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Overview
Scientific research involves the formulation of theory to explain 
observed phenomena and using experimentation to test and 
evolve these theories. Over the past two decades, computa-
tional modeling and simulation (M&S) has become accepted 
as the third leg of scientific research because it provides addi-
tional insights that often are impractical or impossible to 
acquire using theoretical and experimental analysis alone. The 
purpose of this chapter is to explore how M&S is used in sys-
tem-level healthcare research and to present some practical 
guidelines for its use. Two modeling approaches commonly 
used in healthcare research, system dynamics models and 
agent-based models, are presented and their applications in 
healthcare research are described. The three simulation para-
digms, Monte Carlo simulation, continuous simulation, and 
discrete event simulation, are defined and the conditions for 
their use are stated. An epidemiology case study is presented to 
illustrate the use of M&S in the research process.

 Introduction

Modeling and simulation (M&S) long has been used for edu-
cation and training in the healthcare domain. Most medical 
practitioners are familiar with the use of visual models and 
simulations and simulation-based instructional applications 
to enhance the transfer and acquisition of knowledge. They 
also are familiar with the use of task trainers, medical man-
nequins, and immersive interactive virtual reality for training 
where the objective is to control performance variability 
(i.e., minimize error) by improving trainee reliability. 
However, the use of M&S as a computational approach to 
support and enhance healthcare research is a more recent and 
perhaps less familiar topic for medical practitioners. The 
focus of this chapter is to explain how M&S is used in 
system- level healthcare research and to present some practi-
cal guidelines for its use.

Computational modeling and simulation (M&S) refers to 
the use of models and simulations, along with the associated 
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Practice Points

• There are three main simulation paradigms: Monte 
Carlo simulation, continuous simulation, and dis-
crete event simulation, however a hybrid simulation 
combining any two paradigms is also possible.

• The Monte Carlo simulation paradigm refers to the 
methodology used to simulate static, stochastic sys-
tem models in which system behavior is represented 
using probability.

• The continuous simulation paradigm refers to the 
methodology used to simulate dynamic, continuous- 
state, time-driven system models.

• The discrete event simulation paradigm refers to the 
methodology used to simulate dynamic, discrete-state, 
event-driven system models, such as a queuing model.

• Modeling methods include system dynamics mod-
els and agent-based models; both methods fre-
quently are used for complex healthcare and 
medical systems, including epidemiological appli-
cations surveyed here.
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analysis, visualization, and verification/validation tech-
niques, to conduct a simulation study. The subject of a simu-
lation study is usually described as a system. A system is a 
combination of components that act together to perform a 
function not possible with any of the individual components. 
A system that is the subject of a simulation study is called the 
simuland. A model is a mathematical or logical representa-
tion the simuland. Selection of a model must consider both 
the relevant features of the simuland and the questions about 
the simuland that are to be addressed. A simulation is a pro-
cess for executing a model. Selection of a simulation meth-
odology depends on the mathematical characteristics of the 
model.

Historically, M&S has been viewed as an important 
research tool in numerous disciplines or application domains. 
Research in most domains often proceeds through a sequence 
of phases that include understanding, prediction, and control 
[1]. The initial phase is used to gain an understanding of how 
events or objects are related. An understanding of relation-
ships among objects or events then allows the modeler to 
begin making predictions and ultimately to identify causal 
mechanisms. Finally, knowledge of causality enables the 
user to exert control over events and objects. Research moves 
from basic to more applied levels as progression is made 
through these phases. For example, the Human Genome 
project was undertaken to understand the complete sequenc-
ing of chromosomal DNA in human beings. Knowledge of 
the human genome helps to make predictions regarding 
genetic variation and can lead to more reliable diagnostic 
tests and medical treatments applied at the genetic or molec-
ular levels.

M&S is closely linked to all phases of research. At the 
more basic levels, research is guided heavily by theory. 
Models are often used to represent specific instances of theo-
ries, to differentiate between competing theories, or to 
exhibit underlying assumptions. Likewise, simulations are 
used to test predictions under a variety of conditions or to 
validate theories against actual conditions. At the applied 
levels, simulations also are used to control events and objects. 
Simulations in the form of mock-ups or prototypes are used 
in the creation of products and systems to validate predic-
tions regarding operational requirements, specifications, and 
user/customer satisfaction.

