)-variate polynomial of degree 3�+2 which evaluates
to zero at a random point (α, z1, . . . , zq). Suppose that the polynomial is non-zero. By
the Schwartz-Zippel lemma, the probability that the above happens is bounded by 3�+2

p

which is negligible as � ∈ poly(λ) and 1/p ∈ negl(λ). We can therefore assume that
the polynomial is always zero. In particular, the coefficients of the monomials ziα

�+1

are zero for all i ∈ [q]. Thus, we have the following relations for all k ∈ [Q] and i ∈ [q]:
∑

j∈[�]

fk,i,jγj = yk,i.

In other words, there exists x := (γ1, . . . , γq)T mod p ∈ Z
q
p such that Fk(x) = yk,

for all k ∈ [Q], which contradicts the assumption about A. We thus conclude that such
adversaries exist only with negligible probability. Since the above holds for any Q ∈ N,
we conclude that the construction is function binding. ��

7 Succinct Arguments of Knowledge from SVC/LMC

We present our compiler for constructing interactive arguments of knowledge either
from traditional PCPs and subvector commitments (Sect. 5), or from linear PCPs [42]
and linear map commitments (Sect. 6). The constructions for both cases are in fact iden-
tical and we present only the latter since it is strictly more general (an traditional PCP
can be seen as a linear PCP where queries are restricted to unit vectors).

Let (PPCP,VPCP) be an �-long q-query (linear) PCP over some field F for NP
with r being the length of the random coins of the possibly adaptive verifier.
Let PRG : {0, 1}λ → {0, 1}r be a pseudo-random generator and let LMC :=
(Setup,Com,Open,Verify) be a linear map commitment for the set of all linear maps
F from F

� to F
q, possibly with public-coin setup. We present a 4-move interactive

argument of knowledge in Fig. 4.

7.1 Protocol Description

We first describe some subroutines to be used in the protocol. We construct polynomial
time algorithms Record, Reconstruct, and Decide which perform the following:

– Record: On input a statement x, a proof π, a randomness ρ, it runs Vπ
PCP(x; ρ) and

records the queries f1, . . . ,fq ∈ F
q made by VPCP. It outputs a query matrix F :=

[f1| . . . |fq]T ∈ F
q×�.

– Reconstruct: On input a statement x, a response vector y ∈ F
q, and a randomness

ρ, it runs Vπ
PCP(x; ρ) by simulating the oracle π using the response vector y. That is,

when VPCP makes the i-th query fi for i ∈ [q], it responds by returning the value yi.
It outputs a query matrix F := [f1| . . . |fq]T ∈ F

q×�.
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Fig. 4. Succinct argument of knowledge for NP from SVC/LMC

– Decide: On input a statement x, a response vector y ∈ F
q, it runs Vπ

PCP(x; ρ) by
simulating the oracle π as in Reconstruct, and outputs whatever Vπ

PCP(x; ρ) outputs.

It is clear that for any strings x and π and randomness ρ, if y is formed in such a way
that yi is the response to the i-th query made by Vπ

PCP(x; ρ), then Record(x,π, ρ) =
Reconstruct(x,y, ρ), and Decide(x,y, ρ) = Vπ

PCP(x; ρ).
We now describe the protocol. The setup algorithm S samples a random string ω

and computes the public parameters pp of LMC using ω. It outputs pp if an LMC with
private-coin setup is used, which results in an argument system with private-coin setup.
Alternatively, if an LMC with public-coin setup is used, it outputs additionally ω (as
highlighted in the dashed box). This results in a public-coin setup.

In the rest of the protocol, the verifier is entirely public-coin. On input the public
parameter pp, the statement x and the witness w, the prover P produces π as the PCP
encoding of the witness w, then it commits to π and sends its commitment C to the
verifier V . Upon receiving the commitment C, V responds with a random string α. The
prover P stretches α with a PRG into ρ and executes VPCP on ρ. Here the PRG is used
to compress the (possibly large) randomness of the verifier, which is strictly needed
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only for linear PCPs (standard PCPs typically have low randomness complexity and
therefore the random coins can be sent in plain).

The prover P then records the sets of queries F = Record(x,π, ρ) of VPCP using
randomness ρ to π, and computes the responses y = Fπ. Next, it computes the open-
ing Λ of the commitment C to the tuple (F,y). The opening Λ along with the response
y are sent to the verifier V . The verifier V runs Reconstruct(x,y, ρ) to reconstruct
the query matrix F . It then checks if Λ is a valid opening of C to (F,y). Finally, it
checks if Decide(x,y, ρ) returns 1. If all checks are passed, it outputs 1. Otherwise, it
outputs 0.

7.2 Analysis

Clearly, if (PPCP,VPCP) is a complete linear PCP, and LMC is a correct LMC, then the
argument system is complete. Alternatively, if (PPCP,VPCP) is a complete (traditional)
PCP, and LMC is a correct SVC, then the system is also complete. The succinctness
of the system follows directly from the compactness of LMC. Next, we show that the
argument system is of knowledge by the following theorem. Due to space constraints,
we refer to [47] for a full proof.

Theorem 5. Let (PPCP,VPCP) be a 2−σ-sound linear PCP of knowledge for NP, PRG
be a pseudo-random generator, and LMC := (Setup,Com,Open,Verify) be (resp.
public-coin) function binding. Then the protocol in Fig. 4 is a 2−σ-sound (resp. public-
coin) argument of knowledge.

7.3 Instantiations and Efficiency

Since our argument system has a public-coin verifier, we can apply the Fiat-Shamir
transformation to turn it into a non-interactive argument and sometimes a SNARK.4 We
highlight some interesting instantiations of our compiler: Regardless of the specific root
assumption used, we can instantiate our first SVC construction over Cl(Δ), the class
group of an imaginary quadratic order with discriminant Δ. Considering the current
best attacks, we can assume that root problems for a O(λ2)-bit Δ are hard for a 2λ-time
adversary. Concretely, with a 2560-bit Δ, which roughly offers security against a 2128-
time adversary, each element in Cl(Δ) can be represented by at most 2560 bits (see
Sect. 8 for more details). Using a 240-query 2−80-sound PCP, the resulting proof size is
2 · 2560 + 240 = 5360 bits. When using the verifier-optimized SVC (see Sect. 5.1) the
workload of the verifier is dominated by 240 exponentiations, regardless of the witness
size. However the public parameters grow linearly with the length of the PCP encoding.
One can reduce the size of the public parameters to constant at the cost of having an
inefficient verifier. We stress that class groups of imaginary quadratic orders have a
public-coin setup and so does the resulting SNARK.

Alternatively, we can use our second SVC construction over the pairing-friendly
256-bit Barreto-Naehrig curve [7], which roughly offers security against 2128-time

4 In the original definition of Bitansky et al. [16], a SNARK verifier is a Turing machine with
runtime logarithmic in that of the corresponding NP verifier. We consider a relaxed definition
where the SNARK verifier is a random access machine.
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adversaries. In such a curve, each group element can be represented by 256 bits. There-
fore the resulting proof size is 2 · 256 + 240 = 752 bits. This marginally improves
over the shortest proofs known [40]. A shortcoming of this approach is that the public
parameters of the resulting SNARK grow quadratically in the length of the PCP proof.

An unsatisfactory aspect of the instantiations above is that PCPs with such short
queries have typically a very high prover complexity and are therefore very expensive
to compute, which means that our arguments described above have a high prover com-
plexity. One approach to address this issue is to leverage the large body of work on
linear PCPs [17,42], which significantly improve the complexity of the prover. Any of
these schemes can be used in combination with an LMC (such as the construction of
Sect. 6) to obtain a non-interactive argument with slightly larger proofs (by a constant
factor) but with a more efficient prover. We stress that our compiler supports any linear
PCP, whereas existing compilers only support those with a verifier who only evalu-
ates quadratic polynomials. Moreover, although our pairing-based instantiations inherit
the private-coin setup from underlying SVC/LMC, the setup is statement-independent.
In contrast, the setup in existing pairing-based schemes such as [40] depends on the
statement to be proven. We shall mention however that our LMC has a linear verifier
complexity and therefore it yields an argument with verifier computation linear in the
length of the PCP.

For the efficiency of the verifier, there are several techniques to reduce its com-
putational overhead: As an example, one could compose our scheme with a verifier-
optimized SNARK to prove the validity of the verification equation, instead of having
the verifier computing it. Very recently, Boneh et al. [20] presented a special-purpose
proof of knowledge of co-prime roots (PoKCR) that drastically reduces the running
time of the verifier in class group-based SVCs (see Sect. 5) by trading group opera-
tions for modular multiplications and additions, which are orders of magnitude more
efficient. We refer the reader to [20] for a detailed analysis of the concrete costs.

8 Candidate Module Families

In the following we suggest some candidate instantiations for modules (specifically
groups) where the strong distinct-prime-root assumption and/or the adaptive root
assumption are believed to hold.

8.1 Class Groups of Imaginary Quadratic Orders

The use of class groups in cryptography was first proposed by Buchmann and
Williams [25]. We refer to, e.g., [23,24], for more detailed discussions. We recall the
basic properties of class groups necessary for our purpose. Let Δ be a negative integer
such that Δ ≡ 0 or 1 (mod 4). The ring OΔ := Z + Δ+

√
Δ

2 Z is called an imaginary
quadratic order of discriminant Δ. Its field of fractions is Q(

√
Δ). The discriminant

is fundamental if Δ/4 (resp. Δ) is square-free in the case of Δ ≡ 0 (mod 4) (resp.
Δ ≡ 1 (mod 4)). If Δ is fundamental, then OΔ is a maximal order. The fractional ide-

als of OΔ are of the form q
(
aZ + b+

√
Δ

2 Z

)
with q ∈ Q, a ∈ Z

+, and b ∈ Z, subject
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to the constraint that there exists c ∈ Z
+ such that Δ = b2 − 4ac and gcd(a, b, c) = 1.

A fractional ideal can therefore be represented by a tuple (q, a, b). If q = 1, then the
ideal is called integral and can be represented by a tuple (a, b). An integral ideal (a, b)
is reduced if it satisfies −a < b ≤ a ≤ c and b > 0 if a = c. It is known that if
an ideal (a, b) is reduced, then a ≤ √|Δ|/3. Two ideals a, b ⊆ OΔ are equivalent if
there exists 0 �= α ∈ Q(

√
Δ) such that b = αa. It is known that, for each equivalence

class of ideals, there exists exactly one reduced ideal which serves as the representative
of the equivalence class. The set of equivalence classes of ideals equipped with ideal
multiplication forms an Abelian group Cl(Δ) known as a class group.

Properties Useful in Cryptography. Since for all reduced ideals, |b| ≤ a ≤ √|Δ|/3,
Cl(Δ) is finite. For sufficiently large |Δ|, no efficient algorithm is known for finding
the cardinality of Cl(Δ), also known as the class number. Group operations can be per-
formed efficiently, as there exist efficient algorithms for ideal multiplication and com-
puting reduced ideals [23]. Assuming the extended Riemann hypothesis, Cl(Δ) is gen-
erated by the classes of all invertible prime ideals of norm smaller than 12(log |Δ|)2 [4],
where the norm of a fractional ideal (q, a, b) is defined as q2a (= a for integral ideals).
Since these ideals have norms logarithmic in |Δ|, they can be found in polynomial time
through exhaustive search. A random element can then be sampled by computing a
power product of the elements in the generating set, with exponents randomly chosen
from [|Δ|].

(Strong) Root Problem and its Variants in Cl(Δ). To recall, the strong root problem
in Cl(Δ) is to find a prime e ∈ Z and a group element Y ∈ Cl(Δ) such that Y e = X ,
for some given element X ∈ Cl(Δ). It is widely believed that root problems in Cl(Δ)
for a large enough Δ are hard if the problem instances are sampled randomly with
private coin [25]. Although the strong root problem in Cl(Δ) is not as well studied, it is
shown to be hard for generic group algorithms [31]. The best attacks currently known
are the ones for the root problem which runs in time proportional to L|Δ|( 12 , 1) [41],
where Lx(d, c) := exp(c(log x)d(log log x)1−d). As discussed in [41], using a 2560-bit
Δ offers approximately 128 bits of computational security.

The (resp. public-coin setup) position binding property of our first construction of
SVC can be proven under either the (resp. public-coin setup) strong distinct-prime-
product root assumption or the (resp. public-coin setup) adaptive root assumption. Note
that these two assumptions are somewhat “dual” to each other, in the sense that the
former allows the adversary to choose which root it is going to compute, while the
latter allows the adversary to choose the element whose root is to be found.

In the private-coin setup setting, it is clear that the strong distinct-prime-product root
assumption is implied by the standard strong root assumption. In the public-coin setup
setting, it is conjectured [19,63] that the adaptive root assumption holds in Cl(Δ). In the
following, we first propose a simple candidate sampling algorithm MGen for sampling
Cl(Δ) and random elements in Cl(Δ) with public coin, and then elaborate more about
the strong distinct-prime-product root assumption with respect to MGen.

The sampling algorithm MGen first samples random integers of the appropriate
length until it finds a fundamental discriminant Δ. Let {G1, . . . , Gk} be a generating
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set of Cl(Δ). Our sampling algorithm samples random primes c1, . . . , ck ∈ [|Δ|] sub-
ject to the constraint that the ci’s are pairwise coprime5. That is gcd(ci, cj) = 1 for all
i, j ∈ [k] with i �= j. The algorithm then outputs Δ along with A =

∏
i∈[k] G

ci
i .

With the above restriction in place, it seems that the best strategy of finding an
e-th root of A is to find an e-th root of Gi for all i ∈ [k] simultaneously. On the other
hand, the additional constraint seems necessary for the strong distinct-prime-product
root problem with respect to A to be hard. Suppose that (1) there exists a subset I =
{ci1 , . . . , ci�

} ⊆ [k] such that gcd(ci1 , . . . , ci�
) = d �= 1; (2) d can be efficiently

factorized into {ei}i∈S such that d =
∏

i∈S ei for distinct primes ei �= 1; and (3) for all
j ∈ [k] \ I , Gj can be efficiently represented as a product Gj =

∏
i∈I G

ai,j

i for some
ai,j . Then one can efficiently find a d-th root of A, say Y , and output ({ei}i∈S , Y ) as a
solution to the strong distinct-prime-product root problem. Since it seems unreasonable
to assume that d cannot be efficiently factorized into a product of distinct primes (see
also the discussion of RSA-UFO below), nor is it sound to assume that none of the Gj

can be represented with a power product of the Gi’s where i �= j, we impose the more
reasonable restriction that the ci’s are pairwise coprime.

8.2 RSA Groups

RSA-based cryptosystems operate over Z
∗
N , the group of positive integers smaller and

coprime with N , equipped with modular multiplication, where N is an integer with
at least two distinct large prime factors. The security of these systems relies on the
hardness of the (strong) root problem over Z

∗
N , known as the (strong) RSA assumption.

Typically, N is chosen as a product of two secret distinct large primes p, q. However,
the (strong) root problem over Z

∗
N is easy if p and q are known. In other words, for N

generated this way, the (strong) root assumption with public-coin setup does not hold
over Z

∗
N .

RSA-UFOs. The problem of constructing RSA-based accumulators without trapdoors
was considered by Sander [58], who proposed a way to generate (k, ε)-“generalized
RSA moduli of unknown complete factionization (RSA-UFOs)” N which has at least
two distinct k-bit prime factors with probability 1 − ε, summarized as follows. Let
N1, . . . , Nr be random 3k-bit integers with r = O(log 1/ε). It is known that with con-
stant probability Ni has at least two distinct k-bit prime factors [58]. It then follows that
N :=

∏
i∈[r] Ni has at least two distinct k-bit prime factors. An important observation

is that N can be generated with public coin, e.g., using a random oracle. However, since
N is a 3kr-bit integer, any cryptosystem based on Z

∗
N seems impractical. Nevertheless,

one can show that strong RSA over RSA-UFO groups is implied by the standard strong
RSA assumption in the presence of a random oracle. This result is implicitly shown by
Sander [58] and a proof sketch is given in [47].
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5 This is assuming k > 1, else just set c1 = 1.
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Abstract. We present batching techniques for cryptographic accumula-
tors and vector commitments in groups of unknown order. Our techniques
are tailored for distributed settings where no trusted accumulator man-
ager exists and updates to the accumulator are processed in batches. We
develop techniques for non-interactively aggregating membership proofs
that can be verified with a constant number of group operations. We also
provide a constant sized batch non-membership proof for a large number
of elements. These proofs can be used to build the first positional vector
commitment (VC) with constant sized openings and constant sized pub-
lic parameters. As a core building block for our batching techniques we
develop several succinct proof systems in groups of unknown order. These
extend a recent construction of a succinct proof of correct exponentia-
tion, and include a succinct proof of knowledge of an integer discrete
logarithm between two group elements. We circumvent an impossibility
result for Sigma-protocols in these groups by using a short trapdoor-free
CRS. We use these new accumulator and vector commitment construc-
tions to design a stateless blockchain, where nodes only need a constant
amount of storage in order to participate in consensus. Further, we show
how to use these techniques to reduce the size of IOP instantiations, such
as STARKs. The full version of the paper is available online [BBF18b].

1 Introduction

A cryptographic accumulator [Bd94] is a primitive that produces a short bind-
ing commitment to a set of elements together with short membership and/or
non-membership proofs for any element in the set. These proofs can be pub-
licly verified against the commitment. The simplest accumulator is the Merkle
tree [Mer88], but several other accumulators are known, as discussed below. An
accumulator is said to be dynamic if the commitment and membership proofs
can be updated efficiently as elements are added or removed from the set, at
unit cost independent of the number of accumulated elements. Otherwise we say
that the accumulator is static. A universal accumulator is dynamic and supports
both membership and non-membership proofs.

c© International Association for Cryptologic Research 2019
A. Boldyreva and D. Micciancio (Eds.): CRYPTO 2019, LNCS 11692, pp. 561–586, 2019.
https://doi.org/10.1007/978-3-030-26948-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26948-7_20&domain=pdf
https://doi.org/10.1007/978-3-030-26948-7_20


562 D. Boneh et al.

A vector commitment (VC) is a closely related primitive [CF13]. It provides
the same functionality as an accumulator, but for an ordered list of elements.
A VC is a position binding commitment and can be opened at any position
to a unique value with a short proof (sublinear in the length of the vector).
The Merkle tree is a VC with logarithmic size openings. Subvector commit-
ments [LM18] are VCs where a subset of the vector positions can be opened in
a single short proof (sublinear in the size of the subset).

The typical way in which an accumulator or VC is used is as a
communication-efficient authenticated data structure (ADS) for a remotely
stored database where users can retrieve individual items along with their mem-
bership proofs in the data structure. Accumulators have been used for many
applications within this realm, including accountable certificate management
[BLL00,NN98], timestamping [Bd94], group signatures and anonymous creden-
tials [CL02], computations on authenticated data [ABC+12], anonymous e-cash
[STS99b,MGGR13], privacy-preserving data outsourcing [Sla12], updatable sig-
natures [PS14,CJ10], and decentralized bulletin boards [FVY14,GGM14].

Our present work is motivated by two particular applications of accumula-
tors and vector commitments: stateless transaction validation in blockchains, or
“stateless blockchains” and short interactive oracle proofs (IOPs) [BCS16].

“Stateless” blockchains. A blockchain has become the popular term for a
ledger-based payment system, in which peer-to-peer payment transactions are
asynchronously broadcasted and recorded in an ordered ledger that is replicated
across nodes in the network. Bitcoin and Ethereum are two famous examples. Ver-
ifying the validity of a transaction requires querying the ledger state. The state can
be computed uniquely from the ordered log of transactions, but provides a more
compact index to the information required for transaction validation.

For example, in Ethereum the state is a key/value store of account balances
where account keys are the public key addresses of users. In Bitcoin, the state is
the set of unspent transaction outputs (UTXOs). In Bitcoin, every transaction
completely transfers all the funds associated with a set of source addresses to
a set of target addresses. It is only valid if every source address is the output
of a previous transaction that has not yet been consumed (i.e. “spent”). It is
important that all nodes agree on the ledger state.

Currently, in Bitcoin, every node in the system stores the entire UTXO set
in order to verify incoming transactions. This has become cumbersome as the
size of UTXO set has grown to gigabytes. An accumulator commitment to the
UTXO set would alleviate this need. Transactions would include membership
proofs for all its inputs. A node would only need to store the current state of the
accumulator and verify transactions by checking membership proofs against the
UTXO accumulator state. In fact, with dynamic accumulators, no single node in
the network would be required to maintain the entire UTXO set. Only the indi-
vidual nodes who are interested in a set of UTXOs (e.g. the users who can spend
these outputs) would need to store them along with their membership proofs.
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Every node can efficiently update the UTXO set commitment and membership
proofs for individual UTXOs with every new batch of transactions. The same
idea can be applied to the Ethereum key-value store using a VC instead of an
accumulator.

This design concept is referred to as a “stateless blockchain” [Tod16] because
nodes may participate in transaction validation without storing the entire state
of the ledger, but rather only a short commitment to the state. The idea of com-
mitting to a ledgers state was introduced long before Bitcoin by Sanders and
Ta-Shma for E-Cash [STS99a]. While the stateless blockchain design reduces the
storage burden of node performing transaction validation, it increases the net-
work communication due to the addition of membership proofs to each transac-
tion payload. A design goal is to minimize the communication impact. Therefore,
stateless blockchains would benefit from an accumulator with smaller member-
ship proofs, or the ability to aggregate many membership proofs for a batch of
transactions into a single constant-size proof.

Interactive oracle proofs (IOPs). Micali [Mic94] showed how probabilistically
checkable proofs (PCPs) can be used to construct succinct non-interactive argu-
ments. In this construction the prover commits to a long PCP using a Merkle
tree and then uses a random oracle to generate a few random query positions.
The prover then verifiably opens the proof at the queried positions by providing
Merkle inclusion paths.

This technique has been generalized to the broader class of interactive oracle
proofs (IOPs) [BCS16]. In an IOP the prover sends multiple proof oracles to a
verifier. The verifier uses these oracles to query a small subsets of the proof, and
afterwards accepts or rejects the proof. If the proof oracle is instantiated with a
Merkle tree commitment and the verifier is public coin, then an IOP can be com-
piled into a non-interactive proof secure in the random oracle model [BCS16]. In
particular, this compiler is used to build short non-interactive (zero-knowledge)
proof of knowledge with a quasilinear prover and polylogarithmic verifier. Recent
practical instantiations of proof systems from IOPs include Ligero [AHIV17],
STARKs [BBHR18], and Aurora [BSCR+18].

IOPs use Merkle trees as a vector commitment. Merkle trees have two signifi-
cant drawbacks for this application: first, position openings are not constant size,
and second, the openings of several positions cannot be compressed into a single
constant size proof (i.e. it is not a subvector commitment). A vector commitment
with these properties would have dramatic benefits for reducing the communica-
tion of an IOP (or size of the non-interactive proof compiled from an IOP).

1.1 Summary of Contributions

Our technical contributions consist of a set of batching and aggregation tech-
niques for accumulators. The results of these techniques have a wide range of
implications, from concrete practical improvements in the proof-size of IOP-based
succinct arguments (e.g. STARKS) and minimizing the network communication
blowup of stateless blockchains to theoretical achievements in VCs and IOPs.
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To summarize the theoretical achievements first, we show that it is possible
to construct a VC with constant size subvector openings and constant size public
parameters. Previously, it was only known how to construct a VC with constant
size subvector openings and public parameters linear in the length of the vector.
This has immediate implications for IOP compilers. The Merkle-tree IOP com-
piler outputs a non-interactive proof that is O(λq log n) larger (additive blowup)
than the original IOP communication, where q is the number of oracle queries,
n is the maximum length1 of the IOP proof oracles, and λ is the Merkle tree
security parameter. When replacing the Merkle-tree in the IOP compiler with
our new VC, we achieve only O(rλ) blowup in proof size, independent of q and n,
but dependent on the number of IOP rounds r. In the special case of a PCP there
is a single round (i.e. r = 1). A similar result was recently demonstrated [LM18]
using the vector commitments of Catalano and Fiore (CF) [CF13], but the con-
struction requires the verifier to access public parameters linear in n. It was not
previously known how to achieve this with constant size public parameters.

Lai and Malavolta apply the CF vector commitments to “CS-proofs”, a spe-
cial case of a compiled IOP where the IOP is a single round PCP. Instantiated
with theoretical PCPs [Kil92,Mic94], this results in the shortest known setup-
free non-interactive arguments (for NP) with random oracles consisting of just
2 elements in a hidden order group and 240 additional bits of the PCP proof for
80-bit statistical security. Instantiating the group with class groups and targeting
100-bit security yields a proof of ≈540 bytes. However, the verifier must either
use linear storage or perform linear work for each proof verification to generate
the public proof parameters. In similar vein, we can use our new VCs to build
the same non-interactive argument system, but with sublinear size parameters
(in fact constant size). Under the same parameters our proofs are slightly larger,
consisting of 5 group elements, a 128-bit integer, and the 240 bits of the PCP
proof (≈1.3 KB).

OurVCs alsomake concrete improvements to practical IOPs.Targeting 100-bit
security with class groups, replacing Merkle trees with our VCs would incur only
1 KB per round of the IOP. In Aurora [BSCR+18], it was reported that Merkle
proofs take up 154 KB of the 222 KB proof for a circuit of size 220. Our VCs would
reduce the size of the proof to less than 100 KB, a 54% reduction. For STARKs,
a recent benchmark indicates that the Merkle paths make up over 400 KB of the
600 KB proof for a circuit of 252 gates [BBHR18]. With our VCs, under the same
parameters the membership proofs would take up roughly 22 KB, reducing the
overall proof size to approximately 222 KB, nearly a 63% reduction.

Furthermore, replacing Merkle trees with our new VCs maintains good per-
formance for proof verification. Roughly, each Merkle path verification of a k-bit
block is substituted with k modular multiplications of λ-bit integers. The per-
formance comparison is thus log n hashes vs k multiplications, which is even an
improvement for k < log n. In the benchmarked STARK example, Merkle path
verification comprises roughly 80% of the verification time.

1 In each round of an IOP, the prover prepares a message and sends the verifier a
“proof oracle”, which gives the verifier random read access to the prover’s message.
The “length” of the proof oracle is the length of this message.
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1.2 Overview of Techniques

Batching and aggregation. We use the term batching to describe a single
action applied to n items instead of one action per item. For example a verifier
can batch verify n proofs faster than n times verifying a single membership
proof. Aggregation is a batching technique that is used when non-interactively
combining n items to a single item. For example, a prover can aggregate n
membership proofs to a single constant size proof.

Succinct proofs for hidden order groups. Wesolowski [Wes18] recently
introduced a constant sized and efficient to verify proof that a triple (u,w, t)
satisfies w = u2t , where u and w are elements in a group G of unknown order.
The proof extends to exponents that are not a power of two and still provides
significant efficiency gains over direct verification by computation.

We expand on this technique to provide a new proof of knowledge of an
exponent, which we call a PoKE proof. It is a proof that a computationally
bounded prover knows the discrete logarithm between two elements in a group
of unknown order. The proof is succinct in that the proof size and verification
time is independent of the size of the discrete-log and has good soundness. We
also generalize the technique to pre-images of homomorphisms from Z

q to G

of unknown order. We prove security in the generic group model, where an
adversarial prover operates over a generic group. Nevertheless, our extractor is
classical and does not get to see the adversary’s queries to the generic group
oracles. We also rely on a short unstructured common reference string (CRS).
Using the generic group model for extraction and relying on a CRS is necessary to
bypass certain impossibility results for proofs of knowledge in groups of unknown
order [BCK10,TW12].

We also extend the protocol to obtain a (honest verifier zero-knowledge) Σ-
Protocol of DLOG in G. This protocol is the first succinct Σ-protocol of this
kind.

Distributed accumulator with batching. Next, we extend current RSA-
based accumulators [CL02,LLX07] to create a universal accumulator for a dis-
tributed/decentralized setting where no single trusted accumulator manager
exists and where updates are processed in batches. Despite this we show how
membership and non-membership proofs can be efficiently aggregated. More-
over, items can efficiently be removed from the accumulator without a trapdoor
or even knowledge of the accumulated set. Since the trapdoor is not required for
our construction we can extend Lipmaa’s [Lip12] work on accumulators in groups
of unknown order without a trusted setup by adding dynamic additions and dele-
tions to the accumulator’s functionality. Class groups of imaginary quadratic
order are a candidate group of unknown order without a trusted setup [BH01].

Batching non-membership proofs. We next show how our techniques can
be amplified to create a succinct and efficiently verifiable batch membership and
batch non-membership proofs. We then use these batch proofs to create the first
vector commitment construction with constant sized batch openings (recently
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called subvector commitments [LM18]) and O(1) setup. This improves on previ-
ous work [CF13,LRY16] which required superlinear setup time and linear public
parameter size. It also improves on Merkle tree constructions which have loga-
rithmic sized non-batchable openings. The efficient setup also allows us to create
sparse vector commitments which can be used as a key-value map commitment.

Soundness lower bounds in hidden order groups. Certain families of sigma
protocols for a relation in a generic group of unknown order can achieve at most
soundness 1/2 per challenge [BCK10,TW12]. Yet, our work gives sigma protocols
in a generic group of unknown order that have negligible soundness error. This
does not contradict the known impossibility result because our protocols involve
a CRS, whereas the family of sigma protocols to which the 1/2 soundness lower
bound applies do not have a CRS. Our results are significant as we show that it
suffices to have a CRS containing two fresh random generic group generators to
circumvent the soundness lower bound.

Note that we only prove how to extract a witness from a successful prover that
is restricted to the generic group model. Proving extraction from an arbitrary
prover under a falsifiable assumption is preferable and remains an open problem.

2 Preliminaries

Notation

– a ‖ b is the concatenation of two lists a, b
– a is a vector of elements and ai is the ith component
– [�] denotes the set of integers {0, 1, . . . , � − 1}.
– negl(λ) is a negligible function of the security parameter λ
– Primes(λ) is the set of integer primes less than 2λ

– x
$← S denotes sampling a uniformly random element x ∈ S.

x
$← A(·) denotes the random variable that is the output of a randomized

algorithm A.
– GGen(λ) is a randomized algorithm that generates a group of unknown order

in a range [a, b] such that a, b, and a − b are all integers exponential in λ.

2.1 Assumptions

The adaptive root assumption, introduced in [Wes18], is as follows.

Definition 1. We say that the adaptive root assumption holds for GGen
if there is no efficient adversary (A0,A1) that succeeds in the following task.
First, A0 outputs an element w ∈ G and some state. Then, a random prime �
in Primes(λ) is chosen and A1(�, state) outputs w1/� ∈ G. More precisely, for all
efficient (A0,A1):

AdvAR
(A0,A1)(λ) := Pr

⎡
⎢⎢⎢⎢⎣

u� = w �= 1 :

G
$← GGen(λ)

(w, state) $← A0(G)

�
$← Primes(λ)

u
$← A1(�, state)

⎤
⎥⎥⎥⎥⎦

≤ negl(λ) .
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The adaptive root assumption implies that the adversary can’t compute the order
of any non trivial element. For any element with known order the adversary can
compute arbitrary roots that are co-prime to the order. This immediately allows
the adversary to win the adaptive root game. For the group ZN this means that
we need to exclude {−1, 1}.

We will also need the strong RSA assumption for general groups of unknown
order. The adaptive root and strong RSA assumptions are incomparable. The
former states that it is hard to take a random root of a chosen group element,
while the latter says that it is hard to take a chosen root of a random group
element. In groups of unknown order that do not require a trusted setup the
adversary A additionally gets access to GGen’s random coins.

Definition 2 (Strong RSA assumption). GGen satisfies the strong RSA
assumption if for all efficient A:

Pr

[
u� = g and � is an odd prime :

G
$← GGen(λ), g

$← G,

(u, �) ∈ G × Z
$← A(G, g)

]
≤ negl(λ) .

2.2 Generic Group Model for Groups of Unknown Order

We will use the generic group model for groups of unknown order as defined
by Damgard and Koprowski [DK02]. The group is parameterized by two integer
public parameters A,B. The order of the group is sampled uniformly from [A,B].
The group G is defined by a random injective function σ : Z|G| → {0, 1}�, for
some � where 2� 	 |G|. The group elements are σ(0), σ(1), . . . , σ(|G| − 1). A
generic group algorithm A is a probabilistic algorithm. Let L be a list that is
initialized with the encodings given to A as input. The algorithm can query two
generic group oracles:

– O1 samples a random r ∈ Z|G| and returns σ(r), which is appended to the
list of encodings L.

– When L has size q, the second oracle O2(i, j,±) takes two indices i, j ∈
{1, . . . , q} and a sign bit, and returns σ(xi ± xj), which is appended to L.

Note that unlike Shoup’s generic group model [Sho97], the algorithm is not given
|G|, the order of the group G.

2.3 Argument Systems

An argument system for a relation R ⊂ X × W is a triple of randomized poly-
nomial time algorithms (Pgen,P,V), where Pgen takes an (implicit) security
parameter λ and outputs a common reference string (crs) pp. If the setup algo-
rithm uses only public randomness we say that the setup is transparent and that
the crs is unstructured. The prover P takes as input a statement x ∈ X , a witness
w ∈ W, and the crs pp. The verifier V takes as input pp and x and after inter-
action with P outputs 0 or 1. We denote the transcript between the prover and
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verifier by 〈V(pp, x),P(pp, x, w)〉 and write 〈V(pp, x),P(pp, x, w)〉 = 1 to indicate
that the verifier accepted the transcript. If V uses only public randomness we
say that the protocol is public coin.

Definition 3 (Completeness). We say that an argument system (Pgen,P,V)
for a relation R is complete if for all (x,w) ∈ R:

Pr
[ 〈V(pp, x),P(pp, x, w)〉 = 1 : pp $← Pgen(λ)

]
= 1.

We now define soundness and knowledge extraction for our protocols. The
adversary is modeled as two algorithms A0 and A1, where A0 outputs the
instance x ∈ X after Pgen is run, and A1 runs the interactive protocol with
the verifier using a state output by A0. In our soundness definition the adver-
sary A1 succeeds if he can make the verifier accept when no witness for x exists.
For the stronger argument of knowledge definition we require that an extractor
with access to A1’s internal state can extract a valid witness whenever A1 is con-
vincing. We model this by enabling the extractor to rewind A1 and reinitialize
the verifier’s randomness.

Definition 4 (Arguments (of Knowledge)). We say that an argument sys-
tem (Pgen,P,V) is sound if for all poly-time adversaries A = (A0,A1):

Pr

[
〈V(pp, x),A1(pp, x, state)〉 = 1
and �w (x,w) ∈ R :

pp
$← Pgen(1λ)

(x, state) ← A0(pp)

]
= negl(λ) .

Additionally, the argument system is an argument of knowledge if for all
poly-time adversaries A1 there exists a poly-time extractor Ext such that for all
poly-time adversaries A0:

Pr

⎡
⎢⎣ 〈V(pp, x),A1(pp, x, state)〉 = 1

and (x,w′) �∈ R :

pp
$← Pgen(1λ)

(x, state) ← A0(pp)

w′ $← Ext(pp, x, state)

⎤
⎥⎦ = negl(λ) .

Any argument of knowledge is also sound. In some cases we may further
restrict A in the security analysis, in which case we would say the system is an
argument of knowledge for a restricted class of adversaries. For example, in this
work we construct argument systems for relations that depend on a group G of
unknown order. In the analysis we replace G with a generic group and restrict
A to a generic group algorithm that interacts with the oracles for this group.
For simplicity, although slightly imprecise, we say the protocol is an argument
of knowledge in the generic group model.

Definition 5 (Non interactive arguments). A non-interactive argument
system is an argument system where the interaction between P and V consists
of only a single round. We then write the prover P as π

$← Prove(pp, x, w) and
the verifier as {0, 1} ← Vf(pp, x, π).
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The Fiat-Shamir heuristic [FS87] and its generalization to multi-round pro-
tocols [BCS16] can be used to transform public coin argument systems to non-
interactive systems.

3 Succinct Proofs for Hidden Order Groups

In this section we present several new succinct proofs in groups of unknown
order. The proofs build on a proof of exponentiation recently proposed by
Wesolowski [Wes18] in the context of verifiable delay functions [BBBF18]. We
show that the Wesolowski proof is a succinct proof of knowledge of a discrete-log
in a group of unknown order. We then derive a succinct zero-knowledge argument
of knowledge for a discrete-log relation, and more generally for knowledge of the
inverse of a homomorphism h : Z

n → G, where G is a group of unknown order.
Using the Fiat-Shamir heuristic, the non-interactive version of this protocol is a
special purpose SNARK for the pre-image of a homomorphism.

3.1 A Succinct Proof of Exponentiation

Let G be a group of unknown order. Let [�] := {0, 1, . . . , � − 1} and let
Primes(λ) denote the set of odd prime numbers in [0, 2λ]. We begin by reviewing
Wesolowski’s (non-ZK) proof of exponentiation [Wes18] in the group G. Here
both the prover and verifier are given (u,w, x) and the prover wants to convince
the verifier that w = ux holds in G. That is, the protocol is an argument system
for the relation

RPoE =
{(

(u,w ∈ G, x ∈ Z); ⊥)
: w = ux ∈ G

}
.

The verifier’s work should be much less than computing ux by itself. Note that
x ∈ Z can be much larger than |G|, which is where the protocol is most useful.
The protocol works as follows:

Protocol PoE (Proof of exponentiation) for RPoE [Wes18]

Params: G
$← GGen(λ); Inputs: u,w ∈ G, x ∈ Z; Claim: ux = w

1. Verifier sends �
$← Primes(λ) to prover.

2. Prover computes the quotient q = �x/�� ∈ Z and residue r ∈ [�] such
that x = q� + r.
Prover sends Q ← uq ∈ G to the Verifier.

3. Verifier computes r ← (x mod �) ∈ [�] and accepts if Q�ur = w holds in
G.

The protocol above is a minor generalization of the protocol from [Wes18] in
that we allow an arbitrary exponent x ∈ Z, where as in [Wes18] the exponent
was restricted to be a power of two. This does not change the soundness property
captured in the following theorem, whose proof is given in [Wes18, Prop. 2] (see
also [BBF18a, Thm. 2]) and relies on the adaptive root assumption for GGen.
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Theorem 1 (Soundness PoE [Wes18]). Protocol PoE is an argument system
for Relation RPoE with negligible soundness error, assuming the adaptive root
assumption holds for GGen.

For the protocol to be useful the verifier must be able to compute r = x mod �
faster than computing ux ∈ G. The original protocol presented by Wesolowski
assumed that x = 2T is a power of two, so that computing x mod � requires only
log(T ) multiplications in Z� whereas computing ux requires T group operations.

For a general exponent x ∈ Z, computing x mod � takes O((log x)/λ) multi-
plications in Z�. In contrast, computing ux ∈ G takes O(log x) group operations
in G. Hence, for the current groups of unknown order, computing ux takes λ3

times as long as computing x mod �. Concretely, when � is a 128 bit integer, a
multiplication in Z� is approximately 5000 time faster than a group operation in
a 2048-bit RSA group. Hence, the verifier’s work is much less than computing
w = ux in G on its own.

The PoE protocol can be generalized to a relation involving any homomor-
phism φ : Z

n → G for which the adaptive root assumption holds in G. The
details of this generalization are discussed in the full version.

3.2 A Succinct Proof of Knowledge of a Discrete-Log

We next show how the protocol PoE can be adapted to provide an argument of
knowledge of discrete-log, namely an argument of knowledge for the relation:

RPoKE =
{(

(u,w ∈ G); x ∈ Z
)

: w = ux ∈ G
}
.

The goal is to construct a protocol that has communication complexity that is
much lower than simply sending x to the verifier. As a stepping stone we first
provide an argument of knowledge for a modified PoKE relation, where the base
u ∈ G is fixed and encoded in a CRS. Concretely let CRS consist of the unknown-
order group G and the generator g. We construct an argument of knowledge for
the following relation:

RPoKE∗ =
{(

w ∈ G; x ∈ Z
)

: w = gx ∈ G
}
.

The argument modifies the PoE Protocol in that x is not given to the verifier,
and the remainder r ∈ [�] is sent from the prover to the verifier:

Protocol PoKE∗ (Proof of knowledge of exponent) for Relation RPoKE∗

Params: G
$← GGen(λ), g ∈ G; Inputs: w ∈ G; Witness: x ∈ Z;

Claim: gx = w

1. Verifier sends �
$← Primes(λ).

2. Prover computes the quotient q ∈ Z and residue r ∈ [�] such that
x = q� + r. Prover sends the pair (Q ← gq, r) to the Verifier.

3. Verifier accepts if r ∈ [�] and Q�gr = w holds in G.
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Here the verifier does not have the witness x, but the prover additionally
sends r := (x mod �) along with Q in its response to the verifier’s challenge.
Note that the verifier no longer computes r on its own, but instead relies on
the value from the prover. We will demonstrate an extractor that extracts the
witness x ∈ Z from a successful prover, and prove that this extractor succeeds
with overwhelming probability against a generic group prover. In fact, in the
full version of the paper [BBF18b] we present a generalization of Protocol PoKE∗

to group representations in terms of bases {gi}n
i=1 included in the CRS, i.e. a

proof of knowledge of an integer vector x ∈ Z
n such that

∏
i gxi

i = w. We will
prove that this protocol is an argument of knowledge against a generic group
adversary. The security of Protocol PoKE∗ above follows as a special case. Hence,
the following theorem is a special case of Theorem 7 in the full version.

Theorem 2. Protocol PoKE∗ is an argument of knowledge for relation RPoKE∗

in the generic group model.

An attack. Protocol PoKE∗ requires the discrete logarithm base g to be encoded
in the CRS. When this protocol is applied to a base freely chosen by the adversary
it becomes insecure. In other words, Protocol PoKE∗ is not a secure protocol for
the relation RPoKE.

To describe the attack, let g be a generator of G and let u = gx and w = gy

where y �= 1 and x does not divide y. Suppose that the adversary knows both
x and y but not the discrete log of w base u. Computing an integer discrete
logarithm of w base u is still difficult in a generic group, however an efficient
adversary can nonetheless succeed in fooling the verifier as follows. Since the
challenge � is co-prime with x with overwhelming probability, the adversary can
compute q, r ∈ Z such that q� + rx = y. The adversary sends (Q = gq, r) to
the verifier, and the verifier checks that indeed Q�ur = w. Hence, the verifier
accepts despite the adversary not knowing the discrete log of w base u.

This does not qualify as an “attack” when x = 1, or more generally when x
divides y, since then the adversary does know the discrete logarithm y/x such
that uy/x = w.

Extending PoKE for general bases. To obtain a protocol for the relation
RPoKE we start by modifying protocol PoKE∗ so that the prover first sends
z = gx, for a fixed base g, and then executes two PoKE∗ style protocols, one
base g and one base u, in parallel, showing that the discrete logarithm of w base
u equals the one of z base g. We show that the resulting protocol is a secure
argument of knowledge (in the generic group model) for the relation RPoKE. The
transcript of this modified protocol now consists of two group elements instead
of one.
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Protocol PoKE (Proof of knowledge of exponent)

Params: G
$← GGen(λ), g ∈ G; Inputs: u,w ∈ G; Witness: x ∈ Z;

Claim: ux = w
1. Prover sends z = gx ∈ G to the verifier.
2. Verifier sends �

$← Primes(λ).
3. Prover finds the quotient q ∈ Z and residue r ∈ [�] such that x = q� + r.

Prover sends Q = uq and Q′ = gq and r to the Verifier.
4. Verifier accepts if r ∈ [�], Q�ur = w, and Q′�gr = z.

The intuition for the security proof is as follows. The extractor first uses the
same extractor for Protocol PoKE∗ to extract the discrete logarithm x of z base
g. It then suffices to argue that this extracted discrete logarithm x is a correct
discrete logarithm of w base u. We use the adaptive root assumption to argue
that the extracted x is a correct discrete logarithm of w base u.

We can optimize the protocol to bring down the proof size back to a single
group element. We do so in the protocol PoKE2 below by adding one round of
interaction. The additional round has no effect on proof size after making the
protocol non-interactive using Fiat-Shamir. The protocol is presented in the full
version [BBF18b].

Theorem 3 (PoKE Argument of Knowledge). Protocol PoKE and Protocol

PoKE2 are arguments of knowledge for relation RPoKE in the generic group model.

The PoKE argument of knowledge can be extended to an argument of knowl-
edge for the pre-image of a homomorphism φ : Z

n → G. This is included in the
full version.

We can also construct a (honest-verifier) zero-knowledge version of the PoKE
argument of knowledge protocol using a method similar to the classic Schnorr
Σ-protocol for hidden order groups. This is covered in the full version [BBF18b].

3.3 Aggregating Knowledge of Co-prime Roots

Unlike exponents, providing a root of an element in a hidden order group is
already succinct (it is simply a group element). There is a simple aggregation
technique for providing a succinct proof of knowledge for multiple co-prime roots
x1, ..., xn simultaneously. This is useful for aggregating PoKE proofs.

In the full version of the proof we describe the PoKCR. It is a proof for the
relation:

RPoKCR =
{(

α ∈ G
n; x ∈ Z

n
)

: w = φ(x) ∈ G
}
.

4 Trapdoorless Universal Accumulator

In this section we describe a number of new techniques for manipulating accu-
mulators built from the strong RSA assumption in a group of unknown order.
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We show how to efficiently remove elements from the accumulator, how to use
the proof techniques from Sect. 3 to give short membership proofs for multiple
elements, and how to non-interactively aggregate inclusion and exclusion proofs.
All our techniques are geared towards the setting where there is no trusted
setup. We begin by defining what an accumulator is and what it means for an
accumulator to be secure.

Our presentation of a trapdoorless universal accumulator mostly follows the
definitions and naming conventions of [BCD+17]. Figure 1 summarizes the accu-
mulator syntax and list of associated operations. One notable difference in our
syntax is the presence of a common reference string pp generated by the Setup
algorithm in place of private/public keys.

The security definition we follow [Lip12] formulates an undeniability property
for accumulators. For background on how this definition relates to others that
have been proposed see [BCD+17], which gives generic transformations between
different accumulators with different properties and at different security levels.

The following definition states that an accumulator is secure if an adversary
cannot construct an accumulator, an element x and a valid membership witness
wt

x and a non-membership witness ut
x where wt

x shows that x is in the accumula-
tor and ut

x shows that it is not. Lipmaa [Lip12] also defines undeniability without
a trusted setup. In that definition the adversary has access to the random coins
used by Setup.

λ: Security Parameter
t: A discrete time counter
At: Accumulator value at time t
St: The set of elements currently accumulated
wt

x, ut
x: Membership and non-membership proofs

pp: Public parameters implicitly available to all methods
upmsg: Information used to update proofs
Setup(λ, z) pp, A0 Generate the public parameters
Add(At, x) At+1,upmsg} Update the accumulator
Del(At, x) At+1,upmsg} Delete a value from the accumulator
MemWitCreate(At, S, x) wt

x Create an membership proof
NonMemWitCreate(At, S, x) ut

x Create a non-membership proof
MemWitUp(At, w

t
x, x,upmsg) wt+1

x Update an membership proof
NonMemWitUp(At, w

t
x, x,upmsg) ut+1

x Update a non-membership proof
VerMem(At, x, wt

x) 0, 1} Verify membership proof
VerNonMem(At, x, ut

x)

{
{

{
{0, 1} Verify non-membership proof

Fig. 1. A trapdoorless universal accumulator.

Definition 6 (Accumulator Security (Undeniability)).

Pr

⎡
⎢⎣
pp, A0 ∈ G

$← Setup(λ)

(A, x,wx, ux) $← A(pp, A0)
VerMem(A, x,wt

x) ∧ VerNonMem(A, x, ut
x)

⎤
⎥⎦ = negl(λ)
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4.1 Accumulator Construction

Several sub-procedures that are used heavily in the construction are summarized
below. Bezout(x,y) refers to a sub-procedure that outputs Bezout coefficients
a, b ∈ Z for a pair of co-prime integers x, y (i.e. satisfying the relation ax + by =
1). ShamirTrick uses Bezout coefficient’s to compute an (xy)-th root of a group
element g from an x-th root of g and a yth root of g. RootFactor is a procedure
that given an element y = gx and the factorization of the exponent x = x1 · · · xn

computes an xi-th root of y for all i = 1, . . . , n in total time O(n log(n)). Naively
this procedure would take time O(n2). It is related to the MultiExp algorithm
described earlier and was originally described by [STSY01].

ShamirTrick(w1, w2, x, y): [Sha83]

1. if wx
1 �= wy

2 return ⊥
2. a, b ← Bezout(x, y)
3. return wb

1w
a
2

Hprime(x):

1. y ← H(x)
2. while y is not odd prime:
3. y ← H(y)
4. return y

RootFactor(g, x1, . . . , xn):

1. if n = 1 return g
2. n′ ← �n

2
�

3. gL ← g
∏n′

j=1 xj

4. gR ← g
∏n

j=n′+1 xj

5. L ←RootFactor(gR, x1, . . . , xn′)
6. R ←RootFactor(gL, xn′+1, . . . , xn)
7. return L ‖ R

Groups of unknown order. The accumulator requires a procedure GGen(λ)
which samples a group of unknown order in which the strong root assumption
(Definition 2) holds. One can use the quotient group (Z/N)∗/{−1, 1}, where N
is an RSA modulus, which may require a trusted setup to generate the modulus
N . Alternatively, one can use a class group which eliminates the trusted setup.
Note that the adaptive root assumption requires that these groups have no known
elements of low order, and hence the group (Z/N)∗ is not suitable because (−1) ∈
(Z/N)∗ has order two [BBF18a]. Given an element of order two it is possible to
convince a PoE-verifier that gx = −y when in fact gx = y.

The basic RSA accumulator. We review he classic RSA accumulator [CL02,
Lip12] below, omitting all the procedures that require trapdoor information. All
accumulated values are odd primes. If the strong RSA assumption (Definition 2)
holds in G, then the accumulator satisfies the undeniability definition [Lip12].

The core procedures for the basic dynamic accumulator are the following:

– Setup generates a group of unknown order and initializes the group with a
generator of that group.

– Add takes the current accumulator At, an element from the odd primes
domain, and computes At+1 = At.

– Del does not have such a trapdoor and therefore needs to reconstruct the set
from scratch. The RootFactor algorithm can be used for pre-computation.
Storing 2k elements and doing n · k work, the online removal will only take
(1 − 1

2

k) · n steps.
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– A membership witness is simply the accumulator without the aggregated
item.

– A membership non-witness, proposed by [LLX07], uses the fact that
for any x �∈ S, gcd(x,

∏
s∈S s) = 1. The Bezout coefficients (a, b) ←

Bezout(x,
∏

s∈S s) are therefore a valid membership witness. The actual wit-
ness is the pair (a, gb) which is short because |a| ≈ |x|.

– Membership and non-membership witnesses can be efficiently updated as in
[LLX07]

Setup(λ):

1. G
$← GGen(λ)

2. g
$← G

3. return G, g

Add(At, S, x):
1. if x ∈ S : return At

2. else :
3. S ← S ∪ {x}
4. upmsg ← x
5. return Ax

t ,upmsg
Del(At, S, x):
1. if : x �∈ S : return At

2. else :
3. S ← S \ {x}
4. At+1 ← g

∏
s∈S s

5. upmsg ← {x,At, At+1}
6. return At+1,upmsg

MemWitCreate(A,S, x) :
1. wt

x ← g
∏

s∈S,s �=x s

2. return wt
x

NonMemWitCreate(A,S, x) :
1. s∗ ← ∏

s∈S s
2. a, b ← Bezout(s∗, x)
3. B ← gb

4. return ut
x ← {a,B}

VerMem(A,wx, x) :
1. return 1 if (wx)x = A

VerNonMem(A, ux, x) :
1. {a,B} ← ux

2. return 1 if AaBx = g

Theorem 4 (Security accumulator [Lip12]). Assume that the strong RSA
assumption (Definition 2) holds in G. Then the accumulator satisfies undenia-
bility (Definition 6) and is therefore secure.

Proof. We construct an ARSA that given an AAcc for the accumulator breaks the
strongRSAassumption.ARSA receives a groupG ← GGen(λ) anda challenge g

$←
G. We now run AAcc on input G and A0 = g. AAcc returns a tuple (A, x,wx, ux)
such thatVerMem(A, x,wx) = 1 andVerNonMem(A, x, ux) = 1. ARSA parses
(a,B) = ux and computes B · (wx)a as the xth root of g. x is an odd prime by
definition and (B·wa

x)x = Bx·Ab = g. This contradicts the strongRSAassumption
and thus shows that the accumulator construction satisfies undeniability.
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4.2 Batching and Aggregation of Accumulator Witnesses

Aggregating membership witnesses. Aggregating membership witnesses for
many elements into a single membership witness for the set is straightforward
using ShamirTrick. However, verification of this membership witness is linear in
the number of group operations. Note that the individual membership witnesses
can still be extracted from the aggregated witness as wx = wy

xy. Security, there-
fore, still holds for an accumulator construction with aggregated membership
witnesses. The succinct proof of exponentiation (NI-PoE) enables us to produce
a single membership witness that can be verified in constant time. The verifica-
tion VerAggMemWit simply checks the proof of exponentiation.

Aggregating existing membership witnesses for elements in several dis-
tinct accumulators (that use the same setup parameters) can be done as
well. The algorithm MemWitX simply multiplies together the witnesses
wx for an element x ∈ A1 and wy for y ∈ A2 to create an inclusion
proof wxy for x and y. The verification checks wx·y

xy = Ay
1A

x
2 . If x and

y are co-prime then we can directly recover wx and wy from the proof
wxy. In particular wx = ShamirTrick(Ay

1, A1, w
y
xyA−1

2 , y, x) and wy =
ShamirTrick(Ax

2 , A2, w
x
xyA−1

1 , x, y).

AggMemWit(A, wx, wy, x, y) :

1. wx·y ← ShamirTrick(A, wx, wy, x, y)
2. return wx·y,NI-PoE(wx·y, x · y, A)

MemWitCreate*(A, {x1, . . . , xn}) :

1. x∗ =
∏n

i=1 xi

2. wx∗ ← MemWitCreate(A, x∗)
3. return wx∗ ,NI-PoE(x, wx∗ , A)

VerMem*(A, {x1, . . . , xn}, w = {wx, π}):

1. return NI-PoE.verify(
∏n

i=1 xi, w, A, π)

MemWitX(A1, A2, wx, wy, x, y) :

1. return wxy ← wx · wy

VerMemWitX(A1, A2, wxy, x, y) :

1. if gcd(x, y) �= 1
2. return ⊥
3. else
4. return wx·y

xy ← Ay
1Ax

2

Distributed accumulator updates. In the decentralized/distributed setting,
the accumulator is managed by a distributed network of participants who only
store the accumulator state and a subset of the accumulator elements along with
their membership witnesses. These participants broadcast their own updates
and listen for updates from other participants, updating their local state and
membership witnesses appropriately when needed2.

2 The condition that gcd(x, y) = 1 is minor as we can simply use a different set of
primes as the domains for each accumulator. Equivalently we can utilize different
collision resistant hash functions with prime domain for each accumulator. The con-
crete security assumption would be that it is difficult to find two values a, b such that
both hash functions map to the same prime. We utilize this aggregation technique
in our IOP application (Sect. 6.2).
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We observe that the basic accumulator functions do not require a trapdoor
or knowledge of the entire state, summarized in Fig. 2. In particular, deleting an
item requires knowledge of the item’s current membership witness (the accumu-
lator state after deletion is this witness). Moreover, operations can be performed
in batches as follows:

The techniques are summarized as follows:

– BatchAdd An NI-PoE proof can be used to improve the amortized verifica-
tion efficiency of a batch of updates that add elements x1, ..., xm at once and
update the accumulator to At+1 ← Ax∗

t . A network participant would check
that x∗ =

∏
i xi and verify the proof rather than compute the m exponenti-

ations.
– BatchDel Deleting elements in a batch uses the AggMemWit function to a

compute the aggregate membership witness from the individual membership
witnesses of each element. This is the new state of the accumulator. A NI-PoE
proof improves the verification efficiency of this batch update.

– CreateAllMemWit It is possible for users to update membership and non-
membership witnesses [LLX07]. The updates do not require knowledge of
the accumulated set S but do require that every accumulator update is pro-
cessed. Since this is cumbersome some users may rely on service providers for
maintaining the witness. The service provider may store the entire state or
just the users witnesses. Creating all users witnesses naively requires O(n2)
operations. Using the RootFactor algorithm this time can be reduced to
O(n log(n)) operations or amortized O(log(n)) operations per witness.

– CreateManyNonMemWit Similarly to CreateAllMemWit it is possible
to create m non-membership witness using O(max(n,m) + m log(m)) opera-
tions. This stands in contrast to the naive algorithm that would take O(m ·n)
operations. The algorithm is in Fig. 3.

