
Finding Ordinary Cube Variables
for Keccak-MAC with Greedy Algorithm

Fukang Liu(B), Zhenfu Cao, and Gaoli Wang

Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

liufukangs@163.com

Abstract. In this paper, we introduce an alternative method to find
ordinary cube variables for Keccak-MAC by making full use of the key-
independent bit conditions. First, we select some potential candidates for
ordinary cube variables by properly adding key-independent bit condi-
tions, which do not multiply with the chosen conditional cube variables
in the first two rounds. Then, we carefully determine the ordinary cube
variables from the candidates to establish the conditional cube tester.
Finally, based on our new method to recover the 128-bit key, the con-
ditional cube attack on 7-round Keccak-MAC-128/256/384 is improved
to 271 and 6-round Keccak-MAC-512 can be attacked with at most 240

calls to 6-round Keccak internal permutation. It should be emphasized
that our new approach does not require sophisticated modeling. As far
as we know, it is the first time to clearly reveal how to utilize the key-
independent bit conditions to select ordinary cube variables for Keccak-
MAC.

Keywords: Hash function · Keccak · Keccak-MAC ·
Ordinary cube variables · Conditional cube attack

1 Introduction

In 2007, the U.S. National Institute of Standards and Technology (NIST)
announced a public contest aiming at the selection of a new standard for a cryp-
tographic hash function after Wang et al. made a break-through in MD-SHA
hash family [14,15]. After five years of intensive scrutiny, Keccak was selected
as the new SHA-3 standard [2].

Due to the low algebraic degree of a Keccak round, algebraic cryptanalysis has
been deeply studied for Keccak, including cube attack [5], cube-attack-like crypt-
analysis [3,5,11], conditional cube attack [8,9,12], linear structures for preimage
attack [7], one/two/three-round connector for collision attack [4,10,13].

Recently, the application of cube attack on Keccak keyed mode has attracted
researchers’ interest and several results have been obtained [3,5,8,9,11,12]. Cube
attack was first proposed by Dinur and Shamir at Eurocrypt 2009 [6], where a
primitive is treated as a black-box polynomial in terms of plaintext and secret
c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 287–305, 2019.
https://doi.org/10.1007/978-3-030-26834-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_17


288 F. Liu et al.

key. The first application of cube attack to Keccak keyed mode was presented at
Eurocrypt 2015 [5]. Two years later, at Eurocrypt 2017, Huang et al. introduced
the conditional cube attack [8] on round-reduced Keccak keyed modes based on
the pioneer work, i.e. cube attack [5,6] and cube tester [1]. Cube tester was first
proposed by Aumasson et al. [1], aiming at detecting the non-random behaviour
e.g. the cube sums are always equal to zero. Conditional cube tester detects a
non-random behaviour (the cube sums are zero) only when some conditions hold.
Therefore, once the key is involved in the conditions, conditional cube tester can
be utilized to mount key-recovery attack. Indeed, conditional cube tester can be
viewed as a key-dependent distinguisher.

At Eurocrypt 2017, Huang et al. firstly applied the conditional cube tester
to mount key-recovery attack on 5/6/7-round Keccak-MAC-512/384/256 [8].
Later at Asiacrypt 2017, an MILP-based method [9] was proposed to identify
good parameters for the conditional cube tester. Therefore, the conditional cube
attack on Keccak-MAC-512/384 was extended by one more round. However,
it seems that the modelling in [9] did not capture all factors influencing the
performance of attack. Consequently, by taking more factors into consideration,
Song et al. developed a new general MILP approach for Keccak-based primitives
at Asiacrypt 2018 [12] and presented many applications. Despite that Song et
al. claimed that 64-dimensional cube variables with only 2 key-dependent bit
conditions were found, the details of the 64-dimensional cube variables were not
reported in [12]. For the new modeling in [12], it seems sophisticated at the first
glance. However, since more factors are taken into account, it is more general and
powerful to mount new or improved attack on many Keccak-based constructions.

Due to the limited number of bits of Keccak-MAC-512 that can be controlled
for an attacker, it is very difficult to find 64-dimensional cube variables under
the conditional cube attack framework proposed by Huang et al. [8]. However,
cube-attack-like cryptanalysis works quite well for Keccak-MAC-512 and attack
on 7-round Keccak-MAC-512 was first achieved in [3], which was later slightly
improved in [11].

Up until now, the improvement for [8] are all based on the MILP app-
roach [9,12], which sometimes requires sophisticated modeling. This motivates
us to consider whether there exist other simple approaches to find sufficient cube
variables to establish the conditional cube tester.

Our Contributions. In this paper, we present an alternative method to find
ordinary cube variables for Keccak-MAC-512/384. First, we observe that there
are many potentially useful key-independent conditions to slow down the prop-
agation of ordinary cube variables, which will help determine the candidates for
ordinary cube variables. Then, we introduce a clever way to choose the ordinary
cube variables from the candidates by considering their relations in the first
round. With such a method, sufficient ordinary cube variables can be discov-
ered to establish the conditional cube tester for 6-round Keccak-MAC-512 and
7-round Keccak-MAC-384. Meanwhile, the number of key-dependent bit condi-
tions is minimum. It should be stressed that we do not use any specific greedy



Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm 289

algorithms but use the idea of greedy algorithm. Specifically, we determine a
small region of potential candidates at first and then select the final candidates
from these potential candidates. As far as we know, it is the first time to clearly
reveal how to utilize the key-independent bit conditions to select ordinary cube
variables for Keccak-MAC.

Moreover, we observe that there are many unnecessary iterations of the con-
ditional cube tester to recover the full key in [8]. Therefore, an optimal procedure
to recover the full key for 7-round Keccak-MAC-256/128 based on the conditional
cube tester in [8] is proposed and the new key-recovery attack is twice faster.
Such an optimal approach is applied to the newly discovered 64-dimensional cube
variables for 7-round Keccak-MAC-384. Consequently, conditional cube attack
on 7-round Keccak-MAC-384 is improved to 271 from 275. By carefully choosing
the order to recover the full key, we can recover the 128-bit key for 6-round
Keccak-MAC-512 with at most 240 calls to 6-round Keccak internal permuta-
tion, while it costs � 128

3 � × 22
5+3 = � 128

3 � × 235 ≈ 240.4 calls in [12]. The results
are summarized in Table 1.

