
(Short Paper) A Faster Constant-Time
Algorithm of CSIDH Keeping Two Points

Hiroshi Onuki1(B), Yusuke Aikawa1,2, Tsutomu Yamazaki3,
and Tsuyoshi Takagi1

1 Department of Mathematical Informatics, University of Tokyo, Tokyo, Japan
{onuki,takagi}@mist.i.u-tokyo.ac.jp

2 Department of Mathematics, Hokkaido University, Sapporo, Japan
yusuke@math.sci.hokudai.ac.jp

3 Graduate School of Mathematics, Kyushu University, Fukuoka, Japan
yamazaki.tsutomu.890@s.kyushu-u.ac.jp

Abstract. At ASIACRYPT 2018, Castryck, Lange, Martindale, Panny
and Renes proposed CSIDH, which is a key-exchange protocol based
on isogenies between elliptic curves, and a candidate for post-quantum
cryptography. However, the implementation by Castryck et al. is not
constant-time. Specifically, a part of the secret key could be recovered
by the side-channel attacks. Recently, Meyer, Campos, and Reith pro-
posed a constant-time implementation of CSIDH by introducing dummy
isogenies and taking secret exponents only from intervals of non-negative
integers. Their non-negative intervals make the calculation cost of their
implementation of CSIDH twice that of the worst case of the standard
(variable-time) implementation of CSIDH. In this paper, we propose a
more efficient constant-time algorithm that takes secret exponents from
intervals symmetric with respect to the zero. For using these intervals,
we need to keep two torsion points on an elliptic curve and calculation
for these points. We implemented our algorithm by extending the imple-
mentation in C of Meyer et al. (originally from Castryck et al.). Then
our implementation achieved 152.8 million clock cycles, which is about
29.03% faster than that of Meyer et al.

Keywords: CSIDH · Post-quantum cryptography ·
Isogeny-based cryptography · Constant-time implementation ·
Supersingular elliptic curve isogenies

1 Introduction

RSA and elliptic curve cryptosystems will no longer be secure once a large-scale
quantum computer is built. Due to this, the importance of post-quantum cryp-
tography (PQC) has increased. In 2017, the National Institute of Standards and
Technology (NIST) started the process of PQC standardization [18]. Candidates
for the NIST PQC standardization include supersingular isogeny key encapsu-
lation (SIKE) [14], which is a scheme based on isogenies between elliptic curves.
c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 23–33, 2019.
https://doi.org/10.1007/978-3-030-26834-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_2

24 H. Onuki et al.

SIKE is a variant of supersingular isogeny Diffie-Hellman (SIDH), which was
proposed by Jao and De Feo [12] in 2011. SIDH uses isogenies between supersin-
gular elliptic curves over a finite field. SIDH achieves an efficient key-exchange
but needs to send torsion points of an elliptic curve as supplementary informa-
tion. Attacks using this information are discussed in by Galbraith, Petit, Shani,
and Ti [11] and Petit [20].

Isogeny-based cryptography was first proposed by Couveignes [8] in 1997
and independently rediscovered by Rostovtsev and Stolbunov [21,23]. Their pro-
posed scheme is a Diffie-Hellman-style key-exchange based on isogenies between
ordinary elliptic curves over a finite field and typically called CRS. CRS does
not need to send any point of elliptic curves, therefore the attacks to SIDH,
which is based on information of points of elliptic curves, cannot be applied to
CRS. However, even after optimizations by De Feo, Kieffer, and Smith [9], CRS
is much slower than SIDH. In 2018, Castryck, Lange, Martindale, Panny, and
Renes [3] proposed commutative SIDH (CSIDH), which adopts supersingular
elliptic curves to the CRS scheme. They used supersingular elliptic curves over
a finite prime field Fp and their endomorphism rings over Fp. Since the number
of Fp-rational points on a supersingular elliptic curve E over Fp is p+1, one can
choose p such that #E(Fp) has many small prime factors. This allows CSIDH
to compute isogenies faster than CRS.