Add(At, x):
1. return Ax

t

BatchAdd(At, {x1, . . . , xm}):
1. x∗ ∏m

i=1 xi

2. At+1 Ax∗
t

3. return At+1,NI-PoE(x∗, At, At+1)
DelWMem(At, w

t
x, x):

1. if VerMem(At, w
t
x, x) = 1

2. return wt
x

BatchDel(At, (x1, w
t
x1) . . . , (xm, wt

xm
)):

1. At+1 wt
x1

2. x∗ x1

3. for i 2, i ≤ m
4. At+1 ShamirTrick(At+1, w

t
xi

, x, xi)
5. x∗ x∗ · xi

6. return At+1,NI-PoE(x∗, At+1, At)
CreateAllMemWit(S) :
1. return RootFactor(g, S)

Fig. 2. Distributed and stateless accumulator functions.
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CreateManyNonMemWit(A, S, {x1, . . . , xm}):
1. x∗ =

∏m
i=1 xi

2. {a, B} = NonMemWitCreate(A, S, x∗)
3. return BreakUpNonMemWit(A, {a, B}, {x1, . . . , xm})
BreakUpNonMemWit(A, {a, B}, {x1, . . . , xm}):
1. if m = 1 return {a, B}
2. xL =

∏m/2
i=1 xi

3. xR =
∏m

i=�m/2�+1 xi

4. BL = BxRA

⌊
a

xL

⌋
, aL = a mod xL

5. BR = BxLA

⌊
a

xR

⌋
, aR = a mod xR

6. uL = BreakUpNonMemWit(A, {aL, BL}, {x1, . . . , x�m/2�})
7. uR = BreakUpNonMemWit(A, {aR, BR}, {x�m/2�+1, . . . , xm})
8. return uL||uR

Fig. 3. Algorithm for creating multiple non membership witnesses

Batching non-membership witnesses. A non-membership witness ux for x
in an accumulator with state A for a set S is ux = {a, gb} such that as∗ +bx = 1
for s∗ ← ∏

s∈S s. The verification checks Aagbx = g. Since gcd(s∗, x) = 1 and
gcd(s∗, y) = 1 if and only if gcd(s∗, xy) = 1, to batch non-membership witnesses
we could simply construct a non-membership witness for x·y. A prover computes
a′, b′ ← Bezout(s∗, xy) and sets uxy ← a′, gb′

. This is still secure as a non-
membership witness for both x and y because we can easily extract a non-
membership witness for x as well as for y from the combined witness (a′, B′) by
setting ux = (a′, (B′)y) and uy = (a′, (B′)x).

Unfortunately, |a′| ≈ |xy| so the size of this batched non-membership witness
is linear in the number of elements included in the batch. A natural idea is to
set uxy = (V,B) ← (Aa′

, gb′
) ∈ G

2 instead of (a′, B) ∈ Z × G as the former has
constant size. The verification would check that V Bxy = g. This idea doesn’t
quite work as an adversary can simply set V = gB−xy without knowing a discrete
logarithm between A and V . Our solution is to use the NI-PoKE2 protocol to
ensure that V was created honestly. Intuitively, soundness is achieved because
the knowledge extractor for the NI-PoKE2 can extract a′ such that (a′, B) is a
standard non-membership witness for xy.

The new membership witness is V,B, π ← NI-PoKE(A,v;b). The size of this
witness is independent of the size of the statement. We can further improve
the verification by adding a proof of exponentiation that the verification equa-
tion holds: NI-PoE(x · y,B, g · V −1). Lastly, recall from Sect. 3 that the two
independent NI-PoKE2 and NI-PoE proofs can be aggregated into a single group
element.
We present the non-membership protocol bellow as NonMemWitCreate*.
The verification algorithm VerNonMem* simply verifies the NI-PoKE2 and
NI-PoE.



Batching Techniques for Accumulators with Applications to IOPs 579

NonMemWitCreate*(A, s∗, x∗) : //
A = gs∗

, s∗ =
∏

s∈S s, x =
∏

xi, xi ∈ Primes(λ)

1. a, b ← Bezout(s∗, x∗)
2. V ← Aa, B ← gb

3. πV ← NI-PoKE2(A, V ; a) // V = Aa

4. πg ← NI-PoE(x∗, B, g · V −1)// Bx = g · V −1

5. return {V, B, πV , πg}
VerNonMem*(A, u = {V, B, πV , πg}, {x1, . . . , xn}):

1. return NI-PoKE2.verify(A, V, πV ) ∧ NI-PoE.verify(
∏n

i=1 xi, B, g · V −1, πg)

Batch accumulator security. We now formally define security for an accu-
mulator with batch membership and non-membership witnesses. The definition
naturally generalizes Definition 6. We omit a correctness definition as it follows
directly from the definition of the batch witnesses. We assume that correctness
holds perfectly.

Definition 7 (Batch Accumulator Security (Undeniability)).

Pr

⎡

⎢
⎣

pp, A0 ∈ G
$← Setup(λ)

(A, I, E, wI , uE)
$← A(pp, A0) :

VerMem*(A, I, wI) ∧ VerNonMem*(A, S, uS) ∧ I ∩ S �= ∅

⎤

⎥
⎦ = negl(λ)

From the batch witnesses wI and uS we can extract individual accumulator
witnesses for each element in I and S. Since the intersection of the two sets is
not empty we have an element x and extracted witnesses wx and ux for that
element. As in the proof of Theorem 4 this lets us compute and xth root of
g which directly contradicts the strong RSA assumption. Our security proof
will be in the generic group model as it implies the strong RSA assumption,
the adaptive root assumption and can be used to formulate extraction for the
PoKE2 protocol. Our security proof uses the interactive versions of PoKE2 and
PoE protocols but extraction/soundness holds for their non-interactive variants
as well.

Theorem 5. The batch accumulator construction presented in Sect. 4.2 is
secure (Definition 7) in the generic group model.

For the security proof see the full version [BBF18b].

Aggregating non-membership witnesses. In the full version of the paper
[BBF18b] we show how non-membership witnesses can be aggregated non-
interactively. Multiple independently created non-membership witnesses can be
aggregated into a single witness. We can use similar batching techniques as dis-
cussed above to make this witness constant sized.
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5 Batchable Vector Commitments with Small Parameters

5.1 VC Definitions

We review briefly the formal definition of a vector commitment. We only consider
static commitments that do not allow updates, but our scheme can naturally be
modified to be dynamic.

Vector commitment syntax. A VC is a tuple of four algorithms: VC.Setup,
VC.Com, VC.Open, VC.Verify.

1. VC.Setup(λ, n,M) → pp Given security parameter λ, length n of the vector,
and message space of vector components M, output public parameters pp,
which are implicit inputs to all the following algorithms.

2. VC.Com(m) → τ, com Given an input m = (m1, ...,mn) output a commit-
ment com and advice τ .

3. VC.Update(com,m, i, τ) → τ, com Given an input message m and position i
output a commitment com and advice τ .

4. VC.Open(com,m, i, τ) → π On input m ∈ M and i ∈ [1, n], the commitment
com, and advice τ output an opening π that proves m is the ith committed
element of com.

5. VC.Verify(com,m, i, π) → 0/1 On input commitment com, an index i ∈ [n],
and an opening proof π output 1 (accept) or 0 (reject).

If the vector commitment does not have an VC.Update functionality we call it a
static vector commitment.

Definition 8 (Static Correctness). A static vector commitment scheme VC
is correct if for all m ∈ Mn and i ∈ [1, n]:

Pr

⎡
⎣VC.Verify(com,mi, i, π) = 1 :

pp ← VC.Setup(λ, n,M)
τ, com ← VC.Com(m)
π ← V C.Open(com,mi, i, τ)

⎤
⎦ = 1

The correctness definition for dynamic vector commitments also incorporates
updates. Concretely whenever VC.Update is invoked the underlying committed
vector m is updated correctly.

Binding commitments. The main security property of vector commitments
(of interest in the present work) is position binding. The security game augments
the standard binding commitment game.

Definition 9 (Binding). A vector commitment scheme VC is position bind-
ing if for all O(poly (λ))-time adversaries A the probability over pp ←
VC.Setup(λ, n,M) and (com, i,m,m′, π, π′) ← A(pp) the probability that
VC.Verify(com,m, i, π) = VC.Verify(com,m′, i, π′) = 1 and m �= m′ is negligi-
ble in λ.
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5.2 VC Construction

We first present a VC construction for bit vectors, i.e. using the message space
M = {0, 1}. We then explain how this can be easily adapted for a message space
of arbitrary bit length.

Our VC construction associates a unique prime3 integer pi with each ith
index of the bitvector m and uses an accumulator to commit to the set of all
primes corresponding to indices where mi = 1. The opening of the ith index to
mi = 1 is an inclusion proof of pi and the opening to mi = 0 is an exclusion
proof of pi. By using our accumulator from Sect. 4, the opening of each index
is constant-size. Moreover, the opening of several indices can be batched into
a constant-size proof by aggregating all the membership witnesses for primes
on the indices opened to 1 and batching all the non-membership witnesses for
primes on the indices opened to 0.

The VC for vectors on a message space of arbitrary bit length is exactly the
same, interpreting the input vector as a bit vector. Opening a λ-bit component is
then just a special case of batch opening several indices of a VC to a bit vector.
The full details are in Figure 4 of the full version [BBF18b].

Both the accumulator’s CRS as well as PrimeGen can be represented in con-
stant space independent of n. This means that the public parameters for the
vector commitment are also constant-size and independent of n, unlike all pre-
vious vector commitments with O(1) size openings [CF13,LRY16,LM18]. The
batch opening of several (mixed value) indices consists of 2 elements in G for the
aggregate membership-witness and an additional 5 elements in G for the batch
non-membership witness, plus one λ-bit integer.

Aggregating Openings, Key-Value commitment and Optimizations. In
the full version [BBF18b] we describe how vector commitment openings can be
non-interactively aggregated. We also discuss how a vector commitment with
constant sized setup can be used as a commitment to a key-value map as well
as several optimizations.

5.3 Key-Value Map Commitment

Our vector-commitment can be used to build a commitment to a key-value map.
A key-value map can be built from a sparse vector. The key-space is represented
by positions in the vector and the associated value is the data at the keys posi-
tion. The vector length is exponential in the key length and most positions are
zero (null). Our VC commitment naturally supports sparse vectors because the
complexity of the commitment is proportional to the number of bit indices that
are set to 1, and otherwise independent of the vector length.

3 Examples include Hprime (described earlier), or alternatively the function that maps
i to the next prime after f(i) = 2(i+2) · log2(i+2)2, which maps the integers [0, N)
to smaller primes than Hprime (in expectation).
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6 Applications

6.1 Stateless Blockchains

UTXO commitment. We first consider a simplified blockchain design which
closely corresponds to Bitcoin’s UTXO design where users own coins and issue
transaction by spending old coins and creating new coins. We call the set of
unspent coins the UTXO set. Updates to the blockchain can be viewed as asyn-
chronous updates to the UTXO set. In most current blockchain designs (with
some exceptions [MGGR13,BCG+14]) nodes participating in transaction valida-
tion store the whole UTXO set and use it to verify whether a coin was unspent.
Instead, we consider a blockchain design where the network maintains the UTXO
set in a dynamic accumulator [STS99a,TMA13,Tod16,Dra]. We instantiate this
accumulator with our new construction from Sect. 4.1, taking advantage of our
distributed batch updates and aggregate membership proofs.

Each transaction block will contain an accumulator state, which is a commit-
ment to the current UTXO set. To spend a coin, a user provides a membership
witness for the coin (UTXO) that is being spent inside a transaction. Any valida-
tor (aka miner) may verify the transactions against the latest accumulator state
and also uses BatchDel to delete all spent coins from the accumulator, derive
its new state, and output a proof of correctness for the deletions. The proof is
propagated to other validators in the network. For the newly minted coins, the
validator uses BatchAdd to add them to the accumulator and produce a sec-
ond proof of correctness to propagate. Other validators are able to verify that
the accumulator was updated correctly using only a constant number of group
operations and highly efficient arithmetic over λ-bit integers.

In this design, users store the membership witnesses for their own coins and
are required to update their witnesses with every block of transactions. It is
plausible that users use third-party services to help with this maintenance. These
services are not trusted for integrity, but only for availability. Note that a may
produce many (e.g. n) membership witnesses at once in O(n log(n)) time using
the CreateAllMemWit algorithm.

Accounts commitment. Some currencies such as Ethereum [Woo14] use an
account-based system where the state is a key-value map. A transaction updates
the balances of the sending and the receiving accounts. To enable stateless val-
idation in this setting, a user can provide proofs of the balances of the sending
and receiving accounts in the current ledger state. Instead of using an accumu-
lator to commit to this state, we use the new key-value map commitment from
Sect. 5.3. This commitment supports batch distributed updates, similar to our
new accumulator. Using the aggregation of vector commitment openings a miner
or validator can perform the aggregation and batching operations without stor-
ing the state providing efficient proofs that the openings are correct. Other nodes
can verify these opening proofs efficiently requiring only a constant number of
group operations.
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6.2 Short IOPs

Merkle tree paths contribute significant overhead to both the proof size of a
compiled IOP proof and its verification time. Vector commitments with smaller
openings than Merkle trees, or batchable openings (i.e. subvector commitments),
can help reduce this overhead [LM18]. Using our new VCs, the opening proof
for each round of the compiled IOP is just 4 group elements in G and a λ-bit
integer (plus one additional element for the VC commitment itself). Instantiating
G with a class group of quadratic imaginary order and tuning security to 128-
bits requires elements of size approximately 2048-bits [HM00]. Thus, the VC
openings contribute 8320 bits to the proof size per IOP round. When applied to
the “CS-proof” SNARK considered by Lai and Malavolta, which is based on a
theoretical PCP that checks 3 bits per query and has 80 queries, the proof size
is 5 ·2048+128+3 ·80 = 10608 bits, or 1.3 KB. This is the shortest (theoretical)
setup-free SNARK with sublinear public parameters to date.

Our VCs also achieve concrete improvements to practical IOPs. Targeting
100-bit security in the VC component and otherwise apples-to-apples compar-
isons with benchmarks for Aurora [BSCR+18] and STARKS [BBHR18], we can
conservatively use 2048-bit class group elements. With these parameters, our
VCs reduce the size of the Aurora proofs on a 220 size circuit from 222 KB to
less than 100 KB, a 54% reduction, and the size of STARK proofs for a circuit of
252 gates from 600 KB to approximately 222 KB, a 63% reduction. This rough
estimate is based on the Merkle path length 42 and round number 21 extrapo-
lated from the most recent STARK benchmarks for this size circuit [BBHR18].

Replacing Merkle trees with our VCs does not significantly impact the ver-
ification cost, and in some cases it may even improve verification time. Recall
that verifying a batch VC proof costs approximately one lamdba-bit integer
multiplication and a primality check per bit. Furthermore, using the optimiza-
tion described in the full version eliminates the primality checks for the verifier
(at a slight cost to the prover). Computing a SHA256 hash function (whether
SHA256 or AES with Davies-Meyer) is comparable to the cost of a λ-bit integer
multiplication. Thus, as a loose estimate, replacing each Merkle path per query
with a single λ-bit multiplication would achieve a factor log n = 36 reduction. In
STARKS, Merkle paths are constructed over 256-bit blocks of the proof rather
than bits, thus the comparison is 36 hashes vs 256 modular multiplications. The
Merkle path validation accounts for 80% of the verification time.

While using our vector commitment has many benefits for IOPs, there are
several sever downsides. Our vector commitment is not quantum secure as a
quantum computer can find the order of the group and break the Strong-RSA
assumption. Merkle trees are more plausibly quantum secure. Additionally, the
prover for an IOP instantiated with our vector commitment would be signifi-
cantly slower than one with a Merkle tree.
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Abstract. We initiate the study of fully homomorphic encryption for
RAMs (RAM-FHE). This is a public-key encryption scheme where, given
an encryption of a large database D, anybody can efficiently compute
an encryption of P (D) for an arbitrary RAM program P . The running
time over the encrypted data should be as close as possible to the worst
case running time of P , which may be sub-linear in the data size.

A central difficulty in constructing a RAM-FHE scheme is hiding the
sequence of memory addresses accessed by P . This is particularly prob-
lematic because an adversary may homomorphically evaluate many pro-
grams over the same ciphertext, therefore effectively “rewinding” any
mechanism for making memory accesses oblivious.

We identify a necessary prerequisite towards constructing RAM-FHE
that we call rewindable oblivious RAM (rewindable ORAM), which pro-
vides security even in this strong adversarial setting. We show how to
construct rewindable ORAM using symmetric-key doubly efficient PIR
(SK-DEPIR) (Canetti-Holmgren-Richelson, Boyle-Ishai-Pass-Wootters:
TCC ’17). We then show how to use rewindable ORAM, along with
virtual black-box (VBB) obfuscation for specific circuits, to construct
RAM-FHE. The latter primitive can be heuristically instantiated using
existing indistinguishability obfuscation candidates. Overall, we obtain a
RAM-FHE scheme where the multiplicative overhead in running time is
polylogarithmic in the database size N . Our basic scheme is single-hop,
but we also extend it to obtain multi-hop RAM-FHE with overhead N ε

for arbitrarily small ε > 0.
We view our work as the first evidence that RAM-FHE is likely to
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1 Introduction

Fully Homomorphic Encryption. Fully Homomorphic Encryption (FHE), pro-
posed by Rivest, Adleman, and Dertouzos [RAD78], is an extension of stan-
dard semantically secure encryption that supports computations “underneath”
encryption. That is, given an encryption of some data D, anybody can com-
pute an encryption of P (D) for arbitrary programs P , while D remains com-
putationally hidden. We currently have constructions of FHE schemes based
on the Learning With Errors (LWE) assumption (either satisfying a relax-
ation called “leveled” FHE, or additionally requiring a circular security assump-
tion) [Gen09,BV11].

FHE has proven to be an indispensable tool in the foundational study
of cryptography, with wide-ranging applications including functional encryp-
tion [GKP+b], program obfuscation [GGH+], verifiable computation [GGP10,
KRR14], cryptographic hash functions [CCH+19], and more.

The most immediate use-case of FHE is to outsource private computation.
A client Alice stores her sensitive database D on an untrusted server, and the
server non-interactively executes computations on Alice’s behalf (by computing
encryptions of P (D) for arbitrary programs P ), but learns nothing about D.
In known FHE schemes, Alice’s work is asymptotically optimal: encrypting her
database takes |D| · poly(λ) work, and decrypting the server’s ciphertexts takes
|P (D)| · poly(λ) work. The server’s work is also optimal; however, the program
P must be represented as a circuit C, and the server’s work is then |C| · poly(λ).

There has been much work towards making FHE more practical by minimiz-
ing the poly(λ) factors [BGH13,GHS12,BGV12,GSW,GHPS13], but the neces-
sity of representing P as a circuit can lead to a much larger asymptotic loss
in efficiency. Indeed, we typically think of programs and their efficiency in the
Random-Access Memory (RAM) model of computation. Although any RAM
program can be converted into a circuit, this may result in a large efficiency loss:
in general, a RAM program that runs in time T over a database of size N can be
converted into a circuit of size ˜O(N + T 2) [CR72,PF79]. As a result, for RAM
computations running in time T � N (e.g., binary search, whose RAM running
time is O(log N)), the circuit conversion can incur an exponential efficiency loss.
Even for RAM computations with longer running times T > N , circuit conver-
sion incurs a quadratic overhead, which asymptotically will be more significant
than any poly(λ) multiplicative factor. Therefore, it is crucial to ask the question:
Can an FHE scheme “natively” support RAM computations?

1.1 Our Results

RAM-FHE. We define and construct two notions of RAM-FHE. In both notions,
given an encryption ̂D of an N -bit database D, a RAM program P , and a bound
T on the running time of P , anyone can obtain an encryption ŷ of P (D) in
time roughly T . We note that the bound T on evaluation runtime is necessary
for semantic security: if homomorphic evaluation preserved the input-specific
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running time of P , then one could completely learn D by measuring the time to
homomorphically evaluate several carefully chosen programs.

Our basic notion is single-hop, in which the output ciphertext ŷ and any
changes made to D by P , cannot be meaningfully used by future homomorphic
computations. We also consider a multi-hop variant, in which one can homomor-
phically evaluate a sequence of RAM programs, which may read and write to
D, with the changes made by each program execution visible to the next.

We give the first evidence that these notions are possible by constructing
(single- and multi-hop) RAM-FHE schemes using extremely strong but plau-
sible assumptions. Specifically, we rely on a recent primitive called Secret Key
Doubly-Efficient Private Information Retrieval (SK-DEPIR), as well as Virtual
Black-Box (VBB) obfuscation for specific circuits. We have candidate SK-DEPIR
constructions based on non-standard assumptions related to permuted and noisy
Reed-Muller codes [BIPW17,CHR17]. While VBB obfuscation for general cir-
cuits is impossible [BGI+01], it appears reasonable to assume that it can be done
for most specific circuits and, indeed, any of the candidate constructions of indis-
tinguishability obfuscation (iO) [GMM+16,BMSZ16,MZ18,CVW18,BGMZ18,
Agr,LM18,AJS18] can be used to heuristically instantiate it. We view such use
of VBB obfuscation as analogous to the random-oracle heuristic: although it is
known to be unsound in general, all examples where it fails tend to be contrived,
and natural uses of it appear to be sound.1

Our constructions have the following efficiency guarantees:

– In the single-hop setting, encryptions of an N -bit database have size
poly(λ,N), and the cost of homomorphically evaluating a program P with
description size |P | and run-time T is (T + |P |) · poly(λ, log N).

– In the multi-hop setting, for any constant ε > 0, ciphertext sizes are N1+ε ·
poly(λ) and homomorphic evaluation takes time (T + |P |) · N ε · poly(λ).

Rewindable Oblivious RAM. As explained in Sect. 1.2 below, the main difficulty
in constructing RAM-FHE is hiding the memory access pattern when the evalua-
tor repeatedly runs different programs on the same initial ciphertext. We abstract
this as a strengthening of Oblivious RAM (ORAM) [Gol87,Ost90,GO96] that
we call rewindable ORAM, which we believe may be of interest beyond its appli-
cations to RAM-FHE. Recall that a standard ORAM scheme allows a client with
a small local state k to privately access his own database whose encoding ˜D is
stored on a remote untrusted server. Informally, rewindable ORAM extends this
notion to guarantee privacy even when the server can reset the client’s state to
a previous value.

We construct rewindable ORAM schemes based on any SK-DEPIR scheme.
We do not assume the existence of any type of obfuscator and obtain different
tradeoffs between efficiency and the types of rewinding attacks, specifically:
1 Furthermore, it is possible to replace VBB obfuscation by a small stateless hardware

token, resulting in a RAM-FHE scheme where ciphertexts contain such tokens, which
appears to still be non-trivial. We note that VBB was similarly used to construct a
public-key DEPIR scheme [BIPW17].
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– If the server is only allowed to rewind the client to his initial state, then
following a poly (λ,N)-time setup, accessing the database costs poly (λ, log N).

– If the server is allowed to rewind the client to any previous state, then follow-
ing an N1+ε · poly (λ)-time setup, accessing the database costs N ε · poly (λ),
for any ε > 0.

1.2 Our Techniques

As alluded to above, the main difficulty in constructing RAM-FHE arises from
the fact that the memory access pattern induced by evaluating P on D may be
highly dependent on the database D, whereas the access pattern of the homo-
morphic evaluation of P must hide everything about D. One natural approach
towards hiding the access pattern is to force the evaluator to emulate P via an
ORAM. However, the RAM-FHE evaluator should be able to evaluate arbitrarily
many different programs on the same ciphertex ̂D, and is not required to update
his state between executions. This raises the concern that (even a semi-honest)
evaluator evaluating two different programs P1, P2 on ̂D may potentially deduce
non-trivial information about the database D from the correlations between the
two memory access patterns during these evaluations. This strategy corresponds
to a “rewinding” attack on the underlying ORAM, and is not just a theoretical
concern - all known ORAM constructions are indeed insecure in this case. (For
example, if an ORAM client accesses an address a0, fails to update his state,
and then accesses a1, the server’s view will reveal whether or not a0 = a1.)

Main Component: Rewindable ORAM. We consider (Sect. 3.1) two flavors of
rewindable ORAM, which provide security against this type of attack. The
weaker flavor, called Initial-State Rewindable ORAM (ISR-ORAM) allows the
adversary to observe the ORAM access patterns of various programs P1, P2, . . .
executed on D, where between executions the client/server states are reset to
their initial values k, ˜D. The adversary should learn nothing about the underly-
ing access patterns of the programs.

We also define a stronger flavor called Any-State Rewindable ORAM (ASR-
ORAM) where the adversary can rewind the client/server states to any point
in time.2 The ORAM access patterns that the adversary observes should reveal
nothing about the underlying access patterns of the programs.

Rewindable ORAM Constructions. Constructing rewindable (even ISR-) ORAM
appears to be difficult, and none of the standard ORAM constructions suffice.
Indeed, all standard ORAM constructions follow the “balls and bins” model in
which each data block is represented as a “ball” and stored on the server in some
“bin”. Such structures cannot guarantee even ISR-ORAM security since, as noted
above, if the client state is reset between accesses then the server can distinguish

2 For example, the adversary can observe the sequential ORAM execution of programs
P1, P2, P3, then rewind the client/server state to the point immediately after P1’s
execution and observe the execution of a different program P ′

2, etc.
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whether the client is accessing the same data block or not (when accessing the
same block, the client will access the same “ball” on the server). Thus, we need
fundamentally different techniques than prior ORAM constructions.

Our new approach to rewindable ORAM leverages a powerful recent tool
called SK-DEPIR [BIPW17,CHR17], which can be viewed as a stateless read-
only ORAM. Informally, following a setup phase in which the client receives a
secret key k and the server receives an encoding ˜D of the database D, the client
can privately read arbitrary locations i of D by reading a few positions in ˜D,
without having to update the client/server state during the process. The server
should learn nothing about the underlying locations i being read. In particular,
we can think of SK-DEPIR as a very restricted form of ISR-ORAM for the class
of RAM program Pi(D) that read and output the i’th location of D.

The works of [BIPW17,CHR17] constructed SK-DEPIR schemes under non-
standard assumptions relating to permuted and noisy Reed-Muller codes. Note
that such SK-DEPIR cannot exist in the “balls and bins” model, and must
encode the data in some complex way that intertwines many data locations
together. Indeed, repeatedly accessing the same data location i in a SK-DEPIR
should be indistinguishable from accessing completely random and unrelated
data locations, so there must be many different, and seemingly unrelated, tuples
of locations in ˜D that contain information about data location i. We use SK-
DEPIR to construct both ISR- and ASR-ORAM schemes.

ISR-ORAM from SK-DEPIR and standard ORAM. The ISR-ORAM scheme is
simple. Recall that SK-DEPIR is read-only, while ISR-ORAM supports arbitrary
RAM programs that can both read and write to the database. In both cases,
we can rewind the state to its initial value after an execution while maintaining
privacy of the underlying access pattern. The high-level idea is to use the SK-
DEPIR to support reads, and use a standard ORAM scheme to support writes.

Specifically, the initial states in our ISR-ORAM are the client and server
states k, ˜D of the SK-DEPIR. To execute a RAM program P , the client initializes
a fresh copy of a standard, non-rewindable ORAM O, which is initially empty.
(We provide an explicit construction of an ORAM scheme for initially empty
databases in the full version [HHWW].) Writes are executed using the ORAM
scheme O. To read some location i, the client reads i from both the ORAM O and
the SK-DEPIR. If location i was found in O, the client uses that value, otherwise
he uses the SK-DEPIR value. Thus, the client always gets the freshest copy of
the value in any location. Note that rewinding the ISR-ORAM client/server to
their initial states erases all information about O (which was initialized only
in the first access), so we do not require rewindable security from O: the next
access will instantiate a completely fresh ORAM scheme O for the execution.
The scheme is described in the full version [HHWW].

ASR-ORAM from SK-DEPIR via a hierarchical structure. The ASR-ORAM
construction is more complex. ASR-ORAM should support repeated sequen-
tial execution of different programs, and remain secure when the adversary can
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rewind to any intermediate state from which it starts a new sequence of pro-
gram executions. Unfortunately, this precludes our previous solution of storing
intermediate values written during the execution in a standard, non-rewindable
ORAM: rewinding to an intermediate point will rewind the ORAM.

We solve this problem by combining SK-DEPIR with techniques from hierar-
chical ORAM [Ost90,GO96]. In particular, our ASR-ORAM consists of a hierar-
chy of SK-DEPIR schemes of exponentially increasing size, where the top-most
scheme has size 1 and the bottom-most scheme has size N . Initially, the data
is entirely contained in the bottom-most scheme. To read a location i we try to
read it using the SK-DEPIR schemes at all levels, and use the value found in
the top-most scheme that contains i. To write a location i, we write it to the
top level (which requires re-generating its SK-DEPIR scheme). As in Hierarchi-
cal ORAM this requires “reshuffles”: every pre-determined number of writes, we
need to merge sufficiently many of the top levels to ensure that their combined
size is large enough to hold the database. Since levels are implemented using SK-
DEPIR, this requires reading and re-writing the levels in their entirety. However,
as levels get larger, they are “reshuffled” with decreasing frequency so the over-
all amortized3 complexity is low. Notice that reshuffles reveal no information,
even under arbitrary rewinding, because they occur at pre-determined times
(independent of the access history), and reads are secure by the security of the
(stateless) SK-DEPIR even under arbitrary rewinding.

We note that the actual construction (Sect. 3.2) is somewhat more involved.
One issue arises because SK-DEPIR schemes are designed for array structures
(i.e., reading a data block requires knowing its location in D), whereas the hier-
archical construction imposes a map structure at each level because it contains
a subset of (not necessarily consecutive) data blocks. To resolve this we use
the standard data-structures trick of pseudorandomly mapping data blocks into
buckets, thus guaranteeing that the block’s location in each level in which it
appears is independent of the history of accesses.

RAM-FHE from Rewindable ORAM. We construct RAM-FHE from rewindable
ORAM using VBB obfuscation. At a high level, to encrypt some database D, we
first construct the rewindable ORAM client/server states k, ˜D for D. We then
obfuscate the ORAM client program, with k hard-wired into it, and output the
ciphertext consisting of ˜D and the obfuscated program. The evaluator can then
use the obfuscated ORAM client to execute an arbitrary RAM program over
the encrypted database ˜D and derive an encrypted output. During the execu-
tion, the evaluator emulates the ORAM server using ˜D (performing read/write
operations as instructed by the client).

Formalizing the above approach is challenging, and requires some adapta-
tions. The final construction is obtained through the following steps.

Step (1): emulating statefulness. We cannot directly use a circuit obfuscator
to obfuscate the rewindable ORAM client, because the client is stateful, and
3 We note that as in [OS97], reshuffles can be “spread-out” over many operations to

achieve low worst-case complexity.
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state is needed even for correctness. Instead, we obfuscate the circuit emulating
a single client step in the ORAM scheme. This circuit takes the client state
as input, and returns the updated client state as part of its output. We note
that representing the client as a circuit in this way is fundamentally different
(and significantly more efficient) than representing an entire RAM program as
a circuit. Indeed, the circuit performs a single execution step, thus the overhead
is independent of the database size or the worst-case runtime of the program.

For simplicity of the exposition, we assume for now that the program’s
description is short (of size p (λ) for some a-priori fixed polynomial p), and can
therefore be given in its entirety to the obfuscated circuit in the first execution
step. We explain below how to remove this restriction.

Step (2): hiding client state. (Standard/rewindable) ORAM security assumes
the adversary does not see the client state, but in our construction the evaluator
sees the client’s internal states throughout the execution (since the obfuscated
circuit outputs them). To hide the client states, we have the obfuscated circuit
encrypt the state, using a hard-wired (symmetric) encryption key.

Step (3): forcing honest behavior. The rewindable ORAM is secure only
as long as the ORAM client behaves honestly, and the ORAM server behaves
semi-honestly. However, RAM-FHE should guarantee semantic security of the
encrypted database against arbitrary (possibly malicious) evaluators. A mali-
cious evaluator may deviate from a semi-honest emulation of the rewindable
ORAM scheme in two ways.

First, the evaluator may emulate a malicious server whose answers to read
requests are inconsistent with the database, and who fails to perform requested
write operations. Such attacks can be prevented using the standard approach
of maintaining a Merkle Hash Tree (MHT) of the server state. More specifically,
we hard-code the initial MHT root into the obfuscated circuit. Answers to read
requests include also the MHT path proving consistency of the answer (which
is verified by the obfuscated circuit using the MHT root). Answers to write
requests outputted by the obfuscated circuit additionally include an updated
MHT path proving that the root was updated correctly.

Second, the evaluator may emulate a malicious client, by providing incor-
rect/inconsistent client states to the obfuscated circuit. We prevent such attacks
by hard-wiring a Message-Authentication Code (MAC) key into the obfuscated
circuit, and having it verify the input state and MAC the output state.

Step (4): hiding the output. Recall from Step (2) that the internal ORAM
client state is encrypted using a “temporary” symmetric encryption key that is
chosen at encryption time. Consequently, this key cannot be used to encrypt the
computation output (which should be encrypted using a persistent public key
that is chosen during key generation). We encrypt the output using a standard
PKE scheme, where the public key is hard-wired into the obfuscated circuit.

Step (5): generating randomness for the execution. Even if the emulated
RAM program is deterministic, the obfuscated circuit described above needs
random coins for encryption, and to emulate the ORAM client. We use a PRF
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(applied to the MHT root, and the entire execution history) to derive the needed
randomness, where the PRF key is hard-wired into the circuit.

An additional point that needs to be handled is the fact that a RAM program
P has a volatile tape (a “scratch tape”) which is used only during P ’s execution,
after which it is erased. We use a standard ORAM to instantiate the scratch
tape at the onset of the execution. Notice that standard ORAM security suffices
here, since each execution instantiates a fresh ORAM for the scratch tape.4

The construction described above gives a single-hop RAM-FHE scheme when
the underlying ORAM is an ISR-ORAM (see Sect. 6). The multi-hop RAM-FHE
scheme is obtained by instantiating the ORAM with an ASR-ORAM, with some
modifications to allow the evaluator to perform sequential computations on the
database. (For example, this requires MAC-ing the initial state of the ASR-
ORAM client together with the MHT root of the updated database, see the full
version [HHWW] for more details.)

Generalizing to programs of any length. The construction described above
assumed the entire program description was given as input to the obfuscated
circuit (this requires an a-priori fixed bound on the description size). To support
longer programs, we first copy the program description into the scratch tape
at the onset of the computation. More specifically, the evaluator provides a
MHT root for the program description as input to the obfuscated circuit, and
the circuit then copies the program bit-by-bit into the scratch-tape, verifying
consistency with the MHT root in each step. See the full version for details.

On the necessity of rewindable ORAM and DEPIR. As a final note, we informally
argue that rewindable ORAM is inherent to the construction of RAM-FHE, by
explaining how to construct ISR/ASR-ORAM from single-hop/multi-hop RAM-
FHE. To initialize the ORAM with a database D, the client generates a ran-
dom encryption-decryption key pair, encrypts D using the encryption key, and
stores the ciphertext ̂D on the server. To execute a RAM program P on D,
the client homomorphically evaluates P on ̂D by accessing all relevant bits of
̂D remotely on the server. Finally, the client decrypts the computation output
using the decryption key. These ORAM access patterns reveal nothing about the
database because the RAM-FHE scheme is semantically secure.5 If we use multi-
hop RAM-FHE then we can sequentially execute many programs and rewind to
any intermediate state; semantic security still ensures that the access patterns

4 We note that if an a-priori bound on the scratch tape size is known during encryp-
tion, then in the single-hop setting the scratch tape can be included as part of the
encrypted database, since any updates to the database during execution are anyway
lost when the execution ends.

5 More formally, there is a discrepancy since the access pattern of homomorphic evalu-
ation, though revealing nothing about D, may reveal something about P . To prevent
this, we can append an encryption secret key sk to the database D, and execute a
program ˜P in which P ’s code is encrypted under sk, where ˜P first decrypts P and
then executes it over D. This way, the access pattern of the FHE evaluation cannot
reveal anything about neither P nor D.
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reveal nothing about the underlying database, so we obtain ASR-ORAM. If we
use a single-hop RAM-FHE, the ORAM only allows for the execution of a single
program before rewinding to the initial state, so we only get ISR-ORAM. As
discussed above, SK-DEPIR can be thought of as a read-only ISR-ORAM, so
RAM-FHE also implies SK-DEPIR.

1.3 Related Work

Supporting RAM computations directly, without first representing the RAM
program as a circuit, has been considered for several cryptographic primitives.

Similar to RAM-FHE, Garbled RAM [LO13,GHL+14] (also known as pri-
vate RAM delegation) allows a user to garble a database D, following which
an evaluator can run RAM computations on the garbled D. (There are also
works on non-private RAM delegation, e.g., [KP16].) However, in garbled RAM
the evaluator can only compute specific RAM programs P which the garbler
generated. Similar to RAM-FHE, the size of the garbled program, and the gar-
bling and evaluation times, are proportional to P ’s running time. There has
been a large body of works on garbled RAM, improving its efficiency, underly-
ing assumptions, properties, and applications [GLOS,CHJV15,CH16,CCHR16,
ACC+16,BCP,CCC+,Mia16,GGMP16,HY16,LO17,GOS18]. Succinct garbled
RAMs together with iO for circuits also imply indistinguishability Obfuscation
(iO) for RAMs [CHJV15,BCG+18].

Functional Encryption (FE) for RAMs, namely an FE scheme in which the
master secret key can be used to generate function keys for RAM programs,
was studied in [AIT16,GHRW,BCG+18]. These constructions are not function-
private, and [AIT16] additionally do not hide the access pattern of the RAM
program (which, as discussed in Sect. 1.2, seems to be a central difficulty in
constructing RAM-FHE).

The notion of FHE for Turing machines was considered in [GKP+a], who con-
struct FHE schemes with input-specific running time during evaluation. However,
the runtime is still at least linear in the database size, whereas RAM-FHE eval-
uation time may be sublinear in the database size (if the original RAM program
runs in sublinear time). Moreover, their model is somewhat restricted in that
the Turing machine and its input are encrypted together (so one cannot execute
arbitrary Turing machines on the input).

2 Preliminaries

Throughout this paper, λ denotes a security parameter. We use poly (λ) and
negl (λ) to denote unspecified functions that are polynomial and negligible in λ,
respectively. We use standard cryptographic definitions of one-way functions
(OWFs), pseudorandom functions (PRFs), collision-resistant hash functions
(CRHFs), and message authentication codes (MACs) (see, e.g., [Gol01,Gol04]).
For a randomized algorithm A with n inputs, we use A (x1, . . . , xn; r) to denote
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the output of A on inputs x1, . . . , xn when it uses randomness r. We use ≈ to
denote computational indistinguishability.

We use PPT to refer to probabilistic polynomial-time algorithms, and non-
uniform PPT to refer to (ensembles of) polynomial-sized probabilistic circuits.
We use the notion of Virtual Black Box (VBB) obfuscation with auxiliary input
(see the full version [HHWW]).

2.1 Doubly-Efficient Private Information Retreival (DEPIR)

Definition 1 (Secret-Key Doubly-Efficient PIR (SK-DEPIR) [CHR17,
BIPW17]). A secret-key doubly-efficient PIR (SK-DEPIR) scheme consists of pro-
cedures (KeyGen,Process,Query,Decode) where KeyGen,Process,Query are ran-
domized and Decode is deterministic, with the following syntax:

– KeyGen
(

1λ
)

takes as input a security parameter λ, and outputs a client secret-
key sk.

– Process (sk,DB) takes as input a client secret-key sk and a database DB ∈
{0, 1}N , and outputs a processed database ˜DB ∈ {0, 1}Ñ .

– Query (sk, addr) takes as input a client secret-key sk and an address addr ∈
[N ], and outputs a set Q ⊆

[

Ñ
]

of queries, and a temporary state st.

– Decode
(

sk, st,
{

˜DBi : i ∈ Q
})

takes as input a secret key sk, a temporary

state st, and a set of values from the processed database
{

˜DBi : i ∈ Q
}

, and
outputs a value val.

We require that the scheme satisfies the following properties:

– Correctness: for every N ∈ N, every DB ∈ {0, 1}N , and every addr ∈ [N ],
it holds that:

Pr

⎡
⎣Decode

(
sk, st,

{
D̃Bi : i ∈ Q

})
= DBi :

sk ← KeyGen
(
1λ

)
D̃B ← Process (sk,DB)

(Q, st) ← Query (sk, addr)

⎤
⎦ = 1

– Security: Any non-uniform PPT adversary A has only negl (λ) advantage
in the following security game with a challenger C:
1. A sends to C a database DB ∈ {0, 1}N .
2. C picks a random bit b ← {0, 1}, and runs sk ← KeyGen

(

1λ
)

to obtain
a client secret-key sk, and then runs ˜DB ← Process (sk,DB) to obtain a
processed database ˜DB, which it sends to A.

3. A selects two addresses addr0, addr1 ∈ [N ], and sends (addr0, addr1) to C.
4. C samples (Q, st) ← Query(sk, addrb), and sends Q to A.
5. Steps 3 and 4 are repeated an arbitrary (polynomial) number of times.
6. A outputs a bit b′, and his advantage in the game is defined to be Pr[b =

b′] − 1
2 .
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– Efficiency. The runtime of KeyGen is poly (λ), the runtime of Process is
poly (N,λ), and the runtime of Query,Decode is o (N) · poly (λ), where N is
the database size.

We will need a SK-DEPIR scheme with the additional guarantee that prepro-
cessing is oblivious of the database contents. We note that both the SK-DEPIR
constructions of [CHR17,BIPW17] satisfy this guarantee.

Definition 2 (Security with oblivious preprocessing). We say that a SK-
DEPIR scheme is secure with oblivious preprocessing if the security property
of Definition 1 holds even when in Step 2 above, the adversary is given the
sequence of memory accesses (including which address was accessed, whether it
was read or written, and what value was written) performed during the execution
of Process (sk,DB).

Remark on existence of SK-DEPIR schemes with specific parameters and oblivi-
ous preprocessing. The works [BIPW17,CHR17] prove that under a new assump-
tion on noisy Reed-Muller codes, there exist SK-DEPIR schemes with either of
the following parameters for databases of size N and security parameter λ:

– Sublinear SK-DEPIR: For any ε > 0, the running time of Process can be
N1+ε ·poly(λ), and the running time of Query and Decode can be N ε ·poly(λ).

– Polylog SK-DEPIR: The running time of Process can be poly(λ,N), and
the running time of Query and Decode can be poly(λ, log N).

We note that both of these schemes have oblivious preprocessing. Indeed, in these
constructions Process randomly permutes a (noisy) Reed-Muller encoding of an
encryption of the database. The encoding is data-oblivious since it is applied to
ciphertexts, and using oblivious sorting algorithms the permuting operation can
also be done obliviously.

3 Rewindable Oblivious RAM

We define two ORAM variants which guarantee security against rewinding
attacks. The two notions differ in the type of attacks they can handle. We
first recall the notion of an access pattern, and the standard ORAM defini-
tion [Gol87,Ost90,GO96].

Notation 1 (Access pattern). A length-q access pattern Q consists of a list
(opl, vall, addrl)1≤l≤q of instructions, where instruction (opl, vall, addrl) denotes
that the client performs operation opl ∈ {read, write} at address addrl with
value vall (which, if opl = read, is ⊥).

Informally, an ORAM scheme allows a client to store his database, or “log-
ical memory”, remotely on a server, or “physical memory”. Following a Setup
procedure which generates client and server states, reads and writes to logi-
cal memory are performed through an interactive protocol Access between the
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client and server, where in each round the client generates a read request and
an update request for the server. The access pattern to physical memory during
the Access protocol completely hides from the server the database contents and
access pattern to logical memory (see the full version for the formal definition).

3.1 Rewindable ORAM Security

We now describe a game that formalizes the security of our ORAM variants.
The adversarial server in the game chooses a pair of initial databases, and (as
in standard ORAM) two sequences of access patterns, with the goal of distin-
guishing between the executions of these sequences on the two databases. Unlike
standard ORAM, the adversarial server in our security game can also rewind the
execution to a previous state, and continue the execution from that state.

Definition 3 (Rewindable ORAM security game). The ORAM security
game is run between an adversary A, and a challenger C.

1. A sends to C two databases DB0,DB1 ∈ {0, 1}N .
2. C picks a random bit b ← {0, 1}, and runs Setup

(

1λ,DBb
)

to obtain client
and server states ck, st. C sends st to A.

3. Let st0 = st and ck0 = ck. Repeat the following poly (λ) times, where in the
i’th iteration:
(a) A sends to C an index ji ∈ {0, 1, . . . , i − 1}, as well as two

sequences of instructions Q0
i =

(

opi,l, addr0i,l, val
0
i,l

)

l∈[qi]
, and Q1

i =
(

opi,l, addr1i,l, val
1
i,l

)

l∈[qi]
, where qi ≤ poly (λ), opi,l ∈ {read, write},

addr0i,l, addr1i,l ∈ [N ], and val0i,l, val
1
i,l ∈ {0, 1}.

(b) Starting from server state stji and client state ckji , C executes

Access
(

opi,l, addrbi,l, val
b
i,l

)

for 1 ≤ l ≤ qi. Let cki, sti denote the updated
client and server states (respectively) at the end of this sequence of exe-
cutions. Let ACCi denote the access pattern to physical memory during
this sequence of Access executions.

(c) C sends ACCi to A.
4. A outputs a bit b′, and his advantage in the game is defined as Pr [b = b′]− 1

2 .

Discussion. The rewindable ORAM security game of Definition 3 captures sev-
eral security variants, depending on the permissible choice of ji. First, notice that
the security game with poly(λ) iterations in the security game, when the adver-
sary is restricted to choose ji = i − 1 in each iteration, and DB0 = DB1, yields
the standard ORAM security definition without rewinds. Second, restricting the
adversary to choose ji = {0, i − 1} in every iteration i means the adversary
can only rewind the execution to the initial state, but can adaptively decide
to “extend” a previous execution. Restricting the adversary to choose ji = 0
in every iteration corresponds to an adversary that can only rewind the execu-
tion to the initial state, where any rewind “finalizes” the current branch of the
execution, and the adversary cannot later extend it. In the most general form,
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when ji can take any value in {0, 1, . . . , i − 1}, we can assume without loss of
generality that the adversary chooses a length-1 sequence in each iteration of the
security game. This corresponds to an adversary that can rewind the ORAM to
any intermediate state. The security game of Definition 3 can be used to capture
various other security variants; we choose to focus on the latter two notions.
Formally,

Definition 4 (Any-State Rewindable ORAM (ASR-ORAM)). We say
that an ORAM scheme is Any-State Rewindable (ASR) if any PPT adversary A
has a negl(λ) advantage in the rewindable ORAM security game of Definition 3.

Definition 5 (Initial-State Rewindable ORAM (ISR-ORAM)). We say
that an adversary A is initial-state restricted if in every iteration i of the rewind-
able ORAM security game of Definition 3, it chooses ji = 0. We say that an
ORAM scheme is Initial-State Rewindable (ISR) if any initial-state restricted PPT
adversary A has a negl(λ) advantage in the rewindable ORAM security game of
Definition 3.

3.2 Rewindable ORAM Constructions

In this section we construct ISR- and ASR-ORAM schemes from SK-DEPIR
and standard ORAM schemes. Our ISR-ORAM scheme, despite having a weaker
security guarantee than ASR-ORAM, has the advantage of being simpler and
more efficient. In the full version [HHWW], we construct an ISR-ORAM scheme
from a SK-DEPIR scheme along with an ORAM scheme for initially-empty
databases, proving the following:

Theorem 2 (ISR-ORAM). Assume there exist OWFs and SK-DEPIR. Then
there exists an ISR-ORAM scheme.

Moreover, if the Query and Decode algorithms of the SK-DEPIR scheme have
poly(λ) complexity for databases of size N and security parameter λ, and the
client (resp., server) state has size poly (λ) (resp., poly (λ,N)), then the Access
complexity of the ISR-ORAM is poly(λ), and the client (resp., server) state has
size poly(λ) (poly(λ,N)).

We now construct an ASR-ORAM scheme from SK-DEPIR and PRFs, prov-
ing the following (the proof appears in the full version):

Theorem 3 (ASR-ORAM). Assume the existence of OWFs and SK-DEPIR,
then there exists an ASR-ORAM scheme. Moreover, if for ε > 0 the Query
and Decode algorithms of the SK-DEPIR scheme have N ε · poly(λ) complexity,
and Process has N1+ε · poly (λ) complexity for databases of size N and security
parameter λ, then:

– The complexity of Access is N ε · poly (λ).
– The client state has size poly (λ), and the server state has size N1+ε ·poly (λ).
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The construction. Recall from Sect. 1.2 that we use a hierarchical structure
whose levels contain SK-DEPIR schemes. Since a SK-DEPIR scheme is designed
for array structures, we use PRFs to map the data blocks of the level into buck-
ets, thus guaranteeing that a block’s location in each level (if it appears in the
level) is independent of the access history. To allow for more efficient reshuffles,
each level i also contains the (encrypted, unprocessed) database stored in the
SK-DEPIR of the level. We note that whenever a level is initialized as part of a
reshuffle, we pick new PRF and SK-DEPIR keys for the level. This guarantees
security even under rewinds. Indeed, though a SK-DEPIR is rewind-secure, by
rewinding the ORAM the adversary may rewind a reshuffle. However, this will
result in a completely fresh SK-DEPIR scheme, and therefore doesn’t violate
security. In the following, we use B = λ to denote the bucket size.

Construction 1 (ASR-ORAM from SK-DEPIR and PRFs). The scheme uses:

– A PRF F .
– A SK-DEPIR scheme (DEPIR.KeyGen,Process,Query,Decode) with oblivious

preprocessing (Definition 2).
– A CPA-secure symmetric encryption scheme (SE.KeyGen,Encrypt,Decrypt).

The scheme consists of the following procedures.
Setup(1λ,DB): Recall that λ denotes the security parameter, and DB ∈

{0, 1}N . Let DB′ be the database obtained from DB by concatenating the address
to each bit, i.e., entries of DB′ have the form (addr,DBaddr). (This will be needed
when blocks are mapped to buckets.) Let � = log N , and proceed as follows.

– Counter initialization: initialize a counter countW to 0. (countW counts the
total number of writes performed so far.)

– Encryption initialization: run sk ← SE.KeyGen
(

1λ
)

to generate a secret-key
sk for the encryption scheme.

– PRF and SK-DEPIR key initialization for all levels: for every level 1 ≤ i ≤ �,

set ˜Ki = ˜sk
i
=⊥. (Later, ˜Ki, ˜sk

i
will contain encryptions of level-specific PRF

and SK-DEPIR keys, respectively.)
– Initializing level �: encrypt the database by running DB′′ ← Encrypt

(

sk,DB′).

Run
(

DB′′, ˜DB, ˜K�′, ˜sk
�′) ← InitLevel

(

�,DB′′) (Fig. 1 on page 604) to obtain

the processed SK-DEPIR database ˜DB, and the PRF and SK-DEPIR keys
for level �. Initialize level � to be L� =

(

DB′′, ˜DB
)

, and all other levels Li to

be empty. Replace ˜K�, ˜sk
�

with ˜K�′, ˜sk
�′
, respectively.

– Output: the client state ck = sk consists of the encryption key. The server

state st =
(

countW ,
(

Li, ˜Ki, ˜sk
i
)

i∈[�]

)

consist of the counter, the contents of

all levels, and the (encrypted) PRF and SK-DEPIR keys for all levels (which
are currently empty, except for the keys of level �).
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The Access protocol. To perform the operation op on location addr ∈ [N ]
in the database with value val, the client C with state ck = sk, and the server

with state st =
(

countW ,
(

Li, ˜Ki, ˜sk
i
)

i∈[�]

)

operate as follows.

– If op = read:
• Initialize an output value val′ to ⊥.
• For every non-empty level i from 1 to �, do:

∗ Computing bucket index: read ˜Ki, ˜sk
i

from the server, and decrypt

Ki = Decrypt
(

sk, ˜Ki
)

, ski = Decrypt
(

sk, ˜sk
i
)

. Compute l =

F
(

Ki, addr
)

. (If addr appears in level i, it will be in the l’th bucket.)
∗ Looking for data block addr in level i: look for block addr in the l’th

bucket by running the procedure ReadBucket
(

l, i, ski, addr
)

of Fig. 2
to obtain a value vali. If val′ 
=⊥ then set val′ := vali.

• Output: output val′ to the client.

If op = write:

– Encrypt the data block as c ← Encrypt (sk, (addr, val)), and generate a
“dummy” level 0 database which contains a single (encrypted) data block c.

– Update the server state as follows:
• countW := countW + 1.
• For i = 0, 1, . . . , � such that 2i divides countW , reshuffle level i into

level i + 1 using the ReShuffle procedure of Fig. 3, namely executes
ReShuffle

(

i, Li, Li+1
)

.6

4 Definition of RAM-FHE

We first informally describe the RAM model we work with, which is a simple
model of RAM computation that captures their essential efficiency advantage
over Turing machines. Specifically, we define RAM machines via a transition cir-
cuit δ, with the following functionality. The circuit δ is designed to be evaluated
repeatedly in a prescribed way, such that the main output of the i’th evalua-
tion is an operation on one of the RAM machine’s tapes, which is either the
“persistent” tape containing the database, a volatile work tape which we call
the “scratch tape”, or the input and output tapes. The main input to δ is the
result of the previously outputted operation. Additionally, the circuit δ simu-
lates statefulness by taking as input and producing as output an internal state.
We now define single-hop RAM-FHE. (See full version [HHWW] for the formal
definition of RAM model and the multi-hop version.)

6 Using a technique of Ostrovsky and Shoup [OS97], these operations can be spread-
out over multiple write operations. We analyze the scheme below assuming the
reshuffle operations are indeed spread-out across all write operations.
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Definition 6 (Single-hop RAM FHE). A public-key (single-hop) RAM FHE
scheme is a tuple of PPT7 algorithms (KeyGen, Enc, Dec, Eval) such that:

– Syntax.
• KeyGen

(

1λ
)

takes as input a security parameter λ, and outputs public
and secret keys pk, sk.

Fig. 1. The InitLevel procedure used in Construction 1

7 In fact, in our construction Eval and Dec are deterministic.
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Fig. 2. The ReadBucket procedure used in Construction 1

• Enc
(

pk,D, 1B
)

takes as input a pubic key pk, a database D, and a bound
B on the description size of RAM machines. It outputs a database-
ciphertext D̂. For improved efficiency, it may also take as input a bound
s (in unary) on the space usage of the RAM machines for which homo-
morphic evaluation will be supported.

• Eval
(

M,x, 1T
)

takes as input a description M of a RAM machine, an
input x, and a running time bound T , and is given read/write random-
access to a database-ciphertext D̂. Eval outputs an output-ciphertext ŷ,
and may also change the contents of D̂ to some new value D̂′. We write
(ŷ, D̂′) = EvalD̂(M,x, 1T ).

• Dec (sk, ŷ) takes as input a secret key sk and an output-ciphertext ŷ, and
outputs a plaintext message y.

– Correctness. For any security parameter λ, any size bound B, any RAM
machine M satisfying |M | ≤ B, any database D ∈ {0, 1}∗, any input x ,
and any T ∈ Z

+ with Time(M,x,D) ≤ T , in the probability space defined by
sampling

(pk, sk) ← KeyGen(1λ)
D̂ ← Enc(pk,D, 1B)
(

ŷ, D̂′
)

:= EvalD̂(M,x, 1T )
(y,D′) := MD(x)
y′ := Dec(sk, ŷ),

(1)

it holds that y = y′ except with negl (λ) probability.
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Fig. 3. The ReShuffle protocol used in Construction 1
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– IND-CPA Security. For all non-uniform PPT A0 and A1, there is a neg-
ligible function negl such that for every security parameter λ,

Pr

⎡

⎢

⎢

⎢

⎢

⎣

b′ = b :

(pk, sk) ← KeyGen(1λ)
(st,D0,D1, 1B) := A0(pk)

b ← {0, 1}
D̂ ← Enc(pk,Db, B)

b′ := A1(st, D̂)

⎤

⎥

⎥

⎥

⎥

⎦

≤ 1
2

+ negl(λ).

– η (|D|)-Efficiency. With probability 1, the running time of Eval in the exper-
iment described in Eq. (1) is at most T · η (|D|) · poly (B, λ).

– Compactness. In the experiment described in Eq. (1), |ŷ| ≤ poly(log |Y|, λ).

Remark 1. We note that when Enc is executed with the additional space-bound
parameter s, then correctness holds for every RAM machine M whose volatile
tape throughout the execution has size at most s, and the adversary in the
security game is also allowed to choose s.

