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Abstract. To enhance the user’s privacy in electronic ID, anonymous
credential systems have been researched. In the anonymous credential
system, a trusted issuing organization first issues a certificate certify-
ing the user’s attributes to a user. Then, in addition to the possession
of the certificate, the user can anonymously prove only the necessary
attributes. Previously, an anonymous credential system was proposed,
where CNF (Conjunctive Normal Form) formulas on attributes can be
proved. The advantage is that the attribute proof in the authentication
has the constant size for the number of attributes that the user owns and
the size of the proved formula. Thus, various expressive logical relations
on attributes can be efficiently verified. However, the previous system
has a limitation: the proved CNF formulas cannot include any negation.
Therefore, in this paper, we propose an anonymous credential system
with constant-size attribute proofs such that the user can prove CNF
formulas with negations. For the proposed system, we extend the previ-
ous accumulator for the limited CNF formulas to verify CNF formulas
with negations.

Keywords: Anonymous credentials · Accumulator · Pairing ·
Attributes

1 Introduction

1.1 Backgrounds

Electronic identity (eID) such as eID card is often used for physical user authen-
tication for entering buildings, use of facilities and so on, and furthermore it can
be used for network-based user authentication in Web services. In eID, in addi-
tion to the user’s ID, the user’s attributes such as gender, occupation, and birth
date are authorized, and thus the attribute-based authentication using the eID
can be performed. However, one of serious problem in the existing eID system
is the user’s privacy: Since the eID may reveal the user’s unique ID, the verifier
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can collect the user’s history. As the solution, the anonymous credential system
was proposed [9].

In the anonymous credential system, an issuer issues each user a certificate.
The certificate is a proof of membership, qualification, or privilege, and ensures
the user’s own attributes. The user with the certificate can anonymously convince
a service provider (SP) of the possession of the certificate. Additionally, the user
can prove the possession of attributes, and furthermore a logical relation on
the attributes. By the AND relation, the user can prove the possession of all
attributes in the relation. By the OR relation, the user can prove the possession
of one attribute from the attributes in the relation. As the advantage of the
anonymous credential system with attribute proofs, it does not leak any other
information beyond the satisfaction of the proved relation.

1.2 Previous Works

In [7,11,14], anonymous credential systems with attribute proofs have been pro-
posed, where the proof size is constant for the number of user’s attributes and
the size of proved logical relation. However, available relations are only AND
or OR relations on attributes. In [12], an anonymous credential system with
attribute proofs of constant size has been proposed, where inner product rela-
tions on attributes can be proved. This means that CNF (Conjunctive Normal
Form) and DNF (Disjunctive Normal Form) formulas are available by using
polynomial-based encoding. However, this system has a problem of the com-
putational cost: The proof generation requires the exponentiations depending
on the number of OR literals in the proved formula. Thus, when the formula
contains lots of OR literals, it requires large time on users’ devices such as eID
cards.

In the backgrounds, in [4], an efficient anonymous credential system with
constant-size attribute proofs was proposed, where the user can prove CNF for-
mulas on attributes. In this system, by newly constructing an efficient accumu-
lator to verify CNF formulas and applying it to the system, the proof generation
requires only the multiplications depending on the number of OR literals in the
proved formula, and thus it is more efficient than [12]. However, this system has
the problem that a user cannot directly prove any CNF relation with negations.

1.3 Our Contributions

In this paper, we construct an accumulator to verify CNF formulas with nega-
tions, and we apply it to the previous system [4] with the constant-size attribute
proofs. In the proposed system, a user can prove any CNF formula with nega-
tions, where the proof generation cost is similar to the previous, i.e., the proof
generation needs only multiplications depending on the number of OR literals.

In the previous accumulator [4] for the limited CNF formula without nega-
tions, the set relation U ∩V� �= ∅ can be verified for the user’s attribute set U and
the attribute set V� in the �-th OR clause in the CNF formula, which implies that
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the user owns some attribute in each OR clause. In this paper, we consider non-
limited CNF formulas of

∧
i

∨
j ăij , where ăij is a literal that is a non-negated

attribute aij (the user owns the attribute) or a negated attribute aij (the user
does not own the attribute). Any logical formula can be transformed to a CNF
formula. In the proposed accumulator, in addition to U ∩ V +

� �= ∅ for the non-
negated attribute set V +

� in the �-th OR clause, the relation U ∩ V −
� �= V −

� can
be verified for the negated attribute set V −

� in the �-th OR clause. These means
that the user owns some non-negated attribute or does not own some negated
attribute, which implies the satisfaction of the CNF formula with negations.

1.4 Related Works

In [13], as the extension of [4], an anonymous credential system with the constant-
size attribute proofs was proposed. The advantage is that a user can prove any
monotone formula on attributes. However, in the system, negations are not avail-
able. Our idea is to support negations based on the previous accumulator [4] for
the limited CNF formulas, and it does not work well in the accumulator of [13]
for monotone formulas.

2 Preliminaries

2.1 Bilinear Maps

In this paper, we use the following bilinear groups with a bilinear map.

1. G1,G2, T are cyclic groups of prime order p.
2. g1, g2 are randomly chosen generators of G1,G2, respectively.
3. e : G1 × G2 → T is an efficiently calculated bilinear map satisfying

(a) Bilinearity: for all u ∈ G1, v ∈ G2, a, b ∈ Z, e(ua, vb) = e(u, v)ab.
(b) Non-degeneracy: e(g1, g2) �= 1T (1T is the identity element of group

T ).

The bilinear map e can be efficiently implemented with a pairing. There are two
types of bilinear pairings, symmetric (G1 = G2) and asymmetric (G1 �= G2). In
the following descriptions, for simplicity, we adopt the symmetric one, i.e., e is
defined as G × G → T .