However, the computational time in the proof-of-concept implementation by
Castryck et al. depends on the associated secret key, so their implementation
of CSIDH is not side-channel resistant. Recently, Meyer, Campos, and Reith
[15] proposed a constant-time implementation of CSIDH and several speedup
techniques for their implementation. They achieved the constant-time imple-
mentation by using dummy isogenies and by changing intervals of key elements
from [−m,m] to [0, 2m], where m ∈ N. Consequently, their constant-time imple-
mentation needs to calculate each degree isogeny 2m times, while the worst case
of the variable-time CSIDH needs only m times. Therefore, the computational
cost of their constant-time implementation is twice as that of the worst case of
the variable-time CSIDH. The constant-time implementation in [15] allows vari-
ance of the computational time of their implementation with randomness that
does not relate to secret information.

On the other hand, implementations which do not allow such variance are
proposed by Bernstein, Lange, Martindale, and Panny [2] and Jalali, Azarder-
akhsh, Kermani, and Jao [13]. The implementation in [2] is for evaluating the
performance of quantum attacks for CSIDH. It must not have branches in order
to compute in superposition on quantum computers. The implementation in [13]
is for classical computers, but it has no branches. As a result, it is slower than
the implementation in [15]. We discuss the differences in these implementations
in Sect. 3.2.

In this paper, we propose a new constant-time implementation, which is
faster than the constant-time implementation by Meyer et al. [15]. Our imple-
mentation is “constant-time” in the same sense as that of [15]. In other words,
the computational time and the order of scalar multiplications and isogenies in

A Faster Constant-Time Algorithm of CSIDH Keeping Two Points 25

our implementation do not depend on a secret key. We use the dummy isogenies
proposed by [15]. but do not change the key intervals of CSIDH, i.e., we use the
interval [−m,m]. To achieve a constant-time implementation without changing
the key intervals, we need to keep two torsion points of both E[π−1] and E[π+1]
and calculation associated with these points, where π is the Frobenius endomor-
phism of an elliptic curve E. As a result, our implementation needs almost twice
as many scalar multiplications on elliptic curves and twice as many calculations
of images of points under isogenies as the worst case of the variable-time CSIDH.
However, the number of calculations of the images of curves is the same as in the
worst case of the variable-time CSIDH, and scalars in a part of additional scalar
multiplications on elliptic curves are smaller. Therefore, our implementation is
faster than the implementation in [15]. We implemented our algorithm in C and
compared its cycle count and running time with those of the implementation in
[15]. Our experiment shows that the cycle count of our implementation is 29.03%
less than that of the implementation in [15].

Organization. The rest of this paper is organized as follows. The following
section describes CSIDH. Section 3 explains a constant-time implementation in
[15]. and briefly introduces constant-time implementations based on another def-
inition. We give the details of our new constant-time implementation of CSIDH
in Sect. 4. In Sect. 5, we present experimental results. We conclude our work in
Sect. 6.

2 CSIDH

In this section, we overview the protocol of CSIDH and its mathematical back-
grounds. For more details, see Castryck et al. [3].

2.1 Protocol of CSIDH

For describing the protocol of CSIDH, we define the following notations. Let
p be a prime number, CL(Z[

√−p]) the ideal class group of Z[
√−p] and

ELLFp
(Z[

√−p]) a set of Fp-isomorphism classes of supersingular elliptic curves
whose endomorphism ring is isomorphic to Z[

√−p]. Then we can define an action

CL(Z[
√−p]) × ELLFp

(Z[
√−p]) → ELLFp

(Z[
√−p]), (a, E) �→ a ∗ E.

