
Bidirectional Asynchronous Ratcheted
Key Agreement with Linear Complexity

F. Betül Durak1 and Serge Vaudenay2(B)

1 Robert Bosch LLC - Research and Technology Center, Pittsburgh, USA
2 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

serge.vaudenay@epfl.ch

Abstract. Following up mass surveillance and privacy issues, modern
secure communication protocols now seek more security such as for-
ward secrecy and post-compromise security. They cannot rely on an
assumption such as synchronization, predictable sender/receiver roles,
or online availability. Ratcheting was introduced to address forward
secrecy and post-compromise security in real-world messaging protocols.
At CSF 2016 and CRYPTO 2017, ratcheting was studied either with-
out zero round-trip time (0-RTT) or without bidirectional communica-
tion. At CRYPTO 2018, ratcheting with bidirectional communication
was done using heavy key-update primitives. At EUROCRYPT 2019,
another protocol was proposed. All those protocols use random oracles.
Furthermore, exchanging n messages has complexity O(n2) in general.

In this work, we define the bidirectional asynchronous ratcheted key
agreement (BARK) with formal security notions. We provide a simple
security model and design a secure BARK scheme using no key-update
primitives, no random oracle, an with O(n) complexity. It is based
on a public-key cryptosystem, a signature scheme, one-time symmet-
ric encryption, and a collision-resistant hash function family. We further
show that BARK (even unidirectional) implies public-key cryptography,
meaning that it cannot solely rely on symmetric cryptography.

1 Introduction

In standard communication systems, protocols are designed to provide messaging
services with end-to-end encryption. Essentially, secure communication reduces
to continuously exchanging keys, because each message requires a new key. In
bidirectional two-party secure communication, participants alternate their role
as senders and receivers. The modern instant messaging protocols are substan-
tially asynchronous. In other words, for a two-party communication, the mes-
sages should be transmitted (or the key exchange should be done) even though
the counterpart is not online. Moreover, to be able to send the payload data
without requiring online exchanges is a major design goal called zero round trip
time (0-RTT). Finally, the moment when a participant wants to send a message
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is undefined, meaning that participants use random roles (sender or receiver)
without any synchronization. They could send messages at the same time.

Even though many systems were designed for the privacy of their users,
they rapidly faced security vulnerabilities caused by the compromises of the
participants’ states. In this work, compromising a participant means to obtain
some information about its internal state. We will call it exposure. The desired
security notion is that compromised information should not uncover more than
possible by trivial attacks. For instance, the compromised state of participants
should not allow decryption of messages exchanged in the past. This is called
forward secrecy. Typically, forward secrecy is obtained by updating states with
a one-way function x → H(x) → H(H(x)) → ... and deleting old entries [13,14].
A popular technique in mechanics, that allows forward movement but prevents
moving backward is the use of a device called ratchet. In the context of secure
communication, a ratchet-like action is achieved by using randomness in every
state update so that a compromised state is not sufficient for the decryption of
any future communication either. This is called future secrecy or backward secrecy
or post-compromise security or even self-healing. One thesis of the present work
is that healing after an active attack involving a forgery is not a nice property.
We show that it implies insecurity. After one participant is compromised and
impersonated, if communication self-heals, it means that some adversary can
make a trivial attack which is not detected. We also show other insecurity cases.
Hence, we rather mandate communication to be cut after active attacks.

Previous Work. The security of key exchange was studied by many authors. The
prominent models are the CK and eCK models [4,12].

Techniques for ratcheting first appeared in real life protocols. It appeared
in the Off-the-Record (OTR) communication system by Borisov et al. [3]. The
Signal protocol designed by Open Whisper Systems [16] later gained a lot of
interest from message communication companies. Today, the WhatsApp messag-
ing application reached billions of users worldwide [18]. It uses the Signal pro-
tocol. A broad survey about various techniques and terminologies was made at
S&P 2015 by Unger et al. [17]. At CSF 2016, Cohn-Gordon et al. [6] studied bidi-
rectional ratcheted communication and proposed a protocol. However, their pro-
tocol does not offer 0-RTT and requires synchronized roles. At EuroS&P 2017,
Cohn-Gordon et al. [5] formally studied Signal.

0-RTT communication with forward secrecy was achieved using puncturable
encryption by Günther et al. at EUROCRYPT 2017 [9]. Later on, at EURO-
CRYPT 2018, Derler et al. made it reasonable practical by using Bloom filters [7].

At CRYPTO 2017, Bellare et al. [2] gave a secure ratcheting key exchange
protocol. Their protocol is unidirectional and does not allow receiver exposure.

At CRYPTO 2018, Poettering and Rösler (PR) [15] studied bidirectional
asynchronous ratcheted key agreement and presented a protocol which is secure
in the random oracle model. Their solution further relies on hierarchical identity-
based encryption (HIBE) but offers stronger security than required for practical
usage, leaving ample room for improving the protocol. At the same conference,
Jaeger and Stepanovs (JS) [10] had similar results but focused on secure commu-
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nication rather than key agreement. They proposed another protocol relying on
HIBE. In both results, HIBE is used to construct encryption/signature schemes
with key-update security. This is a rather new notion allowing forward secrecy
but is expensive to achieve. In both cases, it was claimed that the depth of
HIBE is really small. However, when participants are disconnected and continue
sending several messages, the depth increases rapidly. Consequently, HIBE needs
unbounded depth.