Table 1. Related results of Keccak-MAC

Attack type Capacity Rounds Time Ref.

Conditional cube attack 256/512 7 272 [8]

768 7 275 [9]

1024 6 240.4 [12]

256/512/768 7 271 Sect. 4

1024 6 240 Sect. 5

Cube-attack-like cryptanalysis 1024 7 2112.6 [3]

1024 7 2111 [11]

Organization. The rest of the paper is organized as follows. The preliminaries
of this paper will be presented in Sect. 2. In Sect. 3, our tracing algorithm will
be introduced. Then, we will show our method to find enough ordinary cube
variables for Keccak-MAC-384 and Keccak-MAC-512 in Sects. 4 and 5 respec-
tively. Next, a slightly improved key-recovery method will be given in Sect. 6.
The difference between our work and previous work is explained in Sect. 7. At
last, we summarize the paper in Sect. 8.

2 Preliminaries

In this section, we will introduce the details of Keccak-MAC and some related
techniques such as cube tester and conditional cube tester.



290 F. Liu et al.

2.1 Description of Keccak-MAC

Keccak is a family of hash functions and Keccak-MAC is based on Keccak.
The Keccak internal permutations denoted by Keccak-p[b, nr] are specified by
two parameters, which are the width of permutation in bits b and the number of
rounds nr. There are many choices for b, i.e. b = 25×2l with l ∈ {0, 1, 2, 3, 4, 5, 6}.
Keccak-p[b, nr] works on a b-bit state A and iterates an identical round function
R for nr times. The state A can be viewed as a three-dimensional array of bits,
namely A[5][5][w] with w = 2l. The expression A[x][y][z] represents the bit with
(x, y, z) coordinate. At lane level, A[x][y] represents the w-bit word located at
the xth column and the yth row. In this paper, the coordinates are considered
within modulo 5 for x and y and within modulo w for z. The round function R
consists of five operations R = ι ◦ χ ◦ π ◦ ρ ◦ θ as follows.

θ : A[x][y] = A[x][y] ⊕ (
4⊕

y′=0

A[x − 1][y′]) ⊕ (
4⊕

y′=0

(A[x + 1][y′] ≪ 1)).

ρ : A[x][y] = A[x][y] ≪ r[x, y].
π : A[y][2x + 3y] = A[x][y].
χ : A[x][y] = A[x][y] ⊕ (A[x + 1][y] ∧ A[x + 2][y]).
ι : A[x][y] = A[x][y] ⊕ RC.

According to the above definition of θ operation, it could be seen that if
certain variable in every column of state has even parity, the variable will not
diffuse to other columns. In Keccak specification [2], this property is called col-
umn parity kernel, CP kernel for short.

The construction of Keccak-MAC-n is illustrated in Fig. 1. For the sake of
convenience, we denote the state A after θ, ρ, and π in round i (i ≥ 0) by Ai

θ, Ai
ρ

and Ai
π respectively. The input state of round i is denoted by Ai. The 128-bit

key is denoted by k, where ki represents the ith bit of k.

Fig. 1. Construction of Keccak-MAC-n

For Keccak-MAC-n, where n ∈ {128, 256, 384, 512}, the size of the internal
state is 1600 bits and the 128-bit key is placed at A0[0][0] and A0[1][0]. Specifi-
cally, ki is placed at A0[0][0][i] and ki+64 is placed at A0[1][0][i], where 0 ≤ i ≤ 63.
Therefore, we can obtain Observation 1.



Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm 291

Observation 1. Since

A0
θ[3][i] = A0[3][i] ⊕ (

4⊕

y=0

A0[2][y]) ⊕ (
4⊕

y=0

(A0[4][y] ≪ 1))

for 0 ≤ i ≤ 4, A0
θ[3][i] is independent of the 128-bit key. In other words, if we

add bit conditions on A0
θ[3][i], all of them are key-independent.

Then, we consider the influence of π ◦ ρ operation as shown in Fig. 2. Conse-
quently, Observation 2 can be obtained.

Fig. 2. π ◦ ρ operation

Observation 2. After π ◦ ρ operation, A0
θ[2][i] and A0

θ[4][t] are next to A0
θ[3][j]

in each row, where (i, j, t) ∈ {(2, 3, 4), (4, 0, 1), (1, 2, 3), (3, 4, 0), (0, 1, 2)}.
Our approach to determine the candidates for ordinary cube variables is

heavily based on the two observations.

2.2 Cube Tester

Cube tester was first proposed by Aumasson et al. at FSE 2009 [1] after Dinur
et al. introduced cube attack at Eurocrypt 2009 [6]. Different from standard
cube attack, which aims at key extraction, cube tester performs non-randomness
detection. In our paper, we only concentrate on a specific non-random behaviour,
i.e. the cube sums are zero. To describe cube tester, we first recall the concept
of cube attack as follows.

Theorem 1 [6]. Given a polynomial f: {0, 1}n → {0, 1} of degree d. Suppose
0 < k < d and t denotes the monomial x0 . . . xk−1. Then, f can be written as

f = t · Pt(xk, . . . , xn−1) + Qt(X),

where none of the terms of Qt(X) is divisible by t. Then the sum of f over all
values of the cube (defined by t) is

∑

x′∈Ct

f =
∑

x′∈Ct

f(x′, xk, . . . , xn−1) = Pt(xk, . . . , xn−1).



292 F. Liu et al.

If there exists such a cube Ct that the following equation always hold, then
Ct can be viewed as one type of cube tester [1], i.e. the sum over it always equals
zero.

∑

x′∈Ct

f =
∑

x′∈Ct

f(x′, xk, . . . , xn−1) = Pt(xk, . . . , xn−1) = 0.

For example, consider the following polynomial f :

f(x0, x1, x2, x3) = x0x1 + x1x2 + x2x4 + x1x3 + x1x2x4.

Then, the following equation always hold:
∑

(x0,x3)∈{0,1}2

f(x0, x1, x2, x3) = 0.

The reason is that none of the monomial in f(x0, x1, x2, x3) is divisible by x0x3.
However, if we sum f over all values of (x1, x2), then we can obtain the following
equation:

∑

(x1,x2)∈{0,1}2

f(x0, x1, x2, x3) = 1 + x4.