5 Road Map Towards Constructing RAM-FHE

As described in Sect. 1.2, the encryption of a database D consists of the server
state in a rewindable ORAM for D, together with a VBB obfuscation of the
circuit that emulates a single execution step of the rewindable ORAM client.
Formalizing this idea requires two steps. First, we need to emulate a consistent
client state throughout the execution (because the ORAM client is stateful, while
the obfuscated circuit is not), as well as guarantee semi-honest emulation of the
ORAM server. This covers steps (1) and (3) from Sect. 1.2. Second, we need to
hide the ORAM client state from the evaluator, using pseudorandom bits for
encryption, which was described as steps (2) and (5) in Sect. 1.2. We obtain
both of these using a new abstraction which we call a database-dependent RAM-
VBB obfuscator (Sect. 5.1) in which, informally, the obfuscator takes as input not
only a database D, but also a specific RAM machine M , and the evaluator can
run M on different inputs x with RAM access to (the mutable) D. We provide
two constructions (Sect. 5.2) to handle each of the issues described above. We
obtain the RAM-FHE by applying the RAM-VBB obfuscator to the universal
RAM machine (which takes as input a description M of a RAM machine, and an
input x for it, and outputs MD (x), where D is the database), that additionally
encrypts its output using a PKE scheme (step (4) in Sect. 1.2).

5.1 Database-Dependent RAM-VBB Obfuscation

We define two notions of RAM-VBB obfuscation, in which the RAM machine
is obfuscated with relation to a specific database. These notions, which we call
database-dependent RAM-VBB, provide weaker security than RAM-FHE, and
incomparable correctness. We note that though such obfuscation is unlikely to
exist in general, similar to circuit-VBB obfuscation it might exist for restricted
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ensembles of RAM machines, and in particular might exist for the specific ensem-
ble we consider in this work.

Informally, the obfuscator O is parameterized by an ensemble M = {MN}N

of classes of RAM programs. It takes as input not only a database D0 ∈ {0, 1}N ,
but also a RAM machine M ∈ MN . The evaluator is able to compute MD(x)
for any input x and any database D that is either D0 or was obtained by a
previous execution of M . Formally,

Definition 7 (Database-dependent RAM-VBB obfuscator). Let n ∈ N

be an input length, N ≤ 2λ be a database size, and M = {MN}N be an ensemble
of classes of RAM programs. A database-dependent RAM-VBB obfuscator for
M is an algorithm O that takes as input a security parameter 1λ, a database
D0 ∈ {0, 1}N , and a RAM machine M ∈ MN . It outputs a database ˜D0, a RAM
machine ˜M , and some auxiliary input I0 for ˜M . We require that O satisfies the
following requirements:

– Correctness. For every n, k,N ∈ N, every M ∈ MN , every database
D0 ∈ {0, 1}N , and every inputs x1, . . . , xm ∈ {0, 1}n, the following two exper-
iments yield the same values of (y1, . . . , ym) ∈ ({0, 1}k

)m except with negl (λ)
probability.

( ˜D0, ˜M, I0) ← O(1λ,D0,M)
(y1, ˜D1, I1) ← ˜M

˜D0(x1, I0)
. . .

(ym, ˜Dm, Im) ← ˜M
˜Dm−1(xm, Im−1)

and
(y1,D1) ← MD0(x1)
. . .
(ym,Dm) ← MDm−1(xm)

(2)

– Efficiency. In the above experiments, it holds that

Time(˜M, (xi, Ii−1) , ˜Di−1) ≤ Time(M,xi,Di−1) · poly(|M | , λ)

where |M | denotes the combined length of the internal state and the descrip-
tion of M .

We define two security notions for database-dependent RAM-VBB obfusca-
tion. The first, which we call transcript-simulatable, is roughly that any adversary
(with single-bit output) given an obfuscation of (D0,M) is simulatable given
only the execution trace (see full version [HHWW] for definition), namely given
oracle access to the function that takes a sequence of inputs x1, . . . , xd, and
returns the operations performed by M when sequentially executed (i.e., with
a mutable database D that is initially D0 but persists across executions) on
the inputs x1, . . . , xd. The second security property, which we call address sim-
ulatable, is stronger since it gives the simulator less information. Specifically,
the simulator no longer sees the entire computation transcripts but instead sees
only the addresses of the physical memory which are operated on, the type (read
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or write) of memory operation, and the outcome of the computation. The sim-
ulator does not see the values read from/written to memory, or the contents
D0 of the initial database, but instead sees only its size |D0|. These defini-
tions appear in the full version [HHWW]. We abbreviate transcript/address-
simulatable database-dependent RAM-VBB as transcript/address-simulatable
RAM-VBB.

5.2 Database-Dependent RAM-VBB Obfuscation: Constructions

In this section we construct (single-hop) transcript-simulatable and address-
simulatable RAM-VBB obfuscators. These will be used in Sect. 6 to construct a
RAM-FHE scheme.

In the single hop setting, we can assume without loss of generality that the
database is read-only, since database updates can be emulated in the scratch
tape, causing a multiplicative factor-2 increase in the scratch tape size, and the
number of read accesses. Therefore, we can (by performing dummy accesses if
needed) assume without impact that every execution step performs a single read
from the database and scratch tape, and a single write to the scratch tape.

We now construct a single-hop transcript-simulatable RAM-VBB obfuscator
(see full version for a multi-hop variant). The high level idea is to use MACs and
Merkle hash trees to enforce consistent execution, and to obfuscate the transition
circuit (computing the transition function δ of the RAM machine) which has the
MAC key hard-wired into it. This intuition is formalized in the next construction.
In the full version [HHWW], we prove the following construction is a transcript
Simulatable RAM-VBB obfuscator.

Construction 2 (Transcript-simulatable RAM-VBB obfuscation). The
transcript-simulatable RAM-VBB obfuscator Otrans uses:

– A family H of hash functions.
– A MAC scheme (KeyGen,Tag,Verify), in which Tag,Verify are deterministic

(this assumption is without loss of generality).
– A circuit obfuscator O.

Given a security parameter λ, a database D0, and a RAM machine M , Otrans:

– Generates a random MAC key KMAC ← KeyGen
(

1λ
)

, and picks a description
of a hash function h ← H.

– Generate a MHT MT for D0, and let Rt denote its root.
– Let stM denote the initial state of the RAM machine M , set st =

(true, stM ,Rt), and pad st with zeros to have the same size as st in Fig. 4.
(The boolean value true in st indicates that the execution hasn’t started yet.)
Otrans generates a tag σ = Tag (KMAC, (false, st)). (The signature is on the
state st, as well as a boolean variable bfin indicating whether the execution
has already terminated.)

– Runs the obfuscator ˜C ← O (

1λ, CExec

)

to obfuscate the circuit CExec described
in Fig. 5, with the constants described in Fig. 4 hard-wired into it.
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– Outputs
(

MT,Mwrap, I =
(

st, σ, ˜C
))

, where Mwrap is the RAM machine
described in Fig. 6.

Fig. 4. Description of the constants and inputs of CExec

In full version [HHWW], we construct an address-simulatable RAM-VBB
obfuscator from a transcript-simulatable RAM-VBB obfuscator. The high level
idea is to apply the transcript-simulatable VBB obfuscator to a RAM program
M that has a hard-wired encryption key, which the transition circuit uses to
encrypt the internal state. One issue that arises is how to generate randomness
for encryption, when M cannot toss coins. This is done by applying a PRF to
the current execution state. We also include a counter in the internal state to
guarantee that the states are unique throughout the execution.

6 A RAM-FHE Scheme

In this section we describe our single-hop RAM-FHE scheme, which uses an
address-simulatable RAM-VBB as a building block. We assume that (polyno-
mial) a-priori bounds on the input, output, and description lengths of the RAM
machine are known. In the full version [HHWW], we discuss extensions to the
general setting (in which no such bounds are a-priori known) and how we upgrade
the scheme to a multi-hop scheme. Concretely, we prove (in the full version) the
following theorem:
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Fig. 5. Description of the circuit used to emulate a single transition of the RAM
machine

Theorem 4 (Single-hop RAM-FHE). Assume the existence of OWFs,
CRHFs, PKE schemes, and SK-DEPIR which for size-N databases has
poly(λ, log N) Query and Decode complexity, where λ denotes the security param-
eter. Then for every d = poly (λ) there exists a poly log N -efficient single-hop
RAM-FHE scheme in the circuit-VBB hybrid model for RAM machines with
input length, output length, description size, and space usage at most d.
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Fig. 6. Description of the wrapper RAM machine

The Construction. The high level idea is to combine the address-simulatable
RAM-VBB for the universal RAM machine, with an ISR-ORAM (which is
replaced with an ASR-ORAM in the multi-hop setting). The address-simulatable
RAM-VBB guarantees that the RAM machine emulation only reveals the
sequence of physical memory addresses it accesses, which by ISR-ORAM secu-
rity reveals no information about the access pattern to logical memory. One
technical issue is that the universal machine should encrypt its output (using a
persistent encryption key that is generated during KeyGen, independent of the
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database and any RAM machine that will be run on it) which requires generating
randomness. We use a PRF to generate this randomness.

Construction 3 (Single-hop RAM-FHE). The RAM-FHE scheme uses:

– An address-simulatable RAM-VBB obfuscator O.
– An ISR-ORAM scheme (ISR − ORAM.Setup, ISR − ORAM.Access) with a

deterministic client during ISR − ORAM.Access.
– A PKE scheme (PKE.KeyGen,PKE.Encrypt,PKE.Decrypt).
– An unbounded-input PRF F .

It consists of the following algorithms:

– KeyGen
(

1λ
)

generates a public-secret key pair
(

pk′, sk′) ← PKE.KeyGen
(

1λ
)

,
and outputs

(

pk =
(

1λ, pk′) , sk = sk′).
– Encrypt

(

pk =
(

1λ, pk′) ,DB, 1d, 1s
)

takes as input a public key pk, a database
DB, and bounds d, s on the description size and space usage of RAM machines
(respectively). It operates as follows:

• Set DB′ to be the database of size |DB| + s obtained by concatenating
s empty blocks to DB. (Intuitively, these blocks are “place holders” for
the contents of the scratch tape of a RAM machine; see remark on phys-
ical memory block contents in the full version for a discussion of empty
blocks.)

• Initialize an ISR-ORAM with DB′, by running ISR − ORAM.Setup
(

1λ,

DB′), to obtain a client state ckISR and a server state stISR.
• Pick a random PRF key K ← {0, 1}λ.
• Run

(

˜DB, ˜MU , I
)

← O (

1λ, stISR,MU
)

, where MU is the RAM machine

described in Fig. 7, with hard-wired values |DB| , pk′,K, and internal vari-
able ckISR.

• Output the ciphertext cDB =
(

˜DB, ˜MU , I
)

.

– EvalcDB
(

M,x, 1T
)

takes as input a description M of size at most d of a
RAM machine, an input x for M , and a bound T on the runtime of M .
It also has RAM access to a database-ciphertext cDB =

(

˜DB, ˜MU , I
)

. It runs

˜MU
˜DB (

M, 1T , x, I)

, and outputs whatever it outputs.
– Decrypt (sk, c) takes as input a secret key sk, and an output-ciphertext c. It

outputs PKE.Decrypt (sk, c).

Remark on growing Merkel Hash Trees. Our construction (in particular, the
circuit CExec of Fig. 5 on page 611) generate and grow MHTs. The hash trees use
an underlying hash function H : {0, 1}2n → {0, 1}n for some n ∈ N. Generating
a MHT T for a string s is done in the standard way by hashing adjacent pairs
of nodes repeatedly, and we say that the resultant tree T represents s. Growing
an existing MHT T which represents a string s is done as follows. Assume T has
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Fig. 7. RAM machine used in Construction 3

height h growing from the leaves to the root, and let v1, . . . , vh be the right-most
nodes in each level of T , i.e., v1 is a suffix of s, and vh is the root. To generate
a MHT representing the string s ◦ s′ for some s′ ∈ {0, 1}n, concatenate s′ to
level 1 of the tree as the new right-most node, and let v′

1 := s′. Compute a
new right-most path in the tree by generating, for every 1 < i ≤ h the node
v′

i = H
(

vi−1, v
′
i−1

)

and concatenating v′
i to the right of node vi in level i.

Finally, generate a new root at level h + 1 by computing H (vh, v′
h). To grow

T be a string of length > n, partition the string into length-n substrings, and
apply this procedure sequentially on each of the substrings.
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Fig. 8. Emulating a single transition of M

Fig. 9. Emulating a database or scratch tape access in M
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Abstract. Time-lock puzzles allow one to encrypt messages for the
future, by efficiently generating a puzzle with a solution s that remains
hidden until time T has elapsed. The solution is required to be con-
cealed from the eyes of any algorithm running in (parallel) time less
than T . We put forth the concept of homomorphic time-lock puzzles,
where one can evaluate functions over puzzles without solving them, i.e.,
one can manipulate a set of puzzles with solutions (s1, . . . , sn) to obtain
a puzzle that solves to f(s1, . . . , sn), for any function f . We propose
candidate constructions under concrete cryptographic assumptions for
different classes of functions. Then we show how homomorphic time-
lock puzzles overcome the limitations of classical time-lock puzzles by
proposing new protocols for applications of interest, such as e-voting,
multi-party coin flipping, and fair contract signing.

1 Introduction

Time-lock puzzles [30] allow one to encapsulate messages for a precise amount
of time or, equivalently, to encrypt messages for the future. On input a secret
s and a hardness parameter T , the puzzle generation algorithm allows one to
compute a Z such that s can be recovered only after time T . Time-lock puzzles
are characterized by the following properties.

– Fast puzzle generation: The time needed to generate a puzzle is much shorter
than T . This is crucial when secrets are hidden for a long time, e.g., 10 years.

– Security against parallel algorithms: The secret s is hidden for circuits of depth
less than T , regardless of their size.

The latter can be seen as a more fine-grained notion of the classical semantic
security [19], where simply lowering the security parameter may enable faster
algorithms that exploit massive parallelization to solve the puzzle. Note that
ignoring either of the above properties makes the problem trivial since it can be
either solved with standard probabilistic encryption or any inherently sequen-
tial computation (such as repeated hashing). Applications of time-lock puzzles
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include sealed-bid auctions [30], fair contract signing [6], zero-knowledge argu-
ments [12], and non-malleable commitments [23], to mention a few.

To compensate for the absence of a trusted party, time-lock puzzles force
the decrypter to perform a long computation before being able to recover the
secret. When time-lock puzzles are deployed within large scale protocols, this
slight drawback is magnified and parties may incur in a significant computational
burden. While performing some computation is clearly unavoidable, this effort
should not become the bottleneck of the protocol. To the best of our knowledge,
there is currently no solution to mitigate this problem.

1.1 Limitations of Time-Lock Puzzles

To illustrate the aforementioned limitations of time-lock puzzles, we consider the
scenario of e-voting in the absence of a trusted authority, one of the motivating
examples for the usage of the primitive. Throughout the following discussion
we assume that the voters have access to a public and append-only bulletin
board, e.g., a blockchain, and we will not consider the privacy of the votes nor
their authenticity. Both problems are well studied and can be dealt with using
standard techniques, e.g., unlinkable transactions and anonymous credentials.
Instead, we are going to focus on constructing a system that allows a large set
of voters to cast their preference without any bias.

If one were to assume a trusted administrator, then the voters could simply
encrypt their preference and let the administrator count and announce the result.
However, the absence of trusted authorities makes the problem non-trivial. The
standard approach to avoid voters being biased by the current majority is to
divide the protocol in two phases: In the voting phase the voters commit to their
vote and post the commitment on the bulletin board. In the counting phase, new
commitments are ignored, and voters are asked to reveal their openings, which
makes it possible to compute and announce the result of the election.

This however leaves open the question of how to handle users who send valid
commitments in the first phase but fail to reveal their openings in the second.
One could either (i) repeat the voting phase or (ii) ignore such “unopened”
votes. Repeating the voting process could empower an attacker to successfully
mount a denial-of-service attack at essentially no cost. On the other hand, the
latter solution might be exploited to manipulate the final outcome: An attacker
controlling the network traffic might block those openings corresponding to an
unwanted candidate, thereby generating a bias towards a the preferred side.

Time-lock puzzles elegantly resolve this by replacing commitments as the
hiding mechanism for the votes. The votes of those users who fail to publish
their coins (i.e., reveal their vote) can be simply determined by solving their
time-lock puzzles. Setting the hardness parameter T to be a safe amount longer
than the voting phase makes sure that the votes are kept secret until such a
phase is over, thereby avoiding any bias. Unfortunately, this solution does not
come without additional costs: Consider what happens when a large amount
of voters, say 100.000, fail to open their puzzles. Then the computation of the
election winner tally requires brute-forcing those puzzles, which means that a
massive amount of (parallel) computation is needed in order to complete the



622 G. Malavolta and S. A. K. Thyagarajan

election within reasonable time. Taking into account the typical number of voters
for an election which is usually in the range of millions, it is safe to say that the
problem is of practical relevance.

We stress that, even though e-voting exemplifies well the scalability issues
of time-lock puzzles, it is certainly not the only scenario where they emerge.
Essentially any other application that involves a large number of users (e.g.,
sealed bid auctions or multi-party coin flipping), encounters similar problems.
We conjecture that such constraints constitute one of the main obstacles that so
far prevented the large scale adoption of time-lock puzzles.

1.2 Our Solution

Put in different words, the main shortcoming of time-lock puzzle-based solu-
tions is that one needs to solve (brute-force) many puzzles before computing
some function over the embedded secrets. What if we could (homomorphically)
evaluate the function first and then solve a single puzzle containing the function
output? This would dramatically reduce the computational burden of time-lock
puzzle-based protocols. Consider the e-voting example as described above: To
compute the election winner one could homomorphically evaluate the corre-
sponding circuit over the puzzles and then solve a single puzzle, regardless of the
number of offline voters.

Motivated by this question, we propose the notion of Homomorphic Time-
Lock Puzzles (HTLP): Loosely speaking, an HTLP is an augmented time-lock
puzzle that allows anyone to evaluate a circuit C over sets of puzzles (Z1, . . . , Zn)
homomorphically, without necessarily knowing the secret messages (s1, . . . , sn)
encapsulated within these puzzles. The resulting output (which is also a puzzle)
contains the circuit output C(s1, . . . , sn) and the timing hardness of this puzzle
does not depend on the size of the circuit C that was evaluated (compactness).
We stress that the compactness of the evaluation algorithm is a crucial require-
ment for HTLP (as it is the case for fully-homomorphic encryption [16]): If we
were to ignore it, then the trivial solution of solving the puzzles (Z1, . . . , Zn)
and then evaluating C over the secrets would suffice.

In this work we put forward the concept of HTLPs and we formally charac-
terize their security guarantees. We then propose several schemes that support
the homomorphic evaluation of different classes of circuits and we demonstrate
their usefulness by presenting several concrete applications.

1.3 Technical Overview

Towards instantiating HTLPs, our starting point is the classical construction of
Rivest, Shamir, and Wagner [30], whose hardness is rooted in the (conjectured)
inherent sequentiality of squaring in finite fields. Let N = p·q be an RSA integer,
a time-lock puzzle for a secret s and for a time T consists of the tuple

(N, T , x, x2T · k,Enc(k, s))

where (x, k) are uniformly sampled elements from Z
∗
N , and Enc(k, s) is a sym-

metric encryption of the secret s. Note that knowing the group order ϕ(N) allows
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one to efficiently compute the term x2T
by reducing 2T modulo ϕ(N) first. On

the other hand the decrypter has to perform T -many squarings before recover-
ing the key k. Here the hybrid encryption approach breaks the structure of the
group, and therefore the scheme has no homomorphic properties.

Linearly Homomorphic. Our first observation is that the term x2T
acts essen-

tially as a one-time pad and we can choose a more structured embedding that
admits an efficiently computable homomorphism. We follow the blueprint of
Paillier [28], i.e., we exploit the fact that the group Z

∗
N2 can be written as the

product of the group generated by (1 + N), which has order N , and the group
of N -th residues {xN : x ∈ Z

∗
N}, which has order ϕ(N). Consider the following

(flawed) attempt to construct HTLPs for linear functions:

(N, T , x, xN ·2T · (1 + N)s),

for a random x ∈ Z
∗
N . Assume for the moment that N is fixed across all puzzles,

then the scheme is clearly linearly homomorphic as shown below:

(N, T , x·y, xN ·2T ·yN ·2T ·(1+N)s·(1+N)s′
) = (N, T , (x·y), (x·y)N ·2T ·(1+N)s+s′

).

Observe that the time needed to homomorphically add secrets is independent
of T . Further recall that the group generated by (1 + N) admits a polynomial-
time algorithm to compute discrete logarithms, so recovering the output is easy
once xN ·2T

is computed. Unfortunately there are two major issues with the
current scheme: (i) If N is shared across all users who also generated them,
then everybody potentially knows the factorization of N (and therefore ϕ(N)),
which is a problem for security, and (ii) the blinding factor xN ·2T

is trivially
distinguishable from a uniform element in Z

∗
N as the Jacobi symbol of xN ·2T

is
always +1. The latter issue can be easily countered by restricting the random
choice to those elements in Z

∗
N whose Jacobi symbol is equal to +1. Our idea

to sidestep the former limitation is to use the random self-reducibility of the
problem: In our augmented scheme, the tuple (N,x, x2T

), where x is a random
element of Z∗

N with Jacobi symbol +1, is fixed in a setup phase. A freshly-looking
HTLP can now be computed as

(N, T , xr, (xN ·2T
)r · (1 + N)s) = (N, T , y, yN ·2T · (1 + N)s),

where r is uniformly sampled from {1, . . . , N2}, whose distribution (modulo
ϕ(N)) is statistically close to sampling from {1, . . . , ϕ(N)}. Note that the newly
generated puzzle is correctly distributed and the knowledge of ϕ(N) is not needed
to compute it. It can be shown that the scheme is an HTLP for linear functions,
assuming the inherent sequentiality of squaring modulo N and other standard
intractability assumptions over hidden-order groups.

Multiplicatively Homomorphic. Armed with the tools discussed above, we
can easily switch the message encoding to obtain HTLPs that supports the
evaluation of multiplication gates. This is done by adapting the scheme of above
to a Diffie-Hellman structure in a natural way: Given that the tuple (N,x, x2T

)
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is fixed in a setup phase, a puzzle to encapsulate a secret s ∈ JN (where JN is
the subgroup of Z∗

N whose elements have Jacobi symbol +1) is generated as

(N, T , xr, (x2T
)r · s)

for some uniformly chosen r. The procedure to recover the puzzle is essentially
unchanged, except that now all the operations are performed in the subgroup
JN . Clearly, there is no need to compute any discrete logarithm since s is already
in its plain form. In [10] it was shown that the decisional Diffie-Hellman (DDH)
assumption over JN is implied by the DDH assumption over Z∗

p and Z
∗
q and the

quadratic residuosity assumption over Z
∗
N . Thus the security of our scheme fol-

lows from the same set of hard problems (in addition to assuming the sequential
nature of squaring modulo N).

Fully Homomorphic. The schemes constructed above support the homomor-
phic evaluation of some restricted classes of functions over the secrets. The
next natural question is whether there exists an HTLP for any polynomially-
computable function. It seems like the techniques developed so far are not very
helpful in this context since constructing homomorphic encryption from RSA
groups (and related assumptions) has been an elusive task so far. For this rea-
son we turn our attention to constructions based on indistinguishability obfusca-
tion [14]. The scheme that we obtain shall be interpreted as a feasibility result.
We leave constructing HTLPs for any function without the aid of obfuscation
as a fascinating open problem. Our candidate solution follows the blueprint of
the fully-homomorphic encryption (FHE) scheme from [9]. Omitting most of the
technicalities, their FHE is constructed from standard public-key encryption by
obfuscating a program that decrypts two input ciphertexts, computes a NAND
gate over the messages, and re-encrypts the output. This approach allows one
to construct FHE without relying on circular assumptions, since the obfuscated
program can evaluate circuits of any depth without growing in size.

At a first glance, this strategy does not seem to translate directly to the time-
lock puzzle settings, since puzzles do not necessarily have a trapdoor that allows
one to efficiently recover the secret (see, e.g., the construction from [2]). Instead
of replacing the public key encryption, our scheme augments it by additionally
time-locking the message: The puzzle consists of a tuple (c, Z), where the cipher-
text c and any (non-homomorphic) time-lock puzzle Z encode the same message.
To open it, one simply ignores c and solves Z. To support homomorphic com-
putations, we obfuscate a program that takes as input two puzzles (c0, Z0) and
(c1, Z1), decrypts c0 and c1, computes the NAND of the messages and produces
a fresh pair (c′, Z ′) encoding the output bit. Note that, although the program
discards Z0 and Z1, the output puzzle is still well-formed. Such a program is
obfuscated in the setup phase and it is made available to all parties.

Extensions. The constructions presented above constitute the backbone of our
results, but there are still a few shortcomings that need to be addressed in order
to enjoy all advantages of HTLPs. For example, all of the schemes (as described
above) require a trusted setup that needs to be re-initialized once time T has
passed. We show that this is in fact not necessary for our RSA-based schemes



Homomorphic Time-Lock Puzzles and Applications 625

and that the common reference string (N,x, x2T
) can be fixed once and for all in

a one-time setup, assuming a mildly stronger version of the sequential squaring
problem. We also show how to compute homomorphic operations over puzzles
generated under different hardness parameters and we explore the feasibility of
a non-trusted (public-coin) setup. Finally, we present a semi-compact HTLP for
branching programs (a superclass of NC1), where the size of the evaluated puzzle
grows with the length of the program but not with its size.

1.4 Applications

We substantiate our claims with concrete examples of scenarios where HTLPs
are useful. Due to the different nature of our constructions, we focus on how to
exploit our efficient (RSA-based) schemes to build applications of interest.

E-Voting and Sealed Bid Auctions over Blockchains. We consider the
settings where n voters choose one among m candidates and we assume that
n � m. In our protocol, each voter generates a vector of m linearly-homomorphic
puzzles (Z1, . . . , Zm) encapsulating 0, except for the j-th puzzle Zj that encodes
1, where j is the index of the preferred candidate.1 The vector of each voter
is made available to all parties (by, e.g., posting it on a blockchain) during
the voting phase. Afterwards, the outcome of the election can be determined
by simply summing up all vectors and opening the resulting m puzzles. The
resulting vector will contain the amount of votes per candidate and the winner
can then be easily determined. Note that this is a public operation and therefore
there is no need for a trusted tallying authority. Furthermore, the computational
effort needed to determine the result of the election is that of solving m puzzles,
regardless on the amount of voters. The typical values for m are in the order of
tens, which corresponds to a manageable amount of computation for essentially
any machine. This is a significant improvement with respect to the original
solution that required the opening of potentially hundreds of thousands puzzles.

Similar techniques can be used to design a sealed bid auction protocol: Each
bidder time-locks its bid and the index corresponding to the highest bidder is
homomorphically computed over the puzzles. The winner of the auction can
be determined by solving a single puzzle. Unfortunately the resulting protocol
is not yet practical since the circuit being evaluated exceeds the capability of
linear functions and requires fully-homomorphic time-lock puzzles.

Multi-Party Coin Flipping. Coin flipping protocols are one of the classical
problems in cryptography [3] and have recently found applications in real-life
cryptocurrencies [22]. The security required by an n-party coin flipping protocol
is that n−1 colluding parties should not be able to bias the final outcome. Boneh
and Naor [6] proposed a solution for coin flipping among two parties based on
time-lock puzzles. However, naively extending their protocol to the multi-party
setting suffers from predictable drawbacks: The computational effort of the par-
ticipants is proportional to the amount of parties that do not reveal their random

1 We implicitly assume that all puzzles are honestly generated, which can be enforced
with standard cryptographic tools.
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coins. This becomes very significant when coin flipping protocols are executed
on a large scale (e.g., thousands of participants). Using linearly-homomorphic
time-lock puzzles we obtain a very simple solution to this problem. Each par-
ticipant encapsulates a random bit for a safe amount of time and broadcasts it
to all parties. Then each party homomorphically add all puzzles, without the
need for further interactions. Solving the resulting output puzzle and isolating
the least significant bit of the solution gives us an unbiased coin.

Multi-party Contract Signing. Consider the scenario where n mutually dis-
trusting parties want to exchange signatures on a document. Boneh and Naor [6]
proposed a protocol for fair exchange of signatures based on time-lock puzzles.
The protocol proceeds in rounds where each party generates a time-lock puzzle of
their signature and broadcasts it. When all signatures are published, the proto-
col repeats except that the hardness parameter of the time-lock puzzle is halved.
The protocol is strongly fair in the sense that the work required to recover the
signatures by all parties differs at most by a factor of (roughly) 2.

Observe that if at any round any party fails to broadcast its puzzle, then
all other parties need to solve all the puzzles ((n − 1)-many) from the previ-
ous round to learn the signatures necessary for the validity of the contract. Our
multiplicatively-homomorphic time-lock puzzles can be plugged in this protocol
to solve exactly this issue. More specifically, we can leverage a recent result
on RSA-aggregate signatures [20], where Hohenberger and Waters proposed a
scheme where signatures live in QRN , where N is fixed in the setup, and can be
aggregated by simply multiplying them modulo N . Recall that QRN is a sub-
group of JN and therefore signatures encapsulated in our HTLP can be aggre-
gated homomorphically.

Equipped with this tool, we can simply replace the time-lock puzzle of Boneh
and Naor with our multiplicatively homomorphic construction and combine it
with the signature scheme of Hohenberger and Waters. Then, in the case that
any party goes offline ahead of time, each other party can homomorphically
aggregate the signatures from the previous round and then solve a single time-
lock puzzle, regardless of the number of participants.

1.5 Related Work

Time-lock puzzles were envisioned in the seminal work by Rivest, Shamir, and
Wagner [30]. Their scheme builds on the (conjectured) inherent sequentiality
of repeated squaring in RSA groups. Recently, Bitanski et al. [2] proposed a
different approached to construct time-lock puzzles, assuming the existence of
succinct randomized encodings [1] and non-parallelizable languages. We also
mention a new construction paradigm from Liu et al. [24] that combines witness
encryption [15] with a reference clock, such as a blockchain.

A related but different notion is that of verifiable delay functions [4], which
allow a prover to convince a verifier that a certain amount of sequential com-
putation has been performed. The two notions are incomparable since verifiable
delay functions (in general) do not allow one to encapsulate secrets and time-lock
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puzzles are (in general) not efficiently verifiable. Proofs of sequential work [26]
can be seen as a non-unique verifiable delay functions. Interestingly, Mahmoody
et al. [25] showed a blackbox separation between time-lock puzzles and proofs of
sequential work.

2 Preliminaries

We denote by λ ∈ N the security parameter. We say that a function μ is negligible
if it vanishes faster than any polynomial. Given two ensembles D0 and D1, we
write D0 ≈μ D1 if all probabilistic polynomial-time distinguishers succeed with
probability μ-close to 1/2. Given a set U , we denote by u ←$ U the uniform
sampling from U . Recall the definition of statistical distance.

Definition 1 (Statistical Distance). Let X and Y be two random variables
over a finite set U . The statistical distance between X and Y is defined as

SD [X,Y ] =
∑

u∈U

|Pr[X = u] − Pr[Y = u]| .

We say that an ensemble D is ε-uniform in U if the statistical distance between
D and uniformly sampling from U is at most ε. We recall the following useful
lemma from [7].

Lemma 1. Let (n, ñ) ∈ N
2 and let x ←$ {1, . . . , ñ}, then x (mod n) is (n/ñ)-

uniform in Zn.

Proof. Let d = ñ (mod n), then conditioned on the event that x ∈ {1, . . . , ñ−d},
it holds that x (mod n) is uniformly distributed in Zn. Therefore x (mod n) is
(d/ñ) ≤ (n/ñ)-uniform.

2.1 Number Theory and Assumptions

Let N = p · q, where p and q are random primes of equal length, we define
Z

∗
N := {x ∈ ZN : gcd(x,N) = 1} and JN as the group of elements of Z∗

N with
Jacobi symbol +1 and we denote by g a generator of JN . Euler totient function
is denoted by ϕ(·). We say that N is a strong RSA integer if p = 2p′ + 1 and
q = 2q′ + 1, where p′ and q′ are also primes. Note that if N is a strong RSA
integer then JN is cyclic and has order ϕ(N)/2. Also note that a generator g for
JN can be found by sampling g̃ ←$Z

∗
N and setting g := −g̃2 since the order of g̃

is either ϕ(N)/2 or ϕ(N)/4 with all but negligible probability.
We state and prove the following simple lemma, which is going to be useful

in the analysis of our schemes.

Lemma 2. For every x ∈ N and every N ∈ N it holds that

xN (mod N2) = (x (mod N))N (mod N2).
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Proof. Let us rewrite x = x̃ + kN , for some k and some x̃ < N . Then we have

xN (mod N2) = (x̃ + kN)N (mod N2)

= x̃N +
(
x̃N−1kN

)
N + . . . (mod N2)

= x̃N (mod N2)

= (x (mod N))N (mod N2).

Sequential Squaring. In the following we recall the intractability assumption
(implicitly) introduced by Rivest, Shamir, and Wagner [30].

Assumption 1 (Sequential Squaring). Let N be a uniform strong RSA inte-
ger, g be a generator of JN , and T (·) be a polynomial. Then there exists some
0 < ε < 1 such that for every polynomial-size adversary A = {Aλ}λ∈N who’s
depth is bounded from above by T ε(λ), there exists a negligible function μ(·) such
that

Pr

⎡

⎣b ← A(N, g, T (λ), x, y) :
x ←$ JN ; b ←$ {0, 1}
if b = 0 then y ←$ JN

if b = 1 then y := x2T (λ)

⎤

⎦ ≤ 1
2

+ μ(λ).

Note that we restrict the domain of x and y to JN to avoid trivial attacks where
the distinguisher computes the Jacobi symbol of the group element.

Decisional Composite Residuosity. Here we recall the decisional composite
residuosity (DCR) assumption as of [28].

Assumption 2 (Decisional Composite Residuosity). Let N be a uniform
strong RSA integer. Then for every polynomial-size adversary A = {Aλ}λ∈N

there exists a negligible function μ(·) such that

Pr

⎡

⎣b ← A(N, y) :
x ←$Z

∗
N ; b ←$ {0, 1}

if b = 0 then y ←$Z
∗
N2

if b = 1 then y := xN

⎤

⎦ ≤ 1
2

+ μ(λ).

Decisional Diffie-Hellman. Here we recall the decisional composite Diffie-
Hellman (DDH) assumption over JN as stated in [10]. In the same work, it was
shown that such a conjecture is implied by the DDH assumption over Z

∗
p and

Z
∗
q and by the quadratic residuosity assumption over Z

∗
N .

Assumption 3 (Decisional Diffie-Hellman). Let N be a uniform strong
RSA integer and g be a generator of JN . Then for every polynomial-size adver-
sary A = {Aλ}λ∈N there exists a negligible function μ(·) such that

Pr

⎡

⎣b ← A(N, g, gx, gy, gz) :

(x, y) ←$ {1, . . . , ϕ(N)/2}; b ←$ {0, 1}
if b = 0 then z ←$ {1, . . . , ϕ(N)/2}
if b = 1 then z := x · y (mod ϕ(N)/2)

⎤

⎦ ≤ 1

2
+ μ(λ).
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2.2 Cryptographic Building Blocks

In the following we introduce the cryptographic primitives used in our work.

Puncturable PseudoRandom Functions. A puncturable pseudorandom
function (PRF) is an augmented PRF that has an additional puncturing algo-
rithm. Such an algorithm produces a punctured version of the key that can
evaluate the PRF at all points except for the punctured one. It is required that
the PRF value at that specific point is pseudorandom even given the punctured
key. A puncturable PRF can be constructed from any one-way function [18].

Definition 2 (Puncturable PRFs). A puncturable family of PRFs is a tuple
of polynomial-time algorithms (Key,Puncture,PRF) defined as follows.

– K ← Key(1λ) a probabilistic algorithm that takes as input the security param-
eter and outputs a key K.

– K−i ← Puncture(K, i) a deterministic algorithm that takes as input a key K
and a position i ∈ {0, 1}n and returns a punctured key K−i.

– y ← PRF(K, i) a deterministic algorithm that takes as input a key K and an
index i ∈ {0, 1}n and returns a string y ∈ {0, 1}m.

Definition 3 (Correctness). For all λ ∈ N, for all outputs K ← Key(1λ), for
all points i ∈ {0, 1}n and x ∈ {0, 1}n \ i, and for all K−i ← Puncture(K, i), we
have that PRF(K−i, x) = PRF(K,x).

Definition 4 (Pseudorandomness). For all λ ∈ N and for every polynomial-
time adversaries (A1,A2) there is a negligible function μ(·), such that

Pr

⎡

⎢⎢⎢⎢⎢⎢⎣
b ← A2(τ,K−i, i, y) :

(i, τ) ← A1(1λ)
K ← Key(1λ)
K−i ← Puncture(K, i)
b ←$ {0, 1}
if b = 0 then y ←$ {0, 1}m

if b = 1 then y ← PRF(K, i)

⎤

⎥⎥⎥⎥⎥⎥⎦
≤ 1

2
+ μ(λ).

Time-Lock Puzzles. We recall the definition of standard time-lock puzzles [2].
For conceptual simplicity we consider only schemes with binary solutions.

Definition 5 (Time-Lock Puzzles). A time-lock puzzle is a tuple of two algo-
rithms (PGen,PSolve) defined as follows.

– Z ← PGen(T , s) a probabilistic algorithm that takes as input a hardness-
parameter T and a solution s ∈ {0, 1}, and outputs a puzzle Z.

– s ← PSolve(Z) a deterministic algorithm that takes as input a puzzle Z and
outputs a solution s.

Definition 6 (Correctness). For all λ ∈ N, for all polynomials T in λ, and
for all s ∈ {0, 1}, it holds that s = PSolve(PGen(T , s)).
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Definition 7 (Security). A scheme (PGen,PSolve) is secure with gap ε < 1
if there exists a polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and
every polynomial-size adversary A = {Aλ}λ∈N of depth ≤ T ε(λ), there exists a
negligible function μ(·), such that for all λ ∈ N it holds that

Pr
[
b ← A(Z) : Z ← PGen(T (λ), b)

]
≤ 1

2
+ μ(λ).

Trapdoor Encryption. A trapdoor encryption scheme is a public key encryp-
tion scheme that allows one to generate a trapdoor version of the public key.
Such trapdoor key is indistinguishable from a normal public key, however
encrypting under the trapdoor key hides the message in an information-theoretic
sense. Canetti et al. [9] showed that any public-key encryption with perfect re-
randomization (such as ElGamal or Paillier encryption) can be used generically
to construct such a primitive.

Definition 8 (Trapdoor Encryption). A trapdoor encryption scheme is a
tuple of polynomial-time algorithms (KeyGen,Enc,Dec, tKeyGen) defined as fol-
lows.

– (pk , sk) ← KeyGen(1λ) a probabilistic algorithm that takes as input the secu-
rity parameter and outputs a key pair (pk , sk).

– pk ← tKeyGen(1λ) a probabilistic algorithm that takes as input the security
parameter and outputs a trapdoor key pk.

– c ← Enc(pk ,m) a probabilistic algorithm that takes as input a message m ∈
{0, 1} and a key pk and returns a ciphertext c.

– m ← Dec(sk , c) a deterministic algorithm that takes as input a secret key sk
and a ciphertext c and returns a message m.

Definition 9 (Correctness). For all λ ∈ N, for all m ∈ {0, 1} it holds that
m = Dec(sk ,Enc(pk ,m)), where (pk , sk) ← KeyGen(1λ).

Definition 10 (Trapdoor Public Keys). For all λ ∈ N and for all proba-
bilistic polynomial-time adversaries A there exists a negligible function μ(·) such
that

Pr

⎡

⎣b ← A(pk) :
b ←$ {0, 1}
if b = 0 then pk ← tKeyGen(1λ)
if b = 1 then (pk , sk) ← KeyGen(1λ)

⎤

⎦ ≤ 1
2

+ μ(λ).

Definition 11 (μ-Hiding). For all λ ∈ N and for all unbounded adversaries A
there exists a negligible function μ(·) such that

Pr
[
b ← A(pk ,Enc(pk , b)) :

b ←$ {0, 1}
pk ← tKeyGen(1λ)

]
≤ 1

2
+ μ(λ).

Probabilistic Obfuscation. A probabilistic obfuscator piO is an algorithm
that obfuscates probabilistic circuits and it can be constructed assuming sub-
exponentially secure indistinguishability obfuscation [14] and sub-exponentially
secure one-way functions [9].
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Definition 12 (piO for a class of samplers S). A uniform polynomial-size
machine piO is an indistinguishable obfuscator for a class of samplers S over
the (possibly randomized) circuit family C = {Cλ}λ∈N if, on input a (possibly
probabilistic) circuit C ∈ Cλ and the security parameter 1λ, outputs a determin-
istic circuit Λ of size p(|C|, λ), for some fixed polynomial p(·).

Definition 13 (Correctness). For every non-uniform polynomial-size distin-
guisher D, every (possibly probabilistic) circuit C ∈ Cλ and string y, we define
the following experiments

– EXPD
0 (1λ, C, y): D on input 1λ, C, y, participates in as many number of iter-

ations as he wants. In iteration i, it chooses an input xi; if xi = xj for j < i,
then abort; else, D gets back (C(xi, ri)) where ri are fresh randomness (ri =
null, if C is deterministic). At the end of the final iteration, D outputs a bit
b. (Note that D is stateful.)

– EXPD
1 (1λ, C, y): Obfuscate circuit C to obtain Λ ← piO(1λ, C; r) using fresh

randomness r. Run D as described in the above experiment, except that in
each iteration give Λ(xi) to D instead.

We require that for every non-uniform polynomial-size distinguisher D, there is
a negligible function μ(·), such that, for every λ ∈ N, every C ∈ Cλ, and every
polynomial-size auxiliary input y it holds that

Pr[b ← EXPD
b (1λ, C, y)] ≤ 1

2
+ μ(λ).

Definition 14 (Security with respect to S). For every sampler D =
{Dλ}λ∈N ∈ S, and for every non-uniform polynomial-size machine A, there
exists a negligible function μ(·) such that

Pr[b ← A(C0, C1, piO(1λ, Cb), y) : b ←$ {0, 1}; (C0, C1, y) ← Dλ)]. (1)

Indistinguishability Obfuscation. We can cast the definition of indistin-
guishability obfuscation (iO) for circuits as a special case of worst-case input
piO for the class C′ = {C′

λ}λ∈N of deterministic circuits as done in [9].

Definition 15 (iO for Circuits [14]). A uniform PPT machine iO is an indis-
tinguishable obfuscator for circuits, if it is a piO for the class of worst-case input
Indistinguishability samplers Sw−Ind over C′ that includes all deterministic cir-
cuits of size at most λ.

What is left to be defined is the class of worst-case input samplers.

Definition 16 (Worst-case input Indistinguishable Samplers). The class
Sw−Ind of worst-case input indistinguishable samplers for a circuit family C con-
tains all circuit samplers D = {Dλ}λ∈N for C with the following property: For all
adversary A = {(A1,A2)λ}λ∈N where A1 is an unbounded non-uniform machine
and A2 is PPT, there is a negligible function μ(·), such that
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Pr

⎡

⎢⎢⎣b ← A2(st, C0, C1, z, x, y) :

(C0, C1, z) ← Dλ

(x, st) ← A1(C0, C1, z)
b ←$ {0, 1}
y ← Cb(x)

⎤

⎥⎥⎦ ≤ 1
2

+ μ(λ).

3 Homomorphic Time-Lock Puzzles

In the following we give a definition for the main object of interest of this work,
homomorphic time-lock puzzles (HTLP). The syntax follows the standard nota-
tion for time-lock puzzles except that we consider an additional setup phase that
depends on the hardness parameter but not on the secret. Furthermore, HTLPs
are augmented with an evaluation algorithm that allows one to manipulate puz-
zles in a meaningful way.

Definition 17 (Homomorphic Time-Lock Puzzles). Let C = {Cλ}λ∈N be a
class of circuits and let S be a finite domain. A homomorphic time-lock puzzle
(HTLP) with respect to C and with solution space S is tuple of four algorithms
(HP.PSetup,HP.PGen,HP.PSolve,HP.PEval) defined as follows.

– pp ← HP.PSetup(1λ, T ) a probabilistic algorithm that takes as input a security
parameter 1λ and a time hardness parameter T , and outputs public parameters
pp.

– Z ← HP.PGen(pp, s) a probabilistic algorithm that takes as input public param-
eters pp, and a solution s ∈ S, and outputs a puzzle Z.

– s ← HP.PSolve(pp, Z) a deterministic algorithm that takes as input public
parameters pp and a puzzle Z and outputs a solution s.

– Z ′ ← HP.PEval(C, pp, Z1, . . . , Zn) a probabilistic algorithm that takes as input
a circuit C ∈ Cλ, public parameters pp and a set of n puzzles (Z1, . . . , Zn) and
outputs a puzzle Z ′.

Security requires that the solution of the puzzles is hidden for all adversaries
that run in (parallel) time less than T . Here we consider a basic version where
the time is counted from the moment the public parameters are published. We
also consider a stronger version, i.e., where the time is taken from the moment
each puzzle is generated, in Sect. 5.2.

Definition 18 (Security of HTLP). An HTLP scheme (HP.PSetup,
HP.PGen,HP.PSolve,HP.PEval) is secure with gap ε < 1 if there exists a poly-
nomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and every polynomial-size
adversary (A1,A2) = {(A1,A2)λ}λ∈N where the depth of A2 is bounded from
above by T ε(λ), there exists a negligible function μ(·), such that for all λ ∈ N it
holds that

Pr

⎡

⎢⎢⎣b ← A2(pp, Z, τ) :

(τ, s0, s1) ← A1(1λ)
pp ← HP.PSetup(1λ, T (λ))
b ←$ {0, 1}
Z ← HP.PGen(pp, sb)

⎤

⎥⎥⎦ ≤ 1
2

+ μ(λ)

and (s0, s1) ∈ S2.



Homomorphic Time-Lock Puzzles and Applications 633

We consider the basic notion of correctness, that concerns with a single appli-
cation of the evaluation algorithm. The definition can be easily extended to the
multi-hop settings (in the same spirit as [17]) in a natural way.

Definition 19 (Correctness). Let C = {Cλ}λ∈N be a class of cir-
cuits (together with their respective representations). An HTLP scheme
(HP.PSetup,HP.PGen,HP.PSolve,HP.PEval) is correct (for the class C) if for
all λ ∈ N, all polynomials T in λ, all circuits C ∈ Cλ and respective inputs
(s1, . . . , sn) ∈ Sn, all pp in the support of HP.PSetup(1λ, T ), and all Zi in the
support of HP.PGen(pp, si), the following two conditions are satisfied:

– There exists a negligible function μ(·) such that

Pr
[
HP.PSolve(pp,HP.PEval(C, pp, Z1, . . . , Zn)) �= C(s1, . . . , sn)

]
≤ μ(λ).

– There exists a fixed polynomial p(·) such that the runtime of HP.PSolve(pp, Z)
is bounded by p(λ, T ), where Z ← HP.PEval(C, pp, Z1, . . . , Zn).

The central property for HTLPs is compactness, which requires that the size of
evaluated ciphertexts is independent of the size of the circuit and that the run-
ning time of the evaluation algorithm is independent of the hardness parameter.

Definition 20 (Compactness). Let C = {Cλ}λ∈N be a class of cir-
cuits (together with their respective representations). An HTLP scheme
(HP.PSetup,HP.PGen,HP.PSolve,HP.PEval) is compact (for the class C) if for
all λ ∈ N, all polynomials T in λ, all circuits C ∈ Cλ and respective inputs
(s1, . . . , sn) ∈ Sn, all pp in the support of HP.PSetup(1λ, T ), and all Zi in the
support of HP.PGen(pp, si), the following two conditions are satisfied:

– There exists a fixed polynomial p(·) such that |Z| = p(λ, |C(s1, . . . , sn)|),
where Z ← HP.PEval(C, pp, Z1, . . . , Zn).

– There exists a fixed polynomial p̃(·) such that the runtime of HP.PEval
(C, pp, Z1, . . . , Zn) is bounded by p̃(λ, |C|).

Finally we observe that one can define circuit privacy for HTLPs analogously
to the FHE notion. Since it is not of significance for our applications we refrain
from giving a formal definition and we refer the reader to [27].

4 Constructions

In this section we describe our HTLP schemes for different classes of functions.

4.1 Linearly Homomorphic

We describe a scheme (LHTLP) homomorphic over the ring (ZN ,+) below.
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LHP.PSetup(1λ, T ) :

– Sample a pair of primes (p, q) such that p = 2p′ + 1 and q = 2q′ + 1,
where p′ and q′ are also primes, and set N := p · q.

– Sample a uniform g̃ ←$Z
∗
N and set g := −g̃2 (mod N).

– Compute h := g2
T
, which can be optimized by reducing 2T modulo

ϕ(N)/2 first.
– Output pp := (T , N, g, h).

LHP.PGen(pp, s) :

– Parse pp := (T , N, g, h).
– Sample a uniform r ←$ {1, . . . , N2}.
– Generate the elements u := gr (mod N) and v := hr·N ·(1+N)s (mod N2).
– Output Z := (u, v) as the puzzle.

LHP.PSolve(pp, Z) :

– Parse pp := (T , N, g, h).
– Parse the puzzle Z := (u, v).
– Compute w := u2T

(mod N) by repeated squaring.
– Output s := v/(w)N (mod N2)−1

N as the solution.

LHP.PEval(⊕, pp, Z1, . . . , Zn) :

– Parse pp := (T , N, g, h).
– Parse every Zi := (ui, vi) ∈ JN × Z

∗
N2 .

– Compute ũ :=
∏n

i=1 ui (mod N) and ṽ :=
∏n

i=1 vi (mod N2).
– Output the puzzle (ũ, ṽ).

To see why the scheme is correct, observe that

s̃ =
ṽ/(w̃)N (mod N2) − 1

N

=

∏n
i=1 vi/

(∏n
i=1 u2T

i (mod N)
)N

(mod N2) − 1

N

=
∏n

i=1 hri·N · (1 + N)si/ (
∏n

i=1 hri (mod N))N (mod N2) − 1
N

=
∏n

i=1 hri·N · (1 + N)si/
∏n

i=1 hri·N (mod N2) − 1
N

=
(1 + N)

∑n
i=1 si (mod N2) − 1

N

by Lemma 2. Furthermore,

s̃ =
(1 + N)

∑n
i=1 si (mod N2) − 1

N
=

1 + N ·
∑n

i=1 si − 1
N

=
n∑

i=1

si

by binomial expansion. The security of our construction is shown in the following.
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Theorem 1. Let N be a strong RSA integer. If the sequential squaring assump-
tion and the DDH assumptions hold over JN and the DCR assumption hold over
Z∗

N2 , then the scheme LHTLP is a secure homomorphic time-lock puzzle.

Proof. Consider the following sequence of hybrids.

Hybrid H0: Is defined as the original scheme.

Hybrid H1: In this hybrid h is sampled uniformly from JN , instead of being
computed as h := g2

T
. Let (A1,A2) be an efficient distinguisher where the depth

of A2 is less than T . We construct the following reduction against the sequential
squaring assumption: The reduction runs the adversary A1 on input the security
parameter 1λ and receives two secrets (s0, s1) and some advice τ . Then receives
as input the tuple (N, g, T , x, y), sets pp := (T , N, x, y) and computes Z exactly
as specified by the scheme using sb as the solution, for a random b ←$ {0, 1}.
Then it invokes the adversary A2 on input (pp, Z, τ) and outputs whatever A2

returns. Observe that the depth of the reduction is only a constant fraction larger
than that of A2. We the analyze the two cases separately.

1. (N, g, x, y) is a uniform tuple: Then x = g and y = h are uniform in JN . Thus

(T , N, x, y) = (T , N, g, h)

is distributed as in H1.
2. (N, g, x, y, z) is a squared tuple: In this case we have that (N, g, x, y) =

(N, g, x, x2T
). Which means that the tuple

(T , N, x, y) = (T , N, g, g2
T
)

is distributed according to H0.

Thus the existence of an efficient distinguisher (with depth smaller than T )
between the two hybrids contradicts the sequential squaring assumption.

Hybrid H2: In this hybrid r is sampled from the set {1, . . . , ϕ(N)/2}, rather than
{1, . . . , N2}. The two hybrids are statistically indistinguishable by Lemma 1. We
stress that the encrypter does not know ϕ(N)/2, however the argument is purely
statistical and therefore there is no need for a polynomial-time simulation.

Hybrid H3: In this hybrid u is sampled uniformly at random from JN . We
show indistinguishability with a reduction against the DDH assumption over
JN . The reduction runs the adversary on input the security parameter to receive
(τ, s0, s1). On input (N, g, gx, gy, gz), the reduction sets the public parameters of
the scheme to (T , N, g, gx) and the puzzle to (gy, (gz)N · (1 + N)sb), then feeds
A2 with those inputs and it returns whatever the adversary returns. Clearly the
reduction is efficient, so what is left to be shown is that the inputs are distributed
correctly, according to the two hybrids.
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1. (N, g, gx, gy, gz) is a uniform tuple: Then gx = h is uniform in JN , gy = u is
uniform in JN , and gz is uniform in JN , so we rewrite it as gz = hr (for some
random r ∈ {1, . . . , ϕ(N)/2}). Thus

(T , N, g, gx), (gy, (gz)N · (1 + N)sb) = (T , N, g, h), (u, hr·N · (1 + N)sb)

are distributed identically to H3.
2. (N, g, gx, gy, gz) is a DDH tuple: For the sake of clarity we rewrite the input

tuple as (N, g, gx, gy, gxy). Fix gx = h and observe that the tuples

(T , N, g, gx), (gy, (gxy)N · (1 + N)sb) = (T , N, g, h), (gy, hy·N · (1 + N)sb)

are distributed according to H2.

It follows that any non negligible advantage in distinguishing the two hybrids
directly implies an attack against DDH.

Hybrid H4: In this hybrid v is computed as w · (1 + N)sb (mod N2), where
w is uniformly sampled from Z

∗
N2 (constrained on having Jacobi symbol +1).

Consider the following reduction against the DCR assumption: Prior to the
challenge, the reduction runs A1 on input 1λ and receives (τ, s0, s1). On input
(N, y), the reduction sets N as the modulus and samples g and h uniformly from
JN (as specified in the H3). Then it computes the Jacobi symbol of y and samples
some ỹ with the same Jacobi symbol as y. Then it samples some u ←$ JN and
sets v := y · ỹN · (1 + N)sb (mod N2), for a uniform b ←$ {0, 1}. Finally it runs
A2 on input ((T , N, g, h), (u, v)) and returns whatever A2 returns. Note that the
reduction is efficient since the Jacobi symbol is efficiently computable without
the factorization of N . If y is uniform in Z

∗
N2 , then so is y · ỹN (mod N2), and

therefore the reduction perfectly simulates H4. On the other hand if y is an N -th
residue, then y · ỹN = xN · ỹN = (xỹ)N (mod N2) is also an N -th residue. Note
that the Jacobi symbol of xỹ is +1, since the Jacobi symbol is multiplicatively
homomorphic. It follows that in this case the inputs of the reduction are identical
to that of H3. We can therefore bound from above the distance between these
two hybrids by a negligible amount.

Observe that in the last hybrid every bit of information about the message is
lost. This concludes our proof.

4.2 Multiplicatively Homomorphic

In the following we describe our scheme (MHTLP) which is multiplicatively
homomorphic over the ring (JN , ·). The algorithms are described below.

MHP.PSetup(1λ, T ) :

– Sample a pair of primes (p, q) such that p = 2p′ + 1 and q = 2q′ + 1,
where p′ and q′ are also primes, and set N := p · q.

– Sample a uniform g̃ ←$Z
∗
N and set g := −g̃2 (mod N).

– Compute h := g2
T
, which can be optimized by reducing 2T modulo

ϕ(N)/2 first.
– Output pp := (T , N, g, h).
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MHP.PGen(pp, s) :

– Parse pp := (T , N, g, h).
– Sample a uniform r ←$ {1, . . . , N2}.
– Generate the elements u := gr (mod N) and v := hr · s (mod N).
– Output Z := (u, v) as the puzzle.

MHP.PSolve(pp, Z) :

– Parse pp := (T , N, g, h).
– Parse the puzzle Z := (u, v).
– Compute w := u2T

(mod N) by repeated squaring.
– Output s := v/w as the solution.

MHP.PEval(⊗, pp, Z1, . . . , Zn) :

– Parse pp := (T , N, g, h).
– Parse every Zi := (ui, vi) ∈ J

2
N .

– Compute ũ :=
∏n

i=1 ui (mod N) and ṽ :=
∏n

i=1 vi (mod N).
– Output the puzzle (ũ, ṽ).

For correctness it suffices to observe that

s̃ =
ṽ

w̃
=

ṽ

ũ2T =
∏n

i=1 vi∏n
i=1 u2T

i

=
∏n

i=1 hri · si∏n
i=1 gri·2T =

∏n
i=1 hri · si∏n

i=1 hri
=

n∏

i=1

si.

For security we prove the following theorem.

Theorem 2. Let N be a strong RSA integer. If the sequential squaring and the
DDH assumptions hold over JN , then the scheme MHTLP is a secure homomor-
phic time-lock puzzle.

Proof. Consider the following sequence of hybrids.

Hybrid H0: Is defined as the original scheme.

Hybrid H1: Same as Theorem 1.

Hybrid H2: Same as Theorem 1.