Although this description of the research process admit-
tedly is simplistic, it does underscore three important points 
regarding M&S.  First, M&S is intimately related to all 
phases of the research process. M&S is used to generate and 
refine the theories that help us understand our world as well 
as the technology we use to interact with the world. Second, 
the description is generic and highlights where M&S can be 
applied in any domain where individuals are engaged in 
research. Thus, biologists, chemists, sociologists, econo-
mists, and historians all can use M&S to help formulate 

research questions, conduct experiments, evaluate theories, 
and add to their respective bodies of knowledge. Third, the 
description also shows the different aspects of M&S empha-
sized along the basic/applied research continuum. Thus, at 
the basic end, M&S is used more as a research tool whereas 
at the applied end, it is used either to create products or even 
may be a product in and of itself.

The remainder of this chapter is organized in four sec-
tions. In the first section, Simulation Methodologies, we 
focus on simulation paradigms. The three simulation para-
digms are defined in terms of the system classifications asso-
ciated with the simulation model. In the second section, 
Selected Modeling Methods, we describe two modeling 
approaches often used in healthcare research, system dynam-
ics models and agent-based models. An example of applying 
M&S to healthcare research is presented in the third section, 
Example Healthcare Applications. An epidemiology prob-
lem is investigated using different modeling approaches and 
simulation methods to illustrate some of the practical issues 
that must be considered. In the fourth section, Conclusion, 
several challenges associated with applying M&S in health-
care research are identified and briefly discussed.

 Simulation Methodologies

In this section, we identify the three simulation paradigms, 
Monte Carlo simulation, continuous simulation, and discrete 
event simulation, and discuss the process for selecting an 
appropriate paradigm. Selection of a simulation paradigm 
depends primarily on the characteristics of the model that is 
to be simulated. Model characteristics are defined in terms of 
the mathematical properties of the functional representation 
for the model. Each simulation paradigm is designed for use 
with models having a specific combination of these system 
characteristics. A fourth simulation methodology, hybrid 
simulation, refers to simulation methodologies that consist 
of utilizing two or more simulation paradigms to simulate a 
single simuland model.

 System Characteristics

A model often is represented mathematically using the defi-
nition of a function [2]. A function is a mathematical con-
struct consisting of three components, the domain set X, the 
codomain set Y, and the rule of correspondence Γ. The 
domain set consists of the set of system inputs x(t) ∈ X, the 
codomain set consists of the set of system outputs y(t) ∈ Y, 
and the rule of correspondence consists of the mapping of 
inputs to outputs denoted as Γ : X → Y or Γ{x(t)} = y(t). The 
system state at time t0, q(t0), is the (minimal) information 
about the system at t0 such that the output of the system for 
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t ≥ t0 is uniquely determined from this information and the 
system input for t ≥ t0. The state space Q of a system is the 
set of all possible values that the state may take.

System characteristics are defined as all inclusive, mutu-
ally exclusive descriptor pairs that are based on the mathe-
matical properties of the model functional representation. 
Definitions for these descriptor pairs are presented in the 
following.

• Static or Dynamic – A system is said to be static if the 
system output at time ti is dependent only on the system 
input at time ti. A system is said to be dynamic if the sys-
tem output at time ti depends on the system input for t ≤ ti. 
Dynamic systems are called systems with memory while 
static systems are called systems without memory. The 
output of a static system at time t depends only on the 
input to the system at time t. The output of a dynamic 
system at time t depends on both the input to system and 
the state of the system at time t.

• Deterministic or Stochastic – A deterministic system is a 
system in which all system outputs are deterministic. A 
stochastic system is a system in which one or more sys-
tem outputs have uncertainty or variability. In this case, 
the system output is characterized as a random process 
and a probabilistic framework is required to describe sys-
tem behavior.

• Continuous-State or Discrete-State  – A continuous-state 
system is a system in which the state space Q consists of 
elements q(t) that assume a continuum of real values; that 
is, q(t) ∈ R (real numbers). Examples of continuous-state 
systems include many physics-based systems where sys-
tem variables (position, velocity, magnitude) have real 
number values. A discrete-state system is a system in 
which the state space Q consists of elements q(t) that 
assume only discrete values; that is, q(t) ∈ I (integer num-
bers). Examples of discrete-state systems include many 
service systems where system variables (people counts, 
resource counts, part counts) have integer number values.