That is, the sum is dependent on the value of x4.

2.3 Conditional Cube Tester

The concept of conditional cube tester was firstly proposed by Huang et al. [8]
at Eurocrypt 2017. Their goal is to construct a key-dependent distinguisher.
Therefore, they have to overcome the obstacle of how to involve the key infor-
mation into the distinguisher. Motivated by this, they firstly classify the cube
variables into two types: conditional cube variable and ordinary cube variable.
The classification is based on the multiplying relations of the cube variables in
the first two rounds as follows.

• Conditional cube variables can not multiply with each other after the second
round.

• Ordinary cube variables can not multiply with each other after the first round.
• Ordinary cube variables can not multiply with conditional cube variables after
the second round.

Then, they develop a theorem to confirm the number of each type of the
cube variables in order to establish a conditional cube tester, as specified below,
whose proof is based on the relations of the cube variables in the first two rounds
as above.

Theorem 2 [8]. For (n+2)-round Keccak sponge function (n > 0), if there are
p conditional cube variables v0, v1, . . . , vp−1 and q = 2n+1 − 2p+1 ordinary cube
variables vp, vp+1, . . . , vp+q−1, then the term v0v1 . . . vp+q−1 will not appear in
the output polynomials of (n + 2)-round Keccak sponge function.



Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm 293

To make conditional cube tester work, it is essential to introduce some condi-
tions which will influence the above multiplying relations between the conditional
cube variable and ordinary cube variable in the first two round. Specifically,
only when all the introduced conditions hold will their multiplying relations
be satisfied, thus making Theorem 2 work. Among the introduced conditions,
the key-independent conditions can always be satisfied by controlling the input.
For the key-dependent conditions, whether they are satisfied is detected by the
conditional cube tester based on Theorem 2. To be more specific, the attack
procedure can be briefly divided into three steps.

Step 1: Except for the cube variables in the input state, the attacker assigns
a random value to the remaining part of it, while keeping the key-
independent bit conditions satisfied.

Step 2: The attacker starts to exhaust all possible values of the cube variables
and calculates the sum of all outputs.

Step 3: If the sum is zero, then the attacker knows that the key-dependent bit
conditions are satisfied with an overwhelming probability and therefore
he can extract some equations for the involved key bits. Otherwise, the
attacker knows the key-dependent bit conditions do not hold. For this
case, the attacker will flip some bits involved in the key-dependent bit
conditions and located in the controllable part of the input state. Then,
he goto Step 2 again.

The above procedure is only used to extract a small number of equations for
the key bits. To recover the full key, the attacker will repeat the above proce-
dure by changing the parameters of the conditions cube tester to extract more
equations for the key bits. Finally, the attacker can solve the obtained equation
system to recover some key bits. The remaining key bits can be recovered by
brute force.

3 Tracing Algorithm

Several algorithms to determine the relations of cube variables in the first two
rounds have been presented in [8]. In this section, we introduce a new method to
achieve the same goal. We do not claim that our new method have any advantages
over [8]. The purpose to use this new method is only to suit our programming.
Before introducing how to determine the candidates for ordinary cube variables,
we firstly describe how to trace the propagation of a variable in A0

θ to A1
π.

Since θ, ρ, π are all linear transformations, an equivalent linear transforma-
tion matrix M ∈ F 1600×1600

2 can be derived to express these three consecutive
operations π ◦ρ◦θ. From the definitions of the three operations, it can be known
that for each row of M , there are only 11 non-zero elements, whose values are
all 1. To reduce the size of M , we can only record the positions of M where the
corresponding value is 1 in a smaller matrix SM of size 1600 × 11. Specifically,
suppose M [i][J ] = 1 (J ∈ {j0, . . . , j10}), then we construct a smaller matrix
SM where SM [i][t] = jt for 0 ≤ t ≤ 10. Moreover, since the operation π ◦ ρ



294 F. Liu et al.

is equivalent to a permutation of bit positions, an equivalent permutation P of
size 1600 can be derived to express it.

To make the tracing algorithm more explicit, we should consider the internal
state as a boolean vector denoted by V rather than a three-dimensional array.
In addition, assume the internal state is an 1600-bit variable. For other sizes of
the internal state, the procedure to trace the propagation is similar. For the sake
of convenience, we denote the state V after θ, ρ, and π in round i (i ≥ 0) by V i

θ ,
V i

ρ and V i
π respectively. The input state of round i is denoted by V i.

Now we describe how to trace the propagation of the variable in A0
θ to A1

π.

Step 1. Suppose A0
θ[x][y][z] contains a variable, we record t0 = (5x+y)×64+z.

Step 2. Calculate how the variable in V 0
θ [t0] propagates through π ◦ ρ operation

with P . Consequently, we record t1 = P [t0].
Step 3. According to the definition of χ, after ι ◦ χ operation, three bits of V 1

will contain the variable from V 0
π [t1]. We denote the corresponding three

bit positions by t2, t3 and t4. Among the three bits, one bit will always
contain this variable. The other two bits contain this variable depending
on bit conditions. We classify these three bits into three types. The first
type is the bit that always contains the variable. The second type is
the bit that contains the variable depending on a key-independent bit
condition. The third type is the bit that contains the variable depending
on a key-dependent bit condition. Then, for each of the three bits, we
trace how the variable in V 1[pos] (pos ∈ {t2, t3, t4}) propagates to V 1

π

with Algorithm 1. The bit positions of V 1
π containing the variable from

V 1[pos] are stored in the array finalPosition.

Algorithm 1. Tracing the influenced bit positions after π ◦ ρ ◦ θ operation
1: for row in (0. . .1599) do
2: for col in (0. . .10) do
3: if SM [row][col] = pos then
4: finalPosition.push back(row)
5: break

Up until now, the propagation of the variable in A0
θ to A1

π is known, i.e. the
bit positions of A1

π containing the variable from A0
θ are known and are classified

into three types. At last, we only need focus on how the cube variable in A0

propagates to A0
θ, which can be easily finished by considering the influence of θ

operation.
Once knowing and recording how a variable propagates in the first two rounds

with or without bit conditions to slow down this propagation, it is quite easy
to determine their multiplying relations in the first two rounds. For example,
suppose we know that A0

π[x][y][z] contains a variable v′ and A0
π[x − 1][y][z] con-

tains a different variable v′′, then v′′ will multiply with v′ after the first round.
In the same way, suppose we know that A1

π[x][y][z] contains a variable v′ and



Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm 295

A1
π[x−1][y][z] contains a different variable v′′, then v′′ will multiply with v′ after

the second round.