At EUROCRYPT 2019, Jost, Maurer, and Mularczyk (JMM) [11] designed
another ratcheting protocol which has “near-optimal” security, and does not use
HIBE. Nevertheless, it still has a huge complexity: When messages alternate well
(i.e., no participant sends two messages without receiving one in between), pro-
cessing n messages requires O(n) operations in total. However, when messages
accumulate before alternating (for instance, because the participants are discon-
nected by the network), the complexity becomes O(n2). This is also the case for
PR [15] and JS [10].1 One advantage of the JMM protocol [11] comes with the
resilience with random coin leakage as discussed below.

At EUROCRYPT 2019, Alwen, Coretti, and Dodis (ACD) [1] designed two
other ratcheting protocols aiming at instant decryption, i.e. the ability to decrypt
even though some previous messages have not been received yet. This is closer
to real-life protocols but this comes with a potential threat: keys to decrypt
un-delivered messages are stored until the messages are delivered. Hence, the
adversary could choose to hold messages and decrypt them with future state
exposure. This prevents forward secrecy. Furthermore, unless the direction of
communication changes (or more precisely, if the epoch increases), their protocols
are not really ratcheting as no random coins are used to update the state. This
weakens post-compromise security as well. In Table 1, we call this weaker security
“id-optimal” (not to say “insecure” in the model we are interested in) because
it is the best we can obtain with immediate decryption. The lighter of the two
protocols is not competing in the same category because it mostly uses symmetric
cryptography. It is more efficient but with lower security. Namely, corrupting the
state of a participant A implies impersonating B to A, and also decrypting the
messages that A sends. Other protocols do not have this weakness. The second
ACD protocol [1] (in the full version) uses asymmetric cryptography.

Some authors address the corruption of random coins in different ways.
Bellare et al. [2] and JMM [11] allow leaking the random coins just after use.
JS [10] allow leaking it just before usage only. ACD [1] allow adversarially chosen
random coins. In most of the protocols, revealing (or choosing) the random coins
imply revealing some part of the new state which allows decrypting incoming
messages. It is comparable to state exposure. JMM [11] offers better security as
revealing the random coins reveals the new state (and allows to decrypt) only
when the previous state was already known.

1 For JS, this is only visible in the corrected version of the paper on eprint [10]. Our
complexity analysis is based on how those protocols have been implemented (https://
github.com/qantik/ratcheted). It was presented at the WSM 2019 workshop.

https://github.com/qantik/ratcheted
https://github.com/qantik/ratcheted
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Table 1. Comparison of protocols: complexity for exchanging n messages in alter-
nating or accumulating mode, with timing (in seconds) for n = 900 of comparable
implementations and asymptotic; and types of coin-leakage security (⇒ state exposure
means coins leakage implies a state exposure).

Security Complexity Coins leakage

resilience

Model

Alternating Accumulating

Poettering-Rösler [15] Optimal 86.3, O(n) 5897, O(n2) No ROM

Jaeger-Stepanovs [10] Optimal 58.1, O(n) 9087, O(n2) Pre-send leakage,

⇒ state exposure

ROM

Jost-Maurer-Mularczyk [11] Near-optimal 2.08, O(n) 11.4, O(n2) Post-send leakage ROM

BARK [this paper] Sub-optimal 1.46, O(n) 1.09, O(n) No Plain

Alwen-Coretti-Dodis [1] Id-optimal 1.18, O(n) 0.92, O(n) Chosen coins, ⇒
state exposure

Plain

Our Contributions. We give a definition for a bidirectional asynchronous key
agreement (BARK) along with security properties. We start setting the stage
with some definitions (such as matching status) then identify all cases leading
to trivial attacks. We split them into direct and indirect leakages. Then, we
define security with a KIND game (privacy). We also consider the resistance to
forgery (impersonation) and the resistance to attacks which would heal after
active attacks (RECOVER security). We use these two notions as building blocks
to prove KIND-security. We finally construct a secure protocol. Our design choices
are detailed below and compared to other papers.

1. Simplicity. Contrary to previous work, we define KIND security in a very
comprehensive way by bringing all notions under the umbrella of a cleanness
predicate which identifies and captures all trivial ways of attacking.

2. Strong security. In the same line as previous works, the adversary in our
model can see the entire communication between participants and control
the delivery. Of course, he can replace messages with anything. Scheduling
communications is under the control of the adversary. This means that the
time when a participant sends or receives messages is decided by the adver-
sary. Moreover, the adversary is capable of corrupting participants by making
exposures of their internal data. We separate two types of exposures: the expo-
sure of the state (that is kept in internal machinery of a participant) and the
exposure of the key (which is produced by the key agreement and given to an
external protocol). This is because states are (normally) kept secure in our
protocol while the generated key is transferred to other applications which
may leak for different reasons. We do not consider exposure of the random
coins.

3. Slightly sub-optimal security. Using the result from exposure allows the
adversary to be active, e.g. by impersonating the exposed participant. How-
ever, the adversary is not allowed to use exposures to make a trivial attack.
Identifying such trivial attacks is not easy. As a design goal, we adopt not to
forbid more than what the intuitive notion of ratcheting captures. We do for-
bid a bit more than PR [15] and JS [10] which are considered of having optimal
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security and than JMM [11] (which has near-optimal security)2, though,
allowing lighter building blocks. Namely, we need no key-update primitives
and have linear-time complexity in terms of the number of exchanged mes-
sages, even when the network is occasionally down. This translates to an
important speedup factor, as shown on Table 1. We argue that this is
a reasonable choice enabling ratchet security as we define it: unless trivial
leakage, a message is private as long as it is acknowledged for reception in a
subsequent message from the receiver.

