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Advanced Statistical Analyses

Miguel A. Padilla

Overview
Statistical models offer much flexibility and many fall under 
several general umbrellas. The linear mixed model is one 
such model, and it can be specified to answer vastly different 
research questions. Three such linear mixed model specifica-
tions (or methods) are the hierarchical linear models used 
when there are clustered data structures; generalizability 
theory used for evaluating the reliability or consistency of a 
measurement process; and equivalence testing used for 
investigating the similarity between conditions. Here, each 
method is presented in the context of healthcare simulation 
with a worked-out example to highlight its central concepts 
while technical details are kept to a minimum.

�Introduction

Healthcare simulation is a rapidly growing field due to 
advancements in technology and research methodology. 
Statistical methods are a major part of research methodol-
ogy, and three advanced statistical methods are pre-
sented here. Statistical models have been developing for 
over a century, and many of them can fall under several 
general umbrellas. The linear mixed model (LMM; or just 
mixed model) is one such umbrella model [1]. It is called 
a LMM because it can model any combination of random 
and fixed effects. A random effect is when the levels of a 
variable (or factor) can be thought of as being sampled 
from a corresponding population. For example, if data are 
collected from different medical centers and “center” is in 
the model, then “center” can be thought of as a random 
effect. By contrast, an effect is called fixed if the levels in 
the study represent all the possible levels of a variable (or 
factor). Some examples of fixed effects include gender 
(male, female) and treatment method (treatment, pla-
cebo). The modeling flexibility of LMMs allows them to 
be specified to answer a variety of research questions. 
LMMs have been widely used in medical research to 
study longitudinal change, the consistency of measure-
ment (assessment), and to establish bioequivalence. The 
methods presented here are examples of each one of these 
instances. Therefore, these methods should be adaptable 
to research in healthcare simulation. Specifically, three 
methods are discussed: hierarchical linear models, gener-
alizability theory, and equivalence testing.

Before moving forward, a disclaimer is needed. The 
statistical methods here are advanced and are being pre-
sented within the context of a general model (i.e., LMM). 
To keep the discussion concise, some statistical notation 
and equations are used. However, the models are pre-
sented in their simplest forms through examples. 
Therefore, the general concepts are accessible to all aca-
demics and researchers.
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Practice Points

	• 	 A linear mixed model (LMM) is an umbrella model 
that can be formulated to answer a variety of 
research questions.

	• 	 A LMM formulated to account for clustered (nested) 
data structures is called a hierarchical linear model.

	• 	 Generalizability theory is a form of a LMM formu-
lated to evaluate  the consistency of measurement 
(assessment).

	• 	 Equivalence testing is another form of a LMM for-
mulated to measure the equivalence of groups.

	• 	 Any statistical package with a LMM routine can 
obtain the basic results for the three methods 
discussed.
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�Hierarchical Linear Models

An intuitive form of the LMM is the hierarchical linear 
model (HLM) [2, 3]. A key distinction of HLMs is that they 
are specifically formulated to account for a clustered 
(nested) data structure. The simplest clustered data struc-
ture is when the units of analysis are nested within a cluster. 
Such clustered structures can occur in organizations and 
individual change. An organizational example is when stu-
dents (units) are nested within medical schools (clusters). 
An example of individual change is when repeated mea-
sures are made of each individual in a study. In this exam-
ple, the repeated measures (units) are nested within 
individuals (clusters). These two separate clustered struc-
tures can also be combined. Suppose an obesity study is 
being conducted at multiple clinics in the country in which 
participants are weighed multiple times over the duration 
of the study. In this situation, the repeated weight measures 
are nested within each participant, and the participants are 
nested within the clinics.

Consider data in which airway management skills (AMS) 
are measured over time (at; 4 occasions, 2 months apart) for 
paramedic trainees that received one of  two training meth-
ods: modified simulation (ms; nms = 16) or standard simula-
tion (ss; nss = 11). In such a situation, a split-plot ANOVA is 
the standard way to analyze AMS with time as the within-
subjects factor, and training method as the between-subjects 
factor. Table 30.1 presents the results indicating significant 
method and time main effects. These effects would typically 
be investigated with post hoc tests. However, an alternative is 
to approach the whole analysis through HLM.

