
CCA-Secure Leakage-Resilient
Identity-Based Key-Encapsulation

from Simple (Not q-type) Assumptions

Toi Tomita1,2(B), Wakaha Ogata1, and Kaoru Kurosawa3

1 Tokyo Institute of Technology, Tokyo, Japan
{tomita.t.ae,ogata.w.aa}@m.titech.ac.jp

2 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
3 Ibaraki University, Ibaraki, Japan

kaoru.kurosawa.kk@vc.ibaraki.ac.jp

Abstract. In this paper, we propose a new leakage-resilient identity-
based encryption (IBE) scheme that is secure against chosen-ciphertext
attacks (CCA) in the bounded memory leakage model. It is the first
CCA-secure leakage-resilient IBE scheme which does not depend on q-
type assumptions. More precisely, it is secure under the DLIN assump-
tion for symmetric bilinear groups and under the XDLIN assumption for
asymmetric bilinear groups, respectively.
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1 Introduction

1.1 Background

Most of the encryption schemes known so far have been proven secure by assum-
ing that the secret key is completely hidden. However, in the real world, a partial
information of the secret key may leak by side-channel attacks [6,14,20] or a cold-
boot attack [15]. In recent years, extensive research effort has been invested in
providing encryption schemes which are provably secure even in this setting.
Such schemes are said to be leakage-resilient.

Akavia et al. [2] introduced the bounded memory leakage model in which a
bounded amount of information of the secret key is leaked to the adversary. Naor
and Segev [26] showed how to construct leakage-resilient public-key encryption
schemes from hash proof systems (HPS) in this model. (Other constructions
were given by [4,18,22].) Qin et al. [28] showed a generic method to construct
a CCA-secure leakage-resilient encryption scheme from any tag-based strongly
universal2 HPS.

Regarding identity-based encryption (IBE) schemes, CPA-secure leakage-
resilient IBE schemes were shown by Akavia et al. [2], Alwen et al. [3] and
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Chow et al. [8]. Furthermore, the scheme of Kurosawa and Phong [21] achieves
the leakage rate 1 − o(1) under the DLIN assumption, where the leakage rate is
defined as

size of leakage
size of secret key

.

On the other hand, CCA-secure leakage-resilient IBE schemes were shown
by Alwen et al. [3], Sun et al. [30] and Li et al. [24]. Unfortunately, all these
CCA-secure leakage-resilient IBE schemes rely on q-type assumptions. Due to
the Cheon attack [7], it is better to avoid such assumptions.

1.2 Our Contribution

In this paper, we propose the first CCA-secure leakage-resilient IBE scheme
which does not depend on q-type assumptions. More precisely, it is secure under
the DLIN assumption for symmetric bilinear groups and under the XDLIN
assumption for asymmetric bilinear groups. (See Sect. 2.1 for the types of bilinear
groups.)

In fact, we construct a CCA-secure leakage-resilient IB-KEM. A CCA-secure
leakage-resilient IBE scheme is obtained by combining our IB-KEM with any
CCA-secure symmetric-key encryption scheme (which does not need to be
leakage-resilient).

Our IB-KEM scheme is obtained by applying the technique of Qin et al. [28]
to the CPA-secure leakage-resilient IBE scheme of Kurosawa and Phong [21].
Hereby, we can achieve the leakage rate 1/10. Our scheme will be able to gener-
alize to k-linear assumption.

Table 1 shows a comparison of CCA-secure leakage-resilient IBE schemes.

Table 1. Comparison of CCA-secure leakage-resilient IBE schemes

Schemes Assumption Leakage rate

Alwen et al. [3] q-type 1/6

Sun et al. [30] q-type 1/6

Li et al. [24] q-type 1/4

Ours (KEM) XDLIN or DLIN 1/10

1.3 Various Models for Leakage-Resilient

Several researchers consider some variants of leakage models to capture practical
issues. We summarize some leakage models below.

Micali and Reyzin [25] considered the “only computation leak information”
model to deal with physical observation via side-channel attacks. However, this
model could not capture key leakage attacks, such as a cold-boot attack. To
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capture key leakage attacks, Akavia et al. [2] proposed the bounded memory
leakage model, in which an adversary can get partial information on secret keys.
Brakerski et al. [5] and Dodis et al. [9] presented a new model called continual
memory leakage model, which allows leakage on the private key in many periods
of time. In this model, the secret key is updated over time and the total leakage
over the lifetime of the system is unbounded. Dodis et al. [10] invented the
auxiliary input model, in which the entire secret could be leaked information-
theoretically, provided that it is computationally infeasible to compute the secret.

All these leakage models only consider leakage occurring before the challenge
ciphertext is given to the adversary. In response to this, Halevi and Lin [16]
proposed the after-the-fact leakage model, in which an adversary can obtain
leaked information after seeing the challenge ciphertext.

1.4 Organization

The rest of the paper is organized as follows. Section 2 introduces notations,
some building blocks, and computational assumptions. Section 3 describes the
definition of IB-KEM and the leakage-resilient CCA-security. We present the
concrete construction of our CCA-secure leakage-resilient IB-KEM scheme in
Sect. 4 and its security proof in Sect. 5. Finally, the conclusion of this paper is
given in Sect. 6.