2.2 Assumptions

As in the previous system [4], the security of our system is based on the
DLIN (Decision Linear) assumption, the q-SFP (Simultaneous Flexible Pair-
ing) assumption, and n-DHE (DH Exponent) assumption. Hereafter, we use the
notation a ∈R A as sampling a from the set A according to the uniform distri-
bution.
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Definition 1 (DLIN assumption). For all PPT algorithm A,

|Pr[A(g, ga, gb, gac, gbd, gc+d) = 1] − Pr[A(g, ga, gb, gac, gbd, gz) = 1]|
is negligible, where g ∈R G and a, b, c, d, z ∈R Zp.

Definition 2 (q-SFP assumption). For all PPT algorithm A, the probability

Pr[A(gz, hz, gr, hr, a, ã, b, b̃, {(zj , rj , sj , tj , uj , vj , wj)}q
j=1)

= (z∗, r∗, s∗, t∗, u∗, v∗, w∗) ∈ G7

∧e(a, ã) = e(gz, z
∗)e(gr, r

∗)e(s∗, t∗)
∧e(b, b̃) = e(hz, z

∗)e(hr, u
∗)e(v∗, w∗)

∧z∗ �= 1G ∧ z∗ �= zj for all 1 ≤ j ≤ q]

is negligible, where (gz, hz, gr, hr, a, ã, b, b̃) ∈ G8 and all tuples {(zj , rj , sj , tj , uj ,
vj , wj)}q

j=1 satisfy

e(a, ã) = e(gz, zj)e(gr, rj)e(sj , tj) ∧ e(b, b̃) = e(hz, zj)e(hr, uj)e(vj , wj),

and 1G is the identity element of group G.
Definition 3 (n-DHE assumption). For all PPT algorithm A, the probability

Pr[A(g, ga, . . . , gan

, gan+2
, . . . , ga2n

) = gan+1
]

is negligible, where g ∈R G and a ∈R Zp.

2.3 AHO (Abe-Haralambiev-Ohkubo) Signatures

As in the previous system [4], we adopt AHO signatures [2] as the structure-
preserving signatures, where multiple messages can be signed, and the verifi-
cation using pairings can be proved by the following GS proofs. In this paper,
we use it for a single message. As proved in [2], this signature is existentially
unforgeable against the chosen message attacks under the q-SFP assumption.

AHOKeyGen: Select bilinear groups G, T with a prime order p and bilinear
map e. Select g,Gr,Hr ∈R G, and μz, νz, μ, ν, αa, αb ∈R Zp. Compute Gz =
Gμz

r ,Hz = Hνz
r , G = Gμ

r ,H = Hν
r , A = e(Gr, g

αa), B = e(Hr, g
αb). Output

the public key as pk = (G, T , p, e, g,Gr,Hr, Gz,Hz, G,H,A,B) and the secret
key as sk = (αa, αb, μz, νz, μ, ν).

AHOSign: The message M given as element of G is signed with the secret key
sk. Choose β, ε, η, ι, κ ∈R Zp, and compute θ1 = gβ and

θ2 = gε−μzβM−μ, θ3 = Gη
r , θ4 = g(αa−ε)/η,

θ5 = gι−νzβM−ν , θ6 = Hκ
r , θ7 = g(αb−ι)/κ.

Output the signature σ = (θ1, . . . , θ7).
AHOVerify: Given the message M and the signature σ = (θ1, . . . , θ7), accept

these if the following equations hold:

A = e(Gz, θ1) · e(Gr, θ2) · e(θ3, θ4) · e(G,M),
B = e(Hz, θ1) · e(Hr, θ5) · e(θ6, θ7) · e(H,M).
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2.4 GS (Groth-Sahai) Proofs

GS proofs [10] are Non-Interactive Witness Indistinguishable (NIWI) proofs
for pairing relations. GS proofs need a CRS (Common Reference String)
(f1,f2,f3) ∈ (G3)3, where f1 = (f1, 1, g),f2 = (1, f2, g) for f1, f2 ∈ G. Two
types of CRS are used. In the soundness setting, set f3 = f1

ξ1 ·f2
ξ2 for ξ1, ξ2 ∈R

Z∗
p . Compute the commitment to element X as C = (1, 1,X) ·f1

r ·f2
s ·f3

t for
r, s, t ∈R Z∗

p . In this case, the commitment C = (fr+ξ1t
1 , fs+ξ2t

2 ,Xgr+s+t(ξ1+ξ2))
is a linear encryption [3]. Therefore, X can be extracted using the secret keys,
logg f1, logg f2. On the other hand, in the Witness Indistinguishable (WI) setting,
f1,f2,f3 are linearly independent, and thus C is perfectly hiding. Under the
DLIN assumption, the two types of CRS are computationally indistinguishable.

In order to prove that committed values satisfy the pairing relation, the
prover prepares the commitments and replaces variables in the relation with the
commitments. By GS proof, we can prove the following pairing product equation.

n∏

i=1

e(Ai, Xi) ·
n∏

i=1

n∏

j=1

e(Xi, Xj)
aij = t

for variables X1, . . . , Xn ∈ G and constants A1, . . . , An ∈ G, aij ∈ Zp, t ∈ T .

2.5 Set Membership Proof

As in the previous system [4], the set membership proof [6] is used to prove that
an element is included in a set of elements, which is constructed from signatures,
as follows. An issuer signs all elements of set A and publishes the signatures. To
prove that an element a is included in set A, a prover proves the knowledge of
a signature on a. Since the issuer does not publish the signatures on elements
that are not included in A, a ∈ A is guaranteed.