HLM specifies models by breaking them up into levels 
that account for the clustered structure of the data. A level is 
added for every clustering in the data. For this reason, HLM 
is also commonly referred to as multilevel modeling. The 
current example constitutes a two-level model in which time 
(units) is nested within paramedic trainees (clusters) and can 
be captured through a random-coefficient regression model 
(or random coefficient model).

The level-1 model can model time linearly through regres-
sion for each trainee and takes the following form:

	 y a eti i i ti ti= + +p p0 1 . 	 (30.1)

The model has an intercept (π0i), slope (π1i), and residual (eti) 
for each trainee. The intercept is the AMS at start for each 
trainee. The slope is the 2-month AMS change for each 
trainee; i.e., how much does AMS change every 2 months. 
The residual is assumed be independently normally distrib-
uted with constant variance σ2. The level-1 model essentially 
models where the trainees started and how much they 
changed over the course of the study.

There are two things to point out about the level-1 model. 
First, this is the simplest form the level-1 model can take for 
time. It can be expanded to include higher order terms as 
needed. Second, the spacing between measurements can be 
different for the individuals; i.e., trainees do not have to be 
measured exactly every two years.

The level-2 model takes the following form:

	 p b b0 00 01 0i i ims r= + + 	 (30.2)

	 p b b1 10 11 1i i ims r= + + . 	 (30.3)

Notice that now the intercept (π0i) and slope (π1i) from level-1 
are each modeled through regression. The model can now be 
described in terms of fixed (βs) and random effects (r0i and 
r1i). The first set of fixed effects are the average AMS for the 
standard simulation (β00) and the average distance difference 
for the modified simulation (β01) at start. The second set of 
fixed effects are the average 2-month distance slope for the 
standard simulation (β10) and the slope difference for the 
modified simulation (β11).

The random effects are captured with r0i and r1i, which are 
assumed to be normally distributed with variances τ00 and τ11, 
respectively. Here, τ00 captures the variability in π0i (i.e., how 
much the trainees vary in AMS at start), and τ11 captures the 
variability in π1i (i.e., how much the trainees vary in their 
change). An additional component not explicitly shown in 
the models above is the covariance τ01 between the intercept 
(r0i) and slope (r1i) random effects. Now the relationship 
between where trainees start and how much they change can 
be estimated.

The fixed effects are presented in Table 30.2. First, there 
is no significant AMS difference between the modified simu-
lation and standard simulation  at start (p-value  =  .088). 
Second, AMS for the standard simulation significantly 
increases over the time of the study (p-value < .001). 

Table 30.1  ANOVA table for Airway Management Skills (AMS)

Source SS df MS F p-value
Between
Method (M) 140.465 1 140.465 9.292 .005
Error 377.915 25 15.117
Within
Time (T) 209.437 3 69.812 35.347 <.001
M × T
Error

13.993
148.128

3
75

4.664
1.975

2.362 .078

Table 30.2  Fixed effects of random-coefficient regression model

Fixed effects Estimate SE t-test p-value
AMS at start
Avg. ss AMS (β00) 21.21 0.61 34.77 <.001
Avg. ms AMS difference (β01) 1.41 0.79 1.78 .088
Slope for 2-Month AMS change
Avg. ss AMS slope (β10) 0.48 0.10 4.80 <.001
Avg. ms AMS slope difference (β11) 0.30 0.13 2.31 .026
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However, AMS for the modified simulation method signifi-
cantly increases at a faster rate than the standard simulation 
(p-value = .026).