• Event-Driven or Time-Driven – In discrete-state systems, 
state changes occur only at distinct instants of time as 
variable values change instantaneously from one discrete 
value to another discrete value. With each state transition, 
we associate an event. Further, we attribute the state tran-
sition to the occurrence of the event. Thus, an event is a 
specific instantaneous action that causes a state transition 
and we say that systems that exhibit such behavior are 
event-driven systems. In continuous-state systems, the 
system state generally is obtained by solving differential 
equation representations of the system. In such systems, 
state changes can occur simply because time advances, 
even when there is no input to the system. We say that 
systems that exhibit such behavior are time-driven 
systems.

 Simulation Paradigm Definitions

There are three simulation methodologies, called simulation 
paradigms, for simulating a model: Monte Carlo simulation 
paradigm; continuous simulation paradigm; and discrete 
event simulation paradigm. Selection of a simulation para-
digm is based upon the system characteristics associated 
with the model utilized to represent the simuland. The need 
for three simulation paradigms is due to the differences in the 
mathematical properties of the model functional representa-
tions. The simulation paradigms are defined in the 
following.

• Monte Carlo Simulation Paradigm  – The Monte Carlo 
simulation paradigm refers to the methodology used to 
simulate static, stochastic system models in which system 
behavior is represented using probability. The underlying 
model usually is a random experiment and associated 
probability space.

• Continuous Simulation Paradigm – The continuous sim-
ulation paradigm refers to the methodology used to 
simulate dynamic, continuous-state, time-driven system 
models. The underlying model usually is a set of differ-
ential equations that describe simuland behavior. 
Simulation output often is a time-trajectory of some 
simuland state variable. The simulation methodology 
consists of starting from some initial system state and 
repeatedly solving numerically the differential equa-
tions for very small increments of the time variable. This 
paradigm usually is used for natural systems where it is 
possible to associate differential equations with system 
behavior.

• Discrete Event Simulation Paradigm – The discrete event 
simulation paradigm refers to the methodology used to 
simulate dynamic, discrete-state, event-driven system 
models. The underlying model is usually a representation 
of a discrete event system [2] such as a queuing model, a 
state automata model, a Petri net model, or an event graph 
model. Simulation output often is a sequence of state vari-
able values evaluated at event times. The simulation 
methodology consists of starting from some initial system 
state and repeatedly updating the system state at the 
occurrence of each event. Event management is conducted 
using an event scheduling strategy in which a future event 
list is updated at each event time. This paradigm usually 
is used for service systems where it is possible to associ-
ate event descriptions with system behavior.

The process for selecting a simulation paradigm is illus-
trated in Fig. 6.1. It is clear in this figure that once a model of 
the simuland is developed, the resulting simulation paradigm 
that is required to simulate the model is also determined. 
Often however, there is some flexibility in deciding how to 
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develop the simuland model, thus providing some flexibility 
in choice of simulation paradigm.

A fourth simulation paradigm, the hybrid simulation par-
adigm, is sometimes defined; however, this term refers to a 
simulation methodology that employs concurrently two or 
more of the simulation paradigms, as defined above, to simu-
late a single model. For example, the hybrid methodology 
might be useful when simulating a continuous-state, time- 
driven model that operates in two different modes. A discrete 
event system model might be used to change operating 
modes, while different continuous simulation models might 
be used to represent system operation in each of the two 
modes. For example, this situation easily could occur when 
simulating a model of human physiology.

 Selected Modeling Methods

There are numerous methods for developing models and one 
of the early challenges in any M&S project is the selection of 
an appropriate modeling method. While each project is 
unique, there are several guiding principles that apply in all 
situations. The starting point always is a detailed investiga-
tion of the simuland and enumeration of the objectives for 
the study; that is, identification of the questions about the 
simuland that the simulation study is to address. The simu-
land must be modeled so that relevant simuland features are 
included in the model at a resolution (level of detail) suffi-
cient to address study questions. It is convenient if the model 
can be developed so that it fits within one of the three simula-
tion paradigms. If that can be done, then there are well- 
defined procedures for simulating the model and a host of 
available M&S tools or environments that may be applicable. 
If the model characteristics do not fit into one of the three 
simulation paradigms, then a unique simulation methodol-
ogy must be crafted for that model.