2 Preliminaries

2.1 Notations

We introduce some notations used in this paper. Let λ ∈ N denote the security
parameter. We say that a function f(λ) is negligible in λ if it is smaller than all
polynomial fractions for a sufficiently large λ. For a finite set S, we use s ←$ S
to denote the process of sampling an element s from S uniformly at random and
let |S| denote its cardinality.

Let GGen be a probabilistic polynomial time (PPT) algorithm that
on input the security parameter 1λ returns a description params =
(G1,G2,GT , q, g1, g2, e) of pairing groups, where G1, G2, GT are cyclic groups
of a prime order q, g1 and g2 are generators of G1 and G2, respectively, and
e : G1 × G2 → GT is an efficiently computable (non-degenerated) bilinear map.
Define gT := e(g1, g2), which is a generator of GT .

We refer to [31] for a description of types of bilinear groups. There are three
types of bilinear groups according to whether efficient isomorphisms exist or not
between G1 and G2 [13]. In type 1, both the isomorphism ψ : G2 → G1 and
its inverse ψ−1 : G1 → G2 are efficiently computable, i.e., it can be regarded as
G1 = G2. In type 2, the isomorphism ψ : G2 → G1 is efficiently computable but
its inverse is not. In type 3, there are no efficient isomorphisms between G1 and
G2. Type 1 pairing groups are called symmetric, and type 2 and 3 pairing groups
are called asymmetric. We assume type 3 pairing groups in our scheme, but our
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scheme also works in type 1 and 2 setting under appropriate computational
assumptions.

We use implicit representation of group elements as introduced in [12]. For
s ∈ {1, 2, T } and a ∈ Zq we define [a]s := ga

s ∈ Gs as the implicit representation
of a in Gs. Similarly, for a matrix

A =

⎛
⎜⎝

a1,1 . . . a1,m

...
. . .

...
an,1 . . . an,m

⎞
⎟⎠ ∈ Z

n×m
q

we define

[A]s :=

⎛
⎜⎝

g
a1,1
s . . . g

a1,m
s

...
. . .

...
g

an,1
s . . . g

an,m
s

⎞
⎟⎠ ∈ G

n×m
s

as the implicit representation of A in Gs. Note that it is easy to compute [AB]s
given ([A]s ,B) or (A, [B]s) with appropriate dimensions. We define [A]1◦[B]2 :=
e ([A]1 , [B]2) = [AB]T that can be efficiently computed given [A]1 and [B]2.

2.2 External Decisional Linear Assumption

We assume the following property.

Definition 1 (External Decisional Linear Assumption: XDLIN [1]). Let
s ∈ {1, 2}. We say that the XDLIN assumption holds relative to GGen in group
Gs if for any PPT adversary D, the following is negligible in λ:

AdvxdlinGGen,D(λ) :=∣∣Pr[D(params, [A]1 , [A]2 ,
[
AT r

]
s
) = 1] − Pr[D(params, [A]1 , [A]2 , [y]s) = 1]

∣∣ ,

where params ← GGen(1λ), a1, a2 ←$Zq, r ←$Z
2
q, y ←$Z

3
q, and

A :=
(

a1 0 1
0 a2 1

)
.

This assumption is a variant of the standard decisional linear (DLIN) assump-
tion [27] for asymmetric pairing groups. The XDLIN assumption is equivalent
to the DLIN assumption in the generic group model.

2.3 Statistical Distance, Min-Entropy and Randomness Extractor

The statistical distance between random variables X,Y over a finite domain S
is defined by

Δ(X,Y ) :=
1
2

∑
s∈S

|Pr[X = s] − Pr[Y = s]| .
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The min-entropy of X is defined by

H∞(X) := − log2
(
max

x
Pr[X = x]

)
.

Furthermore, average min-entropy of X conditioned on Y is defined by

H̃∞(X | Y ) := − log2

(∑
y

2−H∞(X|Y =y) Pr[Y = y]

)
,

as defined in [11], which also proved the following lemma.

Lemma 1 ([11, Lemma 2.2]). Let � be a positive integer. Let X,Y and Z be
random variables. If Y has at most 2� possible values, then

H̃∞(X | Y,Z) ≥ H̃∞(X,Y | Z) − � ≥ H̃∞(X | Z) − �.

One of main tools in our construction is a randomness extractor [11].

Definition 2 (Randomness Extractor). Let n be a positive integer, and φ >
n, εExt be positive reals, and D,S be finite sets. A function Ext : D ×S → {0, 1}n

is called a (φ, εExt)-randomness extractor if for all pairs of random variables
(X, I) such that X is a random variable over D satisfying H̃∞(X | I) ≥ φ,

Δ((Ext(X,S), S, I), (R,S, I)) ≤ εExt

holds, where S is uniform over S and R is uniform over {0, 1}n.

2.4 Hash Functions

Let H : D → R be a hash function, where D = D(λ) and R = R(λ) are sets. We
require the following property of hash functions for our scheme.

Definition 3 (Target Collision Resistance). We say a hash function H is
target collision resistant if for any PPT adversary A,

AdvtcrH,A(λ) := Pr[x∗ ←$ D, x ←$A(x∗) : x �= x∗ ∧ H(x) = H(x∗)]

is negligible in λ.