3 Accumulator to Verify CNF Formulas with Negations

3.1 Previous Accumulator and Problem

In [8], an efficient pairing-based accumulator using multiplications has been pro-
posed. An accumulator is generated from a set of values, and we can confirm
that a single value is included in the set. In the previous work [4], an extended
accumulator has been proposed, where we can verify that U ∩ V� �= ∅ (1 ≤ � ≤ L)
for sets U and V1, . . . , VL. This verification is applied to the construction of the
previous anonymous credential system [4] to verify CNF formulas on attributes.
Let V1, . . . , VL be subsets of {1, · · · , n}, and V = (V∞, . . . ,VL). Let U be a sub-
set of {1, · · · , n} that satisfies U ∩ V� �= ∅ (1 ≤ � ≤ L). In the attribute proof,
U corresponds to the attribute set of an user. Each V� corresponds to the �-th
OR clause in the proved CNF formula. In the accumulator of [4], we can verify
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that U ∩ V� �= ∅ for 1 ≤ � ≤ L. This implies that some attribute of the user
is included in all OR clauses, and so it can be verified that this user holds the
attributes satisfying the CNF formula.

In the accumulator and the attribute proof using it in [4], we can not directly
prove any CNF formula including a negation. To solve this problem, we can con-
sider the following simple method without negations: Attributes can be divided
into attribute types such as gender, age, and occupation. Then, to prove the
non-possession of attribute a in an attribute type can be performed by proving
the possession of one of other attributes in the type. However, this is undesir-
able for two reasons. One is to assign all attributes of the same type to the CNF
formula as an OR clause, which increases the overhead of the proof. Secondly,
any user must recognize all other attributes, but a user may be not aware of a
newly added attribute to a attribute type. Therefore, we need an accumulator
to directly verify CNF formulas with negations.

3.2 Construction Idea

In this paper, based on the previous accumulator [4], we extend it to verify the
CNF formulas with negations. The accumulator accV of the previous scheme is
computed as accV =

∏
1≤�≤L

(∏
j∈V�

gn+1−j

)c�

for gi = gγi

(γ is secret) and
some integers c�. On the other hand, in the proposed scheme, for a negated
attribute j ∈ V�, g−c�

n+1−j is multiplied, instead of gc�
n+1−j . In the previous one,

the verification is successful if |U ∩V�| ≥ 1 for the attribute set U of the user and
the attribute set V� of the �-th clause of the CNF formula. In the verification,
for some witness W ,

e(
∏

i∈U gi, accV)
e(g,W )

= zδ1c1+...+δLcL , and δ� ≥ 1 for all 1 ≤ � ≤ L

are checked. In the verification, δ� = |U ∩ V�| holds. Thus, when U satisfies the
CNF formula, which means |U ∩ V�| ≥ 1, then the above δ� ≥ 1 holds for all
�. In this previous scheme, c� is |U ∩ V�| times added in the exponent of z for
each � in the left side of the verification equation. In the proposed scheme, each
V� is partitioned to the non-negated attribute set V +

� and the negated attribute
set V −

� . For the attributes of V +
� c� is added as in the previous scheme, but

for the negated attributes of V −
� , c� is subtracted. Then, in the verification, the

coefficient of c� in the exponent of z on the left side is |U ∩ V +
� | − |U ∩ V −

� |
for each �, and by checking δ� ≥ 1 − |V −

� |, we can verify |U ∩ V +
� | ≥ 1 or

|U ∩ V −
� | �= |V −

� |. This means U ∩ V +
� �= ∅ or U ∩ V −

� �= V −
� (for the detail,

see the proof of Theorem 1). Thus, in each OR clause, it means that the user
owns a non-negated attribute or does not own a negated attribute, and thus the
CNF formula is satisfied. In the proposed scheme, since we only modify c� in the
exponent to −c� for each negated attribute, it is expected that the processing
time will remain.
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3.3 Proposed Algorithms

AccSetup: This algorithm outputs public parameters. Set η� as the maximum
value of |V +

� ∪ V −
� | for all 1 ≤ � ≤ L. Let c1 = 1, c� = (η�−1 + 1) · c�−1 (2 ≤

� ≤ L), C = (c1, . . . , cL). Here, it is assumed that (ηL + 1) · cL < p, as in
the previous accumulator [4]. Select bilinear groups G, T with prime order
p and the bilinear map e. Select g ∈R G. Choose γ ∈R Zp. Compute and
output the public parameters (C, p,G, T , e, g, g1 = gγ1

, . . . , gn = gγn

, gn+2 =
gγn+2

, . . . , g2n = gγ2n

, z = e(g, g)γn+1
).

AccGen: This algorithm, given the public parameters and V =
(V +

1 , V −
1 , . . . , V +

L , V −
L ), outputs an accumulator for V. Here, V +

� ⊆ {1, . . . , n}
is the set of non-negated attributes in the �-th OR clause, and V −

� ⊆
{1, . . . , n} is the set of negated attributes. Accumulator accV is calculated
as follows.

accV =
∏

1≤�≤L

⎛

⎝
∏

j∈V +
�

gn+1−j

⎞

⎠

c�
⎛

⎝
∏

j∈V −
�

gn+1−j

⎞

⎠

−c�

AccWitGen: This algorithm, given the public parameters, V, and U ⊆
{1, . . . , n}, outputs the witness W . W is calculated as follows.

W =
∏

i∈U

∏

1≤�≤L

⎛

⎝
j �=i∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�
⎛

⎝
j �=i∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

Furthermore, δ� = |U ∩ V +
� | − |U ∩ V −

� | for all 1 ≤ � ≤ L are calculated and
outputted as auxiliary parameters.

AccVerify: This algorithm, given the public parameters, V, accV , U,W,
{δ�}1≤�≤L, verifies U ∩ V +

� �= ∅ or U ∩ V −
� �= V −

� for all 1 ≤ � ≤ L. Set
u = δ1c1 + . . . + δLcL. Accept if the following relations hold.

e(
∏

i∈U gi, accV)
e(g,W )

= zu, and 1 ≤ δ� + |V −
� | ≤ η� for all 1 ≤ � ≤ L.