4. Sequence integrity. We believe that duplex communication is reliably
enforced by a lower level protocol. This is assumed to solve non-malicious
packet loss e.g. by resend requests and also to reconstruct the correct sequence
order. What we only have to care of is when an adversary prevents the deliv-
ery of a message consistently. We make the choice to make the transmission
of the next messages impossible under such an attack. Contrarily, ACD [1]
advocates for immediate decryption, even though one message is missing.
This lowers the security and we chose not to have it.

In the BARK protocol, the correctness implies that both participants generate
the same keys. We define the stages matching status, direct leakage, indirect
leakage. We aim to separate trivial attacks and trivial forgeries from non-trivial
cases with our definitions. Direct and indirect leakages define when the adversary
can trivially deduce the key generated due to the exposure of a participant who
can either be the same participant (direct) or their counterpart (indirect).

We construct a secure BARK protocol. We build our constructions on top of
a public-key cryptosystem and a signature scheme and achieve strong security,
without key-update primitives or random oracles. We further show that a weakly
secure unidirectional BARK implies public-key encryption.

Notations. We have two characters: Alice (A) and Bob (B). When P designates
a participant, P refers to P’s counterpart. We use the roles send and rec for
sender and receiver respectively. We define send = rec and rec = send. When
participants A and B have exclusive roles (like in unidirectional cases), we call
them sender S and receiver R. PPT stands for probabilistic polynomially bounded.
Negligible in terms of λ means in ∩c>0O(λ

−c) as λ → +∞.

Structure of the Paper. In Sect. 2, we define our BARK protocol along with cor-
rectness definition and KIND security. Section 3 proves that a simple unidirec-
tional scheme implies public-key cryptography. In Sect. 4 we define the security
notions unforgeability and unrecoverability. In Sect. 5, we give our BARK con-
struction. Due to space limitation, some material was moved to the full version
of this paper [8], including the definition of underlying primitives and the proofs
of our results.

2 Those terms are more formally explained on p. 12.
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2 Bidirectional Asynchronous Ratcheted Communication

2.1 BARK Definition and Correctness

Definition 1 (BARK). A bidirectional asynchronous ratcheted key agreement
(BARK) consists of the following PPT algorithms:

– Setup(1λ)
$−→ pp: This defines the common public parameters pp.

– Gen(1λ, pp) $−→ (sk, pk): This generates the secret key sk and the public key pk
of a participant.

– Init(1λ, pp, skP, pkP,P) → stP: This sets up the initial state stP of P given his
secret key and the public key of his counterpart.

– Send(stP)
$−→ (st ′

P, upd,k): The algorithm inputs a current state stP for P ∈
{A,B}. It outputs a tuple (st ′

P, upd,k) with an updated state st ′
P, a message

upd, and a key k.
– Receive(stP, upd) → (acc, st ′

P,k): The algorithm inputs (stP, upd) where P ∈
{A,B}. It outputs a triple consisting of a flag acc ∈ {true, false} to indicate an
accept or reject of upd information, an updated state st ′

P, and a key k i.e.
(acc, st ′

P,k).

For convenience, we define the following initialization procedure for all games.
It returns the initial states as well as some publicly available information z.

Initall(1λ, pp):
1: Gen(1λ, pp) → (skA, pkA)

2: Gen(1λ, pp) → (skB, pkB)

3: stA ← Init(1λ, pp, skA, pkB,A)

4: stB ← Init(1λ, pp, skB, pkA,B)
5: z ← (pp, pkA, pkB)

6: return (stA, stB, z)

Initialization is splittable in the sense that private keys can be generated by their
holders with no need to rely on an authority (except maybe for authentication of
pkA and pkB). Other protocols from the literature assume a trusted initialization.

We consider bidirectional asynchronous communications. We can see, in
Fig. 1, Alice and Bob running some sequences of Send and Receive operations
without any prior agreement. Their time scale is different. This means that
Alice and Bob run algorithms in an asynchronous way. We consider a notion
of time relative to a participant P. Formally, the time t for P is the number of
elementary steps that P executed since the beginning of the game. We assume
no common clock. However, events occur in a game and we may have to compare
the time of two different participants by reference to the scheduling of the game.
E.g., we could say that time tA for A happens before time tB for B. Normally,
scheduling is under the control of the adversary except in the CORRECT game
in which there is no adversary. There, we define the scheduling by a sequence of
actions. Reading the sequence tells who executes a new step of the protocol.

The protocol also uses random roles. Alice and Bob can both send and
receive messages. They take their role (sender or receiver) in a sequence, but
the sequences of roles of Alice and Bob are not necessarily synchronized. Send-
ing/receiving is refined by the RATCH(P, role, [upd]) call in Fig. 2.
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Correctness. We say that a ratcheted communication protocol functions cor-
rectly if the receiver accepts the update information upd and generates the
same key as its counterpart. Correctness implies that the received keys for
participant P have been generated in the same order as sent keys of partici-
pant P. We formally define the CORRECT game in Fig. 2. We define variables.
receivedP

key (respectively sentPkey) keeps a list of secret keys that are generated by
P when running Receive (respectively, Send). Similarly, receivedP

msg (respectively
sentPmsg) keeps a list of upd information that are received (respectively sent) by
P and accepted by Receive. The received sequences only keep values for which
acc = true.

Each variable v such as receivedP
msg, kP, or stP is relative to a participant P.

We denote by v(t) the value of v at time t for P. For instance, receivedA
msg(t) is

the sequence of upd which were received and accepted by A at time t for A.