2.5 Useful Facts

Here, we introduce useful facts used in our security proof. We use the following
lemmas to prove adaptive identity security of our scheme.

Lemma 2 (Programmable hash function [17, Theorem 7]). Let m,Q be
integers. We choose h = (h1, . . . , hm) ∈ Z

m
q as follows: (1) set J = Q2, (2) sam-

ple ui,j ←$ {−1, 0, 1} for i = 1, . . . , m and j = 1, . . . , J , (3) set hi =
∑J

j=1 ui,j.
For h = (h1, . . . , hm), we define

βh(x) := 1 +
m∑

i=1

x[i]hi mod q,
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where x = (x[1], . . . , x[m]) ∈ {0, 1}m. Then, for any distinct id1, . . . , idQ, id∗ ∈
{0, 1}m, we have

Pr

⎡
⎣

Q∧
j=1

(βh(id j) �= 0) ∧ (βh(id∗) = 0)

⎤
⎦ ≥ Θ

1√
mQ

,

where the probability is taken over the choice of h.

Lemma 3 ([32, Lemma 5]). Let x1, . . . , xl ∈ R be reals such that

l∑
i=1

|xi| ≤ 1
2
.

Furthermore, let δ1, . . . , δl ∈ R be reals such that 0 < δlow ≤ δi ≤ δup for
i = 1, . . . , l. Then, we have

∣∣∣∣∣
l∑

i=1

δixi

∣∣∣∣∣ ≥ δlow

∣∣∣∣∣
l∑

i=1

xi

∣∣∣∣∣ − δup − δlow
2

.

3 Identity-Based Key-Encapsulation Mechanism

In this section, we introduce the syntax, the correctness property, and the secu-
rity notion for IB-KEM.

Syntax. An IB-KEM scheme Π = (Setup,KGen,Encap,Decap) consists of four
PPT algorithms.

– Setup(1λ) → (pp,mk). The setup algorithm takes as input the security param-
eter λ, outputs a public parameter pp and a master key mk . We assume that
pp implicitly defines an identity space ID, a session key space K, and a secret
key space SK.

– KGen(mk , id) → sk id . The key generation algorithm takes as input the master
key mk and an identity id ∈ ID, outputs a secret key sk id for the id .

– Encap(pp, id) → (ct ,K). The encapsulation algorithm takes as input the
public parameter pp and an id ∈ ID, outputs a session key K ∈ K together
with a ciphertext ct with respect to identity id .

– Decap(sk id , ct) → K or ⊥. The decapsulation algorithm takes as input a
secret key sk id and a ciphertext ct , outputs a decapsulated key K ∈ K or the
rejection symbol ⊥.

Correctness. We require correctness of decapsulation: that is for all λ, all pairs
(pp,mk) generated by Setup(1λ), all identities id ∈ ID, and all (ct ,K) ←
Encap(pp, id), Pr[Decap(KGen(mk , id), ct) = K] = 1.
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Security. In this paper, we consider the IB-KEM variant of CCA-security for
leakage-resilient IBE in the bounded memory leakage model [3]. Let Π be an
IB-KEM scheme. We consider the IND-ID-lrCCA game between a challenger
and an adversary A as follows.

Setup phase: The challenger runs Setup to generate (pp,mk), and sends pp to
A.

Query phase 1: The adversary A makes queries of the following types:
– Key generation query id ∈ ID. The challenger computes and returns the

secret key sk id ← KGen(mk , id) to A.
– Leakage query (id , f), where f : SK → {0, 1} is an efficiently computable

function. The challenger returns f(sk id) to A.
– Decapsulation query (id , ct). The challenger returns Decap(sk id , ct) to A.

Challenge phase: A sends the challenge identity id∗ ∈ ID to the challenger.
It must be that he has never queried id∗ as a key generation query. The
challenger chooses a bit b ←$ {0, 1}. The challenger runs Encap(pp, id∗) to
generate (ct∗,K∗

0 ), and chooses a random session key K∗
1 ←$ K. Then, he

sends (ct∗,K∗
b ) to A.

Query phase 2: A makes queries of the following types:
– Key generation query id ∈ ID, where it must be that id �= id∗.
– Decapsulation query (id , ct), where it must be that (id , ct) �= (id∗, ct∗).

Guess phase: Finally A outputs a guess b′ ∈ {0, 1}.

Note that, in query phase 1 and 2 the challenger computes sk id the first time
that id is queried in a key generation, leakage, or decryption query, and responds
to all future queries on the same id with the same sk id .

Definition 4 (IND-ID-lrCCA security). An IB-KEM scheme Π is �-IND-
ID-lrCCA (indistiguishability against adaptive identity leakage-resilient chosen-
ciphertext attack) secure if for any PPT adversary A that makes at most � leakage
queries, the advantage

AdvIND-ID-lrCCA
Π,A (λ) :=

∣∣∣∣Pr[b′ = b] − 1
2

∣∣∣∣

is negligible in λ.

Remark: Challenge-Dependent Leakage. In the security definition, the adversary
is not allowed to obtain the leakage f(sk id) after the challenge phase. We note
that this restriction is indeed necessary: the adversary can encode the decap-
sulation algorithm for the challenge ciphertext ct∗ and the challenge identity
id∗.

