
Nuttapong Attrapadung
Takeshi Yagi (Eds.)

LN
CS

 1
16

89

14th International Workshop on Security, IWSEC 2019
Tokyo, Japan, August 28–30, 2019
Proceedings

Advances in Information
and Computer Security

Lecture Notes in Computer Science 11689

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Nuttapong Attrapadung •

Takeshi Yagi (Eds.)

Advances in Information
and Computer Security
14th International Workshop on Security, IWSEC 2019
Tokyo, Japan, August 28–30, 2019
Proceedings

123

Editors
Nuttapong Attrapadung
National Institute of Advanced Industrial
Science and Technology
Tokyo, Japan

Takeshi Yagi
NTT Security (Japan) KK
Tokyo, Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-26833-6 ISBN 978-3-030-26834-3 (eBook)
https://doi.org/10.1007/978-3-030-26834-3

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4116-1751
https://doi.org/10.1007/978-3-030-26834-3

Preface

The 14th International Workshop on Security, IWSEC 2019, was held at the
Multi-Purpose Digital Hall, Ookayama Campus, Tokyo Institute of Technology,
Tokyo, Japan, during August 28–30, 2019. The workshop was co-organized by ISEC
(the Technical Committee on Information Security in Engineering Sciences Society of
IEICE) and CSEC (the Special Interest Group on Computer Security of IPSJ).

This year, we categorized topics of interests into two tracks, namely, Cryptography
Track (Track A) and Cybersecurity and Privacy Track (Track B); each track is formed
by separate Program Committee members. We received 63 submissions, 42 in Track A
and 21 in Track B, out of which two papers were withdrawn before the review process.
After extensive reviews and shepherding, we accepted 18 regular papers (12 from
Track A and six from Track B) and five short papers (three from Track A and two from
Track B). Each submission was anonymously reviewed by four reviewers. These
proceedings contain revised versions of the accepted papers. Track A consists of the
sessions on public-key primitives, symmetric-key primitives, cryptanalysis, and cryp-
tographic protocols. Track B consists of the sessions on malware detection and clas-
sification, intrusion detection and prevention, Web and usable security, and forensics.

The Best Paper Awards were given to “An Efficient F4-style Based Algorithm to
Solve MQ Problems” by Takuma Ito, Naoyuki Shinohara, and Shigenori Uchiyama,
and to “Towards Efficient Detection of Malicious VBA Macros with LSI” by Mamoru
Mimura and Taro Ohminami. The Best Student Paper Award was given to
“CCA-Secure Leakage-Resilient Identity-Based Key-Encapsulation from Simple (not
q-type) Assumptions” by Toi Tomita, Wakaha Ogata, and Kaoru Kurosawa. In addition
to the presentations of the accepted papers, the workshop also featured two keynote
talks, a poster session, and invited talk sessions from domestic symposiums, namely,
SCIS (Symposium on Cryptography and Information Security) and CSS (Computer
Security Symposium). We also included a special session organized by AIMaP
(Advanced Innovation powered by Mathematics Platform).

A number of people contributed to the success of IWSEC 2019. We would like to
thank all authors for submitting their papers to the workshop, and also we are deeply
grateful to the members of the Program Committee and to the external reviewers for
their in-depth reviews and detailed discussions. We must mention that the selection
of the papers was an extremely challenging task.

Last but not least, we would like to thank the General Co-Chairs, Toshihiro
Yamauchi and Shiho Moriai, for leading the Organizing Committee, and we would also
like to thank the members of the Organizing Committee for ensuring the smooth
running of the workshop.

June 2019 Nuttapong Attrapadung
Takeshi Yagi

IWSEC 2019

14th International Workshop on Security
Organization

Tokyo, Japan, August 28–30, 2019

co-organized by

ISEC in ESS of IEICE
(Technical Committee on Information Security in Engineering Sciences Society

of the Institute of Electronics, Information and Communication Engineers)
and

CSEC of IPSJ
(Special Interest Group on Computer Security of Information Processing

Society of Japan)

General Co-chairs

Shiho Moriai National Institute of Information and Communications
Technology, Japan

Toshihiro Yamauchi Okayama University, Japan

Advisory Committee

Hideki Imai University of Tokyo, Japan
Kwangjo Kim Korea Advanced Institute of Science and Technology,

the Republic of Korea
Christopher Kruegel University of California, Santa Barbara, USA
Günter Müller University of Freiburg, Germany
Yuko Murayama Tsuda University, Japan
Koji Nakao National Institute of Information and Communications

Technology, Japan
Eiji Okamoto University of Tsukuba, Japan
C. Pandu Rangan Indian Institute of Technology Madras, India
Kai Rannenberg Goethe University Frankfurt, Germany
Ryoichi Sasaki Tokyo Denki University, Japan

Program Co-chairs

Nuttapong Attrapadung AIST, Japan
Takeshi Yagi NTT Security (Japan) KK, Japan

Local Organizing Committee

Kazumaro Aoki Nippon Telegraph and Telephone Corporation, Japan
Keita Emura National Institute of Information and Communications

Technology, Japan
Shota Fujii Hitachi, Ltd., Japan
Masahiro Fujita Mitsubishi Electric Corporation, Japan
Yuichi Hayashi Nara Institute of Science and Technology, Japan
Shoichi Hirose The University of Fukui, Japan
Makoto Iguchi Kii Corporation, Japan
Akira Kanaoka Toho University, Japan
Ryo Kikuchi Nippon Telegraph and Telephone Corporation, Japan
Yoshihiro Mizoguchi Institute of Mathematics for Industry, Kyusyu

University, Japan
Ken Naganuma Hitachi, Ltd., Japan
Satsuya Ohata AIST, Japan
Kazuma Ohara NEC Corporation, Japan
Yuji Suga Internet Initiative Japan Inc., Japan
Nobuyuki Sugio NTT DOCOMO, Inc., Japan
Atsushi Takayasu The University of Tokyo, Japan
Keisuke Tanaka Tokyo Institute of Technology, Japan
Yohei Watanabe National Institute of Information and Communications

Technology, Japan
Sven Wohlgemuth Hitachi, Ltd., Japan
Dai Yamamoto Fujitsu Limited, Japan
Masaya Yasuda Institute of Mathematics for Industry, Kyusyu

University, Japan

Program Committee

Track A: Cryptography Track

Kazumaro Aoki NTT, Japan
Nuttapong Attrapadung AIST, Japan
Olivier Blazy University of Limoges, France
Bernardo David Tokyo Institute of Technology, Japan
Itai Dinur Ben-Gurion University, Israel
Antonio Faonio IMDEA Software Institute, Spain
Takahiro Matsuda AIST, Japan
Florian Mendel Graz University of Technology, Austria
Kazuhiko Minematsu NEC, Japan
Kirill Morozov University of North Texas, USA
Fabrice Mouhartem ENS Lyon, France and Microsoft Research, India
Thomas Peters Université catholique de Louvain, Belgium
Yusuke Sakai AIST, Japan
Jae Hong Seo Hanyang University, Republic of Korea

viii IWSEC 2019

Yannick Seurin Agence Nationale de la Sécurité des Systemes
d’Information, France

Willy Susilo University of Wollongong, Australia
Katsuyuki Takashima Mitsubishi Electric Corporation, Japan
Atsushi Takayasu The University of Tokyo, Japan
Qiang Tang New Jersey Institute of Technology, USA
Mehdi Tibouchi NTT, Japan
Damien Vergnaud Sorbonne Université, UPMC, CNRS, France
Yuyu Wang Tokyo Institute of Technology, Japan
Yohei Watanabe NICT, Japan
Rui Zhang Chinese Academy of Sciences, China

Track B: Cybersecurity and Privacy Track

Mitsuaki Akiyama Nippon Telegraph and Telephone Corporation, Japan
Josep Balasch KU Leuven, Belgium
Gregory Blanc Telecom SudParis, France
Yue Chen Palo Alto Networks, USA
Daiki Chiba Nippon Telegraph and Telephone Corporation, Japan
Herve Debar Telecom SudParis, France
Josep Domingo-Ferrer Universitat Rovira i Virgili, Catalonia
Kimmo Halunen VTT Technical Research Centre of Finland Ltd.,

Finland
Yuichi Hayashi Nara Institute of Science and Technology, Japan
Akira Kanaoka Toho University, Japan
Yuhei Kawakoya Nippon Telegraph and Telephone Corporation, Japan
Frederic Majorczyk DGA-MI/CentraleSupelec, France
Yoshihiro Oyama University of Tsukuba, Japan
Hajime Shimada Nagoya University, Japan
Junko Takahashi Nippon Telegraph and Telephone Corporation, Japan
Yuta Takata PwC Cyber Services LLC, Japan
Giorgos Vasiliadis Qatar Computing Research Institute HBKU, Greece
Takeshi Yagi NTT Security (Japan) KK, Japan
Takumi Yamamoto Mitsubishi Electric Corporation, Japan

Additional Reviewers

Miguel Ambrona
Carles Anglés-Tafalla
Sarah Azouvi
Michael Bamiloshin
Pascal Bemmann
Alberto Blanco-Justicia
George Christou
Pratish Datta

Michalis Diamantaris
Maria Eichlseder
Keita Emura
Daniel Escudero
Scott Fluhrer
Daisuke Fujimoto
Atsushi Fujioka
Kaiwen Guo

Koki Hamada
Keisuke Hara
Junichirou Hayata
Ehsan Hesamifard
Takato Hirano
Atsunori Ichikawa
Akiko Inoue
Toshiyuki Isshiki

IWSEC 2019 ix

Mitsugu Iwamoto
Maxim Jourenko
Saqib A. Kakvi
Shuichi Katsumata
Craig Kenney
Suhri Kim
Michael Klooss
Takuma Koyama
Stefan Kölbl
Wen-Jie Lu
Sergio Martinez
Michael Meyer

Luca Nizzardo
Yasuyuki Nogami
Koji Nuida
Satsuya Ohata
Toshihiro Ohigashi
Javier Parra-Arnau
Arnab Roy
Jacob Schuldt
Vladimir Soukharev
Xiangyu Su
Koutarou Suzuki
Tadanori Teruya

Masayuki Tezuka
Guanyu Tian
Yacheng Wang
Erich Wenger
Friedrich Wiemer
Keita Xagawa
Takashi Yamakawa
Takanori Yasuda
Yusuke Yoshida
Masaya Yoshikawa

x IWSEC 2019

Contents

Public-Key Primitives 1

CCA-Secure Leakage-Resilient Identity-Based Key-Encapsulation
from Simple (Not q-type) Assumptions . 3

Toi Tomita, Wakaha Ogata, and Kaoru Kurosawa

(Short Paper) A Faster Constant-Time Algorithm of CSIDH Keeping
Two Points. 23

Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and Tsuyoshi Takagi

Cryptanalysis on Public-Key Primitives

An Efficient F4-style Based Algorithm to Solve MQ Problems 37
Takuma Ito, Naoyuki Shinohara, and Shigenori Uchiyama

How to Solve Multiple Short-Exponent Discrete Logarithm Problem 53
Kaoru Kurosawa, Akinaga Ueda, Hayato Matsuhashi,
and Yusuke Sakagami

Cryptographic Protocols 1

Secure Multiparty Matrix Multiplication Based
on Strassen-Winograd Algorithm. 67

Jean-Guillaume Dumas, Pascal Lafourcade, Julio Lopez Fenner,
David Lucas, Jean-Baptiste Orfila, Clément Pernet, and Maxime Puys

An Anonymous Credential System with Constant-Size Attribute Proofs
for CNF Formulas with Negations. 89

Ryo Okishima and Toru Nakanishi

Symmetric-Key Primitives

More Results on Shortest Linear Programs . 109
Subhadeep Banik, Yuki Funabiki, and Takanori Isobe

Tweakable TWINE: Building a Tweakable Block Cipher on Generalized
Feistel Structure . 129

Kosei Sakamoto, Kazuhiko Minematsu, Nao Shibata, Maki Shigeri,
Hiroyasu Kubo, Yuki Funabiki, Andrey Bogdanov, Sumio Morioka,
and Takanori Isobe

Malware Detection and Classification

Correlating High- and Low-Level Features: Increased Understanding
of Malware Classification. 149

Sergii Banin and Geir Olav Dyrkolbotn

Towards Efficient Detection of Malicious VBA Macros with LSI 168
Mamoru Mimura and Taro Ohminami

Intrusion Detection and Prevention

IDS Alert Priority Determination Based on Traffic Behavior. 189
Shohei Hiruta, Satoshi Ikeda, Shigeyoshi Shima, and Hiroki Takakura

(Short Paper) Effectiveness of Entropy-Based Features
in High- and Low-Intensity DDoS Attacks Detection. 207

Abigail Koay, Ian Welch, and Winston K. G. Seah

Web and Usable Security

API Usability of Stateful Signature Schemes . 221
Alexander Zeier, Alexander Wiesmaier, and Andreas Heinemann

(Short Paper) Method for Preventing Suspicious Web Access
in Android WebView . 241

Masaya Sato, Yuta Imamura, Rintaro Orito, and Toshihiro Yamauchi

Public-Key Primitives 2

Equivalence Between Non-malleability Against Replayable CCA
and Other RCCA-Security Notions . 253

Junichiro Hayata, Fuyuki Kitagawa, Yusuke Sakai, Goichiro Hanaoka,
and Kanta Matsuura

Cocks’ Identity-Based Encryption in the Standard Model,
via Obfuscation Techniques (Short Paper) . 273

Xin Wang, Shimin Li, and Rui Xue

Cryptanalysis on Symmetric-Key Primitives

Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm . . . 287
Fukang Liu, Zhenfu Cao, and Gaoli Wang

Preimage Attacks on Reduced Troika with Divide-and-Conquer Methods. . . . 306
Fukang Liu and Takanori Isobe

xii Contents

Cryptographic Protocols 2

VSS Made Simpler . 329
Yvo Desmedt and Kirill Morozov

Bidirectional Asynchronous Ratcheted Key Agreement
with Linear Complexity . 343

F. Betül Durak and Serge Vaudenay

A New Approach to Constructing Digital Signature Schemes (Short Paper) . . . 363
Ahto Buldas, Denis Firsov, Risto Laanoja, Henri Lakk, and Ahto Truu

Forensics

GRYPHON: Drone Forensics in Dataflash and Telemetry Logs 377
Evangelos Mantas and Constantinos Patsakis

Toward the Analysis of Distributed Code Injection
in Post-mortem Forensics . 391

Yuto Otsuki, Yuhei Kawakoya, Makoto Iwamura, Jun Miyoshi,
Jacob Faires, and Terrence Lillard

Author Index . 411

Contents xiii

Public-Key Primitives 1

CCA-Secure Leakage-Resilient
Identity-Based Key-Encapsulation

from Simple (Not q-type) Assumptions

Toi Tomita1,2(B), Wakaha Ogata1, and Kaoru Kurosawa3

1 Tokyo Institute of Technology, Tokyo, Japan
{tomita.t.ae,ogata.w.aa}@m.titech.ac.jp

2 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
3 Ibaraki University, Ibaraki, Japan

kaoru.kurosawa.kk@vc.ibaraki.ac.jp

Abstract. In this paper, we propose a new leakage-resilient identity-
based encryption (IBE) scheme that is secure against chosen-ciphertext
attacks (CCA) in the bounded memory leakage model. It is the first
CCA-secure leakage-resilient IBE scheme which does not depend on q-
type assumptions. More precisely, it is secure under the DLIN assump-
tion for symmetric bilinear groups and under the XDLIN assumption for
asymmetric bilinear groups, respectively.

Keywords: Identity-based key-encapsulation · Leakage-resilience ·
CCA-security

1 Introduction

1.1 Background

Most of the encryption schemes known so far have been proven secure by assum-
ing that the secret key is completely hidden. However, in the real world, a partial
information of the secret key may leak by side-channel attacks [6,14,20] or a cold-
boot attack [15]. In recent years, extensive research effort has been invested in
providing encryption schemes which are provably secure even in this setting.
Such schemes are said to be leakage-resilient.

Akavia et al. [2] introduced the bounded memory leakage model in which a
bounded amount of information of the secret key is leaked to the adversary. Naor
and Segev [26] showed how to construct leakage-resilient public-key encryption
schemes from hash proof systems (HPS) in this model. (Other constructions
were given by [4,18,22].) Qin et al. [28] showed a generic method to construct
a CCA-secure leakage-resilient encryption scheme from any tag-based strongly
universal2 HPS.

Regarding identity-based encryption (IBE) schemes, CPA-secure leakage-
resilient IBE schemes were shown by Akavia et al. [2], Alwen et al. [3] and
c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 3–22, 2019.
https://doi.org/10.1007/978-3-030-26834-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_1

4 T. Tomita et al.

Chow et al. [8]. Furthermore, the scheme of Kurosawa and Phong [21] achieves
the leakage rate 1 − o(1) under the DLIN assumption, where the leakage rate is
defined as

size of leakage
size of secret key

.

On the other hand, CCA-secure leakage-resilient IBE schemes were shown
by Alwen et al. [3], Sun et al. [30] and Li et al. [24]. Unfortunately, all these
CCA-secure leakage-resilient IBE schemes rely on q-type assumptions. Due to
the Cheon attack [7], it is better to avoid such assumptions.

1.2 Our Contribution

In this paper, we propose the first CCA-secure leakage-resilient IBE scheme
which does not depend on q-type assumptions. More precisely, it is secure under
the DLIN assumption for symmetric bilinear groups and under the XDLIN
assumption for asymmetric bilinear groups. (See Sect. 2.1 for the types of bilinear
groups.)

In fact, we construct a CCA-secure leakage-resilient IB-KEM. A CCA-secure
leakage-resilient IBE scheme is obtained by combining our IB-KEM with any
CCA-secure symmetric-key encryption scheme (which does not need to be
leakage-resilient).

Our IB-KEM scheme is obtained by applying the technique of Qin et al. [28]
to the CPA-secure leakage-resilient IBE scheme of Kurosawa and Phong [21].
Hereby, we can achieve the leakage rate 1/10. Our scheme will be able to gener-
alize to k-linear assumption.

Table 1 shows a comparison of CCA-secure leakage-resilient IBE schemes.

Table 1. Comparison of CCA-secure leakage-resilient IBE schemes

Schemes Assumption Leakage rate

Alwen et al. [3] q-type 1/6

Sun et al. [30] q-type 1/6

Li et al. [24] q-type 1/4

Ours (KEM) XDLIN or DLIN 1/10

1.3 Various Models for Leakage-Resilient

Several researchers consider some variants of leakage models to capture practical
issues. We summarize some leakage models below.

Micali and Reyzin [25] considered the “only computation leak information”
model to deal with physical observation via side-channel attacks. However, this
model could not capture key leakage attacks, such as a cold-boot attack. To

CCA-Secure Leakage-Resilient IB-KEM from Simple Assumptions 5

capture key leakage attacks, Akavia et al. [2] proposed the bounded memory
leakage model, in which an adversary can get partial information on secret keys.
Brakerski et al. [5] and Dodis et al. [9] presented a new model called continual
memory leakage model, which allows leakage on the private key in many periods
of time. In this model, the secret key is updated over time and the total leakage
over the lifetime of the system is unbounded. Dodis et al. [10] invented the
auxiliary input model, in which the entire secret could be leaked information-
theoretically, provided that it is computationally infeasible to compute the secret.

All these leakage models only consider leakage occurring before the challenge
ciphertext is given to the adversary. In response to this, Halevi and Lin [16]
proposed the after-the-fact leakage model, in which an adversary can obtain
leaked information after seeing the challenge ciphertext.

1.4 Organization

The rest of the paper is organized as follows. Section 2 introduces notations,
some building blocks, and computational assumptions. Section 3 describes the
definition of IB-KEM and the leakage-resilient CCA-security. We present the
concrete construction of our CCA-secure leakage-resilient IB-KEM scheme in
Sect. 4 and its security proof in Sect. 5. Finally, the conclusion of this paper is
given in Sect. 6.

2 Preliminaries

2.1 Notations

We introduce some notations used in this paper. Let λ ∈ N denote the security
parameter. We say that a function f(λ) is negligible in λ if it is smaller than all
polynomial fractions for a sufficiently large λ. For a finite set S, we use s ←$ S
to denote the process of sampling an element s from S uniformly at random and
let |S| denote its cardinality.

Let GGen be a probabilistic polynomial time (PPT) algorithm that
on input the security parameter 1λ returns a description params =
(G1,G2,GT , q, g1, g2, e) of pairing groups, where G1, G2, GT are cyclic groups
of a prime order q, g1 and g2 are generators of G1 and G2, respectively, and
e : G1 × G2 → GT is an efficiently computable (non-degenerated) bilinear map.
Define gT := e(g1, g2), which is a generator of GT .

We refer to [31] for a description of types of bilinear groups. There are three
types of bilinear groups according to whether efficient isomorphisms exist or not
between G1 and G2 [13]. In type 1, both the isomorphism ψ : G2 → G1 and
its inverse ψ−1 : G1 → G2 are efficiently computable, i.e., it can be regarded as
G1 = G2. In type 2, the isomorphism ψ : G2 → G1 is efficiently computable but
its inverse is not. In type 3, there are no efficient isomorphisms between G1 and
G2. Type 1 pairing groups are called symmetric, and type 2 and 3 pairing groups
are called asymmetric. We assume type 3 pairing groups in our scheme, but our

6 T. Tomita et al.

scheme also works in type 1 and 2 setting under appropriate computational
assumptions.

We use implicit representation of group elements as introduced in [12]. For
s ∈ {1, 2, T } and a ∈ Zq we define [a]s := ga

s ∈ Gs as the implicit representation
of a in Gs. Similarly, for a matrix

A =

⎛
⎜⎝

a1,1 . . . a1,m

...
. . .

...
an,1 . . . an,m

⎞
⎟⎠ ∈ Z

n×m
q

we define

[A]s :=

⎛
⎜⎝

g
a1,1
s . . . g

a1,m
s

...
. . .

...
g

an,1
s . . . g

an,m
s

⎞
⎟⎠ ∈ G

n×m
s

as the implicit representation of A in Gs. Note that it is easy to compute [AB]s
given ([A]s ,B) or (A, [B]s) with appropriate dimensions. We define [A]1◦[B]2 :=
e ([A]1 , [B]2) = [AB]T that can be efficiently computed given [A]1 and [B]2.

2.2 External Decisional Linear Assumption

We assume the following property.

Definition 1 (External Decisional Linear Assumption: XDLIN [1]). Let
s ∈ {1, 2}. We say that the XDLIN assumption holds relative to GGen in group
Gs if for any PPT adversary D, the following is negligible in λ:

AdvxdlinGGen,D(λ) :=∣∣Pr[D(params, [A]1 , [A]2 ,
[
AT r

]
s
) = 1] − Pr[D(params, [A]1 , [A]2 , [y]s) = 1]

∣∣ ,

where params ← GGen(1λ), a1, a2 ←$Zq, r ←$Z
2
q, y ←$Z

3
q, and

A :=
(

a1 0 1
0 a2 1

)
.