Hybrid H3: In this hybrid v is computed as w · s, for a uniform w ←$ JN .
Indistinguishability follows from an invocation of the DDH assumption over JN :
The reduction runs the adversary on input the security parameter and receives
(τ, s0, s1). On input (N, g, gx, gy, gz), the reduction sets the public parameters of
the scheme to (T , N, g, gx) and computes the puzzle Z as (gy, gz · sb), for a ran-
domly sampled b ←$ {0, 1}. The adversary is fed with (pp, Z, τ) and the reduction
returns whatever the adversary returns. The reduction is clearly polynomial-
time. We consider the two distributions in the following.

1. (N, g, gx, gy, gz) is a uniform tuple: Then the tuples

(T , N, g, gx), (gy, gz · sb) = (T , N, g, h), (gy, w · sb)

are distributed identically to H3.
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2. (N, g, gx, gy, gz) is a DDH tuple: For the sake of clarity we rewrite the input
tuple as (N, g, gx, gy, gxy). Fix gx = h and observe that the tuples

(T , N, g, gx), (gy, gxy · sb) = (T , N, g, h), (gy, hy · sb)

are distributed according to H2.

It follows that any non negligible advantage in distinguishing the two hybrids
directly implies an attack against DDH.

The proof is concluded by observing that in H3 the secret sb is information-
theoretically hidden by w.

XOR-Homomorphism. If we set N to be a Blum integer and encode the secret
s ∈ {0, 1} as (−1)s, then the same construction gives us an XOR homomorphic
scheme. This is because if N is a Blum integer, then (±1, ·) is a subgroup of JN .

4.3 Fully Homomorphic

In the following we describe our construction for a fully-homomorphic time-lock
puzzle (FHTLP). Without loss of generality we consider binary secrets and circuits
that are composed exclusively by NAND gates. Let (KeyGen,Enc,Dec, tKeyGen)
be a trapdoor encryption scheme, (Key,Puncture,PRF) be a puncturable PRF,
(PGen,PSolve) be any (non-homomorphic) time-lock puzzle, piO be an obfuscator
for probabilistic circuits, and iO be an obfuscator for deterministic circuits. Define
the circuit Prog(sk ,pk)(α, β) and MProg(sk0,k,k′)(i) as

Prog(sk ,pk)(α, β) :

parse α := (zα, cα)

parse β := (zβ , cβ)

sα ← Dec(sk , cα), sβ ← Dec(sk , cβ)

s := sα NAND sβ

z ← PGen(T , s)

c ← Enc(pk , s)

return (z, c)

MProg(sk0,k,k′)(i) :

ri−1 ← PRF(k, i − 1)

ri ← PRF(k, i), r′
i ← PRF(k′, i)

(pk i−1, sk i−1) ← KeyGen(1λ; ri−1)

(pk i, sk i) ← KeyGen(1λ, ri)

Pi ← Prog(ski−1,pki)

Λi ← piO(1p, Pi; r
′
i)

return (Λi)

Let L be a super-polynomial function L(λ) := 2ω(log(λ)). The four algorithms of
the scheme are described below.

FHP.PSetup(1λ, T ) :

– Sample a pair of keys (pk0, sk0) ← KeyGen(1λ)
– Sample two PRF keys k, k′ ← Key(1λ)
– Obfuscate using iO the circuit MProg(sk0,k,k′), that is, sample MEvk ←
iO(1p,MProg(sk0,k,k′)) where the security parameter p = p(λ) for obfus-
cation is an upper-bound on the size of MProg(sk0,k,k′).

– Output pp := (T , pk0,MEvk).
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FHP.PGen(pp, s) :

– Parse pp := (T , pk0,MEvk).
– Generate a ciphertext c ← Enc(pk0, s).
– Generate a puzzle z ← PGen(T , s).
– Output Z := (z, c) as the puzzle.

FHP.PSolve(pp, Z) :

– Parse the puzzle Z := (z, c).
– Compute s ← PSolve(z) and output s as the solution.

FHP.PEval(C, pp, Z1, . . . , Zn) :

– Evaluate C (of depth 	 ≤ L(λ)) layer by layer. For iteration i ∈
{0, . . . , 	}, generate the evaluation key for the layer as Λi ← MEvk(i).

– For each NAND gate g in this layer i, let α(g), β(g) be the puzzles of the
values of its input wires

– Evaluate g homomorphically by computing γ(g) = Λi(α(g), β(g)) as the
puzzle of the value of g’s output wire.

– Output the puzzle generated in the last iteration 	.

Correctness easily follows from the correctness of the underlying primitives.
Towards arguing about security, we define a useful subroutine tProg(tpk)(α, β)
as follows

tProg(tpk)(α, β) :

z ← PGen(T , 0)

c ← Enc(tpk , 0)

return (z, c)

which is instrumental for probabilistic obfuscator piO. Let SK = {skλ} be the
set of all strings of length n = n(λ). Define the distribution DSK as follows:
Sample a trapdoor key tpk ← tKeyGen(1λ) and some sk ←$ SK and return
(C0 = Prog(sk ,tpk), C1 = tProg(tpk), tpk). Then S is the class of samplers that
include the distribution ensembles DSK for all strings SK of length n. Security
is established by the following theorem and the proof is given in the full version.

Theorem 3. Let (PGen,PSolve) be a secure time-lock puzzle. Define μ(λ) :=
μ̃(λ)·L−1, where μ̃(·) is some negligible function. Assume the following primitives
with distinguishing gaps bounded by μ(λ) against a polynomial-size adversary
who’s depth is bounded by T ε(λ), for some constant ε < 1:

– (KeyGen,Enc,Dec, tKeyGen) is a secure μ-hiding trapdoor encryption scheme,
– piO is a secure indistinguishable obfuscator for the class of samplers S,
– iO is a secure indistinguishable obfuscator for circuits, and
– (Key,Puncture,PRF) is a secure puncturable PRF.

Then, the scheme FHTLP is a secure homomorphic time-lock puzzle.
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5 Extensions

In the following we explore and discuss several extensions of our constructions.

5.1 Semi-compact Scheme for Branching Programs

The linearly homomorphic scheme described in Sect. 4.1 can be easily generalized
to higher powers of N , along the lines of the work of Damg̊ard and Jurik [11],
where the message domain is ZNy−1 and the ciphertexts live in ZNy , for an
arbitrary y ∈ N. The public parameters are identical to the ones generated by
LHP.PSetup, whereas the puzzle is generated as

u := gr (mod N) and v := hr·Ny−1 · (1 + N)s (mod Ny).

The solving algorithm factors hr·Ny−1
(mod Ny) out of v, via a series of sequen-

tial squarings, and recovers s from (1+N)s (mod Ny) using the polynomial-time
discrete-logarithm algorithm described in [11]. Security follows from a natural
generalization of the DCR assumption, also introduced in [11].

Note that the asymptotic message-ciphertext rate approaches 1 as y grows.
This is desirable from a practical perspective but also it allows us to instantiate
the compiler of Ishai and Paskin [21] with our extended scheme: As a corollary
we obtain a (semi-compact) HTLP for branching programs (a superclass of NC1)
where the ciphertext size grows linearly in the length of the branching program
but does not depend on its width.

5.2 Reusing the Setup

A shortcoming of our primitive is that security is guaranteed to hold against a
depth-constrained adversary that takes as input both the public parameters pp
and the puzzle Z. This is equivalent to saying that the secrets are hidden until
time T since the generation of the setup rather than the generation of the puzzle.
From a practical perspective, this cripples the applicability of our primitive since
the public parameters need to be re-initialized after time T .

Ideally, we would like to set the public parameters once and for all and
compute polynomially many puzzles at arbitrary time intervals. Each puzzle
should then hide the secret until time T , starting from the generation of the
puzzle itself. Thus we consider a two stage adversary (A1,A2), where A1 is
polynomial-size (unbounded depth) and is allowed to craft the polynomial-size
advice τ after being given the public parameters pp. Then the depth-bounded
A2 is asked to guess the bit b on input the puzzle Z and the advice τ . This is
formalized in the following.

Definition 21 (Reusable Security of HTLP). An HTLP scheme
(HP.PSetup,HP.PGen,HP.PSolve,HP.PEval) is reusable secure with gap ε < 1
if there exists a polynomial T̃ (·) such that for all polynomials T (·) ≥ T̃ (·) and
every polynomial-size adversary (A1,A2) = {(A1,A2)λ}λ∈N where the depth of
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A2 is bounded from above by T ε(λ), there exists a negligible function μ(·), such
that for all λ ∈ N it holds that

Pr

⎡

⎢⎢⎣b ← A2(Z, τ) :

pp ← HP.PSetup(1λ, T (λ))
(τ, s0, s1) ← A1(pp)
b ←$ {0, 1}
Z ← HP.PGen(pp, sb)

⎤

⎥⎥⎦ ≤ 1
2

+ μ(λ)

and (s0, s1) ∈ S2.

Arguing about the security of the constructions described in Sects. 4.1 and 4.2
in these settings requires a slightly modified version of the standard sequential
squaring assumption (Assumption 1) that we describe below.

Assumption 4 (Strong Sequential Squaring). Let N be a uniformly sam-
pled strong RSA integer, g be a generator of JN , and T (·) be a polynomial.
Then there exists some 0 < ε < 1 such that for every polynomial-size adversary
(A1,A2) = {(A1,A2)λ}λ∈N, where the depth of A2 is bounded from above by
T ε(λ), there exists a negligible function μ(·) such that

Pr

⎡

⎢⎢⎣b ← A2(x, y, τ) :

τ ← A1(N, g, T (λ))
x ←$ JN ; b ←$ {0, 1}
if b = 0 then y ←$ JN

if b = 1 then y := x2T (λ)

⎤

⎥⎥⎦ ≤ 1
2

+ μ(λ).

This essentially corresponds to stating that the prior knowledge of the group
structure does not help one breaking the sequentiality of the squaring operation,
which seems to be a mild strengthening of the original conjecture. We remark
that similar assumptions have already appeared in the context of verifiable delay
functions [5,29,31]. We are now ready to state the following theorems.

Theorem 4. Let N be a strong RSA integer. If the strong sequential squaring
assumption and the DCR assumption hold over JN and Z∗

N2 , respectively, then
the scheme LHTLP is a reusable secure homomorphic time-lock puzzle.

Proof. Consider the following sequence of hybrids.

Hybrid H0: This is the original experiment.

Hybrid H1: In this hybrid r is randomly sampled from {1, . . . , ϕ(N)/2}.
By Lemma 1, H0 and H1 are statistically close.

Hybrid H2: In this hybrid v is computed as zN · (1 + N)sb (mod N2), for
a uniform z ←$ JN . Let (A1,A2) be an efficient distinguisher where the depth
of A2 is less than T . We construct the following reduction (R1,R2) against the
strong sequential squaring assumption: R1 takes as input the tuple (N, g, T ) and
computes h := g2

T
, then it sets pp := (T , N, g, h) and runs A1(pp), who outputs

some (τ, s0, s1), which is also the output of R1. The challenger sends to R2 the
triple (x, y, (τ, s0, s1)), who sets u := x and v := yN · (1 + N)sb (mod N2), for
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a random b ←$ {0, 1}, and runs A2((u, v), τ) outputting whatever the adversary
outputs. Observe that R1 is efficient, since T is a polynomial, and that the depth
of R2 is identical (up to a constant factor) to that of A2. We distinguish two
cases.

1. y = x2T
: Let x = gr, for some r ∈ {1, . . . , ϕ(N)/2}. Then the puzzle

(u, v) = (x, x2T ·N · (1 + N)sb (mod N2)) = (gr, hr·N · (1 + N)sb (mod N2))

is distributed according to H1.
2. y ←$ JN : In this case the puzzle

(u, v) = (x, yN · (1 + N)sb (mod N2))

is distributed according to H2.

Thus the existence of (R1,R2) contradicts the sequential squaring assumption.

Hybrid H3: In this hybrid v is computed as w · (1 + N)sb (mod N2), where w
is uniformly sampled from Z

∗
N2 (constrained to have Jacobi symbol +1). The

indistinguishability follows from an invocation of the DCR assumption and the
argument is identical to the last hybrid of Theorem1.

The proof concludes by observing that the message in the last hybrid is hidden
in an information-theoretic sense.

Theorem 5. Let N be a strong RSA integer. If the strong sequential squaring
assumption holds over JN , then the scheme MHTLP is a secure reusable homo-
morphic time-lock puzzle.

Proof. Consider the following sequence of hybrids.

Hybrid H0: This is the original experiment.

Hybrid H1: Same as Theorem 4.

Hybrid H2: In this hybrid we compute v as w · s, for a uniform w ←$ JN .
The two hybrids are indistinguishable by the sequential squaring assumption
over JN . Consider the following two-stage reduction: R1 takes as input the tuple
(N, g, T ) and computes h := g2

T
, then it sets pp := (T , N, g, h) and runs A1(pp),

who outputs some message (τ, s0, s1). The output of R1 is the string (τ, s0, s1).
The challenger provides R2 with the triple (x, y, (τ, s0, s1)), who sets u := x and
v := y · sb and runs A2((u, v), τ) and outputs whatever the adversary outputs.
Observe that R1 is efficient, since T is a polynomial, and that the depth of R2

is close to that of A. It is not hard to see that whenever y = x2T
then reduction

reproduces the distribution of H1, whereas if y is uniformly sampled in JN , then
the simulation is identical to H2. Thus the success probability of R is identical
to that of A. This contradicts the sequential squaring assumption and bounds
the difference between the two hybrids to a negligible factor.

Observe that in H2 the puzzle consists of two uniform elements of JN .
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5.3 Public-Coin Setup

All of our schemes require a trusted setup where the random coins have to be
kept private. If revealed, they would give one an unfair advantage in solving any
puzzle. This does not seem to be an inherent limitation of the primitive and
we could envision a dream-version of HTLPs where the setup can be run with
public random coins. Towards this objective, one can generalize the techniques
presented in Sects. 4.1 and 4.2 to hidden-order groups with public-coin setups [8],
however this would hinder the efficiency of the schemes as the tuple (g, h = g2

T
)

is no longer efficiently computable (by assumption). Depending on T , this may
require a significant initial investment in terms of computation.

Nevertheless, for certain applications (e.g., e-voting or sealed bid auctions)
it might be perfectly acceptable to run T sequential squarings ahead of time to
generate the tuple (g, h). Note that, in the variants described above, the puzzle
is guaranteed to hide the payload for time proportional to T , starting from
the moment the puzzle is published. Therefore arbitrarily many puzzles can be
efficiently spawned once (g, h) is fixed. Constructing an HTLP with an efficient
public-coin setup is a fascinating open question.

5.4 Combining Puzzles of Different Hardness

Another limitation of our schemes is that the time parameter T is fixed once and
for all in the setup. An easy solution to make our construction more flexible is to
augment the setup with multiple (T1, . . . , Tn). For the constructions in Sects. 4.1
and 4.2 is sufficient to set the public parameters as

pp :=
(
g, h1 := g2

T1
, . . . , hn := g2

Tn
)

which can be efficiently computed using the factors of N . Our scheme
in Sect. 4.3 can also be extended by producing different obfuscated circuits
(MEvk (1), . . . ,MEvk (n)), with the appropriate Ti hardwired. Here it is important
that the obfuscated circuits are sampled with fresh coins, so also the correspond-
ing keys (pk (1)

0 , . . . , pk (n)
0 ) must be included in the setup.

It turns out that one can even combine puzzles generated with different
parameters T1 and T2 in a natural way: Assume without loss of generality that
T1 > T2, then clearly 2T2 ·t̃ = 2T1 , for some integer t̃ = 2t. Then the homomorphic
evaluation over two puzzles (u1, v1) and (u2, v2) is done as follows

ũ := u2t

1 · u2 (mod N) and ṽ := v1 · v2 (mod N2) / (mod N),

where the second modulus depends on whether we are considering linearly or
multiplicatively homomorphic puzzles. Note that the hardness of the resulting
puzzles (ũ, ṽ) corresponds to the time proportional to solving it (T2) + homomor-
phic evaluation (t) = T1. This is aligned with the expectation that the evaluation
algorithm does not decrease the difficulty of a puzzle. For the fully-homomorphic
construction the argument is a bit more delicate since the obfuscated circuits
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contain a trapdoor to efficiently solve the puzzles. Therefore, one has to ensure
that the puzzles are re-encoded with the correct hardness parameter. This can
be done via standard techniques, e.g., signing the puzzles and verifying the sig-
natures inside the obfuscated circuits.

6 Applications

In this section we present some of the most interesting applications of HTLPs.
We stress that our purpose is to demonstrate the usefulness of our primitive in
broader contexts and not to construct systems that are ready to be deployed
in practice. The precise implementation and the complete characterization of
the security of such systems is beyond the scope of this work. In favor of a
simpler presentation, we implicitly assume that all HTLPs are well-formed and
all secrets are sampled from the correct domains. This can be always enforced
by augmenting our schemes with non-interactive zero-knowledge proofs [13].

6.1 E-Voting

We construct an e-voting protocol with n voters and m candidates. An e-voting
protocol consists of a voting phase and a counting phase and proceeds as follows:
During the voting phase, each voter casts a vote for one of the candidates and the
votes are counted during the subsequent counting phase. Finally the candidate
with the largest amount of votes is announced as the winner of the election. The
votes must be kept hidden for the duration of the first phase to avoid any bias.

Let T be the time bound of the voting phase. We propose an e-voting protocol
based on our linearly homomorphic time-lock puzzle from Sect. 4.1. Here, the i-th
vote, denoted by votei, consists of a tuple of m time-lock puzzles where the secret
encoded is always 0 except at position j, where the secret is 1. This encodes the
preference for the j-th candidate Cj . After receiving votes from all the voters,
the puzzles are combined homomorphically to sum up the number of preferences
for each candidate. We eventually obtain a final vote consisting of m puzzles,
which are then solved to obtain the final vote tallies for each candidate.

Election Setup: Generate the public parameters pp ← LHP.PSetup(1λ, T )
and publish them so that they are accessible to all the voters.

Voting Phase: Each voter Vi, on deciding to vote the j-th candidate Cj

(where j ∈ {1, . . . , m}) does the following.

– For all j′ ∈ {1, . . . , m}/j, generate Zj′ ← LHP.PGen(pp, 0).
– Generate Zj ← LHP.PGen(pp, 1).
– Compute votei = (Z1, . . . , Zm) and output votei as the vote.

Counting Phase: Collect votes from all voters denoted by
(vote1, . . . , voten) and do the following.

– Parse each vote as votei = (Z(i)
1 , . . . , Z

(i)
m ).
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– For all j ∈ {1, . . . , m}:
• Compute the puzzle Z̃j ← LHP.PEval(⊕, pp, Z

(1)
j , . . . , Z

(n)
j ).

• Count the votes received by j-candidate by vj ← LHP.PSolve(pp, Z̃j).
– Output j∗-th candidate as the winner of the election, where vj∗ =
max(v1, . . . , vm).

By the security of LHTLP, the votes remain hidden for the whole duration of
the voting phase. Furthermore, observe that we eventually need to only solve
m puzzles, one puzzle per candidate. This is regardless on how many users go
offline before the counting phase.

6.2 Multi-party Coin Flipping

We consider the settings where n parties want to flip a coin in such a way that
(i) the value of the coin is unbiased even if n − 1 parties collude and (ii) all
parties agree on the same value for the coin. Consider the protocol where parties
commit to a bit and the result is the XOR of all the bits. The problem with this
simple solution is that one party that controls the network traffic might learn
all of the other bits and go offline if he does not agree with the outcome, thus
biasing the result.

We propose the use of our linearly homomorphic time-lock puzzles to solve
this problem. Let T be a bound on the runtime of the protocol. In our protocol,
LHP.PSetup(1λ, T ) is run first to generate the public parameters pp. Then, every
party Pi randomly chooses a bit bi ←$ {0, 1} and generates a time-lock puzzle
as Zi ← LHP.PGen(pp, bi) before publishing it. Once Pi receives the puzzles
from all other parties, it runs Z ← LHP.PEval(⊕, pp, Z1, . . . , Zn) to obtain the
puzzle Z encoding the sum of all secrets. Each party Pi can solve Z to recover
the corresponding s and output its least significant bit as the result of the coin
flipping. Observe that only one puzzle needs to be solved regardless of the number
of participants, even if everyone goes offline after the first phase. Since the time-
lock puzzle is correct, then so is our protocol, furthermore the coins is unbiased
by the security of LHTLP (in the timing model).

Setup: Generate the public parameters pp ← LHP.PSetup(1λ, T ) and pub-
lish them so that they are accessible to all the parties.

Coin Flipping: Each party Pi does the following.

– Choose bi ←$ {0, 1},
– Generate Zi ← LHP.PGen(pp, bi).
– Broadcast Zi to all other parties.

Announcement of the Result: Each party Pi collects all the puzzles
Z1, . . . , Zn from other parties and does the following.

– Compute the final puzzle Z ← LHP.PEval(⊕, pp, Z1, . . . , Zn).
– Solve the final puzzle as s ← LHP.PSolve(pp, Z)
– Output b ← LSB(s) as the final result of the coin flipping.
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6.3 Sealed Bid Auctions

Consider the settings where an auction is conducted with a set of n bidders
(B1, . . . , Bn). The bids are sealed throughout the bidding phase and disclosed
during the opening phase. Once all of the bids are revealed, the highest bidder
(or some other bidder depending on the allocation rule of the auction) is awarded
as the winner. Sealed-bid auctions are one of the motivating examples for the
usage of time-lock puzzles [6]. However, current solutions do not scale well with
the amount of users going offline after the first phase.

To counter this issue we propose a protocol very similar to the coin-flipping
one, where the setup generates the public parameters of the time-lock puzzles
pp. In the bidding phase, each bidder generates a puzzle Zi on input a bound
T and his bid. The winner of the auction is the recovered by homomorphically
evaluating the circuit Γ over all bids, where Γ computes the highest bid from
a given list of bids and outputs the index of the corresponding bidder. Also in
this case, only one puzzle has to be solved in the announcement phase. However,
the function that needs to be homomorphically evaluated is no longer linear and
therefore one needs to resort to fully-homomorphic time-lock puzzles (such as
the scheme described in Sect. 4.3).

6.4 Multi-party Contract Signing

Consider the settings where n mutually distrusting parties want to jointly sign
a contract. The contract is enforceable only if signed by all parties. In a naive
approach, a party Pi collects the signatures that were broadcast by all other
parties and add its own to seal the contract. However, if Pi fails to broadcast its
own signature, other parties are left empty-handed.

We propose a solution based on the combination of multiplicatively homo-
morphic time-lock puzzles (as described in Sect. 4.2) and RSA-aggregate sig-
natures [20]. Loosely speaking, an aggregate signature scheme allows one to
publicly combine signatures over different messages and under different keys
in such a way that the digest is still efficiently verifiable. The crucial prop-
erty of the construction of Hohenberger and Waters [20] is that signatures σ
are elements of QRN , for some fixed RSA integer N , and the aggregation of
((pk1,m1, σ1), . . . , (pkn,mn, σn)) is computed as

σagg =
n∏

j=1

σj (mod N).

Since QRN is a subgroup of JN , we can seamlessly compute the aggregation
function homomorphically. Let M be the contract to be signed. Our contract-
signing protocol proceeds as follows: In the setup phase, the public parameters of
the Hohenberger-Waters signature scheme (Setup,KeyGen,Sign) and of MHTLP
(with reusable setup) are generated. Note that we implicitly assume that both
setup algorithms sample the same strong RSA integer N . Then we fix T1 := T
for some fixed T (which is suggested to be in the order of 230 − 250 in [6]) and
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each Ti is defined as Ti−1
2 , until T� := 2. Each user generates a key pair (pk i, sk i)

and enters in the following loop. In the k-th iteration, each party Pi generates
a signature σ

(k)
i on the contract M via the signing algorithm Sign2. Then it

time-locks σ
(k)
i with a timing hardness Tk via Z

(k)
i ← MHP.PGen(pp2, σ

(k)
i , Tk)

and broadcasts Z
(k)
i . If every user successfully broadcasts Z

(k)
i , then the pro-

tocol proceeds to the next iteration. Otherwise each party collects the puzzles
(Z(k−1)

1 , . . . , Z
(k−1)
n ) from the previous iteration and generates the final puzzle

as Z(k−1) ← MHP.PEval(⊗, pp2, Z
(k−1)
1 , . . . , Z

(k−1)
n ). Solving this final puzzle

reveals the aggregated signature σagg on M .

Setup Phase: Generate the public parameters of the aggregate signature
scheme as pp1 ← Setup(1λ, 1T ) and the public parameters of the time-lock
puzzle MHTLP (with reusable setup and multiple hardness parameters) as
pp2 ← MHP.PSetup(1λ, T1, T2, . . . , T�) and broadcast it to all parties.

Key Generation Phase: Before the start of the first iteration, each party
Pi executes the key generation algorithm (pk i, sk i) ← KeyGen(pp1) to gen-
erate a public and private key pair (pk i, sk i).

Signing Phase: At the beginning of the k-th iteration, each party Pi does
the following.

– Generate a signature on M as σ
(k)
i ← Sign(pp1, sk i,M).

– Time-lock the signature via Z
(k)
i ← MHP.PGen(pp2, σ

(k)
i , Tk) with timing

hardness Tk and broadcast the puzzle.

Aggregation phase: If all parties had broadcast their puzzles, proceed to
(k + 1)-th iteration. If not (or if k = 	), each party Pi does the following.

– Collect the puzzles (Z(k−1)
1 , . . . , Z

(k−1)
n ) from the (k − 1)-th iteration.

– Generate the final puzzle as
Z(k−1) ← MHP.PEval(⊗, pp2, Z

(k−1)
1 , . . . , Z

(k−1)
n ).

– Solve the puzzle to obtain the aggregated signature
σagg ← MHP.PSolve(pp2, Z

(k−1)) on M .
– Output (M,σagg).
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Abstract. Securely managing encrypted data on an untrusted party is
a challenging problem that has motivated the study of a wide variety
of cryptographic primitives. A special class of such primitives allows an
untrusted party to transform a ciphertext encrypted under one key to
a ciphertext under another key, using some auxiliary information that
does not leak the underlying data. Prominent examples of such primitives
in the symmetric setting are key-homomorphic (weak) PRFs, updatable
encryption, and proxy re-encryption. Although these primitives differ sig-
nificantly in terms of their constructions and security requirements, they
share two important properties: (a) they have secrets with structure or
extra functionality, and (b) all known constructions of these primitives
satisfying reasonably strong definitions of security are based on concrete
public-key assumptions, e.g., DDH and LWE.

This raises the question of whether these objects inherently belong to
the world of public-key primitives, or they can potentially be built from
simple symmetric-key objects such as pseudorandom functions. In this
work, we show that the latter possibility is unlikely. More specifically, we
show that:

• Any (bounded) key-homomorphic weak PRF with an abelian output
group implies a (bounded) input-homomorphic weak PRF, which has
recently been shown to imply not only public-key encryption but also
a variety of primitives such as PIR, lossy TDFs, and even IBE.

• Any ciphertext-independent updatable encryption scheme that is
forward and post-compromise secure implies PKE. Moreover, any
symmetric-key proxy re-encryption scheme with reasonably strong
security guarantees implies a forward and post-compromise secure
ciphertext-independent updatable encryption, and hence PKE.

In addition, we show that unbounded (or exact) key-homomorphic weak
PRFs over abelian groups are impossible in the quantum world. In other
words, over abelian groups, bounded key-homomorphism is the best that
we can hope for in terms of post-quantum security. Our attack also
works over other structured primitives with abelian groups and exact
homomorphisms, including homomorphic one-way functions and input-
homomorphic weak PRFs.
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1 Introduction

Examining the practicality and security of cryptographic primitives has always
been one of the most important aspects of cryptographic research. When a new
cryptographic protocol is developed, it is often somewhat inefficient and relies
on a relatively strong assumption. We might ask a question that captures the
essence of “lower bounds” for cryptographic algorithms: is it possible to improve
this cryptosystem, or is the proposed scheme close to optimal?

A plausible approach for understanding the gap between known constructions
and “reasonable” lower bounds is to determine the power of a cryptographic
primitive, i.e., what other cryptographic objects can be built from it in a generic
way. For instance, if a certain primitive is known to imply public-key encryp-
tion (PKE), then it does not seem likely that this primitive can be built in a
generic manner from one-way functions (OWFs) [IR89,GHMM18]. However, for
certain classes of primitives, this gap might be substantial.

One such class of primitives that has been studied considerably is what we
will term symmetric primitives with structured secrets. Perhaps the most iconic
member of this (informal) class, and one we will use to illustrate our points here,
is the key-homomorphic PRF. Recall that, informally, a key-homomorphic PRF
is a function F : K × X → Y with key space K and output space Y endowed
with group operations ⊕ and ⊗, respectively, that meets all of the requirements
of a pseudorandom function with the following extra property:1

F (k1, x) ⊗ F (k2, x) = F (k1 ⊕ k2, x) .

Key-homomorphic PRFs (KHPRFs) were first implicitly shown in [NPR99]
in the random oracle model and then formally defined and constructed in the
standard model in [BLMR13]. There are a number of interesting applications of
KHPRFs, including primitives like distributed PRFs [NPR99,BLMR13,LST18],
updatable encryption [EPRS17,LT18], and PRFs that are secure against related
key attacks [LMR14].

Since [BLMR13], there have been a number of works constructing improved
variants of KHPRFs [BP14,BV15,BFP+15]. However, despite this quantity of
research, the known constructions of KHPRFs still require powerful assumptions.
For instance, we only know how to build exact key-homomorphic PRFs in the
standard model from multilinear maps or related assumptions [BLMR13]. If we
relax these requirements to almost KHPRFs in the standard model, all known
constructions still require an LWE assumption with superpolynomial modulus.
Even constructions in the random oracle model require public-key assumptions
like DDH [NPR99].

All of these assumptions and constructions are seemingly very heavyweight
for an ostensibly symmetric-key primitive that is typically targeted for applica-
tions in the symmetric-key setting. This leads us to a natural question: can we
1 We note that this equality can be relaxed to achieve approximate key-homomorphic

PRFs, and these (approximate) key-homomorphic PRFs can be built from lattice-
based assumptions, like LWE.
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construct more efficient key-homomorphic PRFs, or is there some fundamental
lower bound limiting their efficiency? Boneh et. al state, optimistically, “Another
interesting area of research is to construct key-homomorphic PRFs whose per-
formance is comparable to real-world block ciphers such as AES,” [BLMR13]
but so far there are no known realizations of such a construction.

However, key-homomorphic PRFs are far from the only symmetric primitive
with structured secrets for which the gap between known constructions and lower
bounds appears to be relatively large. There are a number of other seemingly
symmetric-key primitives that are only known to be implementable from concrete
public-key assumptions.

Updatable Encryption. Suppose that Alice wants to perform key rotation
on encrypted data in the cloud, but does not trust the cloud with her secret
key. Updatable encryption, first defined in [BLMR13] as an application of key-
homomorphic PRFs, allows third parties to periodically rotate encryption keys
by moving ciphertexts from an old key to a new one, without actually learning
the contents of the ciphertexts.

Boneh et al. [BLMR13] proposed the first formal definitions and concrete real-
izations of updatable encryption, which were subsequently refined by Everspaugh
et al. in [EPRS17]. In a more recent work, Lehmann and Tackmann [LT18] intro-
duced stronger security notions for updatable encryption that are desirable for
real-world applications, and also pointed out that none of the existing construc-
tions satisfy these notions. They addressed this issue by presenting a new, non-
KHPRF updatable encryption protocol called RISE that achieves these stronger
security requirements.

However, all of the constructions from the stronger security assumptions
in [LT18] are either built from key-homomorphic PRFs or from concrete public-
key assumptions. Yet again, the question remains: can we build similar schemes
using simple symmetric-key primitives? Lehmann and Tackmann [LT18] are pes-
simistic, “secure updatable encryption schemes seem to inherently require tech-
niques from the public-key world” but no formal bounds were given.

Proxy Re-Encryption. A proxy re-encryption scheme is a cryptosystem
where, given a special update token, a third party can transform a ciphertext
encrypted under Alice’s public key to a ciphertext encrypted under Bob’s public
key, while learning nothing about the underlying message. Proxy re-encryption
was initially developed in [BBS98] and then formalized in [AFGH05,AFGH06].
A number of subsequent works proposed improved schemes, including CCA-
secure proxy re-encryption [CH07], identity-based proxy re-encryption [GA07],
and CCA-secure unidirectional proxy re-encryption [LV08].

Proxy re-encryption has also been studied extensively in the symmetric-key
setting [SNS11]. In particular, many of the proposed definitions and security
notions associated with proxy re-encryption [nBL17,DKL+18,FKKP19] can be
adopted to the symmetric-key setting. Interestingly, while some of the simpler
definitions of security may be realized from known symmetric primitives, the
stronger definitions only have known realizations from public-key assumptions
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like DDH and LWE [ABPW13,CCL+14]. This leads to the following question:
are these stronger definitions of symmetric-key proxy re-encryption achievable
from symmetric-key encryption?

Downside of Structure. A common property underlying each of the crypto-
graphic primitives discussed so far is that they have structured secrets. While
the presence of structure potentially allows building rich cryptosystems from
simple primitives, it may also make these primitives vulnerable to potential
attacks [Bar17]. This motivates us to pose the following question: can the struc-
ture inherent in KHwPRFs (and related primitives) lead to attacks?

1.1 Our Contributions

We show that the answer to many of these questions is negative. Our results can
be summarized as follows:

Key-Homomorphic Weak PRFs. We show that any key-homomorphic weak
PRF (KHwPRF) F : K×X → Y with an abelian output group Y implies PKE. In
fact, we show that KHwPRFs with abelian output groups imply a much stronger
primitive called input-homomorphic weak PRF (IHwPRF) which, by the recent
work of [AMPR19], implies a large number of public-key primitives, includ-
ing identity-based encryption [Sha84], private information retrieval [KO97], and
lossy trapdoor functions [PW08]. In essence, our results indicate that it is seem-
ingly unlikely that KHwPRFs, and hence KHPRFs, with abelian output groups
are implied by symmetric-key primitives [IR89,GHMM18]. Our results also hold
for bounded KHwPRFs with abelian output groups (encompassing nearly all
applications of almost KHPRFs from lattice-based assumptions). To our knowl-
edge, all existing constructions of KHwPRFs (and almost KHwPRFs) have
abelian output groups.

Interestingly, our constructions of PKE and IHwPRF only use the output
group Y of the KHwPRF. We use the security of the KHwPRF to argue security
of our constructions. It may be possible that this seemingly novel construction
technique has other applications.

These results on KHwPRFs lend evidence to support the idea that many
“symmetric-key” cryptosystems that are currently only known from KHPRFs,
do, in fact, belong to the world of public-key primitives. We note that some
primitives (such as distributed PRFs) have KHPRF-based constructions that
require abelian key and output groups, further strengthening the argument that
these constructions are unlikely to be built from symmetric-key primitives.

Finally, we show how to construct a Naor-Reingold style PRF [NR97] from
any key-homomorphic weak PRF. As we explain in Sect. 3.4, this allows us to
construct highly parallel and potentially efficient PRFs from any KHwPRF. To
the best of our knowledge, prior to this work, it was not known how to construct
a Naor-Reingold style PRF from a generic primitive.
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Updatable Encryption. We show that any ciphertext-independent updat-
able encryption scheme that satisfies the adaptive notions of forward and post-
compromise security proposed in [LT18] implies PKE. As pointed out in [LT18],
forward and post-compromise security are desirable for real-world applications,
since they guarantee that message confidentiality is preserved even in the pres-
ence of temporary key compromise. Our result confirms the pessimism expressed
in [LT18] that updatable encryption schemes with desirable security properties
inherently belong to the class of asymmetric primitives.

Proxy Re-Encryption. We show that any symmetric-key proxy re-encryption
scheme that satisfies the adaptive notion of indistinguishability-based secu-
rity formalized in [FKKP19] implies updatable encryption with forward and
post-compromise security, and hence PKE. We remark that the definition pre-
sented in [FKKP19] captures the desirable properties of proxy re-encryption,
namely unidirectionality and adaptive security, and unifies the security notions
achieved by a large number of existing constructions [AFGH05,AFGH06,
ABH09,CCL+14].

Quantum Attacks on Primitives with Structure. We show that any exact
(not bounded) homomorphic one-way function (HOWF) with abelian input and
output groups can be broken in polynomial time using a quantum computer.
This immediately rules out the existence of abelian, exact KHwPRFs (and hence
KHPRFs) in the quantum setting. In other words, over abelian groups, KHw-
PRFs (and KHPRFs) with bounded homomorphism are the best that we can
hope for in the quantum world.

We can also extend this attack to essentially all exact input-homomorphic
weak unpredictable functions (IHwUFs) and IHwPRFs over abelian groups using
the results from [AMPR19], which in turn yields quantum attacks on essentially
all exact (group-)homomorphic encryption schemes over abelian groups. We
note that a similar result with respect to homomorphic encryption was achieved
in [AGKP14], albeit using different techniques.

1.2 Related Works

We have already discussed a number of papers related to key-homomorphic
PRFs, updatable encryption, and proxy re-encryption. However, we want to
note the construction [DKPW12] of Dodis et al. which showed how to build
efficient MACs from key-homomorphic weak PRFs, even predating [BLMR13].

Previous works have studied the relationship between cryptographic primi-
tives and structure. Recently, [AMPR19] examined simple primitives with struc-
tured inputs. In a work on a similar topic, Pietrzak and Sjödin [PS08] showed that
weak PRFs with a certain input property imply PKE. In a different line of works
that show PKE from other primitives, Berman et al. showed that laconic zero-
knowledge protocols imply PKE [BDRV18], Fischlin and Harasser [FH18] showed
that PKE is implied by invisible sanitizable signatures, and Rothblum [Rot11]
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demonstrated (homomorphic) PKE from a secret-key encryption scheme with
some form of weak homomorphism. For a comprehensive treatment of PRFs
and related primitives, see [BR17].

1.3 Technical Overview

In this section, we explain at a high level the techniques behind our constructions
and proofs.

Key-Homomorphic Weak PRFs. Informally, a key-homomorphic weak PRF
is a function F : K×X → Y with keyspace K and output space Y endowed with
group operations ⊕ and ⊗, respectively, that meets the definition of a weak
pseudorandom function2 with the following extra property:

F (k1, x) ⊗ F (k2, x) = F (k1 ⊕ k2, x) .

As a warm-up, we first show that a KHwPRF with an abelian output group
Y implies PKE. To illustrate how this works, we will show how our construction
works with a simple DDH-based KHwPRF from [NPR99]3 in parallel with a
generic construction. First, we use the following notation for two weak PRFs:

Generic KHwPRF
F (k ∈ K, x ∈ X ) ∈ Y

F (k, x) = y

DDH Instantiation
FDDH (g ∈ G, k ∈ Zq) ∈ G

FDDH (g, k) = gk

Now consider many instances of the same KHwPRF in parallel, with different
keys. By a hybrid argument, we know that such a set of KHwPRF outputs is
still indistinguishable from random. One can visualize this as follows:

Generic KHwPRF

F (k1, x1) F (k2, x1) . . . F (k�, x1)
F (k1, x2) F (k2, x2) . . . F (k�, x2)

...
...

. . .
...

F (k1, xm) F (k2, xm) . . . F (k�, xm)

DDH Instantiation

gk1
1 gk2

1 . . . gk�
1

gk1
2 gk2

2 . . . gk�
2

...
...

. . .
...

gk1
m gk2

m . . . gk�
m

Now suppose we take a random “subset sum”4 of the columns of these many
instances of KHwPRFs in parallel. If s = (s1, . . . , s�) ∈ {0, 1}� is a random vector
denoting our subset sum choice, we get new “columns” as follows:
2 A weak PRF is a PRF for which the pseudorandomness guarantee holds when the

inputs are sampled uniformly at random.
3 This was originally envisioned by the authors of [NPR99] as a PRF in the random

oracle model, but we note that it is equivalent to a weak PRF in the standard model.
4 We use the term “subset sum” loosely to essentially indicate subset group-operation

over the output space of the KHwPRF. Depending on whether the group is additive
or multiplicative, we perform either subset sums or subset products.
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Generic KHwPRF
⊗�

j=1 sj · F (kj , x1) = F (k∗, x1)
⊗�

j=1 sj · F (kj , x2) = F (k∗, x2)
...⊗�

j=1 sj · F (kj , xm) = F (k∗, xm)

DDH Instantiation
∏�

j=1 g
sj ·kj

1 = gk∗
1

∏�
j=1 g

sj ·kj

2 = gk∗
2

...∏�
j=1 g

sj ·kj
m = gk∗

m

If � > 3 log |K|, then the distribution of k∗ = ⊕�
j=1sjkj will be statistically

close to uniform over K. This can be shown by a relatively simple application of
the leftover hash lemma [IZ89]. It now follows by the pseudorandomness of the
KHwPRFs F and FDDH that these new columns are computationally indistin-
guishable from random, even given the outputs of the other columns.

We now present the critical step of our argument: if such subset sums of
KHwPRF outputs are indistinguishable from random even if the randomness
for the subset sum is reused, then, by a series of hybrid arguments, it follows
that similar subset sums of randomly chosen elements of the output group Y are
indistinguishable from random: otherwise, we would have a distinguisher for the
original KHwPRF. In other words, the following must hold:

Generic KHwPRF
Y ← Ym×�, s ← {0, 1}�

(Y,Ys)
c≈ (Y,u)

where u ← Ym.

DDH Instantiation
G ← G

m×�, s ← {0, 1}�

(G,Gs)
c≈ (G,h)

where h ← Gm.

Note that for a matrix of group elements Y ∈ Ym×� and a vector s ∈ {0, 1}�,
we denote by Ys ∈ Ym the vector of group elements

( �⊗

j=1

sj · y1,j , . . . ,

�⊗

j=1

sj · ym,j

)

.

Given this hard problem, which is based on the weak pseudorandomness of F ,
it is simple to construct a two-party noninteractive key exchange protocol (which
is sufficient for PKE), as visualized in the following figure (note that the public
parameter pp consists of an m × m matrix of uniformly chosen group elements
for a fixed m > 3 log|K|).

pp: Y ← Ym×mAlice

r ← {0, 1}m

rtY ∈ Ym

K = rt(Ys) ∈ Y

Bob

s ← {0, 1}m

Ys ∈ Ym

K = (rtY)s ∈ Y
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It turns out that the technique described above is actually versatile enough
to construct a number of stronger cryptographic primitives. More specifically,
we show how to build an input-homomorphic weak PRF (IHwPRF), which
by [AMPR19] implies a variety of public-key primitives.

Informally, an IHwPRF is a function F ′ : K × X → Y with input space
X and output space Y endowed with group operations ⊕ and ⊗, respectively,
that also meets the definition of a weak pseudorandom function. However, the
homomorphism is over the input space rather than the key space:

F ′ (k, x1) ⊗ F ′ (k, x2) = F ′ (k, x1 ⊕ x2) .

First, note that the DDH-based KHwPRF is already input homomorphic. But
the DDH assumption is very special in this regard, and we cannot guarantee that
other constructions of KHwPRFs are also implicitly IHwPRFs. In general, for a
KHwPRF F : K × X → Y, the input space X might not even be a group.

We now illustrate the construction of an IHwPRF F ′ : {0, 1}� ×Y� → Y from
any KHwPRF with an abelian output group Y (where � > 3 log |K|):

Generic KHwPRF

F ′ : {0, 1}� × Y� → Y
F ′ (s, (y1, ..., y�)) =

⊗�
j=1 sj · yj

DDH Instantiation

F ′
DDH : {0, 1}� × G

� → G

F ′
DDH (s, (g1, ..., g�)) =

∏�
j=1 g

sj

j

First, note that the input homomorphism of F ′ and F ′
DDH follows from that

fact that the underlying groups Y and G are abelian, respectively. If Y is not
abelian, then F ′ would still be pseudorandom, but not input homomorphic. It
is an interesting open problem to remove this restriction on Y while retaining
input-homomorphism.

Notice that in the actual constructions of PKE and IHwPRF, we do not
explicitly use the key space or the input space of the underlying KHwPRF; we
essentially use the pseudorandomness of the KHwPRF to argue their security.
In Sect. 3, we present the detailed constructions and proofs, and extend our
techniques to work for almost KHwPRFs.

On the negative side, we rule out the existence of exact KHwPRFs with
output groups over which a system of linear equations (with binary variables)
can be solved efficiently, because such an algorithm can be used to break the hard
problem instance described above, and hence to break the pseudorandomness of
the underlying exact KHwPRF.5

Updatable Encryption. We show that any ciphertext-independent updatable
encryption (UE) scheme that meets the notion of “adaptive indistinguishability
of updates” formalized by Lehmann and Tackmann in [LT18] implies a PKE

5 We remark that known algorithms to solve systems of linear equations over abelian
groups need an explicit representation of the group, see [GR02] for more details.
For example, such an explicit representation is not known to an adversary against a
DDH-hard group G.
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scheme. Recall that a UE scheme allows publishing an update token Δ0,1 that
can be used by a third party to transform a ciphertext encrypted under a key sk0
to a ciphertext encrypted under another key sk1, without knowing the underlying
message.

In our PKE construction from UE, the public key consists of a pair of UE
ciphertexts encrypting 0 and 1 respectively under a key sk0, and an update
token Δ0,1. Depending on the plaintext bit b, the encryption algorithm updates
one of the two ciphertexts, and the decryption algorithm in turn decrypts using
the updated key sk1. To prove CPA security, we show a reduction in which the
challenge ciphertext for the UE game is transformed into the public key for the
PKE game, which then allows us to switch between knowledge of secrets and
knowledge of update tokens. The detailed construction and proof of security are
presented in Sect. 4.1.

As a side note, our construction of PKE assumes that the update algorithm
of the underlying UE scheme is randomized. We point out that all existing UE
schemes satisfying the notion of update indistinguishability (notably, the RISE
scheme in [LT18]) have randomized update algorithms.

Proxy Re-Encryption. We show that any symmetric-key proxy re-encryption
scheme that satisfies the indistinguishability-based security notions formalized
in [FKKP19] implies a ciphertext-independent UE scheme with indistinguisha-
bility of updates. By the result mentioned above, it thus implies a PKE scheme.

Our construction of UE from a symmetric-key PRE essentially maps PRE
secret keys associated with different identifiers to UE secret keys associated with
different epochs. To prove security, we show a reduction where any valid oracle
query from the adversary in the UE game can be mapped into a corresponding
valid oracle query to the challenger in the PRE game.

We remark that while existing PRE schemes typically support multi-hop
updates [AFGH05,FKKP19], UE schemes as formalized in [LT18] support a more
sequential flavor of updates. It is unlikely that such UE schemes would imply
PRE schemes with desirable security properties, unless the definitions for UE are
further strengthened to encompass functionalities similar to multi-hop-updates.

Quantum Attacks on Generic Primitives. In the body of the paper, we
show that there exist quantum attacks on a number of generic exact primitives
over abelian groups. However, since all of these attacks essentially follow from
our attack on an exact homomorphic one-way function (HOWF) over an abelian
group, we will focus our attention here on this attack. Informally, an HOWF is
a function f : X → Y with input group (X ,⊕) and output group (Y,⊗) (where
both group operations are efficiently computable), that meets the definition of
a one-way function with the following extra property:

f (x1) ⊗ f(x2) = f (x1 ⊕ x2) .

Our attack relies on the fact that there exists a quantum algorithm such
that given black-box access to an abelian group G with certain properties,



Symmetric Primitives with Structured Secrets 659

it outputs an explicit representation of the group; in other words, it outputs
an isomorphism ψ : G → Zq1 ⊕ · · · ⊕ Zqm

such that both ψ and ψ−1 are effi-
ciently computable (see [CM01] and Section 6.2 of [Chi17] for more details).

At a high level, our attack works as follows: given an exact HOWF f : X → Y
such that X and Y are both abelian groups, we use their explicit representations
to construct linear systems of modular equations, and efficiently solve them to
find a preimage for any given HOWF output. The detailed description of the
attack is presented in Sect. 5.

2 Preliminaries

2.1 Notation

For any positive integer n, we use [n] to denote the set {1, . . . , n}. We use λ
for the security parameter. We use the symbols ⊕ and ⊗ as group operations
defined in the context. For a finite set S, we use s ← S to sample uniformly from
the set S.

Let (Y,⊗) be an efficiently samplable group, such that the group operation
is efficiently computable. Let Y ∈ Ym×� be an m × � matrix of group elements
sampled from Y. Also, let s = (s1, . . . , s�) ∈ {0, 1}� be an arbitrary binary vector.
We denote by Ys ∈ Ym the vector of group elements

( ⊗

j:sj=1

y1,j , . . . ,
⊗

j:sj=1

ym,j

)

.

Similarly, let S = [sj,j′ ] ∈ {0, 1}�×�′
be an arbitrary binary matrix. We denote

by YS ∈ Ym×�′
the matrix of group elements

⎡

⎢
⎢
⎣

⊗
j:sj,1=1 y1,j . . .

⊗
j:sj,�′=1 y1,j

...
. . .

...⊗
j:sj,1=1 ym,j . . .

⊗
j:sj,�′=1 ym,j

⎤

⎥
⎥
⎦ .

2.2 Cryptographic Primitives

Pseudorandom Functions. Informally, an efficiently computable function is
called pseudorandom if there exists no PPT adversary that can distinguish it
from a truly random function. More formally, a PRF family is an efficiently
computable function family {F (k, ·) : X → Y}k∈K (where K, X and Y are
indexed by the security parameter λ) such that for all PPT adversaries A we
have

∣
∣
∣Pr[AF (k,·)(1λ) = 1] − Pr[Af(·)(1λ) = 1]

∣
∣
∣ ≤ negl(λ),

where k ← K and f : X → Y is a (truly) random function.
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Weak Pseudorandom Functions. Let F $(k, ·) be a randomized oracle that
responds to queries by sampling x ← X and outputting (x, F (k, x)). A weak
pseudorandom function (wPRF) family is an efficiently computable function
family {F (k, ·) : X → Y}k∈K (where K, X and Y are indexed by the security
parameter λ) such that for all PPT adversaries A we have

∣
∣
∣Pr[AF $(k,·)(1λ) = 1] − Pr[Af$(·)(1λ) = 1]

∣
∣
∣ ≤ negl(λ),

where k ← K and f : X → Y is a (truly) random function.

Definition 1. (Homomorphic One-Way Function.) A homomorphic one-way
function (HOWF) is a function f : X → Y with input group (X ,⊕) and output
group (Y,⊗) (where both group operations are efficiently computable), that meets
the definition of a one-way function with the following extra property:

f (x1) ⊗ f(x2) = f (x1 ⊕ x2) .

Definition 2. (Key-Homomorphic Functions.) A function family {F (k, ·) :
X → Y}k∈K is key-homomorphic if the following conditions hold:

• (K,⊕) and (Y,⊗) are efficiently samplable groups, and the group operations
and the inverse operation in each group are efficiently computable.

• For any pair of keys k1, k2 ∈ K and any input x ∈ X , we have

F (k1, x) ⊗ F (k2, x) = F (k1 ⊕ k2, x) .

A key-homomorphic weak PRF (KHwPRF) family is a weak PRF family that is
also key homomorphic. Similarly, a key-homomorphic PRF (KHPRF) family is
a PRF family that is also key homomorphic.

Definition 3. (Input-Homomorphic Weak PRF.) A weak pseudorandom func-
tion family {F ′(k, ·) : X → Y}k∈K is an IHwPRF family if the following condi-
tions are satisfied:

• (X ,⊕) and (Y,⊗) are efficiently samplable groups, and the group operations
and the inverse operation in each group are efficiently computable.

• For any pair of inputs x1, x2 ∈ X and any key k ∈ K, we have

F ′ (k, x1) ⊗ F ′ (k, x2) = F ′ (k, x1 ⊕ x2) .

Definition 4. (γ-Bounded IHwPRF.) A weak pseudorandom function family
{F (k, ·) : X → Y}k∈K is a γ-bounded IHwPRF family if there is an (efficiently
computable) universal mapping R : Y → Z such that

• (K,⊕) and (Y,⊗) are efficiently samplable groups, and the group operations
and the inverse operation in each group are efficiently computable.

• For a randomly chosen input vector (x1, . . . , xL) ← X L such that L ≤ γ,
and a randomly chosen key k ← K, the following holds with overwhelming
probability:

R
(
F

(
k,

⊕

j∈[L]

xj

))
= R

( ⊗

j∈[L]

F (k, xj)
)
.
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3 Key-Homomorphic Weak PRFs and Implications

In this section we show how to construct PKE and input-homomorphic weak
PRF (IHwPRF) from a key-homomorphic weak PRF (KHwPRF). First, we
introduce a hardness assumption over the output group of a KHwPRF. This
hardness assumption has the advantage that it does not directly involve the input
set X of the KHwPRF, which may be algebraically unstructured. Here (and in
the following two subsections), we assume that the KHwPRF has unbounded (or
exact) homomorphism. Later in this section, we show how to extend our results
to “almost” KHwPRFs. Finally, we provide a construction of Naor-Reingold
style PRF from KHwPRFs.

Theorem 1. Let F : K × X → Y be a KHwPRF, and let m = poly(λ) be an
(arbitrary) positive integer. Assume that d = poly(λ) be a positive integer such
that d > 3 log|K|. Let Y ∈ Ym×d be a matrix of group elements such that each
entry yi,j (for i ∈ [m], j ∈ [d]) is drawn uniformly and independently from Y. If
s ← {0, 1}d, then for any PPT adversary we have

(Y,Ys)
c≈ (Y,u),

where u ← Ym is a a vector of m uniformly chosen elements from Y.

Proof. Let F ∈ Ym×d be a matrix formed in the following way: first sample m
uniform elements from X as {xi ← X}i∈[m], and generate d uniform elements
from K as {kj ← K}j∈[d]. Now we set Fi,j = F (kj , xi), i.e., each row (respec-
tively, column) has the same input (respectively, key).

In the first part we prove that F
c≈ Y. We define the hybrids Hj over the

columns as follows: let Hj be the hybrid that the first j columns are generated
using the weak PRF and the remaining columns are generated using uniform and
independent values. By construction, we have H0 ≡ Y and Hd ≡ F. It is enough
to show that Hj−1

c≈ Hj for each j ∈ [d]. Given access to an oracle O which is
either F or a truly random function, the reduction invokes its oracle m times
and receives {xi′ ,O(xi′)}i′∈[m]. It then samples j − 1 keys as {kj′ ← K}j′∈[j−1]

and forms the matrix M ∈ Ym×d as follows:

• If j′ < j, set Mi′,j′ = F (kj′ , xi′).
• If j′ = j, set Mi′,j′ = O(xi′).
• If j′ > j, for each i′ ∈ [m] and j′ ∈ {j + 1, . . . , d} sample a fresh y ← Y and

set Mi′,j′ = y.

Observe that M ≡ Hj−1 if O corresponds to a truly random function, and
M ≡ Hj if O corresponds to the pseudorandom function F . It follows that
Hj−1

c≈ Hj .
In the second part of the proof, we show that (F,Fs)

c≈ (F,u). Given an
attacker A that distinguishes (F,Fs) from (F,u), we describe an attacker B
against the weak pseudorandomness of F . Given access to an oracle O which is
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either F or a truly random function, B invokes its oracle m times and receives
{xi,O(xi)}i∈[m]. The reduction then samples d keys as {kj ← K}j∈[d] and forms
the matrix F as Fi,j = F (kj , xi). Define the vectors y∗ ∈ Ym and k ∈ Kd as

k = (k1, . . . , kd), y∗ := (O(x1), . . . ,O(xm)) .

Finally, B runs A on the input (F,y∗) and B outputs whatever A outputs.
It is easy to see that if O is a truly random function we have (F,y∗) ≡ (F,u).
Observe that by the leftover hash lemma, we have (k,

⊕
s k)

s≈ (k, k∗) where k∗

is uniform over K. If y∗ corresponds to the weak PRF outputs (O is the weak
PRF), by key homomorphism of F we have

Fs =

⎛

⎜
⎜
⎜
⎝

F (
⊕

s k, x1)
F (

⊕
s k, x2)
...

F (
⊕

s k, xm)

⎞

⎟
⎟
⎟
⎠

s≈

⎛

⎜
⎜
⎜
⎝

F (k∗, x1)
F (k∗, x2)

...
F (k∗, xm)

⎞

⎟
⎟
⎟
⎠

≡ y∗.

Therefore, the advantage of B (in the weak PRF game) is negligibly different
from the advantage of A. It follows that (F,Fs)

c≈ (F,u), as required.
Using the first part of the proof by a straightforward reduction we have

(Y,Ys)
c≈ (F,Fs) and (F,u)

c≈ (Y,u). Using the second part, it follows that

(Y,Ys)
c≈ (F,Fs)

c≈ (F,u)
c≈ (Y,u),

and hence we get (Y,Ys)
c≈ (Y,u).

3.1 Public-Key Encryption

Now we describe a non-interactive key exchange protocol (which is sufficient
to realize PKE) based on any KHwPRF. Later, we explain construction of an
IHwPRF from any KHwPRF, which in turn implies a variety of cryptographic
primitives. We first start with an inefficient protocol, and then we show how to
improve its efficiency.