4 Construction

In this section, we propose a new CCA-secure leakage-resilient IB-KEM scheme.
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Let params = (G1,G2,GT , q, g1, g2, e) ← GGen(1λ), n be the bit-length of a
session key (i.e., K = {0, 1}n), m be the bit-length of an identity (i.e., ID =
{0, 1}m), � < log2 q be any positive integer, H : G5

1 × S → Zq \ {0} be a target
collision resistant hash function, Ext : GT × S → {0, 1}n be a (log2 q − �, εExt)-
randomness extractor. We assume that m is independent of λ, εExt is negligible
in λ.

Our scheme Π = (Setup,KGen,Encap,Decap) is described as follows.

Setup(1λ): Choose a1, a2 ←$Zq \{0} and B0,B1, . . . ,Bm,D ←$Z
2×2
q uniformly

at random and set

A :=
(

a1 0 1
0 a2 1

)
∈ Z

2×3
q .

Output pp = ([A]1 , [B0]1 , [B1]1 , . . . , [Bm]1 , [D]1) and mk = (a1, a2,B0,
B1, . . . ,Bm,D).
For an identity id = (id [1], . . . , id [m]) ∈ {0, 1}m, let

Fid =

(
A
∥∥∥B0 +

m∑
i=1

id [i]Bi

)
∈ Z

2×5
q .

KGen(mk , id): Compute a random matrix Sid ∈ Z
5×2
q such that

FidSid = D (1)

as follows. Let

F′
id =

(
1
1

∥∥∥B0 +
m∑

i=1

id [i]Bi

)
∈ Z

2×3
q .

Choose S′ ←$Z
3×2
q at random, compute

S′′ =
(

a−1
1 0
0 a−1

2

)
(D − F′

idS
′) ∈ Z

2×2
q ,

and set

Sid =
(
S′′

S′

)
.

Output sk id = [Sid ]2 as a secret key for the id .
Encap(pp, id): Choose r ←$Z

2
q and sd ←$ S at random, compute

[c]1 =
[
F�

idr
]
1

∈ G
5
1,

α = H([c]1 , sd) ∈ Zq,

[ka]T =
[
r�D ( 1

α )
]
1

◦ [1]2 ∈ GT ,

[ks]T =
[
r�D ( 1

0 )
]
1

◦ [1]2 ∈ GT .

Output ct = ([c]1 , [ka]T , sd) and K = Ext([ks]T , sd).



CCA-Secure Leakage-Resilient IB-KEM from Simple Assumptions 11

Decap(sk id , ct): On input sk id = [Sid ]2 and ct = ([c]1 , [t]T , sd), compute

α = H([c]1 , sd),

[ka]T =
[
c�]

1
◦ [Sid ( 1

α )]2 ,

[ks]T =
[
c�]

1
◦ [Sid ( 1

0 )]2 .

Output Ext([ks]T , sd) if [t]T = [ka]T , otherwise ⊥.

Correctness. Let sk id = [Sid ]2, ct = ([c]1 , [t]T , sd), and α = H([c]1 , sd). If
c = F�

idr and t = r�D ( 1
α ) then

ka = c�Sid ( 1
α ) = r�FidSid ( 1

α ) = r�D ( 1
α ) = t

in the Decap procedure, and it is similar to ks. Therefore, our IB-KEM scheme
Π satisfies correctness.

5 Security

In this section, we prove the IND-ID-lrCCA security of our scheme.

Theorem 1. Under the XDLIN assumption relative to GGen in group G1, our
scheme Π is �-IND-ID-lrCCA secure for any positive integer � satisfying

� ≤ log2 q − n − η, (2)

where η = η(λ) is a positive integer such that 2−η is negligible in λ.
In particular, given an efficient adversary A breaking the �-IND-ID-lrCCA

secure of Π with advantage εA := AdvIND-ID-lrCCA
Π,A (λ), we can construct an adver-

sary D breaking the XDLIN assumption with advantage εD := AdvxdlinGGen,D(λ) such
that

εD ≥ Θ
1√

m(QKGen + QDec)
εA − AdvtcrH (λ) − QDec

2η(1 − QDec/q)
− 3

q
− QDec

q5 · |S| − εExt,

holds for such λ, where QKGen = poly(λ) and QDec = poly(λ) are the number of
key generation queries and decapsulation queries made by A, respectively.

Remark. Our scheme works also on type 1 or 2 bilinear groups.

Proof. Let A be an efficient adversary on the IND-ID-lrCCA security of Π.
Namely, εA ≥ 1/poly(λ) for infinitely many λ. We will consider a sequence of
games, Game0, . . . ,Game9 performed by a challenger and A. At the end of each
game, the challenger outputs a bit γ ∈ {0, 1}, which will be described below.

Let Wi be the event such that γ = 1 in Gamei.
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Game0: This game is the IND-ID-lrCCA game. At the end of the game, the
challenger outputs γ = 1 if b′ = b, otherwise γ = 0, where b′ is A’s guessing
bit of b. Thus, ∣∣∣∣Pr[W0] − 1

2

∣∣∣∣ = εA. (3)

The challenge is (ct∗,K∗
b ) where ct∗ = ([c∗]1 , [k∗

a]T , sd∗). We denote by
r∗, α∗, k∗

s the corresponding intermediate values. The session key K∗
b is

Ext([k∗
s ]T , sd∗) or random over {0, 1}n, depending on the bit b.