In this section, we introduce two modeling methods, sys-
tem dynamics models and agent-based models. Both meth-
ods frequently are used to describe complex healthcare and 

medical systems, but each provides a very different perspec-
tive of system operation. Both modeling methods address 
dynamic systems, but can be formulated as either continuous 
simulation models or discrete event simulation models. In 
the third section of this chapter, Example Healthcare 
Applications, both modeling approaches are used to address 
disease epidemiology. The systems dynamics model is devel-
oped as a continuous simulation model while the agent-based 
model is developed as a discrete event simulation model.

 System Dynamics Models

System dynamics models consist of the combination of two 
components, a stock and flow diagram and a causal loop dia-
gram. A stock is some quantity that is accumulated over time 
by inflows and depleted by outflows. Stock can only be 
changed by flows. Thus, stock can be viewed as an integra-
tion of flows over time, with inflows adding to the accumu-
lated stock and outflows subtracting from the accumulated 
stock. Variables representing stock levels usually comprise 
the state variables for a system dynamics model. A causal 
loop diagram is a diagram that shows how different system 
variables and parameters are interrelated. The diagram con-
sists of nodes representing variables or parameters and edges 
representing relationships between nodes. A positive labelled 
edge denotes a reinforcing relationship while a negative 
labelled edge denotes an inhibiting relationship. In system 
dynamics, the causal loop diagram is used to show how the 
system state variables and parameters influence the stock 
inflow rates and outflow rates. The system dynamics model 
results in the definition of a set of state variable equations 
describing the dynamical behavior of the modeled system. 
Ideally, the model state variables and parameters are selected 
to correspond to specific characteristics of simuland. An 
example system dynamics model is shown in Fig. 6.3 in the 
next section.

Numerous applications of system dynamics can be found 
in healthcare and medical simulation research. In healthcare, 
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the areas of application span disease and substance abuse 
epidemiology, health care capacity analysis and optimiza-
tion, and patient flow studies in clinics and emergency care 
facilities. Examples of disease epidemiology research 
include heart disease and diabetes studies centering on the 
impact of prevention and rehabilitation on public health 
costs [3]. In addition, there have been HIV/AIDS simulation 
efforts emphasizing virological and behavioral features of 
the epidemic while portraying the consequences in a simple 
graphical form [4] as well as the impact of antiretroviral 
therapy [5]. There also are simulation models for evaluating 
the possible effects of a screening and vaccination campaign 
against the human papilloma virus and the impact on cervi-
cal cancer [6]. Recent substance abuse epidemiology 
research centers in particular on cocaine and heroin abuse. 
For example, a system dynamics model that reproduces a 
variety of national indicator data on cocaine use and supply 
over a 15-year period and provides detailed estimates of 
actual underlying prevalence [7] has been reported. Clinical 
capacity and flow studies include an optimization study of an 
Emergency Room [8] in which a system dynamics model is 
used to investigate the interaction between demand patterns, 
resource deployment, hospital processes, and bed numbers. 
One of the findings is that while some delays to patient care 
are unavoidable, delay reductions often can be achieved by 
selective augmentation of resources within the unit.

 Agent-Based Models

Agent-based models [9] are composed of three components, 
agents, an environment, and a set of agent relationships or 
interactions. Agents are self-contained, autonomous objects 
or actors that represent components of the simuland. An 
agent has inputs, representing communications from other 
agents or perceptions from the environment, and produces 
outputs representing communications to other agents or 
interactions with the environment. An agent often has a pur-
pose, trying to achieve some goal or to accomplish some 
task, and the capability to modify behavior over time to 
improve performance in accomplishing objectives. An envi-
ronment may be as simple as a grid or lattice structure that 
provides information on the spatial location of an agent rela-
tive to other agents, or may consist of complex dynamic 
models capable of supplying environmental data that may 
influence agent behavior. It is the rules of agent interactions, 
both with other agents and the environment, that are at the 
heart of any agent-based model. These interactions are usu-
ally conducted at the local spatial level with the agents inter-
acting myopically with their immediate neighbors, but can 
also occur through other environmental projections such as a 
social network. These interactions might be direct with 
agents exchanging information, or indirect with an agent 

deciding to move because it is surrounded by too many 
neighbors.