This assumption is a variant of the standard decisional linear (DLIN) assump-
tion [27] for asymmetric pairing groups. The XDLIN assumption is equivalent
to the DLIN assumption in the generic group model.

2.3 Statistical Distance, Min-Entropy and Randomness Extractor

The statistical distance between random variables X,Y over a finite domain S
is defined by

Δ(X,Y) :=
1
2

∑
s∈S

|Pr[X = s] − Pr[Y = s]| .

CCA-Secure Leakage-Resilient IB-KEM from Simple Assumptions 7

The min-entropy of X is defined by

H∞(X) := − log2
(
max

x
Pr[X = x]

)
.

Furthermore, average min-entropy of X conditioned on Y is defined by

H̃∞(X | Y) := − log2

(∑
y

2−H∞(X|Y =y) Pr[Y = y]

)
,

as defined in [11], which also proved the following lemma.

Lemma 1 ([11, Lemma 2.2]). Let � be a positive integer. Let X,Y and Z be
random variables. If Y has at most 2� possible values, then

H̃∞(X | Y,Z) ≥ H̃∞(X,Y | Z) − � ≥ H̃∞(X | Z) − �.

One of main tools in our construction is a randomness extractor [11].

Definition 2 (Randomness Extractor). Let n be a positive integer, and φ >
n, εExt be positive reals, and D,S be finite sets. A function Ext : D ×S → {0, 1}n

is called a (φ, εExt)-randomness extractor if for all pairs of random variables
(X, I) such that X is a random variable over D satisfying H̃∞(X | I) ≥ φ,

Δ((Ext(X,S), S, I), (R,S, I)) ≤ εExt

holds, where S is uniform over S and R is uniform over {0, 1}n.

2.4 Hash Functions

Let H : D → R be a hash function, where D = D(λ) and R = R(λ) are sets. We
require the following property of hash functions for our scheme.

Definition 3 (Target Collision Resistance). We say a hash function H is
target collision resistant if for any PPT adversary A,

AdvtcrH,A(λ) := Pr[x∗ ←$ D, x ←$A(x∗) : x �= x∗ ∧ H(x) = H(x∗)]

is negligible in λ.

2.5 Useful Facts

Here, we introduce useful facts used in our security proof. We use the following
lemmas to prove adaptive identity security of our scheme.

Lemma 2 (Programmable hash function [17, Theorem 7]). Let m,Q be
integers. We choose h = (h1, . . . , hm) ∈ Z

m
q as follows: (1) set J = Q2, (2) sam-

ple ui,j ←$ {−1, 0, 1} for i = 1, . . . , m and j = 1, . . . , J , (3) set hi =
∑J

j=1 ui,j.
For h = (h1, . . . , hm), we define

βh(x) := 1 +
m∑

i=1

x[i]hi mod q,

8 T. Tomita et al.

where x = (x[1], . . . , x[m]) ∈ {0, 1}m. Then, for any distinct id1, . . . , idQ, id∗ ∈
{0, 1}m, we have

Pr

⎡
⎣

Q∧
j=1

(βh(id j) �= 0) ∧ (βh(id∗) = 0)

⎤
⎦ ≥ Θ

1√
mQ

,

where the probability is taken over the choice of h.

Lemma 3 ([32, Lemma 5]). Let x1, . . . , xl ∈ R be reals such that

l∑
i=1

|xi| ≤ 1
2
.

Furthermore, let δ1, . . . , δl ∈ R be reals such that 0 < δlow ≤ δi ≤ δup for
i = 1, . . . , l. Then, we have

∣∣∣∣∣
l∑

i=1

δixi

∣∣∣∣∣ ≥ δlow

∣∣∣∣∣
l∑

i=1

xi

∣∣∣∣∣ − δup − δlow
2

.

3 Identity-Based Key-Encapsulation Mechanism

In this section, we introduce the syntax, the correctness property, and the secu-
rity notion for IB-KEM.

Syntax. An IB-KEM scheme Π = (Setup,KGen,Encap,Decap) consists of four
PPT algorithms.

– Setup(1λ) → (pp,mk). The setup algorithm takes as input the security param-
eter λ, outputs a public parameter pp and a master key mk . We assume that
pp implicitly defines an identity space ID, a session key space K, and a secret
key space SK.

– KGen(mk , id) → sk id . The key generation algorithm takes as input the master
key mk and an identity id ∈ ID, outputs a secret key sk id for the id .

– Encap(pp, id) → (ct ,K). The encapsulation algorithm takes as input the
public parameter pp and an id ∈ ID, outputs a session key K ∈ K together
with a ciphertext ct with respect to identity id .

– Decap(sk id , ct) → K or ⊥. The decapsulation algorithm takes as input a
secret key sk id and a ciphertext ct , outputs a decapsulated key K ∈ K or the
rejection symbol ⊥.

Correctness. We require correctness of decapsulation: that is for all λ, all pairs
(pp,mk) generated by Setup(1λ), all identities id ∈ ID, and all (ct ,K) ←
Encap(pp, id), Pr[Decap(KGen(mk , id), ct) = K] = 1.

CCA-Secure Leakage-Resilient IB-KEM from Simple Assumptions 9

Security. In this paper, we consider the IB-KEM variant of CCA-security for
leakage-resilient IBE in the bounded memory leakage model [3]. Let Π be an
IB-KEM scheme. We consider the IND-ID-lrCCA game between a challenger
and an adversary A as follows.

Setup phase: The challenger runs Setup to generate (pp,mk), and sends pp to
A.

Query phase 1: The adversary A makes queries of the following types:
– Key generation query id ∈ ID. The challenger computes and returns the

secret key sk id ← KGen(mk , id) to A.
– Leakage query (id , f), where f : SK → {0, 1} is an efficiently computable

function. The challenger returns f(sk id) to A.
– Decapsulation query (id , ct). The challenger returns Decap(sk id , ct) to A.

Challenge phase: A sends the challenge identity id∗ ∈ ID to the challenger.
It must be that he has never queried id∗ as a key generation query. The
challenger chooses a bit b ←$ {0, 1}. The challenger runs Encap(pp, id∗) to
generate (ct∗,K∗

0), and chooses a random session key K∗
1 ←$ K. Then, he

sends (ct∗,K∗
b) to A.

Query phase 2: A makes queries of the following types:
– Key generation query id ∈ ID, where it must be that id �= id∗.
– Decapsulation query (id , ct), where it must be that (id , ct) �= (id∗, ct∗).

Guess phase: Finally A outputs a guess b′ ∈ {0, 1}.

Note that, in query phase 1 and 2 the challenger computes sk id the first time
that id is queried in a key generation, leakage, or decryption query, and responds
to all future queries on the same id with the same sk id .

Definition 4 (IND-ID-lrCCA security). An IB-KEM scheme Π is �-IND-
ID-lrCCA (indistiguishability against adaptive identity leakage-resilient chosen-
ciphertext attack) secure if for any PPT adversary A that makes at most � leakage
queries, the advantage

AdvIND-ID-lrCCA
Π,A (λ) :=

∣∣∣∣Pr[b′ = b] − 1
2

∣∣∣∣

is negligible in λ.

Remark: Challenge-Dependent Leakage. In the security definition, the adversary
is not allowed to obtain the leakage f(sk id) after the challenge phase. We note
that this restriction is indeed necessary: the adversary can encode the decap-
sulation algorithm for the challenge ciphertext ct∗ and the challenge identity
id∗.

4 Construction

In this section, we propose a new CCA-secure leakage-resilient IB-KEM scheme.

10 T. Tomita et al.

Let params = (G1,G2,GT , q, g1, g2, e) ← GGen(1λ), n be the bit-length of a
session key (i.e., K = {0, 1}n), m be the bit-length of an identity (i.e., ID =
{0, 1}m), � < log2 q be any positive integer, H : G5

1 × S → Zq \ {0} be a target
collision resistant hash function, Ext : GT × S → {0, 1}n be a (log2 q − �, εExt)-
randomness extractor. We assume that m is independent of λ, εExt is negligible
in λ.

Our scheme Π = (Setup,KGen,Encap,Decap) is described as follows.

Setup(1λ): Choose a1, a2 ←$Zq \{0} and B0,B1, . . . ,Bm,D ←$Z
2×2
q uniformly

at random and set

A :=
(

a1 0 1
0 a2 1

)
∈ Z

2×3
q .

Output pp = ([A]1 , [B0]1 , [B1]1 , . . . , [Bm]1 , [D]1) and mk = (a1, a2,B0,
B1, . . . ,Bm,D).
For an identity id = (id [1], . . . , id [m]) ∈ {0, 1}m, let

Fid =

(
A
∥∥∥B0 +

m∑
i=1

id [i]Bi

)
∈ Z

2×5
q .

KGen(mk , id): Compute a random matrix Sid ∈ Z
5×2
q such that

FidSid = D (1)

as follows. Let

F′
id =

(
1
1

∥∥∥B0 +
m∑

i=1

id [i]Bi

)
∈ Z

2×3
q .

Choose S′ ←$Z
3×2
q at random, compute

S′′ =
(

a−1
1 0
0 a−1

2

)
(D − F′

idS
′) ∈ Z

2×2
q ,

and set

Sid =
(
S′′

S′

)
.

Output sk id = [Sid]2 as a secret key for the id .
Encap(pp, id): Choose r ←$Z

2
q and sd ←$ S at random, compute

[c]1 =
[
F�

idr
]
1

∈ G
5
1,

α = H([c]1 , sd) ∈ Zq,

[ka]T =
[
r�D (1

α)
]
1

◦ [1]2 ∈ GT ,

[ks]T =
[
r�D (1

0)
]
1

◦ [1]2 ∈ GT .

Output ct = ([c]1 , [ka]T , sd) and K = Ext([ks]T , sd).

CCA-Secure Leakage-Resilient IB-KEM from Simple Assumptions 11

Decap(sk id , ct): On input sk id = [Sid]2 and ct = ([c]1 , [t]T , sd), compute

α = H([c]1 , sd),

[ka]T =
[
c�]

1
◦ [Sid (1

α)]2 ,

[ks]T =
[
c�]

1
◦ [Sid (1

0)]2 .

Output Ext([ks]T , sd) if [t]T = [ka]T , otherwise ⊥.

Correctness. Let sk id = [Sid]2, ct = ([c]1 , [t]T , sd), and α = H([c]1 , sd). If
c = F�

idr and t = r�D (1
α) then

ka = c�Sid (1
α) = r�FidSid (1

α) = r�D (1
α) = t

in the Decap procedure, and it is similar to ks. Therefore, our IB-KEM scheme
Π satisfies correctness.

5 Security

In this section, we prove the IND-ID-lrCCA security of our scheme.

Theorem 1. Under the XDLIN assumption relative to GGen in group G1, our
scheme Π is �-IND-ID-lrCCA secure for any positive integer � satisfying

� ≤ log2 q − n − η, (2)

where η = η(λ) is a positive integer such that 2−η is negligible in λ.
In particular, given an efficient adversary A breaking the �-IND-ID-lrCCA

secure of Π with advantage εA := AdvIND-ID-lrCCA
Π,A (λ), we can construct an adver-

sary D breaking the XDLIN assumption with advantage εD := AdvxdlinGGen,D(λ) such
that

εD ≥ Θ
1√

m(QKGen + QDec)
εA − AdvtcrH (λ) − QDec

2η(1 − QDec/q)
− 3

q
− QDec

q5 · |S| − εExt,

holds for such λ, where QKGen = poly(λ) and QDec = poly(λ) are the number of
key generation queries and decapsulation queries made by A, respectively.

Remark. Our scheme works also on type 1 or 2 bilinear groups.

Proof. Let A be an efficient adversary on the IND-ID-lrCCA security of Π.
Namely, εA ≥ 1/poly(λ) for infinitely many λ. We will consider a sequence of
games, Game0, . . . ,Game9 performed by a challenger and A. At the end of each
game, the challenger outputs a bit γ ∈ {0, 1}, which will be described below.

Let Wi be the event such that γ = 1 in Gamei.

12 T. Tomita et al.

Game0: This game is the IND-ID-lrCCA game. At the end of the game, the
challenger outputs γ = 1 if b′ = b, otherwise γ = 0, where b′ is A’s guessing
bit of b. Thus, ∣∣∣∣Pr[W0] − 1

2

∣∣∣∣ = εA. (3)

The challenge is (ct∗,K∗
b) where ct∗ = ([c∗]1 , [k∗

a]T , sd∗). We denote by
r∗, α∗, k∗

s the corresponding intermediate values. The session key K∗
b is

Ext([k∗
s]T , sd∗) or random over {0, 1}n, depending on the bit b.

Game1: This game is the same as Game0 except that the challenger changes
the generation of the public parameter pp and the ciphertext ct∗ as follows.

– In the setup phase, choose R0,R1, . . . ,Rm,E ←$Z
3×2
q uniformly at ran-

dom. Set J := (QKGen +QDec)2, sample ui,j ←$ {−1, 0, 1} for i = 1, . . . , m

and j = 1, . . . , J , and set hi :=
∑J

j=1 ui,j . The public parameter is defined
as

B0 = AR0 + I2,

Bi = ARi + hiI2 for i = 1, . . . , m,

D = AE.

Output pp = ([A]1 , [B0]1 , [B1]1 , . . . , [Bm]1 , [D]1). The challenger holds
(a1, a2,R0,R1, . . . ,Rm,E) as a master key in this game.
In Game1, the Fid for id ∈ {0, 1}m can be written by

Fid =
(
A
∥∥∥ARid + βh(id)I2

)
,

where Rid = R0 +
∑m

i=1 id [i]Ri and βh(id) = 1 +
∑m

i=1 id [i]hi.
– In the challenge phase, the challenger computes [k∗

a]T and [k∗
s]T as follows:

[k∗
a]T =

[
c∗�

]
1

◦
[
S∗ (

1
α∗

)]
2
,

[k∗
s]T =

[
c∗�

]
1

◦ [S∗ (1
0)]2 ,

where [S∗]2 is the secret key for the id∗.
Note that this change does not affect the distributions of the public parameter
pp and the challenge (ct∗,K∗

b). Therefore, we have

Pr[W0] = Pr[W1]. (4)

Game2: Let id∗ be the challenge identity and id1, . . . , idQ be identities that
A queries in the key generation query and the decapsulation query, where
Q ≤ QKGen + QDec. Define the event

FORCEDABORT :
Q∨

i=1

(βh(id i) = 0) ∨ (βh(id∗) �= 0) ,

CCA-Secure Leakage-Resilient IB-KEM from Simple Assumptions 13

and
η(idA) := Pr[¬FORCEDABORT]

for idA = (id1, . . . , idQ, id∗), where the probability is taken over the choice
of h. By Lemma 2, this probability has a minimum value greater than 0. Let
ηlow be the minimum value of η(idA).
In the guess phase, A outputs its guess b′ ∈ {0, 1} for b. The challenger checks
the event FORCEDABORT occurs for idA. If yes, the challenger aborts the
game and outputs a fresh random bit γ ∈ {0, 1}. Otherwise, the challenger
first estimates the probability η(idA) by sampling (h1, . . . , hm) sufficiently
large amount of times. Let η′(idA) be the estimation of η(idA). Depending
on the estimate η′(idA) the challenger decides γ as follows:

– Case η′(idA) ≤ ηlow: The challenger outputs γ = [b = b′].
– Case η′(idA) > ηlow: With probability ηlow/η′(idA) the challenger outputs

γ = [b = b′]. With probability 1 − ηlow/η′(idA) the challenger aborts the
game and outputs a fresh random bit γ ∈ {0, 1}.

Lemma 4 in Appendix will show that

ηlow
2

∣∣∣∣Pr[W1] − 1
2

∣∣∣∣ ≤
∣∣∣∣Pr[W2] − 1

2

∣∣∣∣ .

From Lemma 2, we have
∣∣∣∣Pr[W1] − 1

2

∣∣∣∣ ≤ Θ
√

m(QKGen + QDec)
∣∣∣∣Pr[W2] − 1

2

∣∣∣∣ . (5)

Game3: In Game3, we make the following changes to the experiment. When
A queries an identity id to the key generation oracle, the challenger checks
whether βh(id) = 0. If so, the challenger immediately aborts and returns a
fresh random bit γ. When A outputs id∗ as a challenge identity, if βh(id∗) �= 0
the challenger immediately aborts and returns a fresh random bit γ.
Clearly, the above changes do not affect A’s environment if FORCED
ABORT dose not occur. Then, we have

Pr[W2] = Pr[W3]. (6)

Game4: This game is the same as Game3 except that the challenger changes
the generation of the secret key sk id = [Sid]2 for id as follows.

– Case βh(id) �= 0: The challenger chooses W ←$Z
3×2
q , computes W′ ∈

Z
2×2
q satisfying

βh(id)W′ = −AW + AE, (7)

and sets

Sid =
(
W − RidW′

W′

)
.

14 T. Tomita et al.

This Sid satisfies Eq. (1) because

FidSid =
(
A
∥∥∥ARid + βh(id)I2

)(
W − RidW′

W′

)

= A (W − RidW′) + (ARid + βh(id)I2)W′

= AW + βh(id)W′

= AW − AW + AE

= D.

Further, the above Sid has the same distribution as the secret key gener-
ated by KGen, because 6 elements are chosen at random and the remaining
are determined uniquely by Eq. (7).

– Case βh(id) = 0: The challenger computes Sid ∈ Z
5×2
q such that

(I3‖Rid)Sid = E (8)

as follows. The challenger computes S′′ := E − RidS′ where S′ ←$Z
2×2
q ,

and sets

Sid =
(
S′′

S′

)
.

It is easy to see that [Sid]2 is the correct secret key for id by multiplying
A from the left to both hand sides of Eq. (8).
We show that the above Sid has the same distribution of the original
KGen as seen from A. Now, S′ is chosen randomly. Hence, we need to
show that 2 elements in S′′ e.g. eS′′ are also random where e :=

(
0 0 1

)
.

It suffices to prove u := eE is random even given A and D = AE, since
eS′′ = eE − eRidS′. It is easy to see that

(
D
u

)
=

(
A
e

)

︸ ︷︷ ︸
A′

E. (9)

Because A′ is of full rank, the distribution of u is random and independent
from D that A knows. Hence, eS′′ is also random as seen from A.

Note that this change dose not affect the distribution of the secret key sk id

for id . Therefore, we have

Pr[W3] = Pr[W4]. (10)

Game5: This game is the same as Game4 except that [c∗]1 in the challenge is
randomly chosen from G

5
1. Furthermore, the challenger chooses [c∗]1 ←$G

5
1,

sd∗ ←$ S, and computes α∗ = H([c∗]1 , sd∗) at the beginning of the game. As
we will show in Lemma 6, we have that there exists a PPT adversary D such
that

|Pr[W4] − Pr[W5]| ≤ AdvxdlinGGen,D(λ) +
1
q
. (11)

CCA-Secure Leakage-Resilient IB-KEM from Simple Assumptions 15

The decapsulation oracle in this game is depicted in Fig. 1. We define that a
ciphertext [c]1 is valid for id if there exists r ∈ Z

2
q such that [c]1 =

[
F�

idr
]
1
.

With pp and mk , we can efficiently check whether [c]1 =
[
(c1, c2, c3, c4, c5)�]

1
is valid for id by simply verifying

[(c3, c4, c5)]1 =
[
(c1, c2)

(
a−1
1 0
0 a−1

2

)
F′

id

]

1

.

Fig. 1. Decapsulation oracle in Game5

Game6: In this game, at line 6 in Fig. 1, the challenger returns ⊥. Then we have

Pr[W5] = Pr[W5 ∧ H has collision] + Pr[W5 ∧ H has no collision]
≤ Pr[H has collision] + Pr[W5 ∧ H has no collision]

≤ AdvtcrH (λ) + Pr[W6].

Therefore, we obtain

|Pr[W5] − Pr[W6]| ≤ AdvtcrH (λ). (12)

Game7: In this game, at line 13 in Fig. 1, the challenger returns ⊥. As we will
show in Lemma 7, we have

|Pr[W6] − Pr[W7]| ≤ QDec

2η(1 − QDec/q)
+

1
q
. (13)

16 T. Tomita et al.

Game8: In this game, at line 8 in Fig. 1, the challenger returns ⊥. ([c]1 , sd) =
([c∗]1 , sd∗) holds with probability 1/(q5 ·|S|) before the challenge phase, since
A knows nothing about (c∗, sd∗) chosen randomly. On the other hand, after
the challenge phase (id∗, ct∗ = ([c∗]1 , [k∗

a]T , sd∗)) was already announced to
A, any adversarial decapsulation query (id∗, ([c∗]1 , [ka]T , sd∗)) with [t]T =
[ka]T is equal to (id∗, ct∗). Hence, such adversarial decapsulation query is
forbidden by the restriction of IND-ID-lrCCA game.
Thus we have

|Pr[W7] − Pr[W8]| ≤ QDec

q5 · |S| . (14)

Game9: In this game, K∗
0 is chosen at random from {0, 1}n instead of using

Ext([k∗
s]T , sd∗). As we will show in Lemma 8, we have

|Pr[W8] − Pr[W9]| ≤ εExt +
1
q
. (15)

In Game9, A does not get any information about bit b because both K∗
0 and

K∗
1 are random. Hence, we have

Pr[W9] =
1
2
. (16)

From Eqs. (3)–(6) and (10)–(16), we have shown that given an adversary A

with advantage εA, there exists an adversary D with εD = AdvxdlinGGen,D(λ) such that

εA =

∣
∣
∣
∣
Pr[W0] − 1

2

∣
∣
∣
∣

≤ Θ(
√

m(QKGen + QDec))

∣
∣
∣
∣
Pr[W2] − 1

2

∣
∣
∣
∣

≤ Θ(
√

m(QKGen + QDec))

8∑

i=4

|Pr[Wi] − Pr[Wi+1]|

= Θ(
√

m(QKGen + QDec))

(

εD + AdvtcrH (λ) +
QDec

2η(1 − QDec/q)
+

3

q
+

QDec

q5 · |S| + εExt

)

.

Therefore, we have

εD ≥ Θ
1√

m(QKGen + QDec)
εA − AdvtcrH (λ) − QDec

2η(1 − QDec/q)
− 3

q
− QDec

q5 · |S| − εExt.

The right side of the above inequality is non-negligible, since εA and
Θ1/

√
m(QKGen + QDec) are non-negligible in λ, other terms are negligible in λ.

Hence, this contradicts the XDLIN assumption. This completes the proof of
Theorem 1. ��

6 Conclusion

In this paper, we proposed the first CCA-secure leakage-resilient IB-KEM scheme
which does not depend on q-type assumptions. More precisely, it is secure under

CCA-Secure Leakage-Resilient IB-KEM from Simple Assumptions 17

the DLIN assumption for symmetric bilinear groups and under the XDLIN
assumption for asymmetric bilinear groups. A CCA-secure leakage-resilient IBE
scheme is obtained by combining our IB-KEM with any CCA-secure symmetric-
key encryption scheme (which does not need to be leakage-resilient). However,
the leakage rate of our scheme is smaller than previous works [3,24,30].