Given a KHwPRF F : K × X → Y such that Y is an abelian group, fix
some integer m > 3 log|K| and let Y ∈ Ym×m be a matrix of uniformly chosen
group elements from Y. Alice (respectively, Bob) chooses binary vector r ←
{0, 1}m (respectively, s ← {0, 1}m), and sends rtY (respectively, Ys) to Bob
(respectively, Alice). The final secret will be rt(Ys) = (rtY)s ∈ Y. The following
figure is a simple visualization of the key exchange protocol.

pp: Y ← Ym×mAlice

r ← {0, 1}m

rtY ∈ Ym

K = rt(Ys) ∈ Y

Bob

s ← {0, 1}m

Ys ∈ Ym

K = (rtY)s ∈ Y
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We sketch the security proof for the mentioned protocol. It is enough to show

(Y, rtY,Ys, rtYs)
c≈ (Y,y1,y2, y),

where Y ← Ym×m, r ← {0, 1}m
, s ← {0, 1}m

,y1 ← Ym,y2 ← Ym, y ← Y.
Observe that by Theorem 1 and a simple hybrid argument we can replace

rtY with a random vector u ← Ym and so

(Y,u,Ys,us)
c≈ (Y,y1,y2, y).

Now let Ŷ ∈ Y(m+1)×m be the matrix that has Y as its top submatrix and
u as its last row. By applying Theorem 1 again, it follows that

(Ŷ, Ŷs)
c≈ (Ŷ, y),

as required.
The reader may notice that the aforementioned key exchange protocol is too

expensive in terms of communication complexity, i.e, to agree on some group
element the parties need to exchange 2m2 group elements. Using the following
lemma, we immediately get a key exchange protocol for which the whole cost of
communication is twice the size of the final secret (like DDH).

Lemma 1. Let F : K × X → Y be a KHwPRF, and let m > 3 log|K| be a
positive integer. For any PPT adversary we have

(Y,RY,YS,RYS)
c≈ (Y,Y′,Y′′,Y′′′),

where Y,Y′,Y′′,Y′′′ are matrices of uniform group elements in Ym×m, and S,
R are uniform binary matrices, i.e., R ← {0, 1}m×m and S ← {0, 1}m×m.6

Proof. The lemma follows from Theorem 1, and a standard hybrid argument.

3.2 Input-Homomorphic Weak PRF

Here we show a simple construction of an IHwPRF from any KHwPRF. We
remark that although an IHwPRF implies a variety of cryptographic primitives,
the constructions will not be necessarily efficient. More efficient constructions can
be obtained by directly building the primitive using the assumption in Lemma 1.

Lemma 2. Let F : K × X → Y be a KHwPRF. If d > 3 log |K| be a positive
integer and Y is an abelian group, the function F̃ : {0, 1}d × Yd → Y defined as

F̃
(
s = (s1, . . . , sd),y = (y1, . . . , yd)

)
=

⊗

s

y =
⊗

j:sj=1

yj

is an IHwPRF.

6 Notice that for the correctness of key exchange, we require the group Y to be abelian.
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Proof. First, observe that F̃ is input homomorphic since for any y,y′ ∈ Yd and
s ∈ {0, 1}d we have

F̃ (s,y) ⊗ F̃ (s,y′) =
( ⊗

s

y
)

⊗
( ⊗

s

y′
)

=
( ⊗

j:sj=1

yj

)

⊗
( ⊗

j:sj=1

y′
j

)

=
⊗

j:sj=1

(yj ⊗ y′
j)

=
⊗

s

(y ⊗ y′) = F̃ (s,y ⊗ y′).

Given m (where m = poly(λ)) samples of the form (yi,O(yi)), form the
matrix Y ∈ Ym×d such that the i’th row of Y is yi. In addition, define y∗ as
y∗ := (O(y1), . . . ,O(ym)). Observe that if O is a truly random function then
y∗ is uniformly distributed in Ym. On the other hand, if O is the weak PRF,
we have y∗ = Ys for some uniform s ∈ {0, 1}d. By applying Theorem 1 and
observing the fact that m = poly(λ), it follows that F is a weak PRF.

Implications. By plugging in the results of [AMPR19], and using the Lemma 2
it follows that KHwPRFs imply noninteractive key exchange, private information
retrieval [KO97], lossy trapdoor functions [PW08], identity-based encryption (in
a non-blackbox manner) [DG17b,DG17a,BLSV18], and hinting PRGs [KW19].

We remark that KHwPRFs trivially imply homomorphic one-way functions
(HOWFs) and hence using the results of [AMPR19], KHwPRFs imply collision-
resistant hash functions, Schnorr signatures, and chameleon hash functions.

3.3 Asymmetric Primitives from Bounded KHwPRFs

In this part, we show that the “approximate” (some papers called it “almost”)
version of key-homomorphic weak PRFs with certain properties imply a variety
of asymmetric primitives, such as public-key encryption (PKE). Approximate
KHwPRFs have the property that Fk⊕k′(x) is close to Fk(x) ⊗ Fk′(x) where
closeness is measured with respect to some distance function.

An Algebraic Definition. Formalizing a general definition for “approximate”
homomorphism requires a somewhat involved geometric definition that needs
a distance function, which also does not nicely fit into the recent (algebraic)
framework of [AMPR19]. In this work, we provide a natural algebraic definition
for bounded Key-Homomorphic weak PRFs, which is similar to the definition of
bounded IHwPRFs of [AMPR19].

We remark that all existing constructions of approximate KHwPRFs with
an appropriate choice of parameters can be viewed as bounded KHwPRFs.
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Definition 5. A weak pseudorandom function family {F (k, ·) : X → Y}k∈K is
a γ-bounded KHwPRF family if there exists (efficiently computable) universal
mappings Rin : Y → Zin and Rout : Zin → Zout such that

• (K,⊕), (Y,⊗), and (Zin,
) are efficiently samplable groups, and the group
operations and the inverse operation in each group are efficiently computable.

• For a randomly chosen key vector (k1, . . . , kL) ← KL such that L ≤ γ, and a
randomly chosen input x ← X , the following holds with overwhelming proba-
bility:

Rin

(
F

( ⊕

j∈[L]

kj , x
))

= Rin

( ⊗

j∈[L]

F (kj , x)
)
,

Rout

( ⊙

j∈[L]

Rin

(
F (kj , x)

))
= Rout

(
Rin

( ⊗

j∈[L]

F (kj , x)
))

.

Bounded KHwPRFs and LWR. All of the currently known instantiations
of “approximate” key-homomorphic (weak) PRFs use Learning With Rounding
(LWR) [BPR12] as their underlying assumption. It is easy to see that if the
output group of some LWR-based KHwPRF is Z

n
p for some superpolynomial

modulus p and some dimension n, we can define the mapping Rin (respectively,
Rout) to be rounding with respect to some modulus pin (respectively, pout) such
that p/pin and pin/pout are both superpolynomial.

This immediately yields bounded KHwPRFs from approximate KHwPRFs
that have the mentioned property. We remark that this property seems to be
necessary for most of the applications of KH-PRFs in [BLMR13] (and in some
cases to get an efficient construction). The reader may note that the resulting
construction of bounded KHwPRFs from LWR has a triple rounding, one that is
embedded in the (weak) PRF F and one for each mapping Rout and Rin defined
above. Although this property is inherent for the LWR-based construction, in
general there may not be any similarity between F and Rin or Rout for a bounded
KHwPRF.

PKE Construction from Bounded KHwPRF. Using the definition above,
we now construct a public-key encryption scheme from a bounded KHwPRF. The
construction is almost identical to the case of unbounded KHwPRFs, with the
difference being applying the mappings Rin and Rout of the bounded KHwPRF.
The argument for the security is also very similar to the exact/unbounded case,
and we omit the details.

Given a γ-bounded KHwPRF F : K × X → Y (with mappings Rin and Rout

defined as above) such that Y and Zin are abelian groups and γ > 3 log|K|, fix
some integer m > 3 log|K| and let Y ∈ Ym×m be a matrix of uniformly chosen
group elements from Y. Alice (respectively, Bob) chooses binary vector r ←
{0, 1}m (respectively, s ← {0, 1}m), and sends Rin(rtY) (respectively, Rin(Ys))
to Bob (respectively, Alice). The final secret will be

Rout

(
rtRin(Ys)

)
= Rout

(Rin(rtY)s
) ∈ Zout.
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Bounded IHwPRF from Bounded KHwPRF. Using the definition above,
we now construct a bounded IHwPRF from a bounded KHwPRF. The construc-
tion is almost identical to the case of unbounded KHwPRFs, with the difference
being applying the mappings Rin and Rout of the bounded KHwPRF.

Given a γ-bounded KHwPRF F : K × X → Y (with mappings Rin and Rout

defined as above) such that Y and Zin are abelian groups and γ > 3 log|K|,
fix some integer d such that 3 log|K| < d ≤ γ we define a bounded IHwPRF
F̃ : {0, 1}d × Yd → Zin with its associated mapping R̃ : Zin → Zout as

F̃
(
s = (s1, . . . , sd),y = (y1, . . . , yd)

)
= Rin

( ⊗

s

y
)

= Rin

( ⊗

j:sj=1

yj

)
,

where R̃ (the associated mapping with F̃ ) is identical to Rout. The security proof
is very similar to the exact/unbounded case, and hence we omit the details.

3.4 Naor-Reingold PRF

Here we show a construction of Naor-Reingold style PRF from any KHwPRF.
Before we do so, however, we will provide some background on the Naor-Reingold
PRF and explain why PRFs in this style are important. We start by recalling
the original Naor-Reingold PRF [NR97]:

Let G be a group of order p, and let FNR : (Z(�+1)
p × G) × {0, 1}� → G be

the function defined by

FNR

(
{αj}j∈[0,�] ∈ Z

(�+1)
p , g ∈ G,x ∈ {0, 1}�

)
= gα0

∏�
i=1 α

xi
i ,

where the values α0, α1, . . . , α� form the key and x is the input. Informally,
a Naor-Reingold style PRF requires a constant number of computations (for
instance, the exponentiation in FNR) on which the assumption related to its
hardness depends, while all of the operations that scale with the length of the
input (for instance, the integer multiplications in the exponent of FNR) are
less expensive. This feature allows Naor-Reingold style PRFs to be potentially
efficient. In particular, assuming that the underlying operations have reasonably
low circuit depth, such PRFs typically have polylogarithmic evaluation circuits.

We now show a simple construction of Naor-Reingold style PRF from any
exact KHwPRF with abelian output group. Our construction involves a subset
product of binary matrices and one “multiplication” of a group matrix and
an integer matrix. The depth of the PRF evaluation circuit is polylogarithmic
provided that the group operation can be done efficiently.

Theorem 2. Let F̃ : K×X → Y be a KHwPRF, and fix some m > 3 log|K|. Let
Y ∈ Ym×m be a (public) matrix of group elements such that each entry yi,j (for
i ∈ [m], j ∈ [m]) is drawn uniformly and independently from Y. The function
F : Y(�+1)×m2 × {0, 1}� → Ym×m defined as

F

(

(S0,S1, . . . ,S�),x = (x1, . . . , x�)
)

= YS0

�∏

i=1

Sxi
i

is a pseudorandom function where Si ← {0, 1}m×m for i ∈ {0, . . . , �}.
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Proof. To prove this theorem, we use the following lemma.

Lemma 3. Let Y1, . . . ,YQ ∈ Ym×m be matrices with uniformly and indepen-
dently sampled entries from Y for some Q = poly(λ), and let S ← {0, 1}m×m be
a uniformly sampled binary matrix. Then for any PPT adversary we have

{(Yq,YqS)}q∈[Q]
c≈ {(Yq,Uq)}q∈[Q].

where for each q ∈ [Q], Uq ← Ym×m is a matrix of uniformly chosen elements
from Y.

This lemma follows directly from Theorem 1, and a standard hybrid argument
over the columns of S. The proof of pseudorandomness now proceeds via a series
of (� + 1) hybrid games, where for each j ∈ [0, �], the jth game is as described
below.

1. The challenger samples (� − j) uniform binary matrices as Si ← {0, 1}m×m

for i ∈ [j + 1, �]. It also maintains a list L of m × m matrices over the group
Y. Initially, this list is empty. The challenger also creates and stores an m × m
matrix Y0 consisting of uniformly and independently sampled entries from Y.

2. The adversary adaptively issues a maximum of Q = poly(λ) PRF queries of
the form x1, . . . ,xQ, where for each q ∈ [Q], we have xq = (x1,q, . . . , x�,q).
For ease of representation, we divide each query string as xq = (x(0)

q ,x(1)
q ),

where
x(0)

q = (x1,q, . . . , xj,q), x(1)
q = (xj+1,q, . . . , x�,q).

3. Upon receipt of the qth query, the challenger proceeds as follows:
(a) If j = 0, it sets Yq = Y0.
(b) Otherwise, it checks if there exists a q′ < q such that x(0)

q = x(0)
q′ .

i. If yes, it sets Yq = Yq′ .
ii. Otherwise, it sets Yq to be an m × m matrix with uniformly and

independently sampled entries from Y.
(c) It updates the list L as L = L ∪ {Yq} and responds to the qth query as

fj,q = Yq

�∏

i=j+1

Sxi,q

i .

Note that in the zeroth hybrid, we replaced the component YS0 in the original
PRF construction by an m×m matrix Y0 consisting of uniformly and indepen-
dently sampled entries from Y. It follows from Theorem 1 that this hybrid is
indistinguishable from the real PRF experiment.

Now, for each j ∈ [0, �], let Fj = {fj,q}q∈[Q] be the set of responses gener-
ated by the challenger in the jth game. The proof of Theorem 2 now follows
immediately from the following claim:
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Claim. For each j ∈ [0, � − 1] and for any PPT adversary we have

Fj
c≈ Fj+1.

Let A be a PPT adversary such that for some j ∈ [�], A efficiently distinguishes
between Fj and Fj+1. We construct an attacker B against the assumption in
Lemma 3. B receives as input a tuple of the form {(Yq,Zq)}q∈[Q′] for some
Q′ > Q, where either each Zq is of the form YqSj for some uniformly random
m × m binary matrix Sj , or each Zq is a uniformly random matrix over Ym×m.
It proceeds as follows:

1. B samples (� − j − 1) uniform binary matrices as Si ← {0, 1}m×m for i ∈
[j + 2, �]. It also maintains a counter variable cnt. Initially, cnt = 1.

2. A adaptively issues a maximum of Q = poly(λ) PRF queries of the form
x1, . . . ,xQ, where for each q ∈ [Q], we have xq = (x1,q, . . . , x�,q). Again, for
ease of representation, we divide each query string as xq = (x(0)

q ,x(1)
q ), where

x(0)
q = (x1,q, . . . , xj,q), x(1)

q = (xj+1,q, . . . , x�,q).

3. Upon receipt of the qth query, B checks if there exists a q′ < q such that
x(0)

q = x(0)
q′ .

(a) If yes, it sets Ỹq = Ỹq′ and Z̃q = Z̃q′ .
(b) Otherwise, it sets Ỹq = Ycnt and Z̃q = Zcnt, and updates cnt = cnt + 1.

4. B now responds to the qth query as

f̃j,q =

{
Ỹq

∏�
i=j+2 S

xi,q

i if xj+1,q = 0
Z̃q

∏�
i=j+2 S

xi,q

i if xj+1,q = 1.

5. Eventually, the adversary A outputs a bit b. B outputs the same bit b.

Let F̃ = {f̃j,q}q∈[Q] be the set of responses generated by B. It is easy to see the
following:

• If each Zq is of the form YqSj for some uniformly random m × m binary
matrix Sj , then the distribution of F̃ is identical to that of Fj .

• On the other hand, if each Zq is a uniformly random matrix over Ym×m, then
the distribution of F̃ is identical to that of Fj+1.

It now follows that the advantage of B is identical to that of A. This completes
the proof of Claim 3.4. The proof of Theorem 2 follows immediately.

NR-style PRFs from Bounded KHwPRFs. Our definition of bounded
KHwPRFs does not allow a direct construction of NR-style PRFs. However,
there are known constructions of NR-style PRFs from lattice-based assump-
tions. A notable example is the lattice-based KHPRF from [BLMR13], which
proves security by progressively rounding further at each hybrid argument to
ensure that “exactness” holds at each step. However, while actually computing
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the PRF, this is simulated by rounding once to a specially chosen modulus.
In practical scenarios, this construction seems substantially less efficient than
related pseudorandom synthesizer constructions [NR95,Mon18].

Our algebraic definition of bounded KHwPRFs does not encompass multiple
levels of “rounding” (or any other compressing operation), since it seemingly
makes bounded KHwPRFs inherently inefficient for constructing NR-style PRFs.
Thus, we omit constructing NR-style PRFs from bounded KHwPRFs.

4 Updatable Encryption and Symmetric PRE

In this section, we show that any ciphertext-independent updatable encryption
scheme that satisfies the adaptive notions of forward and post-compromise secu-
rity proposed in [LT18] implies PKE. We also show that any symmetric-key proxy
re-encryption scheme that satisfies the adaptive notion of indistinguishability-
based security formalized in [FKKP19] implies updatable encryption with for-
ward and post-compromise security, and hence PKE.

4.1 PKE from Updatable Encryption

An updatable encryption scheme is, informally speaking, a symmetric key
encryption scheme with the following extra property: a user with a secret key k1
can provide an update token σ1,2 that maps ciphertexts encrypted under key k1
to new ciphertexts encrypted under some other key k2. The main application of
updatable encryption is handling key rotation of data in the cloud where a data
owner does not trust the cloud owner enough to provide them with a secret key
in the clear.

Updatable encryption was first defined in [BLMR13] as an application of
KHPRFs. The definitions proposed in [BLMR13] were subsequently refined by
Everspaugh et al. in [EPRS17]. In a more recent work, Lehmann and Tack-
mann [LT18] introduced more rigorous security notions for updatable encryption
that are desirable for real-world applications, and also pointed out that none of
the existing constructions satisfy these notions. In this section, we show that
updatable encryption with adaptive update indistinguishability (IND-UPD) as
defined by Lehmann and Tackmann [LT18] implies public-key encryption. We
start by defining the general functionality of any UE scheme. Note that all of
the definitions we use here are from [LT18].

Definition 6. (Updatable Encryption). An updatable encryption scheme UE
for a message space M is a tuple of five PPT algorithms (Setup,Next,Enc,
Dec,Update) defined as follows:

• Setup(1λ): Given the security parameter λ, it generates a secret key sk0.
• Next(ske): On input a secret key ske for epoch e, it generates a new secret key
ske+1 and a new update token Δe,e+1 for epoch (e + 1).

• Enc(ske,m): On input a secret key ske for epoch e and a message m ∈ M, it
generates a ciphertext cte.
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• Dec(ske, cte): On input a secret key ske and a ciphertext cte for some epoch
e, it either outputs a message m′ ∈ M or ⊥.

• Update(Δe,e+1, cte): On input an update token Δe,e+1 and a ciphertext cte
for some epoch e, it outputs an updated ciphertext cte+1 for epoch (e + 1).

Correctness. For any message m ∈ M, for any sk0 ← Setup(1λ), and for
any sequence of key/update token pairs (sk1,Δ0,1), . . . , (ske,Δe−1,e) obtained
recursively as (skj ,Δj−1,j) ← Next(skj−1) for each j ∈ [e], we have

Dec(skj , ctj) = m,

for any j ∈ [e], where the sequence of ciphertexts ct0, ct1, . . . , cte is obtained as
ct0 = Enc(sk0,m) and ctj ← Update(Δj−1,j , ctj−1) for each j ∈ [e].

Security Notions for UE. In their paper [LT18], Lehmann and Tackmann
define several notions of security for updatable encryption. Previous works
had somewhat non-accurate notions of security, so we consider the definitions
from [LT18] to be the only suitable ones currently known for UE. In this section,
we focus on their IND-UPD security definition, which we explain below. In our
opinion, this definition reflects the security needs of a user storing data and
updating ciphertexts in an untrusted cloud. However, debating the definitions of
UE is out of scope of this paper, and we refer to the sections 3 and 4 of [LT18]
for a discussion of notions of UE security.
Forward and Post-Compromise Security. We adopt the definition of post-
compromise security for UE schemes proposed and formalized by Lehmann and
Tackmann in a recent work [LT18]. More specifically, we focus on the notion
of adaptive update indistinguishability, or IND-UPD in short (also referred to
as unlinkability), which ensures that an updated ciphertext obtained via the
Update algorithm does not reveal any information about the previous ciphertext
to a PPT adversary A, even when A adaptively compromises polynomially many
keys and tokens before and after the challenge epoch.
Adaptive Update Indistinguishability. We recall the formal definitions for
adaptive update indistinguishability from [LT18]. We assume that the adversary
has access to the following oracles (e is an epoch counter initialized to 0 and L
is a list initialized to empty):

1. OEnc: On input a message m, this oracle outputs cte ← Enc(ske,m), where
ske is the secret key corresponding to the current epoch e, and adds the tuple
(cte, e) to the list L.

2. ONext: When queried, this oracle generates a new key/update token pair as
(ske+1,Δe,e+1) ← Next(ske), updates the epoch counter to (e + 1) and adds
(e + 1, ske+1,Δe,e+1) to the global state of the challenger. If issued post
challenge-query phase, it also updates the challenge ciphertext to the new
epoch as ct∗e ← Update(Δe−1,e, ct

∗
e−1), and adds (ct∗e, e) to the list L.

3. OUpdate: On input a ciphertext cte−1 such that (cte−1, e − 1) ∈ L (i.e., the
input ciphertext is honestly generated during the previous epoch), this oracle
outputs cte ← Update(Δe−1,e, cte−1), and adds (cte, e) to the list L.
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4. Ocorrupt: This oracle takes as input an epoch e′ ≤ e (where e is the current
epoch) and either key or token. On input (e′, key), it outputs the key ske′ . On
input (e′, token), it outputs the token Δe′−1,e′ .

5. Ochallenge: This oracle returns the current challenge ciphertext ct∗e from the
list L.

For each bit b ∈ {0, 1}, define the following experiment Exptind-updb between a
challenger and an adversary A:

Experiment Exptind-updb :

1. The challenger generates sk0 ← Setup(1λ).
2. The challenger maintains an epoch counter e, a challenge epoch counter e∗

and a list L. Initially, e = 0, e∗ = ⊥ and L = φ.
3. The adversary A adaptively issues any number of queries to the OEnc, ONext,

OUpdate and Ocorrupt oracles. These oracles update the epoch counter e and the
list L as described above.

4. The adversary A eventually outputs a pair of ciphertexts (ct0, ct1), subject to
the restriction that (ct0, e − 1), (ct1, e − 1) ∈ L and |ct0| = |ct1|.

5. The challenger queries the ONext oracle to obtain the key/update token pair
(ske, Δe−1,e).

6. The challenger sets ct∗e ← Update(Δe−1,e, ctb) and adds the tuple (ct∗e , e) to
the list L. It also sets e∗ = e.

7. The adversary A continues to adaptively issue any number of queries to the
OEnc, ONext, OUpdate, Ocorrupt and Ochallenge oracles, albeit subject to the following
restrictions:
(a) A has not made an update-query to the Ocorrupt oracle during the challenge

epoch e∗, that is, it does not know the update token Δe∗−1,e∗ .
(b) If E∗

0 is the set of all epochs during which A has queried the Ochallenge oracle
and E∗

1 is the set of all epochs during which A has made key-queries to
the Ocorrupt oracle, then E∗

0 ∩ E∗
1 = {}.

Definition 7. (IND-UPD secure Updatable Encryption). An updatable encryp-
tion scheme (Setup,Next,Enc,Dec,Update) is said to be IND-UPD-secure if for all
PPT adversaries A, the views of A in the experiments Exptind-upd0 and Exptind-upd1

are computationally indistinguishable. (Note that in the aforementioned defi-
nition, we implicitly assumed that the update algorithm of the underlying UE
scheme is randomized.)

We now show that any updatable encryption scheme that satisfies adaptive
update indistinguishability implies a PKE scheme. More formally, let UE =
(Setup,Next,Enc,Dec,Update) be an IND-UPD secure scheme. We construct a
PKE scheme as follows.
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• Key Generation: The key generation algorithm receives as input the security
parameter λ. It first generates a secret key for the UE scheme as sk0 ←
Setup(1λ). It then recursively updates this secret key (e + 1) times for some
arbitrarily chosen epoch e, as

(skj ,Δj−1,j) ← Next(skj−1) for each j ∈ [e + 1].

Finally, it chooses two messages m0,m1 ∈ M such that m0 = m1, sets

ct∗0 = Enc(ske,m0), ct∗1 = Enc(ske,m1),

and outputs the secret key/public key pair (skPKE, pkPKE) as

skPKE = ske+1, pkPKE = ((m0, ct
∗
0), (m1, ct

∗
1),Δe,e+1) .

• Encryption: To encrypt a bit b ∈ {0, 1}, the encryption algorithm outputs
a randomized update of ct∗b to the epoch e + 1 using the publicly available
update token Δe,e+1. More formally, on input a bit b ∈ {0, 1}, the encryption
algorithm outputs

ctPKE ← Update(Δe,e+1, ct
∗
b).

• Decryption: On input a ciphertext ctPKE, the decryption algorithm computes

m′ = Dec(skPKE, ctPKE).

If m′ = mb for some b ∈ {0, 1}, it outputs b. Otherwise, it outputs ⊥.

Correctness is straightforward to verify. We now formally prove the following
theorem.

Theorem 3. If UE is IND-UPD secure, then the aforementioned PKE scheme
is IND-CPA secure.

Proof. Let A be an adversary that breaks the IND-CPA security of the PKE
scheme with non-negligible advantage ε. We construct an algorithm B that
breaks the IND-UPD security of UE with advantage ε′ = ε/2. B proceeds as
follows:

1. B plays the IND-UPD security game with the challenger for UE till some epoch
e − 1 for some arbitrarily chosen challenge epoch e. At this point, B chooses
a pair of arbitrary messages m0,m1 ∈ M such that m0 = m1, and queries the
OEnc oracle to obtain (ct0, ct1), where

ct0 = Enc(ske−1,m0), ct1 = Enc(ske−1,m1).

2. B outputs (ct0, ct1) as the pair of challenge ciphertexts, and receives the
challenge ciphertext ct∗e, which is a randomized update of ctb to the epoch e
for b ← {0, 1}.
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3. Next, B issues the following additional queries:
(a) It queries the OUpdate oracle to receive c̃t

∗
e, which is a randomized update

of ct1 to the epoch e.
(b) It issues a query to the ONext oracle, followed by a token-query to the

Ocorrupt oracle, to obtain an update token Δe,e+1.

Note that none of the aforementioned queries violate any of the constraints
described in the IND-UPD security experiment.

4. B now provides the adversary A with the public key pkPKE, where

pkPKE =
(
(m0, ct

∗
e), (m1, c̃t

∗
e),Δe,e+1

)
.

5. B uniformly samples b′ ← {0, 1} and outputs the challenge ciphertext ct∗PKE,
where

ct∗PKE =

{
Update(Δe,e+1, ct

∗
e) if b′ = 0,

Update(Δe,e+1, c̃t
∗
e) if b′ = 1.

6. B outputs whatever A outputs.

Observe that when b = 0, the distribution of the public key pkPKE in the view
of A is exactly as in the real IND-CPA experiment. On the other hand, if b = 1,
then ct∗e and c̃t

∗
e are sampled from the same distribution. It follows that the

advantage of B in the IND-UPD experiment is ε′ = ε/2. This completes the
proof of Theorem 3.

5 Negative Results in Quantum Setting

In this section we show that any homomorphic one-way function (HOWF)
with exact/unbounded homomorphism over abelian groups can be broken using
a quantum algorithm. Since exact (or unbounded) KHwPRFs (and hence
KHPRFs) over abelian groups trivially imply unbounded HOWFs, it follows
that there is no secure construction of an unbounded KHPRF/KHwPRF in
quantum world. As a result, a secure KHwPRF either needs to have an approx-
imate homomorphism, or the homomorphism should hold over a non-abelian
group.

At a high level, given any abelian group with certain conditions there are
known quantum algorithms to determine the structure of the group. That is,
given an abelian group G, there is an efficient quantum algorithm to find (an
efficiently computable) isomorphism ψ : G → Zq1 ⊕ · · · ⊕ Zqm

. We apply this
to both the input and output group of a candidate HOWF f . Then we show
a simple classic algorithm that given these isomorphisms over the input and
output group of f , one can simply break one-wayness of f .

Theorem 4. Let f : X → Y be a (classic) HOWF such that X and Y are
abelian groups, and there exists an efficient algorithm to find a generating set
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for Y. There exists a polynomial quantum algorithm that breaks the one-wayness
of f with non-negligible advantage.7

First we recall the following fact from algebra. A proof can be found in any
standard textbook.

Theorem 5. Any finite abelian group is isomorphic to a direct sum of cyclic
groups, and each cyclic group has a prime power order.

We also rely on the following quantum algorithm (see [CM01] and Section 6.2
of [Chi17] for more details).

Theorem 6. Let G be a finite abelian group such that (1) each element of G has
a unique decoding, (2) there is an efficient algorithm to do group operations on
the elements of G, and (3) there is an efficient algorithm to find a generating set
for G. There is a polynomial time quantum algorithm such that decomposes the
group G as

G = 〈g1〉 ⊕ · · · ⊕ 〈gM 〉,
in terms of the generators g1, . . . , gM , and for every m,m′ ∈ [M ] such that
m = m′ we have 〈gm〉 ∩ 〈gm′〉 = {e}, where e is the identity element of G.
Moreover, the isomorphism

ψ : G → Z|〈g1〉| ⊕ · · · ⊕ Z|〈gM 〉|,

(in both ways) can be computed efficiently.

Now we are ready to proceed to the proof of Theorem 4. Let f : X → Y be
an unbounded HOWF such that X and Y are abelian groups. Given a challenge
y∗ ∈ Y such that y∗ := f(x∗) for some uniform x∗ ← X , we want to find a
preimage x such that f(x) = y∗. Let

X̃ := Zp1 ⊕ · · · ⊕ ZpM
, Ỹ := Zq1 ⊕ · · · ⊕ ZqN

be the decomposition of groups X and Y, respectively, where pi (respectively,
qj) is a prime power for m ∈ [M ] (respectively, n ∈ [N ]). We fix some arbi-
trary order for the cyclic groups, and we call X̃ an explicit representation of
X . Using Theorem 6, we can efficiently compute the isomorphisms ψX , ψY (and
their inverses) for any element in the domain of the isomorphism where

ψX : X → X̃ , ψY : Y → Ỹ.

We define f̃ : X̃ → Ỹ as the analog of f over the explicit representations of
X and Y, i.e., define

f̃(x̃) = ψY(f(ψ−1
X (x̃))).

7 Notice that it is almost always the case that Y is an efficiently samplable group.
By Theorem 5 of [AGKP14], a set of uniform elements with size 3 log|Y| forms a
generating set for Y with an overwhelming probability.
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It is not hard to see that f(x) = y is equivalent to f̃(ψX (x)) = ψY(y).
Because the isomorphisms ψX , ψY and their inverses are efficiently computable,
it is enough to show an attack against one-wayness of f̃ .

For each n ∈ [N ], we define en ∈ Zp1 ⊕ · · · ⊕ ZpN
to be the (unit) vector

whose nth component is 1, and all other components are 0.8 For an element
ỹ ∈ Ỹ, let [ỹ]m ∈ Zqm

be the mth component of ỹ. We compute the index set
Im for each m ∈ M as

Im = {n ∈ [N ] | [f̃(en)]m = 0}.

All index sets {Im}m∈[M ] can be computed efficiently since both N and M
are polynomially bounded. Define a vector of variables z = (z1, . . . , zN ) ∈ Z

N ,
and for each m ∈ [M ], consider the following system of modular equations where
{zi}i∈Im

are the (unknown) variables:

Sm :
∑

i∈Im

zi[f̃(ei)]m ≡ [ỹ]m (mod qm)

Consider the following observations:

• Without loss of generality we can assume that for two distinct m,m′ ∈ [M ],
we have gcd(qm, q′

m) = 1. If qm = q′
m, we can simply merge Sm and Sm′ . If

qm < qm′ and gcd(qm, q′
m) > 1, we can “lift” the equation in Sm′ simply by

multiplying the both sides by qm′
/qm and adding the resulting equation to

Sm′ . We refer to this part as “merging step”.
• Observe that for any two integers p > 1, q > 1, if there is a non-trivial

homomorphism from Zp to Zq then either p | q or q | p. Therefore, if zn

appears in Sm (or equivalently n ∈ Im), we either have pn | qm or qm | pn.

Let M ⊆ M be the set of indices after the “merging step”. Using the previous
observations, it follows that

• For any two distinct m1,m2 ∈ M , we have gcd(qm1 , qm2) = 1.
• For any n ∈ N , there is at most one m ∈ M such that the variable zn appears

in Sm.

Each system of equation(s) Sm can be seen as a system of linear equation(s)
over the group Zqm

, and it can solved using the known algorithms for solving
linear equations over finite abelian groups, e.g., [GR02]. One can equivalently
interpret each Sm as a system of equations over the finite ring Zqm (since qm is
not necessarily prime).

By solving each system Sm, we can determine the vector z ∈ Z
N . Finally, we

output x̃ as the preimage of ỹ the attacker where

x̃ = (z1 mod p1, . . . , zN mod pn).

By construction, we know that the vector z satisfies all system of equation(s)
{Sm}m∈M . It follows that f̃(x̃) = ỹ, as required.
8 Notice that each component may live in a different cyclic group.
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Building Quantum-Secure Primitives from Abelian Groups. Our results
here may have some implications for the construction of quantum-secure primi-
tives over abelian groups. For instance, in [AMPR19], the authors showed that
many public-key cryptosystems can be built from generic primitives with exact
homomorphism. Our results here give evidence that such constructions are not
going to be quantum-secure when instantiated with new assumptions that rely on
abelian groups. Lattice-based primitives do not support exact homomorphisms,
which makes them immune to a wide class of quantum attacks. However, there
do exist other assumptions relying on abelian groups, such as isogeny-based
assumptions [JD11], for which similar notions of homomorphism are yet to be
explored [dOPS18].

References

[ABH09] Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-
encryption. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp.
279–294. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
00862-7 19

[ABPW13] Aono, Y., Boyen, X., Phong, L.T., Wang, L.: Key-private proxy re-
encryption under LWE. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT
2013. LNCS, vol. 8250, pp. 1–18. Springer, Cham (2013). https://doi.org/
10.1007/978-3-319-03515-4 1

[AFGH05] Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-
encryption schemes with applications to secure distributed storage. In:
NDSS 2005. The Internet Society, February 2005

[AFGH06] Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-
encryption schemes with applications to secure distributed storage. ACM
Trans. Inf. Syst. Secur. (TISSEC) 9(1), 1–30 (2006)

[AGKP14] Armknecht, F., Gagliardoni, T., Katzenbeisser, S., Peter, A.: General
impossibility of group homomorphic encryption in the quantum world. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 556–573. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 32

[AMPR19] Alamati, N., Montgomery, H., Patranabis, S., Roy, A.: Minicrypt primi-
tives with algebraic structure and applications. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 55–82. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 3

[Bar17] Barak, B.: The complexity of public-key cryptography. In: Lindell, Y. (ed.)
Tutorials on the Foundations of Cryptography. ISC, pp. 45–77. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57048-8 2

[BBS98] Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic
proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol.
1403, pp. 127–144. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054122

[BDRV18] Berman, I., Degwekar, A., Rothblum, R.D., Vasudevan, P.N.: From laconic
zero-knowledge to public-key cryptography. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 674–697.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0 23

https://doi.org/10.1007/978-3-642-00862-7_19
https://doi.org/10.1007/978-3-642-00862-7_19
https://doi.org/10.1007/978-3-319-03515-4_1
https://doi.org/10.1007/978-3-319-03515-4_1
https://doi.org/10.1007/978-3-642-54631-0_32
https://doi.org/10.1007/978-3-030-17656-3_3
https://doi.org/10.1007/978-3-319-57048-8_2
https://doi.org/10.1007/BFb0054122
https://doi.org/10.1007/BFb0054122
https://doi.org/10.1007/978-3-319-96878-0_23


Symmetric Primitives with Structured Secrets 677

[BFP+15] Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-
homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 31–60. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46497-7 2

[BLMR13] Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomor-
phic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40041-4 23

[BLSV18] Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous
IBE, leakage resilience and circular security from new assumptions. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol.
10820, pp. 535–564. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-78381-9 20

[BP14] Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudoran-
dom functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
I. LNCS, vol. 8616, pp. 353–370. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44371-2 20

[BPR12] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29011-4 42

[BR17] Bogdanov, A., Rosen, A.: Pseudorandom functions: three decades later.
In: Lindell, Y. (ed.) Tutorials on the Foundations of Cryptography. ISC,
pp. 79–158. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57048-8 3

[BV15] Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs
from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015, Part II. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46497-7 1

[CCL+14] Chandran, N., Chase, M., Liu, F.-H., Nishimaki, R., Xagawa, K.: Re-
encryption, functional re-encryption, and multi-hop re-encryption: a
framework for achieving obfuscation-based security and instantiations
from lattices. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
95–112. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
54631-0 6

[CH07] Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-
encryption. In: Ning, P., De Capitani di Vimercati, S., Syverson, P.F.
(eds.) ACM CCS 2007, pp. 185–194. ACM Press, October 2007

[Chi17] Childs, A.M.: Lecture notes on quantum algorithms (2017). https://www.
cs.umd.edu/∼amchilds/qa/qa.pdf

[CM01] Cheung, K.K.H., Mosca, M.: Decomposing finite abelian groups. Quantum
Inf. Comput. 1(3), 26–32 (2001)
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Abstract. In the last decade, several works have focused on finding the
best way to model the leakage in order to obtain provably secure imple-
mentations. One of the most realistic models is the noisy leakage model,
introduced in [PR13,DDF14] together with secure constructions. These
works suffer from various limitations, in particular the use of ideal leak-
free gates in [PR13] and an important loss (in the size of the field) in the
reduction in [DDF14].

In this work, we provide new strategies to prove the security of masked
implementations and start by unifying the different noisiness metrics
used in prior works by relating all of them to a standard notion in
information theory: the pointwise mutual information. Based on this
new interpretation, we define two new natural metrics and analyze the
security of known compilers with respect to these metrics. In particu-
lar, we prove (1) a tighter bound for reducing the noisy leakage models
to the probing model using our first new metric, (2) better bounds for
amplification-based security proofs using the second metric.

To support that the improvements we obtain are not only a con-
sequence of the use of alternative metrics, we show that for concrete
representation of leakage (e.g., “Hamming weight + Gaussian noise”),
our approach significantly improves the parameters compared to prior
works. Finally, using the Rényi divergence, we quantify concretely the
advantage of an adversary in attacking a block cipher depending on the
number of leakage acquisitions available to it.

1 Introduction

In modern cryptography, it is common to prove the security of a construction
by relying on the security of its underlying building blocks or on the hardness
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of standard computational problems. This approach has allowed the community
to propose a wide variety of cryptographic primitives based on only a limited
number of different assumptions (e.g., factoring, learning parity with noise, exis-
tence of one-way functions, security of AES or SHA-3, etc). Unfortunately, there
is still a significant gap between the ideal security models that are used in prov-
able security, and the actual environments in which these cryptosystems are
deployed. Notably, standard security models usually assume that attackers have
only a black-box access to the cryptosystem: attackers do not have any informa-
tion beyond the input/output behavior.

Yet, it is well known that this is generally not true in practice. These cryp-
tosystems are run by physical devices, hence an adversary might be able to
learn partial information such as the running-time, the power consumption, the
electromagnetic emanation, or several other physical measures of the device.
As revealed by Kocher et al. in [Koc96,KJJ99], these additional information,
referred to as the leakage of the computation, are valuable and can be used
to mount side-channel attacks against cryptographic implementations. Hence,
a cryptosystem that is proven secure in an ideal security model can become
completely vulnerable when deployed in the real-world.

Due to the fundamental importance of secure implementations of crypto-
graphic primitives, constructing leakage-resilient cryptography has become a
major area of research. Many empirical countermeasures have been proposed
over the last decades and an important line of works has aimed at formalizing
the notion of leakage towards obtaining provably secure implementations.

The presence of leakage in the real-world has been formalized by introduc-
ing new security models in which the attacker can obtain additional informa-
tion about the computation. In a seminal work from 2003 by Ishai, Sahai, and
Wagner [ISW03], the authors introduced the d-probing (or d-threshold prob-
ing) model, in which an attacker can learn a bounded number d of intermediate
results (i.e. wire values, also called probes) of a computation C. A circuit is
then secure in this model if any subset of at most d probes does not reveal any
information about the inputs of the computation. That is, the distribution of
values obtained by probing should be independent of the inputs of the com-
putation. While this model is ideal and does not fully catch the behavior of
a device in the real-world (e.g., physical leakages reveal information about the
whole computation), it is simple enough to get efficient compilers that transform
any circuit into a secure one in the d-probing model, as shown in [ISW03]. They
built secure addition and multiplication in the d-probing model based on secret-
sharing techniques1 and immunize any arithmetic circuit by replacing every gate
by its secure variant. This transformation blows up the size of the circuit by a
factor O(d2). A different and more realistic model was proposed by Micali and
Reyzin in 2004 [MR04]. They defined a model of cryptography in presence of
arbitrary forms of leakage about the whole computation. The above two works

1 Basically, their secure variants take as input additive shares of the input and produce
additive shares of the output. Their secure multiplication that operates on additive
shares is often referred to as the ISW-multiplication.
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are cornerstones of leakage-resilient cryptography. In particular, the assumption
that only computation leaks information (thus a program can still hide some
secrets) originated in these works. Following the path of [MR04], Dziembowski
and Pietrzak proposed in 2008 a simplified model for leakage-resilient cryptog-
raphy in [DP08]. In this model, any elementary operation on some input x leaks
a partial information about x, modeled as the evaluation f(x) of a leakage func-
tion whose range is bounded, so an adversary is given access to the leakage f(x)
for every intermediate result x of the evaluation of C. Unfortunately, this model
has a drawback: the range of the leakage function is bounded and fairly small
(e.g., 128-bit strings) compared to the actual amount of information that can be
obtained from a device (e.g., a power trace on an AES computation can contain
several megabytes of information).

To circumvent this limitation, Prouff and Rivain proposed in [PR13] a more
realistic leakage model, called the noisy leakage model. The authors modified the
above definition of leakage by making an additional but realistic assumption: the
information f(x) leaked by an elementary operation on some input x is noisy.
Specifically, the authors assumed that f is a randomized function such that
the leakage f(x) only implies a bounded bias in the distribution of x, which is
formally defined as distributions X and X|f(X) being close (up to some fixed
bound δ), where X denotes the distribution of x. The authors measured closeness
with the Euclidean Norm (denoted EN) between the distributions (over finite
sets) and propose solutions to immunize symmetric primitives in this model.
Their model is inspired by the seminal work of Chari et al. [CJRR99] that
considered the leakage as inherently noisy and proved that using additive secret-
sharing (or masking) on a variable X decreases the information revealed by the
leakage by an exponential factor in the number of shares (or masking order).
This kind of proof is referred to as amplification-based, and Prouff and Rivain
extended it to a whole block cipher evaluation.

A drawback of this model is the difficulty to design proofs. In addition,
the constructions in [PR13] rely on a fairly strong assumption: the existence of
leak-free refresh gates (i.e. gates that do not leak any information and refresh
additive shares of x)2. Both limitations were solved by Duc, Dziembowski, and
Faust in [DDF14]. In the latter work, using the statistical distance (denoted SD)
instead of the Euclidean norm as measure of closeness, the authors showed that
constructions proven secure in the ideal d-probing model of Ishai et al. are also
secure in the δ-noisy leakage model, provided d is large enough (function of δ).
As a consequence, the simple compilers for building d-probing secure circuits
can serve for achieving security in the noisy leakage model, proving a conjecture
broadly admitted for several years based on empirical observations.

The present work extends the two above results and proposes general solu-
tions to immunize cryptographic primitives in the noisy leakage model. We start
by giving a more formal overview of these two works.

2 In practice, refresh gates are often implemented via an ISW-multiplication with
additive shares of 1 (e.g., shares (1, 0, . . . , 0)).
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1.1 Previous Works

As explained above, two distinct approaches for immunizing cryptosystems in the
noisy leakage model have been considered: (1) a direct approach, used in [PR13],
that proves the security of a construction directly in the model via noise amplifi-
cation, and (2) an indirect approach, used in [DDF14], that consists in reducing
security in the noisy leakage model to security in ideal models (e.g., the probing
model) and then applying compilers for the latter models.

A direct approach. In [PR13], the authors propose a way to immunize block
ciphers of a particular form (succession of linear functions and substitution boxes,
a.k.a. s-boxes, e.g., AES). Their approach consists in replacing elementary oper-
ations of such block ciphers by subprotocols that operate on masked inputs and
produce a masked output. They bound the leakage on each subprotocol and
as a consequence are able to bound the leakage of a single evaluation of the
masked block cipher (i.e. the block cipher obtained by replacing every elemen-
tary operation by the corresponding subprotocol and applying leak-free refresh
gates between each subprotocol). They conclude by proving an upper bound
on the information (in an information-theoretic sense) revealed by the leakage
about the input (plaintext/key) from evaluations of the masked block cipher, in
particular proving that it decreases exponentially in the masking order.

While this paper makes great progress towards constructing provably-secure
leakage-resilient block ciphers, it suffers from a few limitations. First, as already
mentioned, the security proof relies on leak-free refresh gates. Second, the fact
that the final analysis relies on the mutual information implies a rather paradoxal
situation: from an information theory perspective, a single pair of plaintext-
ciphertext can reveal the key. To get around this problem, the authors assume
that both the plaintext and the ciphertext are secret, which is fairly unrealistic
compared to standard security models for block ciphers. Finally, to offer strong
security guarantees, the mutual information should be upper bounded by 2−O(λ),
with λ being the security parameter. Hence, the masking order for reaching this
bound only depends on λ, which is independent of the number of queries (and
therefore the amount of leakage) the adversary makes.

An indirect approach. In [DDF14], the authors propose an elegant approach
that applies to any form of computation. Their main result proves that any infor-
mation obtained in the δ-noisy leakage model (so information of the form f(x)
for any intermediate result x of the computation) can be simulated from a suffi-
ciently large number d of probes. As such a set of probes does not carry any infor-
mation about the inputs if the circuit is secure in the (d+1)-probing model, this
guarantees that the information obtained in the δ-noisy leakage model does not
carry any useful information either. Hence, using standard compilers to secure a
cryptosystem in the (d+1)-probing model makes it secure when deployed in the
real-world, assuming the leakage is δ-noisy. Unfortunately, this reduction incurs
an important blow-up in the parameters (δ → d). Notably d has to be at least
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N times larger than δ to guarantee security, where N is the size of the field on
which the circuit operates. This loss appears in an intermediate step of their
reduction when first reducing the noisy leakage model to the random probing
model3. Typically, for AES, we have N = 256, so the required order d of security
is very large (and so is the size of the masked circuit since applying the ISW
compiler increases the size by a factor d2).

This loss is seemingly an artifact of the reduction and has not been observed
in empirical measures [DFS15a]. A first attempt to circumvent this issue was
made in [DFS15b] by introducing a new model, called the average random prob-
ing model, which is a tweak of the random probing model. The authors prove
a tight equivalence between the noisy leakage and the average random probing
models and show that the ISW compiler is secure in their model.

Yet, there are two caveats. First, their proof of security of the ISW compiler
introduce leak-free gates, whereas [DDF14] does not. Second, [DFS15b] does not
establish a reduction from the average random probing to the threshold probing
model, hence leaving open the question of improving the reductions provided
in [DDF14]. In this paper, we overcome these two issues and provide a tight
reduction from a4 noisy leakage model to the threshold probing model without
leak-free gates nor a loss in the size of the field.

1.2 Our Contributions

We extend the previous studies of leakage-resilient cryptography in several direc-
tions. Our approach starts by relating the noisiness of a leakage to a standard
notion in information theory: the pointwise mutual information (PMI).

From pointwise mutual information to noisiness metrics. Our first obser-
vation is that the two metrics used in prior works to measure the distance
between X and X|f(X), namely the Euclidean norm (EN) and the statisti-
cal distance (SD), can be easily expressed as different averages of the pointwise
mutual information of the same distributions. Given this interpretation, it is
easy to see that these two measures are average-case metrics of noisiness.

We investigate the benefits of considering the problem of building leakage-
resilient cryptography based on two other worst-case metrics that naturally fol-
low from the pointwise mutual information: the Average Relative Error (ARE)
and the Relative Error (RE). Using these two metrics, we propose tighter proofs
for immunizing cryptosystems in the noisy leakage model. We emphasize that

3 In the ε-random probing model, the adversary learns each exact wire value with
probability ε (and nothing about it with probability 1 − ε).

4 Noisy-leakage models are inherently associated to the metric used to measure nois-
iness. [PR13] is based on the Euclidean norm, [DDF14] on the statistical distance.
We introduce new metrics, therefore new models. Yet, the overall result remain com-
parable as only the noisiness of the leakage is impacted by the metric, but not the
leakage itself, so the metric is just a tool to argue the security (security against the
leakage being independent of the metric).
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even though we introduce new metrics (and therefore new noisy leakage mod-
els), our goal remains to prove that we can simulate perfectly the leakage (which
depends on the intermediate values but does not depend on the metric) from
a certain amount of probes. The metric only plays a role in determining the
amount of probes that is needed for simulating the leakage, i.e. the sufficient
masking order to immunize the computation, but does not play any role in mea-
suring the quality of the simulation (which remains perfect). We are able (in
general) to prove better bounds for the amount of probes needed for the simu-
lation. In particular, combining our results with known compilers is particularly
interesting for typical forms of concrete leakage such as the “Hamming weight +
Gaussian noise” model.

A tighter reduction from noisy leakage to random probing. We propose
a reduction from the noisy leakage model to the random probing model, when
the noise is measured with the ARE metric. Our reduction is analogous to
the reduction proposed from [DDF14]. Once reduced to the random probing
model, it is easy to go to the threshold probing model by a simple probabilistic
argument (observed in [DDF14]). Using the ARE metric, we are able to reduce
the δ-noisy leakage model (where the noise is measured with the ARE metric)
to the δ-random probing model (instead of the δ · N -random probing model
for prior work using the SD metric). Again, we emphasize that, despite using
different metrics, these reductions allows to simulate the exact distribution of
the leakage, which is completely independent of the underlying metric.

This tighter reduction has immediate, tangible consequences when consider-
ing compilers which are proven secure in the threshold probing model [ISW03]
or in the random probing model [ADF16,GJR17,AIS18]: for a specific form of
noisy leakage, as long as the ARE-noisiness is smaller than N times than the SD-
noisiness, our reduction guarantees security using a smaller masking order than
the reduction based on the SD metric. In particular, we show for the concrete
“Hamming weight + Gaussian noise” model of leakage that our result reduces
the required masking order by a factor O(N/

√
log N) compared to [DDF14].

Actually, even though we do not start from the same metrics (and then from
the exact same noisy leakage model), we prove that the ARE-noisiness of any
function is upper bounded (up to a factor 2 · N) by its SD-noisiness. Then, even
in the worst case, our reduction (which is tighter by a factor N) gives as good
results (up to a factor 2) as the reduction in [DDF14]. Reversely the SD-noisiness
is upper bounded by the ARE-noisiness (up to a factor 2), so the loss of a factor
N in the reduction is not compensated, which explains the large improvement
we gain from our approach in certain cases such as the aforementioned one.

As a side contribution, and perhaps surprisingly, we are also able to prove
a converse reduction: we show that the random probing model reduces to the
ARE-noisy leakage model (though it incurs a loss of a factor N −1). This follows
from observing that the random probing model is a special instance of the ARE-
noisy leakage model. This implies that the SD-noisy leakage, ARE-noisy leakage
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and (average) random probing models are all equivalent. We believe that this
result is of independent interest and could find applications in future works.

While we focus on using a compiler introduced in [ISW03], which has also
been studied in [PR13,DDF14,DFS15b], other compilers also benefit from our
work in obvious ways (e.g., the compilers described in [ADF16,GJR17,AIS18]
are secure in the random probing model, hence benefit from our reduction to
the noisy leakage model).

Our reductions and previously known reductions are summarized in Fig. 1.
This diagram represents the interactions between various leakage models (from
very concrete ones, like “Hamming weight with Gaussian noise”, to theoretical
models such as the threshold probing model) and circuit compilers. The physical
noise model is displayed on the first line, noisy leakage models on the second
line, probing models on the third line, and circuit compilers are displayed on
the fourth line. Arrows from a model M to a compiler C means that C is proven
secure in the model M. An arrow from a model M1 to a model M2 means that
an adversary in M1 can be simulated in M2 with the overhead indicated next
to the arrow. Our contributions (models and reductions) are displayed in bold.
For the sake of clarity, constant factors are omitted. N denotes the size of the
underlying finite field, and λ denotes the security parameter of the scheme to
protect.
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[this work]

ARE-noisy leak-
age [this work]

SD-noisy
leakage [DDF14]
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Fig. 1. From concrete leakages to secure circuit compilers: an overview of reduction-
based proofs and our contributions.
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An amplification-based proof with the Rényi divergence. Our second
main contribution is a new amplification-based proof which improves over exist-
ing ones in some aspects. Once again, we put our result in perspective with
concrete noisy leakage models where the noise follows a Gaussian distribution
N (0, σ) with standard deviation σ, e.g., the “Hamming weight + Gaussian noise”
model. In the context of leakage-resilient cryptography, known amplification-
based proofs show that if σ is large enough, then the leakage of a masked circuit
decreases exponentially in the masking order; equivalently (and we will use this
perspective for convenience), it shows that the required amount of Gaussian
noise decreases when the masking order increases.

The most notable amplification-based proofs of masked circuits are due to
[PR13], which uses the EN-noisy leakage model, and [DFS15b], which uses the
average random probing model (or equivalently, the SD-noisy leakage model).
Both works yield a condition on σ, precisely they impose σ = Ω(d×f ×g1/(d+1)),
where the functions f and g are constant in the masking order d. Here, f acts
like a factor of σ which is fixed (it does not depend of d), whereas g acts like a
compressible part whose impact on σ can be decreased by increasing the masking
order. Both terms are important, because f cannot be compressed, but g can
be very large in practice. Our new amplification-based proof relies on the RE-
noisiness, and can be seen as revisiting the proof of [PR13]. Compared to the
previous works, it provides several qualitative and quantitative gains:

– Whereas in the previous works, σ was exponential in the security level λ
(more precisely, larger than 2λ/(d+1)), in our case it is only proportional to√

λ; This is thanks to our use of the Rényi divergence, which allows to replace
2λ/(d+1) by q1/(d+1), where q denotes the number of traces (i.e. the number of
evaluations with known leakage) obtained by the attacker. This is a far lighter
constraint, since in cryptography it is typical to take λ = 256, whereas it is
extremely rare to have more than 232 traces available.

– Our Rényi divergence-based proof shows that the view of a black-box adver-
sary is not significantly different from the view of an adversary which has
access to leakage, and we relate the distance between these two views to the
masking order and the number of traces available to the adversary (in partic-
ular upper bounded by the number of queries).

– Compared to [DFS15b], our fixed part f is larger, but our compressible part
g is much smaller: for the above values of q and λ, g will be 232 in our case,
whereas it would be larger than 21024 in the case of [DFS15b]. In addition,
[DFS15b, Lemma 14 and Theorem 1] implicitly impose d to be linear in λ +
log N , which gives an extremely high masking order. Our proof imposes no
such bound.

In Fig. 1, amplification proofs correspond to Leak-Free Refresh arrows.
Finally, in Table 1, we compare our results with the state-of-the-art

approaches in the case of Hamming weight + Gaussian noise for both reduction-
based proofs and amplification-based proofs. Our bound for the noisiness are
taken from Proposition 3. The conditions on the Gaussian noise level σ are given,
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Table 1. Comparison with prior works (combined with Proposition 3).

Work Condition on σ Other condition LFR Model Tool

[DDF14,
Thm 1]

Ω
(
dN

√
lnN

)
d = Ω(λ + ln |Γ |) No CPA ΔSD

This work
(Sect. 5)

Ω (d lnN) d = Ω(λ + ln |Γ |) No CPA ΔSD

[PR13, Cor
2, Thm 4]

Ω
(
dN

√
lnN × (N32λ|Γ |)1/(d+1)

)
d = Ω(dN3/2

√
lnN) Yes RPA MI

[DFS15b,
Cor 4]

Ω
(
d
√
lnN × [

(Nd2λ)4|Γ |]1/d
)

d = Ω(λ + ln(N |Γ |)) Yes CPA ΔSD

This work
(Sect. 6)

Ω
(
d
√

λ lnN × (q|Γ |)1/(d+1)
)

- Yes CPA R∞

as well as additional conditions when they exist. LFR indicates whether leak-
free refresh gates are required in the security proof. Model states the model of
attacker (random-plaintext or chosen-plaintext). The model of attack is actu-
ally not considered in [DFS15b], but [DFS16, Lemma 2] shows that in the case
of [DFS15b], random plaintext attacks reduce to chosen plaintext attacks and
that it is therefore sufficient to consider only the former. Tool indicates the
main notion the security proof relies on (statistical distance, mutual informa-
tion or Rényi divergence of order infinity). λ denotes the security parameter of
the scheme, d the masking order, N the size of the underlying field, and q the
number of traces available to an attacker.