In this case, since 1−|V −
� | ≤ δ�, this verification means the check of 1−|V −

� | ≤
|U ∩ V +

� | − |U ∩ V −
� |, which implies |U ∩ V +

� | − |U ∩ V −
� | �= −|V −

� |, and thus
U ∩ V +

� �= ∅ or U ∩ V −
� �= V −

� .

3.4 Security

At first, we show the correctness of the proposed accumulator.

Theorem 1. Suppose that all parameters of AccSetup, AccGen, and Acc
WitGen are calculated correctly. Then, AccVerify accepts V, accV , U, W,

{δ�}1≤�≤L that those algorithms output, if U ∩ V +
� �= ∅ or U ∩ V −

� �= V −
� for

all 1 ≤ � ≤ L.
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Proof. Assume all parameters of AccSetup, AccGen, and AccWitGen are
calculated correctly. Then, the left hand of the verification equation in AccVer-
ify is transformed as follows.

e(
∏

i∈U gi, accV)
e(g,W )

=

e(
∏

i∈U

gi,
∏

1≤�≤L

⎛

⎝
∏

j∈V +
�

gn+1−j

⎞

⎠

c�
⎛

⎝
∏

j∈V −
�

gn+1−j

⎞

⎠

−c�

)

e(g,
∏

i∈U

∏

1≤�≤L

⎛

⎝
j �=i∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�
⎛

⎝
j �=i∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

)

=

e(g,
∏

i∈U

∏

1≤�≤L

⎛

⎝
∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�
⎛

⎝
∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

)

e(g,
∏

i∈U

∏

1≤�≤L

⎛

⎝
j �=i∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�
⎛

⎝
j �=i∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

)

= e(g,
∏

i∈U

∏

1≤�≤L

⎛

⎝
j=i∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�
⎛

⎝
j=i∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

)

Set δ� = |U ∩ V +
� | − |U ∩ V −

� | for all 1 ≤ � ≤ L, and u = δ1c1 + . . . + δLcL.
Then, the above expression is equal to the right side of the verification equation
as follows.

e

⎛

⎝g,
∏

1≤�≤L

gδ�c�
n+1

⎞

⎠ = e(g, gn+1)u = zu

Here, for |U ∩ V +
� |, the possible range is 0 ≤ |U ∩ V +

� | ≤ |V +
� |, and for

|U ∩ V −
� |, it is 0 ≤ |U ∩ V −

� | ≤ |V −
� |, and thus

−|V −
� | ≤ |U ∩ V +

� | − |U ∩ V −
� | ≤ |V +

� |.

On the other hand, we have U ∩ V +
� �= ∅ or U ∩ V −

� �= V −
� for all 1 ≤ � ≤ L

as the condition in this theorem. In case that the condition of the theorem
does not hold, for some �, |U ∩ V +

� | = 0 and |U ∩ V −
� | = |V −

� |, which means
|U ∩ V +

� | − |U ∩ V −
� | = −|V −

� |. Therefore, in case that the condition in this
theorem holds, we obtain

1 − |V −
� | ≤ |U ∩ V +

� | − |U ∩ V −
� | ≤ |V +

� |,

for all 1 ≤ � ≤ L. From δ� = |U ∩ V +
� |−|U ∩ V −

� |, we have 1−|V −
� | ≤ δ� ≤ |V +

� |,
and thus

1 ≤ δ� + |V −
� | ≤ |V +

� | + |V −
� | ≤ η�,
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for all 1 ≤ � ≤ L. Therefore, AccVerify accepts these parameters. �
Furthermore, as in the journal version [5] of the previous work [4], using

the following lemma (the proof is in [5]), we show the security of the proposed
accumulator in Theorem 2.

Lemma 1. For any �̃ s.t. 2 ≤ �̃ ≤ L, it holds c�̃ >
∑

1≤�≤�̃−1 η� · c�.

Theorem 2. Under n-DHE assumption, given the public parameters, any
adversary cannot output U,V = {V +

� , V −
� }1≤�≤L,W, {δ�}1≤�≤L which satisfy the

following with a non-negligible probability.

– For accV correctly computed from V, AccVerify accepts
V, accV , U,W, {δ�}1≤�≤L.

– There exists some � s.t. U ∩ V +
� = ∅ and U ∩ V −

� = V −
� .

Proof. Assume an adversary that outputs U,V = {V +
� , V −

� }1≤�≤L,W, {δ�}1≤�≤L

s.t. AccVerify accepts them and U ∩ V +
� = ∅ and U ∩ V −

� = V −
� for some �

with a non-negligible probability. Since AccVerify accepts them, we have

e(
∏

i∈U gi, accV)
e(g,W )

= zu = e(g, gn+1)u,

for u = δ1c1 + . . . + δLcL. From the correctly computed

accV =
∏

1≤�≤L

⎛

⎝
∏

j∈V +
�

gn+1−j

⎞

⎠

c�
⎛

⎝
∏

j∈V −
�

gn+1−j

⎞

⎠

−c�

,

we have

e(
∏

i∈U gi,
∏

1≤�≤L

(∏
j∈V +

�
gn+1−j

)c�
(∏

j∈V −
�

gn+1−j

)−c�

)

e(g,W )
= e(g, gn+1)u

e(g,
∏

i∈U

∏

1≤�≤L

⎛

⎝
∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�
⎛

⎝
∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

) = e(g,Wgn+1
u)

Thus, we obtain the followings.