It is the combination of many agents interacting simulta-
neously with each other and with the environment that can 
lead to emergent behavior within the simulation of agent- 
based models. Agent-based models are developed at the 
micro-level through defined agent interactions, but are used 
to provide insight at the macro-level by observation of the 
collective behavior of agents. A key property of agent-based 
models is that even relatively simple rules of agent interac-
tion can result in highly complex collective agent behaviors. 
Another advantage of agent-based models is their capability 
to accommodate agent heterogeneity. Agent heterogeneity 
refers to agents that have different characteristics; they may 
start with different resources, they may have different toler-
ances, and they may react differently. The facility for incor-
porating heterogeneous agents in an agent-based model 
allows modelers to more closely represent the great diversity 
that is present in almost all natural systems.

Agent-based modeling primarily is a decision-support 
modeling methodology. It often is used to develop and test 
theories and to provide insight into complex system behav-
ior. In the biological sciences, agent-based models have been 
used to model cell behavior and interaction [10], the working 
of the human immune system [11], and the spread of disease 
[12]. Agent-based epidemic and pandemic models can incor-
porate spatial and social network topologies to model peo-
ple’s activities and interactions. The focus is on understanding 
conditions that might lead to an epidemic and identifying 
mitigation measures. Agent-based modeling is one means to 
utilize the vast healthcare data pool to analyze the impacts of 
health-related policy decisions on the general public, espe-
cially when it would be impracticable, costly, or potentially 
unethical to use live experiments to evaluate these policies. 
Agent-based models and simulations allow researchers to 
experiment with large simulated autonomous and heteroge-
neous populations to see what phenomena emerge and to 
evolve theories about these phenomena.

 Example Healthcare Applications

The study of the spread of diseases provides a rich domain 
for selecting examples to illustrate the significance of choos-
ing a modeling methodology. In this section, we develop epi-
demiological models using a systems dynamics modeling 
approach and an agent-based modeling approach. The pur-
pose of these examples is to demonstrate that the selection of 
a modeling methodology has a direct impact on the level of 
resolution and the uses that can be made of the information 
that result from simulating the model.

Heath et  al. [13] have proposed three different levels 
for characterizing models based upon the level of under-
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standing concerning the simuland. The levels are called 
Generator models, Mediator models, and Predictor mod-
els. A Generator is a model developed with limited under-
standing of the simuland and its use is limited primarily to 
determine if a given conceptual model/theory is capable 
of generating observed behavior of the simuland. A 
Mediator is a model developed with a moderate level of 
understanding of the simuland and it is used primarily to 
establish the capability of the model to represent the sim-
uland and to gain insight into the characteristics and 
behaviors of the simuland. A Predictor is a model devel-
oped with full understanding of the simuland and it is 
used primarily to estimate or predict the behavior of the 
simuland under various operating conditions and environ-
ments. A first step in the development of a conceptual 
model for a simuland is to select a model methodology. 
This decision often is based on the (strike) developer’s 
level of understanding concerning the simuland. It is 
important to recognize that this decision has a direct 
impact on how we can use the simulation results.

 System Dynamics Approach 
to Epidemiological Modeling

A basic system dynamics approach to modeling the spread 
of an infectious disease within a population is known as 
compartmental modeling. In this approach, the population is 
partitioned into compartments or subgroups and the model 
is designed to show how the population of each subgroup 
changes as the disease progresses. Five different compart-

mental models are shown in Fig. 6.2. In this figure, each box 
represents a population compartment and the compartment 
variable indicates the population of that compartment. The 
selection of a model is made to best represent the specific 
disease being studied. For some diseases such as mumps, 
members of the susceptible population move to the infec-
tious population when they come in contact with another 
member of the infectious population. Members of the infec-
tious population eventually move to the recovered popula-
tion and as a result cannot be re-infected. This model is 
called the SIR model. Other diseases such as strep throat do 
not grant immunity to those that recover and thus route 
those recovering back to the susceptible population. This 
model is called the SIS model. Diseases such as measles 
provide maternally derived immunity to young infants who 
do not move to the susceptible population until growing out 
of the maternal immunity stage. This model is called the 
MSIR model. Still another model subdivides those in the 
infectious population into an exposed population where 
members have been exposed to an infectious person but are 
not yet contagious. Eventually, members of the exposed 
population move to the infectious population. This model is 
called the SEIR model. Other partitions separate the infec-
tious population into a subgroup that is infectious but dis-
plays no symptoms and a subgroup that is infectious and 
displays normal symptoms of the disease. This model is 
called the SICIR model; Typhoid Mary is a classic example 
of a member of the infectious carrier population. It is inter-
esting to note that the same compartment definitions can be 
applied to characterizing the states of an individual modeled 
as an agent in an agent-based epidemiological model.
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We have chosen to use the SIR system dynamics model 
as an example. The compartmentalized population diagram 
shown in Fig.  6.2 is used as the stock and flow diagram. 
Causal relationships, that relate population flow rates 
between population subgroups to the compartmentalized 
populations and the flow parameters for infection rate con-
stant b and recovery rate constant k, are added to the stock 
and flow diagram to complete the systems dynamics model. 
State variable equations are developed from the model and 
result in three first-order differential equations that express 
the time rate of change for the subgroup populations. The 
complete system dynamics model, including the resulting 
model differential equations, is shown in Fig. 6.3.