The random effects are presented in Table 30.3. First, the 
level-1 residual variance is significant, indicating that there 
is unexplained variance in the model. Perhaps adding a qua-
dratic term that can model time curvilinearly at level-1 can 
help explain more variance and improve the fit of the model. 
Second, the intercept variance is significant, indicating that 
trainee AMS varies at start. Third, slope variance is not sig-
nificant suggesting that trainees do not vary in their rate of 
AMS change. Lastly, the intercept-slope covariance is not 
significant, so there is no relationship between AMS at start 
and its rate of change.

In summary, the modified simulation  method is more 
effective than the standard simulation  at improving 
AMS.  Specifically, trainee AMS improves under both the 
modified simulation and standard simulation over time, but 
improves at a faster rate under the modified simulation. In 
addition, trainee AMS is similar at the start of the study for 
both methods, and trainee AMS improved over time regard-
less of their AMS at the start of the study. For HLM exam-
ples see Gadde et al. [4] and Elobeid et al. [5].

�Generalizability Theory

Another form of the LMM is generalizability (G) theory [6]. 
However, the question(s) addressed here pertain to the con-
sistency of measurement, and hypothesis testing is of little to 
no interest. Measurement is an important process in any of 
the sciences as it is the foundation by which data are gener-
ated. This is as true for establishing the efficacy of a medical 
intervention as it is for simulation-based training. 
Measurement is a discipline itself, but all the ideas fall into 
one of two equally important concepts: validity and reliabil-
ity (see Chap. 26). Here, the focus is on reliability as it relates 
to G theory. However, G theory formulates and extends the 
classical true score model using a LMM. Even so, classical 
test theory (CTT) reliability is discussed first.

The classical true score model from CTT formulates the 
observed score for a measurement as

	 x u= +t 	 (30.4)

where x is the measured data point (observed score), τ is the 
true score, and u is random measurement error. The idea is 

that every time a data point is measured, it has an element of 
truth (τ) plus an element of error (u). The model can be used 
to form the following reliability index
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(30.5)

which is the proportion of true score variance to true score 
variance plus measurement error variance. The ideal situa-
tion is when there is no error (i.e., u = 0) as then the data 
point is equal to truth, and reliability would be perfect (i.e., 
ρ = 1). However, this is extremely rare in behavioral/social 
science research. Depending on the assumptions, the reli-
ability index can take on different forms. If the assumption of 
tau-equivalence (or essentially tau-equivalence) is at least 
satisfied, one form that the reliability index can take is coef-
ficient (or Cronbach’s) alpha [7].

Coefficient alpha is the most common reliability index 
reported for a measurement instrument in many fields, 
including medicine and nursing [8, 9]. Coefficient alpha 
owes its popularity to three key features [7]. First, it is com-
putationally simple, requiring only the number of items in 
the measurement instrument and the corresponding covari-
ance matrix. Second, it can be computed for continuous, 
ordinal, or dichotomous items. Third, it only requires a sin-
gle administration of the corresponding measurement instru-
ment. Coefficient alpha is defined as
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where k is the number of items, å
i

iis  is the sum of all the k 
item variances, and åå

i j
ijs  is the sum of all the item vari-

ances and covariances.
For example, suppose researchers are interested in how well 

a set of 3 emergency medicine simulation scenarios scored by 2 
raters measures knowledge of emergency medicine in junior 
residents. In the study, a sample of 13 junior residents partici-
pate in every scenario scored by every rater. A standard way to 
investigate the reliability of this design is to compute coefficient 
alpha for the scenarios and raters. The following covariance 
matrices are obtained for scenarios and raters, respectively:
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The corresponding coefficient alphas are ˆ 0.86a =C  for sce-
narios, and ˆ 0.76a =C  for raters. The issue here is that sce-
narios and raters interacted with one another as part of one 
design (or measurement process) and the coefficient alpha 
for each ignores this aspect of the design; e.g., coefficient 

Table 30.3  Random effects of random-coefficient regression model

Random effects Estimate SE z-test p-value
Residual variance (σ2)
Intercept variance (τ00)
Slope variance (τ11)
Intercept-slope covariance (τ10)

1.72
2.91
0.02
−.01

0.33
1.14
0.03
0.15

5.21
2.55
0.67
−.07

<.001
.006
.243
.956

30  Advanced Statistical Analyses

https://doi.org/10.1007/978-3-030-26837-4_26


226

alpha for raters ignores the impact of scenario and vice versa. 
This highlights a limitation of the CTT reliability methods: 
they can only assess one form of measurement at a time. 
Therefore, a method that can simultaneously assess multiple 
forms of measurement is required. This is precisely what G 
theory does.