Fig. 1. The message exchange between Alice and Bob.

We initialize the two participants in the CORRECT game in Fig. 2. The
scheduling is defined by a sequence sched of tuples of form either (P, send) (say-
ing that P must send) or (P, rec) (saying that P must receive). In this game,
communication between the participants uses a waiting queue for messages in
each direction. Each participant has a queue of incoming messages and is pulling
them in the order they have been pushed in. Sent messages from P are buffered
in the queue of P.
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Fig. 2. The CORRECT game.

Definition 2 (Correctness of BARK). We say that BARK is correct if for all
sequence sched, the CORRECT game of Fig. 2 never returns 1. Namely, for each
P, receivedP

key is always prefix of sentPkey
3 and each RATCH(., rec, .) call accepts.

Security. We model our security notion with an active adversary who can have
access to some of the states of Alice or Bob along with access to their secret
keys enabling them to act both as a sender and as a receiver. For simplicity,
we have only Alice and Bob as participants. (Models with more participants
would be asymptotically equivalent.) We focus on three main security notions
which are key indistinguishability (denoted as KIND) under the compromise of
states or keys, unforgeability of upd information (FORGE) by the adversary which
will be accepted, and recovery from impersonation (RECOVER) which will make
the two participants restore secure communication without noticing a (trivial)
impersonation resulting from a state exposure. A challenge in these notions is
to eliminate the trivial attacks. FORGE and RECOVER security will be useful to
prove KIND security.

2.2 KIND Security

The adversary can access four oracles called RATCH, EXPst, EXPkey, and TEST.

3 By saying that receivedP
key is prefix of sentPkey, we mean that when n is the number of

keys generated by P running Receive, then these keys are the first n keys generated
by P running Send.
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RATCH. This is essentially the message exchange procedure. It is defined in
Fig. 2. The adversary can call it with three inputs, a participant P, where
P ∈ {A,B}; a role of P; and an upd information if the role is rec. The adversary
gets upd (for role = send) or acc (for role = rec) in return.

EXPst. The adversary can expose the state of Alice or Bob. It inputs P ∈ {A,B}

to the EXPst oracle and it receives the full state stP of P.
EXPkey. The adversary can expose the generated key by calling this oracle. Upon

inputting P, it gets the last key kP generated by P. If no key was generated,
⊥ is returned.

TEST. This oracle can be called only once to receive a challenge key which is
generated either uniformly at random (if the challenge bit is b = 0) or given
as the last generated key of a participant P specified as input (if the challenge
bit is b = 1). The oracle cannot be queried if no key was generated yet.

We specifically separate EXPkey from EXPst because the key k generated by
BARK will be used by an external process which may leak the key. Thus, EXPkey

can be more frequent than EXPst, however it harms security less.
To define security, we avoid trivial attacks. Capturing the trivial cases in a

broad sense requires a new set of definitions. All of them are intuitive.
Intuitively, P is in a matching status at a given time if his state is not depen-

dent on an active attack (i.e. could result from a CORRECT game).

Definition 3 (Matching status). We say that P is in a matching status at
time t for P if 1. at any moment of the game before time t for P, receivedP

msg is
a prefix of sentPmsg—this defines the time t for P when P sent the last message in

receivedP
msg(t); 2. at any moment of the game before time t for P, receivedP

msg is
a prefix of sentPmsg. We further say that time t for P originates from time t for
P.

The first condition clearly states that each of the received (and accepted) upd
message was sent before by the counterpart of P, in the same order, without any
loss in between. The second condition similarly verifies that those messages from
P only depend on information coming from P. In Fig. 1, Bob is in a matching
status with Alice because he receives the upd information in the exact order as
they have sent by Alice (i.e. Bob generates k2 after k1 and k4 after k2 same as
it has sent by Alice). In general, as long as no adversary switches the order of
messages or creates fake messages successfully for either party, the participants
are always in a matching status.

The key exchange literature often defines a notion of partnering which is
simpler. Here, asynchronous random roles make it more complicated.

Here is an easy property of the notion of matching status.

Lemma 4. If P is in a matching status at time t, then P is also in a matching
status at any time t0 � t. Similarly, if P is in a matching status at time t and
t for P originates from t for P, then P is in a matching status at time t.
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Definition 5 (Forgery). Given a participant P in a game, we say that upd ∈
receivedP

msg is a forgery if at the moment of the game just before P received upd,
P was in a matching status, but no longer after receiving upd.

In a matching status, any upd received by P must correspond to an upd sent
by P and the sequences must match. This implies the following notion.

Definition 6 (Corresponding RATCH calls). Let P be a participant. We con-
sider the RATCH(P, rec, .) calls by P returning true. We say that the ith receiving
call corresponds to the jth RATCH(P, send) call if i = j and P is in matching
status at the time of this ith accepting RATCH(P, rec, .) call.

Lemma 7. In a correct BARK protocol, two corresponding RATCH(P, rec, upd)
and RATCH(P, send) calls generate the same key kP = kP.

Definition 8 (Ratcheting period of P). A maximal time interval during
which there is no RATCH(P, send) call is called a ratcheting period of P.

In Fig. 1, the intervals T1 − T3 and T5 − T6 are ratcheting periods.
We now define when the adversary can trivially obtain a key generated by P

due to an exposure. We distinguish the case when the exposure was done on P

(direct leakage) and on P (indirect leakage).