We call this action the class group action. The details of these notations and the
action are described in the next subsection. CSIDH is a Diffie-Hellman style key
exchange as follows:

Alice and Bob share an elliptic curve E0 ∈ ELLFp
(Z[

√−p]) as a public
parameter. Alice chooses an ideal a ∈ CL(Z[

√−p]) as her secret key and sends
the curve a ∗ E to Bob as her public key. Bob proceeds in the same way by
choosing a secret key b ∈ CL(Z[

√−p]). Then, both parties can compute the
shared secret ab ∗ E = ba ∗ E. Note that CL(Z[

√−p]) is commutative.

26 H. Onuki et al.

2.2 Ideal Class Group

Let p be a large prime of the form 4�1 · · · �n − 1, where �1, . . . , �n are small
distinct odd primes. Let E ∈ ELLFp

(Z[
√−p]) and π be its p-th power Frobenius

endomorphism. Since E is supersingular, the primes �i split in Z[
√−p] as (�i) =

līli, where li = (�i, π −1) and l̄i = (�i, π +1). It can be seen that the actions of li
and l̄i can be computed efficiently. In the ideal class group, l̄i is the inverse of li,
so we can compute the action of an ideal of the form le11 · · · lenn , e1, . . . , en ∈ Z by
the composition of the actions of li and l̄i. Castryck et al. [3] showed that under
some heuristics, le11 · · · lenn , −m ≤ ei ≤ m represent uniformly “almost” all the
ideal classes in CL(Z[

√−p]), where m ∈ N such that (2m+1)n ≥ #CL(Z[
√−p]).

We denote the exponents (ei) by secret exponents.

3 Previous Works for Constant-Time Implementation
of CSIDH

In this section, we explain a constant-time implementation proposed by Meyer
et al. [15] and briefly describe related works.

3.1 Constant-Time Implementation

As already mentioned by Castryck et al. [3], their proof-of-concept implementa-
tion is not side-channel resistant because the computational time for a public key
and a shared secret depends on the associated secret key. To solve this problem,
Meyer et al. [15] proposed a constant-time implementation of CSIDH. According
to [15], “a constant-time implementation” means an implementation whose com-
putational time and order of scalar multiplications of each size and isogenies of
each degree do not depend on a secret key. Their constant-time implementation
is described in Algorithm 1.

To achieve a constant-time implementation, they used dummy isogenies and
changed the intervals of the integer key elements from [−m,m] to [0, 2m]. We
explain these techniques below. In this algorithm, one samples a point on an
elliptic curve by using Elligator [1] for CSIDH, which was proposed by Bernstein,
Lange, Martindale, and Panny [2]. Elligator enables us to generate x-coordinates
of points with suitable y-coordinate by computing only one Legendre symbol.
For the details, see Bernstein et al. [2].

Dummy Isogenies. It seems that one should compute a constant number of
isogenies of each degree �i and only use the ones required by the secret key. The
function for dummy isogenies is designed to use the same operations on Fp as
the function for isogenies. For more details, see [15,16].

A Faster Constant-Time Algorithm of CSIDH Keeping Two Points 27

Changing the Key Intervals. By using dummy isogenies, the number of
isogeny computations is fixed. However, this is not sufficient to achieve a
constant-time implementation, since the sizes of the scalar multiplications vary
in accordance with the signs of secret exponents. To remove this effect, Meyer
et al. [15] proposed changing the intervals from [−m,m] to [0, 2m].

Algorithm 1. Constant-time evaluation of the class group action in CSIDH [15]
Input: A ∈ Fp, m ∈ N, a list of integers (e1, . . . , en) s.t. 0 ≤ ei ≤ 2m for i = 1, . . . , n,

and distinct odd primes �1, . . . , �n s.t. p = 4
∏

i �i − 1.
Output: B ∈ Fp s.t. EB = (le11 · · · lenn) ∗ EA, where li = (�i, π − 1) for i = 1, . . . , n,

and π is the p-th power Frobenius endomorphism of EA.
1: Set e′

i = 2m − ei for i = 1, . . . , n.
2: while some ei �= 0 or e′

i �= 0 :
3: Set S = {i | ei �= 0 or e′

i �= 0}.
4: Set k =

∏
i∈S �i.