∏

i∈U

∏

1≤�≤L

⎛

⎝
∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�
⎛

⎝
∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

= Wgn+1
u

∏

1≤�≤L

∏

i∈U

⎛

⎝
j �=i∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�

·
∏

1≤�≤L

gn+1
|U∩V +

� |c�

·
∏

1≤�≤L

∏

i∈U

⎛

⎝
j �=i∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

·
∏

1≤�≤L

gn+1
−|U∩V −

� |c�

= Wgn+1
u



98 R. Okishima and T. Nakanishi

By setting λ� = |U ∩ V +
� | − |U ∩ V −

� | + |V −
� |,

∏

1≤�≤L

∏

i∈U

⎛

⎝
j �=i∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�

·
∏

1≤�≤L

∏

i∈U

⎛

⎝
j �=i∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

= Wgn+1
u−

∑
1≤�≤L(λ�−|V −

� |)c� (1)

Define Δ = u −
∑

1≤�≤L(λ� − |V −
� |)c�. Then, we have

Δ =
∑

1≤�≤L

δ�c� −
∑

1≤�≤L

(λ� − |V −
� |)c�

=
∑

1≤�≤L

(δ� − λ� + |V −
� |)c�.

Here, divide {1, . . . , L} into L>, L<, and L=, where L> consists of � s.t. δ� −
λ� + |V −

� | > 0, L< consists of � s.t. δ� − λ� + |V −
� | < 0, and L= consists of � s.t.

δ� − λ� + |V −
� | = 0.

Using L>, L<, and L=, the following equation can be obtained.

Δ =
∑

�∈L>

(δ� − λ� + |V −
� |)c� +

∑

�∈L<

(δ� − λ� + |V −
� |)c�

Let �̃ be the maximum value of � s.t. � /∈ L= (i.e., �̃ ∈ L> or �̃ ∈ L<). From
AccVerify = 1, it holds δ�+|V −

� | ≥ 1 for all �. On the other hand, since for some
�, U ∩V +

� = ∅ and U ∩V −
� = V −

� , we have λ� = |U ∩V +
� | − |U ∩V −

� |+ |V −
� | = 0

for the �. This implies that δ� −λ� + |V −
� | �= 0 for the �. Therefore, � /∈ L= exists.

Next, we will prove Δ �= 0 (mod p) for two cases (i) and (ii).

(i) Case of �̃ ∈ L< (δ�̃ − λ�̃ + |V −
�̃

| < 0):
In this case, (δ�̃ − λ�̃ + |V −

�̃
|)c�̃ ≤ −c�̃, which implies

Δ ≤ −c�̃ +
∑

�∈L>

(δ� − λ� + |V −
� |)c� +

∑

�∈L<,� �=�̃

(δ� − λ� + |V −
� |)c�.

For � ∈ L>, since λ� ≥ 0 and δ� + |V −
� | ≤ η�, we have δ� − λ� + |V −

� | ≤ η�.
For � ∈ L<, we have δ� − λ� + |V −

� | < 0. Therefore,

Δ < −c�̃ +
∑

�∈L>

η�c�.

From Lemma 1, we obtain Δ < 0 due to c�̃ >
∑

�∈(L>∪L<) η�c�.
On the other hand, from δ�+|V −

� | > 0 and λ� = |U ∩V +
� |−|U ∩V −

� |+|V −
� | ≤

|V +
� ∪ V −

� | ≤ η�,

Δ =
∑

1≤�≤L

(δ� + |V −
� |)c� −

∑

1≤�≤L

λ�c� > −
∑

1≤�≤L

η�c�
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From Lemma 1, we obtain
∑

1≤�≤L−1 η�c� < cL, and thus
∑

1≤�≤L

η�c� < cL + ηLcL = (ηL + 1)cL < p.

This is why Δ > −p. Therefore, in this case, Δ �= 0 (mod p).
(ii) Case of �̃ ∈ L> (δ�̃ − λ�̃ + |V −

�̃
| > 0):

In this case, (δ�̃ − λ�̃ + |V −
� |)c�̃ ≥ c�̃, which means

Δ ≥ c�̃ +
∑

�∈L>,� �=�̃

(δ� − λ� + |V −
� |)c� +

∑

�∈L<

(δ� − λ� + |V −
� |)c�

From δ� − λ� + |V −
� | > 0 for any � ∈ L>, we have

Δ > c�̃ +
∑

�∈L<

(δ� − λ� + |V −
� |)c�.

Here, from λ� ≤ η� and δ� + |V −
� | ≥ 0, we have λ� − δ� − |V −

� | ≤ η�. Thus,
from �̃ > � for any � ∈ L< and Lemma 1, we obtain

c�̃ >
∑

�∈L<

η�c� ≥
∑

�∈L<

(λ� − δ� − |V −
� |)c�

Therefore,
c�̃ +

∑

�∈L<

(δ� − λ� + |V −
� |)c� > 0.

Namely, we can get Δ > 0.
On the other hand, from λ� ≥ 0, δ� + |V −

� | ≤ η�, and Lemma 1,

Δ =
∑

1≤�≤L

(δ� + |V −
� |)c� −

∑

1≤�≤L

λ�c�

≤
∑

1≤�≤L

(δ� + |V −
� |)c� ≤

∑

1≤�≤L

η�c� =
∑

1≤�≤L−1

η�c� + ηLcL ≤ cL + ηLcL.

Thus, Δ ≤ (ηL + 1)cL < p. Therefore, it also holds Δ �= 0 (mod p) in this
case.

Therefore, since Δ �= 0 (mod p) in both cases, from Eq. (1), we obtain

gn+1 =

⎛

⎝W−1 ·
∏

1≤�≤L

∏

i∈U

⎛

⎝
j �=i∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�

·
∏

1≤�≤L

∏

i∈U

⎛

⎝
j �=i∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�
⎞

⎠

1/Δ

.