Definition 9 (Direct leakage). Let t be a time and P be a participant. We
say that kP(t) has a direct leakage if one of the following conditions is satisfied:

– There is an EXPkey(P) at a time te such that the last RATCH call which is
executed by P before time t and the last RATCH call which is executed by P

before time te are the same.
– P is in a matching status and there exists t0 � te � tRATCH � t and t such

that time t originates from time t; time t originates from time t0; there is
one EXPst(P) at time te; there is one RATCH(P, rec, .) at time tRATCH; and
there is no RATCH(P, ., .) between time tRATCH and time t.

P P

t0

(EXPst) te

tRATCH

t

tReceive

no RATCH

In the first case, it is clear that EXPkey(P) gives
kP(te) = kP(t). In the second case (in the figure4),
the state which leaks from EXPst(P) at time te allows
to simulate all deterministic Receive (by skipping all
Send) and to compute the key kP(tRATCH) = kP(t).
The reason why we can allow the adversary to skip all
Send is that they make messages which are supposed
to be delivered to P after time t, so they have no
impact on kP(t).

Consider Fig. 1. Suppose t is in between time T3
and T4. According to our definition P = A and the
last RATCH call is at time T3. It is a Send, thus the

4 Origin of dotted arrows indicate when a time originates from.



BARK Agreement with Linear Complexity 353

second case cannot apply. The next RATCH call is at time T4. In this case, kA(t)
has a direct leakage if there is a key exposure of Alice between T3 and T4.

Suppose now that T8 < t < T9. We have P = B, the last RATCH call is a
Receive, it is at time tRATCH = T8, and t originates from time t = T0 which itself
originates from the origin time t0 = TInit for B. We say that t has a direct leakage
if there is a key exposure between T8−T9 or a state exposure of Bob before time
T8. Indeed, with this last state exposure, the adversary can ignore all Send and
simulate all Receive to derive k0.

Definition 10 (Indirect leakage). We consider a time t and a participant P.
Let tRATCH be the time of the last successful RATCH call and role be its input role.
(We have kP(tRATCH) = kP(t).) We say that kP(t) has an indirect leakage if P

is in matching status at time t and one of the following conditions is satisfied

– There exists a RATCH(P, role, .) corresponding to that RATCH(P, role, .) and
making a kP which has a direct leakage for P.

– There exists t ′ � tRATCH � t and t � te such that P is in a matching status
at time te, t originates from t, te originates from t ′, there is one EXPst(P)
at time te, and role = send.

P P

t ′

tRATCH

t

t

te (EXPst)
Send

no RATCH

In the first case, kP(t) = kP(tRATCH) is also com-
puted by P and leaks from there. The second case
(in the figure) is more complicated: it corresponds to
an adversary who can get the internal state of P by
EXPst(P) then simulate all Receive with messages from
P until the one sent at time tRATCH, ignoring all Send
by P, to recover kP(t).

For example, let t be a time between T1 and T2 in
Fig. 1. We take P = A. The last RATCH call is at time
tRATCH = T1, it is a Send and corresponds to a Receive
at time T10, but t originates from time t = TInit. We
say that t has an indirect leakage for A if there exists
a direct leakage for P = B at a time between T10 and T11 (first condition) or
there exists a EXPst(B) call at a time te (after time t = TInit), originating from
a time t ′ before time T1, so te < T10 (second condition). In the latter case, the
adversary can simulate Receive with the updates sent at time T0 and T1 to derive
the key k1.

Exposing the state of a participant gives certain advantages to the attacker
and make trivial attacks possible. In our security game, we avoid those attack sce-
narios. In the following lemma, we show that direct and indirect leakage capture
the times when the adversary can trivially win. The proof is straightforward.

Lemma 11 (Trivial attacks). Assume that BARK is correct. For any t and
P, if kP(t) has a direct or indirect leakage, the adversary can compute kP(t).

So far, we mostly focused on matching status cases but there could be situ-
ations with forgeries. Some are unavoidable. We call them trivial forgeries.
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Definition 12 (Trivial forgery). Let upd be a forgery received by P. At the
time t just before the RATCH(P, rec, upd) call, P was in a matching status. We
assume that time t for P originates from time t for P. If there is an EXPst(P)
call during the ratcheting period of P starting at time t, we say that upd is a
trivial forgery.

We define the KIND security game in Fig. 3. Essentially, the adversary plays
with all oracles. At some point, he does one TEST(P) call which returns either
the same result as EXPkey(P) (case b = 1) or some random value (case b = 0).
The goal of the adversary is to guess b. The TEST call can be done only once and
it defines the participant Ptest = P and the time ttest at which this call is made. It
also defines updtest, the last upd which was used (either sent or received) to carry
kPtest

(ttest) from the sender to the receiver. It is not allowed to make this call at
the beginning, when P did not generate a key yet. It is not allowed to make a
trivial attack as defined by a cleanness predicate Cclean appearing on Step 6 in
the KIND game in Fig. 3. Identifying the appropriate cleanness predicate Cclean is
not easy. It must clearly forbid trivial attacks but also allow efficient protocols.
In what follows we use the following predicates:

– Cleak: kPtest
(ttest) has no direct or indirect leakage.

– CP
trivial forge: P received no trivial forgery until P has seen updtest.

(This implies that updtest is not a trivial forgery. It also implies that if P never
sees updtest, then P received no trivial forgery at all.)

– CP
forge: P received no forgery until P has seen updtest.

– Cratchet: updtest was sent by a participant P, then received and accepted by P,
then some updack was sent by P, then updack was received and accepted by P.
(Here, P could be Ptest or his counterpart. This accounts for the receipt of
updtest being acknowledged by P through updack.)