Organization of the paper. The remainder of the paper is organized as fol-
lows. Section 2 presents some theoretical background and notation. Section 3
provides a unifying background for the metrics used in prior works as well as
those we introduce. Section 4 builds the bridge from a standard, concrete model
of leakage (Hamming weight with Gaussian noise) to noisy leakage models. In
Sect. 5, we detail our tight reduction from the noisy leakage model to the probing
model. Our amplification-based proofs are described Sect. 6.

2 Preliminaries

In this section we recall basic notation and notions used throughout the paper.

2.1 Notation

For any � ≥ 1, we denote by [�] the set {1, . . . , �}. We denote by X a finite set, by
x an element of X , by X a random variable over X , and by PX the corresponding
probability mass function (i.e. the function PX : x �→ P[X = x]). We often abuse
notation and denote by P the distribution defined by a probability mass function
P. For a distribution P over X , we denote by x ← P the action of sampling x
from the distribution P .
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For any distribution P and any function f over X , we denote by f(P ) the
distribution of f(x) induced by sampling x ← P . We denote by Supp(X) :=
{x ∈ X | PX(x) > 0} the support of a random variable X over X (and we define
similarly the support of a distribution).

For any random variable X over X and a function f : X → Y, we use the
following notation:

EX [f(X)] =
∑

x

f(x) · P[X = x] .

For two random variables X,Y over X , the statistical distance between X and
Y is defined as:

ΔSD(X;Y ) :=
1
2

∑

x∈X
|P[X = x] − P[Y = x]| .

Similarly, the Euclidean norm between X and Y is defined as:

ΔEN(X;Y ) =
√∑

x∈X
(P[X = x] − P[Y = x])2 .

Finally, if X,Y have the same support, their relative error is:

ΔRE(X;Y ) := max
x∈Supp(X)

∣∣∣∣
P[X = x]
P[Y = x]

− 1
∣∣∣∣ .

We now recall these two definitions from [DDF14] and [PR13]:5

SD(X|Y ;X) =
∑

y

P[Y = y] · ΔSD(X|Y = y;X)

EN(X|Y ;X) =
∑

y

P[Y = y] · ΔEN(X|Y = y;X)

2.2 The Rényi Divergence

The Rényi divergence [Ré61] is a measure of divergence between distributions.
In the recent years, it has found several applications in lattice-based cryptog-
raphy [BLL+15,Pre17]. When used in security proofs, its peculiar properties
allow designers of cryptographic schemes to set some parameters according to
the number of queries allowed to an attacker, rather than to the security level,
and this has often resulted in improved parameters. We first recall its definition
as well as some standard properties.

5 Instead of SD and EN, [DDF14] and [PR13] used the notations Δ and β; we prefer
our notation as it avoids any confusion with greek letters denoting scalars.
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Definition 1 (Rényi divergence). Let P,Q be two distributions over X such
that Supp(P ) ⊆ Supp(Q). For a ∈ (1,+∞), their Rényi divergence of order a is:

Ra(P‖Q) =

⎛

⎝
∑

x∈Supp(P )

P (x)a

Q(x)a−1

⎞

⎠

1
a−1

.

In addition, the Rényi divergence of order +∞ is

R∞(P‖Q) = max
x∈Supp(P )

P (x)
Q(x)

.

This definition is common in the lattice-based cryptography literature, whereas
the information theory literature favors its logarithm as the definition. Classical
properties of the Rényi divergence may be found in [FHT03], and cryptographic
properties may be found in [BLL+15,Pre17]. In this paper, we use the following
composition properties from [BLL+15].

Lemma 1. For two distributions P,Q and two families of distributions
(Pi)i, (Qi)i, the Rényi divergence verifies the following properties:

– Data processing inequality: For any function f , Ra(f(P )‖f(Q)) ≤
Ra(P‖Q).

– Multiplicativity: Ra(
∏

i Pi‖
∏

i Qi) =
∏

i Ra(Pi‖Qi).
– Probability preservation: For any event E ⊆ Supp(Q) and a ∈ (1,+∞),

Q(E) ≥ P (E)
a

a−1 /Ra(P‖Q) ,

Q(E) ≥ P (E)/R∞(P‖Q) .

2.3 Pointwise Mutual Information

The pointwise mutual information is a common tool in computational linguis-
tics [CH89], where it serves as a measure of co-occurence between words. For
example, the pmi of “Sean” and “Penn” is high because Sean Penn is a well-
known person, whereas the pmi of “bankruptcy” and “success” is low because
the two words are rarely used in the same sentence.

Formally, the pointwise mutual information is defined as follows.

Definition 2 (Pointwise mutual information). Let X,Y be random vari-
ables over X . Then, for any (x, y) ∈ Supp(X) × Supp(Y ), we have:

pmiX,Y (x, y) = log
(

P[X = x, Y = y]
P[X = x]P[Y = y]

)
.

We also define its exponential form as:

PMIX,Y (x, y) = epmiX,Y (x,y) − 1 =
P[X = x, Y = y]
P[X = x]P[Y = y]

− 1 .
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We note that when they are close to 0, pmiX,Y (x, y) ∼ PMIX,Y (x, y). The mutual
information between X and Y can be simply expressed from the pointwise mutual
information, since we have:

MI(X;Y ) = E(X,Y )

[
pmiX,Y

]
,

where (X,Y ) denotes the joint distribution of X and Y . When X and Y are
clear from context, we may omit the subscripts and simply note pmi and PMI.

Interestingly, as we show in the next section, several metrics in leakage-resilient
cryptography can be defined simply using the pointwise mutual information.

3 Unifying Leakage Models via the Pointwise Mutual
Information

As already explained, in the noisy leakage model (defined below), an adversary
learns noisy information f(x) about every intermediate result x of a computa-
tion. The hope is that this leakage does not reveal much information about the
actual value x, which is translated by the fact that the distribution X is close to
the distribution X|f(X). Two main notions of closeness (corresponding to two
noisiness metrics) have been proposed, namely EN and SD.

3.1 Noisiness Metrics from Pointwise Mutual Information

It appears that the above noisiness metrics can easily be related to the pointwise
mutual information, as we state in the following immediate proposition. Other
natural metrics can also be derived from the pointwise mutual information, and
we define two additional metrics in the subsequent definition.

Let us define the following four metrics with respect to the PMI.

Definition 3 (Noisiness metrics). Let X,Y be random variables over sets
X ,Y respectively. We define the following metrics based on the pointwise mutual
information:

– SD(X|Y ) := 1
2 · EXEY [|PMI|] ;

– EN(X|Y ) := EY

√
EX

[
P[X]PMI2

]
;

– RE(X|Y ) := maxx,y |PMI| ;
– ARE(X|Y ) := EY [maxx |PMI|] .

The four notions of noisiness defined here compute different norms of the
(PMI)x,y: SD compute the average value of |PMI|, RE computes its max, and
ARE computes something in between.

Note that this difference in their definition (average-case vs worst-case) is
mirrored in the random probing models (average random probing vs random
probing), so it is perhaps unsurprising that reductions between worst-case models
(ARE-noisy leakage to random probing in Sect. 5) incur no loss, as well as those
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between average-case models (SD-noisy leakage and average random probing in
[DFS15b]), but that the worst-case-average-case reduction of [DDF14] incurs a
loss by a factor |X |.

We note that these definitions of SD and EN match the ones given in
Sect. 2.1: SD(X|Y ) = SD(X|Y ;X) and EN(X|Y ) = EN(X|Y ;X). This is
done on purpose as we aim at introducing new noisiness metrics without dis-
carding previously defined ones. We do so by expressing them all with a sin-
gle common notion: the pointwise mutual information. The acronyms RE and
ARE stand for Relative Error and Average Relative Error. We note that
RE(X|Y ) = maxy ΔRE(X|Y = y;X) and ARE(X|Y ) = EY ΔRE(X|Y ;X).

We now define a generic notion of noisy functions, parameterized by any of
the above metrics.

Definition 4 (Noisy functions). Let D ∈ {SD,EN,RE,ARE} be one of the
metrics defined in Definition 3, X be a random variable over a set X and δ ≥ 0.
We say that a function f : X → Y is δ-noisy for the metric D and the random
variable X (or for short, δ-D-noisy for X) if:

D(X|f(X)) ≤ δ .

If X follows the uniform distribution, we simply say that f is δ-D-noisy.

This definition highlights an important caveat of the noisy leakage model:
the notion of noisy function is implicitly parameterized by an underlying distri-
bution X. However, we will later show in Lemma 2 than for RE- and ARE-noisy
functions, we can abstract ourselves from the underlying distribution at the cost
of essentially a factor 2 in the noise parameter δ.

3.2 Basic Properties

Before moving to the core results of the paper, we detail a few properties relating
the above noisiness metrics to each other.

Proposition 1. Let X,Y denote random variables over finite sets. Then we
have:

1. SD(X|Y ) = SD(Y |X);
2. RE(X|Y ) = RE(Y |X);
3. 2 · SD(X|Y ) ≤ ARE(X|Y ) ≤ RE(X|Y ).

Moreover, if X follows the uniform distribution over a set X of size N , then:

ARE(X|Y ) ≤ 2N · SD(X|Y ) . (1)

The above properties are immediate from Definition 3. We however provide a
proof for the last one. Note that, as mentioned in the introduction, our reduction
from the ARE-noisy leakage model to the random probing model described in
Sect. 5 is tighter by a factor N compared to reduction from the SD-noisy leakage
model to the random probing model from [DDF14]. Hence (1) implies that even
in the worst case, our results give at least as good bounds (up to a factor 2) as
prior reductions.
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Proof. Since X is uniform, P[X = x] = 1
N for any x ∈ X . Hence for any fixed y:

max
x

|PMI| ≤
∑

x∈X
|PMI| = N · EX |PMI| .

Then (1) follows from the definitions of SD and ARE.

Remark 1. Note that the item 3 is tight. Indeed, considering the “checkerboard
distribution” Z = (X,Y ) defined over [[0,m − 1]] × [[0, n − 1]] via:

P[X = x, Y = y] =
1

mn

(
1 + (−1)x+yδ

)
,

One can easily check that 2SD(X|Y ) = ARE(X|Y ) = RE(X|Y ) = δ.

We can also relate the SD-noisiness and the RE-noisiness to the mutual
information via the following inequalities, whose proofs are detailed in the full
version [GMPP19]:

Proposition 2. Let X,Y denote random variables over finite sets. Then, we
have:

2SD(X|Y )2 ≤ MI(X;Y ) ≤ 2RE(X|Y )SD(X|Y ) .

The left inequality was already proven in [DFS15a, Theorem 1]. However, our
proof relies on a completely different interpretation of the mutual information,
and is arguably much simpler.6 On the other hand, the right inequality improves
a previous bound given in [DDF14] by a factor N

ln(2)RE(X|Y ) . Overall, it allows

to bound MI(X;Y ) up to a factor SD(X|Y )
RE(X|Y ) .

Finally, we provide a self-reducibility lemma for RE-noisy and ARE-noisy
functions. We show that the underlying distribution is not too important, as a
function f which is δ-noisy for a distribution X is also Θ(δ)-noisy for any other
distribution X ′.

Lemma 2 (Self-reducibility). Let X,X ′ be two arbitrary distributions of sup-
port X and f : X → Y be a randomized function. Suppose that f is δRE-RE-noisy
(resp. δARE-ARE-noisy) for X. Then:

1. f is
(

2·δRE

1−δRE

)
-RE-noisy for X ′;

2. f is
(

2·δARE

(1−δARE)(1−δRE)

)
-ARE-noisy for X ′.

Lemma 2 is similar to [DFS16, Lemma 2], which shows that if f is δ-SD-noisy
for X the uniform distribution, then it is (3Nδ)-SD-noisy for any distribution
X ′. Our proposition is more powerful than [DFS16, Lemma 2]: X can be any
distribution, and the tightness loss is O(1) as long as δRE ≤ 1 − c for a constant
c. The proof of Lemma 2 is given in the full version [GMPP19].
6 In addition, this interpretation of MI in terms of the Kullback-Leibler divergence

gives us for free several bounds which are tighter for non-negligible values of SD: for

example MI ≥ log
(

1+SD
1−SD

)
− 2SD

1+SD
[Vaj70] or MI ≥ 2SD2+ 4

9
SD4+O(SD6) [FHT03].
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3.3 Noisy Leakage Adversary

We finally define the noisy leakage model. We consider an arbitrary sequence
(x1, . . . , x�) ∈ X �, with X being some finite set and � being some parameter
(typically the number of intermediate results in a computation). We denote by
A a (possibly unbounded) adversary.

Definition 5 (Noisy Leakage Adversary). Let D ∈ {SD,EN,RE,ARE}.
For 0 ≤ δ ≤ 1, a δ-D-noisy adversary on X � is a machine A that plays the
following game against an oracle that knows (x1, . . . , x�) ∈ X �:

1. A picks δ-D-noisy functions (fi)i∈[�] with range Y;
2. A receives (fi(xi))i∈[�] ∈ Y� and outputs outA(x1, . . . , x�).

4 From Concrete Leakage to Noisy Leakage Models

In order to have a full-fledged security proof of a circuit compiler with a leakage
model, the first step consists in linking the concrete representation of the leakage
to a noisy leakage model. This allows to ground firmly our metrics and models
in the reality, and guarantee that the gains observed in subsequent sections are
not artifacts of definitions.

4.1 A Concrete Modelization of the Leakage

A common representation of the leakage f(X) corresponding to the manipulation
of an intermediate variable X is a function l(X) tempered by the addition of
a Gaussian noise N (0, σ). The function l is then defined by the consumption
model. The most widely used consumption model is the Hamming weight model
initially used by Brier, Clavier, and Olivier in [BCO04], namely:

f(x) = HW(x) + N (0, σ) ,

Our goal is now to determine how (RE/ARE/SD/EN)-noisy the function f
is. We consider that x is distributed according to a uniformly random variable
X over the set [[0, N − 1]], where N = 2n is a power of two. This assumption is
realistic since in a cryptographic algorithm, the diffusion of the random private
key throughout the computation makes any intermediate variable looks like a
random variable. As an illustration, we give in Fig. 2 a toy example for the
distributions of f(X) and f(X)|(HW(X) = k).

4.2 A Visual Interpretation of the Noisiness Metrics

We give an intuition on how the different noisiness metrics are connected to the
Hamming weight consumption model with the help of Fig. 2. Let Y = f(X) and
Yk = f(X)|(HW(X) = k). By Definition 3, we can link the four metrics to the
pointwise mutual information. The pointwise mutual information can be depicted
as the ratio between one of the Yk curves and the Y curve, minus 1: PMI(x, y) =
YHW(x)(y)

Y (y) − 1. With this in mind, we can provide a visual interpretation of the
four metrics as follows:
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−4 −2 0 2 4 6 8

0

0.2

0.4 f(X)
f(X)|(HW(X) = k)

Fig. 2. Distribution of the noisy function f(X) = HW(X) + N (0, 1) when X is uni-
formly distributed over [[0, 24 − 1]]. The conditional distributions f(X)|(HW(X) = k)
(for k = 0, . . . , 4) are also represented.

– SD. The metric SD simply computes a ponderated mean of |PMI|.
– RE. Since RE is the max of |PMI|, it is essentially the maximum, minus 1,

of the ratio Y0/Y : this maximum is reached at the far right of Fig. 2, and
imposes a tailcut for the reasons detailed in Remark 2;

– ARE. Since ARE computes the mean (over Y ) of the max (over X) of |PMI|,
it can be visually interpreted as the mean on the right side of the Fig. 2 of
“the ratio Y0/Y , minus 1”.

– EN. The visual interpretation of EN is a little more complex. Since here X is

uniform, we have EN(X|Y ) = 1√
N
EY

√
EX

[
PMI2

]
, so EN is essentially the

scaled expected value (over Y ) of Euclidean norm (over X) of the PMI.

Remark 2. We note that RE(X|f(X)) is not formally defined as the value
|PMI(x, y)| can be arbitrarily large. We overcome this issue by observing, see
the full version [GMPP19], that with overwhelming probability f(X) lies in the

interval [−τσ, τσ +log N ], where τ =
√

−2 log(2−λ
√

2π) = Θ(
√

λ). We can then
define RE(X|f(X)) with a tailcut argument.

4.3 Estimating the Noisiness Metrics in Practice

In order to estimate the noisiness of f (with respect to RE, ARE, SD, and
EN), we derive asymptotic bounds as shown in Proposition 3. To back up our
theoretical results, we used a Sage implementation (which source code is given in
the full version [GMPP19]) and obtained numerical values which match exactly
our results.

Proposition 3. Let X be a uniformly random variable over the set X = [[0, N −
1]], where N = 2n is a power-of-two. Let Y = R, and f : X → Y be defined with
the Hamming weight model, namely:

f(x) = HW(x) + N (0, σ) .
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Let τ ∈ [1;σ] be a tailcut rate such that |N (0, σ)| ≤ τ · σ with overwhelming
probability. Then, for sufficiently large values of σ and N it holds that:

RE(X|f(X)) ∼ C1 · 1
σ · τ · log N , with C1 = 1

2

ARE(X|f(X)) ∼ C2 · 1
σ · log N , with C2 = 1√

2π

SD(X|f(X)) ∼ C3 · 1
σ · √

log N , with C3 = 1
2π

EN(X|f(X)) ∼ C2 · 1
σ ·

√
log N

N .

The proof of Proposition 3 can be found in the full version [GMPP19]. We
note that a different model of the concrete leakage (say, x added to binomial
noise) could lead to completely different equations.

RE vs ARE. The noisiness metric RE incurs an overhead of O(τ) compared
to ARE. All other parts being equal, it is therefore more desirable to use the
latter than the former. This observation is the ground motivation behind the use
of ARE to show the reduction between the noisy leakage model and the probing
model in Sect. 5.

ARE vs SD. Since ARE incurs an overhead of O(
√

log N) compared to SD,
one could be tempted to say that the latter leads to tighter bounds. However,
we show in Sect. 5 that when reducing to the random probing model, SD incurs
an overhead of O(N) compared to ARE. When linking the random probing
model to a concrete model of leakage, ARE therefore allows a total gain of
O(N/

√
log N) compared to SD.

EN vs others. Unlike the other noisiness metrics, EN is Õ(1/
√

N). This sug-
gest that this metric should lead to the most efficient discrimination of the four,
but we see in Sect. 6 that in amplification-based proofs, the EN currently incurs
a total overhead which is polynomial in N (compared to RE).

On the definition of EN. The presence in practice of a factor Õ(1/
√

N) in
EN (as highlighted in item 4.3) suggests that the definition of EN is perhaps
not the right one, along with other circumstantial evidence:

– In Proposition 3, the definition of EN in terms of the pointwise mutual infor-
mation is not as clean as for the other metrics;

– Several noise amplification theorems in [PR13] have an overhead O(NO(d)).
One could think this overhead is an artifact of the proof, but in some cases
(such as [PR13, Theorem 1]), it is in fact an artifact of the definition.
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5 From ARE-Noisy Leakage Model to Threshold-Probing
Model

While noisy-leakage models defined in Sect. 3.3 capture well what leaks from
an actual computation on physical devices, it is fairly hard to build cryptosys-
tems that achieve security in these complex models. Therefore, simpler and more
idealistic models are often considered for constructing leakage-resilient cryptog-
raphy. The most common model is the threshold-probing model, introduced by
Ishai, Sahai, and Wagner in [ISW03]. In this model, an adversary can learn a
bounded number of exact intermediate results of the computation (instead of
noisy information about every intermediate results). This probing model being
much simpler, it is easy to immunize any computation against such adversaries,
and the hope is that secure constructions in this model offer some guarantees
against more realistic forms of leakage.

Fortunately, it was recently proven in [DDF14] that this intuition is correct:
Duc et al. proved that a construction secure in the threshold probing model is
also secure in the SD-noisy leakage model. However, the reduction comes with
an overhead in the size of the field. In [DFS15a], the authors showed with empir-
ical methods that this overhead can be significantly reduced. In this section,
we aim to demonstrate an improvement of [DFS15a] by using the ARE-noisy
leakage model7 instead of the SD-noisy-leakage model. Our proof follows a sim-
ilar strategy as the original proof in [DDF14]. As an outcome, the reduction
between the two leakage models produces a tighter bound compared to the pre-
vious results in the state-of-the-art, thus providing stronger security guarantees
for probing-secure constructions in the real world.

5.1 Probing Models

We first recall standard models of adversaries relevant in our context, as defined
in [DDF14].

Random-Probing Model. For 0 ≤ ε ≤ 1, we denote by idε : X → X ∪ {⊥} the
function that on input x ∈ X outputs x with probability ε and ⊥ otherwise. For
0 ≤ ε ≤ 1, an ε-random-probing adversary on X � is a machine A that plays the
following game against an oracle that knows (x1, . . . , x�) ∈ X �:

1. A picks a (ε1, . . . , ε�) ∈ [0; ε]�;
2. A receives (idεi(xi))i∈[�] ∈ (X ∪ {⊥})� and outputs outA(x1, . . . , x�).

Threshold-Probing Model. For 0 ≤ d ≤ �, a d-threshold-probing adversary on
X � is a machine A that plays the following game against an oracle that knows
(x1, . . . , x�) ∈ X �:

7 Note that the reduction can also work with the RE-noisy leakage model. However,
as shown in previous section using the ARE metric always induces tighter reduction
than the RE metric.
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1. A picks a set I ⊆ [�] with |I| ≤ d;
2. A receives (xi)i∈I ∈ X |I| and outputs outA(x1, . . . , x�).

Following the methodology of [DDF14], our proof proceeds in two steps:

1. reduction from the ARE-noisy leakage model to the random-probing model
(Sect. 5.2);

2. reduction from the random-probing model to the threshold probing model
(Sect. 5.3).

5.2 From ARE-Noisy Leakage Model to Random-Probing Model

The first step consists in reducing the ARE-noisy leakage model to the random-
probing model. The main technicality consists in proving the following lemma,
which is the ARE-noisy version of [DDF14, Lemma 2] that was given in the SD-
noisy setting. The proof of this lemma is analogous to its SD-noisy counterpart
and is detailed in the full version of the paper. We denote the equality between
two distributions P and Q by P

d= Q.

Lemma 3. Let f : X → Y denote a δ-ARE-noisy function for some distribution
X. Then, there exists a (randomized) function f⊥ : X ∪ {⊥} → Y such that for
all x ∈ X :

f(x) d= f⊥(idδ(x)) .

Moreover, if f is poly-time-noisy8, then f⊥ is efficiently computable.

We then obtain the following corollary:

Corollary 1. Let A be a δ-ARE-noisy adversary on X �. Then there exists a
δ-random-probing adversary S on X � such that for all (x1, . . . , x�) ∈ X �:

outS(x1, . . . , x�)
d= outA(x1, . . . , x�) .

Moreover, if A is poly-time-noisy9, then S runs in polynomial time.

Proof. It immediately follows from Lemma 3. S simply runs A which it provides
with (f⊥

i (idδ(x)))i∈[�]

d= (fi(x))i∈[�] as inputs. When A halts, so does S with the
same output. ��

Interestingly we have an opposite reduction from random probing model to
ARE-noisy leakage model. However this reduction comes with a loss in tightness
by a factor N − 1.

Lemma 4. If A is a δ-random probing adversary on X �, then it is also a (|X |−
1) · δ-ARE-noisy leakage adversary on X �.

Proof. From the definitions, it is immediate that the δ-identity idδ is also a
(|X | − 1) · δ-ARE-noisy function for any distribution.
8 By poly-time-noisy, we mean that f is poly-time computable, produces outputs in a

finite set Y, and P[fi(x) = y] is poly-time computable for all x, y, i.
9 By poly-time-noisy, we mean that A queries only poly-time-noisy functions (fi)i.
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5.3 From Random-Probing Model to Threshold-Probing Model

The second step consists in reducing the random-probing model to the threshold-
probing model. This step follows immediately from the results in [DDF14] and
is independent of the metric.

Lemma 5 (Lemma 4 of [DDF14]). Let A be a δ-random-probing adversary
on X �. Then, there exists a (2δ� − 1)-threshold-probing adversary S on X � with
similar running-time such that ∀(x1, . . . , x�) ∈ X �:

outA(x1, . . . , x�)
d= outS(x1, . . . , x�) ,

as long as outS(x1, . . . , x�) �= ⊥. Moreover, the latter happens with probability:

P[outS(x1, . . . , x�) �= ⊥] ≥ 1 − exp
(

−δ�

3

)
.

The proof immediately follows from the fact that with probability at least 1 −
exp

(− δ�
3

)
(thanks to the Chernoff bound), a δ-random-probing adversary on X �

obtain at most 2δ� − 1 of the xi’s.

5.4 Putting Everything Together

Combining Corollary 1 and Lemma 5, we then obtain the following theorem:

Theorem 1. Let A be a δ-ARE-noisy adversary on X �. Then, there exists a
(2δ� − 1)-threshold-probing adversary S on X � such that:

outA(x1, . . . , x�)
d= outS(x1, . . . , x�) ,

as long as outS(x1, . . . , x�) �= ⊥, which happens with probability:

P[outS(x1, . . . , x�) �= ⊥] ≥ 1 − exp
(

−δ�

3

)
.

Moreover, if A is poly-time-noisy, then S runs in polynomial time.

For comparison, the main theorem from [DDF14] states that a δ-SD-noisy
adversary can be simulated by a (2δ� · |X |−1)-threshold probing adversary, with
success probability at least 1 − exp (−δ�/(3|X |)). Hence, we gain a multiplica-
tive factor X in the number of probes and reduce the failure probability by an
exponential factor in X .

5.5 Circuit Leakage Resilience

Let us define a circuit compiler as in [DDF14]. Let us consider an adversary able
to probe at most �(d − 1)/2� wires from each gadget (i.e. masked operations) of
the implementation. We define a (δ, ζ)-noise resilient implementation as follows:
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Definition 6 (D-noise resilient implementation). Let Γ be an stateful
arithmetic circuit over X and Γ ′ denote the resulting masked circuit obtained
via applying the compiler. Let Enc denote a randomized encoding function (i.e.
that transform an input into a masked input). Let D ∈ {SD,EN,RE,ARE} be
a noisiness metric. We say that Γ ′ is a (δ, ζ)-D-noise resilient implementation
of Γ with respect to Enc if the following properties hold for every input k:

1. the input-output behavior of Γ (k) and Γ ′(Enc(k)) is identical, i.e. for every
sequence of inputs a1, . . . , am and outputs b1, . . . , bm we have

P[Γ (k, a1, . . . , am) = (b1, . . . , bm)] = P[Γ ′(Enc(k), a1, . . . , am) = (b1, . . . , bm)]

2. for every δ-D-noisy adversary A there exists a black-box circuit adversary S
such that

ΔSD

(
out

(
A

noisy

� Γ ′(Enc(k))
)

; out
(

S
bb
� Γ (k)

))
≤ ζ

Then we have the following theorem.

Theorem 2. Let Γ be an arbitrary stateful arithmetic circuit over X . Let Γ ′

be the masked circuit.Then Γ ′ is a (δ, |Γ |exp(−d/12))-RE-noise-resilient imple-
mentation of Γ with efficient simulation where

δ =
1

28d + 16
= O(1/d)

The proof is the exact same as the one given in [DDF14] with a numerical
gain of a factor |X | in δ due to the use of ARE in Theorem 1.

6 A New Amplification-Based Proof for Block Ciphers

In this section, we revisit the approach initiated in [PR13] by Prouff and Rivain.
Recall that in the latter work, the authors propose a solution to immunize block-
ciphers in the noisy-leakage model (with the Euclidian norm EN measuring
noisiness). They propose a secret-sharing based immunization for block-ciphers,
basically by replacing every operations (linear functions and s-box evaluations)
by one that operates on additive shares of the inputs and produce additive shares
of the output. They analyze the security by decomposing the resulting proto-
col into 4 types of basic subsequences of operations: two types corresponding
to simple subsequences and two types corresponding to more complex subse-
quences. The overall protocol is then proven secure by composition, assuming
leak-free refresh gates can be used between each subsequence to refresh the addi-
tive shares. We refer the reader to Section 4 of [PR13] for the details about how
to construct the secure subprotocols. The 4 types of subsequences needed for
the analysis are recalled below. We propose a different security analysis in the
noisy-leakage model using the RE metric instead of the Euclidian norm. Doing
so, we are able to prove much tighter bounds for the security.
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The 4 types of subsequences to consider are:

T1. (zi ← g(xi))0≤i≤d, with g being a linear function (of the block-cipher);
T2. (zi ← g(xi))0≤i≤d, with g being an affine function (of an s-box evaluation);
T3. (vi,j ← ai × bj)0≤i,j≤d (first step of secure non-linear multiplication);
T4. (ti,j ← ti,j−1 ⊕vi,j)0≤i,j≤d (fourth step of secure non-linear multiplication).

While type 1 is obviously a particular case of type 2, we treat them separately as
we are able to prove a better bound for linear functions than for affine functions.

In the rest of this section, we first provide several basic properties on the
RE metric (Sect. 6.1). Then, in Sect. 6.2 we analyze the leakage of each type of
subsequences. Next, we argue about the security of a complete evaluation of the
block-cipher in Sect. 6.3. Finally, in Sect. 6.4 we apply the Rényi divergence to
get a tight amplification-based proof and overcome the limitations in [PR13].

6.1 Basic Properties and Amplification for the Relative Error

First, we give several basic properties of RE-noisy functions and of the RE-
noisiness metric that are used in our proofs. We essentially show that the relative
error is preserved under function, application, projection and lifting on X. We
also prove an amplification result (Lemma 6) that is central throughout our
security analysis.

Proposition 4. Let X,Y,W denote random variables over finite sets X ,Y and
W respectively. Then we have the following:

1. Data processing. Let f : X → Y be a δ-RE-noisy function for X, and
g : X → X be a (non necessarily deterministic) function. It holds that:

RE(X|f ◦ g(X)) ≤ 2δ

1 − δ
∼

δ→0
2δ .

In addition, if g is deterministic and bijective, then RE(X|f ◦ g(X)) = δ.
2. Conservation under projection and lifting.

RE(X|Y ) ≤ RE((X,W )|Y ) . (2)

In addition, if X and W are independent and f : W → Y is a RE-noisy
function for W , then:

RE((X,W )|f(W )) = RE(W |f(W )) . (3)

The proof of Proposition 4 is detailed in the full version of the paper.

Remark 3. Note that Inequality 1 is tight: Indeed, if we consider the checker-
board distribution of Remark 1, take f(X) = Y , g(0) = 0 and for any x > 0,
g(x) = 1, then:

RE(X|f(X)) = δ and RE(X|f ◦ g(X) =
2(1 − 1/m)δ

1 − (1 − 2/m)δ
∼

m→∞
2δ

1 − δ
.

Note that Inequality 2 is also tight via (3).
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We also prove the following amplification lemma for the relative error. It
is the relative error counterpart (though the proof is completely different) of
an amplification lemma by Maurer, Pietrzak and Renner [MPR07, Lemma 1].
In the context of leakage-resilient cryptography, the latter result was used and
improved by [DFS15b,DFS16].

Lemma 6. Let F be a finite field. Let Z = U(F) be the uniform distribution
over F, and Z1, . . . , Zd be d independent random variables over F. It holds that:

ΔRE

((
d∑

i=1

Zi

)
;Z

)
≤

d∏

i=1

ΔRE (Zi;Z) .

6.2 Security Analysis of Subsequences

We now detail our security analysis for the 4 different types of subsequences to
be considered.

Type 1 and type 2 subsequences. We first deal with the simple case of
subsequences where all the shares of a secret value are processed separately, i.e.
for linear and affine functions. From a security perspective, these are the simplest
subsequences as each share only leaks partial information once.

Type 1 subsequences. We first prove the following theorem for type 1 subse-
quences, which follows almost immediately from Lemma 6. For the sake of com-
pleteness, we provide a proof in the full version [GMPP19].

Theorem 3. Let X be a uniform random variable over a finite field X and
(Xi)i∈{0,...,d} be a (d+1)-additive sharing of X10. Let δ ∈ [0, 1) and f0, f1, . . . , fd

be δ-RE-noisy-leakage functions over X . Then, we have:

RE(X|f0(X0), . . . , fd(Xd)) ≤ δd+1 .

Unlike [PR13, Theorem 1], we do not get a overhead of Nd/2 in our amplification
theorem. One could think that this overhead is an artifact of their proof, but
circumstantial evidence such as the presence in practice of a factor 1/

√
N in

EN(Xi|fi(Xi)) let us think that it is inherent to the use of the Euclidean norm.

Type 2 subsequences. We can now easily analyze the security of type 2 subse-
quences, i.e. affine functions of s-box evaluations. Such evaluations are handled
via Lagrange interpolation in [PR13], so each elementary calculation processes
a share Gi of an encoding of g(X), where X is a uniform s-box input, and g is
a polynomial function. This case is covered by Corollary 2, whose proof imme-
diately follows from Theorem3 and Proposition 4, and is detailed in the full
version [GMPP19].

10 Precisely,
d∑

i=0

Xi = X and the distribution of any strict subset of the Xi’s is uniform.
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Corollary 2. Let X be a uniform random variable over a finite field X , g :
X → X be a deterministic function, d be a positive integer and (Gi)i∈{0,...,d}
be a (d + 1)-additive sharing of g(X). Let δ ∈ [0, 1) and let f0, f1, . . . , fd be
δ-RE-noisy leakage functions over X . Then, we have:

RE(X|f0(G0), . . . , fd(Gd)) ≤ 2δd+1

1 − δd+1
∼

δ→0
2δd+1 .

Type 3 and type 4 subsequences. We now consider more complex subse-
quences, where a share is processed several times, and therefore may leak several
times in the same subsequence. We first give a generic theorem regarding the
bias induced by multiple leakages. We then use this theorem (whose proof is
given in the full version [GMPP19]) to bound the leakage of subsequences of
type 3 and type 4.

Theorem 4. Let X be a uniform random variable over a finite field X and t be
a strictly positive integer. Let δ ∈ [0, 1) and L1, . . . , Lt be t random variables such
that RE(X|Li) ≤ δ for every i. We further assume that the random variables
(Li|X = x) are mutually independent for every x ∈ X . Then, we have:

RE(X|L1, . . . , Lt) ≤
(

1 + δ

1 − δ

)t

− 1 =
tδ→0

2 · tδ + O((tδ)2) .

In addition, if δ ≤ 1/t, then:

RE(X|L1, . . . , Lt) ≤ tδ

1 − (t − 1)δ
=

tδ→0
tδ + O((tδ)2) .

Depending on the situation, we use one bound or the other in what follows.

Type 4 subsequences. We start by analyzing subsequences of type 4. Each ele-
mentary computation of these subsequences computes Ti,j ← Ti,j−1 ⊕ Vi,j , with
0 ≤ i, j ≤ d and Ti,0 = Vi,0. At the end, the shares (Zi)i = (Ti,d)i form an addi-
tive sharing of g(X), where X is a uniform s-box input and g is a polynomial
function over X . Our goal here is to bound the bias of X given the leakages of all
these elementary computations. We give a first theorem (whose proof is given in
the full version [GMPP19]) which bounds the bias of the shares (Zi)i = (Ti,d)i.

11

Theorem 5. Let T0, T1, . . . , Td be d+1 independent uniformly random variables
over a finite set X . Let δ ∈ R such that δ ≤ 1

2d+1 and f1, f2, . . . , fd be a family
of δ-RE-noisy functions defined over X × X . We have:

RE(Td|f1(T0, T1), . . . , f1(Td−1, Td)) ≤ dδ

1 − (d − 1)δ
.

11 For concision, Theorem 5 omits the subscript i and writes (Tj)j instead of (Tj)i,j .
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This implies the following corollary for the security of a subsequence of type 4:

Corollary 3. The leakage of type 4 subsequences is upper bounded by:

RE(X|(fi,j(Ti,j−1, Vi,j)0≤i,j≤d) ≤ 2δ′d+1

1 − δ′d+1
, with δ′ =

dδ

1 − (d − 1)δ
.

Type 3 subsequences. Only the case of type 3 subsequences remains, which is
the most delicate one. As a preliminary result, we provide an upper bound on
the bias for a uniform pair (A,B) given the leakage (fi,j(Ai, Bj))i,j .

Theorem 6. Let A,B be two uniform random variables over a finite field X , d
a positive integer, and (Ai)i, (Bi)i be d + 1-additive-sharings of A and B respec-
tively. Let δ ∈ R such that δ ≤ 1

2d+1 , and (fi,j)i,j be a family of randomized and
mutually independent functions such that each fi,j : X × X → Y is δ-RE-noisy.
We have:

RE((A,B)|(fi,j(Ai, Bj))i,j) ≤ 3
(

(d + 1)δ
1 − dδ

)d+1

.

The proof of Theorem6 essentially combines Theorems 3 and 4, and is detailed
in the full version [GMPP19].

We now give the leakage of type 3 subsequences. The difference with Theorem 6
is that A and B are not uniformly random, but rather A = g(X) and B = h(X)
for some polynomial functions g, h. We then have the following corollary:

Corollary 4. Let X be a uniform random variable over a finite field X , let
g, h be two deterministic functions from X to X , d be a positive integer, and
(Gi)i, (Hi)i be d + 1-additive-sharings of g(X) and h(X) respectively. Let δ ∈ R

such that δ ≤ 1
2d+1 , and (fi,j)i,j be δ-RE-noisy functions over X ×X . We have:

RE(X|(fi,j(Gi,Hj))i,j) ≤ 2δ′

1 − δ′ , with δ′ = 3
(

(d + 1)δ
1 − dδ

)d+1

.

Corollary 4 results from combining Theorem 6 with Proposition 4. It is detailed
in the full version [GMPP19].

6.3 From Subsequences to a Complete Computation

Now that we have bounded the leakages of the individual subsequences, the next
step is to bound the leakage of a single complete execution of a block cipher.

Modeling a block cipher. We use the same notations as in [PR13] and con-
sider the resulting block cipher (after applying their compiler to the original
block cipher), hereafter referred to as the masked block cipher. An evaluation of
the masked block cipher gives I = (Ci, fi)i, where the Ci’s denote elementary
computations (or gates) of the masked block cipher, each Ci being associated to
an RE-noisy function fi. We assume that the (original) cipher involves tlin lin-
ear transformations (corresponding to as many type 1 subsequences), taff affine
functions (type 2 subsequences), and tnlm nonlinear multiplications (types 3, 4).
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Uniformity of the key and of the subsequence inputs. The block cipher is
parameterized by a secret key k which is sampled from the uniform distribution
K over K = X m. Each subsequence subseqj operates on an additive-sharing
of a random variable Xj . We can write Xj = gj(K,msg), where msg denotes
the message being processed by the block cipher, and gj is a publicly-known
function such that gj(·,msg) maps the uniform distribution over K to the uniform
distribution over X , which is the case for block ciphers in practice. Therefore the
inputs Xj ’s of each subsequence are uniformly random variables. Alternatively,
one could rely on Lemma 2.

Leakage of a block cipher evaluation. For a given subseqj , let Lj denote
its leakage. Since each gj(·,msg) maps the uniform distribution to the uniform
distribution, we have RE(K|Lj) = RE(Xj |Lj) from Proposition 4. Since the
t = tlin + taff + 2tnlm subsequences composing the circuit are interleaved with
leak-free refresh gates (by assumption), each of them operates on fresh random
shares, therefore the leakages (Lj |K = k) are mutually independent.

We suppose that there exists a δsubseq ≥ 0 such that ∀j,RE(Xj |Lj) ≤ δsubseq.
Theorems 3 and 5 as well as Corollaries 2 and 4 give us explicit conditions to
fulfill this bound for each subsequence. Via Theorem4, the leakage δcirc of the
whole secure evaluation is bounded by:

δcirc ≤ tδsubseq

1 − (t − 1)δsubseq
≈ tδsubseq

which is non-vacuous as long as δsubseq ≤ 1/(t − 1).

6.4 Overall Security Proof with the Rényi Divergence

Now that we have bounded the overall leakage of one evaluation of the block
cipher, we want to analyze the impact of this leakage on the concrete security of
the block cipher. This last section corresponds somehow to the end of [PR13],
where the leakage of an evaluation is translated into a bound on the mutual
information provided by the leakage. Yet, this incurs the following limitations.

Limitations of the Prouff-Rivain approach. The use of the mutual infor-
mation is somewhat problematic in the sense that it provokes paradoxical situ-
ations like the fact that a single pair of plaintext-ciphertext can information-
theoretically reveal the key. The authors circumvent this by considering a
random-plaintext attack where plaintexts and ciphertexts are both unknown.
This does not cover many situations encountered in cryptography and is highly
unusual compared to most works, which consider at least a chosen-plaintext
attack. Finally, while not stated explicitly, for concrete security we need the
mutual information to be upper bounded by 2−O(λ), where λ is the targeted
security parameter of the block cipher, hence the masking order depends only
on λ and in particular does not depend on the amount of leakage the adversary
can observe.
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A proof based on the Rényi divergence. In this section, we provide an
alternative security proof based on the Rényi divergence instead of the mutual
information. This provides two main benefits compared to the previous work: (1)
We can consider classical chosen-plaintext attacks, and (2) the requirement on
the noise is much lower because it does not depend on the security level anymore
but on the number of leakages, denoted q in what follows.

Description of the games. We consider two games. The first game models a
black-box interaction of an attacker with an encryption oracle and corresponds
to the standard security model such as the IND-CPA security game model. The
second game models a grey-box interaction where the attacker has, in addition,
access to leakage. This grey-box interaction captures the behavior of a block
cipher in the real-world. We also introduce a third artificial (but easier) game
which we use to connect the latter two games. These three games are summarized
in Figs. 3, 4, and 5 and are precisely described below.

Let A be an adversary interacting with an (encryption and decryption) oracle
O in the following fashion:

1. O draws a secret key k ← K, where K denotes the uniform distribution over
a finite set K;

2. A makes a finite number q of queries to O. This is the part where the three
games differ:
– Game 1 (black-box ): A sends q plaintexts msg1, . . . ,msgq to O, who sends

back the q corresponding ciphertexts ctxt1 = Ek(msg1), . . . , ctxtq =
Ek(msgq);

– Game 2 (grey-box ): A sends q plaintexts msg1, . . . ,msgq to O. For each
plaintext msgi, O sends back the corresponding ciphertexts ctxti but also
some value Li which modelizes the physical leakage occurring during the
computation ctxti ← Ek(msgi), and gets recorded by A;

– Game 3 (hybrid): This is a 2-stage game:
(a) first, A sends q plaintexts msg′

1, . . . ,msg′
q, and O sends back the cor-

responding leakages Li but not the ciphertexts Ek(msg′
i).

(b) second, A sends q plaintexts msg1, . . . ,msgq, and O sends back the
ciphertexts Ek(msg′

i) but not the corresponding leakages Li.
3. After the query-reply phase, A outputs a value k′. A wins the game if k = k′.

Relationships between the games. It is clear that any attacker A that suc-
ceeds in Game 1 also does in Game 2, since A can choose to discard the additional
leakage L1, . . . , Lq, in which case Game 2 becomes identical to Game 1. Similarly,
any attacker that succeeds in Game 2 also does in Game 3 by simply querying
msg′

i = msgi,∀i. Hence, it is sufficient to prove that the success probability of
an adversary in Game 3 is close (in a precisely quantifiable way) to its success
probability in the ideal Game 1 to argue that security holds in the real-world
(Game 2). This is what we do in the rest of this section.
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A O
msg1, . . . ,msgq

ctxt1, . . . , ctxtq

Fig. 3. Game 1: Black-box

A O
msg1, . . . ,msgq

(ctxt1, L1), . . . , (ctxtq, Lq)

Fig. 4. Game 2: Grey-box

A O
msg1, . . . ,msgq

L1, . . . , Lq

msg1, . . . ,msgq

ctxt1, . . . , ctxtq

Fig. 5. Game 3: Hybrid

Applying the Rényi divergence. At the end of the first step of Game 3, A
has learnt leakages L1, . . . , Lq. These leakages imply a bias in the distribution of
possible secret keys K (which was originally the uniformly random distribution).
We denote by K ′ the distribution (K|L1, . . . , Lq). Hence, after the first step of
Game 3, the vision of A is the same as playing Game 1 with the secret key being
taken from distribution K ′ (instead of uniformly at random).

Suppose that ∀i,RE(K|Li) ≤ δcirc for some δcirc ∈ [0, 1). Assuming leak-free
refresh gates, it follows from Theorem 4 that:

ΔRE(K ′;K) = RE(K|L1, . . . , Lq) ≤
(

1 + δcirc

1 − δcirc

)n

− 1 . (4)

Let E ⊆ Supp(K) be an arbitrary event. We recall that K(E) denotes the
probability of E occurring under the distribution K. First, from the probability
preservation property of the Rényi divergence (Lemma 1):

K ′(E) ≤ K(E) · R∞(K ′‖K). (5)

On the other hand, from the definition of the Rényi divergence:

R∞(K ′‖K) ≤ 1 + ΔRE(K ′;K) (6)

Combining (4), (5) and (6) yields

K ′(E) ≤ K(E) ·
(

1 + δcirc

1 − δcirc

)q

Practical implications. The consequence of this security proof is that as long
as the number of leakage queries q is in O(1/δcirc), an adversary does not have
significantly larger chances to break a leaking block cipher implementation than
it does for the black-box implementation.

For example, let E be the event that A solves a search problem (finding
a secret key, forging a signature, decrypting a message, etc). If we take q ≤
1/δcirc, then K ′(E) ≤ e2K(E), which means that the leakages do no improve the
probability of A solving the search problem by more than a factor e2; this means
that less than 3 bits of security have been lost between the black-box (Game 1)
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and leaking (Game 2) implementations. In contrast, an analysis based on the
statistical distance or the mutual information would require δcirc = 2−O(λ).

We note that this Rényi-divergence based analysis is only valid for search
problems: achieving the same efficiency for decision problems is still an open
question [BLL+15,Pre17].
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Abstract. Leakage certification aims at guaranteeing that the statis-
tical models used in side-channel security evaluations are close to the
true statistical distribution of the leakages, hence can be used to approx-
imate a worst-case security level. Previous works in this direction were
only qualitative: for a given amount of measurements available to an
evaluation laboratory, they rated a model as “good enough” if the model
assumption errors (i.e., the errors due to an incorrect choice of model
family) were small with respect to the model estimation errors. We revisit
this problem by providing the first quantitative tools for leakage certifi-
cation. For this purpose, we provide bounds for the (unknown) Mutual
Information metric that corresponds to the true statistical distribution of
the leakages based on two easy-to-compute information theoretic quanti-
ties: the Perceived Information, which is the amount of information that
can be extracted from a leaking device thanks to an estimated statis-
tical model, possibly biased due to estimation and assumption errors,
and the Hypothetical Information, which is the amount of information
that would be extracted from an hypothetical device exactly following
the model distribution. This positive outcome derives from the obser-
vation that while the estimation of the Mutual Information is in gen-
eral a hard problem (i.e., estimators are biased and their convergence is
distribution-dependent), it is significantly simplified in the case of sta-
tistical inference attacks where a target random variable (e.g., a key in
a cryptographic setting) has a constant (e.g., uniform) probability. Our
results therefore provide a general and principled path to bound the
worst-case security level of an implementation. They also significantly
speed up the evaluation of any profiled side-channel attack, since they
imply that the estimation of the Perceived Information, which embeds an
expensive cross-validation step, can be bounded by the computation of
a cheaper Hypothetical Information, for any estimated statistical model.

1 Introduction

State-of-the-art. Side-Channel Attacks (SCAs) are among the most important
threats against the security of modern embedded devices [20]. They leverage
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physical leakages such as the power consumption or electromagnetic radiation
of an implementation in order to recover sensitive data. Concretely, SCAs con-
sist in two main steps: information extraction and information exploitation. In
the first step, the adversary collects partial information about some intermedi-
ate computations of the leaking implementation. For this purpose, he generally
compares key-dependent leakage models with actual measurements thanks to a
distinguisher such as the popular Correlation Power Analysis (CPA) [2] or Tem-
plate Attacks (TAs) [5]. In the second step, the adversary combines this partial
information in order to recover the sensitive data in full (e.g., by performing
a key recovery). For this purpose, the most frequent solution is to exploit a
divide-and-conquer strategy (e.g., to recover each key byte independently), and
to perform key enumeration if needed [22,27,34].1

Based on this description, the (worst-case) security evaluation of actual
implementations and side-channel countermeasures requires estimating the
amount of information leaked by a target device [33]. Fair evaluations ideally
require exploiting a perfect leakage model (i.e., a model that perfectly corre-
sponds to the leakage distribution) with a Bayesian distinguisher. Yet, such a
perfect leakage model is in general unknown. Therefore, side-channel security
evaluators (and adversaries) have to approximate the statistical distribution of
the leakages using density estimation techniques. It raises the problem that secu-
rity evaluations can become inaccurate due to estimation and assumption errors
in the leakage model. Estimation errors are due to an insufficient number of
measurements for the model parameters to converge. Assumption errors are due
to incorrect choices of density estimation tools (e.g., assuming Gaussian leakages
for non-Gaussian leakages).

The problem of ensuring that a leakage model is “good enough” so that it
does not lead to over-estimating the security of an implementation has been
formalized by Durvaux et al. as leakage certification [13]. In the first leakage
certification test introduced at Eurocrypt 2014, a leakage model is defined as
good enough if its assumption errors are small with respect to its estimation
errors. Intuitively, it guarantees that given the amount of measurements used by
the evaluator/adversary to estimate a model, any improvement of his (possibly
incorrect) assumptions will not lead to noticeable degradations of the security
level (since the impact of improved assumptions will be hidden by estimation
errors). In a heuristic simplification proposed at CHES 2016, a model is consid-
ered as good enough if the statistical moments of the model do not noticeably
deviate from the statistical moments of the actual leakage distribution [12]. In
both cases, the certification tests are based on challenging the model against
fresh samples in a cross-validation step. In both cases, the certification tests are
qualitative and conditional to the number of measurements available to build the
model. By increasing the number of measurements (and if the model is imper-
fect), one can make estimation errors arbitrarily small, which inevitably leads to

1 More advanced strategies, such as Algebraic Side-Channel Attacks (ASCA) [29] or
Soft Analytical Side-Channel Attacks (SASCA) [35] can also be considered. Our
following tools apply identically to these attacks.
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the possible detection of assumption errors. As a result, a fundamental challenge
in side-channel security evaluations (which we tackle in this paper) is to bound
the information loss due to model errors quantitatively.

We note that from an information theoretic viewpoint, the risk of under-
estimating the leakages due to model errors in side-channel security evaluations
can be captured with the notion of Perceived Information (PI) initially intro-
duced in [30] to analyze model variability in nanoscale devices. Informally, the
PI corresponds to the amount of information that can be extracted from some
data thanks to a statistical model possibly affected by estimation or assumption
errors. If the model is perfect, the PI is identical to Shannon’s standard defini-
tion of Mutual Information (MI). Otherwise, the difference between the MI and
the PI provides a quantitative view of the information loss. (Yet, at this stage
not a usable one since the MI is unknown, just as the perfect model).

Contribution. The main contributions of the paper are to provide simple and
efficient information theoretic tools in order to bound the model errors in side-
channel security evaluations, and to validate these tools empirically based on
simulated leakages and actual measurements.

Our starting point for this purpose is a third information theoretic quantity
that was introduced as part as a negative result on the way towards the CHES
2016 heuristic leakage certification test. Namely, the Hypothetical Information
(HI), which is the amount of information that would be extractable from the
samples if the true distribution was the statistical model. As discussed in [12], as
such the HI seems useless since in case of incorrect model, it can be completely
disconnected from the true leakage distribution (i.e., models with positive HI
may not lead to successful attacks). Yet, we show next how it can be used in
combination with the PI in order to enable quantitative leakage certification. In
particular, our main results in this direction are twofold:

First, we show that – under the assumption that the target random variable
(e.g., the secret key) has constant (e.g., uniform) probability – the empirical HI
(eHI), which corresponds to the HI estimated directly based on the empirical
leakage distribution, is in expected value an upper bound for the MI and that
it converges monotonically towards the true MI as the number of measurements
used in order to estimate the leakage model increases. Second, we show that
(under the same assumptions) the PI is a lower bound for the MI.

Our experiments then show that these tools can be concretely exploited in the
analysis of actual leakage models and speed up side-channel security evaluations.
They also sometimes illustrate the difficulty to obtain tight worst-case bounds in
practice, and the interest of exploiting some additional (e.g., Gaussian) leakage
assumptions in order to more efficiently obtain “close to worst-case” evaluations.
In this case as well, we show that bounding the PI with the HI can lead to
efficiency gains, especially for distributions with larger number of dimensions.

Related works. The fact that we may bound the MI is surprising since it
is actually known to be impossible in general. As for example discussed by
Paninski [26], there are no unbiased estimators for the MI (and the rate at
which the error decreases depends on the data structure, for any estimator).
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This had led some works aiming at leakage detection to exploit more positive
results for the distribution of the zero MI (i.e., the case with no information
leakage) [6,7,24]. We follow a different path by observing that in the context of
side-channel security evaluations, every key (or target intermediate variable) has
a uniform distribution a priori, and it is easy for the evaluator to enforce that
the number of leakages collected for every key (or target intermediate variable)
is identical. In this case, where the probability of the key (or target intermediate
variable) does not need to be estimated, we fall back on a situation where the
maximum likelihood estimation of the MI is biased upwards everywhere. Com-
bined with the good properties of the empirical distribution (which converges
towards the true distribution) it leads to our first result. The result for the PI is
even more direct, holds for any model, and is obtained by solving an optimization
problem.

Besides, the problem of leakage certification shares strong similarities with
the application of the bias-variance decomposition [9], introduced as a diagno-
sis tool for the evaluation of side-channel leakage models by Lerman et al. [18].
Note that we here mean the bias (and variance) of the leakage model, not the
bias of the MI estimator as when previously referring to Paninski. Conceptually,
evaluating the bias and variance of a leakage model can be viewed as similar
to evaluating its estimation and assumption errors. Yet, the problem of this
decomposition is again that it requires the knowledge of the perfect leakage
model. Lerman et al. alleviate this difficulty by assuming that the perfect leak-
age model directly provides the key (in one trace). However, this leads their
estimation of the bias and variance to gradually become inaccurate as the target
implementations become protected, so that this idealizing assumption becomes
more and more incorrect.

2 Notations and Background

In this section, we provide the background and definitions needed to describe
our results, with a particular focus on the different metrics we suggest for side-
channel security evaluations.

True distributions. Given a (discrete) secret key variable K and a (discrete
or continuous) leakage variable L, we denote the true conditional Probability
Mass Function (PMF) – which corresponds to discrete leakages – as Pr(L =
l|K = k) and the true conditional Probability Density Function (PDF) – which
corresponds to continuous leakages – as f(L = l|K = k).

Mutual Information (MI). For discrete leakages, it is defined as [8]:

MI(K;L) = H(K) +
∑

l∈L
Pr(L = l) ·

∑

k∈K
Pr(K = k|L = l) · log2 Pr(K = k|L = l), (1)

= H(K) +
∑

k∈K
Pr(K = k) ·

∑

l∈L
Pr(L = l|K = k) · log2 Pr(K = k|L = l). (2)
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Using the simplified notation Pr(X = x) := p(x), it leads to:

MI(K;L) = H(K) +
∑

k∈K
p(k) ·

∑

l∈L
p(l|k) · log2 p(k|l). (3)

Assuming uniformly distributed keys, p(k|l) is computed as p(l|k)∑
k∗∈K p(l|k∗) and

H(K) = log2(|K|). Similarly, in the case of continuous leakages, we can define
the MI as follows:

MI(K;L) = H(K) +
∑

k∈K
Pr(k) ·

∫

l∈L
f(l|k) · log2 p(k|l) dl. (4)

MI and statistical inference attacks. We are interested in the MI in the context of
side-channel analysis because it is a good predictor of the success probability of
a continuous “statistical inference attack”, where an adversary uses his leakages
in order to recover a secret key.2 Precisely, it is shown in [11] that a higher MI
generally implies a more efficient maximum likelihood attack where the adversary
selects the most likely key k̃ among all the candidates k∗ as:

k̃ = argmax
k∗∈K

∏

l∈L
p(k∗|l). (5)

Note that this implication only holds independently for each key k manipulated
by the leaking device. That is, a higher “MI per key” MI(k;L) implies a higher
probability of success Pr(k̃ = k).

Intuitively, the link between such an attack and MI(k;L) comes from the
similarity between the product of probabilities in the attack and the sum of log
probabilities in the metric.

Sampling process. The true distributions are generally unknown, but we can
sample them in order to produce data sets for estimating leakage models and
testing these models. We denote these sampling processes as M n← p(l|k) and
T nt← p(l|k) in the discrete case, with n and nt (resp., n(k) and nt(k)) the number
of i.i.d. samples measured and stored (resp., per key) in the multisets of samples
M and T (which have repetitions). We replace p by f for the continuous case.