5: Generate a point P ∈ EA[π − 1] by Elligator.
6: Let P ← [(p + 1)/k]P .
7: for i ∈ S :
8: Set Q = [k/�i]P .
9: if Q �= ∞ : /∗ branch not involving secret information ∗/

10: if ei �= 0 : /∗ branch involving secret information ∗/
11: Compute an isogeny ϕ : EA → EB with kerϕ = 〈Q〉.
12: Let A ← B, P ← ϕ(P), and ei ← ei − 1.
13: else
14: Dummy computation.
15: Let A ← A, P ← [�i]P , and e′

i ← e′
i − 1.

16: end if
17: end if
18: Let k ← k/�i.
19: end for
20: end while
21: return A.

3.2 Constant-Time Implementations Based on Another Definition

As we stated above, Meyer et al. [15] allow variance of the computational time
of their implementation with randomness that does not relate to secret informa-
tion (caused by the branch if Q 	= ∞ in line 9 in Algorithm1). On the other
hand, constant-time implementations that do not allow this variance are known.
Bernstein et al. [2] constructed a constant-time implementation of CSIDH for
evaluating the performance of quantum attacks. For calculating the class group
actions in superposition on a quantum computer, a completely constant-time
implementation is required. Therefore, their constant-time implementation has
no branches (such as if branch). Jalali, Azarderakhsh, Kermani, and Jao [13]
proposed a constant-time implementation for classical computers, which also

28 H. Onuki et al.

has no branches. As a result of removing all branches, these implementations
are slower than that of [15]. We propose a constant-time implementation based
on the definition in [15], i.e., our implementation allows branches which do not
depend on secret information.

4 Our Constant-Time Implementation

In this section, we propose a new constant-time implementation that is faster
than that of [15].

The constant-time implementation in [15]. requires the cost to be the same
as that of calculating the action of the ideal class corresponding to secret expo-
nents (2m, . . . , 2m). This cost is twice the cost corresponding to secret exponents
(m, . . . ,m), which is the worst case in the variable-time CSIDH. We mitigate the
cost for achieving constant-time by using positive and negative secret exponents.

4.1 Basic Idea

To achieve a constant-time implementation without fixing the signs of secret
exponents, we compute isogenies corresponding to positive and negative secret
exponents in the same round in the while loop in Algorithm1. This requires
keeping two points of both E[π − 1] and E[π + 1] and computing scalar multi-
plications and images under isogenies for both points. This means that our new
method needs almost twice as many scalar multiplications and twice as many
computations of images of points per isogeny calculation (the reason we need
“almost” twice as many scalar multiplications is explained later). However, it
needs only one computation for an isogenous curve coefficient. Therefore, the
cost of our method is less than twice of the worst case of the variable-time
CSIDH. Combining this method and dummy isogenies of [15,16], we achieve a
more efficient constant-time implementation.

4.2 Proposed Algorithm

Our constant-time implementation for computing the class group action is
described in Algorithm 2.

In Algorithm 2, the points P0 and P1 are k-torsion of E[π − 1] and E[π + 1],
respectively. The indicator s is the sign bit of a secret exponent ei (line 8), i.e.,
s = 0 if ei ≥ 0 and s = 1 if ei < 0. This can be computed by bit operations.
For example, s = ei � 7 if ei is stored as a signed 8-bit integer. The point Q is
�i-torsion of E[π − 1] if ei ≥ 0 or of E[π + 1] is ei < 0 (line 9). Therefore, the
algorithm computes the isogeny corresponding to the sign of ei in line 13–17.
Note that we need a scalar multiplication on P1−s by �i in line 10 because the
�i-torsion parts of P0 and P1 should drop in order to update k to k/�i. The
�i-torsion part of Ps is Q and drops by the isogeny ϕ, since Q is in the kernel of
ϕ. In contrast, the �i-torsion part of P1−s does not drop by ϕ. We also note that
we need to calculate this scalar multiplication even when Q = ∞, i.e., one fails