A Proof of Lemmas

To complete the proof of Theorem 1, we prove Lemmas 4, 6, 7, and 8.

Lemma 4.
ηlow
2

∣∣∣∣Pr[W1] − 1
2

∣∣∣∣ ≤
∣∣∣∣Pr[W2] − 1

2

∣∣∣∣ .

We introduce a lemma before proving Lemma 4.

Lemma 5. ([19, Claim 6.7]). Let 0 < ρ < 1 be a real. For a sequence of
identities id ∈ (ID)Q+1, and ABORT be the event that the challenger aborts
with added rules in Game2. For any fixed id,

ηlow (1 − ρ) ≤ Pr[¬ABORT] ≤ ηlow (1 + ρ) .

Proof (of Lemma 4). For a sequence of identities id ∈ (ID)Q+1, we define Q(id)
as the event that A uses the last entry in id as the challenge and makes key
generation queries and decapsulation queries for the remaining identities. Then,
we have

∑
id∈(ID)Q+1 Pr[Q(id)] = 1. Let δ(id) = Pr[¬ABORT], and δlow and

δup be reals such that δlow ≤ δ(id) ≤ δup. Then, we have
∣
∣
∣
∣
Pr[W2] − 1

2

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

id

Pr[Q(id)] Pr[W2 | Q(id)] − 1

2

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

id

Pr[Q(id)]
(

Pr[W2 ∧ ¬ABORT | Q(id)] + Pr[W2 ∧ ABORT | Q(id)] − 1

2

)
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

id

Pr[Q(id)]

(

Pr[W2 | Q(id)]δ(id) +
1

2
(1 − δ(id)) − 1

2

)
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

id

δ(id) Pr[Q(id)]

(

Pr[W1 | Q(id)] − 1

2

)
∣
∣
∣
∣
∣

≥ δlow

∣
∣
∣
∣
Pr[W1] − 1

2

∣
∣
∣
∣
− δup − δlow

2
.

The last inequality above follows from Lemma3, since we have
∣∣∣∣∣
∑
id

Pr[Q(id)]
(

Pr[W1 | Q(id)] − 1
2

)∣∣∣∣∣ =
∣∣∣∣Pr[W1] − 1

2

∣∣∣∣

18 T. Tomita et al.

and ∑
id

∣∣∣∣Pr[Q(id)]
(

Pr[W1 | Q(id)] − 1
2

)∣∣∣∣ ≤
∑
id

Pr[Q(id)] · 1
2

=
1
2
.

From Lemma 5, we have δup − δlow ≤ ηlowρ/2. Therefore, defining ρ :=
|Pr[W1] − 1/2|, we obtain

∣∣∣∣Pr[W2] − 1
2

∣∣∣∣ ≥ δlow

∣∣∣∣Pr[W1] − 1
2

∣∣∣∣ − δup − δlow
2

≥ ηlow
2

∣∣∣∣Pr[W1] − 1
2

∣∣∣∣ .

��

Lemma 6. For any PPT algorithm A, there exists a PPT algorithm D such that

|Pr[W4] − Pr[W5]| ≤ AdvxdlinGGen,D(λ) +
1
q
. (17)

Proof. Let ([A]1 , [A]2 , [y]1) ∈ G
2×3
1 ×G

2×3
2 ×G

3
1 be an XDLIN instance, where

A =
(

a1 0 1
0 a2 1

)
,

y = A�r∗ or random.

Then, we build a PPT algorithm D with input ([A]1 , [A]2 , [y]1) that simulates
the IND-ID-lrCCA game with A as follows.

Setup phase: D generates pp = ([A]1 , [B0]1 , [B1]1 , . . . , [Bm]1 , [D]1) as same
as the challenger, except that D computes

[B0]1 = [AR0 + I2]1 ,

[Bi]1 = [ARi + hiI2]1 for i = 1, . . . , m,

[D]1 = [AE]1 .

Finally D sends pp to A.
Query phase: D answers for each query from A as follows.

– Key Generation query id . Assume that βh(id) �= 0. D chooses
S′ ←$Z

3×2
q at random, computes [S′′]2 ∈ G

2×2
2 such that [βh(id)S′′]2 =

[−AS′ + AE]2, sets

[Sid]2 =
[(

S′ − RidS′′

S′

)]

2

,

and returns sk id = [Sid]2 to A.
– Leakage query (id , f) and decapsulation query (id , ct). If βh(id) �= 0,

then D can generate sk id as above. Furthermore, even in that case that
βh(id) = 0 (i.e., id = id∗), D can generate sk id by computing Sid such
that (I3‖Rid)Sid = E. Thus, D can answer f(sk id) and Decap(sk id , ct)
for any identity.

CCA-Secure Leakage-Resilient IB-KEM from Simple Assumptions 19

Challenge phase: D generates the challenge (ct∗,K∗
b) = (([c∗]1 , [ka]T , sd),K∗

b)
as same as the challenger, except that D computes

[c∗]1 =
[(

y
R�

id∗y

)]

1

instead of [c∗]1 =
[
F�

id∗r
]
1
. Then, D returns (ct∗,K∗

b) to A.

Finally, D outputs γ = [b = b′] where b′ ∈ {0, 1} is the output of A.
We will show that the distribution of (ct∗,K∗

b) is the same as the challenge
in Game4 if y = A�r∗, while if y is a random it is the same as that in Game5
with overwhelming probability. First suppose that y = A�r∗. In this case,

c∗ =
(

y
R�

id∗y

)
=

(
A�r∗

R�
id∗A�r∗

)
= (A‖ARid∗)�r∗ = F�

id∗r∗,

showing that (ct∗,K∗
b) is the challenge in Game4. Next suppose that y is random

in Z
3
q. It suffices to prove that z := R�

id∗y is also random in Z
2
q even given A,

U := AR�
id∗ , and y. It is easy to see that

(
U
z�

)
=

(
A
y�

)

︸ ︷︷ ︸
V

Rid∗ .

Therefore, z is random because V is of full rank with probability 1−1/q. Hence,
[c∗]1 is random as expected.

Thus, Game4 and Game5 are indistinguishable under the XDLIN assumption,
so that we have Eq. (17). ��

Lemma 7.
|Pr[W6] − Pr[W7]| ≤ QDec

2η(1 − QDec/q)
+

1
q
. (18)

Proof. We assume that all decapsulation queries are made after the challenge
phase, but a similar (but slight simpler) argument can be used if A makes queries
before the challenge phase. Suppose that (id∗, ct = ([c]1 , [t]T , sd)) is the first
decapsulation query such that id = id∗ and the condition at line 13 in Fig. 1
is evaluated. Let D = (d1‖d2),Sid∗ = (s∗

1‖s∗
2), where d1,d2 ∈ Z

2
q, s

∗
1, s

∗
2 ∈ Z

5
q.

Then, we have
⎛
⎜⎜⎝
d1

d2

k∗
a

ka

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

(A‖ARid∗) 0
0 (A‖ARid∗)

c∗� α∗c∗�

c� αc�

⎞
⎟⎟⎠

︸ ︷︷ ︸
M

(
s∗
1

s∗
2

)
,

where ka is computed at line 11 in Fig. 1. From the supposition, we can assume
that α �= α∗, c∗ is chosen uniformly at random, and [c]1 is invalid for id∗. Hence,

20 T. Tomita et al.

the matrix M is of full rank with probability at least 1 − 1/q, that implies that
the distribution of ka is random and independent from D and k∗

a. In addition to
D and k∗

a, A knows at most � bit leakage {f(sk id∗)} and n bit challenge session
key K∗

b that is probable to provide information on the value of ka to A. Let Ka,
F , and I denote random variables induced by ka, ({f(sk id∗)} ,K∗

b), and (D, k∗
a),

respectively. Given ka, ({f(sk id∗)} ,K∗
b), and (D, k∗

a) that A knows, we have

H̃∞(Ka | F, I) ≥ H̃∞(Ka | I) − (� + n) = log2 q − � − n

from Lemma 1 and the above discussion. Thus, for any ka, we have Pr[Ka =
ka] ≤ 2�+n/q. Therefore, in the first evaluation of line 11, the condition t = ka is
satisfied with probability at most 2�+n/q. Now assuming t = ka is not satisfied,
the number of possible ka decreases one. So, in the i-th evaluation of line 11, the
probability that t = ka holds is at most 2�+n/(q − i + 1), in the case that t = ka

is not satisfied in all previous evaluations. From the above discussion, we have

|Pr[W6] − Pr[W7]| ≤ QDec2�+n

q − QDec
+

1
q
.

From Eq. (2), we obtain Eq. (18). ��
Lemma 8.

|Pr[W8] − Pr[W9]| ≤ εExt +
1
q
. (19)

Proof. In Game9, the challenger returns ⊥ to A at line 13 in Fig. 1. Hence, A
does not learn any information on k∗

s via the decapsulation oracle, since A can
only get decapsulation results of valid ciphertexts. Now, A knows D, k∗

a, and
{f(sk id∗)} as information about k∗

s . Then, we show that the min-entropy of k∗
s

is at least log2 q − � with probability at least 1 − 1/q.
First, we have

k∗
s = c∗�s∗

1,

and then ⎛
⎜⎜⎝
d1

d2

k∗
a

k∗
s

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

(A‖AE) 0
0 (A‖AE)

c∗� α∗c∗�

c∗� 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
N

(
s∗
1

s∗
2

)
.

The matrix N is of full rank with probability at least 1 − 1/q, since α∗ �= 0
and [c∗]1 is uniformly at random. Then, the distribution of k∗

s is random and
independent from D and k∗

a. In addition to D and k∗
a, A knows at most � bit

leakage {f(sk id∗)} that is probable to provide information on the value of k∗
s

to A. Let Ka, D, and F denote random variables induced by k∗
s , (D, k∗

a), and
{f(sk id∗)} respectively. Given k∗

s , (D, k∗
a), and {f(sk id∗)} that A knows, we have

H̃∞(K∗
s | D,F) ≥ H̃∞(K∗

s | D) − � = log2 q − �

from Lemma 1 and the discussion when ignoring {f(sk id∗)}. Hence Ext(K∗
s , sd∗)

is statistically indistinguishable from an n bits random string because Ext is a
(log2 q − �)-randomness extractor. Therefore, we have Eq. (19). ��

CCA-Secure Leakage-Resilient IB-KEM from Simple Assumptions 21

References

1. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.:
Constant-size structure-preserving signatures: generic constructions and simple
assumptions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 4–24. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 3

2. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-00457-5 28

3. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key
encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 6

4. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 3

5. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: public-key cryptography resilient to continual memory leakage. In:
FOCS, pp. 501–510 (2010)

6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

7. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg
(2006). https://doi.org/10.1007/11761679 1

8. Chow, S.S., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient
identity-based encryption from simple assumptions. In: ACM CCS, pp. 152–161
(2010)

9. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS, pp. 511–520 (2010)

10. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC,
pp. 621–630 (2009)

11. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

12. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 8

13. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discret.
Appl. Math. 156(16), 3113–3121 (2008)

14. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 21

15. Halderman, J.A., et al.: Lest we remember: cold boot attacks on encryption keys.
In: USENIX, pp. 45–60 (2008)

16. Halevi, S., Lin, H.: After-the-fact leakage in public-key encryption. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 107–124. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19571-6 8

https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-642-34961-4_3
https://doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/978-3-642-13190-5_6
https://doi.org/10.1007/978-3-642-13190-5_6
https://doi.org/10.1007/978-3-642-03356-8_3
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/11761679_1
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/978-3-642-19571-6_8

22 T. Tomita et al.

17. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85174-5 2

18. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 41

19. Kiltz, E., Galindo, D.: Direct chosen-ciphertext secure identity-based key encapsu-
lation without random oracles. Theor. Comput. Sci. 410(47–49), 5093–5111 (2009)

20. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

21. Kurosawa, K., Trieu Phong, L.: Leakage resilient IBE and IPE under the DLIN
assumption. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.)
ACNS 2013. LNCS, vol. 7954, pp. 487–501. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38980-1 31

22. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual
system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 6

23. Lewko, A., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 27

24. Li, J., Teng, M., Zhang, Y., Yu, Q.: A leakage-resilient CCA-secure identity-based
encryption scheme. Comput. J. 59(7), 1066–1075 (2016)

25. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24638-1 16

26. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 2

27. Okamoto, T., Takashima, K.: Fully secure functional encryption with general rela-
tions from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14623-7 11

28. Qin, B., Chen, K., Liu, S.: Efficient chosen-ciphertext secure public-key encryption
scheme with high leakage-resilience. IET Inf. Secur. 9(1), 32–42 (2015)

29. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

30. Sun, S.-F., Gu, D., Liu, S.: Efficient leakage-resilient identity-based encryption
with CCA security. In: Cao, Z., Zhang, F. (eds.) Pairing 2013. LNCS, vol. 8365,
pp. 149–167. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04873-4 9

31. Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product
values with full-hiding security. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC
2016. LNCS, vol. 9866, pp. 408–425. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-45871-7 24

32. Yamada, S.: Adaptively secure identity-based encryption from lattices with asymp-
totically shorter public parameters. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 32–62. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 2

https://doi.org/10.1007/978-3-540-85174-5_2
https://doi.org/10.1007/978-3-642-10366-7_41
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-38980-1_31
https://doi.org/10.1007/978-3-642-38980-1_31
https://doi.org/10.1007/978-3-642-19571-6_6
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-642-03356-8_2
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-319-04873-4_9
https://doi.org/10.1007/978-3-319-45871-7_24
https://doi.org/10.1007/978-3-319-45871-7_24
https://doi.org/10.1007/978-3-662-49896-5_2
https://doi.org/10.1007/978-3-662-49896-5_2

(Short Paper) A Faster Constant-Time
Algorithm of CSIDH Keeping Two Points

Hiroshi Onuki1(B), Yusuke Aikawa1,2, Tsutomu Yamazaki3,
and Tsuyoshi Takagi1

1 Department of Mathematical Informatics, University of Tokyo, Tokyo, Japan
{onuki,takagi}@mist.i.u-tokyo.ac.jp

2 Department of Mathematics, Hokkaido University, Sapporo, Japan
yusuke@math.sci.hokudai.ac.jp

3 Graduate School of Mathematics, Kyushu University, Fukuoka, Japan
yamazaki.tsutomu.890@s.kyushu-u.ac.jp

Abstract. At ASIACRYPT 2018, Castryck, Lange, Martindale, Panny
and Renes proposed CSIDH, which is a key-exchange protocol based
on isogenies between elliptic curves, and a candidate for post-quantum
cryptography. However, the implementation by Castryck et al. is not
constant-time. Specifically, a part of the secret key could be recovered
by the side-channel attacks. Recently, Meyer, Campos, and Reith pro-
posed a constant-time implementation of CSIDH by introducing dummy
isogenies and taking secret exponents only from intervals of non-negative
integers. Their non-negative intervals make the calculation cost of their
implementation of CSIDH twice that of the worst case of the standard
(variable-time) implementation of CSIDH. In this paper, we propose a
more efficient constant-time algorithm that takes secret exponents from
intervals symmetric with respect to the zero. For using these intervals,
we need to keep two torsion points on an elliptic curve and calculation
for these points. We implemented our algorithm by extending the imple-
mentation in C of Meyer et al. (originally from Castryck et al.). Then
our implementation achieved 152.8 million clock cycles, which is about
29.03% faster than that of Meyer et al.

Keywords: CSIDH · Post-quantum cryptography ·
Isogeny-based cryptography · Constant-time implementation ·
Supersingular elliptic curve isogenies

1 Introduction

RSA and elliptic curve cryptosystems will no longer be secure once a large-scale
quantum computer is built. Due to this, the importance of post-quantum cryp-
tography (PQC) has increased. In 2017, the National Institute of Standards and
Technology (NIST) started the process of PQC standardization [18]. Candidates
for the NIST PQC standardization include supersingular isogeny key encapsu-
lation (SIKE) [14], which is a scheme based on isogenies between elliptic curves.
c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 23–33, 2019.
https://doi.org/10.1007/978-3-030-26834-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_2

24 H. Onuki et al.

SIKE is a variant of supersingular isogeny Diffie-Hellman (SIDH), which was
proposed by Jao and De Feo [12] in 2011. SIDH uses isogenies between supersin-
gular elliptic curves over a finite field. SIDH achieves an efficient key-exchange
but needs to send torsion points of an elliptic curve as supplementary informa-
tion. Attacks using this information are discussed in by Galbraith, Petit, Shani,
and Ti [11] and Petit [20].

Isogeny-based cryptography was first proposed by Couveignes [8] in 1997
and independently rediscovered by Rostovtsev and Stolbunov [21,23]. Their pro-
posed scheme is a Diffie-Hellman-style key-exchange based on isogenies between
ordinary elliptic curves over a finite field and typically called CRS. CRS does
not need to send any point of elliptic curves, therefore the attacks to SIDH,
which is based on information of points of elliptic curves, cannot be applied to
CRS. However, even after optimizations by De Feo, Kieffer, and Smith [9], CRS
is much slower than SIDH. In 2018, Castryck, Lange, Martindale, Panny, and
Renes [3] proposed commutative SIDH (CSIDH), which adopts supersingular
elliptic curves to the CRS scheme. They used supersingular elliptic curves over
a finite prime field Fp and their endomorphism rings over Fp. Since the number
of Fp-rational points on a supersingular elliptic curve E over Fp is p+1, one can
choose p such that #E(Fp) has many small prime factors. This allows CSIDH
to compute isogenies faster than CRS.

However, the computational time in the proof-of-concept implementation by
Castryck et al. depends on the associated secret key, so their implementation
of CSIDH is not side-channel resistant. Recently, Meyer, Campos, and Reith
[15] proposed a constant-time implementation of CSIDH and several speedup
techniques for their implementation. They achieved the constant-time imple-
mentation by using dummy isogenies and by changing intervals of key elements
from [−m,m] to [0, 2m], where m ∈ N. Consequently, their constant-time imple-
mentation needs to calculate each degree isogeny 2m times, while the worst case
of the variable-time CSIDH needs only m times. Therefore, the computational
cost of their constant-time implementation is twice as that of the worst case of
the variable-time CSIDH. The constant-time implementation in [15] allows vari-
ance of the computational time of their implementation with randomness that
does not relate to secret information.

On the other hand, implementations which do not allow such variance are
proposed by Bernstein, Lange, Martindale, and Panny [2] and Jalali, Azarder-
akhsh, Kermani, and Jao [13]. The implementation in [2] is for evaluating the
performance of quantum attacks for CSIDH. It must not have branches in order
to compute in superposition on quantum computers. The implementation in [13]
is for classical computers, but it has no branches. As a result, it is slower than
the implementation in [15]. We discuss the differences in these implementations
in Sect. 3.2.

In this paper, we propose a new constant-time implementation, which is
faster than the constant-time implementation by Meyer et al. [15]. Our imple-
mentation is “constant-time” in the same sense as that of [15]. In other words,
the computational time and the order of scalar multiplications and isogenies in

A Faster Constant-Time Algorithm of CSIDH Keeping Two Points 25

our implementation do not depend on a secret key. We use the dummy isogenies
proposed by [15]. but do not change the key intervals of CSIDH, i.e., we use the
interval [−m,m]. To achieve a constant-time implementation without changing
the key intervals, we need to keep two torsion points of both E[π−1] and E[π+1]
and calculation associated with these points, where π is the Frobenius endomor-
phism of an elliptic curve E. As a result, our implementation needs almost twice
as many scalar multiplications on elliptic curves and twice as many calculations
of images of points under isogenies as the worst case of the variable-time CSIDH.
However, the number of calculations of the images of curves is the same as in the
worst case of the variable-time CSIDH, and scalars in a part of additional scalar
multiplications on elliptic curves are smaller. Therefore, our implementation is
faster than the implementation in [15]. We implemented our algorithm in C and
compared its cycle count and running time with those of the implementation in
[15]. Our experiment shows that the cycle count of our implementation is 29.03%
less than that of the implementation in [15].

Organization. The rest of this paper is organized as follows. The following
section describes CSIDH. Section 3 explains a constant-time implementation in
[15]. and briefly introduces constant-time implementations based on another def-
inition. We give the details of our new constant-time implementation of CSIDH
in Sect. 4. In Sect. 5, we present experimental results. We conclude our work in
Sect. 6.

2 CSIDH

In this section, we overview the protocol of CSIDH and its mathematical back-
grounds. For more details, see Castryck et al. [3].

2.1 Protocol of CSIDH

For describing the protocol of CSIDH, we define the following notations. Let
p be a prime number, CL(Z[

√−p]) the ideal class group of Z[
√−p] and

ELLFp
(Z[

√−p]) a set of Fp-isomorphism classes of supersingular elliptic curves
whose endomorphism ring is isomorphic to Z[

√−p]. Then we can define an action

CL(Z[
√−p]) × ELLFp

(Z[
√−p]) → ELLFp

(Z[
√−p]), (a, E) �→ a ∗ E.

We call this action the class group action. The details of these notations and the
action are described in the next subsection. CSIDH is a Diffie-Hellman style key
exchange as follows:

Alice and Bob share an elliptic curve E0 ∈ ELLFp
(Z[

√−p]) as a public
parameter. Alice chooses an ideal a ∈ CL(Z[

√−p]) as her secret key and sends
the curve a ∗ E to Bob as her public key. Bob proceeds in the same way by
choosing a secret key b ∈ CL(Z[

√−p]). Then, both parties can compute the
shared secret ab ∗ E = ba ∗ E. Note that CL(Z[

√−p]) is commutative.

26 H. Onuki et al.

2.2 Ideal Class Group

Let p be a large prime of the form 4�1 · · · �n − 1, where �1, . . . , �n are small
distinct odd primes. Let E ∈ ELLFp

(Z[
√−p]) and π be its p-th power Frobenius

endomorphism. Since E is supersingular, the primes �i split in Z[
√−p] as (�i) =

līli, where li = (�i, π −1) and l̄i = (�i, π +1). It can be seen that the actions of li
and l̄i can be computed efficiently. In the ideal class group, l̄i is the inverse of li,
so we can compute the action of an ideal of the form le11 · · · lenn , e1, . . . , en ∈ Z by
the composition of the actions of li and l̄i. Castryck et al. [3] showed that under
some heuristics, le11 · · · lenn , −m ≤ ei ≤ m represent uniformly “almost” all the
ideal classes in CL(Z[

√−p]), where m ∈ N such that (2m+1)n ≥ #CL(Z[
√−p]).

We denote the exponents (ei) by secret exponents.

3 Previous Works for Constant-Time Implementation
of CSIDH

In this section, we explain a constant-time implementation proposed by Meyer
et al. [15] and briefly describe related works.