4 Finding Ordinary Cube Variables for Keccak-MAC-384

In this section, we will expand on the procedure to find sufficient ordinary cube
variables for Keccak-MAC-384. First, the potential candidates for ordinary cube
variables will be determined by carefully adding key-independent bit conditions
to slow down its propagation. Then, we consider the multiplying relations of
these candidates after the first round and deduce some contradictions. As will
be shown, from these contradictions, we can efficiently determine how many
ordinary cube variables can eventually survive.

4.1 Determining Candidates for Keccak-MAC-384

The initial state of Keccak-MAC-384 is shown in Fig. 3 with 12 lanes set to
0. In the same way as [8,9,12], A[2][0][0] = A[2][1][0] = v0 is chosen as the
conditional cube variable with four bit conditions (A0

θ[1][4][60] = 1, A0
θ[1][0][5] =

1, A0
θ[3][1][7] = 0, A0

θ[3][2][45] = 0) to slow down its propagation. Then, the
ordinary cube variables are set in the CP kernel. The complete procedure is as
follows.

Fig. 3. Initial state of Keccak-MAC-384

• For the first column, we exhaust all 64 possible variables A[0][1][i] = A[0][2][i]
(0 ≤ i ≤ 63). Based on Observations 1 and 2, if we add bit conditions to
slow down the propagation of the variables in this case, all of them are key-
dependent bit conditions. Therefore, we do not add bit conditions. For each
of these 64 possible variables, the tracing algorithm is applied to determine
its multiplying relation with the chosen conditional cube variable in the first
two rounds. Only those are selected as candidates that they do not multiply
with v0 in the first two rounds.

• For the second column, we exhaust all 64 possible variables A[1][1][i] =
A[1][2][i] (0 ≤ i ≤ 63) and process in the same way as the first column.



296 F. Liu et al.

• For the third column, we exhaust 63× 3 possible variables A[2][0][i] =
A[2][1][i], A[2][0][i] = A[2][2][i] and A[2][1][i] = A[2][2][i] (1 ≤ i ≤ 63). Based
on Observations 1 and 2, we can add key-independent bit conditions on
A0

θ[3][t] (0 ≤ t ≤ 4) to slow down the propagation of the variables. To remove
the redundant conditions, we add a condition only when it is necessary. In
other words, if such a condition is not added and the variable satisfies the
required relation with v0 in the first two rounds, this condition is not neces-
sary and redundant. Moreover, if such a condition is added, the variable still
does not satisfy the requirement, we filter this variable.

• For the forth column, we exhaust all 64 possible variables A[3][0][i] = A[3][1][i]
(0 ≤ i ≤ 63) and process in the same way as the first column since there are
no key-independent bit conditions to slow the propagation of variables.

• For the fifth column, we exhaust 64 possible variables A[4][0][i] = A[4][1][i]
(0 ≤ i ≤ 63). Based on Observations 1 and 2, we can add key-independent
bit conditions to slow down the propagation of variables as the third column.

The candidates found with our method are presented in Table 2.

4.2 Discussion

Adding some bit conditions on A0
θ[3][t] (0 ≤ t ≤ 4) as described above will cause

the following bad cases.

Case 1: Contradiction of conditions will occur. Specifically, for the third column,
the bit condition on a certain bit i of A0

θ[3][t0] is A0
θ[3][t0][i] = 0. How-

ever, for the fifth column, the bit condition on a certain bit j of A0
θ[3][t1]

is A0
θ[3][t1][j] = 1. If i = j and t0 = t1, the contradiction of conditions is

detected. In other words, we can not choose both of their corresponding
variables as the final ordinary cube variables. Moreover, if A0

θ[3][y0][z0]
and A0

θ[3][y1][z0] are added on different bit conditions for y0 > 1, y1 > 1,
this is also a contradiction since A[3][y][z0] is set to a constant 0 for
Keccak-MAC-384 for y > 1.

Case 2: Contradiction between conditions and ordinary cube variables will
occur. Specifically, for the forth column, some of A[3][0][i] = A[3][1][i]
(0 ≤ i ≤ 63) will be chosen as candidates. The bad case is that
A[3][0][t] = A[3][1][t] is chosen as a candidate and A0

θ[3][0][t] or A0
θ[3][1][t]

is added on a condition.

Indeed, the second case can be processed in a simple way. After the candidates
are determined, if a contradiction in the second case is detected, it implies that
two ordinary variables multiplies with each other in the first round. For example,
supposing A0

θ[3][0][t] is added on a condition and A[3][0][t] = A[3][1][t] is chosen
as a candidate, it implies a variables set in A[2][4] or A[4][1] is chosen as a
candidate, which will multiply with the variable set to A[3][0][t] after the first
round. This can be seen from the π ◦ρ operation in Fig. 2. Thus, the second case
is equivalent to the case that two ordinary cube variables multiply with each
other in the first round. Benefiting from this new property, we do not have to



Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm 297

Table 2. Candidates for Keccak-MAC-384, where c is an adjustable constant over
GF(2) for each variable.

A[0][1][i] = A[0][2][i] + c

i 15 22 28 34 37 46 47 58 59
Variable v1 v2 v3 v4 v5 v6 v7 v8 v9

A[1][1][i] = A[1][2][i] + c

i 7 15 20 26 30 38 39 40 52 54 57
Variable v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20

A[2][0][i] = A[2][1][i] + c

i 1 8 12 14 15 20 23 25 28 41 42 43 45 50 52 53 61 62 63
Variable v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34 v35 v36 v37 v38 v39
Condition i=1: A0

θ[3][2][46] = 0 i=14: A0
θ[3][1][21] = 0

i=15: A0
θ[3][1][22] = 0 i=23: A0

θ[3][2][4] = 0
i=25: A0

θ[3][1][32] = 0 i=42: A0
θ[3][1][49] = 0

i=50: A0
θ[3][2][31] = 0 i=52: A0

θ[3][1][59] = 0
i=63: A0

θ[3][1][6] = 0, A0
θ[3][2][44] = 0

A[3][0][i] = A[3][1][i] + c

i 3 4 9 13 15 23 30 35 39 40 46 56 57
Variable v40 v41 v42 v43 v44 v45 v46 v47 v48 v49 v50 v51 v52