For any i ∈ U , any j ∈ V +
� and j ∈ V −

� s.t. j �= i, it holds gn+1−j+i �=
gn+1. Therefore, we can calculate gn+1, given g1, . . . , gn, gn+2, . . . , g2n, which
contradicts the n-DHE assumption. �
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4 Syntax and Security Model of Anonymous Credential
System

We adopt the syntax and security model of anonymous credential system with
attribute proofs in the previous work [4]. It is the non-interactive anonymous
credential system, where the user creates the attribute proof from his own cer-
tificate issued from an issuer, and the verifier can confirm the proof by himself.
Since this concept is similar to the group signature scheme, the security model
is derived from the group signature scheme, but concentrates on the security
of attribute proofs. This is why the model considers the following two security
requirements: misauthentication resistance and the anonymity.

4.1 Syntax

As in [4], each attribute values is indexed by an integer from {1, . . . , n} where
n is the total number of attribute values. Use the indexes to describe a CNF
formula Ψ (including negations) on attribute, as follows.

(ă11 ∨ ă12 ∨ . . . ) ∧ (ă21 ∨ ă22 ∨ . . . ) ∧ · · · ,

where each literal ăij is (non-negated) attribute index aij ∈ {1, . . . , n} or its
negation ¬aij . The literal aij means that the user owns the attribute of the index,
and the literal ¬aij means that the user does not own the attribute of the index.
Let V +

� be the set of non-negated attribute indexes in the �-th clause in CNF
formula Ψ (i.e, V +

� = {a�j |ă�j = a�j}). Let V −
� be the set of negated attribute

indexes in the �-th clause in CNF formula Ψ (i.e, V −
� = {a�j |ă�j = ¬a�j}).

Let U be a set of attribute indexes that the proving user owns. We assume
that the upper bound of each clause size, i.e., |V +

� ∪ V −
� |, is η� for all 1 ≤ � ≤ L.

Also, we assume that the maximum number of clauses of CNF formulas is L.
Then, the satisfaction of the CNF formula Ψ with (V +

1 , V −
1 , . . . , V +

� , V −
� ) by

U is shown by U ∩ V +
� �= ∅ or U ∩ V −

� �= V −
� for all 1 ≤ � ≤ L.

The anonymous credential system consists of the following algorithms and pro-
tocol.

IssuerKeyGen: This algorithm, given n,L, {η�}1≤�≤L, outputs the issuer’s pub-
lic key ipk and the issuer’s secret key isk.

CertObtain: This is an interactive protocol between algorithm CertObtain-
Uk of the k-th user and algorithm CertObtain-I of the issuer, where the
issuer issues a certificate certifying the attributes to the user. CertObtain-
Uk’s inputs are ipk and Uk ⊂ {1, . . . , n} which are the user’s attribute indexes,
and its output is certificate certk that guarantees the attributes of the user.
On the other hand, CertObtain-I is given ipk, isk and Uk as inputs.

ProofGen: This algorithm for the k-th user, given ipk, Uk, certk, Ψ that is a
proved CNF formula on attributes, outputs the attribute proof σ.

Verify: This algorithm for verification, given ipk, proof σ generated on Uk of
the k-th user, and the proved CNF formula Ψ , outputs ‘valid’ if the attributes
Uk satisfy Ψ (i.e., Uk ∩ V +

� �= ∅ or Uk ∩ V −
� �= V −

� for all 1 ≤ � ≤ L), and
otherwise ‘invalid’.



An Anonymous Credential System with Constant-Size Attribute Proofs 101

4.2 Security Model

The security model in [4] consists of misauthentication resistance and anonymity.
The misauthentication resistance means the soundness of attribute proofs, i.e.,
any adversary A cannot forge an attribute proof for a CNF formula, where
the formula is not satisfied by the attributes of any user who is corrupted by
the adversary. The anonymity means the anonymity and unlinkability of proofs,
which are similar to those of group signatures. Due to the page limitation, we
omit the formal definitions (See [4]).

5 An Anonymous Credential System with Constant-Size
Attribute Proofs for CNF Formulas with Negations

We extend the anonymous credential system [4] for limited CNF formulas with-
out negations such that the user can prove any CNF formula with negations. In
the previous system, in IssuerKeyGen, an issuer publishes the signatures on
valid u’s in the accumulator verification, which is based on the concept of the set
membership proof. In CertObtain, to the user, the issuer issues a membership
certificate which is the AHO signature on Pk =

∏
i∈Uk

gi for the attribute set
Uk of the user. In ProofGen and Verify, the user proves the verification of the
AHO signature on Pk, and the equation of the accumulator verification by GS
proofs. In addition, to show the range of each δ� in u = δ1c1 + . . . + δLcL in the
accumulator verification, the user proves the verification of the AHO signature
on u.

In our extension, IssuerKeyGen and CertObtain are the almost same as
the previous system, where AHO signatures are published for the valid range
of u′ = (δ1 + |V −

1 |)c1 + . . . + (δL + |V −
L |)cL. In ProofGen and Verify, the

used accumulator is modified to our newly constructed accumulator in Sect. 3
for CNF formulas with negations. The user proves the verification equation of
the accumulator, and the verification of the AHO signature on u′ which means
1 ≤ δ� + |V −

� | ≤ η� for each �. Thus, due to the accumulator, it is ensured that
U ∩ V +

� �= ∅ or U ∩ V −
� �= V −

� for all 1 ≤ � ≤ L.

5.1 Construction

The algorithms and protocol of the proposed system is as follows.

IssuerKeyGen: Given n that is the total number of attribute values, L that
is the maximum value of clauses of proved CNF formulas, and η� that is the
upper bound of |V +

� ∪ V −
� |. This algorithm executes AccSetup to generate the

public parameters of the proposed accumulator, and generates the key pair of
AHO signatures, CRS for GS NIWI proofs, and AHO signatures for the set
membership proof.