3.1 Constant-Time Implementation

As already mentioned by Castryck et al. [3], their proof-of-concept implementa-
tion is not side-channel resistant because the computational time for a public key
and a shared secret depends on the associated secret key. To solve this problem,
Meyer et al. [15] proposed a constant-time implementation of CSIDH. According
to [15], “a constant-time implementation” means an implementation whose com-
putational time and order of scalar multiplications of each size and isogenies of
each degree do not depend on a secret key. Their constant-time implementation
is described in Algorithm 1.

To achieve a constant-time implementation, they used dummy isogenies and
changed the intervals of the integer key elements from [−m,m] to [0, 2m]. We
explain these techniques below. In this algorithm, one samples a point on an
elliptic curve by using Elligator [1] for CSIDH, which was proposed by Bernstein,
Lange, Martindale, and Panny [2]. Elligator enables us to generate x-coordinates
of points with suitable y-coordinate by computing only one Legendre symbol.
For the details, see Bernstein et al. [2].

Dummy Isogenies. It seems that one should compute a constant number of
isogenies of each degree �i and only use the ones required by the secret key. The
function for dummy isogenies is designed to use the same operations on Fp as
the function for isogenies. For more details, see [15,16].

A Faster Constant-Time Algorithm of CSIDH Keeping Two Points 27

Changing the Key Intervals. By using dummy isogenies, the number of
isogeny computations is fixed. However, this is not sufficient to achieve a
constant-time implementation, since the sizes of the scalar multiplications vary
in accordance with the signs of secret exponents. To remove this effect, Meyer
et al. [15] proposed changing the intervals from [−m,m] to [0, 2m].

Algorithm 1. Constant-time evaluation of the class group action in CSIDH [15]
Input: A ∈ Fp, m ∈ N, a list of integers (e1, . . . , en) s.t. 0 ≤ ei ≤ 2m for i = 1, . . . , n,

and distinct odd primes �1, . . . , �n s.t. p = 4
∏

i �i − 1.
Output: B ∈ Fp s.t. EB = (le11 · · · lenn) ∗ EA, where li = (�i, π − 1) for i = 1, . . . , n,

and π is the p-th power Frobenius endomorphism of EA.
1: Set e′

i = 2m − ei for i = 1, . . . , n.
2: while some ei �= 0 or e′

i �= 0 :
3: Set S = {i | ei �= 0 or e′

i �= 0}.
4: Set k =

∏
i∈S �i.

5: Generate a point P ∈ EA[π − 1] by Elligator.
6: Let P ← [(p + 1)/k]P .
7: for i ∈ S :
8: Set Q = [k/�i]P .
9: if Q �= ∞ : /∗ branch not involving secret information ∗/

10: if ei �= 0 : /∗ branch involving secret information ∗/
11: Compute an isogeny ϕ : EA → EB with kerϕ = 〈Q〉.
12: Let A ← B, P ← ϕ(P), and ei ← ei − 1.
13: else
14: Dummy computation.
15: Let A ← A, P ← [�i]P , and e′

i ← e′
i − 1.

16: end if
17: end if
18: Let k ← k/�i.
19: end for
20: end while
21: return A.

3.2 Constant-Time Implementations Based on Another Definition

As we stated above, Meyer et al. [15] allow variance of the computational time
of their implementation with randomness that does not relate to secret informa-
tion (caused by the branch if Q 	= ∞ in line 9 in Algorithm1). On the other
hand, constant-time implementations that do not allow this variance are known.
Bernstein et al. [2] constructed a constant-time implementation of CSIDH for
evaluating the performance of quantum attacks. For calculating the class group
actions in superposition on a quantum computer, a completely constant-time
implementation is required. Therefore, their constant-time implementation has
no branches (such as if branch). Jalali, Azarderakhsh, Kermani, and Jao [13]
proposed a constant-time implementation for classical computers, which also

28 H. Onuki et al.

has no branches. As a result of removing all branches, these implementations
are slower than that of [15]. We propose a constant-time implementation based
on the definition in [15], i.e., our implementation allows branches which do not
depend on secret information.

4 Our Constant-Time Implementation

In this section, we propose a new constant-time implementation that is faster
than that of [15].

The constant-time implementation in [15]. requires the cost to be the same
as that of calculating the action of the ideal class corresponding to secret expo-
nents (2m, . . . , 2m). This cost is twice the cost corresponding to secret exponents
(m, . . . ,m), which is the worst case in the variable-time CSIDH. We mitigate the
cost for achieving constant-time by using positive and negative secret exponents.

4.1 Basic Idea

To achieve a constant-time implementation without fixing the signs of secret
exponents, we compute isogenies corresponding to positive and negative secret
exponents in the same round in the while loop in Algorithm1. This requires
keeping two points of both E[π − 1] and E[π + 1] and computing scalar multi-
plications and images under isogenies for both points. This means that our new
method needs almost twice as many scalar multiplications and twice as many
computations of images of points per isogeny calculation (the reason we need
“almost” twice as many scalar multiplications is explained later). However, it
needs only one computation for an isogenous curve coefficient. Therefore, the
cost of our method is less than twice of the worst case of the variable-time
CSIDH. Combining this method and dummy isogenies of [15,16], we achieve a
more efficient constant-time implementation.

4.2 Proposed Algorithm

Our constant-time implementation for computing the class group action is
described in Algorithm 2.

In Algorithm 2, the points P0 and P1 are k-torsion of E[π − 1] and E[π + 1],
respectively. The indicator s is the sign bit of a secret exponent ei (line 8), i.e.,
s = 0 if ei ≥ 0 and s = 1 if ei < 0. This can be computed by bit operations.
For example, s = ei � 7 if ei is stored as a signed 8-bit integer. The point Q is
�i-torsion of E[π − 1] if ei ≥ 0 or of E[π + 1] is ei < 0 (line 9). Therefore, the
algorithm computes the isogeny corresponding to the sign of ei in line 13–17.
Note that we need a scalar multiplication on P1−s by �i in line 10 because the
�i-torsion parts of P0 and P1 should drop in order to update k to k/�i. The
�i-torsion part of Ps is Q and drops by the isogeny ϕ, since Q is in the kernel of
ϕ. In contrast, the �i-torsion part of P1−s does not drop by ϕ. We also note that
we need to calculate this scalar multiplication even when Q = ∞, i.e., one fails

A Faster Constant-Time Algorithm of CSIDH Keeping Two Points 29

Algorithm 2. Our constant-time evaluation of the class group action in CSIDH
Input: A ∈ Fp, m ∈ N, a list of integers (e1, . . . , en) s.t. −m ≤ ei ≤ m for i = 1, . . . , n,

and distinct odd primes �1, . . . , �n s.t. p = 4
∏

i �i − 1.
Output: B ∈ Fp s.t. EB = (le11 · · · lenn) ∗ EA, where li = (�i, π − 1) for i = 1, . . . , n,

and π is the p-th power Frobenius endomorphism of EA.
1: Set e′

i = m − |ei| for i = 1, . . . , n.
2: while some ei �= 0 or e′

i �= 0 :
3: Set S = {i | ei �= 0 or e′

i �= 0}.
4: Set k =

∏
i∈S �i.

5: Generate points P0 ∈ EA[π − 1] and P1 ∈ EA[π + 1] by Elligator.
6: Let P0 ← [(p + 1)/k]P0 and P1 ← [(p + 1)/k]P1.
7: for i ∈ S :
8: Set s the sign bit of ei.
9: Set Q = [k/�i]Ps.

10: Let P1−s ← [�i]P1−s.
11: if Q �= ∞ : /∗ branch not involving secret information ∗/
12: if ei �= 0 : /∗ branch involving secret information ∗/
13: Compute an isogeny ϕ : EA → EB with kerϕ = 〈Q〉.
14: Let A ← B, P0 ← ϕ(P0), P1 ← ϕ(P1), and ei ← ei − 1 + 2s.
15: else
16: Dummy computation.
17: Let A ← A, Ps ← [�i]Ps, and e′

i ← e′
i − 1.

18: end if
19: end if
20: Let k ← k/�i.
21: end for
22: end while
23: return A.

to obtain a generator of the kernel of an isogeny. The equation Q = ∞ means
the �i-torsion part of Ps has already vanished but does not mean the �i-torsion
part of P1−s has vanished. Therefore, for updating k to k/�i, we need the scalar
multiplication on P1−s by �i. In contract, in the variable-time CSIDH algorithm,
one calculates nothing when Q = ∞. This is why we said “we need “almost”
twice as many scalar multiplications” in the previous subsection. However, the
number of these additional scalar multiplications is much smaller than the total
number of scalar multiplications. For example, it is about 2% of the total number
of scalar multiplications in CSIDH-512, which is the parameter set for CSIDH
proposed by Castryck et al. [3].

Remark 1. The same as in the implementation in [15], we use Elligator for
CSIDH. It enables us to generate x-coordinates of P0 and P1 in line 5 in
Algorithm 2 by computing only one Legendre symbol. For the details, see Bern-
stein et al. [2].

Remark 2. Our dummy isogeny includes a dummy calculation corresponding to
evaluations of P1 under ϕ not only of P0 so that the calculation costs of lines
13–14 and lines 16–17 in Algorithm2 are the same.

30 H. Onuki et al.

4.3 Security Comparison with the Implementation by Meyer et al.

We claim that the security of our implementation against side-channel attacks
is equivalent to that of the implementation in [15]. Although Algorithm2 con-
tains a conditional branch on secret information, one can replace the branch by
conditional swaps and implement it without conditional branches and memory
accesses which depend on secret information.

Meyer et al. [15] claimed that their implementation is constant-time in the
sense that it can prevent the two leakage scenarios they consider [15, §3]: timing
leakage and power analysis. Timing leakage is leaking information on a secret
key by the computational time. Power analysis measures the power consumption
of the algorithm and determines blocks that represent the two main primitives
in CSIDH, scalar multiplications, and isogeny computation. Their implementa-
tion prevents these leakage scenarios because the computational time and the
order of scalar multiplications of each size and isogenies of each degree in their
implementation do not depend on a secret key.

Our implementation also prevents the above two leakage scenarios. Its compu-
tational time does not depend on information on a secret key because of dummy
isogenies. By calculating isogenies whose exponents have different signs in the
same loop, the order of scalar multiplications of each size and isogenies of each
degree do not depend on information on a secret key. Furthermore, our imple-
mentation has two branches, the same as the implementation in [15]. The first
is if Q 	= ∞ in line 11 in Algorithm 2, which does not involve secret information
and affects the computational time (the corresponding branch in the implemen-
tation in [15] is in line 9 in Algorithm 1). The second is if ei 	= 0, line 12 in
Algorithm 2, which involves secret information and does not affect the compu-
tational time (the corresponding branch in the implementation in [15] is in line
10 in Algorithm 1). This branch can be removed by using conditional swaps and
implemented securely. See the code of [15], that is available at https://zenon.cs.
hs-rm.de/pqcrypto/constant-csidh-c-implementation. We note that our imple-
mentation switches calculation for isogenies associated to positive and negative
secret exponents by the indicator s in line 8 in Algorithm2, which can be com-
puted by bit operations. There are memory accesses which depend on the secret
bit s in line 9–10 in Algorithm2. But one can implement it securely by using a
conditional swap to swap the values of P0 and P1. As a result, we conclude that
our implementation is constant-time as that of [15].

5 Experimental Results

We implemented our algorithm with the speedup techniques proposed by Meyer
et al. [15] in C. For the parameters used for the speedup techniques, see
our full paper [19]. Our code is based on the code of [15]1. (originally from

1 The code by Meyer et al. is available for download at https://zenon.cs.hs-rm.de/
pqcrypto/constant-csidh-c-implementation. The commit ID of the version we used is
7fc2abdd, the latest version on 15 Feb, 2019.

https://zenon.cs.hs-rm.de/pqcrypto/constant-csidh-c-implementation
https://zenon.cs.hs-rm.de/pqcrypto/constant-csidh-c-implementation
https://zenon.cs.hs-rm.de/pqcrypto/constant-csidh-c-implementation
https://zenon.cs.hs-rm.de/pqcrypto/constant-csidh-c-implementation

A Faster Constant-Time Algorithm of CSIDH Keeping Two Points 31

Castryck et al. [3]). Table 1 shows the cycle counts and running times for our imple-
mentation and that in [15] For the implementation in [15], we used the code on
which our code is based (the code in the footnote 1). We ran both codes on an
Intel Xeon Gold 6130 Skylake processor running Ubuntu 16.04.5 LTS. Our imple-
mentation has 29.03% fewer clock cycles than the implementation in [15], which
is almost the same as the reduction ratio expected by the evaluation of our cost
model.

Table 1. Performance comparison, averaged over 10,000 runs.

Clock cycles ×106 Wall clock time

Implementation in [15] 215.3 102.742 ms

Our implementation 152.8 72.913ms

6 Conclusion

We improved a constant-time implementation of commutative supersingular
isogeny Diffie-Hellman (CSIDH), which is isogeny-based Diffie-Hellman-style key
exchange and a candidate for post-quantum cryptography. Our implementation
is based on the constant-time implementation in Meyer et al. [15]. Whereas
they used only non-negative key intervals, we used key intervals symmetric with
respect to zero. To achieve a constant-time implementation using these inter-
vals, we constructed a new algorithm that keeps two torsion points on an elliptic
curve. The additional cost for calculation associated with this point is less than
the additional cost in [15] to achieve constant-time. Consequently, our implemen-
tation is faster than the implementation in [15]. We implemented our algorithm
in C and measuring its clock cycles. The reduction ratio measured by clock cycles
is 29.03%.

Acknowledgment. This work was supported by JST CREST Grant Number
JPMJCR14D6, Japan.

References

1. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: Proceedings of the 2013
ACM Conference on Computer and Communications Security, pp. 967–980 (2013)

2. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum circuits for the
CSIDH: optimizing quantum evaluation of isogenies. IACR Cryuptography ePrint
Archive 2018/1059. https://eprint.iacr.org/2018/1059 (to appear at Eurocrypt
2019)

3. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

https://eprint.iacr.org/2018/1059
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15

32 H. Onuki et al.

4. Cohen, H., Lenstra Jr., H.W.: Heuristics on class groups of number fields. Number
Theory Noordwijkerhout 1983, 33–62 (1984)

5. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary
degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 11

6. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 21

7. Costello, C., Smith, B.: Montgomery curves and their arithmetic. J. Crypt. Eng.
8(3), 227–240 (2018)

8. Couveigne, J.-M.: Hard homogeneous spaces. IACR Cryptology ePrint Archive
2006/291. https://eprint.iacr.org/2006/291

9. De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary
isogeny graphs. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol.
11274, pp. 365–394. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03332-3 14

10. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingulrar elliptic
curves over Fp. Des. Codes Crypt. 78(2), 425–440 (2016)

11. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

12. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

13. Jalali, A., Azarderakhsh, R., Kermani, M.M., Jao, D.: Towards optimized and
constant-time CSIDH on embedded devices. In: Polian, I., Stöttinger, M. (eds.)
COSADE 2019. LNCS, vol. 11421, pp. 215–231. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-16350-1 12. https://eprint.iacr.org/2019/297

14. Jao, D., et al.: Supersingular isogeny key encapsulation. Submission to the NIST
Post-Quantum Cryptography Standardization project. https://sike.org

15. Meyer, M., Campos, F., Reith, S.: On Lions and Elligators: an efficient constatn-
time implementation of CSIDH. IACR Cryptology ePrint Archive 2018/1198.
https://eprint.iacr.org/2018/1198 (to appear at PQCrypto 2019)

16. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T.
(eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 137–152. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05378-9 8

17. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 24–264 (1987)

18. National Institute of Standards and Technology (NIST): NIST Post-
Quantum Cryptography Standardization (2016). https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography

19. Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T.: A faster constant-time algo-
rithm of CSIDH keeping two points IACR Cryuptography ePrint Archive 2019/353.
https://eprint.iacr.org/2019/353

20. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 12

https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-030-03332-3_14
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-030-16350-1_12
https://doi.org/10.1007/978-3-030-16350-1_12
https://eprint.iacr.org/2019/297
https://sike.org
https://eprint.iacr.org/2018/1198
https://doi.org/10.1007/978-3-030-05378-9_8
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://eprint.iacr.org/2019/353
https://doi.org/10.1007/978-3-319-70697-9_12

A Faster Constant-Time Algorithm of CSIDH Keeping Two Points 33

21. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR
Cryptology ePrint Archive 2006/145. https://eprint.iacr.org/2006/145

22. Siegel, C.: Über die Classenzahl quadratischer Zahlkörper. Acta Arith. 1(1), 83–86
(1935)

23. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235
(2010)

https://eprint.iacr.org/2006/145

Cryptanalysis on Public-Key Primitives

An Efficient F4-style Based Algorithm
to Solve MQ Problems

Takuma Ito1(B), Naoyuki Shinohara1, and Shigenori Uchiyama2

1 National Institute of Information and Communications Technology, Tokyo, Japan
{tito,shnhr}@nict.go.jp

2 Tokyo Metropolitan University, Tokyo, Japan
uchiyama-shigenori@tmu.ac.jp

Abstract. The multivariate public key cryptosystem (MPKC) is a
potential post-quantum cryptosystem. Its safety depends on the hardness
of solving systems of algebraic equations over finite fields. In particular,
the multivariate quadratic (MQ) problem is that of solving such a sys-
tem consisting of quadratic polynomials and is regarded as an important
research subject in cryptography. In the Fukuoka MQ challenge project,
the hardness of the MQ problem is discussed, and the algorithms used
for the MQ problem and the computational results obtained by these
algorithms are reported. The algorithms to compute Gröbner basis for
the polynomial set given by the MQ problem are for solving the MQ
problem. For example, the F4 algorithm and M4GB algorithm have suc-
ceeded in solving several MQ problems provided by the project. In this
paper, based on the F4-style algorithm, we present an efficient algo-
rithm to solve the MQ problems with dense polynomials generated in
the Fukuoka MQ challenge project. We experimentally show that our
algorithm requires less computational time and memory for these MQ
problems than the F4 algorithm and M4GB algorithm. We succeeded
in solving Type II problems using our algorithm when the numbers of
variables are 36 and 37.

Keywords: Multivariate public key cryptosystems ·
Multivariate quadratic problem · Gröbner basis · F4-style algorithm

1 Introduction

In recent years, the research on quantum computers has been actively developed.
It is well known that we can solve both the integer factorization problem and
the discrete logarithm problem in polynomial time by Shor’s algorithm with suf-
ficiently large-scale quantum computers if such computers exist. The hardness
of solving these problems is used to justify the safety of the widely used public
key cryptosystems, namely, the RSA cryptosystem and elliptic curve cryptog-
raphy. Cryptosystems that retain their safety against quantum computers and
current computers are called post-quantum cryptography (PQC). There is ongo-
ing development and standardization of PQC around the world.
c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 37–52, 2019.
https://doi.org/10.1007/978-3-030-26834-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_3

38 T. Ito et al.

The multivariate public key cryptosystem (MPKC) is a potential candidates
for use in PQC, and many MPKCs have been proposed [5–7]. The safety of
MPKC depends on the hardness of solving systems of algebraic equations over
finite fields. Since these systems are usually given by multivariate quadratic
polynomials, the problem of solving them is called the multivariate quadratic
(MQ) problem.

Algorithms to compute the Gröbner basis, such as the F4 algorithm [2] and
M4GB [4], are used to solve MQ problems. The basic algorithm used in the
computation is Buchberger’s algorithm. Faugère proposed the F4 algorithm by
improving it. Buchberger’s algorithm alternates between the selection of one
critical pair and the reduction of the S-polynomial corresponding to that criti-
cal pair. On the other hand, F4 performs iterations in which a certain number
of critical pairs are selected and reduced at the same time. In this paper, an
algorithm based on the above strategy of the F4 algorithm is called an F4-style
algorithm. Makarim constructed the algorithm called M4GB which tail-reduces
polynomials appearing in the computation, to decrease the space required to
store polynomials. The F4 algorithm and M4GB are suitable for solving MQ
problems.

Our Contribution: In this paper, we propose an algorithm for a degree reverse
lexicographical order, which is based on an F4-style algorithm to solve MQ prob-
lems by introducing the following three techniques:

– For a fixed degree d, we select critical pairs (g1, g2) such that
deg(LCM(LM(g1), LM(g2))) = d where LM(gi) is the leading monomial of
gi, and reduce S-polynomials corresponding to these critical pairs. Then, if
we find the first critical pair whose S-polynomial is reduced to 0, we omit the
remaining critical pairs for degree d.

– Our algorithm terminates when we obtain n linear polynomials, where n is
the number of variables.

– We introduce a new order of selecting critical pairs.

Our proposed algorithm subdivides the set of critical pairs for a fixed degree
d into a smaller set C1, . . . , CN and reduces all S-polynomials for each Ci at
the same time. Here, for example, we suppose that all S-polynomials generated
from C1, . . . , Ci−1 have been reduced to non-zero, and the first zero-reduction
appears at Ci. Then, the above-mentioned first technique means that we omit
Ci+1, Ci+2, . . . , CN and start the computations for degree d + 1. Therefore, our
algorithm might not be able to compute Gröbner basis, and its termination is
not guaranteed. However, we actually succeeded in solving MQ problems by our
algorithm.

We performed computational experiments to solve MQ problems over the
finite fields F31 and F256 using our algorithm and M4GB and experimentally
showed that our algorithm requires less computational time and memory than
M4GB. We also succeeded in solving Type II MQ problems generated by the

An Efficient F4-style Based Algorithm to Solve MQ Problems 39

Fukuoka MQ challenge project1 [8] when the number of variables was 36 and 37,
by our algorithm.

2 Preliminaries

In this section we explain the symbols and definitions used in this paper, which
are based on M4GB [4]. Let N and Z≥0 be respectively the set of all natural
numbers and all non-negative integers. Fq is a finite field with q elements, and
R is a polynomial ring of n variables on Fq, namely, Fq[x1, . . . , xn] = Fq[x].
Next, we define monomials, terms and coefficients. A monomial xa is a product
xa1
1 · · · xan

n where the a = (a1, . . . , an) is an element of (Z≥0)n. The total degree
of an xa is a1 + · · · + an and is denoted by deg (xa). We define the set M
of all monomials in R as M = {xa1

1 · · · xan
n | a1, . . . , an ∈ Z≥0}. For c ∈ Fq

and u ∈ M, the product cu is called a term, and then the coefficient of u
is c. The set of all terms is expressed as T = {cu | c ∈ Fq, u ∈ M}. For a
polynomial f =

∑
i ciui ∈ R where the ci ∈ Fq\{0} and ui ∈ M, The sets

Term(f) and Mono(f) are respectively defined by Term(f) = {ciui | ci �= 0}
and Mono(f) = {ui | ci �= 0}.

From the point of view of computational efficiency, we deal with a degree
reverse lexicographical order ≺ in this paper. For a polynomial f ∈ R,
max≺ Mono(f) is called the leading monomial of f , and is denoted by LM(f).
And then, the coefficient LC(f) corresponding to LM(f) is the leading coef-
ficient of f , and the product LT(f) = LC(f)LM(f) is the leading term of f .
When LC(f) = 1, f is said to be monic. These above definitions for a poly-
nomial in R are naturally extended to the case of a set S ⊂ R as follows:
Mono(S) =

⋃
f∈S Mono(f), Term(S) =

⋃
f∈S Term(f), LM(S) =

⋃
f∈S LM(f),

LT(S) =
⋃

f∈S LT(f).