A[4][0][i] = A[4][1][i] + c

i 3 5 8 10 12 14 20 22 25 30 31 35 38 41 47 57 58 62 63
Variable v53 v54 v55 v56 v57 v58 v59 v60 v61 v62 v63 v64 v65 v66 v67 v68 v69 v70 v71
Condition i=3: A0

θ[3][0][59] = 1 i=8: A0
θ[3][0][0] = 1

i=20: A0
θ[3][0][12] = 1 i=22: A0

θ[3][0][14] = 1
i=25: A0

θ[3][0][17] = 1 i=30: A0
θ[3][4][1] = 1, A0

θ[3][0][22] = 1
i=35: A0

θ[3][4][6] = 1, A0
θ[3][0][27] = 1 i=38: A0

θ[3][4][9] = 1
i=41: A0

θ[3][0][33] = 1 i=57: A0
θ[3][0][49] = 1

A[2][0][i] = A[2][2][i] + c

i 1 5 6 14 15 16 20 21 27 30 33 38 39 40 41 46 51 52 57 61 62
Variable v72 v73 v74 v75 v76 v77 v78 v79 v80 v81 v82 v83 v84 v85 v86 v87 v88 v89 v90 v91 v92
Condition i=1: A0

θ[3][3][23] = 0 i=14: A0
θ[3][1][21] = 0, A0

θ[3][3][36] = 0
i=15: A0

θ[3][1][22] = 0 i=20: A0
θ[3][3][42] = 0

i=30: A0
θ[3][1][37] = 0 i=33: A0

θ[3][3][55] = 0
i=38: A0

θ[3][1][45] = 0 i=40: A0
θ[3][1][47] = 0

i=46: A0
θ[3][1][53] = 0 i=52: A0

θ[3][1][59] = 0
i=57: A0

θ[3][1][0] = 0 i=62: A0
θ[3][3][20] = 0

A[2][1][i] = A[2][2][i] + c

i 1 11 14 15 18 19 20 24 41 52 56 58 61 62
Variable v93 v94 v95 v96 v97 v98 v99 v100 v101 v102 v103 v104 v105 v106
Condition i=1: A0

θ[3][2][46] = 0, A0
θ[3][3][23] = 0 i=14: A0

θ[3][3][36] = 0
i=18: A0

θ[3][2][63] = 0 i=20: A0
θ[3][3][42] = 0

i=56: A0
θ[3][3][14] = 0 i=62: A0

θ[3][3][20] = 0

process the second bad case and only need concentrate on the relation of the
candidates in the first round as well as the contradiction caused by conditions.

4.3 Deducing Contradictions

The contradictions of candidates are deduced from two cases. The first case is
that variables multiply with each other in the first round. The second case is that
there is contradiction of conditions. The contradictions deduced are displayed in
Table 3. In this table, vi{vj0 , . . . , vjn} means vi can not be chosen with any of
{vj0 , . . . , vjn} as the final candidates at the same time. We count the times that



298 F. Liu et al.

each variable appears in these contradictions and do not choose the one which
appears more than one time as marked in red and blue. However, although
some variables appear two times as marked in green in this table, we can still
choose them. Therefore, for the obtained contradictions, at most 28 variables
can be derived. Moreover, there are 56 fully free variables, i.e. there are no
contradictions on them.

Table 3. Contradictions of candidates

v1{v70} v2{v54, v63} v3{v19} v5{v59} v7{v62}
v8{v12, v53, v66} v11{v77} v12{v79} v13{v80} v15{v84}
v16{v85} v17{v86, v101} v20{v104} v22{v44} v27{v46}
v29{v47} v34{v52} v37{v41} v41{v57, v91} v43{v74}
v45{v63, v77} v46{v65} v48{v67} v49{v82} v50{v84}

Observe that we consider the third column under three cases, which will cause
two problems. Specifically, if A[2][0][t] = A[2][1][t] + c, A[2][0][t] = A[2][2][t] + c
and A[2][1][t] = A[2][2][t]+c are chosen simultaneously, only two variables rather
than three variables can be obtained. In this case, we should change the variables
as A[2][0][t] = vx0 , A[2][1][t] = vx1 , A[2][2][t] = vx0 + vx1 + c. This is due to that
the ordinary cube variables are set in the CP kernel. According to Table 2, there
are 8 possible values for t and they are {1, 14, 15, 20, 41, 52, 61, 62}. Therefore,
for the worst case, we can finally obtain 28+56−8 = 76 ordinary cube variables,
which is much larger than the required number (63) to mount key-recovery attack
on 7-round Keccak-MAC-384.

On the other hand, if two of A[2][0][t] = A[2][1][t]+ c, A[2][0][t] = A[2][2][t]+
c, A[2][1][t] = A[2][2][t] + c are chosen simultaneously, we should change the
variables as A[2][0][t] = vx0 , A[2][1][t] = vx1 , A[2][2][t] = vx0 + vx1 + c.

One choice of the 64-dimensional cube variables to establish the conditional
cube tester is displayed in Table 4.

5 Finding Ordinary Cube Variables for Keccak-MAC-512

Although 32-dimensional cube variables have been found with MILP to establish
the 6-round conditional cube tester for Keccak-MAC-512 and the time complex-
ity is practical, we want to explain how to apply our method to achieve the
same goal. This is for a better understanding of the differences between our
method and others based on MILP. Now, we expand on how to find sufficient
cube variables for Keccak-MAC-512.

In a similar way for Keccak-MAC-384, 32 candidates for ordinary cube vari-
ables are discovered as displayed in Table 5. The corresponding contradictions
are as follows.

v2{v24}, v7{v26}, v9{v27}, v14{v32}, v17{v21}.



Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm 299

Table 4. One choice of ordinary cube variables for Keccak-MAC-384

Free ordinary cube variables
(56 − 6 = 50 in total)

v4, v6, v9, v10, v14, v18, v21, v23, v24, v25,
v26, v28, v30, v31, v32, v33, v35, v36, v38, v39,
v40, v42, v51, v55, v56, v58, v60, v61, v64, v68,
v69, v71, v72, v73, v75, v76, v78, v81, v83, v87,
v88, v89, v90, v92, v93, v94, v95, v96, v97, v98,
v99, v100, v102, v103, v105, v106
{v21, v72, v93}, {v24, v75, v95}, {v25, v76, v96}
{v26, v78, v99}, {v35, v89, v102} and {v38,
v92, v106} provide two variables respectively

Ordinary cube variables derived
from contradictions (13 in total)

v1, v54, v63, v3, v5, v7, v53, v66, v11, v79, v13,
v15, v16

Conditional cube variable v0

Key-dependent conditions A0
θ[1][4][60] = 1, A0

θ[1][0][5] = 1

Key-independent conditions for v0 A0
θ[3][1][7] = 0, A0

θ[3][2][45] = 0

Other key-independent conditions
for ordinary cube variables

Refer to Table 3 according to the chosen
variables

Table 5. Candidates for Keccak-MAC-512, where c is an adjustable constant over
GF(2) for each variable.

A[2][0][i] = A[2][1][i] + c

i 1 8 12 14 15 20 23 25 28 41 42 43 45 50 52 53 61 62 63
Variable v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19
Condition i=1: A0

θ[3][2][46] = 0 i=14: A0
θ[3][1][21] = 0

i=15: A0
θ[3][1][22] = 0 i=23: A0

θ[3][2][4] = 0
i=25: A0

θ[3][1][32] = 0 i=42: A0
θ[3][1][49] = 0

i=50: A0
θ[3][2][31] = 0 i=52: A0

θ[3][1][59] = 0
i=63: A0

θ[3][1][6] = 0, A0
θ[3][2][44] = 0

A[3][0][i] = A[3]1][i] + c

i 3 4 9 13 15 23 30 35 39 40 46 56 57
Variable v20 v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32

Therefore, there will be 32 − 5 = 27 possible ordinary cube variables in total
if the ordinary cube variables are set only in the CP kernel. As a result, we can
not mount key-recovery attack on 6-round Keccak-MAC-512, which requires 31
ordinary cube variables if only v0 is chosen to be the conditional cube variable.

Based on [12], the variables which multiply with v0 only in the second round
can be leveraged as well. For an intuitive example, suppose one variable vx0

multiplies with v0 only in the second round and the multiplying bit position is
p0. If another variable vx1 multiplies with v0 only in the second round and the
multiplying bit position is p0 as well, then setting vx0 = vx1 will cause the already
filtered two variables become one possible variable. Then, the goal becomes how
to find these possible variables.

Suppose A0
θ[i][j][k] contains a variable, then after χ operation, three bits will

contain this variable. Based on the definition of χ operation, among the three



300 F. Liu et al.

bits, one bit will always contain this variable and the other two bits contain this
variable depending on the conditions. We classify the three bits into three types.

Type-1: It always contains this variable.
Type-2: It contains this variable depending on a key-independent bit condition.
Type-3: It contains this variable depending on a key-dependent bit condition.

Then, we trace how the three bits propagate to the second round with the tracing
algorithm. Specifically, we trace the Type-1 bit and record the influenced bits of
A1

π multiplying with v0 in the second round. For the Type-2 and Type-3 bits,
we process in the same way. The recorded bits for Type-1, Type-2 and Type-3
are defined as core bits, independent-key bits and key-dependent bits. Since our
focus is the minimal key-dependent conditions, once the key-dependent bits are
detected, the corresponding variable should not be chosen as a candidate.

With the above method, we reconsider the filtered ordinary cube variables
set in the CP kernel. Besides, the variables set to a single bit are also considered.
The final result obtained is displayed in Table 6.

For a better understanding of this table, we take the variable A[3][1][8] as
instance. For the first column, it means A[3][1][8] is set to be a variable. For
the second column, it means 5 bits of A1

π will multiply with v0 only in the
second round. For the third column, {656,1003} means the two bits of A1

π, i.e.
A1

π[0][2][16] and A1
π[0][3][43], will multiply with v0 only in the second round

depending on the same key-independent bit condition. The last column means
A[3][1][8] can not be chosen as a variable with any of v1 and v31 in Table 5
simultaneously.

According to Table 6, at most three more possible ordinary cube variables
can be obtained. One choice is as follows:

A[3][0][58] = A[3][1][58] = A[2][0][24] = A[2][1][24] = ve0 ,

A[3][0][61] = ve1 , A[3][1][61] = ve2 ,

A[2][0][26] = A[2][1][26] = ve3 , ve3 = ve2 + ve1

A[2][0][46] = A[2][1][46] = ve2 .

Condition : A0
θ[3][3][20] = 0, A0

θ[3][4][21] = 0, A0
θ[3][1][53] = 0.

According to Table 6, adding A[2][0][37] = A[2][1][37] = ve2 to the above
variables and converting the bit condition A0

θ[3][1][53] = 0 into A0
θ[3][1][53] = 1 is

also possible. However, it can not help improve the number of possible variables.
In fact, there are many interesting cases. For example, if A[3][0][60] = A[3][1][60]
does not multiply with v16 in the first round, we can obtain one more candidate.
For the third row, if {652, 1109} does not depend on the same condition, then
we can add one key-independent bit condition to prevent the propagation to the
652-nd bit and another key-independent bit condition to allow the propagation
to the 1109-th bit of A1

π.
Then we test whether vei

(0 ≤ i ≤ 3) multiplies with each other in the first
round and check whether the three bit conditions to slow down the propagation
of ve1 and ve2 are contradict with the conditions in Table 5. It is shown that the



Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm 301

Table 6. Possible candidates for Keccak-MAC-512

Possible variables Core bits Key-independent bits Contradictions

A[2][0][4] = A[2][1][4] 1540

A[2][0][5] = A[2][1][5] 1109 {652, 1109}
A[2][0][9] = A[2][1][9] 848, 467 {656, 1003}
A[2][0][13] = A[2][1][13] 652, 1109