A Faster Constant-Time Algorithm of CSIDH Keeping Two Points 29

Algorithm 2. Our constant-time evaluation of the class group action in CSIDH
Input: A ∈ Fp, m ∈ N, a list of integers (e1, . . . , en) s.t. −m ≤ ei ≤ m for i = 1, . . . , n,

and distinct odd primes �1, . . . , �n s.t. p = 4
∏

i �i − 1.
Output: B ∈ Fp s.t. EB = (le11 · · · lenn) ∗ EA, where li = (�i, π − 1) for i = 1, . . . , n,

and π is the p-th power Frobenius endomorphism of EA.
1: Set e′

i = m − |ei| for i = 1, . . . , n.
2: while some ei �= 0 or e′

i �= 0 :
3: Set S = {i | ei �= 0 or e′

i �= 0}.
4: Set k =

∏
i∈S �i.

5: Generate points P0 ∈ EA[π − 1] and P1 ∈ EA[π + 1] by Elligator.
6: Let P0 ← [(p + 1)/k]P0 and P1 ← [(p + 1)/k]P1.
7: for i ∈ S :
8: Set s the sign bit of ei.
9: Set Q = [k/�i]Ps.

10: Let P1−s ← [�i]P1−s.
11: if Q �= ∞ : /∗ branch not involving secret information ∗/
12: if ei �= 0 : /∗ branch involving secret information ∗/
13: Compute an isogeny ϕ : EA → EB with kerϕ = 〈Q〉.
14: Let A ← B, P0 ← ϕ(P0), P1 ← ϕ(P1), and ei ← ei − 1 + 2s.
15: else
16: Dummy computation.
17: Let A ← A, Ps ← [�i]Ps, and e′

i ← e′
i − 1.

18: end if
19: end if
20: Let k ← k/�i.
21: end for
22: end while
23: return A.

to obtain a generator of the kernel of an isogeny. The equation Q = ∞ means
the �i-torsion part of Ps has already vanished but does not mean the �i-torsion
part of P1−s has vanished. Therefore, for updating k to k/�i, we need the scalar
multiplication on P1−s by �i. In contract, in the variable-time CSIDH algorithm,
one calculates nothing when Q = ∞. This is why we said “we need “almost”
twice as many scalar multiplications” in the previous subsection. However, the
number of these additional scalar multiplications is much smaller than the total
number of scalar multiplications. For example, it is about 2% of the total number
of scalar multiplications in CSIDH-512, which is the parameter set for CSIDH
proposed by Castryck et al. [3].

Remark 1. The same as in the implementation in [15], we use Elligator for
CSIDH. It enables us to generate x-coordinates of P0 and P1 in line 5 in
Algorithm 2 by computing only one Legendre symbol. For the details, see Bern-
stein et al. [2].

Remark 2. Our dummy isogeny includes a dummy calculation corresponding to
evaluations of P1 under ϕ not only of P0 so that the calculation costs of lines
13–14 and lines 16–17 in Algorithm2 are the same.

30 H. Onuki et al.

4.3 Security Comparison with the Implementation by Meyer et al.

We claim that the security of our implementation against side-channel attacks
is equivalent to that of the implementation in [15]. Although Algorithm2 con-
tains a conditional branch on secret information, one can replace the branch by
conditional swaps and implement it without conditional branches and memory
accesses which depend on secret information.

Meyer et al. [15] claimed that their implementation is constant-time in the
sense that it can prevent the two leakage scenarios they consider [15, §3]: timing
leakage and power analysis. Timing leakage is leaking information on a secret
key by the computational time. Power analysis measures the power consumption
of the algorithm and determines blocks that represent the two main primitives
in CSIDH, scalar multiplications, and isogeny computation. Their implementa-
tion prevents these leakage scenarios because the computational time and the
order of scalar multiplications of each size and isogenies of each degree in their
implementation do not depend on a secret key.