(i) Select prime order p, bilinear group G, T and bilinear map e. Choose g ∈R G.
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(ii) Generate public parameters of the proposed accumulator for CNF formulas
with negations: Calculate c1 = 1, c� = (η�−1 + 1) · c�−1 for 2 ≤ � ≤ L, and
set C = (c1, . . . , cL). Choose γ ∈R Zp and calculate

pkacc = (C, g1 = gγ1
, . . . , gn = gγn

, gn+2 = gγn+2
, . . . , g2n = gγ2n

, z = (g, g)γn+1
).

(iii) For AHO signatures, generate the following two key pairs for d = 0, 1.

pk
(d)
AHO = (G(d)

r ,H(d)
r , G(d)

z ,H(d)
z , G(d),H(d), A(d), B(d)),

sk
(d)
AHO = (α(d)

a , α
(d)
b , μ(d)

z , ν(d)
z , μ(d), ν(d)).

(iv) Generate CRS f = (f1,f2,f3) for GS NIWI proof:

f1 = (f1, 1, g), f2 = (1, f2, g), f3 = f1
ξ1 · f2

ξ2 ,

where f1, f2 ∈R G, ξ1, ξ2 ∈R Z∗
p .

(v) Define set Φ = {u′ =
∑L

�=1 δ′
�c�|1 ≤ δ′

� ≤ η�}. Then, |Φ| =
∏

1≤�≤L η�.

For all u′ ∈ Φ, we generate an AHO signature on gu′
1 using sk

(0)
AHO. The

signature is denoted as σ̃u′ = (θ̃u′1, . . . , θ̃u′7).
(vi) As the public key and secret key of the issuer, output

ipk = (p,G, T , e, g, pk
(0)
AHO, pk

(1)
AHO, pkacc,f , {σ̃u′}u′∈Φ),

isk = (sk(0)
AHO, sk

(1)
AHO).

CertObtain: This is the protocol between CertObtain-Uk (the k-th user) and
CertObtain-I (issuer). The input of CertObtain-Uk consists of ipk and the
set Uk of the user’s attribute indexes. The inputs of CertObtain-I are ipk, isk,
and Uk. In this protocol, the issuer issues the user the certificate certk. Here, it
is assumed that a special attribute value aSP is introduced and all users owns
aSP .

(i) CertObtain-I: Generate Pk =
∏

i∈Uk
gi.

(ii) CertObtain-I: Use sk
(1)
AHO to generate the AHO signature σk =

(θ1, . . . , θ7) on Pk, where σk is sent to CertObtain-Uk as the certificate.
(iii) CertObtain-Uk: Compute Pk =

∏
i∈Uk

gi, and verify the AHO signature
σk on Pk. Then, output certk = (Pk, σk).

ProofGen: Given ipk, Uk, certk and CNF formula Ψ = (ă11 ∨ ă12 ∨ . . . )∧ (ă21 ∨
ă22∨ . . . )∧· · · (ăL′1∨ ăL′2∨ . . . ), where each literal ăij is (non-negated) attribute
index aij ∈ {1, . . . , n} or its negation ¬aij . Let V +

� be the set of non-negated
attributes in the �-th OR clause, and let V −

� be the set of negated attributes.
If L

′
< L, define V +

L′+1
= . . . = V +

L = {aSP } and V −
L′+1

= . . . = V −
L = ∅.

This algorithm generates GS proofs to prove that Pk satisfies the accumulator
verification for accV corresponding to Ψ and that Pk is signed by the issuer
using AHO signatures. In addition, the AHO signature on gu′

1 is also used in the
accumulator verification.
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(i) Compute the accumulator of V = (V +
1 , V −

1 , . . .):

accV =
∏

1≤�≤L

⎛

⎝
∏

j∈V +
�

gn+1−j

⎞

⎠

c�
⎛

⎝
∏

j∈V −
�

gn+1−j

⎞

⎠

−c�

(ii) Compute the witness WV :

WV =
∏

i∈U

∏

1≤�≤L

⎛

⎝
j �=i∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�
⎛

⎝
j �=i∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

For all 1 ≤ � ≤ L, set δ� = |U ∩V +
� |−|U ∩V −

� | and set u = δ1c1+ . . .+δLcL.

(iii) Set δ
′
� = δ� + |V −

� |, u
′

= δ
′
1c1 + . . . + δ

′
LcL, and τu′ = gu

′

1 . From ipk,

pick up σ̃u′ = (θ̃u′1, . . . , θ̃u′7) that is the AHO signature on gu
′

1 . Set ũ =
−(|V −

1 |c1 + . . . + |V −
L |cL) and τũ = gũ

1 .
(iv) Compute comPk

, comWV , comτu′ as the GS commitments to Pk,WV , τu′ .
Then, re-randomize the AHO signature σk by the method of [2] to obtain
σ

′
k = {θ

′
1, . . . , θ

′
7}. Compute the GS commitments {comθ

′
i
}i∈{1,2,5} to

{θ
′
i}i∈{1,2,5}. Similarly, re-randomize the AHO signature σ̃u′ to obtain

σ̃
′
u′ = {θ̃′

u′1, . . . , θ̃
′
u′7}. Compute the GS commitments {comθ̃

′
u′i

}i∈{1,2,5}

to {θ̃
′
u′i}i∈{1,2,5}.