– CnoEXP(R): there is no EXPst(R) and no EXPkey(R) query. (R is the receiver.)

Lemma 11 says that the adopted cleanness predicate Cclean must imply Cleak in all
considered games. Otherwise, no security is possible. It is however not sufficient
as it only hardly trivial attacks with forgeries.

Cratchet targets that any acknowledged sent message is secure. Another way
to say is that a key generated by one Send starting a round trip must be safe.
This is the notion of healing by ratcheting. Intuitively, the security notion from
Cclean = Cleak ∧ Cratchet is fair enough.

Bellare et al. [2] consider unidirectional BARK with Cclean = Cleak ∧

CPtest

trivial forge ∧ CnoEXP(R). Other papers like PR [15] and JS [10] implicitly use
Cclean = Cleak ∧ CPtest

trivial forge as cleanness predicate. They show that this is suf-
ficient to build secure protocols but it is probably not the minimal cleanness
predicate. (It is nevertheless called “optimal”.) JMM [11] excludes cases where
Ptest received a (trivial) forgery then had an EXPst(Ptest) before receiving updtest.
Actually, they use a cleanness predicate (“near-optimal” security) which is some-
where between Cleak ∧ CPtest

trivial forge and Cleak ∧ CA
trivial forge ∧ CB

trivial forge: this
cleanness implies the JMM cleanness which itself implies the PR/JS cleanness.
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In our construction (“sub-optimal”), we use the predicate Cclean = Cleak ∧

CA
forge ∧ CB

forge. However, in Sect. 4.1, we define the FORGE security (unforge-
ability) which implies that (Cleak ∧ CA

forge ∧ CB
forge)-KIND security and (Cleak ∧

CA
trivial forge ∧ CB

trivial forge)-KIND security are equivalent. (See Theorem 16.) One
drawback is that it forbids more than (Cleak ∧ CPtest

trivial forge)-KIND security. The
advantage is that we can achieve security without key-update primitives. We
will prove in Theorem 19 that this security is enough to achieve security with
the predicate Cclean = Cleak ∧ Cratchet, thanks to RECOVER-security which we
define in Sect. 4.2. Thus, our cleanness notion is fair enough.

Fig. 3. Cclean-KIND game. (Oracle RATCH is defined in Fig. 2.)

Definition 13 (Cclean-KINDsecurity). Let Cclean be a cleanness predicate. We
consider the KINDA

b,Cclean
game of Fig. 3. We say that the ratcheted key agreement

BARK is Cclean-KIND-secure if for any PPT adversary, the advantage

AdvA(1λ) =
∣
∣Pr

[

KINDA
0,Cclean

(1λ) → 1
]

− Pr
[

KINDA
1,Cclean

(1λ) → 1
]∣
∣

of A in KINDA
b,Cclean

(1λ) security game is negligible.

3 uniARK Implies KEM

We now prove that a weakly secure uniARK (a unidirectional asynchronous ratch-
eted key exchange—a straightforward variant of BARK in which messages can
only be sent from a participant whom we call S and can only be received by
another participant whom we call R) implies public key encryption. Namely, we
can construct a key encapsulation mechanism (KEM) out of it. We recall the KEM
definition in the full version [8]. We consider a uniARK which is KIND-secure for
the following cleanness predicate:

Cweak: the adversary makes only three oracle calls which are, in order,
EXPst(S), RATCH(S, send), and TEST(S).
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(Note that R is never used.) Cweak implies cleanness for all other considered
predicates. Hence, it is more restrictive. Our result implies that it is unlikely to
construct even such weakly secure uniARK from symmetric cryptography.

Theorem 14. Given a uniARK protocol, we can construct a KEM with the fol-
lowing properties. The correctness of uniARK implies the correctness of KEM.
The Cweak-KIND-security of uniARK implies the IND-CPA security of KEM.

Proof. Assuming a uniARK protocol, we construct a KEM as follows:

KEM.Gen(1λ)
$−→ (sk, pk): run uniARK.Setup(1λ)

$−→ pp, uniARK.Initall(1λ, pp) $−→
(stS, stR, z), and set pk = stS, sk = stR.

KEM.Enc(pk) $−→ (k, ct): run uniARK.Send(pk) $−→ (., upd,k) and set ct = upd.
KEM.Dec(sk, ct) → k: run uniARK.Receive(sk, upd) → (., .,k).

The IND-CPA security game with adversary A works as in the left-hand side
below. We transform A into a KIND adversary B in the right-hand side below.

Game IND-CPA:
1: KEM.Gen $−→ (sk, pk)

2: KEM.Enc(pk) $−→ (k, ct)
3: if b = 0 then set k to random
4: A(pk, ct,k) $−→ b ′

5: return b ′

Adversary B(z):
1: call EXPst(S) → pk
2: call RATCH(S, send) → ct
3: call TEST(S) → k

4: run A(pk, ct,k) → b ′

5: return b ′

We can check that Cweak is satisfied. The KIND game with B simulates perfectly
the IND-CPA game with A. So, the KIND-security of uniARK implies the IND-CPA
security of KEM. �	

4 FORGE and RECOVER Security

4.1 Unforgeability

Another security aspect of the key agreement BARK is to have that no upd infor-
mation is forgeable by any bounded adversary except trivially by state exposure.
This security notion is independent from KIND security but is certainly nice to
have for explicit authentication in key agreement. Besides, it is easy to achieve.
We will also use it as a helper to prove KIND security: to reduce CP

trivial forge-
cleanness to CP

forge-cleanness.
Let the adversary interact with the oracles RATCH,EXPst, EXPkey in any

order. For BARK to have unforgeability, we eliminate the trivial forgeries (as
defined in Definition 12). The FORGE game is defined in Fig. 4.