Before moving forward, some G theory terminology must 
be briefly presented. In G theory anything that is used to 
measure is considered a source of measurement error and 
called a facet. The variance associated with the facets and 
anything they interact with is considered error variance. On 
the other hand, what is being measured is called the object of 
measurement, and the associated variance is the universe 
score variance (i.e., G theory’s version of true score vari-
ance). In the current example, scenarios (s; ns = 3) and raters 
(r; nr = 2) are facets, and junior residents (p; np = 13) are the 
objects of measurement. Lastly, G theory breaks the entire 
analysis into two pieces: a generalizability (G) and decision 
(D) study. In the G study, researcher(s) obtain estimates of all 
the relevant variance for the measurement process. The D 
study is where researcher(s) obtain reliability estimates for 
the measurement process.

In a G study, the variability in the measurement process is 
captured by reformulating the classical true score model as a 
LMM with each facet and objects of measurement as terms 
in the model. As such, G theory has the same modeling flex-
ibility as a LMM in that it can have any combination of fixed 
and random effects. Continuing with the current example, 
every junior resident participated in every scenario scored by 
every rater. In G theory, this constitutes a completely crossed 
design (p × s × r) that can be captured with the following 
model

	 x p s r ps pr sr u= + + + + + + +m 	 (30.7)

where x is the observed score, μ the grand mean, p are the 
junior residents, s are the scenarios, r are the raters, and u is 
the error (residual). Although this is a LMM with all random 
effects, the main interest in G theory is the variability via the 
variance component (VC) associated with each of the terms 
(or sources) and their corresponding interactions (e.g., p × s). 
The variance sources can be presented through an ANOVA 
table.

Table 30.4 is the ANOVA table for the knowledge of 
emergency medicine example. There are a few important dif-
ferences to note from traditional ANOVA. First, there are no 
F-tests and accompanying p-values because these are not of 
interest in G theory. Second, what is considered the sample 
size in traditional ANOVA methodology is now an important 
source in the model (p) as it captures true differences in 
knowledge, skill, etc. (i.e., true score variance). Third, there 
is no variance for the highest order interaction (p × s × r) 
because there are no df to estimate it. This is because the 
sample size (i.e., p) is now a term in the model (see previous 

second point). Thus, the variance for the highest order inter-
action and error are confounded and cannot be disentangled, 
and together they are referred to as the residual.

The ANOVA table is the G study and first piece of a G 
theory analysis. The last column in Table 30.4 contains the 
relative percentage of each VC.  As such, the largest VC 
(0.36) is for junior residents (p) indicating that the most vari-
ance is universe score variance (i.e., true score variance). In 
terms of error, the second largest VCs are for raters (r) and its 
interaction with junior residents (p × r). This indicates that 
raters are not as consistent as scenarios and are vary in their 
scoring of junior residents; i.e., the raters are scoring the 
junior residents differently. However, the largest error VC is 
for the residual (0.25), suggesting that something not 
accounted for by the G study design is impacting the 
measurement process. Once the VCs are estimated, they can 
then be used to estimate G theory reliability analogs [6].

In a D study, G theory offers two reliability analogs. The 
first index is the generalizability coefficient defined as
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where st
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The second is the index of dependability defined as
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where sD
2  is the absolute error variance defined as
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Continuing with the current example using the estimated 
VCs, then 2 .16ˆ 0ds =  and 2 .23ˆ 0sD = . Using these quantities 
with 2 2ˆ ˆ 0.38ts s= =p , then 2 7ˆ 0. 0r =E  and ˆ 0.62F = .