Our implementation also prevents the above two leakage scenarios. Its compu-
tational time does not depend on information on a secret key because of dummy
isogenies. By calculating isogenies whose exponents have different signs in the
same loop, the order of scalar multiplications of each size and isogenies of each
degree do not depend on information on a secret key. Furthermore, our imple-
mentation has two branches, the same as the implementation in [15]. The first
is if Q 	= ∞ in line 11 in Algorithm 2, which does not involve secret information
and affects the computational time (the corresponding branch in the implemen-
tation in [15] is in line 9 in Algorithm 1). The second is if ei 	= 0, line 12 in
Algorithm 2, which involves secret information and does not affect the compu-
tational time (the corresponding branch in the implementation in [15] is in line
10 in Algorithm 1). This branch can be removed by using conditional swaps and
implemented securely. See the code of [15], that is available at https://zenon.cs.
hs-rm.de/pqcrypto/constant-csidh-c-implementation. We note that our imple-
mentation switches calculation for isogenies associated to positive and negative
secret exponents by the indicator s in line 8 in Algorithm2, which can be com-
puted by bit operations. There are memory accesses which depend on the secret
bit s in line 9–10 in Algorithm2. But one can implement it securely by using a
conditional swap to swap the values of P0 and P1. As a result, we conclude that
our implementation is constant-time as that of [15].

5 Experimental Results

We implemented our algorithm with the speedup techniques proposed by Meyer
et al. [15] in C. For the parameters used for the speedup techniques, see
our full paper [19]. Our code is based on the code of [15]1. (originally from

1 The code by Meyer et al. is available for download at https://zenon.cs.hs-rm.de/
pqcrypto/constant-csidh-c-implementation. The commit ID of the version we used is
7fc2abdd, the latest version on 15 Feb, 2019.

https://zenon.cs.hs-rm.de/pqcrypto/constant-csidh-c-implementation
https://zenon.cs.hs-rm.de/pqcrypto/constant-csidh-c-implementation
https://zenon.cs.hs-rm.de/pqcrypto/constant-csidh-c-implementation
https://zenon.cs.hs-rm.de/pqcrypto/constant-csidh-c-implementation

A Faster Constant-Time Algorithm of CSIDH Keeping Two Points 31

Castryck et al. [3]). Table 1 shows the cycle counts and running times for our imple-
mentation and that in [15] For the implementation in [15], we used the code on
which our code is based (the code in the footnote 1). We ran both codes on an
Intel Xeon Gold 6130 Skylake processor running Ubuntu 16.04.5 LTS. Our imple-
mentation has 29.03% fewer clock cycles than the implementation in [15], which
is almost the same as the reduction ratio expected by the evaluation of our cost
model.

Table 1. Performance comparison, averaged over 10,000 runs.

Clock cycles ×106 Wall clock time

Implementation in [15] 215.3 102.742 ms

Our implementation 152.8 72.913ms

6 Conclusion

We improved a constant-time implementation of commutative supersingular
isogeny Diffie-Hellman (CSIDH), which is isogeny-based Diffie-Hellman-style key
exchange and a candidate for post-quantum cryptography. Our implementation
is based on the constant-time implementation in Meyer et al. [15]. Whereas
they used only non-negative key intervals, we used key intervals symmetric with
respect to zero. To achieve a constant-time implementation using these inter-
vals, we constructed a new algorithm that keeps two torsion points on an elliptic
curve. The additional cost for calculation associated with this point is less than
the additional cost in [15] to achieve constant-time. Consequently, our implemen-
tation is faster than the implementation in [15]. We implemented our algorithm
in C and measuring its clock cycles. The reduction ratio measured by clock cycles
is 29.03%.