Computing the MI by sampling. The MI metric can be computed directly thanks
to Eqs. 3 or 4. It can also be computed “by sampling” (for discrete and continuous
leakages) as:

M̂I(K;L) = H(K) +
∑

k∈K
p(k) ·

nt(k)∑

i=1

1
nt(k)

· log2 p(k|lk(i)), (6)

where lk(i) ∈ T is the ith leakage sample observed for the key k. In the discrete
case, it is easy to see that the blue part of the equation corresponds to the
2 We consider so-called noisy leakages, where the adversary can observe a noisy func-

tion of secret variables [28].
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empirical distribution. So Eq. 6 essentially replaces the true distribution p(l|k)
by the empirical one, and the hat sign is used to reflect that the MI is computed
by sampling. Since the empirical distribution converges towards the real one
as nt → ∞, M̂I(K;L) also tends towards MI(K;L). In the continuous case, the
convergence requires more elaboration (details are given in the full version of the
paper [3]). For simplicity, we next refer to the blue part of Eq. 6 as the empirical
in both the discrete and continuous cases.

Note that the PMF after the log in Eq. 6 is fixed (i.e., it is not an estimate).
So this equation does not describe an estimation of the MI in the usual sense,
where the joint probability of two random variables has to be estimated: it only
provides an alternative way to compute the MI of some known distribution.
Hence it does not suffer from the bias issues discussed in [26].

Model estimation. Given a set of n modeling samples M, we denote the process
of estimating the conditional leakage distribution as m̃n(l|k) ← M, where we
use the red color to highlight the model and the tilde sign to reflect that it is
the result of a statistical estimation.

We will consider two types of models: exhaustive models where we directly
estimate the empirical distribution (e.g., in the discrete case they correspond
to histograms on the full support of the observations); simplified models which
may for example correspond to histograms with reduced numbers of bins in the
discrete case, or to parametric (e.g., Gaussian) PDF estimation in the continuous
case. Simplified models are aimed to converge faster (i.e., to require lower n
values before becoming informative), possibly at the cost of some information loss
when n → ∞. In other words, exhaustive models (sometimes slowly) converge
towards the real distribution as n → ∞, while simplified models may be affected
by assumption errors appearing for large n’s (i.e., bad choices of parametric
estimation such as assuming Gaussian noise for non-Gaussian leakages).

Finally, we use the term model for the (parametric or non-parametric) esti-
mation of a distribution from a given number of profiling leakages n, and the
term model family for the set of all the models that can be produced with a
defined set of parameters. For example, the (univariate) Gaussian model family
denotes all the models that can be produced by estimating a sample mean and
a sample variance, and a Gaussian model corresponds to one estimation given n
leakages.

Hypothetical and Perceived information. Given that the true distributions p(l|k)
or f(l|k) are unknown, we cannot directly compute the MI. One option to get
around this impossibility is to estimate it, which is known to be a hard problem
(i.e., there are no unbiased and distribution-independent estimators [26]). We
next study an alternative approach which is to analyze the information that is
revealed by estimated models thanks to two previously introduced and easy-to-
compute quantities. First the Perceived Information (PI), which is the amount
of information that can be extracted from some data thanks to an estimated
model, possibly affected by estimation or assumption errors [13]. Second the
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Hypothetical Information (HI), which is the amount of information that would
be revealed by (hypothetical) data following the model distribution [12].

Informally, the PI predicts the concrete success probability of a maximum
likelihood attack exploiting an estimated model just as the (unknown) MI pre-
dicts the theoretical success probability of a worst-case maximum likelihood
attack exploiting the true leakage distribution [15]. It can be negative if the
estimated model is too different from the true distribution, and therefore can
underestimate the information available in the leakages. By contrast, the HI is a
purely hypothetical value that is always non-negative and can therefore overes-
timate the information available in the leakages. We next aim to formalize their
properties, and in particular to show that they can be used to (lower and upper)
bound the worst-case security level captured by the unknown MI.
The HI is defined as follows in the discrete case:

HIn(K;L) = H(K) +
∑

k∈K
p(k) ·

∑

l∈L
m̃n(l|k) · log2 m̃n(k|l). (7)

(Replace
∑

by
∫

in the continuous case) For an estimated model m̃n(l|k), the
HI can be computed based on Eq. 7, or by sampling (just as for the MI). In the
latter case, we use the notation ĤIn(K;L):

ĤIn(K;L) = H(K) +
∑

k∈K
p(k) ·

nt(k)∑

i=1

1
nt(k)

· log2 m̃n(k|lk(i)), (8)

with as main difference from the MI case that the test samples come from a set
Tm which has been picked up from the model distribution rather than the true
distribution. We denote this process as Tm

nt← m̃n(l|k), and use the green color
to denote the empirical distribution of the model.

Note that, as in Eq. 6, the model after the log in Eq. 8 is fixed. Similarly to
the MI estimation process, the value of the estimation ĤI(K;L) when nt → ∞
equals HI(K;L). In most practical cases, the HI will be estimated directly via
Eq. 7 (which is simpler and faster).
Next, the PI is theoretically defined as follows in the discrete case:

PIn(K;L) = H(K) +
∑

k∈K
p(k) ·

∑

l∈L
p(l|k) · log2 m̃n(k|l), (9)

and as follows in the continuous case:

PIn(K;L) = H(K) +
∑

k∈K
p(k) ·

∫

l∈L
f(l|k) · log2 m̃n(k|l) dl. (10)

In contrast with the HI, these equations cannot be computed directly since
they require the knowledge of the true distributions p(l|k) and f(l|k) which are
unknown. So concretely, the PI will always be computed thanks to the following
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sampling process (where we keep the red color code for the model and the blue
color code for the true empirical distribution):

P̂In(K;L) = H(K) +
∑

k∈K
p(k) ·

nt(k)∑

i=1

1
nt(k)

· log2 m̃(k|lk(i)). (11)

This is feasible in practice since, even though the analytical form of the true
distributions is unknown to the evaluator, he can sample these distributions, by
measuring his target implementation.

Note again that, as in Eq. 6, the model after the log in Eq. 11 is fixed. So the
PI captures the amount of information that can be extracted from some fixed
model (usually obtained by estimation in an earlier phase). In other words, the PI
computation is a two-step process: first a model is estimated, second the amount
of information it provides is estimated. This is captured in our equations with
the tilde and hat notations: the first one is for the estimation of the model, the
second one for the computation of the information theoretic metrics by sampling.

Other useful facts. We next list a few additional former results.

• A sufficient condition for successful (maximum likelihood) attacks. As previ-
ously mentioned, the PI can be negative, indicating an estimated model that
is too different from the true distribution. Also, the link between informa-
tion theoretic metrics and the success rate of maximum likelihood attacks
only holds per key. A sufficient condition for successful maximum likelihood
attacks, first stated in [33], can therefore be given based on the “PI per key”.
For this purpose, and again assuming uniformly distributed keys, we first
define a PI matrix (PIM) as follows:

P̂IMn(k, k∗) = H(K) +
nt(k)∑

i=1

1
nt(k)

· log2 m̃n(k∗|l). (12)

It captures the correlation between a key generating leakages k and a key
candidate in a maximum likelihood attack k∗. The sufficient condition of
successful attack against this key k is:

k = argmax
k∗∈K

P̂IMn(k, k∗). (13)

The PI is connected to the PIM: P̂In(K;L) = E
k∈K

(
P̂IMn(k, k)

)
.

• Key equivalence in the standard DPA setting. In the usual (divide-and-
conquer) side-channel analysis context, formalized in [21] as the standard
DPA setting that we consider next, the adversary can continuously accumu-
late information about the key thanks to multiple input plaintexts x. Infor-
mation theoretic metrics such as the MI, HI and PI therefore have to include
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another sum over these inputs to be reflective of this setting. For example in
the discrete MI case, it yields:

MI(K;L,X) = H(K) +
∑

k∈K
p(k) ·

∑

x∈X
p(x) ·

∑

l∈L
p(l|k, x) · log2 p(k|l, x). (14)

Concretely, the adversary exploits the leakages after a first group operation
between uniformly distributed plaintexts x and a key k took place. For exam-
ple, he can target an intermediate operation y = x ⊕ k or y = S(x ⊕ k) with
S a block cipher S-box.3 As a result, one can leverage the “key equivalence
property” also proven in [21], which states that MI(K;L,X) = MI(k;L,X) =
MI(Y ;L) (i.e., there are no weak keys with respect to standard DPA and all
the information exploited depends on the target intermediate computation
Y ).4 Again, we use the MI(k;L,X) notation for a “MI per key” (i.e., Eq. 14
for a fixed value of K, which is the same for all k’s). The same type of
result holds with the HI and PI. In the following, and in order to keep nota-
tions concise, we will therefore state our results for MI(Y ;L), HIn(Y ;L) and
PIn(Y ;L):

MI(Y ;L) = H(Y ) +
∑

y∈Y
p(y) ·

∑

l∈L
p(l|y) · log2 p(y|l), (15)

HIn(Y ;L) = H(Y ) +
∑

y∈Y
p(y) ·

∑

l∈L
m̃n(l|y) · log2 m̃n(y|l), (16)

PIn(Y ;L) = H(Y ) +
∑

y∈Y
p(y) ·

∑

l∈L
p(l|y) · log2 m̃n(y|l), (17)

where the n subscript is the amount of leakages used to estimate the model.
• Cross-validation. When computing a metric by sampling, one generally uses

cross-validation in order to better take advantage of the collected data. As
detailed in [13], it allows all the measured leakages to be used both as profiling
and as test samples (but not both at the same time).

• Metrics convergence and confidence intervals. When estimating a metric by
sampling, one is generally interested in knowing whether the computed value
is close enough to the asymptotic one. In the context of side-channel analysis
considered here, the amount of collected data is generally sufficient to build
a “convergence plot” (see the experimental section) enabling to gain simple
(visual) confidence that the metric is well estimated. If needed (e.g., in case of
limited amount of data available), the bootstrap confidence intervals proposed
in [17] can be used.

3 It is shown in [36] that their adaptive selection only marginally improves the attacks,
and in [10,11] how this average metric can be used to state a sufficient condition for
secure masked implementations.

4 The second equality is turned into an inequality in case of non-bijective S-boxes.
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• Outliers. We finally note that outliers may prevent the PI metric computed
from real data to converge (e.g., in case a probability zero is assigned to the
correct y, leading to a log(0) in the PI equation). The treatment of these
outliers will be discussed in the next section.

3 Theoretical Bounds for the MI Metric

Given the motivation that the MI metric is a good predictor of the success
probability of a worst-case side-channel attack using the true leakage model,
and the impossibility to compute it directly for unknown distributions, we now
provide our main theoretical results and show how the HI and PI metrics can
be used to bound the MI. We first state our results for discrete leakages and
discuss the continuous case in Sect. 3.4. We will consider three quantities for this
purpose:

– The previously defined MI with p(y|l) computed thanks to Bayes assum-
ing uniform y’s (uniform y’s are typically encountered in the aforementioned
standard DPA setting):

MI(Y ;L) = H(Y ) +
∑

y∈Y
p(y) ·

∑

l∈L
p(l|y) · log2 p(y|l), (18)

= H(Y ) +
∑

y∈Y
p(y) ·

∑

l∈L
p(l|y) · log2

p(l|y)∑
y∗∈Y p(l|y∗)

·

– The PI (i.e., Eq. 17) under a similar uniformity assumption.
– The empirical HI (eHI), which is Eq. 16 taking as model m̃n(l|y) the empirical

distribution, that we denote by ẽn(l|y), under a similar uniformity assump-
tion:

eHIn(Y ;L) = H(Y ) +
∑

y∈Y
p(y) ·

∑

l∈L
ẽn(l|y) · log2 ẽn(y|l). (19)

Note that the eHI is exactly the biased maximum likelihood estimator of the
MI that is used in the leakage detection test of Chatzikokolaki et al. [6], applied
in the SCA setting by Mather et al. [24]. As detailed next, under our unifor-
mity assumption this estimator of the MI is biased upwards everywhere, which
explains why the eHI provides an upper bound of the unknown MI.

3.1 Technical Lemmas

We start with a few technical lemmas that we need to prove our two main
theorems. Note that some of them are variations of well-known results given in
textbooks such as [8]. We provide the proofs for the sake of completeness and
for readers not familiar with information theory. Considering a discrete random
variable taking values 1, 2, . . . , t, we next denote the actual probability of a value
v as p(v), and the t-dimensional vector containing these probabilities as p.
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Lemma 1. Denoting by ẽn the empirical distribution estimated from n i.i.d.
leakage samples indexed 1, 2, . . . , n, and by ẽjn the empirical distribution estimated
from the same samples excluding the sample j, the following equality holds:

ẽn =
∑

j=1:n

1
n

ẽjn,

and each empirical distribution ẽjn follows the same distribution as ẽn−1.

Proof. Let x ∈ {1, 2, . . . , t}n be the random i.i.d. samples. For any subset S
of {1, . . . , n}, we denote by ẽS the empirical distribution of the sample whose
indices are in S. Observe that:

ẽS =
1

|S|
∑

i∈S
Ixi

,

with Ixi
the indicator function taking the value 1 for the entry xi and 0 otherwise.

We then have:

∑

j=1:n

1
n

ẽjn =
1
n

n∑

j=1

⎛

⎝
∑

i∈{1:n}\{j}

1
n − 1

Ixi

⎞

⎠ ,

=
1

n(n − 1)

n∑

j=1

((
n∑

i=1

Ixi

)
− Ixj

)
,

=
1

n(n − 1)

⎛

⎝n

(
n∑

i=1

Ixi

)
−

n∑

j=1

Ixj

⎞

⎠ ,

=
1

n(n − 1)
(n − 1)

(
n∑

i=1

Ixi

)
,

=
1
n

n∑

i=1

Ixi
= ẽn,

which proves the equality in the lemma. Moreover, since the samples are i.i.d.,
all ẽjn follow the same distribution, and in particular the same distribution as
ẽnn = ẽn−1. ��
Lemma 2. Let γ : [0, 1]t → R be a convex function. Then for any n > 1, we
have:

γ(p) ≤ E
(
γ(ẽn)

)
≤ E

(
γ(ẽn−1)

)
.

Moreover, if γ is continuous at p and bounded from above on [0, 1]t, then:

E
(
γ(ẽn)

)
→ γ(p),

monotonically with n. Similarly, if γ is concave and under the assumption that
it is continuous and bounded from below, the same result holds with reverse
inequalities.
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Proof. We focus on the convex case and begin with the first inequality. Observe
that:

p = E (ẽn) . (20)

Indeed, by linearity of the expected value, we have E (ẽn) = 1
n

∑n
i=1 E(Ixi

), with
Ixi

the indicator function, whose t-dimensional value is 1 for the entry xi and 0
otherwise. Therefore, for any i and entry v ∈ {1, . . . , t}:

E(Ixi
)v = 1 · Pr(xi = v) + 0 · Pr(xi 
= v) = p(v),

from which (20) follows. Hence, due to the convexity of γ, we have:

γ(p) = γ
(
E (ẽn)

)
≤ E

(
γ (ẽn)

)
.

For the second inequality, it follows from Lemma 1 that:

ẽn =
∑

j=1:n

1
n

ẽjn.

Hence we have:

γ(ẽn) = γ

⎛

⎝
∑

j=1:n

1
n

ẽjn

⎞

⎠ ≤
∑

j=1:n

1
n

γ
(
ẽjn

)
.

Moreover, each ẽjn has the same distribution as ẽn−1. Hence:

E
(
γ (ẽn)

)
≤ E

⎛

⎝
∑

j=1:n

1
n

γ
(
ẽjn

)
⎞

⎠ ,

=
∑

j=1:n

1
n

E
(
γ(ẽjn)

)
,

=
∑

j=1:n

1
n

E
(
γ(ẽn−1)

)
= Eγ(ẽn−1).

Let us now show the convergence under the assumption that γ is continuous
at p and uniformly bounded by some M . By continuity of γ at p, for every ε
there is a δ such that ||ẽn − p|| ≤ δ implies |γ(ẽn) − γ(p)| ≤ ε. Moreover, ẽn
converges in probability to p, meaning that for every (δ, ε′) there is a n′ such
that Pr(||ẽn − p|| > δ) < ε′ for any n > n′. As a consequence, for n > n′, we
have:

Pr(|γ(ẽn) − γ(p)| > ε) < ε′.

Remembering that γ(.) < M , we then have that for every n > n′:

E
(
γ(fn)

)
− γ(p) = E

(
γ(ẽn) − γ(p)

)
,

≤ ε Pr
(
|γ(ẽn) − γ(p)| ≤ ε

)
+

(
M − γ(p)

)
Pr

(
|γ(ẽn) − γ(p)| > ε

)
,

≤ ε(1 − ε′) + ε′
(
M − γ(p)

)
,
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for every n > n′. Combining this with γ(p) ≤ E
(
γ(ẽn)

)
yields the desired

convergence result. ��

Lemma 3. Let y ∈ R
m
+ be a vector of positive entries. Then for any positive

x ∈ R
m
+ , we have:

∑

i

yi log2
xi∑
j xj

≤
∑

i

yi log2
yi∑
j yj

,

with equality if and only if xi = kyi for some k > 0.

Proof. Let x′ = x/(
∑

j xj) and y′ = y/(
∑

j yj). These vectors can be viewed as
probability distributions since they are non-negative and sum to 1. Hence we can
compute the following KL-divergence, which is always non-negative, and zero if
and only if x′ = y′:

0 ≤ DKL(y′||x′) =
∑

i

(
y′
i log

(
y′
i

x′
i

))
.

Using log(y′
i/x′

i) = log y′
i − log x′

i, we obtain:
∑

i

(y′
i log x′

i) ≤
∑

i

(y′
i log y′

i),

from which the result follows by replacing x′
i, y

′
i and multiplying by

∑
j yj . Equal-

ity holds if and only if x′ = y′, that is, if x = ky for some k > 0. ��

3.2 Bound from the HI

We first recall the following standard result from Cover and Thomas:

Theorem 1 (Cover & Thomas, 2.7.4 [8]). The mutual information MI(Y ;L)
is a concave function of p(y) for fixed p(l|y) and a convex function of p(l|y) for
fixed p(y).

Combined with the technical Lemma 2, it leads to our main result:

Theorem 2. On average over the profiling sets M used to estimate the eHI and
assuming that the target random variable Y has (constant) uniform probability,
we have:

E
M n←p(l|y)

(
eHIn(Y ;L)

)
≥ E

Mn−1← p(l|y)

(
eHIn−1(Y ;L)

)
≥ MI(Y ;L).

Moreover, lim
n→∞eHIn(Y ;L) = MI(Y ;L) (i.e., the eHI monotonically converges

towards the MI).

Proof. Observe that eHIn(Y ;L) is the mutual information between Y and the
empirical distribution of the leakages. Hence (thanks to Theorem 1), it is convex
in ẽn(l|y) for a fixed distribution of y (which we have by assumption). The result
then follows from Lemma 2. ��
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3.3 Bound from the PI

Theorem 3. Assuming that the target random variable Y has (constant) uni-
form probability and given any model m̃n(l|y) for the conditional probabilities
p(l|y), we have:

PIn(Y ;L) := H(Y ) +
∑

y

p(y)
∑

l

p(l|y) log2
m̃n(l|y)∑
y∗ m̃n(l|y∗)

≤ MI(Y ;L).

Proof. Since p(y) is a constant c, we have:

PIn(Y ;L) = H(Y ) + c
∑

l

(
∑

y

p(l|y) log2
m̃n(l|y)∑
y∗ m̃n(l|y∗)

)
· (21)

Now for any l, it follows from Lemma 3 that:
∑

y

p(l|y) log2
m̃n(l|y)∑
y∗ m̃n(l|y∗)

≤
∑

y

p(l|y) log2
p(l|y)∑
y∗ p(l|y∗)

· (22)

Re-introducing this in Eq. 21 leads to:

PIn(Y ;L) ≤ H(Y ) + c
∑

l

(
∑

y

p(l|y) log2
p(l|y)∑
y∗ p(l|y∗)

)
, (23)

= H(Y ) +
∑

y

p(y)
∑

l

p(l|y) log2
p(l|y)∑
y∗ p(l|y∗)

,

= MI(Y ;L).

��

Additional observation. It would be nice to know that PIn(Y ;L) = MI(Y ;L) if
and only if m̃n(l|y) = p(l|y). However, this is not true in general. Suppose for
example that l and y only take two values l1, l2 and y1, y2, and that p(li|yj) =
1/2 for all four cases. Then consider the model defined by m̃n(l1|yj) = α and
m̃n(l2|yj) = 1 − α for both yj and some α ∈ [0, 1]. Again assuming a constant
p(y) = 1/2, the perceived information of any such model would be:

PIn(Y ; L) = H(Y ) +
1

2

∑
l

∑
y

1

2
log2

m̃n(l|y)∑
y∗ m̃n(l|y∗)

,

= H(Y ) +
1

4

(
log2

m̃n(l1|y1)

m̃n(l1|y1) + m̃n(l1|y2)
+ log2

m̃n(l1|y2)

m̃n(l1|y1) + m̃n(l1|y2)

+ log2

m̃n(l2|y1)

m̃n(l2|y1) + m̃n(l2|y2)
+ log2

m̃n(l2|y2)

m̃n(l2|y1) + m̃n(l2|y2)

)
,

= H(Y ) +
1

4

(
log2

α

α + α
+ log2

α

α + α
+ log2

1 − α

1 − α + 1 − α
+ log2

1 − α

1 − α + 1 − α

)
,

= H(Y ) + log2

1

2
,
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irrespectively of α. The value obtained for any α is the same as for α = 1/2
(i.e., the only value for which m̃n(l|y) = p(l|y)). We therefore conclude that
PIn(Y ;L) = MI(Y ;L) does not imply that the model accurately describes the
distribution of leakage.

As a complement of this observation, we next characterize the conditions
under which m̃n(l|y) = p(l|y) is the only maximum.

Proposition 1. Let P be the matrix defined by Pl,y = p(l|y). If P is full row
rank, then PIn(Y ;L) = MI(Y ;L) if and only if m̃n(l|y) = p(l|y). If P is not full
row rank then one can build alternative models leading to PIn(Y ;L) = MI(Y ;L).

Proof. Let m̃n(l|y) be a conditional probability distribution. Keeping the nota-
tions of Theorem 3, PIn(Y ;L) = MI(Y ;L) holds if and only if equality holds in
Eq. 23, and therefore if and only if it holds in Eq. 22 for every l. By Lemma 3, this
is equivalent to the existence of a positive vector k such that m̃n(l|y) = kl ·p(l|y)
holds for every y, l. Clearly, m̃n(l|y) = p(l|y) for all y, l if and only if all kl’s are
equal to 1 (i.e., k = 1). Now, for an arbitrary positive vector k, the quantities
m̃n(l|y) = kl p(l|y) define valid conditional probabilities if and only if (i) they all
belong to [0, 1], and (ii)

∑
l m̃n(l|y) = 1 for every y. We show next that these con-

ditions imply k = 1 if and only if P is full row-rank, which will imply our result.
Define the matrix M as Ml,y = m̃n(l|y) and the diagonal matrix K as Kll = kl
(so that k = K1)). Condition (ii) can be rewritten as 1TM = 1T = 1TP , and
m̃n(l|y) = kl p(l|y) can be re-expressed as M = KP . Therefore:

(k − 1)TP = (1TK − 1T )P = 1TKP − 1TP = 1TM − 1TP = 1T − 1T = 0.

That is, the vector (k − 1)T is in the left-kernel of P . Hence, if P has full-row
rank, the only vector k for which (ii) is satisfied is k = 1. Otherwise, any vector
of the form k = 1 + αv for α 
= 0 and v 
= 0 in the left-kernel of P would
lead m̃n(l|y) to satisfy condition (ii). To finish the proof, we show that we can
also have condition (i) satisfied. By taking a sufficiently small α, we can ensure
that k is positive, and therefore that the m̃n(l|y)’s are non-negative. Because∑

l m̃n(l|y) = 1 by condition (ii), this implies that m̃n(l|y) ≤ 1 for every l, y and
that condition (i) is satisfied. ��

Note that this full row rank condition may not be achieved in so-called Simple
Power Analysis (SPA) attacks with “compressive” leakage functions. For exam-
ple, imagine an implementation leaking the noise-free Hamming weight of an
n-bit key. Then, the number of leakages (i.e., n + 1) is lower then the number
of keys (i.e., 2n) and P cannot have full row rank. By contrast, in the DPA
setting, the amount of leakages that the adversary can observe is multiplied by
the number of plaintexts (i.e., 2n) and the matrix P(l,x),k = p(l, x|k) is expected
to be of full row rank.

3.4 Discussion and Application of the Results

The previous theorems can be quite directly applied in a side-channel evalua-
tion context. Yet the following clarifications are worth being pointed out before
moving to experiments.



728 O. Bronchain et al.

First and as previously mentioned, one technical difficulty that may arise is
the presence of outliers (or simply rare events) leading to zero probabilities for
the good key candidate, and therefore to a log(0) in the PI equation (for the HI
equation, we assume 0 · log(0) = 0). A simple heuristic to deal with these cases is
to lower-bound such probabilities to 1

nt(k)
and to report the fraction of corrected

probabilities (which vanishes as n increases) with the experimental results.
Second, the HI bound of Sect. 3.2 is stated for the empirical distribution that

is straightforward to estimate in a discrete case with finite support thanks to
histograms. In this respect, we observe that actual leakages are measured thanks
to sampling devices (hence are inherently discrete and finite). We also refer to the
fast leakage assessment methodology in [31] for a motivation why this may lead
to performance gains for the evaluator. Yet, there is actually nothing specific to
discrete distributions in the way we obtain this bound (up to the slightly different
convergences discussed in the full version of the paper [3]). So it is applicable
to continuous distributions and estimators. For example, we could replace the
estimation of the discrete MI based on histograms that we use to compute the
eHI by a Kernel-based one such as used in [7,24]). In the next section, we also
consider a simplified (Gaussian) model family and show how the HI bound can
be useful in this context.

4 Empirical Confirmation

4.1 Simulated Experiments

In order to demonstrate the relevance of the previous tools, we start by investi-
gating a standard simulation setting where the evaluator/adversary exploits the
leakages corresponding to several executions of the AES S-box. Our first sce-
nario corresponds to a univariate attack against an unprotected implementation
of this S-box, where the leakage samples are of the form:

l1i = HW
(
S(x ⊕ k)

)
+ ri,

with HW the Hamming weight function, and ri a Gaussian distributed noise
sample with variance σ2. The noise level is a parameter of our simulations. For
convenience (and simpler interpretation) we report it as a Signal-to-Noise Ratio
(SNR) which is defined as in [19] as the variance of the signal (which is worth 2
in the case of a random 8-bit Hamming weight value) divided by σ2.

Our second simulated scenario corresponds to a bivariate attack against the
same unprotected implementation of the AES S-box, where the leakage vectors
are of the form:

l2i =
[
HW(x ⊕ k) + ri; HW

(
S(x ⊕ k)

)
+ r′

i

]
.
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Finally, our third scenario corresponds to a univariate attack against a
masked (i.e., secret shared [4]) implementation of this S-box, where the leak-
age samples are of the form:

l3i =
[
HW

(
S(x ⊕ k) ⊕ q

)
+ HW(q) + ri

]
,

with q a secret mask picked up uniformly at random by the leaking device.
The results of our first scenario for high and medium SNRs are in Fig. 1,

where we plot the MI (that is known since we are in a simulated setting), the
eHI, the ePI (considered in our bounds) and the Gaussian PI (gPI) which is
the PI corresponding to a Gaussian leakage model. The IT metrics are plot in
function of the number of traces in the profiling set n.5 As expected, the eHI
provides an average upper bound that converges monotonically towards the MI,
and the ePI provides a lower bound. Besides, the gPI converges rapidly towards
the true MI since in our simulations, the leakages are generated based on a
Gaussian distribution. So making this additional assumption in such an ideal
setting allows faster model convergence without information loss.

(a) SNR = 1 (lin. scale). (b) SNR = 0.1 (lin. scale).(a) SNR = 1 (lin. scale). (b) SNR = 0.1 (lin. scale).

Fig. 1. Simulations, unprotected S-box, high & medium SNRs, univariate.

These results are confirmed with the similar plots given in Fig. 2 for a lower
SNR of 0.01. For readability, the right plot switches to a logarithmic scale for
the Y axis. It illustrates a context where it is possible to formally bound the
mutual information to values lower than 10−2.

Figures 1 and 2 correspond to simple (unprotected, univariate) cases where
the estimation of the empirical distribution (despite significantly more expensive
than the one of a Gaussian distribution) leads to reasonably tight bounds for
the MI. We complement this observation with experiments corresponding to

5 We use nt = n, which leads to good estimations since the number of measurements
needed to estimate a model is usually larger than the number of leakages needed to
recover the key with a well-estimated model [32].
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(a) SNR = 0.01 (lin. scale). (b) SNR = 0.01 (log. scale).(a) SNR = 0.01 (lin. scale). (b) SNR = 0.01 (log. scale).

Fig. 2. Simulations, unprotected S-box, low SNR, univariate.

our second (unprotected, bivariate) context. As illustrated in Fig. 3 for medium
and low SNRs, this more challenging context leads to considerably less tight
bounds, which can be explained by the (much) slower convergence of multivariate
histograms. Note that we could not reach a positive ePI with n = 107 in this
case (and the gPI still does it rapidly).

(a) SNR = 0.1 (log. scale). (b) SNR = 0.01 (log. scale).

Fig. 3. Simulations, unprotected S-box, medium & low SNR, bivariate.

We finally report the results of the simulated masked implementation in Fig. 4
for very high and high SNRs. The very high SNR case is intended to illustrate a
context where the Gaussian assumption is not satisfied (since the masked leakage
distribution is actually a Gaussian mixture), so that the gPI is considerably lower
than the ePI. By contrast, and as observed (for example) in [14], Fig. 1 (right),
this Gaussian approximation becomes correct and the gPI gets close to the ePI
as the noise increases, which we also see on the right part of Fig. 4.
An open source code allowing to reproduce these results is given in [1].
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(a) SNR = 10 (log. scale). (b) SNR = 1 (log. scale).

Fig. 4. Simulations, masked S-box, very high & high SNR, univariate.

4.2 Real Measurements

We complement the previous simulated experiments with analyzes performed
on actual measurements obtained from an FPGA implementation of the AES
S-box. In order to instantiate a noise parameter as in our simulations, we consider
different architectures for this purpose: the target S-box is computed in parallel
with π ∈ {0, 3, 7, 11) other S-boxes whose computations (for random inputs) gen-
erate “algorithmic noise”. We implemented our design on a SAKURA-X board
embedding a Xilinx Kintex-7 FPGA. The target device was running at 4 MHz
and sampled at 500 ms/s (i.e., 125 leakage points per cycle). We split our exper-
iments in two parts. In a first part, we consider a univariate evaluation (similar
to the first setting of our simulated setup) allowing reasonably tight worst-case
bounds. In a second part, we consider a highly multivariate evaluation (i.e., an
adversary exploiting all the 125 points of each clock cycle) and discuss how to
connect this context with nearly worst-case security arguments for (e.g., masked)
cryptographic implementations.

Univariate analyses & theoretical worst-case bounds. The eHI/ePI
bounds computed for the most informative leakage points of our measurements
for π = 0 and 7 are in Fig. 5. The π = 3 and 11 cases are given in the full version
of the paper [3]. We again observe that it is possible to obtain reasonably tight
bounds (e.g., to bound the MI below 10−1 which is a sufficient noise for the mask-
ing countermeasure to be effective). Yet, as π increases and the MI decreases,
we also see that tightening the bounds becomes increasingly data-intensive.

In view of the important amount of samples n needed to bound the MI,
and of the popularity of the Gaussian assumption in SCAs [5], we additionally
considered the Gaussian HI (gHI) which is the HI corresponding to a Gaussian
model, and evaluated it based on the formula:

approx-gHIn(Y,L) = −1
2

· log2
(
1 − ρ(M,L)2

)
, (24)
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(a) π = 0 (log. scale). (b) π = 7 (log. scale).

Fig. 5. Actual measurements, unprotected S-box, univariate.

where ρ is Pearson’s correlation coefficient, L the leakage random variable (as
previously) and M the model random variable. As discussed in [19], ρ(Y,M) can
be related to the leakages’ SNR, which (in the case of Gaussian leakages) can
be linked to the MI metric [11]. As observed in [21], the formula holds well for
noisy Hamming weight leakages in case of “reasonably small” correlations values
(i.e., typically ρ < 0.1). The latter is confirmed in our experiments of Figs. 5.
Namely, these figures first illustrate that the gHI is also an upper bound for
the gPI and converges monotonically (as expected from the results in Sect. 3).
They additionally show that the gHI and gPI are very close to the worst-case
MI in our experimental setting. The latter is particularly interesting since the
gHI converges very fast compared to the other metrics.

Multivariate analyzes and efficient evaluations. Ultimately, an evalua-
tor would be interested in efficiently and tightly bounding the total amount of
information provided by his leakage points. As clear from the Sect. 4.1 (and the
bivariate analysis of Fig. 3), obtaining tight MI bounds with two dimensions
is already data-intensive. Hence, applying such a straightforward approach to
our measurements where each clock cycle has 125 points is unlikely to provide
any tight result. So here as well, we considered the multivariate gHI as a useful
alternative (yet, this time without possibility to compare it to the eHI). For
this purpose, we use the formula for the differential entropy of a multivariate
Gaussian distribution:

gH(Z) =
1
2 log

(
det(2πeΣ)

)

log(2)
, (25)

where Σ is the covariance matrix of the Gaussian-distributed random variable
Z, det(.) denotes the matrix determinant and the log(2) of the denominator is
to obtain a value in bits. We then used this standard formula to approximate
the multivariate gHI as:

MV approx-gHIn(Y,L) = gH(M) + gH(L) − gH(M ;L), (26)



Leakage Certification Revisited: Bounding Model Errors 733

which is the multivariate generalization of Eq. 24. Note that as in Eq. 24, this
approximation is based on the (multivariate) model random variable, which
captures the possibility that different leakage points can have different leakage
behaviors despite depending on the same Y .

Note also that as the number of dimensions increases, using such an approx-
imation is increasingly useful from the time complexity viewpoint. Indeed, while
the univariate gHI can be computed directly by integration, computing the mul-
tivariate gHI in our experimental case study (where we exploit the measurements
of two clock cycles corresponding to 250 leakage points) would require integrat-
ing a 250-dimension distribution. By contrast, evaluating Eq. 26 only requires
estimating the covariances matrices of the model, leakages and their joint distri-
bution.

The approximations of the multivariate gHI for the cases π = 3 and 11 are
in Fig. 6. The π = 0 and 7 cases are given in the full version of the paper [3].
For completeness, the plots first report the univariate gHI for each time sample
(in red). The multivariate Gaussian approximations of Eq. 26 are then reported
in purple in a cumulative manner: the value for time sample x corresponds to
the x-variate estimation for dimensions 1 to x. Eventually, we added a conser-
vative bound in blue, based on the assumption that each leakage point provides
independent information and is summed. Those results are practically-relevant
for two main reasons:

– First, they allow estimating the information of a very powerful yet realistic,
close to worst-case adversary (since the univariate gHI is close to the eHI) in
a more accurate (and less conservative) manner than bounds obtained based
on an independence assumption. For example, the most informative point of
Fig. 6(b) has a (univariate) gHI of 4 · 10−2 while our approximation of the
multivariate gHI is worth 2 ·10−1 (i.e., a factor 5 more) and the bound would
suggest a gHI larger than one (i.e., no security). So it illustrates a case where
our approximation provides a useful intermediate between a too optimistic
univariate analysis and a too conservative bound based on an independence
assumption. We note that as for the univariate case, the approximation of
Eq. 26 only holds for small HI values (i.e., typically below 0.1). For example,
the approximation for the π = 0 case (given in the full version of the paper [3])
overestimates the information leakages. Yet, the quantitative analysis of those
cases is anyway not very interesting (since they correspond to a too weak
security).

– Second, these close to worst-case evaluations of the information leakages
are obtained very efficiently (from the data complexity viewpoint). Taking
again the π = 11 case for illustration, the Gaussian approximation of the
250-variate gHI already reaches a good convergence after approximately
n = 106 samples (while the gPI is still negative with this amount of mea-
surements). For completeness, we report the convergence plots of the multi-
variate gPI and gHI in the full version of the paper [3], where we can observe
this faster convergence for lower number of dimensions (for which the gPI is
positive).
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(a) π = 3 (log. scale). (b) π = 11 (log. scale).

Fig. 6. Actual measurements, unprotected S-box, multivariate.

5 Conclusions

This paper provides first quantitative tools to bound the information leakages
exploited in SCAs, taking into account the risk of a “false sense of security”
due to incorrect assumptions about the leakage distributions. In case of low-
dimensional leakages, we are able to formally bound the amount of informa-
tion obtained on a target random variable. In case of high-dimensional leak-
ages (which typically happen in case of strong adversaries trying to exploit all
the information in power or electromagnetic measurements), tightening these
bounds usually requires an unrealistic amount of data. Yet, even in these cases,
our tools can be used to approximate the information provided by more special-
ized (close to worst-case) adversaries, by exploiting simplifying (e.g., Gaussian)
assumptions. As a result, a natural approach to leakage certification is to mix
(i) a low-dimension analysis estimating both the empirical and (for example) the
Gaussian HI and PI metrics, in order to gauge the quality of the simplifying (e.g.,
Gaussian) assumption and (ii) a high-dimension analysis based on the simpli-
fying assumption(s) only. Such an approach can considerably speed up security
evaluations. First, estimating an HI bound is significantly less expensive than
estimating the PI, both in terms of data complexity (as clear from the conver-
gence plots of the previous section) and in terms of time complexity. For example,
the multivariate gHI estimations of Sect. 4.2 are obtained within minutes of com-
putations on a desktop computer whereas the gPI estimations take several hours
(due to their expensive cross-validation step). Next, such information theoretic
metrics can be used to bound the success rate of actual side-channel attacks
much faster than by directly mounting attacks. These bounds can be used both
in the context of standard divide-and-conquer adversaries as usually considered
in current security evaluations (e.g., using the formulas in [11]), and for analyzing
more advanced adversaries trying to combine the information leakages beyond
the operations that can be easily guessed by a divide-and-conquer adversary
(e.g., using the Local Random Probing Model in [16]). We believe these tools are
important ingredients to strengthen the understanding of side-channel security
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evaluations and the design of countermeasures with strong security guarantees.
We also believe they are of general interest and could find applications in other
contexts such as timing attacks or privacy-related applications [23].
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Abstract. Key separation is often difficult to enforce in practice. While
key reuse can be catastrophic for security, we know of a number of cryp-
tographic schemes for which it is provably safe. But existing formal mod-
els, such as the notions of joint security (Haber-Pinkas, CCS ’01) and
agility (Acar et al., EUROCRYPT ’10), do not address the full range
of key-reuse attacks—in particular, those that break the abstraction of
the scheme, or exploit protocol interactions at a higher level of abstrac-
tion. This work attends to these vectors by focusing on two key ele-
ments: the game that codifies the scheme under attack, as well as its
intended adversarial model; and the underlying interface that exposes
secret key operations for use by the game. Our main security experiment
considers the implications of using an interface (in practice, the API of
a software library or a hardware platform such as TPM) to realize the
scheme specified by the game when the interface is shared with other
unspecified, insecure, or even malicious applications. After building up
a definitional framework, we apply it to the analysis of two real-world
schemes: the EdDSA signature algorithm and the Noise protocol frame-
work. Both provide some degree of context separability, a design pattern
for interfaces and their applications that aids in the deployment of secure
protocols.

Keywords: Key reuse · APIs · Diffie-Hellman · EdDSA · Noise

1 Introduction

The principle of key separation, or ensuring that distinct cryptographic func-
tionalities use distinct keys, is a widely accepted tenet of applied cryptography.
It appears to be difficult to follow, however, as there are many instances of key
reuse in deployed cryptosystems, some having significant impact on the security
of applications. There are a number of practical matters that lead to key resuse.
First, operational requirements of the system often demand some degree of it.
For example, it is common to use a signing key deployed for TLS [32] in other
protocols, as this is permitted by certificate authorities and avoids the cost of
certifying a distinct key for each protocol. But doing so has side effects that
c© International Association for Cryptologic Research 2019
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must be addressed in the design of these protocols, as well as the interface that
exposes the key to applications [9]. Second, it is often not clear what constitutes
a “distinct functionality”. Intel’s Trusted Platform Module (TPM) standard [36]
supports a variety of protocols for remote attestation that use an Intel-certified
key stored on chip. The TPM exposes a core set of operations involving this key
via its application-programming interface (API), which applications make calls
to in order to implement attestation schemes. But the requirement to support
so many protocols has lead to a flexibile API with subtle vulnerabilities [2,12].

Prior work sheds light on when key reuse is safe among specific primitives.
Haber and Pinkas [16] introduce the notion of joint security, which captures the
security of a target cryptosystem (say, a digital signature scheme) in the presence
of an oracle that exposes a related secret-key operation (say, the decryption
operation of a public-key encryption scheme). Many widely used primitives are
jointly secure, including RSA-PSS/OAEP [16] and Schnorr signatures/hybrid
encryption [13]. Acar et al. [1] address the related problem of agility, where
the goal is to identify multiple instantiations of a particular primitive (e.g.,
sets of AEAD schemes, PRFs, or signature schemes) that can securely use the
same key material. But the range of potential key-reuse attacks goes well beyond
what these works cover; attack vectors sometimes break the intended abstraction
boundary of the scheme by exposing lower level operations [2,11], or involve
unforeseen protocol interactions at a higher level of abstraction [9,18]. We believe
that a comprehensive treatment of key reuse can and should account for these
attack vectors as well.

To this end, we propose to surface the API as a first class security object. For
our purposes, the API (or just “interface”) is the component of a system that
exposes to applications a fixed set of operations involving one or more secret
keys. APIs are often the root-of-trust of applications: TPM, Intel’s Software
Guard Extensions (SGX), hardware security modules (HSMs), and even chip-
and-pin credit cards all provide cryptographic APIs that aim to be trustworthy-
by-design. But pressure to meet operational requirements, while exporting inter-
faces that are suitable for a variety of applications, often leads to vulnerabili-
ties [2,10,13,21]. An analogous situation arises in the development of software
that uses a cryptographic library; software engineers tend to trust that any use
case permitted by an API is secure, without fully grasping its side-effects [27].
This phenomenon tends to lead to vulnerable code [3,28].

In light of these issues, this work seeks to develop security-oriented design
principles for interfaces and their applications. We devise a definitional frame-
work for reasoning about the security of an application when the interface it
consumes is used in other, perhaps unintended or even insecure ways. We model
these “other applications” very conservatively, as follows: to assist it in its attack
against the target application, we assume the adversary has direct access to the
underlying interface, allowing it to mount exposed interface attacks on a tar-
get application. We apply this framework to the design and analysis of two
real-world cryptosystems: the EdDSA signature algorithm [17] and the Noise
protocol framework [30]. In doing so, we elicit a property of interfaces and their
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applications we call context separability, which we will show to be an invaluable
tool for secure protocol design.

The Full Version [29]. This is an extended abstract; the full version of this
paper includes all deferred proofs, as well as additional results, remarks, and
discussion.

The Framework. We begin by motivating our definitional viewpoint, which
draws abstraction boundaries a bit differently than usual. Game-based notions
of security [6] typically specify (in pseudocode) a game G that makes calls
to a cryptographic scheme Π (a primitive or protocol, also specified in pseu-
docode). The game captures an attack model—that is, the capabilities and goal
of the adversary—and establishes boundaries on the permitted uses of Π . Model-
specific adversarial capabilities are captured as oracle procedures specified by G,
which the adversary may query during its attack. Its goal is formalized by an
explicit winning condition that depends on its queries and the random choices of
the game. The security of the scheme, when used as specified by G, is measured
by executing an adversary with G.

Suppose that Π is specified in terms of calls to an underlying interface I,
which defines the set of operations that can be performed on the secret key. Our
goal is to measure the security of Π in the sense of G when the adversary playing
the game is also provided direct access to I, i.e., when the adversary is able to
mount exposed interface attacks on the security of Π that G codifies.

We formalize our syntax for interfaces and games in Sect. 3. Rather than refer
explicitly to Π , we allow the game G to realize Π as pseudocode that makes
calls to I. Interfaces may expose conventional primitive operations like signing
or decryption, or they may expose lower level operations that are composed
into higher level ones by the game. (This is precisely what TPM does; more on
this in Sect. 5.1.) Our syntax for interfaces admits operations on symmetric and
asymmetric keys. In the latter case, all secret-key operations are handled by the
interface, and all public-key operations are specified by the game.

Security Under Exposed Interface Attack. The objects of our study are an inter-
face and a target application; we formalize the latter as a game that defines
the scheme, how it is used, and what is its goal. With some details suppressed,
Fig. 1 visualizes the execution flow of our main security experiment SEC/I, which
acts as an analysis harness for an interface I, game G, and adversary A. The
experiment first generates the public and secret keys (pk , sk) as specified by I,
then runs A on input of pk and with access to oracles Init, Call, and Final
used to “play” the game G. The game is comprised of three algorithms: the first,
G.Init, takes pk as input and outputs the game’s initial state; the second, G.Call,
specifies the capabilities of A in the game and advances the state in response to
its queries; and the last, G.Final, computes the game’s winning condition and
outputs a bit win. Both G.Call and G.Final are given access to I for performing
secret key operations, and the adversary is given direct access to I via a fourth
oracle Op. As usual [6], the adversary must call Init first and Final last; the
outcome of the experiment is the value of win.
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pk

pk

G.Init

A A A

I I

sk sk

win

(α)Init Call

(ctx �= α)Op

Final

G.Call G.Final

Fig. 1. Illustration of the SEC/I experiment, which has three “phases”: first, the adver-
sary A chooses the game context α and initializes the game G; second, A plays G and
interacts with I; and third, A finalizes G and the experiment outputs the outcome win.

The central goal of our work is to measure the security “gap” between this
and the “usual setting” in which the underlying interface is only used for the
target application. This setting is formalized by the SEC experiment, which is
defined just like SEC/I, except the adversary is denied access to Op. We will
formalize both experiments in Sect. 4.

Context Separability. Security in our setting often requires a property we call con-
text separability. Loosely, a context-separable interface is one whose operations
can be bound to the context in which they are used. When context separation
is enforced, this binding prevents context-separable games from interacting in
unintended ways. Let us consider an illustrative example. TLS is designed to
prevent signatures produced in the context of the protocol from being used in
other applications, and vice versa. To accomplish this, whenever a message is
to be signed, it is signed together with a short context string that uniquely
identifies the protocol version and the signer (i.e., the client or server, see [32,
Sect. 4.4.3]). This makes it unlikely that another protocol would inadvertently
produce a signature that could be used in TLS, but nothing about the proto-
col or the signature scheme ensures this; depending on how signing operations
are exposed and whether key separation is enforced, this could lead to practical
cross-protocol attacks [9].

As reflected in both our syntax and security notions, our framework sheds
formal light on the affect of these design challenges on security. In addition
to the secret key and operand, an interface is formalized to take as input a
context string ctx , which is meant to uniquely identify the application making
the API call; correspondingly, a game is initialized with context that is meant
to uniquely identify it. In the SEC/I experiment, the game G is initialized with
an adversarially chosen game context string α, which the adversary may not
use for its interface queries. (See Fig. 1.) This is akin to enforcing non-repeating
nonces in the security experiment for symmetric encryption; in practice, it is an
operational requirement that the environment must enforce.
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On the Role of Context Separation. The high-level goal of our work is to provide
a framework for reasoning about the security of interfaces that expose secrets
to applications. We uncover context separability as a useful design pattern for
achieving security in the presence of key reuse. In fact, this operational require-
ment can be seen as a generalization of key separation; an interface could enforce
key separation by generating a unique key for each unique application (identi-
fied by a context string) it intends to support. But when doing so is infeasible,
interfaces and their applications can be designed so that reuse is secure as long
as context separation is enforced.

We stress that context separation is not essential to security in the presence
of key reuse. We could have formalized other operational requirements; it may
suffice to ensure that no single operation is used in multiple applications, or
that distinct applications provide distinct inputs, etc. However, our choice to
enforce context separation in the SEC/I experiment was not arbitrary. First
and foremost, it reflects a design pattern often explicit (but sometimes implicit)
in real standards, two of which we analyze in this paper (EdDSA and Noise).
Second, it is our hope that clarifying this simple requirement will reduce some
of the complexity inherent to protocol design.

A Composition Theorem. To measure the “gap” between SEC and SEC/I—
that is, to measure the security impact of exposing the underlying interface—in
Sect. 4.2 we formulate and prove sufficiency of a condition under which secu-
rity in the former sense implies security in the latter. The GAP1 experiment is
associated to an interface I, a game G, a simulator S, and a distinguisher D.
The experiment allows D to play the game via Init, Call, and Final as above;
likewise, the adversary can query the interface via Op. In the “real” world, Op
exposes I, but in the “simulated” world, the distinguisher’s queries are evalu-
ated by S, which is given the public key but no access to I. The adversary’s
goal is to distinguish between these two worlds. We show that for any I and G,
if I is both SEC and GAP1 secure for G, then I is also SEC/I secure for G
(Theorem 1(i)). Thus, proving GAP1 security of I for G will be our primary
goal, as it succinctly characterizes conditions under which it is safe to compose
applications that share the same interface.

We also consider the security impact of changing an interface, by, for example,
exposing additional operations on the key. The GAP2 experiment is similar to
GAP1, except it involves a pair of interfaces (I1, I0). In the “real” world, both
the game and distinguisher are given oracle access to I1; in the “simulated”
world, the game is given an oracle for I0 and the distinguisher’s Op queries are
answered by the simulator, which is also given an oracle for I0. We prove that
if (I1, I0) is GAP2 secure for G and I0 is SEC/I secure for G, then so is I1

(Theorem 1(ii)). We also formulate a necessary condition, wGAP2, that allows
us to characterize key operations that are not generally safe to expose in an
interface.

Application to Discrete Log Interfaces. We apply our framework to various
discrete log (DL) interfaces, whose key pairs are (p = gs, s) where g is the
generator of a finite, cyclic group. They are so named because the security of
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their applications is predicated on the hardness of computing discrete logarithms
(in particular, s = logg p) in the given group. They are particularly interesting
in our setting because they admit a wide variety of primitives and protocols.

Diffie-Hellman and EdDSA. A well-known design challenge for DL interfaces
is avoiding accidental exposure of a static Diffie-Hellman (DH) oracle [2,12]:
given p and an oracle that on input of q returns qs, there is an algorithm [11]
for computing s that is much faster than generic DL [31]. As a first exercise of
our framework, we rule out the security of (inadvertently) exposing static DH in
any DL interface by proving wGAP2 insecurity of their composition (Sect. 5.1).
We then consider the security of the EdDSA signature scheme [8] in our setting
(Sect. 5.2). The standardized version of this algorithm [17] admits variants that
are context separable, allowing us to prove in the random oracle model (ROM) [5]
that the signing operation is GAP1 secure for any game in which all signing and
verification operations use the game context. We also show (in the ROM) that
exposing the signing operation of any EdDSA variant in a DL interface that
meets certain requirements is GAP2 secure in general.

Noise. Having addressed the security of these relatively simple operations, in
Sect. 6 we turn to analyzing Noise [30], a framework for designing two-party
secure-channel protocols. Participants in these protocols negotiate and execute
handshake patterns, which define the sequence of messages sent between them
and thereby the security of the communication channel they establish. We specify
as an interface the set of processing rules that determine how each party con-
sumes and produces messages, and how their state is updated as a side-effect.
This allows handshake patterns to be executed by making calls to this interface.

Our results for Noise are largely positive. With a simple tweak of the process-
ing rules, we are able to prove GAP1 security of our interface while making only
minimal (and natural) assumptions about the target application. This implies,
in particular, that all handshake patterns that can be executed by our interface
are jointly secure (up to context separation). We cannot support all patterns,
however, because some give rise to GAP1 distinguishing attacks in any inter-
face that could be used to implement them. As a result of these limitations,
our analysis leaves the security of key-reuse in Noise as it is an open question.
Nevertheless, our work shows that Noise’s approach to protocol design makes it
possible to reason about protocol interactions in a very general way.

Finally, in the full version of this paper [29], we will directly address the
composition of the security of using a key deployed for EdDSA in Noise (and
vice versa).

Limitations of the Framework. Our syntax for games is such that a wide
variety of security goals can be expressed with them. However, the execution
semantics of games in the SEC/I experiment excludes some important settings,
including the multi-user setting [7] and those captured by multi-stage adver-
saries [33]. In the full version of this paper [29] we will briefly discuss how to
formalize these settings as extensions to the SEC/I experiment. In addition, our
interfaces are all stateless, which we found necessary for composition in general.
(This is in line with prior works that address related problems [33].)
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Related Work. Here we highlight the works that inspired or are technically
related to our framework and leave a broader overview of this area to the full
version [29]. Our framework generalizes the setting of Shrimpton, Stam, and
Warinschi [35], who study HSMs implementing the PKCS#11 standard for cryp-
tographic APIs [15]. Their formulation of a “primitive” is closely related to our
formulation of interfaces, and their framework allows for expressing arbitrary
security goals for primitives, as ours does for interfaces.

Our security goals are reminiscent of joint security, and many of the proof
techniques we use are borrowed from that area [13,16]. However, our notions
are ultimately incompatible with theirs. To adapt our framework to the consid-
eration of joint security, one would partition the set of operations exposed by
the interface into those available to the target system (i.e., the game) and those
available to the adversary.

The GAP2 notion can be viewed as a restricted form of indifferentiability [24].
In particular, the GAP2 experiment for (I1, I0), G, adversary A, and simula-
tor S is equivalent to the indifferentiability of (I1, I0) with respect to the specific
distinguisher D that is the composition of G and A prescribed by the GAP2
experiment. To be clear, this does not allow us to directly use the indifferen-
tiability composition theorem. Our own result is about composing game G with
interfaces I1 and, separately, I0; and although our composition theorem looks
quite similar to [33, Theorem 1], the things being composed are not the same.

2 Pseudocode and Conventions

This section enumerates our conventions for pseudocode, algorithms, adversaries,
and experiments. The reader may wish to skip this section and refer to it later
as needed.

Pseudocode. Our pseudocode is based on Rogaway and Stegers [34]. Variables
are statically typed. Available types are set (a set), tup (a tuple), bool (an
element of {0, 1}), int (an element of Z), and str (an element of {0, 1}∗). In
general, if X ∈ X , then we say that X has type elemX . Variables are declared
with the keyword dec, e.g., dec int x; str A. Variables need not be explicitly
declared, in which case their type must be inferable from their initialization (i.e.,
the first use of the variable in an assignment statement). There are two compound
types. The first is associative arrays, denoted by “[ ]”, which map tuples (that
is, a finite sequence of quantities of any type) to values of a specific type. For
example, dec str π[ ] declares an associative array π whose values are strings.
We let π[k] and πk denote the value in π associated with k. The second is struct,
which is used to recursively define new types; see Fig. 7 for an example. We will
also refer to the type of a procedure (i.e., an algorithm) by its interface. For
instance, the type A(str X,Y ) �→ (int i, str A) indicates that A takes as input
a pair of strings (X,Y ) and outputs an integer i and a string A.

Nil and Bottom. Uninitialized variables implicitly have the value �, read “nil”.
If a variable of one type is set to a value of another type, then the variable takes
the value �. The symbol � is interpreted as ∅ in an expression involving sets,
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as the 0-length tuple in an expression involving tuples, as 0 (i.e., false) in a
boolean expression, as 0 in an expression involving integers, and as ε in an
expression involving strings. A non-bool variable X is interpreted as “(X �= �)”
(i.e., “X is defined”) in a boolean expression. If X is an associative array, then
X ← � “resets” the array so that Xk = � for all k. Likewise, if X is a struct,
then X ← � sets each field of X to �. The symbol ⊥, read “bottom”, can be
assigned to any variable regardless of type. Unlike �, its interpretation in an
expression is always undefined, except that X = ⊥ and ⊥ = X should evaluate
to true just in case the previous assignment to X was ⊥. (We remark that ⊥
has the usual semantics in cryptographic pseudocode.)

Represented Groups. We say that a group G is represented if � �∈ G. We define
an additional type, elemG, parameterized by a represented group G. We empha-
size that, unlike set, tup,bool, int, or str, using the symbol � in an expression
involving values of this type is not well-defined, since � has no interpretation as
an element of G.

Refined Types. Variable declarations may be written as set-membership asser-
tions. For example, dec int s; elemGP may be written like dec s ∈ Z; P ∈ G.
Where appropriate, these types may also be refined, e.g. dec s ∈ N.

String and Tuple Operations. Let |X| denote the length of a string (or tuple) X.
We denote the i-th element of X by Xi or X[i]. We define X ‖Y to be the
concatenation of X with string (or tuple) Y . Let X[i:j] denote the sub-string (or
sub-tuple) Xi ‖ · · · ‖Xj of X. If i �∈ [1..j] or j �∈ [i..|X|], then define X[i:j] = �.
Let X[i:] = X[i:|X|] and X[:j] = X[1:j].