Game1: This game is the same as Game0 except that the challenger changes
the generation of the public parameter pp and the ciphertext ct∗ as follows.

– In the setup phase, choose R0,R1, . . . ,Rm,E ←$Z
3×2
q uniformly at ran-

dom. Set J := (QKGen +QDec)2, sample ui,j ←$ {−1, 0, 1} for i = 1, . . . , m

and j = 1, . . . , J , and set hi :=
∑J

j=1 ui,j . The public parameter is defined
as

B0 = AR0 + I2,

Bi = ARi + hiI2 for i = 1, . . . , m,

D = AE.

Output pp = ([A]1 , [B0]1 , [B1]1 , . . . , [Bm]1 , [D]1). The challenger holds
(a1, a2,R0,R1, . . . ,Rm,E) as a master key in this game.
In Game1, the Fid for id ∈ {0, 1}m can be written by

Fid =
(
A
∥∥∥ARid + βh(id)I2

)
,

where Rid = R0 +
∑m

i=1 id [i]Ri and βh(id) = 1 +
∑m

i=1 id [i]hi.
– In the challenge phase, the challenger computes [k∗

a]T and [k∗
s ]T as follows:

[k∗
a]T =

[
c∗�

]
1

◦
[
S∗ (

1
α∗

)]
2
,

[k∗
s ]T =

[
c∗�

]
1

◦ [S∗ ( 1
0 )]2 ,

where [S∗]2 is the secret key for the id∗.
Note that this change does not affect the distributions of the public parameter
pp and the challenge (ct∗,K∗

b ). Therefore, we have

Pr[W0] = Pr[W1]. (4)

Game2: Let id∗ be the challenge identity and id1, . . . , idQ be identities that
A queries in the key generation query and the decapsulation query, where
Q ≤ QKGen + QDec. Define the event

FORCEDABORT :
Q∨

i=1

(βh(id i) = 0) ∨ (βh(id∗) �= 0) ,
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and
η(idA) := Pr[¬FORCEDABORT ]

for idA = (id1, . . . , idQ, id∗), where the probability is taken over the choice
of h. By Lemma 2, this probability has a minimum value greater than 0. Let
ηlow be the minimum value of η(idA).
In the guess phase, A outputs its guess b′ ∈ {0, 1} for b. The challenger checks
the event FORCEDABORT occurs for idA. If yes, the challenger aborts the
game and outputs a fresh random bit γ ∈ {0, 1}. Otherwise, the challenger
first estimates the probability η(idA) by sampling (h1, . . . , hm) sufficiently
large amount of times. Let η′(idA) be the estimation of η(idA). Depending
on the estimate η′(idA) the challenger decides γ as follows:

– Case η′(idA) ≤ ηlow: The challenger outputs γ = [b = b′].
– Case η′(idA) > ηlow: With probability ηlow/η′(idA) the challenger outputs

γ = [b = b′]. With probability 1 − ηlow/η′(idA) the challenger aborts the
game and outputs a fresh random bit γ ∈ {0, 1}.

Lemma 4 in Appendix will show that

ηlow
2

∣∣∣∣Pr[W1] − 1
2

∣∣∣∣ ≤
∣∣∣∣Pr[W2] − 1

2

∣∣∣∣ .

From Lemma 2, we have
∣∣∣∣Pr[W1] − 1

2

∣∣∣∣ ≤ Θ
√

m(QKGen + QDec)
∣∣∣∣Pr[W2] − 1

2

∣∣∣∣ . (5)

Game3: In Game3, we make the following changes to the experiment. When
A queries an identity id to the key generation oracle, the challenger checks
whether βh(id) = 0. If so, the challenger immediately aborts and returns a
fresh random bit γ. When A outputs id∗ as a challenge identity, if βh(id∗) �= 0
the challenger immediately aborts and returns a fresh random bit γ.
Clearly, the above changes do not affect A’s environment if FORCED
ABORT dose not occur. Then, we have

Pr[W2] = Pr[W3]. (6)

Game4: This game is the same as Game3 except that the challenger changes
the generation of the secret key sk id = [Sid ]2 for id as follows.

– Case βh(id) �= 0: The challenger chooses W ←$Z
3×2
q , computes W′ ∈

Z
2×2
q satisfying

βh(id)W′ = −AW + AE, (7)

and sets

Sid =
(
W − RidW′

W′

)
.
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This Sid satisfies Eq. (1) because

FidSid =
(
A
∥∥∥ARid + βh(id)I2

)(
W − RidW′

W′

)

= A (W − RidW′) + (ARid + βh(id)I2)W′

= AW + βh(id)W′

= AW − AW + AE

= D.

Further, the above Sid has the same distribution as the secret key gener-
ated by KGen, because 6 elements are chosen at random and the remaining
are determined uniquely by Eq. (7).

– Case βh(id) = 0: The challenger computes Sid ∈ Z
5×2
q such that

(I3‖Rid)Sid = E (8)

as follows. The challenger computes S′′ := E − RidS′ where S′ ←$Z
2×2
q ,

and sets

Sid =
(
S′′

S′

)
.