Definition 15. (FORGE security). Consider FORGEA(1λ) game in Fig. 4
associated to the adversary A. Let the advantage of A be the probability that
the game outputs 1. We say that BARK is FORGE-secure if, for any PPT adver-
sary, the advantage is negligible.



BARK Agreement with Linear Complexity 357

Fig. 4. FORGE, RECOVER, and PREDICT games.

We can now justify why forgeries in the KIND game must be trivial for a
BARK with unforgeability.

Theorem 16. If a BARK is FORGE-secure, then (Cleak ∧ CPtest

forge)-KIND-security
implies (Cleak ∧ CPtest

trivial forge)-KIND-security and (Cleak ∧ CA
forge ∧ CB

forge)-KIND-
security implies (Cleak ∧ CA

trivial forge ∧ CB
trivial forge)-KIND-security.

4.2 Recovery from Impersonation

A priori, it seems nice to be able to restore a secure state when a state exposure
of a participant takes place. We show here that it is not a good idea.

Let A be an adversary playing the two games in Fig. 5. On the left strategy, A

exposes A with an EXPst query (Step 2). Then, the adversary A impersonates A

by running the Send algorithm on its own (Step 3). Next, the adversary A “sends”
a message to B which is accepted due to correctness because it is generated with
A’s state. In Step 5, A lets the legitimate sender generate upd ′ by calling RATCH
oracle. In this step, if security self-restores, then B accepts upd ′ which is sent by
A, hence acc ′ = 1. It is clear that the strategy shown on the left side in Fig. 5 is
equivalent to the strategy shown on the right side of the same figure (which only
switches Alice and the adversary who run the same algorithm). Hence, both lead
to acc ′ = 1 with the same probability p. The crucial point is that the forgery
in the right-hand strategy becomes non-trivial, which implies that the protocol
is not FORGE-secure. In addition to this, if such phenomenon occurs, we can
make a KIND adversary passing the Cleak ∧ CPtest

trivial forge condition. Thus, we lose
KIND-security. Consequently, security should not self-restore.
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Fig. 5. Two recoveries succeeding with the same probability.

We define the RECOVER security notion with another game in Fig. 4. Essen-
tially, in the game, we require the receiver P to accept some messages upd sent
by the sender after the adversary makes successful forgeries in seq1. We further
use it as a second helper to prove KIND security with Cratchet-cleanness.

Definition 17 (RECOVER security). Consider RECOVERA
BARK(1

λ) game in
Fig. 4 associated to the adversary A. Let the advantage of A in succeeding play-
ing the game be Pr(win = 1). We say that the ratcheted communication protocol
is RECOVER-secure, if for any PPT adversary, the advantage is negligible.

RECOVER-security iseasy to achieve using a collision-resistant hash function.
To be sure that no message was received before it was sent, we need the

following security notion. In the PREDICT game, the adversary tries to make P

receive a message upd before it was sent by P.

Definition 18 (PREDICT security). For the PREDICTA
BARK(1

λ) game in
Fig. 4, let A be an adversary. The advantage of A is the probability that 1 is
returned. We say that the ratcheted communication protocol is PREDICT-secure,
if for any adversary limited to a polynomially bounded number of queries, the
advantage is negligible.

Theorem 19. If a BARK is RECOVER-secure, PREDICT-secure, and (Cleak ∧

CA
forge ∧ CB

forge)-KIND secure, then it is (Cleak ∧ Cratchet)-KIND secure.

5 Our BARK Protocol

We construct a BARK in Fig. 6. We use a public-key cryptosystem PKC, a digital
signature scheme DSS, a one-time symmetric encryption Sym, and a collision-
resistant hash function H. They are all defined in the full version [8]. First, we
construct a naive signcryption SC from PKC and DSS by
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SC.Enc(

stS
︷ ︸︸ ︷

skS, pkR, ad, pt) = PKC.Enc(pkR, (pt,DSS.Sign(skS, (ad, pt))))
SC.Dec(skR, pkS

︸ ︷︷ ︸

stR

, ad, ct) = (pt,σ) ← PKC.Dec(skR, ct) ;
DSS.Verify(pkS, (ad, pt),σ) ? pt : ⊥

Second, we extend SC to multi-key encryption called onion due to the multiple
layers of keys. Third, we transform onion into a unidirectional ratcheting scheme
uni. Finally, we design BARK. (See Fig. 6.)

The state of a participant is a tuple st = (λ, hk, ListS, ListR,Hsent,Hreceived)
where hk is the hashing key, Hsent is the iterated hash of all sent messages, and
Hreceived is the iterated hash of all received messages. We also have two lists ListS
and ListR. They are lists of states to be used for unidirectional communication:
sending and receiving. Both lists are growing but entries are eventually erased.
Thus, they can be compressed. (Typically, only the last entry is not erased.)

The idea is that the ith entry of ListS for a participant P is associated to the ith

entry of ListR for its counterpart P. Every time a participant P sends a message,
it creates a new pair of states for sending and receiving and sends the sending
state to his counterpart P, to be used in the case P wants to respond. If the
same participant P keeps sending without receiving anything, he accumulates
some receiving states this way. Whenever a participant P who received many
messages starts sending, he also accumulated many sending states. His message
is sent using all those states in the uni.Send procedure. After sending, all but
the last send state are erased, and the message shall indicate the erasures to the
counterpart P, who shall erase corresponding receiving states accordingly. Our
onion encryption needs to ensure O(n) complexity (so we cannot compose SC
encryptions as ciphertext overheads would produce O(n2) complexity). For that,
we use a one-time symmetric encryption Sym using a key k in {0, 1}Sym.kl. which
is split into shares k1, . . . ,kn. Each share is SC-encrypted in one state. Only the
last state is updated (as others are meant to be erased).