(v) Generate GS proofs {πi}5i=1 to prove the following.

e(τũ, gn)−1 = e(Pk, accV) · e(g,WV)−1 · e(τu′ , gn)−1, (2)

A(1) · e(θ
′
3, θ

′
4)

−1 = e(G(1)
z , θ

′
1) · e(G(1)

r , θ
′
2) · e(G(1), Pk), (3)

B(1) · e(θ
′
6, θ

′
7)

−1 = e(H(1)
z , θ

′
1) · e(H(1)

r , θ
′
5) · e(H(1), Pk), (4)

A(0) · e(θ̃′
u′3, θ̃

′
u′4)−1 = e(G(0)

z , θ̃′
u′1) · e(G(0)

r , θ̃′
u′2) · e(G(0), τu′), (5)

B(0) · e(θ̃′
u′6, θ̃

′
u′7)−1 = e(H(0)

z , θ̃′
u′1) · H(0)

r , θ̃′
u′5) · e(H(0), τu′) (6)

(vi) Output σ = ({θ
′
i}i=3,4,6,7, {θ̃′

u′i}i=3,4,6,7, comPk
, comWV , comτu′ , {comθ

′
i
}

i=1,2,5, {com
θ̃′

u′i

}i=1,2,5, {πi}5i=1).

By substituting Pk =
∏

i∈Uk
gi, τu′ = gu

′

1 , and τũ = gũ
1 in Eq. (2), it can be

transformed into the verification equation of the accumulator as follows.

e(
∏

i∈Uk
gi, accV)

e(g,WV)
= e(gu

′

1 , gn) · e(gũ
1 , gn)−1 = zu

′−ũ

Equations (3) and (4) prove the verification of the AHO signature on Pk. Equa-
tions (5) and (6) show the verification of the AHO signature on τu′ , which
ensures that u

′
= δ

′
1c1 + . . . + δ

′
LcL, where 1 ≤ δ

′
� ≤ η�. Then, we have

zu
′−ũ = z(δ

′
1−|V −

1 |)c1+...+(δ
′
L−|V −

L |)cL from ũ = −(|V −
1 |c1 + . . . + |V −

L |cL), and
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1−|V −
� | ≤ δ

′
�−|V −

� | ≤ η�−|V −
� |. By setting δ� = δ

′
�−|V −

� |, we obtain zu
′−ũ = zu

and 1−|V −
� | ≤ δ� ≤ η� −|V −

� |, i.e, 1 ≤ δ� + |V −
� | ≤ η�. It is the verification of the

accumulator in Chap. 3. Thus, Uk ∩ V +
� �= ∅ or Uk ∩ V −

� �= V −
� for all 1 ≤ � ≤ L

is verified.

Verify: Given ipk, the proof σ, and the proved CNF formula Ψ , verify the
validity of σ as follows.

(i) As in ProofGen, compute the accumulator accV , and set ũ = −(|V −
1 |c1 +

. . . + |V −
L |cL) and τũ = gũ

1 .
(ii) If the verification of all GS proofs {πi}5i=1 succeeds, accept σ.

5.2 Efficiency Comparisons

Since the proposed system is similar to the previous system [4], it has the similar
asymptotic efficiency. The size of the attribute proof σ is O(1), and the size of
the certificate certk is also O(1). But, the size of the issuer’s public key ipk is
different from the previous. In the previous system, the maximum number of
ζ� = |U ∩V�| for V� (the attribute set of the �-th clause in CNF formulas) is fixed
in the setup. The number of the AHO signatures for Φ in ipk is

∏
1≤�≤L ζ�. But,

in our system, the number is
∏

1≤�≤L η� where η� is the maximum number of
the attributes in �-th clause which corresponds to |V�|. Due to |U ∩ V�| ≤ |V�|,
ipk in our system is longer that in the previous system, which is a trade-off to
the adaptation to negations in proved CNF formulas.

The computational costs are also similar to the previous system. In Proof-
Gen, the computation of the witness WV depends on the parameters (accV also
depends on the parameters, but the cost of WV is heavier). The cost is the same
as the previous system, since the exponentiation of the integer c� is only changed
to the exponentiation of −c� for the negated attributes, and the multiplications
of OR literals remain.

5.3 Security Considerations

As in the journal version [5] of the previous system [4], we can prove that the
proposed system satisfies the misauthentication resistance under the security of
the AHO signatures and the proposed accumulator. The security proof of the
previous system constructs two types of forgeries by interacting with an adver-
sary winning the misauthentication resistance game and extracting committed
secret values in the attribute proof σ forged by the adversary. One forgery is
for AHO signatures, and another forgery is for the accumulator. As well as the
previous system, in the proposed system, the attribute set Uk of the proving
user is ensured by the AHO signature on Pk =

∏
i∈Uk

gi, and the user proves
that Uk satisfies the proved CNF formula Ψ as Uk ∩ V +

� �= ∅ or Uk ∩ V −
� �= V −

�

for all 1 ≤ � ≤ L by the verification of the proposed accumulator, where the
correctness of τu′ = gu

′

1 is ensured by an AHO signature. Thus, similarly to the
proof for the previous system, we can prove the misauthentication resistance.
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As for the anonymity, the security proof is also similar to that for the pre-
vious system, where the methodology of a sequence of games is used. For the
original anonymity game, we can consider the modified game where the GS com-
mitments are replaced by ones using the CRS in the WI setting. In this modified
game, since the adversary has no information, the advantage of the adversary
in the anonymity game is negligible. Furthermore, this modified game and the
original game are indistinguishable due to the indistinguishability of CRS in the
real protocol and the WI setting under the DLIN assumption. In our system,
the attribute proof σ consists of the same components as those in the previ-
ous system, i.e., the re-randomized AHO signatures, GS commitments, and GS
proofs. Thus, in the same proof as that for the previous system, we can prove
the anonymity.

The security proofs in our system will be shown in the journal version of this
paper.

6 Conclusions

In this paper, we have proposed an anonymous credential system with the
constant-size attribute proofs, where any CNF formula with negations can be
proved. As the key primitive, we have constructed an accumulator to verify the
CNF formulas with negations, based on the previous accumulator [4] for limited
CNF formulas without negations.

One of our future work is to apply the proposed system to eID systems.
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