It is easy to see that [Sid ]2 is the correct secret key for id by multiplying
A from the left to both hand sides of Eq. (8).
We show that the above Sid has the same distribution of the original
KGen as seen from A. Now, S′ is chosen randomly. Hence, we need to
show that 2 elements in S′′ e.g. eS′′ are also random where e :=

(
0 0 1

)
.

It suffices to prove u := eE is random even given A and D = AE, since
eS′′ = eE − eRidS′. It is easy to see that

(
D
u

)
=

(
A
e

)

︸ ︷︷ ︸
A′

E. (9)

Because A′ is of full rank, the distribution of u is random and independent
from D that A knows. Hence, eS′′ is also random as seen from A.

Note that this change dose not affect the distribution of the secret key sk id

for id . Therefore, we have

Pr[W3] = Pr[W4]. (10)

Game5: This game is the same as Game4 except that [c∗]1 in the challenge is
randomly chosen from G

5
1. Furthermore, the challenger chooses [c∗]1 ←$G

5
1,

sd∗ ←$ S, and computes α∗ = H([c∗]1 , sd∗) at the beginning of the game. As
we will show in Lemma 6, we have that there exists a PPT adversary D such
that

|Pr[W4] − Pr[W5]| ≤ AdvxdlinGGen,D(λ) +
1
q
. (11)
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The decapsulation oracle in this game is depicted in Fig. 1. We define that a
ciphertext [c]1 is valid for id if there exists r ∈ Z

2
q such that [c]1 =

[
F�

idr
]
1
.

With pp and mk , we can efficiently check whether [c]1 =
[
(c1, c2, c3, c4, c5)�]

1
is valid for id by simply verifying

[(c3, c4, c5)]1 =
[
(c1, c2)

(
a−1
1 0
0 a−1

2

)
F′

id

]

1

.

Fig. 1. Decapsulation oracle in Game5

Game6: In this game, at line 6 in Fig. 1, the challenger returns ⊥. Then we have

Pr[W5] = Pr[W5 ∧ H has collision] + Pr[W5 ∧ H has no collision]
≤ Pr[H has collision] + Pr[W5 ∧ H has no collision]

≤ AdvtcrH (λ) + Pr[W6].

Therefore, we obtain

|Pr[W5] − Pr[W6]| ≤ AdvtcrH (λ). (12)

Game7: In this game, at line 13 in Fig. 1, the challenger returns ⊥. As we will
show in Lemma 7, we have

|Pr[W6] − Pr[W7]| ≤ QDec

2η(1 − QDec/q)
+

1
q
. (13)
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Game8: In this game, at line 8 in Fig. 1, the challenger returns ⊥. ([c]1 , sd) =
([c∗]1 , sd∗) holds with probability 1/(q5 ·|S|) before the challenge phase, since
A knows nothing about (c∗, sd∗) chosen randomly. On the other hand, after
the challenge phase (id∗, ct∗ = ([c∗]1 , [k∗

a]T , sd∗)) was already announced to
A, any adversarial decapsulation query (id∗, ([c∗]1 , [ka]T , sd∗)) with [t]T =
[ka]T is equal to (id∗, ct∗). Hence, such adversarial decapsulation query is
forbidden by the restriction of IND-ID-lrCCA game.
Thus we have

|Pr[W7] − Pr[W8]| ≤ QDec

q5 · |S| . (14)

Game9: In this game, K∗
0 is chosen at random from {0, 1}n instead of using

Ext([k∗
s ]T , sd∗). As we will show in Lemma 8, we have

|Pr[W8] − Pr[W9]| ≤ εExt +
1
q
. (15)

In Game9, A does not get any information about bit b because both K∗
0 and

K∗
1 are random. Hence, we have

Pr[W9] =
1
2
. (16)

From Eqs. (3)–(6) and (10)–(16), we have shown that given an adversary A

with advantage εA, there exists an adversary D with εD = AdvxdlinGGen,D(λ) such that

εA =

∣
∣
∣
∣
Pr[W0] − 1

2

∣
∣
∣
∣

≤ Θ(
√

m(QKGen + QDec))

∣
∣
∣
∣
Pr[W2] − 1

2

∣
∣
∣
∣

≤ Θ(
√

m(QKGen + QDec))

8∑

i=4

|Pr[Wi] − Pr[Wi+1]|

= Θ(
√

m(QKGen + QDec))

(

εD + AdvtcrH (λ) +
QDec

2η(1 − QDec/q)
+

3

q
+

QDec

q5 · |S| + εExt

)

.

Therefore, we have

εD ≥ Θ
1√

m(QKGen + QDec)
εA − AdvtcrH (λ) − QDec

2η(1 − QDec/q)
− 3

q
− QDec

q5 · |S| − εExt.

The right side of the above inequality is non-negligible, since εA and
Θ1/

√
m(QKGen + QDec) are non-negligible in λ, other terms are negligible in λ.

Hence, this contradicts the XDLIN assumption. This completes the proof of
Theorem 1. ��

6 Conclusion

In this paper, we proposed the first CCA-secure leakage-resilient IB-KEM scheme
which does not depend on q-type assumptions. More precisely, it is secure under
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the DLIN assumption for symmetric bilinear groups and under the XDLIN
assumption for asymmetric bilinear groups. A CCA-secure leakage-resilient IBE
scheme is obtained by combining our IB-KEM with any CCA-secure symmetric-
key encryption scheme (which does not need to be leakage-resilient). However,
the leakage rate of our scheme is smaller than previous works [3,24,30].