Acknowledgment. This work was supported by JST CREST Grant Number
JPMJCR14D6, Japan.

References

1. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: Proceedings of the 2013
ACM Conference on Computer and Communications Security, pp. 967–980 (2013)

2. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum circuits for the
CSIDH: optimizing quantum evaluation of isogenies. IACR Cryuptography ePrint
Archive 2018/1059. https://eprint.iacr.org/2018/1059 (to appear at Eurocrypt
2019)

3. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

https://eprint.iacr.org/2018/1059
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15

32 H. Onuki et al.

4. Cohen, H., Lenstra Jr., H.W.: Heuristics on class groups of number fields. Number
Theory Noordwijkerhout 1983, 33–62 (1984)

5. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary
degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 11

6. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 21

7. Costello, C., Smith, B.: Montgomery curves and their arithmetic. J. Crypt. Eng.
8(3), 227–240 (2018)

8. Couveigne, J.-M.: Hard homogeneous spaces. IACR Cryptology ePrint Archive
2006/291. https://eprint.iacr.org/2006/291

9. De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary
isogeny graphs. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11274, pp. 365–394. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03332-3 14

10. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingulrar elliptic
curves over Fp. Des. Codes Crypt. 78(2), 425–440 (2016)

11. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

12. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

13. Jalali, A., Azarderakhsh, R., Kermani, M.M., Jao, D.: Towards optimized and
constant-time CSIDH on embedded devices. In: Polian, I., Stöttinger, M. (eds.)
COSADE 2019. LNCS, vol. 11421, pp. 215–231. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-16350-1 12. https://eprint.iacr.org/2019/297

14. Jao, D., et al.: Supersingular isogeny key encapsulation. Submission to the NIST
Post-Quantum Cryptography Standardization project. https://sike.org

15. Meyer, M., Campos, F., Reith, S.: On Lions and Elligators: an efficient constatn-
time implementation of CSIDH. IACR Cryptology ePrint Archive 2018/1198.
https://eprint.iacr.org/2018/1198 (to appear at PQCrypto 2019)

16. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T.
(eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 137–152. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05378-9 8

17. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 24–264 (1987)

18. National Institute of Standards and Technology (NIST): NIST Post-
Quantum Cryptography Standardization (2016). https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography

19. Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T.: A faster constant-time algo-
rithm of CSIDH keeping two points IACR Cryuptography ePrint Archive 2019/353.
https://eprint.iacr.org/2019/353

20. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 12

https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-030-16350-1_12
https://doi.org/10.1007/978-3-030-16350-1_12
https://eprint.iacr.org/2019/297
https://sike.org
https://eprint.iacr.org/2018/1198
https://doi.org/10.1007/978-3-030-05378-9_8
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://eprint.iacr.org/2019/353
https://doi.org/10.1007/978-3-319-70697-9_12

A Faster Constant-Time Algorithm of CSIDH Keeping Two Points 33

21. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR
Cryptology ePrint Archive 2006/145. https://eprint.iacr.org/2006/145

22. Siegel, C.: Über die Classenzahl quadratischer Zahlkörper. Acta Arith. 1(1), 83–86
(1935)

23. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235
(2010)

https://eprint.iacr.org/2006/145

	(Short Paper) A Faster Constant-Time Algorithm of CSIDH Keeping Two Points
	1 Introduction
	2 CSIDH
	2.1 Protocol of CSIDH
	2.2 Ideal Class Group

	3 Previous Works for Constant-Time Implementation of CSIDH
	3.1 Constant-Time Implementation
	3.2 Constant-Time Implementations Based on Another Definition

	4 Our Constant-Time Implementation
	4.1 Basic Idea
	4.2 Proposed Algorithm
	4.3 Security Comparison with the Implementation by Meyer et al.

	5 Experimental Results
	6 Conclusion
	References