A[2][0][16] = A[2][1][16] 1472 515 v25

A[2][0][24] = A[2][1][24] 515

A[2][0][26] = A[2][1][26] 665

A[2][0][29] = A[2][1][29] 71, 1032 241

A[2][0][33] = A[2][1][33] 491 v29

A[2][0][35] = A[2][1][35] 1131, 42 1242

A[2][0][37] = A[2][1][37] 1040

A[2][0][46] = A[2][1][46] 903 1040

A[2][0][51] = A[2][1][51] 767, 1160

A[2][0][54] = A[2][1][54] 1510

A[2][0][57] = A[2][1][57] 170 205

A[2][0][60] = A[2][1][60] 1280 1540 v20

A[3][0][41] = A[3][1][41] 113

A[3][0][43] = A[3][1][43] 848

A[3][0][50] = A[3][1][50] 42 v12

A[3][0][58] = A[3][1][58] 515

A[3][0][60] = A[3][1][60] 665 v16

A[3][0][61] = A[3][1][61] 903

A[3][1][8] 170, 848, 467, 1382, 1003 {656,1003}, {903}, {1237} v1, v31

A[3][0][32] 491, 903, 1382 {13}, {848}, {775} v29

A[3][0][61] 665 {42}, {1348}
A[3][1][61] 903, 665 {42}, {1348}

three variables are all valid. Therefore, we can obtain at most 32 − 5 + 3 = 30
ordinary cube variables without key-dependent bit conditions. It reveals in a
way why [12] can only discover the same number of such ordinary variables with
a solver. However, to mount key-recovery attack on 6-round Keccak-MAC-512,
we need 31 ordinary cube variables. Thus, we try to search ordinary cube vari-
ables set in the CP kernel with only one key-dependent bit condition, which
satisfy the required relation with v0 and the chosen 32 + 4 = 36 candidates
for ordinary cube variables. Our searching result is displayed in Table 7. Thus,
there are many possible choices for 31 ordinary cube variables, i.e. at least
25 × 12. The verification can be found at https://github.com/Crypt-CNS/
Keccak ConditionalCubeAttack.git.

6 Recovering Full Key

In this section, a new slightly improved way to recover 128-bit key for Keccak-
MAC is presented by removing unnecessary iterations of conditional cube tester.

https://github.com/Crypt-CNS/Keccak_ConditionalCubeAttack.git
https://github.com/Crypt-CNS/Keccak_ConditionalCubeAttack.git


302 F. Liu et al.

Table 7. Candidates for Keccak-MAC-512 with one key-dependent bit condition

Variable Conditions

A[2][0][11] = A[2][1][11] A0
θ[1][4][7] = 1

A[2][0][19] = A[2][1][19] A0
θ[1][4][15] = 1

A[2][0][21] = A[2][1][21] A0
θ[1][0][26] = 1, A0

θ[3][2][2] = 0

A[2][0][22] = A[2][1][22] A0
θ[1][0][27] = 1

A[2][0][30] = A[2][1][30] A0
θ[3][1][37] = 0, A0

θ[1][0][35] = 1

A[2][0][34] = A[2][1][34] A0
θ[1][0][39] = 1, A0

θ[3][2][15] = 0

A[2][0][44] = A[2][1][44] A0
θ[3][1][51] = 0, A0

θ[1][0][49] = 1

A[2][0][56] = A[2][1][56] A0
θ[1][4][52] = 1, A0

θ[3][1][63] = 0

A[3][0][12] = A[3][1][12] A0
θ[4][1][20] = 0

A[3][0][20] = A[3][1][20] A0
θ[4][2][36] = 0

A[3][0][29] = A[3][1][29] A0
θ[2][4][60] = 1

A[3][0][34] = A[3][1][34] A0
θ[2][4][1] = 1

In [8], 64 iterations of the conditional cube tester were used to recover the 128-
bit key for Keccak-MAC-256. For each iteration, it costs 264+2 = 266 to recover
2-bit key. Observe that once there are only a few key bits to be recovered, there
is no need to iterate the conditional cube tester since each iteration is costly and
only 2 bits are recovered.

Taking Keccak-MAC-128/256 for instance, for the 64-dimensional cube vari-
able [8], after 31 iterations in z-axis of the conditional cube tester, 62 bits of key
can be recovered. Then, the remaining 66 bits can be recovered by brute force.
Therefore, the time complexity is improved to 266 × 31 + 266 = 271 from 272.
Similarly, for the 64-dimensional cube variables in Table 4, we can recover the
128-bit key for 7-round Keccak-MAC-384 with time complexity 271.

For the conditional cube attack on 6-round Keccak-MAC-512, we choose
A[2][0][11] = A[2][1][11] in Table 7 as the ordinary cube variable with one key-
dependent bit condition A0

θ[1][4][7] = 1, while A[2][0][19] = A[2][1][19] is chosen
in [12]. For our choice, only 31 iterations in z-axis is enough. Then, 3 × 31 = 93
bits can be recovered with time complexity 232+3×31 = 235×31. The remaining
128 − 93 = 35 bits can be recovered by brute force. The order to recover 93 bits
of key with conditional cube tester is shown in Table 8. Therefore, the total
time complexity becomes 235 × 31 + 235 = 240. However, the time complexity
is estimated as � 128

3 � × 22
5+3 = � 128

3 � × 235 = 240.4 in [12], which implies 64
iterations of the conditional cube tester are used to recover the 128-bit key.

7 Comparison with Previous Work

Our work is heavily based on [8]. However, Huang et al. did not consider the
potentially useful key-independent bit conditions to slow down the propagation
of ordinary cube variables [8].



Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm 303

Table 8. The order to recover 93 bits of key with conditional cube tester

(k0, k53, k62 ⊕ k126), (k1, k54, k63 ⊕ k127), (k2, k55, k0 ⊕ k64), (k3, k56, k1 ⊕ k65),
(k4, k57, k2 ⊕ k66), (k5, k58, k3 ⊕ k67), (k6, k59, k4 ⊕ k68), (k7, k60, k5 ⊕ k69),
(k8, k61, k6 ⊕ k70), (k9, k62, k7 ⊕ k71), (k10, k63, k8 ⊕ k72), (k22, k11, k20 ⊕ k84),
(k23, k12, k21 ⊕ k85), (k24, k13, k22 ⊕ k86), (k25, k14, k23 ⊕ k87), (k26, k15, k24 ⊕ k88),
(k27, k16, k25 ⊕ k89), (k28, k17, k26 ⊕ k90), (k29, k18, k27 ⊕ k91), (k30, k19, k28 ⊕ k92),
(k31, k20, k29 ⊕ k93), (k32, k21, k30 ⊕ k94), (k44, k33, k42 ⊕ k106), (k45, k34, k43 ⊕ k107),
(k46, k35, k44 ⊕ k108), (k47, k36, k45 ⊕ k109), (k48, k37, k46 ⊕ k110), (k49, k38, k47 ⊕ k111),
(k50, k39, k48 ⊕ k112), (k51, k40, k49 ⊕ k113), (k52, k41, k50 ⊕ k114).