A Proof of Lemmas

To complete the proof of Theorem 1, we prove Lemmas 4, 6, 7, and 8.

Lemma 4.
ηlow
2

∣∣∣∣Pr[W1] − 1
2

∣∣∣∣ ≤
∣∣∣∣Pr[W2] − 1

2

∣∣∣∣ .

We introduce a lemma before proving Lemma 4.

Lemma 5. ([19, Claim 6.7]). Let 0 < ρ < 1 be a real. For a sequence of
identities id ∈ (ID)Q+1, and ABORT be the event that the challenger aborts
with added rules in Game2. For any fixed id,

ηlow (1 − ρ) ≤ Pr[¬ABORT ] ≤ ηlow (1 + ρ) .

Proof (of Lemma 4). For a sequence of identities id ∈ (ID)Q+1, we define Q(id)
as the event that A uses the last entry in id as the challenge and makes key
generation queries and decapsulation queries for the remaining identities. Then,
we have

∑
id∈(ID)Q+1 Pr[Q(id)] = 1. Let δ(id) = Pr[¬ABORT ], and δlow and

δup be reals such that δlow ≤ δ(id) ≤ δup. Then, we have
∣
∣
∣
∣
Pr[W2] − 1

2

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

id

Pr[Q(id)] Pr[W2 | Q(id)] − 1

2

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

id

Pr[Q(id)]
(

Pr[W2 ∧ ¬ABORT | Q(id)] + Pr[W2 ∧ ABORT | Q(id)] − 1

2

)
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

id

Pr[Q(id)]

(

Pr[W2 | Q(id)]δ(id) +
1

2
(1 − δ(id)) − 1

2

)
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

id

δ(id) Pr[Q(id)]

(

Pr[W1 | Q(id)] − 1

2

)
∣
∣
∣
∣
∣

≥ δlow

∣
∣
∣
∣
Pr[W1] − 1

2

∣
∣
∣
∣
− δup − δlow

2
.

The last inequality above follows from Lemma3, since we have
∣∣∣∣∣
∑
id

Pr[Q(id)]
(

Pr[W1 | Q(id)] − 1
2

)∣∣∣∣∣ =
∣∣∣∣Pr[W1] − 1

2

∣∣∣∣
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and ∑
id

∣∣∣∣Pr[Q(id)]
(

Pr[W1 | Q(id)] − 1
2

)∣∣∣∣ ≤
∑
id

Pr[Q(id)] · 1
2

=
1
2
.

From Lemma 5, we have δup − δlow ≤ ηlowρ/2. Therefore, defining ρ :=
|Pr[W1] − 1/2|, we obtain

∣∣∣∣Pr[W2] − 1
2

∣∣∣∣ ≥ δlow

∣∣∣∣Pr[W1] − 1
2

∣∣∣∣ − δup − δlow
2

≥ ηlow
2

∣∣∣∣Pr[W1] − 1
2

∣∣∣∣ .

��

Lemma 6. For any PPT algorithm A, there exists a PPT algorithm D such that

|Pr[W4] − Pr[W5]| ≤ AdvxdlinGGen,D(λ) +
1
q
. (17)

Proof. Let ([A]1 , [A]2 , [y]1) ∈ G
2×3
1 ×G

2×3
2 ×G

3
1 be an XDLIN instance, where

A =
(

a1 0 1
0 a2 1

)
,

y = A�r∗ or random.

Then, we build a PPT algorithm D with input ([A]1 , [A]2 , [y]1) that simulates
the IND-ID-lrCCA game with A as follows.

Setup phase: D generates pp = ([A]1 , [B0]1 , [B1]1 , . . . , [Bm]1 , [D]1) as same
as the challenger, except that D computes

[B0]1 = [AR0 + I2]1 ,

[Bi]1 = [ARi + hiI2]1 for i = 1, . . . , m,

[D]1 = [AE]1 .

Finally D sends pp to A.
Query phase: D answers for each query from A as follows.

– Key Generation query id . Assume that βh(id) �= 0. D chooses
S′ ←$Z

3×2
q at random, computes [S′′]2 ∈ G

2×2
2 such that [βh(id)S′′]2 =

[−AS′ + AE]2, sets

[Sid ]2 =
[(

S′ − RidS′′

S′

)]

2

,

and returns sk id = [Sid ]2 to A.
– Leakage query (id , f) and decapsulation query (id , ct). If βh(id) �= 0,

then D can generate sk id as above. Furthermore, even in that case that
βh(id) = 0 (i.e., id = id∗), D can generate sk id by computing Sid such
that (I3‖Rid)Sid = E. Thus, D can answer f(sk id) and Decap(sk id , ct)
for any identity.
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Challenge phase: D generates the challenge (ct∗,K∗
b ) = (([c∗]1 , [ka]T , sd),K∗

b )
as same as the challenger, except that D computes

[c∗]1 =
[(

y
R�

id∗y

)]

1

instead of [c∗]1 =
[
F�

id∗r
]
1
. Then, D returns (ct∗,K∗

b ) to A.