The SIR model is simulated using the continuous sim-
ulation paradigm. We set the population N = S + I + R at 
7,900,000 people and it is assumed that N remains con-
stant over the duration of the simulation. It also is 
assumed that initially ten people are in the infectious 
population, no people are in the recovered population, 
and the remaining people are in the susceptible popula-

tion. The infectious rate constant b is set to 0.50 infec-
tious contacts per day per infected person and the 
recovery rate constant k is set to 0.33 indicating the frac-
tion of infectious people recovering per day. The simula-
tion is run for a period of 150 days. The simulation results 
are shown in Fig. 6.4.

The simulation output for the SIR system dynamics 
model clearly show how the compartmentalized populations 
change as a function of time as the infectious disease runs 
its course. The model facilitates investigating how changes 
to the initial population distribution, the infection rate con-
stant b, and the recovery rate constant k affect the spread of 
the disease over time and the portion of the population 
impacted during the disease lifecycle. However, this model 
provides no information about how physical interactions 
between infectious people and susceptible people impact 
disease spread and the eventual severity of the outbreak. 
However, such information might be essential if an objec-
tive of the study were to identify methods to mitigate the 
spread of disease.
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 Agent-Based Approach to Epidemiological 
Modeling

An agent-based modeling approach presents the opportunity 
to investigate at greater resolution the causes for the spread 
of an infectious disease. Our investigations using the SIR 
system dynamics model showed that disease spread is not 
due to population subgroup sizes, but rather is due to interac-
tions between infectious individuals and susceptible indi-
viduals. Since agent-based models are developed at the 
individual level, this modeling method facilitates adding 
much greater detail about how individuals interact.

An agent-based model for the spread of mumps in a small 
urban environment is presented in [14]. In this model, the 
agent environment is augmented using geographical infor-
mation system (GIS) data that identify where individuals 
live, where they are likely to travel during daily activities, 
and how they are likely to travel. Individuals are represented 
as agents. Agent state information includes an activity state, 
with values representing work/study, leisure, commuting, 

and a disease state that takes its value from the SEIR states of 
susceptible, exposed, infectious, and recovered. This state 
information, when combined with the GIS information, adds 
considerable detail as to how susceptible and infectious indi-
viduals make contact. The flow diagram describing the cor-
responding agent logic is shown in Fig. 6.5. The flow diagram 
determines when a susceptible individual comes in contact 
with an infectious individual and then adjusts the infection 
rate constant according to the population density at that 
location.

The model is initialized by distributing the population 
(1000 individuals) to their home locations in the urban 
area. In this example, it is assumed that 999 individuals 
start in the susceptible state and one individual starts in the 
infectious state. The model is simulated using the discrete 
event simulation paradigm and the size of the four popula-
tion subgroups is reported as output. The simulation output 
is shown in Fig. 6.6. The model allows investigation of how 
daily behaviors of individuals impact the spread of 
disease.
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Fig. 6.5 Flow diagram for infection rules describing disease spread. (From [14])
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 Conclusion

In this chapter, we have presented a brief overview of how 
computational modeling and simulation can be used to sup-
port healthcare research. In particular, we have described 
two modeling approaches, system dynamics models and 
agent-based models, commonly used in healthcare research. 
Examples showing the use of these models in the epidemiol-
ogy domain are used to demonstrate the importance of 
selecting an appropriate model; that is, a model having suf-
ficient resolution to address the questions being asked about 
the simuland.
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