Table 30.4  ANOVA table for two-facet p × s × r design

Source SS df MS VC ( )2ŝ
% of total 
variance

Junior residents (p)
Scenario (s)
Rater (r)
p × s
p × r
s × r
Residual (u)

38.82
1.56
5.65

11.10
9.18
0.54
6.13

12
2
1
24
12
2
24

3.24
0.78
5.65
0.46
0.77
0.27
0.26

0.38
0.01
0.13
0.10
0.17
0.00
0.26

0.36
0.01
0.12
0.10
0.16
0.00
0.25

Note. All facets are random, u = (p × s × r) + error
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In the behavioral/social sciences, a typical criterion for 
adequate reliability is .70 or higher [10]. Because the current 
measurement process with 3 items and 2 raters is at or below 
.70, its reliability is questionable. While there does not appear 
to be such a criterion for G theory reliability indices, the .70 
criterion does give a good benchmark from which to start. Of 
course, the criterion is contingent on the discipline and pur-
pose of the measurement process. Even though both G theory 
reliability indices were demonstrated, each has a specific use 
when making decisions about the objects of measurement [6]. 
The generalizability coefficient is only appropriate when 
making relative decisions, and the index of dependability 
when making absolute decisions. Relative decisions are based 
on comparing the objects of measurement to one another; i.e., 
how a person compares with other people. Absolute decisions 
are based on comparing objects of measurement to the pre-
established criterion for what is being measured; i.e., does a 
person meet a certain skill level. For G theory examples see 
McBride et al. [11] and Nadkarni et al. [12].

�Equivalence Testing

The last method discussed is equivalence testing which orig-
inated in pharmacokinetics for establishing practical similar-
ity (bioequivalence) between groups [13]. A typical situation 
in pharmacokinetics is a pharmaceutical company wanting to 
determine if a generic drug is as effective as the current drug. 
As such, establishing statistical equivalence is growing in 
popularity across the sciences outside of pharmacokinetics 
in a variety of settings.

Equivalence testing is the simplest form the LMM can 
take but is probably the most difficult to grasp. This is 
because the same model and corresponding results are used 
to test seemingly opposing hypotheses than traditionally 
done in null significance hypothesis testing (NSHT). NSHT 
and equivalence testing are flip sides of the same coin. Each 
method sets up two opposing hypotheses: the null (H0) and 
alternative (HA) hypothesis. Both methods assume H0 to be 
true unless data provide sufficient evidence to reject it. The 
difference between the methods lies in how these hypotheses 
are stated. Consider the situation involving two means. In a 
typical NSHT scenario, H0 states that the mean difference is 
equal to zero and HA that the mean difference is not equal to 
zero. On the other hand, equivalence testing states H0 as the 
mean difference surpassing or being equal to Δ and HA as the 
mean difference being within Δ, where Δ is a content spe-
cific value chosen by the researcher(s) using literature, prior 
knowledge, or expertise.

To illustrate, consider a study in which medical students 
are trained in patient-centered communication through an 
online interactive tool. The students (T) and professionals in 

the field (C) are then asked to view a 6-min video of a clini-
cal scenario and assess the care providers’ communication 
behavior. The following assessment estimates are obtained: 
nT = 30, ˆ 25.7m =T , ˆ 1.8s =T ; nC = 32, ˆ 24.6m =C , ˆ 2.1s =C

. The standard way to compare the means from the two con-
ditions is an independent-samples t-test which is the simplest 
form of the LMM with only one fixed effect. In traditional 
NSHT, the idea is to test for a difference between the two 
conditions. Here, the corresponding hypotheses can take on 
the following forms
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(30.12)

The hypotheses above set up a two-sided test with df = 60 
that gives a critical value of tcrit =  ± 2.00 using α = .05. The 
corresponding independent-samples t-test is t = 2.21.