3 Gröbner Basis and F4-style Algorithm

We explain an F4-style algorithm and introduce symbols as well as definitions
for the explanation, based on M4GB [4].

3.1 Gröbner basis

Let G = {g1, . . . gl} be a finite subset of R. We define 〈G〉 by the ideal generated
by g1, . . . , gl. Let I ⊂ R be an ideal. Then G represents a basis of I if and only
if I = 〈G〉. Furthermore for all f ∈ I = 〈G〉, there exists g ∈ G such that
LM(g) | LM(f), and G is said to be a Gröbner basis of I. For f, g ∈ G, we
declare that f is reducible by g if there exists u ∈ Mono(f) such that LM(g)|u;
otherwise, f is non-reducible by g. If t ∈ T is reducible by g, then g is said to
be a reductor of t. These definitions for the polynomial f are naturally extended
to the case of set G ⊂ R. If ∃g ∈ G and f is reducible by g, then f is reducible
1 https://www.mqchallenge.org/.

https://www.mqchallenge.org/

40 T. Ito et al.

by G. For all g ∈ G, if f is non-reducible by g, then f is non-reducible by G.
We say a subset G ⊂ R is a row echelon form if every g1 ∈ G is monic and
LM(g1) �= LM(g2) for any g2 ∈ G\{g1}. Furthermore, for a row echelon form G,
if every g1 ∈ G satisfies LM(g1) �∈ Mono(g2) for all g2 ∈ G\{g1}, then G is the
reduced row echelon form.

Let ReduceSel be the deterministic function such that ReduceSel(G,m) =
h ∈ G, where LM(h) = max {LM(g) | g ∈ G,m ∈ M is reducible by g}. This
function outputs g ∈ G such that LM(g)|m if m is reducible by G. For f ∈ R
and G ⊂ R, the FullReduce function to full-reduce f by G is defined as follows:
FullReduce(f,G) =
⎧
⎪⎨

⎪⎩

0 iff = 0,

LT(f) + FullReduce(LT(f) − f, G) if LT(f) is non-reducible by G,

FullReduce(f − LT(f)
LT(h)

h, G) otherwise, where h ← ReduceSel(G, LM(f)).

The subsequent Monic function transforms a polynomial to monic and is
expressed as follows: f ∈ R monic:
Monic(f) = {

0 iff = 0,
f

LC(f) otherwise.

The computation of the Gröbner basis consists of computing S-polynomials
and reducing them using polynomial sets, which we will now introduce. For a
critical pair p = {f, g} ⊂ R, we respectively define LCM(f, g) and GCD(f, g)
as LCM(f, g) = min≺ {m | m ∈ M,LM(f)|m,LM(g)|m} and GCD(f, g) =
max≺{m | m ∈ M,m|LM(f),m|LM(g)}. The S-polynomial, Spoly(f, g), of a
critical pair {f, g} is defined as follows: Spoly(f, g) = Left(f, g)−Right(f, g),
Left(f, g) = LCM(f,g)

LT(f) f , Right(f, g) = LCM(f,g)
LT(g) g.

3.2 F4-style Algorithm

Here we introduce F4-style algorithms and explain how they are used to compute
the Gröbner basis. For details about F4, refer to [2]. In the F4 algorithm, we select
critical pairs and construct a matrix with rows that correspond to the Left and
Right polynomials of the selected critical pairs and reductors needed to reduce
these Left and Right polynomials. We then perform Gaussian elimination on
the matrix to compute the S-polynomials and reduce them simultaneously. This
reduction is efficient and can be parallelized.

To compute a Gröbner basis, the algorithm used for selecting and reducing
critical pairs simultaneously is called an F4-style algorithm, such as Algorithms 1
and 3, in this paper. For example, Algorithm1 full-reduces the S-polynomials
corresponding to the critical pairs selected at line 4. Many variants of the F4-
style algorithm construct matrices for these polynomial reductions; however, to
decrease memory usage, our F4-style algorithm does not use the matrices. There
are several selection strategies for selecting critical pairs at line 4 of Algorithm 1.
For example, the normal strategy ([1], p. 225) is often used for F4 and M4GB.

An Efficient F4-style Based Algorithm to Solve MQ Problems 41

Algorithm 1. simple F4-style algorithm
Input: F = {f1, . . . , fl} ⊂ R
Output: A Gröbner basis of 〈F 〉.
1: G ← F
2: P ← {{gi, gj} | gi �= gj ∈ G}
3: while P �= ∅ do
4: P ′ ← a subset of P
5: P ← P\P ′

6: H ← {FullReduce(Spoly(p′), G) | p′ ∈ P ′}
7: H̃ ← ReductionToRowEchelon(G ∪ H)
8: H+ ← {h̃ ∈ H̃ | LM(h̃) /∈ LM(G)}
9: G ← H̃\H+

10: for h ∈ H+\{0} do
11: P ← P ∪ {(h, g) | g ∈ G}
12: G ← G ∪ {h}
13: end for
14: end while
15: return G

The ReductionToRowEchelon function (Algorithm2) at line 7 is comparable to
Gaussian elimination, as it converts G ⊂ R to the reduced row echelon form.

The set P of critical pairs in the F4-style algorithm (Algorithm 1) may contain
many useless elements that ultimately reduce to zero. To select useful pairs,
the Update function ([1], p.230) or a checklist of reduced pairs ([1], p.226) is
used. The former is used for the F4 and M4GB. The M4GB employs a set with
elements that are critical pairs of leading monomials of polynomials instead of
the polynomials themselves. In this paper, we use the latter and explain the
reason in Subsect. 4.3.

Based on the F4-style algorithm, we propose Algorithm 5 for solving MQ
problems. To explain Algorithm 5, we convert the algorithm ([1], p. 226) into
an F4-style algorithm (Algorithm 3). Algorithm 3 uses critical pairs of leading
monomials instead of polynomials. The G in the line 1 is a row echelon form,
and thus each element g ∈ G satisfies LM(g) /∈ LM(G\{g}). In other words,
such g ∈ G corresponds one-to-one with the monomial m = LM(g) and can be
expressed as G[m] appearing at line 11. The M at the line 4 is an associative array
for recording the processed critical pairs in the computation. The SelectUpdate
function (Algorithm 4) computes a subset P ′ of P , which is a set of critical pairs,
by using a checklist M , and then updates P and M .

4 Proposed Method

In this section we propose an efficient algorithm based on the F4-style algo-
rithm (Algorithm 3), to solve MQ problems. Our proposed method, Algorithm5,
employs the degree reverse lexicographical order and is suitable for a finite set
F ⊂ R satisfying

〈F 〉 = 〈x1 − α1, . . . , xn − αn〉, (α1, . . . , αn ∈ Fq). (1)

42 T. Ito et al.

Algorithm 2. ReductionToRowEchelon
Input: {g1, . . . , gl} = G ⊂ R
Output: The reduced row echelon form of G
1: for 1 ≤ i ≤ l do
2: if gi = 0 then
3: continue
4: end if
5: gi ← Monic(gi)
6: for 1 ≤ j ≤ l do
7: if i = j then
8: continue
9: end if

10: if ∃cm ∈ Term(gj)(c ∈ Fq, m ∈ M)s.t. m = LM(gi) then
11: gj ← gj − cgi
12: end if
13: end for
14: end for
15: return G

Algorithm 3. F4-style algorithm
Input: F = {f1, . . . , fl} ⊂ R
Output: A Gröbner basis of 〈F 〉.
1: G ← ReductionToRowEchelon(F)
2: if 0 ∈ G then G ← G\{0}
3: P ← {{m1, m2} | m1 �= m2 ∈ LM(G) with GCD(m1, m2) �= 1}
4: M ← [] // an associative array
5: for all {m1, m2} with m1, m2 ∈ LM(G) with m1 �= m2 do
6: if {m1, m2} ∈ P then M [{m1, m2}] ← false
7: else M [{m1, m2}] ← true
8: end for
9: while P �= ∅ do

10: (P, M, P ′) ←SelectUpdate(G, P, M)
11: H ← {FullReduce(Spoly(G[m′

1], G[m′
2]), G) | {m′

1, m
′
2} ∈ P ′}

12: H̃ ← ReductionToRowEchelon(G ∪ H)
13: H+ ← {h̃ ∈ H̃ | LM(h̃) /∈ LM(G)}
14: G ← H̃\H+

15: for h ∈ H+\{0} do
16: for m ∈ LM(G) do
17: if GCD(m, LM(h)) = 1 then
18: M [{m, LM(h)}] ← true
19: else
20: P ← P ∪ {{m, LM(h)}}
21: M [{m, LM(h)}] ← false
22: end if
23: end for
24: G ← G ∪ {h}
25: end for
26: end while
27: return G

An Efficient F4-style Based Algorithm to Solve MQ Problems 43

Algorithm 4. SelectUpdate
Input: G a row echelon form, P a set of critical pairs, M an associative array
Output: Updated P, M and P ′ a set of critical pairs
1: P̃ ← a subset of P
2: P ← P\P̃
3: P ′ ← ∅
4: for {m1, m2} ∈ P̃ do
5: M [{m1, m2}] ← true
6: if there does not exist m ∈ LM(G) with

m|LCM(m1, m2) and
M [{m1, m}] = M [{m, m2}] = true then

7: P ′ ← P ′ ∪ {{m1, m2}}
8: end if
9: end for

10: return P, M, P ′

such as finite sets treated in Type I, II, III of MQ challenge. There is no guarantee
that our algorithm computes the Gröbner basis of 〈F 〉 because the reduction
of some critical pairs is ignored in this proposal. However, we can compute
the Gröbner basis with high probability and find the solution of the system of
algebraic equations given by F .

Remark 1. When to solve the system of algebraic equations, we usually com-
pute the Gröbner basis with respect to the degree reverse lexicographical order,
and then we change this Gröbner basis to the Gröbner basis with respect to
lexicographical order by FGLM algorithm [3]. However for the system of alge-
braic equations corresponding to such an ideal (1), we do not have to use FGLM
algorithm.

We next explain the new functions. The NewSelectUpdate function at the
line 10 takes at most Nspoly ∈ N critical pairs using one method (Subsect. 4.3)
and updates P and M . The RestrictedReductionToRowEchelon function at the
line 11 reduces G with a set of pairs P ′. To operate this function, we reduce
H instead of G ∪ H in line 13. The RemoveUpdate function in line 29 updates
P and M if zero polynomials appear. Finally, the IsSolvedMQ function in line
25 is Algorithm 6, which determines whether or not a solution for the system of
algebraic equations given by F can be found. If IsSolvedMQ returns false, it does
not necessarily indicate that the solution is not found or G is not the Gröbner
basis.

Theorem 1. Let F be a subset of R and G be a basis of 〈F 〉. We suppose Gmin

is the subset of G and appears in the computation by IsSolvedMQ(F , G). If
IsSolvedMQ(F , G) returns true, then G and especially Gmin are the Gröbner
basis of 〈F 〉.

Proof. We prove that Gmin is a Gröbner basis of the ideal 〈F 〉, since G is a
Gröbner basis of 〈F 〉 if Gmin is also a Gröbner basis of 〈F 〉. First, we prove

44 T. Ito et al.

Algorithm 5. F4-style algorithm to solve MQ problem
Input: F = {f1, . . . , fl} ⊂ R, NSpoly ∈ N the number of S-polynomials to be reduced

simultaneously
Output: A basis of 〈F 〉
1: G ← ReductionToRowEchelon(F)
2: if 0 ∈ G then G ← G\{0}
3: P ← {{m1, m2} | m1 �= m2 ∈ LM(G) with GCD(m1, m2) �= 1}
4: M ← [] // an associative array
5: for all {m1, m2} with m1, m2 ∈ LM(G) with m1 �= m2 do
6: if {m1, m2} ∈ P then M [{m1, m2}] ← false
7: else M [{m1, m2}] ← true
8: end for
9: while P �= ∅ do

10: (P, M, P ′) ←NewSelectUpdate(G, P, M, Nspoly)
11: G ← RestrictedReductionToRowEchelon(G, P ′)
12: H ← {FullReduce(Spoly(G[m′

1], G[m′
2]), G) | {m′

1, m
′
2} ∈ P ′}

13: H+ ← ReductionToRowEchelon(H)
14: for h ∈ H+\{0} do
15: for m ∈ LM(G) do
16: if GCD(m, LM(h)) = 1 then
17: M [{m, LM(h)}] ← true
18: else
19: P ← P ∪ {{m, LM(h)}}
20: M [{m, LM(h)}] ← false
21: end if
22: end for
23: G ← G ∪ {h}
24: end for
25: if IsSolvedMQ(G, F) then
26: return G
27: end if
28: if 0 ∈ H+ then
29: P, M ← RemoveUpdate(P, M, P ′)
30: end if
31: end while
32: return G

Algorithm 6. IsSolvedMQ
Input: F, G ∈ R, G ⊂ 〈F 〉
Output: Whether (α1, . . . , αn) ∈ F

n
q s.t. ∀f ∈ F, f(α1, . . . , αn) = 0 is found

1: if {x1, . . . xn} ⊂ LM(G) then
2: Gmin ← the subset of G s.t. LM(Gmin) = {x1, . . . xn}
3: H ← {FullReduce(f, Gmin) | f ∈ F}
4: if H = {0} then
5: return true
6: end if
7: end if
8: return false

An Efficient F4-style Based Algorithm to Solve MQ Problems 45

〈F 〉 = 〈Gmin〉. We then obtain 〈F 〉 ⊃ 〈Gmin〉 by assumption that 〈F 〉 ⊃ G. Any
f ∈ F can be represented as f = r1g1 + . . . rngn, gi ∈ Gmin, ri ∈ R by the fact
that FullReduce(f,Gmin) = 0. Then, F is the subset of 〈Gmin〉, and hence 〈F 〉
is equal to 〈Gmin〉.

Next, if for all g1, g2 ∈ Gmin, FullReduce(Spoly(g1, g2), Gmin) = 0, and then
Gmim is the Gröbner basis by Theorem 5.48 in [1]. For all g1 �= g2 ∈ Gmin,
FullReduce(Spoly(g1, g2), Gmin) = 0 because GCD(g1, g2) = 1 with Lemma 5.66
in [1]. Therefore Gmin is the Gröbner basis of 〈F 〉.

In calculating the set G̃min ←ReuctionToRowEchelon(Gmin), G̃min becomes the
shape of {x1 − α1, . . . , xn − αn}, and hence (α1, . . . , αn) is a solution for the
system of algebraic equations given by F .

4.1 Decrease Number of Reductions

In this subsection we explain the method for decreasing the number of reductions
in the ReductionToRowEchelon function (Algorithm2). This method is useful
at the end of the computation of the Gröbner basis via F4-style algorithm, at
which point the polynomials of low degree are more frequently used for reduction
than those of high degree. We thus avoid reducing high-degree polynomials in
Algorithm 2, which will be explained.

For G and the selected set of critical pairs, P ′, let m = max{LCM(p′)
| p′ ∈ P ′} and G− = {g | g ∈ Gs.t. LM(g) � m}. The RestrictedReduction-
ToRowEchelon function (Algorithm7) can then avoid reducing G−. As a result,
this algorithm only reduces G\G−. To operate this function, we reduce H instead
of G ∪ H at the line 5 in Algorithm 5.

Algorithm 7. RestrictedReductionToRowEchelon
Input: G ⊂ R a row echelon form, P a set of critical pairs
Output: A row echelon form of G
1: m ← m = max {LCM(p) | p ∈ P}
2: G− = {g | g ∈ Gs.t. LM(g) � m}
3: G+ ← ReductionToRowEchelon(G\G−)
4: G ← G+ ∪ G−

5: return G

4.2 Remove Pairs

In this subsection, we explain how to avoid reduction to zero with high proba-
bility. Regardless of whether a checklist of reduced critical pair M ([1], p. 226),
or Update function ([1], p. 230) is used, there are useless pairs generating S-
polynomials reduced to zero. For example, these pairs can be observed in almost
all computations for solving the MQ problem n = 20 and m = 40 via F4, F4-
style or M4GB. The number of these useless pairs tends to increase as n becomes

46 T. Ito et al.

larger. For MQ problems, when we select critical pairs under the normal strat-
egy and a pair reduces to zero (0 ∈ H+ in Algorithm 3), let d be the minimal
degree of the LCM of the pair, while G is the basis, and P is the set of pairs at
the time. Through experiments, we confirmed that for all p ∈ P s.t. deg(p) = d,
FullReduce(Spoly(p), G) = 0, and many such patterns exist. Hence, we can avoid
reduction to zero by using this phenomenon. The RemoveUpdate function (Algo-
rithm8) removes pairs as described above and updates a set of critical pairs, P ,
and a checklist, M . If we use this algorithm, some useful pairs may be deleted.
Therefore, we do not ensure calculation of Gröbner bases but it is very effective
for breaking the MQ challenge.

If it is sufficient to reduce only some S-polynomials, then it would be more
appropriate to select those with a lower reduction cost. In fact, it has been experi-
mentally demonstrated that the normal strategy is not optimal for MQ problems.
Therefore, we propose a more efficient selection strategy in Subsect. 4.3.

Algorithm 8. RemoveUpdate
Input: P a set of critical pairs, M an associative array, P ′ a set of critical pairs
Output: Updated P, M
1: d ← min {deg (LCM(p′)) | p′ ∈ P ′}
2: Pd ← {p | p ∈ P, deg (LCM(p)) = d}
3: P ← P\Pd

4: for p ∈ Pd do
5: M [p] ← true
6: end for
7: return P, M

4.3 Selection Pair Strategy

Here we introduce an effective selection strategy that outperforms the normal
strategy ([1], p. 225). For all elements of critical pairs of leading monomials
{m1,m2}, we use the following as selection-marking indicators: u1, u2 ∈ M
s.t. Spoly(m1,m2) = u1m1 − u2m2. We take {m1,m2} for {m1,m2} and
{m′

1,m
′
2} (Spoly(m1,m2) = u1m1 − u2m2, Spoly(m′

1,m
′
2) = u′

1m
′
1 − u′

2m
′
2),

if u1 ≺ u′
1 ∨ (u1 = u′

1 ∧ u2 ≺ u′
2). We apply this selection strategy to the set

of pairs, P+, as follows. First, we take all critical pairs for which that degree of
LCM is smallest and obtain the set Pd ⊂ M. Next, let P+ = {{m1,m2} | p ∈
Pd s.t. ReduceSel(G,LCM(m1,m2)) = G[m1] ∨ ReduceSel(G,LCM(m1,m2)) =
G[m1]}. Lastly, for all {m1,m2} ∈ P+, we replace {m1,m2} with {m2,m1} if
ReduceSel(G,LCM(m1,m2)) = G[m2]. The SelectOne function (Algorithm 9)
executes this selection strategy algorithm, while the NewSelectUpdate function
(Algorithm 10) takes pairs, at most Nspoly with SelectOne, and updates P,M .

Remark 2. In Algorithm 9, if P+ = ∅, then for all {m1,m2} ∈ P− is an unnec-
essary pair.

An Efficient F4-style Based Algorithm to Solve MQ Problems 47

Algorithm 9. SelectOne
Input: G ⊂ R a row echelon form, Pd a set of critical pairs
Output: {m1, m2} ∈ Pd

1: P+ ← {{m1, m2} | {m1, m2} ∈ Pd, ReduceSel(G, LCM(m1, m2)) = G[m1] ∨
ReduceSel(G, LCM(m1, m2)) = G[m2]}

2: P − ← Pd\P+

3: for {m1, m2} ∈ P+ do
4: if ReduceSel(G, LCM(m1, m2)) = G[m2] then
5: {m1, m2} ← {m2, m1}
6: end if
7: end for
8: if P+ �= ∅ then
9: select {m1, m2} ∈ P+(Spoly(m1, m2) = u1m1 − u2m2) s.t.

{m1, m2} �= ∀{m′
1, m

′
2} ∈ P+(Spoly(m′

1, m
′
2) = u′

1m
′
1 − u′

2m
′
2),

u1 ≺ u′
1 ∨ (u1 = u′

1 ∧ u2 ≺ u′
2)

10: return {m1, m2}
11: end if
12: p ← one element selected from P −

13: return p

Algorithm 10. NewSelectUpdate
Input: G a row echelon form, P a set of critical pairs, M an associative array, Nspoly

the number of S-polynomials to be reduced simultaneously
Output: Updated P, M and a set of critical pairs P ′

1: d ← min {deg (LCM(p)) | p ∈ P}
2: Pd ← {p | p ∈ P, deg (LCM(p)) = d}
3: P ′ ← ∅
4: while |P ′| < Nspoly and Pd �= ∅ do
5: {m1, m2} ← SelectOne(G, Pd)
6: Pd ← Pd\{m1, m2}
7: P ← P\{m1, m2}
8: M [{m1, m2}] ← true
9: if there does not exist m ∈ LM(G) with

m|LCM(m1, m2) and
M [{m1, m}] = M [{m, m2}] = true then

10: P ′ ← P ′ ∪ {(m1, m2)}
11: end if
12: end while
13: return P, M, P ′

Proof. We prove that ∃m ∈ LM(G) such that m �= m1,m �= m2,
m|LCM(m1,m2) and M [{m1,m}] = M [{m,m2}] = true. There exists g ∈ G
such that for all {m1,m2} ∈ P−, LM(g)| LCM(m1,m2), g �= G[m1] and g �=
G[m2]. If the above g does not exist, then ReduceSel(G,LCM(m1,m2)) = G[m1]
or G[m2]. Therefore, we obtain that the pair {m1,m2} is in P+. However, this
fact contradicts the fact that P+ = ∅. The monomials LCM(m1,LM(g)) and

48 T. Ito et al.

LCM(LM(g),m2) are not higher than LCM(m1,m2) since LM(g)| LCM(m1,m2).
Hence, we find that M [{m1,LM(g)}] = M [{LM(g),m2}] = true.

5 Implementation and Experimental Results

5.1 Well Known Techniques for Polynomial-Ring Arithmetic

In this section we explain two common techniques for polynomial-ring arith-
metic to reduce memory usage and computation time. Let G ⊂ R be a finite
set appearing in the computation by an F4-style algorithm, ultimately resulting
in a Gröbner basis. When reducing a polynomial f by G = {g1, . . . , g�} in this
computation, we perform this reduction via the computation of f −

∑k
i=1 migji

for some mi ∈ M, gji ∈ G. A matrix and Gaussian elimination are often intro-
duced to explain how an F4-style algorithm performs this polynomial reduc-
tion. However, the computation using this method and a matrix requires exten-
sive memory since each polynomial migji is expanded as a row of the matrix.
Instead, the technique we implement prepares two regions h1 and h2 and iter-
ate the following computations: h1 ← f , h2 ← m1gj1 , h1 ← h1 − h2, . . . , h2 ←
mkgjk , h1 ← h1 − h2. This technique requires significantly less memory usage.
The other technique we employ is based on the following strategy for avoiding
computation of monomial multiplication as much as possible, since the compu-
tational cost of multiplication exceeds that of addition. For instance, when using
c1m1g1, c2m2g2, c2m1g3, c1m1g4, c1m2g5, (c1, c2,∈ Fq,m1,m2 ∈ M, g1, . . . g5 ∈
G) for the full-reduction of f ∈ R, we calculate m1(c1(g1 + g4) + c2g3) +
m2(c2g2 + c1g5).