Encoding of Types. A value of any type can be encoded as a string. We will not
define this encoding explicitly, but assume it possesses the following properties.
Let x1, . . . , xm denote the encoding of a tuple (x1, . . . , xm) as a string. Decoding
is written as x1, . . . , xm ← X and works like this (slightly deviating from [34,
Sect. 2]): if there exist y1, . . . yn such that X = y1, . . . , yn, m = n, and each yi

has the same type as xi, then set xi ← yi for each 1 ≤ i ≤ m. Otherwise, set
xi ← � for each 1 ≤ i ≤ m. Let xn denote the encoding of an integer x ≥ 0 as an
n-bit string. We write xn ← X to denote decoding X as an n-bit, non-negative
integer and assigning it to x. Finally, we say that a group G is v-encoded if it is
represented and for all X ∈ G it holds that |X| = v.

Passing Variables by Reference. It is customary in cryptographic pseudocode to
pass all variables by value; we also permit variables to be passed by reference.
(This idea is due to Rogaway and Stegers [34], but our semantics deviates from
theirs.) Specifically, variables passed to procedures may be embellished with
the symbol “&”. If the variable appears on the left hand side of an assignment
statement, then this immediately changes the value of the variable; when used in
an expression, the variable is treated as its value. A procedure’s interface makes
explicit each input that is passed by reference. For example, in a procedure
A(&int x, int y) �→ int z, variable y is passed by value, while x is passed by
reference. For example, after executing x, y ← 0; z ←← A(&x, y), the value of x
may be non-0, but y is necessarily equal to 0.
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Algorithms, Experiments, and Adversaries. Algorithms are randomized
unless stated otherwise. An algorithm is t-time if for every choice of random
coins, the algorithm halts in at most t time steps.1 When an algorithm A is
deterministic we write y ← A(x) to denote executing A on input of x and
assigning its output to y; if A is randomized, then we write y ←← A(x). Let [A(x)]
denote the set of possible outputs of A when run on input x. Algorithms may
have access to one or more oracles, written as superscripts, e.g., y ←← AO,... (x).
When this notation becomes cumbersome we may write y ←← 〈A : O, . . . 〉(x)
instead. When we specify a procedure, if the procedure halts without an explicit
ret-statement (i.e., a “return” statement), then it returns ⊥.

We regard security experiments as algorithms whose output is always a bit.
If “XXX” is an experiment associated with an adversary A, we write Expxxx(A)
to denote the event that the experiment is run with A and the output is 1, i.e.,
Pr

[
Expxxx(A)

]
denotes the probability that XXX run with A outputs 1, where

the probability is over the coins of XXX and A. An adversary is an algorithm
associated to a security experiment in which it is executed exactly once. (Thus,
in this paper we restrict ourselves to the single-stage adversary setting [33].) Our
convention will be that an adversary is t-time if its experiment is t-time. That
is, an XXX-adversary A is t-time if Expxxx(A) is t-time.

Miscellaneous. Logarithms are base-2 unless the base is given explicitly. If X
is a set, then we write x ←← X to denote sampling x randomly from X accord-
ing to some distribution associated to X ; if X is finite and the distribution is
unspecified, then it is uniform.

3 Interfaces and Games

In this section we define the syntax for interfaces and games, the fundamental
components of our framework. A game captures an attack model (the capabilities
and goals of an adversary) as well as an intended use of cryptographic operations
that are provided (via black-box calls) by an interface. Typically, this use will be
to realize some cryptographic scheme (i.e., primitive or protocol) that is under
attack.

Definition 1 (Interfaces). An interface is a pair of algorithms I = (Gen,Op)
defined as follows:

– Gen( ) �→ str pk , sk . The key generator outputs pair of key strings.
– Op(str sk , ctx , op, in) �→ str out . The key operator exposes operations involv-

ing the key sk . It takes as input the context ctx , the operation identifier op,
and the operand in, and it outputs the result out .

For compactness, we may denote I.Op(sk , ctx , op, in) by Isk (ctx , op, in) in the
remainder. �
1 What constitutes a “time step” depends on the model of computation, which we

leave implicit.
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In our security experiments, the “public key” pk will be made available to all
parties, but the “secret key” sk will be kept private by the interface. We note
that pk = ε is allowed, so that symmetric-key operations are within scope.

Definition 2 (Games). A game is a triple of algorithms G = (Init,Call,Final)
defined as follows:

– Init(str pk , α) �→ str st , out . This is the game initiator. It takes as input the
public key pk and game context α and outputs the initial state st and a
string out .

– CallO(&str st , str in) �→ str out . The caller is used to advance the state of
an already initialized game. It abstracts all oracle queries except initialization
and finalization. The first input is a reference to the game state, which may be
updated as a side-effect of invoking the caller; the interpretation of the second
input is up to the game. The caller expects access to an oracle O, which we
will call the interface oracle. It takes as input three strings and returns one.

– FinalO(str st , in) �→ bool r. The finalizer is used to decide if a game is in a
winning state. Its inputs are the game state st and a string in, which is used
to compute the winning condition. Oracle O is as defined for the caller.

For compactness, we occasionally denote G.CallO(&st , in) by GO
st (in). We say

that G is c-bound if the caller and finalizer each make at most c calls to O
during any one execution of the algorithm. �

4 Security Under Exposed Interface Attack

The goal of this work is to understand the security of cryptographic schemes
when they are realized by an interface that may also be exposed to other, possibly
insecure or (or even malicious) applications. The following experiment (SEC/I)
captures this formally, allowing us prove or disprove security of a scheme (both
codified by a game G) when a given interface I is callable by both the game G
and the adversary A. An adversary in this experiment is said to be mounting
an exposed interface attack on G. We define another experiment (SEC) that
captures the usual setting in which the adversary does not have this access.

Definition 3 (SEC/I and SEC security). Figure 2 defines two security exper-
iments: SEC/I includes the boxed statement (but not the shaded one), and SEC
includes the shaded statement (but not the boxed one). Both experiments begin
by running the key generator I.Gen and executing the adversary A on input of
the public key and with access to four oracle procedures:

– Init initializes G by calling the initiator G.Init on the public key and the game
context chosen by A and returns the output out of the initiator.

– Call advances the game by invoking the caller G.Call on input in provided
by A and with oracle access to the interface I.Op(sk , ·, ·, ·). It returns the
output out of the caller.
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Expsec/i
I,G (A) / Expsec

I,G(A)

1 dec str sk , st , α; bool win
2 (pk , sk) I.Gen( )
3 〈A: Init,Final,Call,Op〉(pk)
4 〈A: Init,Final,Call〉(pk)
5 ret win

Init(ctx )
6 (st , out) G.Init(pk , ctx )
7 α ctx ; ret out

Final(in)
8 win G.FinalI.Op(sk,·,·,·)(st , in)
9 ret win

Call(in)
10 ret G.CallI.Op(sk,·,·,·)(&st , in)

Op(ctx , op, in)
11 if ctx = α then ret ⊥
12 ret I.Op(sk , ctx , op, in)

Fig. 2. The SEC/I and SEC experiments for interface I, game G, and adversary A.

– Op exposes I.Op(sk , ·, ·, ·) to A directly with the restriction that each query
use a context string ctx that is different from the game context used to ini-
tialize the game.

– Final finalizes G by running the finalizer G.Final on input in provided by A
and setting win to the output and returning the value of win to A.

The outcome of the experiment is the value of win when A halts. A valid SEC/I
adversary makes a single query to Init, this being its first; it may then make
any number of queries to Call and Op.2 It completes its execution by making a
single query to Final. We define the advantage of a (valid) SEC/I-adversary A
in attacking I with respect to G as

Advsec/i
I,G (A) = Pr

[
Expsec/i

I,G (A)
]
.

We call a SEC/I adversary (t, qG, qI)-resource if it is t-time and makes at
most qG and qI queries to Call and Op respectively. We define the maximum
advantage of any r-resource SEC/I-adversary as Advsec/i

I,G (r). SEC security of I
with respect to G is defined in kind, except that Op is not given to A. We
denote the advantage of SEC-adverseary A in attacking I with respect to G by
Advsec

I,G(A) = Pr
[
Expsec

I,G(A)
]
, and we define Advsec

I,G(r) as above. Informally,
we say that I is SEC/I (resp. SEC) secure for G if every efficient SEC/I (resp.
SEC) adversary has small advantage.

Finally, if each of G.Call’s and G.Final’s interface queries is a triple (α, op, in)
such that α is the context with which the game was initialized, then we say G is
regular for SEC/I (resp. SEC). �

Regular Games and Context Separation. We remark that a game being regu-
lar is a property of the execution semantics of the game in the experiment,
2 Disallowing Op queries prior to Init is necessary for enforcing context separation.

This restriction could be lifted by, say, allowing pre-Init access to Op, but demand-
ing that none of these queries uses the (adversarially chosen) game context α.
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Expgap1
I,G (S, D)

1 dec str sk , st , σ, α; b {0, 1}
2 (pk , sk) I.Gen( ); σ S.Init(pk)
3 d 〈D : Init,Final,Call,Op〉(pk)
4 ret (d = b)

Init(ctx )
5 (st , out) G.Init(pk , ctx )
6 α ctx ; ret out

Final(in)
7 ret G.FinalIsk (st , in)

Call(in)
8 ret G.CallIsk (&st , in)

Op(ctx , op, in)
9 if ctx = α then ret ⊥

10 if b = 1 then ret Isk (ctx , op, in)
11 ret S.Op⊥(&σ, ctx , op, in)

Expgap2

I1,I0,G(S, D)

12 dec str sk , st , σ, α; b {0, 1}
13 (pk , sk) Ib.Gen( ); σ S.Init(pk)
14 d 〈D : Init,Final,Call,Op〉(pk)
15 ret (d = b)

Init(ctx )
16 (st , out) G.Init(pk , ctx )
17 α ctx ; ret out

Final(in)

18 ret G.FinalI
b
sk (st , in)

Call(in)

19 ret G.CallI
b
sk (&st , in)

Op(ctx , op, in)
20 if ctx = α then ret ⊥
21 if b = 1 then ret I1

sk (ctx , op, in)
22 ret S.OpI0

sk (&σ, ctx , op, in)

Fig. 3. Top-left: the GAP1 experiment for interface I, game G, simulator S, and adver-
sary D. Top-right: the GAP2 experiment for interfaces I1 and I0, G, S, and D.

and not a syntactic property of the game itself. This is because an experiment
might execute the game differently; for example, instead of invoking the initia-
tor before the caller, the experiment could invoke the caller with state st = ε
each time. This may sound silly, but we have not given a syntactic condition on
games that excludes this execution semantics. Because all experiments will run
the game in the same way, we silently extend this definition of regularity to all
experiments in the remainder of the paper. In our analyses in Sects. 5 and 6, we
will prove SEC/I security with respect to regular games. This condition is suf-
ficient for ensuring context sepparability between operations performed by the
adversary via direct access to the interface and those performed by the game.

Indistinguishability Variants. We note that our definitions of SEC/I and SEC
advantage are not appropriate for every game. For example, G might be a bit-
guessing game (e.g., IND-CCA) in which the initiator flips a coin and the finalizer
interprets its input as the adversary’s guess. In order to normalize the adver-
sary’s advantage in such games, we define the IND-SEC/I advantage of SEC/I-
adversary A as Advind-sec/i

I,G (A) = 2Advsec/i
I,G (A) − 1. (Similarly for IND-SEC.)

4.1 Simulatability of an Interface

Intuitively, the “gap” between the SEC/I and SEC security of an interface I
with respect to game G is driven by any extra leverage the attacker gains by
interacting with I directly. In this section, we formalize an experiment that
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aims to measure the size of this gap for a given I and G. We also define a
related experiment that measures the relative security “gap” between a pair of
interfaces (I1, I0) with respect to a given game. This is particularly useful when
the operations permitted by I1 are a superset of those permitted by I0. For
example, in Sect. 5, we will use this notion to analyze the change in security
when operations are added to an existing interface. Both of these experiments
will make use of simulators, so let us first define these.

Definition 4 (Simulators). A simulator S is a tuple of algorithms (Init,Op)
defined as follows:

– Init(str pk) �→ str σ. The initiator takes as input a public key and outputs
the simulator’s initial state σ.

– OpO(&str σ, str ctx , op, in) �→ str out . The operator takes as input a reference
to the simulator state (which it may update as a side-effect) and a triple of
strings (ctx , op, in) and outputs a string out . Oracle O is an interface oracle
defined just as for games.

In the remainder, we may denote S.OpO(&σ, ctx , op, in) by SO
σ (ctx , op, in). We

say that S is (t, qI)-resource if each algorithm is t-time and the caller makes at
most qI queries to its oracle. �
Definition 5 (GAP1/2 security). Figure 3 defines two experiments: GAP1
and GAP2. Each involves a simulator S, an adversary D, and a game G; GAP1
involves a single interface I, while GAP2 involves a pair interfaces (I1, I0).
Both begin by choosing a challenge bit b at random, executing the key generator
(I.Gen in GAP1 and Ib.Gen in GAP2), and initializing the simulator via S.Init
on input of the public key. The adversary is then executed on input of the public
key and with four oracles:

– Init, Final, and Call execute the game just like in the SEC/I experiment;
interface queries are answered by I.Op in GAP1 and Ib.Op in GAP2.

– Op processes (ctx , op, in) as follows. If ctx is equal to the game context, then
it returns ⊥ (just as in SEC/I). If b = 1, then it returns I.Op(sk , ctx , op, in) in
GAP1 and I1.Op(sk , ctx , op, in) in GAP2; if b = 0, theni the oracle returns
S.Op⊥(&σ, ctx , op, in) in GAP1 and S.OpI0

sk (&σ, ctx , op, in) in GAP2. (The
“⊥” oracle given to S denotes the interface oracle that just returns ⊥ on any
query.)

The outcome of the experiment is the bit d output by D when it halts. A valid
GAP1 (resp. GAP2) adversary makes a single query to Init, this being its first
query; it may then make any number of queries to Call and Op. It completes
its execution by making a single query to Final. We define the advantage of a
(valid) GAP1-adversary D in attacking I with respect to G as

Advgap1
I,G (S,D) = 2Pr

[
Expgap1

I,G (S,D)
]
− 1 .

We call an GAP1 adversary (t, qG, qI)-resource if it is t-time and makes at most qG

and qI queries to Call and Op respectively. We define the maximum advan-
tage of any r-resource GAP1 adversary (for a given I,G,S) as Advgap1

I,G (S, r).
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Define Advgap2
I1,I0,G(S,D) and Advgap2

I1,I0,G(S, r) in kind. Informally, we say that I
(resp. (I1, I0)) is GAP1 (resp. GAP2) secure for G if for every efficient GAP1
(resp. GAP2) adversary D there exists an efficient S such that D has small
advantage.

Finally, we say that a simulator is regular for GAP1 (resp. GAP2) if each
time it is called with input context ctx , each of its interface queries have the
form (ctx , op, in) for some op, in ∈ {0, 1}∗. �

4.2 The Composition Theorem

An interface I being GAP1 secure for G means that whatever information an
SEC/I adversary learns in its attack against G it can (efficiently) compute on its
own without interacting with the Op oracle. Thus, if I is both SEC and GAP1
secure for G, then it should be that I is also SEC/I secure for G. Relatedly,
for any pair of interfaces (I1, I0) and game G, if (I1, I0) is GAP2 secure for G
and I0 is SEC/I secure for G, then I1 is SEC/I-secure for G, too. Theorem 1
makes these claims precise. To support upcoming results in Sects. 5 and 6, we
state and prove our composition theorem in the ROM. So, let us first formalize
the ROM in our setting.

The ROM. When modeling a function H : X → Y as a random oracle (RO) in
an experiment, we declare an associative array elemY π[ ] and a set Q (initially
empty) and define three oracles: P, Q, and R. The last of these is the usual
RO: on input of X ∈ X , oracle R checks to see if πX is defined (i.e., πX �= �);
if not, then it samples πX from Y according to the distribution induced on Y
by H. (Usually Y will be finite and the distribution will be uniform.) Finally,
it returns πX . We call an algorithm qR-ro-bound if it makes at most qR queries
to R during any execution; a game, interface, or simulator is qR-ro-bound if
each of its constituent algorithms is qR-ro-bound. Experiments are lifted to the
ROM by providing each named algorithm oracle access to R. In addition, each
query X to R made by the adversary is added to the set Q.

Just as we measure an adversary’s runtime using the experiment in which it is
executed, our convention will be that an adversary’s RO-query budget accounts
for all queries to R made by it or any other algorithm (including the simulator)
during the course of the experiment. That is, XXX-adversary A is qR-ro-bound
if Expxxx(A) is qR-ro-bound. We say an algorithm is (r ‖ qR)-resource if it is
r-resource and qR-ro-bound. (Note that r ‖ qR is a tuple, since r is a tuple
and qR is a singleton.) Let ψ : {0, 1}∗ × X → {0, 1} be a function. We say
that a game G is ψ-ro-regular (for the associated experiment) if each of its RO
queries X ∈ X satisfies ψ(α,X), where α is the game context used to initialize it
in the experiment. Similarly, we say that an interface I is ψ-ro-regular if each of
I.Op’s RO queries X ∈ X satisfies ψ(ctx ,X), where ctx is the provided context
string.

The other two oracles (P and Q) are used to specify additional powers made
available to simulators in security proofs. Oracle P takes as input a pair (X,Y ) ∈
X × Y and sets π[X] ← Y , allowing the simulator to “program” the RO.
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Oracle Q simply returns the set Q of RO queries made by the adversary so far,
allowing the simulator to “observe” the adversary’s RO queries as it makes them.
We emphasize that P and Q formalize powers of the simulator that are usually left
implicit, but are essential to certain proof techniques [13,16]. We introduce oracle-
relative simulators as a means of formalizing the requirements of the simulator for
composition.

Definition 6 (Oracle-relative simulators). Let O be an oracle in an experi-
ment. An O-relative simulator S is one for which both the initiator and operator
expect oracle access to O; we say that S is c-O-bound if each algorithm makes
at most c such queries on any execution. Let X and Y be sets and let μ1, μ2 ≥ 0
be real numbers. In the ROM we say that a P-relative simulator is (μ1, μ2)-min-
entropy if for all (X ′, Y ′) ∈ X × Y and each query (X,Y ) to P, it holds that
Pr

[
X = X ′ ] ≤ 2−μ1 and Pr

[
Y = Y ′ ] ≤ 2−μ2 . �

Theorem 1. Let I1 and I0 be interfaces, let G be a game, and let H : {0, 1}∗ →
{0, 1}h be a function modeled as a random oracle. Let qG, qI , qR, t, cI , cR, cP , s ≥
0 be integers such that s = O(t/(qI +1)), and let μ1, μ2 ≥ 0 be real numbers such
that μ2 ≤ h. Let r = (t, qG, qI , qR). Then, for every regular, P- and Q-relative
simulator S that is (s, cI , cR)-resource, cP -P-bound, and (μ1, μ2)-min-entropy,
it holds that

(i) Advsec/i
I1,G(r) ≤ ε + Advsec

I1,G(O(t), qG, q̂R) + Advgap1
I1,G(S, r̂) and

(ii) Advsec/i
I1,G(r) ≤ ε + Advsec/i

I0,G(O(t), qG, cIqI , q̂R) + Advgap2
I1,I0,G(S, r̂),

where ε = (cP qI)(qR/2μ1−1 + 2h−μ2 − 1), q̂R = qR + (cR + cP )(qI + 1), and
r̂ = (O(t), qG, qI , q̂R).

We must defer the proof to the full version [29]. Except for accounting for the
simulator’s powers in the ROM, the proof is closely related to [33, Theorem 1].
A few observations about this result are in order. First, we note that the ε term
in the bound is only non-zero for simulators that program the RO. Second, it is
sufficient for the domain points programmed by the simulator to be high min-
entropy, but the bound is vacuous unless the corresponding range points are
essentially uniform (because of the 2h−μ2 term in the expression for ε). When
the programmed domain points are high min-entropy, neither the game nor the
GAP2 distinguisher is likely to call the RO on the domain points programmed
by the simulator. This fact, and the uniformity of programmed range points,
allows us to compose the GAP1/2 distinguisher and the simulator S into a new
SEC/I adversary, despite the fact that S may program the RO, but the SEC/I
adversary may not. Likewise, the simulator “observing” the distinguisher’s RO
queries is not an issue for this composition.

A Necessary Condition for Theorem 1(ii). Condition (ii) of the composition
theorem characterizes a sufficient property of (I1, I0) and G such that it is safe to
replace I0 with I1 (GAP2). This tells us, in particular, what sorts of operations
are safe to expose in an API without breaking applications. We would also like
a characterization of what sorts of operations are not safe, i.e., a necessary
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condition for Theorem1(ii). We find that if wGAP2 security (defined below)
does not hold for (I1, I0), then there are games G for which I1 is not SEC/I
secure, even if I0 is SEC/I secure for G (Theorem 2). We will use this result to
rule out certain API-design choices in the remainder of the paper.

Definition 7 (wGAP2 security). The wGAP2 experiment is defined much
like GAP2, except it does not involve a game. (Pseudocode for this definition is
provided in the full version [29].) A wGAP2 adversary takes as input a string
and outputs a bit and expects access to an interface oracle. Let I1 and I0

be interfaces, S be a simulator, and D be a wGAP2 adversary. The wGAP2
experiment for (I1, I0), S, and D, denoted Expwgap2

I1,I0 (S,D), is defined just like
the GAP2 experiment in Fig. 3, except that D is only executed with access to
oracle Op, and since there is no game context, we remove line 3:20. Define
the advantage of D in distinguishing I1 from I0 with respect to simulator S as
Advwgap2

I1,I0 (S,D) = 2Pr
[
Expwgap2

I1,I0 (S,D)
]
−1. Informally, we say that (I1, I0) is

wGAP2 secure if for every efficient adversary D, there is an efficient simulator S
such that D’s advantage is small. We say D is (t, qI)-resource if it is t-time and
makes at most qI queries to Op. �

Theorem 2 (wGAP2 is necessary for Theorem 1(ii)). Let I1 and I0 be
interfaces, let B be an SEC/I adversary, and let D be a wGAP2 adversary. There
exist a game G, SEC/I-adversary A, and simulator S such that

Advwgap2
I1,I0 (S,D) + Advsec/i

I0,G(B) ≤ Advsec/i
I1,G(A).

Moreover, if D is (s, r)-resource, B is (t, qG, qI)-resource, and t = O(s), then A
is (O(t), qG, qI + r)-resource and S is (t, 1)-resource.

Note that this result is easily lifted to the ROM. The proof (provided in the full
version [29]) is in the same spirit as that of [24, Theorem 2], but there are some
subtleties. The crux of the argument, which was adapted from Maurer, Renner,
and Holenstein [24], is that the game G is defined using the adversary D so
that the winning condition depends on D doing something “bad” (in particular,
outputting 1). This allows us to relate B’s advantage to D’s. (We remark on the
necessity of GAP1 itself for composition in the full version [29].)

5 Discrete Log Interfaces

In this section we bring our framework to bear on a few common operations for
discrete log (DL) interfaces. We first recall some standard definitions from the
cryptographic literature and formally define DL interfaces and signing interfaces.

Preliminaries. Refer to the CDH and GDH experiments in Fig. 4. Define the
advantage of an adversary A in solving an instance of the computational DH
(CDH) problem for G as Advcdh

G
(A) = Pr[Expcdh

G
(A)] and let Advcdh

G
(t) denote

the maximum advantage of any t-time CDH-adversary. Define the advantage of
an adversary A in solving an instance of the gap DH (GDH) problem [26] for G
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Expidh
G,I(A)

1 dec X, Z ∈ G; y ∈ Zn

2 (X, sk) I.Gen( )
3 y Zn

4 Z AIsk (X, yG)
5 ret (Z = yX)

Expcdh
G (A) / Expgdh

G
(A)

6 x, y Zn

7 Z A(xG, yG)

8 Z ADDH(xG, yG)
9 ret (Z = xyG)

DDH(A, B, C)
10 a logG A
11 b logG B
12 c logG C
13 ret (c = ab)

Fig. 4. Let G = 〈G〉 be a represented, additive group of order n and let I be a DL
interface for G. Left: IDH problem for (G, I). Right: CDH and GDH problems for G.

as Advgdh
G

(A) = Pr[Expgdh
G

(A)]. Depending on the group G and the model of
computation, it may not be possible to evaluate A’s DDH queries efficiently;
for the purpose of accounting for A’s resources, we will regard the discrete log
computations on lines 4:7–8 as constant time operations. Let Advgdh

G
(t, q) denote

the maximum advantage of any t-time GDH-adversary that makes at most q
queries to its DDH oracle. Informally, we say CDH (resp. CDH) is hard for G

if the CDH (resp. GDH) advantage of any efficient adversary is small.
Define the CR advantage of an adversary C( ) �→ elemX×X in finding col-

lisions for function H : X → Y as Advcr
H(C) = Pr

[
X �= Y ∧ H(X) = H(Y ) :

(X,Y ) ←← C( )
]
.

Definition 8 (DL and signing interfaces). Let G = 〈G〉 be a represented,
additive group of order n. A DL interface for G is an interface I with an associ-
ated scalar computer, a deterministic algorithm Scal(str sk) �→ int s such that
for every (pk , sk) ∈ [I.Gen( )] it holds that pk = sG, where s = I.Scal(sk). We
say that I is simple if I.Scal(sk) = s just in case sk = s.

A signing interface is an interface DS with an associated deterministic
algorithm DS.Verify(str pk , ctx ,M, T ) �→ bool v, called the verifier, for which
T ∈ [DS(sk , ctx , sig,M)] iff DS.Verify(pk , ctx ,M, T ) = 1 for all ctx ,M, T ∈
{0, 1}∗ and (pk , sk) ∈ [DS.Gen( )]. (This is analogous to the correctness condi-
tion for standard signature schemes.) We may denote DS.Op(sk , ctx , sig,M) by
DS.Sign(sk , ctx ,M) and refer to DS.Sign as the signer. We say that a game is
DS-regular (for the associated experiment) if each time it invokes DS.Verify, it
does so on input of (pk , α,M, T ), where α is the game context used to initialize
it and pk ,M, T ∈ {0, 1}∗. �

5.1 Diffie-Hellman

Let G = 〈G〉 be an additive, represented group of order n. Let I be a DL
interface for G and define I+dh as the pair of algorithms (I.Gen,Op), where Op
is defined as follows. On input of (sk , ctx , op, in), if op = dh and Q ∈ G, where Q
is the element of G ∪ {�} encoded by in, then return sQ, where s = I.Scal(sk);
otherwise return I(sk , ctx , op, in). We refer to dh as the DH operator. (Note that
point validation [22] for this operation is implicitly enforced by our conventions
for represented groups; see Sect. 2.)
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It is well known that exposing such a “static DH oracle” is not generally
secure [11], but its practical impact on security can be subtle, and its presence
in an interface is often hard to recognize [2,12]. In order to rule out the security of
exposing the DH operation (inadvertently or not), we formalize a property of I
that, if it holds, implies that (I+dh, I) is wGAP2 insecure; by Theorem 2, this
implies that I+dh is not SEC/I secure in general. We then build on this result by
considering whether it is safe to expose some function of the output (e.g., a hash
or key-derivation function); when we model the function as a random oracle, we
find that this is not wGAP2 secure.

Insecurity of exposing DH easily follows from the hardness of a variant of the
CDH problem for G associated with I. The interface-relative DH (IDH) problem
for (G, I) is as follows.

Definition 9 (The IDH problem). Refer to the IDH experiment for G and I
in Fig. 4. The experiment first runs I.Gen to get the public key X and secret
key sk . It then chooses a random y ∈ Zn and runs the adversary A on input
of (X, yG) and with oracle access to Isk ; the adversary wins if it outputs yX.
Define the advantage of IDH-adversary A as Advidh

G,I(A) = Pr
[
Expidh

G,I(A)
]
.

An IDH adversary is (t, q)-resource if it is t-time and makes at most q queries
to its interface oracle; as usual, we denote the maximum advantage of any r-
resource IDH adversary by Advidh

G,I(r). Informally, we say the IDH problem is
hard for (G, I) if Advidh

G,I(A) is small for every efficient A. �

We will use this problem as a sort of litmus test to rule out insecure API
designs. In Sect. 5.2 we show (via Theorem 1(i)) that CDH and IDH are equiva-
lent relative to EdDSA, and in Sect. 6 we show that GDH and IDH are equivalent
relative to Noise. To prove that hardness of the IDH problem for (G, I) implies
the wGAP2 insecurity of (I+dh, I), we exhibit a wGAP2 adversary D such that
in order for any simulator S to thwart D, it must solve an instance of IDH
for (G, I).

Theorem 3. Suppose that n is prime and let t, qI ≥ 0 be integers. There is
a (O(t), 1)-resource wGAP2-adversary D such that for all (t, qI)-resource S,
there is a (O(t), qI)-resource IDH-adversary A such that Advwgap2

I+dh,I(S,D) =
1 − Advidh

G,I(A).

Proof. Define adversary DOp(P ) as follows. First run r ←← Z
∗
n, then ask Z ←←

Op(ε, dh, rG). If r−1Z = P , then return 1; otherwise return 0. Let db1 denote
the probability that D outputs 1 conditioned on the event that its challenge
bit is b. First, if b = 1, then the response to D’s query will be Z = srG,
where P = sG. Since n is prime, r has a unique inverse 1/r (mod n), and
so r−1Z = r−1srG = sG = P . It follows that d11 = 1. Now consider the
probability that r−1Z = P given that b = 0 and define adversary AO(P,Q) as
follows. It first executes σ ←← S.Init(P ), then Z ←← SO(&σ, ε, dh, Q). Finally, it
returns Z. Then the probability that A wins is precisely the probability that,
in D’s game, simulator S outputs Z such that r−1Z = P ⇐⇒ rP = Z, and so
d01 = Pr

[
Expidh

G,I(A)
]
. ��
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Functional DH. Many applications do not make direct use of static DH, but
some function of its output. In particular, it is common to apply a hash or key-
derivation function to the shared secret, perhaps binding it to some context, e.g.,
the transcript hash in TLS or, as we will see, the CipherState in Noise. Therefore,
it is worth considering whether exposing this intermediate functionality is secure.

Let F : G × {0, 1}∗ → {0, 1}h be a function. Define the interface I+fdh as
the pair of algorithms (I.Gen,Op), where Op is defined as follows. On input
of (sk , ctx , op, in), if op = fdh and Q ∈ G, where Q is the element of G ∪ {�}
encoded by in, then return F(sQ, ctx ); otherwise return I.Op(sk , ctx , op, in).
We call op = fdh the functional DH operator.

Exposing functional DH is also wGAP2 insecure. The proof is more involved,
but follows similar lines as Theorem 3. We cannot directly exploit the algebraic
structure of the DH operator as we did above, since rather than getting sQ in
response to its query, adversary D gets F(sQ, ctx ). Instead, we model F as a
random oracle and hope that the simulator manages to query the oracle with
the correct point. We prove the following in the full version [29]:

Theorem 4. Suppose that n is prime and let t, qI , qR ≥ 0 be integers. When F is
modeled as a random oracle, there is a (O(t), 1, 1)-resource wGAP2-adversary D
such that for all (t, qI , q)-resource, P- and Q-relative, and p-P-bound S, there
is a (O(t + q), qI)-resource IDH-adversary A such that

Advwgap2
I+fdh,I(S,D) + ε ≥ 1 − Advidh

G,I(A),

where I is 0-ro-bound, ε = q̂/n + q̂2/2h−1, and q̂ = 2(q + p).

Discussion. The existence of a static DH oracle in an interface can be diffi-
cult to recognize, and its impact on security is often quite subtle. Acar, Ngyuen,
and Zavarucha [2] discovered that an early version of the TPM standard exposed
such an oracle via flexible API calls designed to support a wide variety of proto-
cols. Indeed, a rigorous analysis of the standard in our attack model would have
unearthed this subtlety. It would be worthwhile to study the proposal of Camenish
et al. [12], which aims to remove the TPM oracle while still supporting a large vari-
ety of useful applications. More generally, we suggest that the approach developed
in this paper could be used to vet API standards before they are implemented to
help uncover such flaws. Though the problem with TPM was obvious in hindsight,
it is possible that more flaws lurk in this and other API designs.

5.2 EdDSA

Unlike signature schemes like RSA-PSS or ECDSA, the standardized version of
EdDSA (RFC 8032 [17]) admits variants that are context separable, allowing us
to prove it GAP1 secure (in the ROM) for any game in which all signing and
verifying operations are regular (Definition 8). We also show that any variant can
be securely composed with any simple DL interface. After presenting our results,
we will make the case for designing and deploying context-separable signatures
in practice.
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Gen( )
1 K {0, 1}b; s Scal(K)
2 ret (sG, K)

Verify(pk , ctx , M, T )
3 dec P, R ∈ G; x, t ∈ N

4 P pk ; R, x T
5 if ¬R ∨ ¬x then ret 0
6 t2b H(vr(ctx ) ‖ R ‖ P ‖ ph(M))
7 ret x2cG = 2cR + t2cP

)

Scal(K)
8 ret cl(H(K)[:b])

Sign(K, ctx , M)
9 dec r, t ∈ N

10 s Scal(K); X H(K)[b + 1:]
11 r2b H(vr(ctx ) ‖ X ‖ ph(M))
12 t2b H(vr(ctx ) ‖ rG ‖ sG ‖ ph(M))
13 x r + st (mod n)
14 ret rG, x

Fig. 5. Signing/DL interface ED for EdDSA. Let b, c ∈ N and let G = 〈G〉 be a
represented, additive group of order n. Let H : {0, 1}∗ → {0, 1}2b, cl : {0, 1}b →
Zn \ {0}, and vr , ph : {0, 1}∗ → {0, 1}∗ be functions.

The standard specifies two concrete instantiations of EdDSA: Ed22519 and
Ed448, whose names indicate the underlying group. The signing interface ED
defined in Fig. 5 specifies generic EdDSA; a concrete scheme is instantiated by
selecting the group G, integers b and c, and functions H, cl , vr , and ph. The group
is determined by a prime number p > 2, parameters for a (twisted) Edwards
curve E (see [8, Sect. 2]), and a generator G of a prime order subgroup of E(Fp),
where E(Fp) denotes the group of points (x, y) ∈ Fp ×Fp that lie on the curve E,
and Fp denotes the finite field of order p. Define b so that 2b−1 > p and define c
so that #E(Fp) = n2c (i.e., 2c is the cofactor of G). This choice of b makes it
possible to encode signatures with 2b bits, and this choice of c is intended to
mitigate small subgroup attacks [22]. The “clamping” function cl is similarly
tailored to the underlying group: for Ed25519 and its variants, this function
clears the first 3 bits, sets the second to last bit, and clears the last bit. (This
ensures that s = 2254+8x for a uniform random x ∈ Z2251 .) Finally, the algorithm
variant is determined by the functions vr and ph. For example, the most common
Ed25519 variant is obtained by setting vr(X) = ε and ph(X) = X for all X,
but the standard also specifies variants that permit context (Ed25519ctx) and
pre-hashing of the message (Ed25519ph). To provide context separability, the
function vr must be collision resistant.

We begin our analysis by proving that the context-separable variants of
EdDSA are GAP1 secure in the ROM for games in which the signing and verify-
ing operations are regular (Theorem5). The upcoming Corollary 1, which follows
from Theorems 1(1) and 5, combined with the straightforward result that IDH
implies CDH, gives a qualitative equivalence between CDH and IDH in terms of
the security of (any variant of) EdDSA. We will then show that exposing any vari-
ant of EdDSA in any simple DL interface is GAP2 secure in general (Theorem 6).
Fix EdDSA parameters (G,H, cl , vr , ph, b, c) and let ED be the signing interface
instantiated with these parameters as specified in Fig. 5. Let n = |G|.
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Theorem 5. Let G be an (ED-)regular game and suppose that n ≤ 2b−1.
When H is modeled as a random oracle, there exists a regular, P-relative sim-
ulator S such that for all t, qG, qI , qR, c ≥ 0 there exists a O(t + qRqI)-time
CR-adversary C such that Advgap1

ED,G(S, r) ≤ 2cqIAdvcr
vr(C) + 6qRqI/n, where

G is c-bound, S is (log n/2, 2b)-min-entropy, (O(t/(qI + 1)), 1, 0)-resource, and
1-P-bound, and r = (t, qG, qI , qR).

We only give the high level idea of the a argument here; refer to the full version
for the proof [29]. The simulator programs the random oracle with valid EdDSA
signatures in the usual way (cf. [13, Section 4.4]). We must ensure, however,
that signatures programmed by the simulator cannot be used by the adversary
in an attack against the game G. To do so, we use the collision resistance of vr
to bound the probability that any interface query made via Call coincides with
an interface query made via Op. For this argument to work, we must require
that G is (ED-)regular.

If the game in Theorem 5 makes no interface queries (i.e., is 0-bound), then
CR security of vr is not required. This allows us to prove equivalence of IDH
and CDH regardless of how vr is realized. The following corollary follows almost
immediately from Theorems 1(i) and 5.

Corollary 1. Let r = |Rng cl | and suppose that r | 2b and n ≤ 2b−1. Then for all
t, qI , qR ≥ 0 it holds that Advidh

G,ED(t, qI , qR) ≤ n/rAdvcdh
G

(O(t + q̂)) + 7qRqI/n,
where H is modeled as a random oracle and q̂ = qR + qI + 1.

The IDH experiment is equivalent to the SEC/I experiment with ED and a
game Gcdh that specifies the CDH problem with one of the inputs being the
public key provided to the game as input. We reduce the SEC security of Gcdh

to SEC/I via Theorem 1(i) with help of the simulator exhibited in Theorem5.
Note that Gcdh is 0-ro-bound, and so CR security of vr does not arise in the
bound. The result is obtained by observing that the SEC experiment for ED and
Gcdh is essentially the CDH experiment for G modulo the distribution on the
first input induced by ED.Gen, which accounts for the n/r term. We refer the
reader to the full version for the complete proof [29].

Finally, we show that EdDSA can be composed with any simple DL inter-
face I without affecting the security of I’s intended application. Let I be a
simple DL interface for G. We define a new interface ED+I = (ED.Gen,Op),
where on input of (sk , ctx , op, in), algorithm Op returns ED.Sign(sk , ctx , in) if
op = sig and returns I.Op(s, ctx , op, in) otherwise, where s = ED.Scal(sk).

Theorem 6. Let G be a game and suppose that n ≤ 2b−1. When H is modeled
as a random oracle, there exists a regular, P-relative simulator S such that for
all t, qG, qI , qR ≥ 0 it holds that Advgap2

ED+I ,I,G(S, r) ≤ 7qRqI/n, where S is
(log n/2, 2b)-min-entropy, (O(t/(qI +1)), 1, 0)-resource, and 1-P-bound, and r =
(t, qG, qI , qR).
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The restriction to simple interfaces is so that we can achieve context separation
in the proof without using collision resistance of vr . The argument leverages the
fact that I does not make use of the string X computed by the signer. Otherwise
the proof is closely related to Theorem 5; we defer the details to the full version
of this paper [29].

Discussion. The restrictions imposed on the game in Theorem 5 and the inter-
face in Theorem 6 are very mild, but are required for context separability. If the
game encodes the UF-CMA security of ED, then this ensures that a signature
generated via the interface cannot be used as a forgery in the game. But this
“attack” is rather uninteresting and is only an artifact of our model. On the other
hand, the game might specify the use of a signature scheme in a complex proto-
col like TLS in which digital signatures have a variety of uses, including client
and server authentication and delegation of credentials for terminating TLS on
a party’s behalf [4]. In each of these cases the protocol binds the signature to
a unique context string identifying its use (e.g., [32, Sect. 4.4.3]). Our abstrac-
tion boundary makes the requirements for such applications explicit. Because
Ed25519ctx and Ed448ctx are context separable, Theorem5 makes clear the
conditions under which these algorithms are secure for their intended applica-
tion, no matter how else they are used: the implementer must ensure that (1) the
interface enforces context separation, and (2) signing/verification operations in
the application always use the context that identify the application. We believe
that exploiting this property of context-separable signatures would reduce the
inherent complexity of designing and deploying protocols. (Indeed, it is also not
difficult to design signature schemes to have this property.)

6 Noise

In this section we consider the GAP1 security of Noise [30], a framework for
designing DL-based, two-party protocols. Noise provides a set of rules for pro-
cessing handshake patterns, which define the sequence of interactions between
an initiator and responder in a protocol. The processing rules involve three
primitives: Diffie-Hellman (DH), an AEAD scheme, and a hash function. Each
message sent or received by a host updates the host’s state, which consists of
the host’s ephemeral (i.e., short-lived) and static (long-lived) secret keys, the
peer’s ephemeral and static public keys, shared state used to derive the symmet-
ric key and associated data, the current symmetric key, and the current nonce.
The symmetric key, nonce, and associated data are used to encrypt payloads
accompanying each message, providing implicit authentication of a peer via con-
firmation of knowledge of their static secret.

Noise admits a wide variety of protocols. The processing rules are designed
to make it easy to verify properties of handshake patterns, and considerable
effort has gone into their formal analysis [14,19,23]. But the study of handshake
patterns in isolation does not fully address the complexity of using Noise to build
and deploy protocols. In practice, it is often necessary for the communicants to
negotiate the details of the handshake, including the pattern, primitives, and
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cryptographic artifacts such as static keys and their certificates. All of this is
out of scope of the core Noise specification, which aims to be as rigid as possible.
As a result, there is an apparent gap between our understanding of the security
that Noise provides and how it might be used in practice. One question that
arises, which we will address here, is whether it is safe to reuse a single static
key in many patterns.

We cast the Noise framework as an interface that exposes a host’s static
key for use in Noise protocols. The interface specifies how the host consumes
(resp. produces) messages sent by (resp. to send to) the peer, and how its hand-
shake state is updated as a side-effect. In other words, it implements the pro-
cessing rules such that Noise patterns can be executed by making calls to the
interface. Our goal is to prove GAP1 security with respect to the largest possible
set of games, which would provide two benefits in practice. First and foremeost,
it would imply joint security (up to context separation) of all patterns the inter-
face implements; second it would provide a degree of robustness to cross protocol
attacks by ensuring that, as long as context separation is enforced, vulnerabilities
in one application cannot creep into another.

Our analysis sheds light on two limitations of Noise with respect to our secu-
rity notions. The first is that some handshake patterns, if implemented by our
interface, would allow for GAP1 attacks. We provide a formal characterization
of the actions that give rise to these attacks, and we prove GAP1 security of
our interface when they are excluded. The second issue is more subtle. To prove
GAP1 security with respect to games in which the adversary may compromise
the handshake state—for example, when modeling forward secrecy—it is neces-
sary to tweak the Noise spec slightly. The processing rules explicitly bind the
protocol context (i.e., a string that uniquely defines the handshake pattern and
parameters) to the initial state of the protocol. While this provides a certain
degree of context separability, the lack of binding to each state update precludes
a proof of security relative to such games. We propose a simple and efficient
modification of the processing rules that ensures context separability under these
conditions, allowing us to prove security under minimal (and natural) assump-
tions about the game.

Of course, a consequence of these restrictions is that our analysis leaves open
the security of key reuse in Noise as it is. In the full version of this paper [29], we
will discuss what our results mean for Noise in practice and suggest directions
for future work.

Preliminaries. Our analysis will use the standard notion of ciphertext integrity
of AEAD schemes. A scheme for authenticated encryption with associated data
(AEAD) is a pair of deterministic algorithms AE = (Enc,Dec). The first,
Enc(str K,N,A,M) �→ str C, maps a key K, nonce N , associated data A,
and plaintext M to a ciphertext C. The second, Dec(str K,N,A,C) �→ str M ,
maps K, N , A, and C to M . We respectively define the key, nonce, associated-
data (AD), and message space as the sets K,N ,A,M ⊆ {0, 1}∗ for which
Enc(K,N,A,M) �= ⊥ if and only if (K,N,A,M) ∈ K × N × A × M;
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NN:
e,
e, ee

NK:
s

. . .
e, es
e, ee

NX:
e
e, ee, s, es

IKpsk2:
s

. . .
e, es, s, ss
e, ee, se, psk

Fig. 6. Examples of Noise handshake patterns.

correctness requires that Dec(K,K,N,A,Enc(K,N,A,M)) = M for every such
(K,N,A,M). (This condition implies that AE is both correct and tidy in the
sense of Namprempre, Rogaway, and Shrimpton [25].) We say that AE has
key-length k if K = {0, 1}k and nonce-length n if N = {0, 1}n. We will use
the standard notion of ciphertext integrity (INT-CTXT) for AEAD schemes
in the presence of nonce-respecting adversaries; refer to the full version [29]
for its precise definition. Define the advantage of an adversary A in breaking
the ciphertext integrity of AE as Advint-ctxt

AE (A) = Pr
[
Expint-ctxt

AE (A)
]
. Let

Advint-ctxt
AE (t, qE , qD) denote the maximum advantage of any t-time adversary

making at most qE (resp. qD) queries to Enc (resp. Dec).

6.1 Handshake and Message Patterns

By way of eliciting the formal tools we will need in our analysis, we begin this
section with a brief overview of how handshake patterns are specified. Figure 6
recalls four patterns from the standard [30]. The first, referred to as the “NN”
pattern, encodes an unauthenticated DH key exchange as a sequence of hand-
shake messages, which in turn encode sequences of tokens. In the first message
(→ e) the initiator generates an ephemeral DH key pair and sends the public
key to the responder. In the next handshake message (← e, ee), the responder
generates an ephemeral key pair (e), computes the DH shared secret and derives
a symmetric key (ee), then sends the ephemeral public key in its response. Every
message includes a possibly AEAD-encrypted payload. Encryption is opportunis-
tic. Once a shared secret is established, everything that can be encrypted will
be encrypted; if the caller does not provide a payload, then the payload is the
empty string.

The NK pattern is a variant of NN that provides authentication of the respon-
der. The main difference is an additional message preceding the ellipses (← s)
indicating that the responder’s static public key is known to the initiator before
the protocol begins. In its first action, the initiator computes the shared secret
between this and its ephemeral secret (es) and uses it to encrypt the message
payload. This has two effects: first, the initiator proves knowledge of the shared
secret to the responder; and second, the responder authenticates itself by proving
knowledge of the shared secret to the initiator. These properties are due to the
sequence of actions induced by the pattern; if decryption fails, then this indicates
that the sender does not know the correct shared secret. This works because each
key derivation depends on all shared secrets computed in the protocol so far.
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The NX pattern is similar except that the public key is transmitted to the
initiator during the handshake, rather than out-of-band. For our purposes, the
significant difference between NK and NX is that, in the former pattern, the
initiator confirms knowledge of the shared secret before the responder consumes
the message and produces its response. On the other hand, in the NX pattern
the initiator can send an arbitrary element of the DH group as its ephemeral key
and observe a valid response without demonstrating knowledge of its discrete
logarithm. This leads to information leakage beyond what is learned by honest
initiators (that is, for computationally bounded attackers). It is akin to providing
the adversary with a functional DH oracle, which enables an attack against
the GAP1 security of the interface; as we did in Theorem4, one can exhibit
a distinguisher that gets high advantage if the IDH problem is hard for the
underlying group. (More on this attack in the full version [29].) To reason about
this attack in our analysis, we require an abstraction for handshake patterns and
the actions they induce.

Definition 10 (Patterns, actions, and tokenizers). A handshake pattern
is a sequence of message patterns that specify the sequence of tokens processed
when producing or consuming a message. A message pattern is a string that can
be parsed by a tokenizer, which determines the set of valid actions. A tokenizer is
a deterministic algorithm T (bool f, r , str pat) �→ tup t, str err . String pat is the
message pattern, f indicates whether or not the host is producing a message,
and r indicates whether the host is the initiator. The outputs are a tuple t
comprised of the sequence of tokens to be processed and a string err indicating
whether an error occurred. A valid action for T is a triple (f, r , pat) for which
err = �, where (t, err) = Tf (r , pat). We say that T has action count � if |t| ≤ �
for every valid action (f, r , pat).

A token action is a triple (f, r , t) ∈ {0, 1} × {0, 1} × {0, 1}∗. We say that
a tokenizer T includes a set of token actions X if for each (f, r , t) ∈ X the
following is true: there exists a valid pattern pat for T such that t = ti for some
1 ≤ i ≤ |t| and (t, err) = Tf (r , t). If this condition holds for no such token
action, then T excludes X . �

6.2 The Interface

The interface is specified as the composition of a tokenizer and the DH, AEAD,
and hash primitives. Let G = 〈G〉 be a v-encoded, additive group of order n, and
fix integers k, n′, h, b, u ≥ 0 such that v �∈ {u+8, h+u+8}. Let AE be an AEAD
scheme with key-length k and nonce-length n′. Let cl : {0, 1}b → Zn \ {0}, vr :
{0, 1}∗ → {0, 1}u, and H : {0, 1}∗ → {0, 1}h be functions. Function H is a hash
function that will serve multiple purposes, one of which is to derive symmetric
keys using HKDF [20]. We will ignore the details of HKDF in this section and
simply denote key derivation by a function F : ({0, 1}∗)3 → ({0, 1}h)3 that maps
an “information” string id , a “salt” X, and input key material Y to a triple of
h-bit strings F(id ,X, Y ). We will model F as a random oracle in our analysis;
in the full version [29] we address the implications of this modeling choice.
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Gen( )
1 K {0, 1}b

2 s cl(K)
3 ret (sG, s)

4 dec struct {
5 str P ,E ,S } msg
6 dec struct { str id , psk ;
7 int seq ; str K, N ;
8 str L,A;
9 Q, R ∈ G; e ∈ Zn } st

Op(sk , ctx , op, in)
10 dec st hs; msg req ; bool f, r ; str u, pat , err
11 s Scal(sk); o, f, r , pat op; hs, in in
12 if o �= noise ∨ hs.id �= vr(ctx ) ∨ |hs.L| �= h∨
13 |hs.psk | ∈ {u + 8, h + u + 8} then ret ⊥
14 if f then // outbound payload
15 (resp, err) Write(&hs, s, r , pat , in)
16 if ¬err then ret hs, resp, 	
17 else req in // inbound message
18 (out , err) Read(&hs, s, r , pat , req)
19 if ¬err then ret hs, out , 	
20 if err ret 	, 	, err

Fig. 7. Simple DL interface N for noise. Let G = 〈G〉 be a v-encoded, additive group
of order n and let h, b, u ≥ 0 be integers such that v �∈ {u + 8, h + u + 8}. Let cl :
{0, 1}b → Zn \{0} and vr : {0, 1}∗ → {0, 1}u be functions. Procedures Write and Read
are defined in the full version [29].

Figure 7 specifies our Noise interface N at a high level and defines structures
st and msg for the handshake state and messages respectively. The key generator
N .Gen chooses a random, b-bit string K, sets s ← cl(K), and returns (sG, s).
(Thus, N is simple in the sense of Definition 8.) Function cl serves the same
purpose as cl in our specification of EdDSA; it maps a bit string of a particular
length to a suitable scalar s for use with the given group. The key operator
N .Op is defined in terms of two procedures:

– Read(&st hs, int s,bool r , str pat ,msg req) �→ str out , err . Called when con-
suming an inbound message. It takes as input the static key s and processes
the action (0, r , pat) on the message req and current handshake state hs. It
outputs a payload out .

– Write(&st hs, int s,bool r , str pat , in) �→ msg resp, str err . Called when pro-
ducing an outbound message. It takes as input the static key s and processes
the action (1, r , pat) on the payload in and current handshake state hs. It
outputs a message resp.

Read and Write are defined in terms of T , AE , F , and H. The operand encodes
the current handshake state hs and the input in, and the operator op encodes an
action (f, r , pat). If f = 1, then the host interprets in as a payload to send to its
peer in its next handshake message; it calls Write and returns the updated state
and outbound message. If f = 0, then the host interprets in as a message sent
by the peer; it calls Read and returns the updated state and inbound payload.

Context-to-Action Binding. The context ctx is bound to the handshake state via
a field hs.id , which should be equal to vr(ctx ) (7:12). Each call to F made by
either Read or Write uses hs.id as the label. In this way, interface N binds the
string hs.id = vr(ctx ) to each key derivation, thereby binding the context to
the action being performed. We call this context-to-action binding. This differs
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from Noise as it is, which uses an empty string as the information string for
key derivation via HKDF (see [30, Sect. 4.3]). (Formally, the processing rules
as they are specified are recovered by defining vr(ctx ) = ε for all ctx .) Noise
binds the context to initialization of the handshake state (see [30, Sect. 5.3]),
but action binding is required in our attack model in order to provide context
separation when the game leaks its internal handshake state to the adversary.
We will discuss the issue that arises in the next section.

In order to save space, we defer detailed explanation of the Noise parameters,
as well as the complete specifications of Read and Write, to the full version of
this paper [29]. These details are essential to understanding the proof of our
main result (Theorem 7), but since the low-level details are cumbersome, we will
focus the remainder on stating and interpreting our results.

6.3 Security

Interface N is GAP1 secure for any game G subject to the following restrictions.
First, the tokenizer must exclude any write action involving DH on the static
secret. (It may, however, read messages that depend on the static secret.) And
second, each time G invokes F on an input (id , u, v) it must hold that id = vr(α),
where α is the game context.

Fix Noise parameters (G,AE , T ,H,F , cl , vr , k, n′, h, b, u) and let N be the
DL interface instantiated with these parameters as specified in Fig. 7. Let
n = |G| and let X = (1, 0, es), (1, 0, ss), (1, 1, se), (1, 1, ss). Define ψ : {0, 1}∗ ×
({0, 1}∗)3 → {0, 1} as the map (ctx , (id , u, v)) �→ (vr(ctx ) = id).

Theorem 7. Suppose that n is prime. Let G be a regular game and suppose
that T is X -excluding and has action count �. Let DDH be as defined in Fig. 4.
When F is modeled as a random oracle, there exists a regular, DDH- and Q-
relative simulator S such that for all t, qG, qI , qR, c ≥ 0 there exists a t̂-time
CR-adversary C such that

Advgap1
N ,G (S, r) ≤ 2cqIAdvcr

vr(C) + 2�qIAdvint-ctxt
AE (t̂, 0, qI),

where G is c-ro-bound and ψ-ro-regular; AE, T , H, cl , and vr are 0-ro-bound;
simulator S is (O(t/(qI + 1)), qI , �)-resource, �qRqI-DDH-bound, and 2-Q-
bound; r = (t, qG, qI , qR); and t̂ = O(t + qRqI).

We will sketch the main ideas of the proof; refer to the full version for the
details [29]. To simulate static DH computations on an input Y (either the
peer’s static or ephemeral key), the simulator S computes the set V of points
incident to the adversary’s RO queries. For each Z ∈ V it uses its DDH oracle to
check if (logG P )(logG Y ) = logG Z, where P is the host’s static key. If so, then it
uses Z to simulate the output of the interface. This is only possible in general for
read actions, since these require the adversary to compute a ciphertext under
the correct symmetric key, which can be obtained by querying the RO first.
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In fact, what we show is that, short of breaking the CR security of vr or
INT-CTXT security of AE , the only way to get a valid response from Op is
to compute the inbound message as specified by the processing rules.

The need for context-to-action binding and the restriction of the game’s RO
queries arise in order to ensure there is no “subliminal channel” between the
game and the adversary conveying information about the RO to the adversary
beyond what it learns by making RO queries on its own. If the game provides
the outputs of its RO queries to the adversary (e.g., by compromising the hand-
shake state), then without action binding, these can be used by the adversary
to compute ciphertexts without interacting with the RO. Hence, there is no way
for the simulator to correctly respond given only knowledge of the adversary’s
RO queries. (Allowing the simulator to observe more RO queries than this—in
particular, the game’s—would make composition impossible.)

Finally, as we did in Sect. 5.2, we apply the GAP1 security of N and the
composition theorem to the IDH problem for N . We cannot reduce the CDH
problem to it as we did in Corollary 1, since the simulator requires a DDH oracle.
Of course, this is precisely what the GDH experiment provides. The following is
obtained by applying Theorems 1 and 7. (We will not prove it, but the details
are closely related to Corollary 1.)

Corollary 2. Suppose that n is prime and that T is X -excluding and has max-
imum action count �. Let r = |Rng cl | and suppose that r | 2b. Then for all
t, qI , qR ≥ 0 it holds that

Advidh
G,N (t, qI , qR) ≤ n/rAdvgdh

G
(O(t + q̂), �qRqI) + 2�qIAdvint-ctxt

AE (t̂, 0, qI),

where F is modeled as a random oracle; AE, T , H, cl , and vr are 0-ro-bound;
q̂ = qR + �(qI + 1); and t̂ = O(t + qRqI).

Remark 1. The use of the DDH oracle by the simulator in Theorem 7 is standard;
it is used, for instance, to prove joint security of encryption and signing in the
ROM [13]. In fact, the Noise spec calls for a group for which the GDH problem
is hard; see [30, Sect. 4.1].
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