A two-sided test provides two options for proceeding 
with hypothesis testing. The first option uses the following 
criteria: if a test statistic surpasses the critical value, reject 
H0. For the current example, H0 can be rejected because 
t = 2.21 > tcrit = 2. The second option considers the following 
criteria: if zero is not within the confidence interval (CI), 
reject H0. For the current example, the 95% CI is 
[0.103,   2.097], and H0 can be rejected because zero is not 
within the CI. In either case, it can be concluded that students 
gave more favorable assessments than the professionals.

By contrast, suppose the researcher wants to test for 
equivalence between students and professionals. In addition, 
based on prior assessment studies, the researcher specifies an 
assessment difference of Δ = 2.5 as not meaningful. This is a 
situation for equivalence testing via two-one-sided t-tests 
(TOST) [14, 15]. Here, the corresponding hypotheses take 
on the following forms
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(30.13)

TOST sets up two composite hypotheses based on H0. The 
lower H0 takes the following form

	 0 ˆ ˆ: m m- £ -DL T CH 	 (30.14)

with corresponding independent-samples t-test tL = 7.22. The 
upper H0 takes the following form

	 0 ˆ ˆ: m m- ³ DU T CH 	 (30.15)

with corresponding independent-samples t-test tU =  − 2.81. 
These are two one-sided t-tests that are corrected for Type I 
error by dividing α by the number of tests (i.e., Bonferroni 
procedure). With df = 60, the critical values are tcrit =  ± 2.00 
using α/2 = .05/2 = .025.

The TOST procedure also provides two options for pro-
ceeding with hypothesis testing. The first option considers 
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the following criteria: if the lower test statistic (tL) is 
greater than a positive critical value and the upper test sta-
tistic (tU) is less than a negative critical value, reject H0. 
For the current example, H0 can be rejected because 
tL = 7.22 > tcrit = 2 and tU =  − 2.81 < tcrit =  − 2. The second 
option considers the following criteria: if the CI is within 
±Δ, reject H0. For the current example, the 95% CI is 
[0.103,   2.097], and H0 can be rejected because the CI is 
within ±2.5. In either case, the assessment of the students 
is practically equivalent to the professionals. The idea 
behind equivalence testing can be succinctly presented in a 
graph. Figure  30.1 presents the 95% CI along with the 
equivalence bounds (±Δ) where it is clear that the CI is 
within the equivalence bounds. For an equivalence testing 
example see Anderson-Montoya et al. [16].

�Conclusion

HLM, G theory, and equivalence testing were briefly pre-
sented. However, this brief presentation does not do any 
of these methods justice and the reader is referred to the 
corresponding references for further details. Additionally, 
the methods were presented in the context of a LMM to 
show that, even though these methods answer different 
questions, they share a general statistical framework. As 
such, any of the standard statistical packages (e.g., SAS, 

SPSS, R, etc.) through their LMM routines can run any of 
the models. However, the packages only compute the G 
theory VCs but not the corresponding reliability indices. 
The VCs can be used to hand-compute or use software 
(e.g., MS Excel) to get the required reliability estimates 
(Eρ2,   Φ). To get all the G theory estimates, then GENOVA 
[6] or EduG [17] can be used. For equivalence testing, a 
simple t-test routine from the packages can be used.

In conclusion, three statistical methods commonly used in 
medical research were presented. Each method answers dif-
ferent research questions and hence have different applica-
tions. Therefore, each method was presented through an 
application. In each application, the advantage of the method 
is demonstrated by contrasting it with the traditional method 
of analysis. Through this process it was made clear that HLM 
and G theory offer more flexibility and provide a richer anal-
ysis than traditional ANOVA and coefficient alpha, respec-
tively. By contrast, equivalence testing is not necessarily 
richer than a NSHT, but it does demonstrate how the same 
results can be used to answer seemingly opposing hypothe-
ses. Although the hypotheses are opposing, both have their 
place in research. It is hoped the presentation here has 
sparked the curiosity of healthcare simulation researchers 
and given ideas as to how to adapt the methods in their 
research.
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