5.2 Polynomials Compression

In this section, we introduce a method for storing polynomials on memories
similar to that in [3]. This method is suitable for treating a dense polynomial set;
for example, the set appearing in the computation for solving MQ problems from
the Fukuoka MQ challenge by using Algorithm5. Let f ∈ H be a polynomial
that appears in the computation at line 12. Then, the f is non-reducible by the
G existing in line 12, and thus Mono(f) contains no monomial in LM(G). This
means that we need the coefficients of non-reducible monomials by the G to
express such an f .

This storing method is advantageous for SIMD. A polynomial f ∈ R is called
tail-reducible by G if f − LM(f) is reducible by G. To use this storing method,
every g ∈ G must not be tail-reducible by G. However, there are polynomials
g ∈ G that are tail-reducible by G in our proposal; for example, most of g ∈ G−

in Algorithm 7 are tail-reducible by G. Therefore, we apply this storing method
only to g ∈ G, which is used to reduce some polynomials, where this g is not
tail-reducible by G. Although miscalculations may occur in solving some MQ
problems with our algorithm, no miscalculations exist in our computation to
solve the MQ problems from the MQ challenge project.

An Efficient F4-style Based Algorithm to Solve MQ Problems 49

5.3 Benchmark

In our experiment, we implemented our proposal with gcc v7.3.0 and used a
machine with Intel CPU Core i7-7820X 3.60 GHz and 64 GB RAM as a bench-
mark. Elements in F31 and F256 are represented by 1-byte values in our imple-
mentations. For a, b ∈ F31, the values of a+b and a×b are respectively computed
by (a + b)%31 and (a ∗ b)%31. Meanwhile, for a, b ∈ F256, the computations of
a + b and a × b are respectively performed by xor(a, b) and MultipleTable(a, b)
in our normal implementation. MultipleTable is stored the result of a × b before
computing the Gröbner basis. We also generated optimized codes that can be
easily implemented. We used AVX2 for a+ b (a, b ∈ F31 or F256) and did not use
operator % in the calculation over F31.

The problems we used in the experiment are the MQ problem generated at
random by Algorithm 1 in [8]. Fq = F31,F256 and m = 2n is the number of
equations. We compared the proposed method with M4GB2. Since implementa-
tion of M4GB is parallelized, we thus parallelized our code. We measured the
real time, CPU time, and memory usage of M4GB and our proposal (normal
and optimized). In this context, real time is the time it took to compute, while
CPU time is the operation time of CPU. CPU utilization is (CPU time)/((real
time) × (the number of threads of the CPU)) in this paper, and the implementa-
tion has satisfactory parallelization performance if CPU utilization is high. The
experimental results are as follows (Tables 1, 2 and Figs. 1, 2, 3).

Excepting the CPU time of Fig. 1, which is the computational time of our nor-
mal implementation for F31, every computation time for solving an MQ problem
via our proposed method is less than that of the M4GB. Furthermore, regarding
CPU utilization and memory usage, our implementation is more suitable to MQ
problems than the M4GB. In the case of F256, memory usage of our optimized
implementation is almost the same as that of our normal implementation; thus,
we omit the results of our normal implementation in Fig. 3. Furthermore we
experimentally confirm that memory usage over F31 is similar to that over F256.
Therefore we print only the results over F256 for M4GB and our optimized code.

5.4 Record of Breaking Fukuoka MQ Challenge Problems

We implemented Algorithm 5 by using the techniques explained in Sects. 5.1 and
5.2 and succeeded in solving two Type II Fukuoka MQ challenge problems, which
are defined over the finite field F256 using our implementation and machine with
4 x Intel Xeon CPU E5-4669 v4 2.20 GHz and 1 TB RAM. Our methods required
about 25.2 days and about 200 GB of memory to solve the problem with n = 36
and m = 72, while that with n = 37 and m = 74 required about 75.7 days and
380 GB.

2 https://github.com/cr-marcstevens/m4gb.

https://github.com/cr-marcstevens/m4gb

50 T. Ito et al.

Table 1. Benchmark for the m = 2n over F31

n Total real time (sec) Total CPU time (sec) CPU utilization

M4GB Normal Optimized M4GB Normal Optimized M4GB Normal Optimized

21 22.6 18.5 5.8 210 273 77 0.581 0.922 0.830

22 55.2 46.5 11.5 519 698 155 0.588 0.938 0.842

23 136.0 112.9 25.2 1302 1736 346 0.598 0.961 0.858

24 358.2 284.7 63.1 3766 4308 783 0.657 0.946 0.776

25 813.6 634.2 114.6 7725 9791 1503 0.593 0.965 0.820

26 2217.6 1592.7 226.4 19854 24660 3210 0.560 0.968 0.886

27 6640.5 4591.6 535.1 61788 72532 7910 0.582 0.987 0.924

28 18683.4 12790.4 1354.7 178569 202116 20522 0.597 0.988 0.947

29 53196.9 39646.0 4551.4 546976 630124 70315 0.643 0.993 0.966

101

102

103

104

105

106

 21 22 23 24 25 26 27 28 29

Total real time (sec)

M4GB
normal

optimized

101

102

103

104

105

106

 21 22 23 24 25 26 27 28 29

Total cpu time (sec)

M4GB
normal

optimized

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 21 22 23 24 25 26 27 28 29

CPU utilization

M4GB
normal

optimized

Fig. 1. Results for m = 2n over F31

Table 2. Benchmark for the m = 2n over F256

n Total real time (sec) Total CPU time (sec) CPU utilization

M4GB Normal Optimized M4GB Normal Optimized M4GB Normal Optimized

21 21.8 9.5 7.1 195 136 97 0.559 0.895 0.854

22 52.2 21.2 14.5 473 313 203 0.566 0.923 0.875

23 128.7 52.4 35.6 1188 785 499 0.577 0.936 0.876

24 334.1 138.0 92.9 3403 1993 1227 0.637 0.903 0.825

25 751.3 291.0 177.0 6952 4337 2414 0.578 0.931 0.852

26 2102.1 683.2 348.8 18319 10421 5047 0.545 0.953 0.904

27 6040.5 1918.1 852.4 55086 30006 12834 0.570 0.978 0.941

28 17315.8 5236.8 2136.8 162366 82154 32557 0.586 0.980 0.952

29 49031.9 16690.7 7812.3 491964 263812 121082 0.627 0.988 0.969

An Efficient F4-style Based Algorithm to Solve MQ Problems 51

101

102

103

104

105

106

 21 22 23 24 25 26 27 28 29

Total real time (sec)

M4GB
normal

optimized

101

102

103

104

105

106

 21 22 23 24 25 26 27 28 29

Total cpu time (sec)

M4GB
normal

optimized

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 21 22 23 24 25 26 27 28 29

CPU utilization

M4GB
normal

optimized

Fig. 2. Results for m = 2n over F256

n

101

102

103

104

105

 21 22 23 24 25 26 27 28 29

Memory usage (MB)

M4GB
optimized

Fig. 3. Benchmark for the m = 2n over F256

6 Conclusion

In this paper, we propose the algorithm for solving MQ problems, by introduc-
ing three techniques into an F4-style algorithm. The computational time and
memory usage of our algorithm are less than those of M4GB when solving MQ
problems. We succeeded in solving Type II of MQ problems provided by Fukuoka
MQ challenge project, when the number of variables are 36 and 37, by our
algorithm.

References

1. Becker, T., Weispfenning, V.: Gröbner Bases, a Computational Approach to Com-
mutative Algebra. Graduate Texts in Mathematics. Springer, New York (1993).
https://doi.org/10.1007/978-1-4612-0913-3

2. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139(1–3), 61–88 (1999)

3. Faugère, J., Gianni, P.M., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344
(1993)

https://doi.org/10.1007/978-1-4612-0913-3

52 T. Ito et al.

4. Makarim, R.H., Stevens, M.: M4GB: an efficient Gröbner-basis algorithm. In: Pro-
ceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic
Computation, ISSAC 2017, Kaiserslautern, Germany, 25–28 July 2017, pp. 293–300
(2017)

5. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT
1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). https://doi.org/10.
1007/3-540-45961-8 39

6. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68339-9 4

7. Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes based on
multivariate quadratic polynomials. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 706–723. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 40

8. Yasuda, T., Dahan, X., Huang, Y., Takagi, T., Sakurai, K.: MQ challenge: Hard-
ness evaluation of solving multivariate quadratic problems. IACR Cryptology ePrint
Archive 2015, 275 (2015)

https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/978-3-642-22792-9_40
https://doi.org/10.1007/978-3-642-22792-9_40

How to Solve Multiple Short-Exponent
Discrete Logarithm Problem

Kaoru Kurosawa(B), Akinaga Ueda, Hayato Matsuhashi, and Yusuke Sakagami

Ibaraki University, Hitachi, Japan
kaoru.kurosawa.kk@vc.ibaraki.ac.jp

Abstract. Let G be a group of prime order p with a generator g. It is
known that one can find x1, . . . , xL from gx1 , . . . , gxL in time O(

√
Lp).

On the other hand, suppose that 0 ≤ x < w. Then Pollard’s kanga-
roo algorithm (or Pollard’s lambda algorithm) can find x from gx in
time O(

√
w). It is used in the decryption algorithm of the homomor-

phic encryption scheme of Boneh, Goh and Nissim. Now suppose that
0 ≤ xi < w for i = 1, . . . , L. This paper shows that we can find x1, . . . , xL

from gx1 , . . . , gxL in time O(
√

Lw). We further show an application of
our algorithm to the model of preprocessing.

Keywords: Discrete log · Pollard’s kangaroo algorithm ·
Multiple variant

1 Introduction

Let G be a group of prime order p with a generator g. The discrete logarithm
problem (DLP) is to find x from g and gx, and its hardness is a basis of many
cryptographic schemes. It is well known that the DLP is solved in time O(

√
p).

A multiple variant of the DLP, the L DLP, is a problem to find (x1, . . . , xL)
from (g, gx1 , . . . , gxL). Kuhn and Struik [8] showed a probabilistic algorithm
which can solve the L DLP in time O(

√
Lp) by extending Pollard’s rho algo-

rithm. Fouque, Joux and Mavromati [5] showed an improvement of it. Kim (and
Tibouchi) [7] showed a deterministic algorithm which can solve the L DLP in
time O(

√
Lp) by extending the baby-step giant step algorithm.

Suppose that 0 ≤ x < w. Then the short-exponent DLP is a problem to find
such x from g and y = gx. Pollard [9] showed a probabilistic algorithm, called
Pollard’s kangaroo algorithm, which can solve this problem in time O(

√
w) and

with O(1) memory. This algorithm is used in the decryption algorithm of a 2-level
homomorphic encryption scheme of Boneh, Goh and Nissim [3]. It is also used
in the decryption algorithm of functional encryption schemes for inner products
[1,2]. Applications of these encryptions schemes often involve decrypting multiple
ciphertexts.

In this paper, we consider a multiple variant of the short-exponent DLP.
Namely suppose that 0 ≤ xi < w for i = 1, . . . , L. Then the L short-exponent

c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 53–64, 2019.
https://doi.org/10.1007/978-3-030-26834-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_4

54 K. Kurosawa et al.

Table 1. Variants of DLP

Input DLP Short-exponent DLP

g, gx O(
√

p) O(
√

w)

g, gx1 , . . . , gxL O(
√

Lp) This paper

DLP is a problem to find (x1, . . . , xL) from (g, y1 = gx1 , . . . , yL = gxL). This
problem has not been studied so far. See Table 1.

We show two algorithms which can solve this problem in time O(
√

Lw), a
deterministic one and a probabilistic one. The former is an extension of the baby-
step giant step algorithm, and the latter is an extension of Pollard’s kangaroo
algorithm. The memory space of our deterministic algorithm is O(

√
Lw), and

that of our probabilistic algorithm is O(L).
Further we show an application of our probabilistic algorithm to the model

of preprocessing. Corrigan-Gibbs and Kogan [6] proved a lower bound of this
model such as follows. Let A be a generic algorithm with preprocessing that
solves the short-exponent discrete-log problem. If A records S bits as the advice
tape in the preprocessing phase, and runs in time T in the online phase and
succeeds with probability ε, then it must be that ST 2 = Ω(εw). We present an
algorithm which meets this lower bound with logarithmic factor overhead.

1.1 Related Work

Bernstein and Lange [4] experimentally showed that the short-exponent DLP
can be solved in time O(w1/3) on average in the online phase if one computes
and records a table of size w1/3 in the preprocessing phase.

Shoup [10] showed that every generic algorithm which solves the DLP must
run in time Ω(

√
p). Yun [11] showed that every generic algorithm which solves

the L DLP must run in time Ω(
√

Lp).

2 Pollard’s Kangaroo Algorithm

Suppose that it is known that 0 ≤ x < w. Then Pollard’s kangaroo algorithm
(or Pollard’s lambda algorithm) can find x from gx in time O(

√
w).

The kangaroo algorithm relies on a deterministic pseudorandom walk. The
steps in the walk are pictured as the gjumpsh of the kangaroo, and the group
elements visited are the kangaroo’s gfootprintsh.

We first generate a gtame kangaroohwhich is a sequence a0, . . . , aN of the
footprints generated by the pseudorandom walk with a0 = gw. We record (aN , e),
where aN = ge.

We next generate a gwild kangarooh which is a sequence b0, b1, . . . of the
footprints with b0 = gx. Eventually, a footprint of the wild kangaroo will hit a
footprint of the tame kangaroo (this is called the gcollisionh). After this point,
all the footprints of the two kangaroos are the same. Finally it will happen that

How to Solve Multiple Short-Exponent Discrete Logarithm Problem 55

Fig. 1. Tame kangaroo

Fig. 2. Wild kangaroo

bi = aN for some i. Then we can compute x from aN = ge and bi = gx+d, where
e and d are known values.

Let m = �√w/4� and let f : G → Z2m be a pseudorandom function, which we
can instantiate in practice using a standard hash function. We use the function
f to define a pseudorandom walk on the elements of G. Given a point a ∈ G,
the walk computes r = f(a) and moves a to the point a · gr.

Let N = �√w�.

(Tame kangaroo generation)

1. Let a0 = gw, e = w.
2. For i = 0, 1, . . . , N − 1, compute

ai+1 = aig
f(ai)

e := e + f(ai)

3. Record (aN , e), where aN = ge.

(Wild kangaroo generation)

1. Let b0 = y (= gx), d = 0.
2. For i = 0, 1, . . ., do

(a) Compute

bi+1 = big
f(bi)

d := d + f(bi)

(b) If bi = aN , then it holds that

x + d = e

Hence we can compute x.
(c) If d > e, then output fail and halts.

56 K. Kurosawa et al.

3 Deterministic Algorithm for Solving Multiple
Short-Exponent DLP

If we allow large amount of memory, we can solve the discrete log problem
in time O(

√
p) by using the baby step giant step algorithm. Kim (and Tibouchi)

extended the baby step giant step algorithm to solve L discrete log problems in
time O(

√
Lp) [7].

Similarly, we can solve L short-exponent discrete log problems in time
O(

√
Lw) as follows. Let s = �√w/L	, then each xi is written as xi = ski + ri

for some 0 ≤ ki < �√wL	 and 0 ≤ ri < s. Then it holds that

yi = gxi = gski+ri

and hence
yig

−ri = gski (1)

Therefore we first compute L + 1 lists such that

G = {gs, g2s, . . . , g�√
wL�s}

Bi = {yi, yig
−1, . . . , yig

−(s−1)}

for i = 1, . . . , L. Next we find Bi ∩ G for i = 1, . . . , L, which gives a solution of
Eq. (1)

We can compute G in time O(
√

wL), and B1, . . . , BL in time O(L×√
w/L) =

O(
√

wL). Therefore we can solve this problem in time O(
√

wL). The memory
space is

|G| + |B1| + . . . + |BL| = O(
√

wL + L ×
√

w/L) = O(
√

wL).

4 Probabilistic Algorithm for Solving Multiple
Short-Exponent DLP

In this section, we show a probabilistic algorithm which solves L short-
exponent discrete log problems in time O(

√
Lw) by extending Pollard’s kangaroo

algorithm. The memory size is O(L) only.

4.1 Algorithm

Let m = �√Lw� and let f : G → Z2m be a pseudorandom function. Let
N = m/2L = �√w/L/2�.

iL tame kangaroos generation)
Let β be some positive integer (say, β = 20). 1 For k = 1, . . . , L, do:

1 We assume that Eq. (3) is executed at most β − 1 times.

How to Solve Multiple Short-Exponent Discrete Logarithm Problem 57

Fig. 3. Tk

Fig. 4. T1, . . . , TL

1. Let ak,0 = gw+(k−1)β .
2. Generate the kth tame kangaroo

Tk = (ak,0, · · · , ak,N)

by using the pseudorandom function f .
3. Ideally we want to do the following. If

Tk ∩ (T1 ∪ · · · ∪ Tk−1) �= ∅, (2)

then let ak,0 := g · ak,0 and goto 1.
However, it takes a lot of memory to check Eq. (2). Hence we do the following.
If

ak,i ∈ {a1,N , . . . , ak−1,N}
for some i ≤ N , then let

ak,0 := g · ak,0 (3)

See Sect. 4.2 for the rationale.
4. Record the endpoint ak,N and ek such that ak,N = gek .

The above algorithm uses O(L) memory.
In what follows, we assume that all the footprints of T1, . . . , TL are distinct.

iL wild kangaroos generation)
For j = 1, . . . , L, do:

1. Let bj,0 = gxj , where gxj is a given instance.
2. Generate the jth wild kangaroo

Wj = (bj,0, bj,1, . . .) (4)

by using the pseudorandom function f .

58 K. Kurosawa et al.

3. If bj,i = ak,N for some i and some ak,N , then it holds that

xj + dj = ek,

where dj is a known value. Hence we can compute xj .
4. If we reached i such that bj,i = gxj+dj with dj > max(e1, . . . , eL), then we

failed. In this case, let bj,0 := g · bj,0 and goto 1.

4.2 How to Check Eq. (2)

(a) If ak,i ∈ {a1,N , . . . , ak−1,N} for some i ≤ N , then it is clear that

Tk ∩ (T1 ∪ · · · ∪ Tk−1) �= ∅.

(b) Suppose that (a) does not happen. If ak,i = ge and e > max(e1, . . . , ek−1),
for some i ≤ N , then it is clear that

Tk ∩ (T1 ∪ · · · ∪ Tk−1) = ∅.

(c) Otherwise ak,N �∈ {a1,N , . . . , ak−1,N} and ek < max(e1, . . . , ek−1), where
ak,N = gek . In this case, we have two options.

Option 1. We assume that

Tk ∩ (T1 ∪ · · · ∪ Tk−1) = ∅.

Option 2. We have the kth tame kangaroo jump N more steps. Hence it jumps
2N steps in total. If ak,i �∈ {a1,N , . . . , ak−1,N} for any i ≤ 2N , then we can
see that

Tk ∩ (T1 ∪ · · · ∪ Tk−1) = ∅.

Otherwise we assume that

Tk ∩ (T1 ∪ · · · ∪ Tk−1) �= ∅.

We examined option 1 by computer simulation. The average running time of
our algorithm with this option almost agreed with our theoretical one. Therefore
we adopted option 1 because it is simpler and more efficient.

5 Analysis of Probabilistic Algorithm

We first show the following lemma for our tame kangaroos.

Lemma 1. On Eq. (2), it holds that

Pr(Tk ∩ (T1 ∪ · · · ∪ Tk−1) �= ∅) < 1/2

for k = 2, . . . , L.

How to Solve Multiple Short-Exponent Discrete Logarithm Problem 59

Proof. We can assume that the value of f(a) is uniformly distributed over M =
{1, 2, . . . , 2m} because f : G → Z2m be a pseudorandom function. For a footprint
ak,i = gek,i of the kth tame kangaroo, consider the next footprint ak,i+1 = gek,i+1 .
Then ek,i+1 is uniformly distributed over X = {ek,i + 1, ek,i + 2, . . . , ek,i + 2m}.

On the other hand, for i = 1, . . . , k − 1, the step size of the ith kangaroo is
also uniformly distributed over M . Hence the mean step size is m. Therefore, on
average, there exist 2 footprints of the ith tame kangaroo Ti in X. Consequently
there are 2(k − 1) footprints of T1, . . . , Tk−1 in X on average.

Now let pk be the probability that ak,i+1 = gek,i+1 does not coincide with
any footprints of T1, . . . , Tk−1. Then it holds (heuristically) that

pk = 1 − 2(k − 1)
2m

≥ 1 − 2L

2m
= 1 − L

m

Therefore we have

Pr(Tk ∩ (T1 ∪ · · · ∪ Tk−1) = ∅)
= pN

k

≥ (1 − L

m
)N

≥ 1 − LN

m
(by Bernoulli’s inequality)

= 1 − 1
2

(because N = m/2L)

=
1
2

Hence
Pr(Tk ∩ (T1 ∪ · · · ∪ Tk−1) �= ∅) < 1/2.

��
We obtain the following theorem from the above lemma.

Theorem 1. Step 1 ∼ step 3 of the L tame kangaroos generation are repeated
at most 2 times on average.

We next show the following lemma for our wild kangaroos.

Lemma 2. Suppose that Wj of Eq. (4) is generated in such a way that it jumps
N more steps from its footprint just after gw. Then

Pr[Wj ∩ (T1 ∪ · · · ∪ TL) = ∅] � 0.6 (5)

for j = 1, . . . , L.

Proof. Without loss of generality, consider the first wild kangaroo W1. Let b1,i =
gd1,i be any footprint of W1 such that d1,j > max(e1, . . . , eL). Then d1,i+1 is

60 K. Kurosawa et al.

uniformly distributed over X = {d1,i +1, d1,i +2, . . . , d1,i +2m}, where b1,i+1 =
gd1,i+1 .

Now as shown in the proof of Lemma 1, there are 2L footprints of T1, . . . , TL

in X on average. Let qj be the probability that b1,i+1 = gd1,i+1 does not coincide
with any footprints of T1, . . . , TL. Then it holds (heuristically) that

qj = 1 − 2L/2m = 1 − L/m

Therefore we have

Pr[Wj ∩ (T1 ∪ · · · ∪ TL) = ∅] = (1 − L/m)N ≤ e(−L/m)N = e−1/2 � 0.6

because N = m/2L.
��

We obtain the following theorem because 1/(1 − 0.6) = 2.5.