As for [9], it seems that the key-independent bit conditions have been consid-
ered. However, it is strange that Li et al. found 63 ordinary cube variables with
6 key-dependent bit conditions for Keccak-MAC-384, while we can find much
more ordinary cube variables without key-dependent bit conditions, i.e. at least
76 variables. Besides, Li et al. only found 25 ordinary cube variables set in the
CP kernel for Keccak-MAC-512, while we can find 32 − 5 = 27 ordinary cube
variables set in the CP kernel. Therefore, we guess that the key-independent bit
conditions were not fully leveraged in [9].

As for [12], minimum key-dependent bit conditions is considered in the model.
In that paper, one instance of 31 ordinary cube variables for Keccak-MAC-
512 was presented, which is almost the same with what we found. However, it
is strange that there are 18 key-independent bit conditions to slow down the
propagation of the ordinary cube variables. With our approach, there are at
most 10+3+1 = 14 key-independent bit conditions for ordinary cube variables.
If we choose the same cube variables as [12], only 9+3 = 12 key-independent bit
conditions are sufficient. Indeed, we can reach the minimum key-independent
bit conditions, which is 8 + 3 = 11. Thus, we guess the redundancy in key-
independent bit conditions are not well processed in the modeling in [12]. It
should be noted that the redundancy of key-independent bit conditions will not
affect the time complexity to recover the key. However, from the scientific point,
if there is a more accurate answer, why not choose it?

In addition, a new slightly improved approach to recover the 128-bit key is
introduced. This is based on the observation that many iterations of the con-
ditional cube tester are costly once a few bits of key are left. Consequently, we
improve the conditional cube attack on 7-round Keccak-MAC-128/256/384 and
6-round Keccak-MAC-512.

8 Conclusion

An algorithm to search ordinary cube variables for Keccak-MAC is developed.
The first step is to identify a small region of potential candidates by making
full use of the key-independent bit conditions. Then, these candidates are fur-
ther filtered according to their relations after the first round with an efficient



304 F. Liu et al.

approach. In this way, sufficient ordinary cube variables can be discovered to
establish the conditional cube tester. Combined with the new slightly improved
way to recover the key, the time complexity of the conditional cube attack on
7-round Keccak-MAC-128/256/384 and 6-round Keccak-MAC-512 are improved
to 271 and 240 respectively.

Acknowledgement. We thank the anonymous reviewers of IWSEC 2019 for their
insightful comments and suggestions. Fukang Liu and Zhenfu Cao are supported
by National Natural Science Foundation of China (Grant No.61632012, 61672239).
Gaoli Wang is supported by the National Natural Science Foundation of China (No.
61572125) and National Cryptography Development Fund (No. MMJJ20180201).

References

1. Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery
attacks on reduced-round MD6 and trivium. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03317-9 1

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference (2011).
http://keccak.noekeon.org

3. Bi, W., Dong, X., Li, Z., Zong, R., Wang, X.: MILP-aided cube-attack-like crypt-
analysis on Keccak keyed modes. Cryptology ePrint Archive, Report 2018/075
(2018). https://eprint.iacr.org/2018/075

4. Dinur, I., Dunkelman, O., Shamir, A.: New attacks on Keccak-224 and Keccak-
256. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 442–461. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5 25

5. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and
cube-attack-like cryptanalysis on the round-reduced Keccak sponge function. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 733–761.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 28

6. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 16

7. Guo, J., Liu, M., Song, L.: Linear structures: applications to cryptanalysis of round-
reducedKeccak. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10031, pp. 249–274. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53887-6 9

8. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack
on reduced-round Keccak sponge function. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10211, pp. 259–288. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56614-6 9

9. Li, Z., Bi, W., Dong, X., Wang, X.: Improved conditional cube attacks on Keccak
keyed modes with MILP method. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 99–127. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 4

10. Qiao, K., Song, L., Liu, M., Guo, J.: New collision attacks on round-reduced Kec-
cak. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212,
pp. 216–243. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7 8

https://doi.org/10.1007/978-3-642-03317-9_1
https://doi.org/10.1007/978-3-642-03317-9_1
http://keccak.noekeon.org
https://eprint.iacr.org/2018/075
https://doi.org/10.1007/978-3-642-34047-5_25
https://doi.org/10.1007/978-3-662-46800-5_28
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-319-56614-6_9
https://doi.org/10.1007/978-3-319-70694-8_4
https://doi.org/10.1007/978-3-319-70694-8_4
https://doi.org/10.1007/978-3-319-56617-7_8


Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm 305

11. Song, L., Guo, J.: Cube-attack-like cryptanalysis of round-reduced Keccak using
MILP. IACR Trans. Symmetric Cryptol. 2018(3), 182–214 (2018)

12. Song, L., Guo, J., Shi, D., Ling, S.: New MILP modeling: improved conditional
cube attacks on Keccak-based constructions. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018. LNCS, vol. 11273, pp. 65–95. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03329-3 3

13. Song, L., Liao, G., Guo, J.: Non-full sbox linearization: applications to collision
attacks on round-reduced Keccak. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 428–451. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63715-0 15

14. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 2

15. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 2

https://doi.org/10.1007/978-3-030-03329-3_3
https://doi.org/10.1007/978-3-030-03329-3_3
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/11426639_2

	Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm
	1 Introduction
	2 Preliminaries
	2.1 Description of Keccak-MAC
	2.2 Cube Tester
	2.3 Conditional Cube Tester

	3 Tracing Algorithm
	4 Finding Ordinary Cube Variables for Keccak-MAC-384
	4.1 Determining Candidates for Keccak-MAC-384
	4.2 Discussion
	4.3 Deducing Contradictions

	5 Finding Ordinary Cube Variables for Keccak-MAC-512
	6 Recovering Full Key
	7 Comparison with Previous Work
	8 Conclusion
	References