Finally, D outputs γ = [b = b′] where b′ ∈ {0, 1} is the output of A.
We will show that the distribution of (ct∗,K∗

b ) is the same as the challenge
in Game4 if y = A�r∗, while if y is a random it is the same as that in Game5
with overwhelming probability. First suppose that y = A�r∗. In this case,

c∗ =
(

y
R�

id∗y

)
=

(
A�r∗

R�
id∗A�r∗

)
= (A‖ARid∗)�r∗ = F�

id∗r∗,

showing that (ct∗,K∗
b ) is the challenge in Game4. Next suppose that y is random

in Z
3
q. It suffices to prove that z := R�

id∗y is also random in Z
2
q even given A,

U := AR�
id∗ , and y. It is easy to see that

(
U
z�

)
=

(
A
y�

)

︸ ︷︷ ︸
V

Rid∗ .

Therefore, z is random because V is of full rank with probability 1−1/q. Hence,
[c∗]1 is random as expected.

Thus, Game4 and Game5 are indistinguishable under the XDLIN assumption,
so that we have Eq. (17). ��

Lemma 7.
|Pr[W6] − Pr[W7]| ≤ QDec

2η(1 − QDec/q)
+

1
q
. (18)

Proof. We assume that all decapsulation queries are made after the challenge
phase, but a similar (but slight simpler) argument can be used if A makes queries
before the challenge phase. Suppose that (id∗, ct = ([c]1 , [t]T , sd)) is the first
decapsulation query such that id = id∗ and the condition at line 13 in Fig. 1
is evaluated. Let D = (d1‖d2),Sid∗ = (s∗

1‖s∗
2), where d1,d2 ∈ Z

2
q, s

∗
1, s

∗
2 ∈ Z

5
q.

Then, we have
⎛
⎜⎜⎝
d1

d2

k∗
a

ka

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

(A‖ARid∗) 0
0 (A‖ARid∗)

c∗� α∗c∗�

c� αc�

⎞
⎟⎟⎠

︸ ︷︷ ︸
M

(
s∗
1

s∗
2

)
,

where ka is computed at line 11 in Fig. 1. From the supposition, we can assume
that α �= α∗, c∗ is chosen uniformly at random, and [c]1 is invalid for id∗. Hence,
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the matrix M is of full rank with probability at least 1 − 1/q, that implies that
the distribution of ka is random and independent from D and k∗

a. In addition to
D and k∗

a, A knows at most � bit leakage {f(sk id∗)} and n bit challenge session
key K∗

b that is probable to provide information on the value of ka to A. Let Ka,
F , and I denote random variables induced by ka, ({f(sk id∗)} ,K∗

b ), and (D, k∗
a),

respectively. Given ka, ({f(sk id∗)} ,K∗
b ), and (D, k∗

a) that A knows, we have

H̃∞(Ka | F, I) ≥ H̃∞(Ka | I) − (� + n) = log2 q − � − n

from Lemma 1 and the above discussion. Thus, for any ka, we have Pr[Ka =
ka] ≤ 2�+n/q. Therefore, in the first evaluation of line 11, the condition t = ka is
satisfied with probability at most 2�+n/q. Now assuming t = ka is not satisfied,
the number of possible ka decreases one. So, in the i-th evaluation of line 11, the
probability that t = ka holds is at most 2�+n/(q − i + 1), in the case that t = ka

is not satisfied in all previous evaluations. From the above discussion, we have

|Pr[W6] − Pr[W7]| ≤ QDec2�+n

q − QDec
+

1
q
.

From Eq. (2), we obtain Eq. (18). ��
Lemma 8.

|Pr[W8] − Pr[W9]| ≤ εExt +
1
q
. (19)

Proof. In Game9, the challenger returns ⊥ to A at line 13 in Fig. 1. Hence, A
does not learn any information on k∗

s via the decapsulation oracle, since A can
only get decapsulation results of valid ciphertexts. Now, A knows D, k∗

a, and
{f(sk id∗)} as information about k∗

s . Then, we show that the min-entropy of k∗
s

is at least log2 q − � with probability at least 1 − 1/q.
First, we have

k∗
s = c∗�s∗

1,

and then ⎛
⎜⎜⎝
d1

d2

k∗
a

k∗
s

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

(A‖AE) 0
0 (A‖AE)

c∗� α∗c∗�

c∗� 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
N

(
s∗
1

s∗
2

)
.

The matrix N is of full rank with probability at least 1 − 1/q, since α∗ �= 0
and [c∗]1 is uniformly at random. Then, the distribution of k∗

s is random and
independent from D and k∗

a. In addition to D and k∗
a, A knows at most � bit

leakage {f(sk id∗)} that is probable to provide information on the value of k∗
s

to A. Let Ka, D, and F denote random variables induced by k∗
s , (D, k∗

a), and
{f(sk id∗)} respectively. Given k∗

s , (D, k∗
a), and {f(sk id∗)} that A knows, we have

H̃∞(K∗
s | D,F ) ≥ H̃∞(K∗

s | D) − � = log2 q − �

from Lemma 1 and the discussion when ignoring {f(sk id∗)}. Hence Ext(K∗
s , sd∗)

is statistically indistinguishable from an n bits random string because Ext is a
(log2 q − �)-randomness extractor. Therefore, we have Eq. (19). ��
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