Theorem 2. Step 1 ∼ step 4 of the L wild kangaroos generation are repeated
at most 2.5 times on average.

The expected running time of our algorithm is given by the following theorem.

Theorem 3. The expected running time of our algorithm is O(
√

Lw).

Proof. From Theorem 1, the expected running time to generate our L tame kan-
garoos is given by

TIME1 = L × 2N

= m

=
√

Lw

because N = m/2L and m =
√

Lw. From Theorem 2, the expected running time
to generate a single wild kangaroo is given by

TIME2 = 2.5 ×
(w

2m
+ 2N

)

= 2.5 ×
(w

2m
+

m

L

)

= 2.5 ×
(

w

2
√

Lw
+

√
Lw

L

)

= O(
√

w/L) (6)

Therefore the total expected running time is given by

TIME1 + L × TIME2 =
√

Lw + O(
√

Lw)

= O(
√

Lw)

��
Finally the memory space is O(L) because we record only the last footprints

of the L tame kangaroos.

How to Solve Multiple Short-Exponent Discrete Logarithm Problem 61

6 Simulation

6.1 Pseudorandom Function

We define a pseudorandom function f : G → Z2m as follows. First, choose
r0, r1, . . . , r19 from {1, 2, . . . , 2m} randomly in such a way that

r0 + . . . + r19
20

= m (7)

Second, define a hash function H : G → {0, 1, . . . , 19} as

H(a) = a mod 20.

Finally define f(a) as follows.

1. Let k = H(a).
2. Define f(a) = rk.

In fact, we precompute Ri = gri for i = 0, . . . , 19. Then we compute agf(a)

as follows.

1. k = H(a)
2. agf(a) = aRk.

6.2 Time-Out for Wild Kangaroo Generation

If step 1 ∼ step 4 of the wild kangaroo generation algorithm are repeated c
times for some positive integer c, we have our algorithm output fail.

6.3 Simulation Result

We executed our algorithm on a work station PowerEdgeT410 with CPU
2.4GHz and memory 32GB. We used CentOS6.10, C++11 and NTL.

Let p be a prime of 160 bits. For each parameter, we take the average over
100 experiments.

– Fix w as w = 220. Figure 5 shows the average running time for c = 5, 10, 15, 20.
Figure 6 shows a comparison with our theoretical result (i.e., α

√
L for some

α) for c = 20. In both figures, the horizontal axis is L.
– Fix L as L = 10. Figure 7 shows a comparison of the average running time

with our theoretical result (i.e., α
√

w for some α) for c = 20, where the
horizontal axis is the exponent part of w (i.e., log2(w)).

– Fig. 8 shows the failure probability for w = 220 and c = 5, 10, 15, 20.

62 K. Kurosawa et al.

Fig. 5. Average running time for w = 220.

Fig. 6. Comparison with theory for w = 220 and c = 20

7 Application to the Model of Preprocessing

In this section, we show an application of our probabilistic algorithm to the
model of preprocessing. Corrigan-Gibbs and Kogan [6] proved a lower bound of
this model such as follows.

Let A be a generic algorithm with preprocessing that solves the short-
exponent discrete-log problem. If A records S bits as the advice tape in the
preprocessing phase, and runs in time T in the online phase and succeeds with

How to Solve Multiple Short-Exponent Discrete Logarithm Problem 63

Fig. 7. Comparison with theory for L = 10

Fig. 8. Failure probability

probability ε, then it must be that

ST 2 = Ω(εw).

We present an algorithm which meets this lower bound with logarithmic
factor overhead.

1. In the preprocessing phase, we generate L tame kangaroos by using the algo-
rithm of Sect. 4.1. Record the last footprints and their exponents

(a1,N , e1), . . . , (aL,N , eL)

64 K. Kurosawa et al.

as the advise tape. Then the size of this advise tape is

S̃ = O(L) (8)

group elements.
2. In the online phase, we generate a single wild kangaroo by using the algorithm

of Sect. 4.1. Then the expected running time of the online phase is

T = O(
√

w/L) (9)

from Eq. (6).

From Eqs. (8) and (9), we obtain that

S̃T 2 = O(w).

References

1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

2. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 12

3. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18

4. Bernstein, D.J., Lange, T.: Computing small discrete logarithms faster. In: Gal-
braith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 317–338.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7 19

5. Fouque, P.-A., Joux, A., Mavromati, C.: Multi-user collisions: applications to
discrete logarithm, even-mansour and PRINCE. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 420–438. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 22

6. Corrigan-Gibbs, H., Kogan, D.: The discrete-logarithm problem with preprocess-
ing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp.
415–447. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 14

7. Kim, T.: Multiple discrete logarithm problems with auxiliary inputs. In: Iwata, T.,
Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 174–188. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 8

8. Kuhn, F., Struik, R.: Random walks revisited: extensions of Pollard’s Rho algo-
rithm for computing multiple discrete logarithms. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 212–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45537-X 17

9. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math. Com-
put. 32(143), 918–924 (1978)

10. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

11. Yun, A.: Generic hardness of the multiple discrete logarithm problem. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 817–836. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 27

https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-642-34931-7_19
https://doi.org/10.1007/978-3-662-45611-8_22
https://doi.org/10.1007/978-3-319-78375-8_14
https://doi.org/10.1007/978-3-662-48797-6_8
https://doi.org/10.1007/3-540-45537-X_17
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-662-46803-6_27

Cryptographic Protocols 1

Secure Multiparty Matrix Multiplication
Based on Strassen-Winograd Algorithm

Jean-Guillaume Dumas1, Pascal Lafourcade2, Julio Lopez Fenner3,
David Lucas1(B), Jean-Baptiste Orfila5, Clément Pernet1, and Maxime Puys4

1 Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering), LJK,
38000 Grenoble, France

{jean-guillaume.dumas,david.lucas,clement.pernet,}@univ-grenoble-alpes.fr
2 LIMOS, Université Clermont Auvergne, CNRS,

1, rue de Chebarde, 63178 Aubière, France
pascal.lafourcade@uca.fr

3 Departamento De Ingenieria Matematica, Universidad de La Frontera,
Av. Francisco Salazar, 01145 Temuco, Chile

julio.lopez@ufrontera.cl
4 Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering),

VERIMAG, 38000 Grenoble, France
maxime.puys@univ-grenoble-alpes.fr

5 Wallix, 250 bis rue du Faubourg Saint-Honoré, 75008 Paris, France
jborfila@wallix.com

Abstract. This paper presents the first recursive secure multiparty
computation protocol for matrix multiplication, based on Strassen-
Winograd algorithm. We focus on the setting in which any given player
knows only one row of both input matrices and learns the corresponding
row of the resulting product matrix. Neither the player initial data, nor
the intermediate values, even during the recurrence part of the algorithm,
are ever revealed to other players. We use a combination of partial homo-
morphic encryption schemes and additive masking techniques together
with a novel schedule for the location and encryption layout of all inter-
mediate computations that preserves privacy. Compared to state of the
art protocols, the asymptotic communication volume and computational
time is reduced from O(n3) to O(n2.81). This improvement in terms of
communication volume arises with matrices of dimension as small as
n = 96 which is confirmed by experiments.

1 Introduction

Secure multiparty computations (MPC) allows n players to compute together
the output of some function, using private inputs without revealing them. This
is useful, e.g., for a distributed evaluation of trust, as defined in [12,19]. In this

This work is partly funded by the OpenDreamKit Horizon 2020 European Research
Infrastructures project (#676541) and the Cyber@Alps French National Research
Agency program (ANR-15-IDEX-02).

c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 67–88, 2019.
https://doi.org/10.1007/978-3-030-26834-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_5&domain=pdf
http://opendreamkit.org
https://ec.europa.eu/programmes/horizon2020/
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/european-research-infrastructures-including-e-infrastructures
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/european-research-infrastructures-including-e-infrastructures
http://cordis.europa.eu/project/rcn/198334_en.html
https://cybersecurity.univ-grenoble-alpes.fr
https://anr.fr/ProjetIA-15-IDEX-0002
https://anr.fr/ProjetIA-15-IDEX-0002
http://www.agence-nationale-recherche.fr/ProjetIA-15-IDEX-0002
https://doi.org/10.1007/978-3-030-26834-3_5

68 J.-G. Dumas et al.

context, players compute a confidence level by combining their mutual degrees
of trust. This aggregation of trust among players can be represented as a matrix
product C = A × B, where each player knows one row of the matrix containing
their partial trust towards their neighbors and the network has to compute a dis-
tributed matrix exponentiation, which reduces to several matrix multiplications.
In this paper we thus focus on this particular layout of data, and on multiparty
matrix multiplication of dimension N×N with N players.

Several tools exist to design MPC protocols, like Shamir’s secret sharing
scheme [29], homomorphic encryption [15], oblivious transfer [7] or using a
Trusted Third Party [10]. Then, several MPC implementations are available1.
Some of them are for two parties only and most of the others are generic and
transform programs into circuits or use oblivious transfer [8,9,18,25,28]. For
instance the symmetric system solving phase of the Linreg-MPC software is
reported in [14] to take about 45 min for n = 200, while, in [13], a secure mul-
tiparty specific algorithm, YTP-SS, developed for matrix multiplication, requires
about a hundred seconds to perform an n = 200 matrix multiplication. These
timings, however, do not take into account communications, but for multiparty
matrix multiplication, the number of communications and the number of opera-
tions should be within the same order of magnitude. Our goal is thus to improve
on existing algorithms, primarily in terms of this number of communications
(we do not minimize the number of messages, as in [17], but instead consider
the overall volume). Our idea is to use an algorithm with a lower time and com-
munication complexity for matrix multiplication. Strassen’s algorithm [30] was
the first sub-cubic time algorithm, with an exponent log2 7 ≈ 2.81, with a com-
plexity of O(n2.81) and we hence construct an MPC protocol based Winograd’s
variant of this algorithm which carries this improvement over the communication
volume.2 [1, Ex. 6.5].

To preserve the inputs privacy during the computation of a matrix multi-
plication, the use of homomorphic encryption schemes appears to be natural.
While we could use a fully homomorphic encryption scheme, it would slow down
the protocol unreasonably. Instead, we will use partial homomorphic encryption
scheme [5] as they allow to perform the operations we need, namely:

1. Dsk(Epk(m1) × Epk(m2)) = m1 + m2 (Additive homomorphism)
2. Dsk(Epk(m1)m2) = m1 × m2 (Cipher/clear multiplicative homomorphism)

Several cryptosystems do satisfy these, e.g., the ones designed by Naccache-
Stern or Paillier [26,27]. The former is usually costlier than the latter. However,
as the former allow parties to agree on a common message block size, which
solves the issue of defining a consistent message space among them, we choose
here to use the Naccache-Stern cryptosystem.

1 http://www.multipartycomputation.com/mpc-software.
2 The best value known to date, due to LeGall’s [23], of approximately 2.3728639.

However, only a few sub-cubic time algorithms are competitive in practice and used
in software [3,11,21] (see also [22] and references therein), among which Strassen’s
algorithm and its variants stand out as a very effective one in practice.

http://www.multipartycomputation.com/mpc-software

Secure Multiparty Matrix Multiplication 69

Finally, Strassen-Winograd algorithm involves numerous additions and sub-
tractions on parts of the A and B matrices that are held by different players.
Security concerns require then that these entries should be encrypted from the
start, contrarily to [13]. As a consequence, the classical matrix multiplication
can no longer be used as stated in the latter reference, even for the base case
of the recursive algorithm. We therefore propose an alternative base case. Its
arithmetic cost is higher, but it involves an equivalent amount of communica-
tion. We shall show that this choice combined with our multiparty recursive
Strassen-Winograd algorithm compares favorably to existing implementations
in communication cost for matrices of dimensions larger than N = 96.

As Strassen-Winograd algorithm trades multiplications for additions, and as
homomorphic additions are cheaper than multiplications, this algorithm is a very
good candidate for a multiparty protocol using homomorphic techniques.

Hypotheses. In this paper, we will only consider the case of semi-honest (also
called honest-but-curious) adversaries. Such adversaries, represented as proba-
bilistic polynomial time machines, try to gather as many information as possi-
ble during the execution of the protocol, and can locally run any computation
based on this information in order to deduce some private input. However, they
strictly follow protocol specifications. We also consider that communications are
performed over secure channels: this means transferred data is resistant to eaves-
dropping and that only the recipient will learn anything from communicated
data.

Contributions. We propose an instance of Strassen-Winograd’s algorithm in a
secure multiparty computation setting, which, to our knowledge, will be the
first recursive SMC protocol, where the input and output matrices are split and
shared row-wise. More precisely, this paper presents the following contributions:

1. A reduction of the overall amount of communication from O(N3) to O(N2.801)
for the multiparty multiplication of N × N matrices;

2. A recursive protocol proven secure against one semi-honest adversary;
3. A schedule of the operations of Strassen-Winograd’s algorithm and of a classic

matrix multiplication algorithm compliant with a privacy-preserving location
and encryption data-layout;

4. This improvement is confirmed by experiments showing advantages of this
approach over alternative implementations of MPC matrix multiplication pro-
tocols.

The article proceeds as follows: Sect. 2 presents Strassen-Winograd and the com-
petitor YTP-SS algorithms. There, we also define the dedicated data layout and
the cryptographic tools we will use. Next, in Sect. 3, we first describe our build-
ing block protocols, with their security analysis. Second, we present in this
Section a new cubic-time matrix multiplication algorithm on ciphered entries
to be used as a base case. Section 4 describes the complete novel sub-cubic MPC
Strassen-Winograd algorithm and details its theoretical communication cost.
Finally, Sect. 5 closes with practical comparisons between our C++ and com-
petitor implementations.

70 J.-G. Dumas et al.

2 Preliminaries

2.1 Strassen-Winograd Algorithm

Strassen-Winograd algorithm computes C = A×B by splitting the input matri-
ces in four quadrants of equal dimensions: A =

[
A11 A12
A21 A22

]
and B =

[
B11 B12
B21 B22

]
.

Each recursive call consists in 22 block operations:

– 8 additions:

S1 ← A21 + A22 S2 ← S1 − A11 S3 ← A11 − A21 S4 ← A12 − S2

T1 ← B12 − B11 T2 ← B22 − T1 T3 ← B22 − B12 T4 ← T2 − B21

– 7 recursive multiplications:

R1 ← A11 × B11 R2 ← A12 × B21 R3 ← S4 × B22 R4 ← A22 × T4

R5 ← S1 × T1 R6 ← S2 × T2 R7 ← S3 × T3

– 7 final additions:

U1 ← R1 + R2 U2 ← R1 + R6 U3 ← U2 + R7 U4 ← U2 + R5

U5 ← U4 + R3 U6 ← U3 − R4 U7 ← U3 + R5

– The result is the matrix: C =
[

U1 U5
U6 U7

]
.

Although the recursion could be run down to products of 1×1 matrices, it is
commonly stopped at a fixed dimension threshold, where a classical cubic time
algorithm is then used, in order to reduce the overhead of recursion on small
dimension instances. For the sake of simplicity, we consider henceforth that the
initial input matrices are of dimension N×N , with N = b2�, so that up to �
recursive calls can be made without having to deal with padding with zeroes nor
with peeling thin rows or columns.

2.2 Data Layout and Encryption

We consider the setting where the two input matrices A and B have dimension
N ×N and each of the N players stores one row of A and the corresponding row
of B and learns the corresponding row of C = A×B. In this setting, the YTP-SS
Algorithm [13, Algorithm 15] can compute C by encrypting the rows of A only
and then relying on homomorphic multiplications of encrypted coefficients of A
by plain coefficients of B.

However, Strassen’s algorithm, considered here, requires adding and subtract-
ing submatrices of B of distinct row index sets (e.g. T3 ← B22 − B12). These
operations on non-ciphered rows of B would automatically leak information. We
therefore impose that the rows of both operands A and B, of the result C and of
any intermediate matrix are encrypted by the public key of a player who is not
the one hosting the row. We therefore introduce the notion of location and key
sequences for a matrix, to identify the roles of the players in this data layout:

Secure Multiparty Matrix Multiplication 71

Definition 1. An n × n matrix A of ciphered values has location sequence L =
(l1, l2, . . . , ln) and key sequence K = (k1, k2, . . . , kn) if player Pli stores row i of
A, that was encrypted with the public key pkki

of player Pki
for all 1 ≤ i ≤ n.

Example 1. For n = 3, consider the location sequence L = (2, 3, 1) and key
sequence K = (3, 1, 2). This means that player P2 stores row 1 of A encrypted
with the public key of player P3; player P3 stores row 2 of A encrypted with the
public key of player P1 and finally player P1 stores row 3 of A encrypted with
the public key of player P2.

In the matrix multiplication algorithms presented in the later sections, the
location and key sequences of operand A and C will always be identical. On the
other hand the location and key sequences of B may equal those of A (in the
first recursive call), or differ, but then they must have an empty intersection
with those of A.

A recursive step in Strassen-Winograd algorithm splits the matrices A, B
and C into four quadrants of equal dimensions. Hence their key and location
sequences are split into two sub-sequences: for X ∈ {A,B,C}, LX = (LXU

, LXL
)

and KX = (KXU
,KXL

) such that (LXU
,KXU

) are the location and key
sequences for the upper half of X and (LXL

,KXL
) are the location and key

sequences for the lower half of X.
Figure 1 summarizes the notations we use on the input/output operands in

Strassen-Winograd algorithm.

Fig. 1. Recursive splitting of the location and key sequences of the input and output
operands in Strassen-Winograd algorithm.

More formally, we present in Definition 2 the two distinct data layouts used
in our algorithms: one for the recursive levels of Strassen-Winograd, and one for
its base case.

Definition 2. Let N ∈ N, n ≤ N and A and B two n×n matrices with location
and key sequences (LA,KA) ∈ ({1..N}n)2 and (LB ,KB) ∈ ({1..N}n)2.

1. (LA,KA, LB ,KB) is a valid data layout if
(a) ∀i ∈ {1..n}, LA[i] �= KA[i] and LB [i] �= KB [i].

72 J.-G. Dumas et al.

(b) ∀i, j ∈ {1..n} with i �= j, LA[i] �= LA[j] and LB [i] �= LB [j]
(c) ∀i, j ∈ {1..n} with i �= j, KA[i] �= KA[j] and KB [i] �= KB [j]

2. (LA,KA, LB ,KB) is a base case or a 0-recursive data layout if it is a valid
data layout and (LA ∪ KA) ∩ (LB ∪ KB) = ∅.

3. (LA,KA, LB ,KB) is a �-recursive data layout if it is a valid data layout and
(a) (LAU

∪ KAU
) ∩ (LAL

∪ KAL
) = ∅ = (LBU

∪ KBU
) ∩ (LBL

∪ KBL
)

(b) (LAU
,KAU

, LBL
,KBL

) and (LAL
,KAL

, LBU
,KBU

) are both (� − 1)-
recursive data layouts

Lemma 1. For N = b2�, the following values for the location and key sequences
form an �-recursive data layout according to Definition 2:

{
ki = i for 0 ≤ i < N
lib+j = ib + (j + 1 mod b) for 0 ≤ i < N/b, and 0 ≤ j < b

(1)

For instance, for a product of dimension 12, with base case dimension b = 3, this
gives; LA = LB = LC = (1, 2, 0, 4, 5, 3, 7, 8, 6, 11, 9, 10) and KA = KB = KC =
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11).

2.3 Homomorphic Encryption

Naccache-Stern Cryptosystem. In the following, we use Naccache-Stern [26]
partially homomorphic cryptosystem, with security parameter 1λ, set up as fol-
lows:

Setup(1λ): Select 2k small primes p1, . . . , p2k; compute u =
∏k

i=1 pi and v =
∏2k

i=k+1 pi; let σ = u·v; uniformly select two large prime numbers a and b of
size λ/2; find f1 and f2 such that p = f1·a·u+1 and q = f2·b·v+1 are primes;
let m = p·q and randomly choose g of order aubv in Z

∗
m. The private key is

SK = (p1, . . . , p2k, p, q), the public key is PK = (σ, g,m).
EncryptPK(x): for x ∈ Zσ, randomly choose r ∈ Zm and encrypt x as c =

EPK(x) ≡ rσ · gx mod m.
DecryptSK(c): let φ = (p−1)(q−1), ci ≡ cφ/pi mod m and recover, by exhaus-

tive search (pi is small), xi mod pi such that xi = loggφ/pi (ci) mod m.
Finally reconstruct x with the Chinese remaindering, x ≡ CRT ({xi, pi})
mod σ.

In the following, cleartexts will be elements of Zσ while ciphertexts are ele-
ments of Zm. Note that while σ is shared by all players, there is a distinct
modulus Zm for each player, otherwise they would have to share their private
keys. Consequently a plain text matrix has coefficients in Zσ but in a layout
where each row is encrypted using a different key pki, its encryption is no longer
a matrix but a sequence of rows over distinct rings Zmpki

. We will abusively refer
to this ciphered data as the ciphered matrix.

Secure Multiparty Matrix Multiplication 73

Notations. Given some scalar u and a player A, we denote by {u}A, as a
shortcut to {u}pkA

, the encryption of data u with the public key of A. This is
an element of ZmA

. Similarly, we also denote by EA(u) the action of encrypting
the data u using the public key of A (this means that the player generating this
cipher-text knows the plaintext u. For a key sequence K and a matrix A over
Zσ, the ciphered matrix obtained by encrypting row i of A by K[i] is denoted by
{A}K . Row i of {A}K is over ZmK[i] , where mK[i] is the modulus in the public

key of player PK[i]. We also denote by r
$← D the operation of drawing uniformly

at random r from a domain D.

2.4 Multiparty Protocols Security

Here, we recall some widely used notations and results for the security of multi-
party protocols.

Definition 3 (from [16]). Let f be a n-ary functionality, where fi(x1, ..., xn)
denotes the ith element of f(x1, ..., xn). For I = {i1, ..., it} ⊂ [n] = {1, ..., n},
we denote by fI(x1, ..., xm) the subsequence fi1(x1, ..., xn), ..., fit

(x1, ..., xn). We
let xI = (xi1 , ..., xit

). Let Π be a n-party protocol for computing f . The view of
the ith party during an execution of Π on x = (x1, ..., xn) is denoted viewΠ

i (x),
and for I, we let viewΠ

I (x) = (I, viewΠ
i1 (x), ..., viewΠ

it
(x)). We say that Π securely

computes f if there exist a probabilistic polynomial time algorithm, such that for

every I ⊂ [n], we have: {SI((xI), fI(x)), f(x)}x
C≡ {viewΠ

I (x), outputΠ(x)}x.

Definition 4. Let f1, ..., fp(n) be functionalities, and let Π be a protocol. We say
that the protocol Π is executed in the f1, ..., fp(n)-hybrid mode if Π uses ideal
calls to a trusted party to compute f1, ..., fp(n).