The protocol is quite efficient when participants alternate their roles well,
because the lists are often flushed to contain only one unerased state. It also
becomes more secure due to ratcheting: any exposure has very limited impact.
If there are unidirectional sequences, the protocol becomes less and less efficient
due to the growth of the lists.

We state the security of our protocol below. Proofs are provided in the full
version [8]. In the full version [8], we also show that our protocol does not offer
(Cleak ∧ CPtest

forge)-KIND security.

Theorem 20. We consider the BARK protocol from Fig. 6.

– BARK is correct.
– BARK is PREDICT-secure.
– If H is collision-resistant, then BARK is RECOVER-secure.
– If DSS is SEF-OTCMA-secure and H is collision-resistant, then BARK is

FORGE-secure.
– If PKC is IND-CCA-secure and Sym is IND-OTCCA-secure, then BARK is

(Cleak ∧ CA
forge ∧ CB

forge)-KIND-secure.
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Fig. 6. Our BARK protocol.
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Consequently, due to Theorem16, we deduce (Cleak ∧ CA
trivial forge ∧ CB

trivial forge)-
KIND-security. The advantage of treating (Cleak ∧ CA

forge ∧ CB
forge)-KIND-security

specifically is that we clearly separate the required security assumptions for SC.
Similarly, due to Theorem19, we deduce (Cleak ∧ Cratchet)-KIND-security.

6 Conclusion

We studied the BARK protocols and security. For security, we marked three
important security objectives: the BARK protocol should be KIND-secure; the
BARK protocol should be resistant to forgery attacks (FORGE-security), and the
BARK protocol should not self-heal after impersonation (RECOVER-security).
By relaxing the cleanness notion in KIND-security, we designed a protocol based
on an IND-CCA-secure cryptosystem and a one-time signature scheme. We used
neither random oracle nor key-update primitives.
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We also owe to Andrea Caforio for his implementation results.

References

1. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions,
proofs, and modularization for the signal protocol. In: Ishai, Y., Rij-
men, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 129–158.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 5. Full ver-
sion: https://eprint.iacr.org/2018/1037.pdf

2. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: the security of messaging. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 619–650. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 21

3. Borisov, N., Goldberg, I., Brewer, E.: Off-the-record communication, or, why not to
use PGP. In: Proceedings of the 2004 ACM Workshop on Privacy in the Electronic
Society, WPES 2004, pp. 77–84. ACM, New York (2004)

4. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

5. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: 2017 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pp. 451–466, April 2017

6. Cohn-Gordon, K., Cremers, C., Garratt, L.: On post-compromise security. In: 2016
IEEE 29th Computer Security Foundations Symposium (CSF), pp. 164–178, June
2016

7. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and appli-
cations to efficient forward-secret 0-RTT key exchange. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 425–455. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78372-7 14

https://doi.org/10.1007/978-3-030-17653-2_5
https://eprint.iacr.org/2018/1037.pdf
https://doi.org/10.1007/978-3-319-63697-9_21
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-319-78372-7_14


362 F. B. Durak and S. Vaudenay

8. Betül Durak, F., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
with linear complexity. https://eprint.iacr.org/2018/889.pdf

9. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full for-
ward secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 519–548. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 18

10. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1 2. Full version: https://eprint.iacr.org/2018/553.pdf

11. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guar-
antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11476, pp. 159–188. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17653-2 6. Full version: https://eprint.iacr.org/2018/954.pdf

12. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

13. Ohkubo, M., Suzuki, K., Kinoshita, S.: Cryptographic approach to “privacy-
friendly” tags. In: RFID Privacy Workshop (2003)

14. Ohkubo, M., Suzuki, K., Kinoshita, S.: Efficient hash-chain based RFID privacy
protection scheme. In: International Conference on Ubiquitous Computing (Ubi-
comp), Workshop Privacy: Current Status and Future Directions (2004)

15. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 3–
32. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 1. Full ver-
sion: https://eprint.iacr.org/2018/296.pdf

16. Open Whisper Systems. Signal protocol library for Java/Android. GitHub reposi-
tory (2017). https://github.com/WhisperSystems/libsignal-protocol-java

17. Unger, N., et al.: SoK: secure messaging. In: 2015 IEEE Symposium on Security
and Privacy, pp. 232–249, May 2015

18. WhatsApp. Whatsapp encryption overview. Technical white paper (2016). https://
www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

https://eprint.iacr.org/2018/889.pdf
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-319-96884-1_2
https://eprint.iacr.org/2018/553.pdf
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://eprint.iacr.org/2018/954.pdf
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-319-96884-1_1
https://eprint.iacr.org/2018/296.pdf
https://github.com/WhisperSystems/libsignal-protocol-java
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

	Bidirectional Asynchronous Ratcheted Key Agreement with Linear Complexity
	1 Introduction
	2 Bidirectional Asynchronous Ratcheted Communication
	2.1 BARK Definition and Correctness
	2.2 KIND Security

	3 uniARK Implies KEM
	4 FORGE and RECOVER Security
	4.1 Unforgeability
	4.2 Recovery from Impersonation

	5 Our BARK Protocol
	6 Conclusion
	References