Theorem 1 (from [24]). Let p(n) be a polynomial, let f1, ..., fp(n) be function-
alities, and let π1, ..., πp(n) be protocols such that each πi securely computes fi in
the presence of semi-honest adversaries. Let g be a functionality, and let Π be
a protocol that securely computes g in the f1, ..., fp(n)-hybrid model. Then, the
protocol Ππ1,...,πp(n) securely computes g in presence of semi-honest adversaries.

We will also need a function, which, given a small input is able to securely
and deterministically produce a stream of uniformly generated random values.
We will achieve this by using classical mask generation functions, as defined
in [20, Section 10.2]: a function which takes two parameters, a seed Z and a
length l and returns a random string of length l. We will then split the output
string in as many fragments as needed, and use each of these fragments as a
mask. Such function achieve an output indistinguishable property: if the seed is
unknown, it is impossible to distinguish between the output of an MGF and a
truly random string. Such secure functions exist, see for instance the one given
in [20] and in what follows, we will denote by MGF any function that have
the aforementioned security properties. Finally, for the rest of this paper, our
functionalities follow the input/output specification described in the protocols
they realize.

74 J.-G. Dumas et al.

2.5 Relaxing an Existing Algorithm: YTP-SS

The matrix multiplication algorithm using the secure dot-product protocol
YTP-SS [13, Algorithm 15] is secure against semi-honest adversaries over insecure
communication channels. In order to analyze the difference with our proposition,
Protocol 7 MP-SW, we extract here the core of the former protocol, i.e., without
the securization of the channel (that is we remove the protection of the players
private elements by random values, and the final communications to derandom-
ize the results). The resulting simplification is called MP-PDP and its costs are
given in Theorem 2. More details can be found in [13, Algorithm 15]

Theorem 2. For n players, [13, Algorithm 15], without the channel securiza-
tion, requires 2(n−1) communications. When used to compute a classical matrix
product, it requires n3 + n(n − 1) operations overall.

3 Toolbox

3.1 Initialization Phase

Before the actual computation, the involved parties need to agree on the location
and key sequences they will use, generate their key pairs, share their associated
public keys, cipher their input data and communicate it where needed. Parties
know their identifier, which is the index of the row they own, and use Eq. (1)
to compute the location/key sequences. Protocol 1 shows how the input data is
initially ciphered and dispatched: each party, identified as Pi, i ∈ {1..N} starts
with the i-th row of A and B, and, after generating its own key pair, ciphers its
row according to the key sequence.

Protocol 1. SW-Setup
Input: Two N × N matrices A and B over Zσ, where N = b2�, such that party Pi

knows the i-th row of A and the i-th row B for all i ∈ {1..N}. A location and a key
sequence L ∈ {1..N}N and K ∈ {1..N}N such that (L, K, L, K) form an �-recursive
data layout, following Definition 2. All parties know a security parameter λ.

Output: For all i ∈ {1..N}, party PL[i] learns vectors {ai,∗}K[i] and {bi,∗}K[i] and learns
the public key of every other party.

Goal: Generate key pairs for each party, cipher and distribute input matrices according
to their respective location and key sequences.
1. Key generation: for all i ∈ {1..N}, each party Pi locally

executes NaccacheSternSetup(1λ) to generate a pair of keys (pki, ski).
2. Broadcast keys: for all i ∈ {1..N}, party Pi broadcasts its public key pki.
3. Cipher inputs: for all i ∈ {1..N}, for all j ∈ [n], party Pi locally performs

NaccacheSternEncrypt(pkK[i], aij) and stores the result as a new vector {ai,∗}K[i].
It does the exact same operation with bi,∗ to get {bi,∗}K[i].

4. Distribute rows:
(a) Rows of A: for all i ∈ {1..N}, party Pi sends {ai,∗}K[i] to party PL[i].
(b) Rows of B: for all i ∈ {1..N}, party Pi sends {bi,∗}K[i] to party PL[i].

Secure Multiparty Matrix Multiplication 75

Finally, the protocol sends the ciphered row to the party hosting this row,
designated by the location sequence. For input matrices of size N , Protocol 1
requires 2N2 communications.

3.2 Multiparty Copy

In the various subroutines that compose our algorithm, we will often need to
copy and recipher a vector from one Party to another following location and
key sequences. For this, one could use proxy reencryption protocols, but it is
simpler, in our setting, to instead mask and decrypt, using interaction. Protocol 2
describes protocol MP-COPY, performing this very operation for a given ciphered
element x hosted by Bob and encrypted for Dan, to its new location at Alice and
encrypted for Charlie. Here, Dan is in charge of performing the decryption and
the re-encryption of the element. To prevent Dan from learning the value of x,
Bob masks it additively with a random value. Bob therefore needs to clear out
this random mask on the value re-encrypted by Dan, with Charlie’s key, before
sending it to Alice. This protocol uses a total of 3 communications.

Protocol 2. MP-COPY
Input: Four parties, Alice, Bob, Charlie and Dan. Bob knows a ciphered element {x}D ∈
Zm (for x ∈ Zσ), ciphered using Dan’s public key.

Output: Alice learns the element {x}C , ciphered using Charlie’s public key.

Goal: Recipher from Dan to Charlie and transfer from Bob to Alice.
1. Add masking

(a) Random: Bob samples uniformly at random r ∈ Zσ

(b) Mask: Bob locally computes α = {x}D · gr = {x + r}D ∈ Zm

(c) Communication: Bob sends α to Dan.
2. Recipher:

(a) Decipher: Dan computes β = NaccacheSternDecrypt(skD, α) = x + r ∈ Zσ.
(b) Cipher: Dan computes γ = NaccacheSternEncrypt(pkC , β) ∈ Zm.
(c) Communication: Dan sends γ to Bob.

3. Remove masking:
(a) Unmask: Bob locally computes δ = γ · g−r = {x}C ∈ Zm

(b) Communication: Bob sends δ to Alice.

3.3 Classical Matrix Multiplication Base Case

We describe in this section an algorithm to perform classical matrix multiplica-
tions in the data and encryption layout of Definition 2. It consists in n2 scalar
products in which, products of elements ai,k of A by elements bk,j of B are
performed using the homomorphic multiplication between a ciphertext and a
plaintext: {ai,k}bk,j

PK = {ai,kbk,j}PK , where PK is the public key that has been
used to cipher the element. Therefore, the coefficient bk,j should first be deci-
phered, and to avoid leaking information, it should also be masked beforehand
by some random value.

76 J.-G. Dumas et al.

Protocol 3. MaskAndDecrypt
Input: Two parties, further denoted as Bob and Charlie. They both know their own
private key, public keys of all the parties involved, the security parameter λ ∈ N and
the modulus m ∈ N. Moreover, Bob knows a seed sk ∈ N and a ciphered vector of size
n, {bk,∗}C , whose elements (bk,j) ∈ Z

n
σ have been ciphered using Charlie’s public key.

Output: Charlie learns the additively masked plaintext of Bob’s input vector.

Goal: Perform the additive masking of Bob’s input vector, and let Charlie learn it.
1. Mask Bob’s input:

(a) Generate randoms: Bob performs MGF(sk, bitsize(σ)×n) and splits the
output in n shares of size bitsize(σ), denoted as tk,j for j ∈ {1..n}.

(b) Mask vector: for j ∈ {1..n}, Bob computes βk,j = {bk,j}C · gtk,j ∈ Zm.
(c) Communication: for j ∈ {1..n}, Bob sends βk,j to Charlie.

2. Finalize:
(a) Decipher: for j ∈ {1..n}, Charlie performs NaccacheSternDecrypt(skC , βk,j)

and stores the results in uk,j = bk,j + tk,j ∈ Zσ.

Protocol 4. PointwiseProducts
Input: Four parties, further denoted as Alice, Bob, Charlie and Dan. Alice knows a
ciphered {ai,k}D ∈ Zm for given i and k, ciphered using Dan’s public key. Bob knows a
seed sk ∈ N and Charlie knows a masked vector (uk,∗) ∈ Z

n
σ (each coefficient is masked

by a random value).

Output: Alice learns all the ciphertexts {ai,kbk,j}D for j ∈ {1..n}.

Goal: Compute the point-wise products for naive matrix product on a given row
1. Communication: Alice sends {ai,k}D to Charlie
2. Multiplication: for j ∈ {1..n}, Charlie computes δi,k,j = {ai,k}uk,j

D , δi,k,j ∈ Zm

3. Communication: for j ∈ {1..n}, Charlie sends δi,k,j to Alice.
4. Send seed: Bob sends sk to Alice
5. Generate and remove masks: Alice performs MGF(sk, bitsize(σ)×n) and splits

the output in n shares of size σ, denoted as tk,j for j ∈ {1..n}.
For j ∈ {1..n}, Alice computes:

εi,k,j = δi,k,j/
(
{ai,k}tk,j

D

)
= {ai,k(bk,j + tk,j) − ai,ktk,j}D ∈ Zm.

Protocol 3 takes care of masking and deciphering a whole column of B.
There, player Charlie is the only one able to decrypt the masked value βk,j =
{bk,j + tk,j}C . For this we require a stream of uniformly random values tk,j , that
can be sent. To reduce communications, we here instead use a mask generating
function (MGF) that generates this stream from a small seed. Then only the
seed need to be communicated to remove the mask. All players have of course
to agree beforehand on a choice for this mask generating function.

Protocol 4 shows how player Alice can then recover the ciphertext of one
product {ai,kbk,j}D. Alice sends her value {ai,k}D to player Charlie who then
performs the exponentiation, corresponding to a multiplication on the plaintexts,
and sends it back to Alice. Meanwhile Alice has received the seed and generated
the masking values tk,j to clean out the product. Finally each coefficient {ci,j}D

Secure Multiparty Matrix Multiplication 77

Protocol 5. BaseCase
Input: two n × n matrices {A}KA and {B}KB distributed and ciphered according to a
base-case data layout (LA, KA, LB , KB) ∈ ({1..N}n)4 among parties (P1, . . . , PN) as
in Definition 2,

Output: Matrix C = A × B is distributed and ciphered among parties (P1, . . . , PN)
according to the location and key sequences (LA, KA).

Goal: Compute C = A × B distributed and ciphered in the same way as A is.
1. Computation:

For all k ∈ {1..n}
(a) Choose a seed: Party PLB [k] samples uniformly at random a seed sk ∈ N

according to the security parameter λ.
(b) Parties PLB [k] and PKB [k] run MaskAndDecrypt on vector {bk,∗}KB [k]

(c) For all i ∈ {1..n}
Parties PLA[i], PLB [k], PKB [k] and PKA[i] run PointwiseProducts where

Parties PLA[i] learn εi,k,j = {ai,kbk,j}KA[i] for all j ∈ {1..n}.
2. Reduction: for all i ∈ {1..n} Party PLA[i] computes {ci,j}KA[i] ← ∏n

k=1 εi,k,j

of the result is computed during a reduction step where player Alice simply
multiplies together all corresponding point-wise products.

Overall, Protocol 5 schedules these three operations. In the calls to Protocols
MaskAndDecrypt and PointwiseProducts, Alice is incarnated by Player PLA[i],
Bob by PLB [k], Charlie by PKB [k] and Dan by PKA[i].

Theorem 3. Protocol 5 correctly computes the product C = A × B in the spec-
ified layout. It requires a communication of n3 + 3n2 + n modular integers.

Proof. Correctness stems first from the fact that ci,j =
∑n

k=1 ai,kbk,j is obtained
“in the exponents” by the homomorphic properties (1). Second the only masks
applied, in Protocol 3, are all removed in Protocol 4. Now, the communication
cost in number of ring element is n for Protocol 3 and n + 1 for Protocol 4.
Protocol 3 and Protocol 4 also send one seed, which, for simplicity, we consider
smaller than a modular integer. Overall this yields a communication cost lower
than n(n + 1) + n2(n + 2) = n3 + 3n2 + n modular integers for Protocol 5. �

3.4 Security Analysis

From the formalization of the different protocols we can state the security of the
overall base case for matrix multiplication in the following Theorem4.

Theorem 4. If players share a 0-data-layout, Protocol BaseCase is secure
against one semi-honest adversary.

The idea is to start by proving the security of the subprotocols and then use
the composition theorem and the data layout to prove the security of the double
loop of Protocol BaseCase. The full formal proof is given in AppendixA.1.

78 J.-G. Dumas et al.

Protocol 6. MP-MAT-COPY
Input: an n × n matrix {A}KA distributed and ciphered according to a location and a
key sequence (LA, KA) ∈ ({1..N}n)2 among parties (P1, . . . , PN) following Definition 2
and a location-key sequence (L′, K′).

Output: A copy {A}K′ is distributed and ciphered among parties (P1, . . . , PN) accord-
ing to the location and key sequences (L′, K′).

For all i, j ∈ {1..n}2

Parties PL′[i], PL[i], PK[i] and PK′[i] run MP-COPY to copy {ai,j}K[i] to {ai,j}K′[i]

4 Multiparty Strassen-Winograd

4.1 Operation Schedule in MP-SW

The 22 operations in a recursive step of Strassen-Winograd’s algorithm is com-
posed by 15 matrix additions and 7 recursive calls. The matrix additions are per-
formed using component-wise homomorphic additions, denoted by HOM-MAT-ADD:
each player performs locally a simple homomorphic addition of the rows of
the two input operands that she stores. Homomorphic subtraction, denoted
by HOM-MAT-SUB, works similarly. However, this requires that the two operands
share the same key and location sequences. To ensure this, some matrices will
be copied from one key-location sequence to another, using a multiparty matrix
copy, denoted by MP-MAT-COPY. The location sequences of the input an output are
non-intersecting (and therefore so are the related key sequences). These opera-
tions are achieved by n2 instances of MP-COPY (Protocol 2) as shown in Protocol 6.

Theorem 5. Assuming an l-data layout, Protocol MP-MAT-COPY is secure against
one semi-honest adversary.

We only give a sketch of the proof, since its very similar to the one for the
MaskAndDecrypt protocol within the proof of Theorem4.

Proof. First, we prove that MP-COPY is secure against one semi-honest adversary:
from the data layout or the added randomness, each players only see ciphers
or additively masked values so that it does not lean anything from the execu-
tion. Then, we prove the security in an hybrid model where calls to MP-COPY
are replaced by an equivalent ideal functionality. Since the output is ciphered
accordingly to the data layout, a simulation by ciphering random values is com-
putationally indistinguishable from the real execution. Finally, by sequentially
composing calls to the MP-COPY protocol, we apply the sequential composition
theorem to conclude. �

We propose in Protocol 7 a scheduling of these operations and data movement
ensuring that all additions can be made homomorphically, that the key and
location sequences for all seven recursive calls satisfy the requirements for a base-
case data-layout (Definition 2) and finally that the output matrix also follows
the location and key sequences of the first operand. The last three columns in

Secure Multiparty Matrix Multiplication 79

Protocol 7 indicate the location sequences of the input and output operands for
each operation.

Protocol 7. MP-SW
Input: two n × n matrices {A}KA and {B}KB , distributed and ciphered according to
an �-recursive data layout (LA, KA, LB , KB) ∈ ({1..N}n)4 among parties (P1, . . . , PN)
following Definition 2, where n = b2�.

Output: {C}KA = {A × B}KA , distributed and ciphered among parties (P1, . . . , PN)
according to the location and key sequences (LA, KA).
1. If � = 0: Parties in (LA, KA) and (LB , KB) run BaseCase on {A}KA and {B}KB

2. Else
In1 loc. In2 loc. Out loc.

{S1}KAL
← HOM-MAT-ADD ({A21}KAL

, {A22}KAL
) LAL LAL LAL

{A′
11}KAL

← MP-MAT-COPY ({A11}KAU
, (LAL , KAL)) LAU LAL

{S2}KAL
← HOM-MAT-SUB ({S1}KAL

, {A′
11}KAL

) LAL LAL LAL

{S3}KAL
← HOM-MAT-SUB ({A′

11}KAL
, {A21}KAL

) LAL LAL LAL

{S′
2}KAU

← MP-MAT-COPY ({S2}KAL
, (LAU , KAU)) LAL LAU

{S4}KAU
← HOM-MAT-SUB ({A12}KAU

, {S′
2}KAU

) LAU LAU LAU

{T1}KBU
← HOM-MAT-SUB ({B12}KBU

, {B11}KBU
) LBU LBU LBU

{B′
22}KBU

← MP-MAT-COPY ({B22}KBL
, (LBU , KBU)) LBL LBU

{T2}KBU
← HOM-MAT-SUB ({B′

22}KBU
, {T1}KBU

) LBU LBU LBU

{T3}KBU
← HOM-MAT-SUB ({B′

22}KBU
, {B12}KBU

) LBU LBU LBU

{B′
21}KBU

← MP-MAT-COPY ({B21}KBL
, (LBU , KBU)) LBL LBU

{T4}KBU
← HOM-MAT-SUB ({T2}KBU

, {B′
21}KBU

) LBU LBU LBU

{R1}KAL
← MP-SW ({A′

11}KAL
, {B11}KBU

) LAL LBU LAL

{R2}KAU
← MP-SW ({A12}KAU

, {B21}KBL
) LAU LBL LAU

{R3}KAU
← MP-SW ({S4}KAU

, {B22}KBL
) LAU LBL LAU

{R4}KAL
← MP-SW ({A22}KAL

, {T4}KBU
) LAL LBU LAL

{R5}KAL
← MP-SW ({S1}KAL

, {T1}KBU
) LAL LBU LAL

{R6}KAL
← MP-SW ({S2}KAL

, {T2}KBU
) LAL LBU LAL

{R7}KAL
← MP-SW ({S3}KAL

, {T3}KBU
) LAL LBU LAL

{R′
1}KAU

← MP-MAT-COPY ({R1}KAL
, (LAU , KAU)) LAL LAU

{U1}KAU
← HOM-MAT-ADD ({R′

1}KAU
, {R2}KAU

) LAU LAU LAU

{U2}KAL
← HOM-MAT-ADD ({R1}KAL

, {R6}KAL
) LAL LAL LAL

{U3}KAL
← HOM-MAT-ADD ({U2}KAL

, {R7}KAL
) LAL LAL LAL

{U4}KAL
← HOM-MAT-ADD ({U2}KAL

, {R5}KAL
) LAL LAL LAL

{U ′
4}KAU

← MP-MAT-COPY ({U4}KAL
, (LAU , KAU)) LAL LAU

{U5}KAU
← HOM-MAT-ADD ({U ′

4}KAU
, {R3}KAU

) LAU LAU LAU

{U6}KAL
← HOM-MAT-SUB ({U3}KAL

, {R4}KAL
) LAL LAL LAL

{U7}KAL
← HOM-MAT-ADD ({U3}KAL

, {R5}KAL
) LAL LAL LAL

3. End result {C}KA ←
[{U1}KAU

{U5}KAU{U6}KAL
{U7}KAL

]

80 J.-G. Dumas et al.

Note that the initial problem requires that both operands A and B share
the same key and location sequences (so that matrix squaring is possible). How-
ever, the base case protocol (Protocol 5) requires that these sequences are non-
intersecting. In order to satisfy these two constraints the recursive Strassen-
Winograd algorithm is presented with a location and key sequence for A (LA

and KA) and a location and key sequence for B (LB and KB). The algorithm
does not require that they are non intersecting, but ensures that from the first
recursive call, they will always be, so as to fit with the requirement of the base
case, Protocol 5.

Lemma 2. The total communication cost of a recursive level of MP-SW following
the schedule defined Protocol 7, Step 2 is 18

(
n
2

)2 communications.

Proof. The only communication are that of the 6 calls to MP-MAT-COPY, each
accounting for 3(n/2)2 communication. �

Finally, our main security result is that of the following Theorem6. The full
proof relies on a sequence of hybrid games, where each transition is based on
indistinguishability and is given in AppendixA.2.

Theorem 6. Assuming an �-data layout, Protocol MP-SW is secure against one
semi-honest adversary.

4.2 Finalization Step

Finally, there remains to decipher and distribute each row of {C}KA
to the

party who has to learn it. By setting the key sequence to KA = (1, 2, 3 . . .) as in
Lemma 1, this player is able to perform the decryption himself. This finalization
step is formally described in Protocol 8 and uses N2 communications.

Protocol 8. SW-Finalize
Input: An N ×N matrix {C}KC distributed and ciphered according to the location and
key sequences (LC , KC) ∈ ({1..N}N)2 among parties P1, . . . , PN , following Definition 1.

Output: Each party PKC [i] learns the plaintext of the i-th row of C.
1. Exchange rows: For all i ∈ {1..N}, party PLC [i] send row i of C to party PKC [i].
2. Decipher vector: For all i ∈ {1..N}, for all j ∈ {1..N}, party PKC [i] runs

NaccacheSternDecrypt(skKC [i], ({ci,j}KC [i])) and stores the output values in a
vector cKC [i] ∈ Z

N
σ .

4.3 Cost and Security Analysis

From Lemma 2 and Theorem 3, the recurrence relation for communication com-
plexity of MP-SW writes:

{
C(n) = 7C

(
n
2

)
+ 18

(
n
2

)2 for n > b
C(b) = b3 + 2b2 for the base case

(2)

Secure Multiparty Matrix Multiplication 81

The threshold at which the recursive algorithm should switch to the base case
algorithm is set by finding at which dimension b does the base case algorithm
start to perform worse than one recursive level. In terms of communication cost,
this means the following equation: 7((b

2)3 +3(b
2)2 +3(b

2))+18(b
2)2 = b3 +3b2 + b

which comes from injecting the base case cost of Theorem 3 into the recurrence
formula. It gives a threshold of b = 56.

Theorem 7. For N = b2� parties (Pi)i∈{1..N} and two matrices A,B ∈ Z
N×N
σ ,

such that party Pi knows the i-th row of A and the i-th row B for all i ∈ {1..N},
the execution in sequence of algorithms (SW-Setup; MP-SW; SW-Finalize), using
the �-recursive data layout of Eq. (1), correctly computes C = A×B ∈ Zσ with
O(7�b3) communications in O(�) rounds and is secure against one semi-honest
adversary. When b is constant, then � = O(log2(N)), and the communication
bound is O(N log2(7)).

Proof. Correctness of MP-SW is given by Theorem 3 for the basecase and that of
Strassen-Winograd algorithm (Sect. 2.1). Then SW-Setup is just the set up of the
keys and initial encipherings, while SW-Finalize is the associated decipherings.
Then, the communication bound stems from Theorem3 and Eq. (2), with 3N2

communications for SW-Setup and SW-Finalize. The non-recursive parts of each
recursive level of MP-SW require a constant number of rounds, and so does the
execution of the BaseCase, leading to a total of O(�) rounds. For the security.
again SW-Setup is just the communication of public keys and self-ciphered val-
ues, while SW-Finalize is also the communication of ciphered values to their
legitimate locations. Finally, Theorem6 asserts the security of MP-SW and the
sequential execution of (SW-Setup; MP-SW; SW-Finalize) that of the whole pro-
cess. �

We now compare the cost of MP-SW with the cost of MP-PDP, CMP-PDP(n) =
n3+n(n−1). We also recall that the initialization step SW-Setup costs Cinit = 2n2

and the finalization step SW-Finalize costs Cfinal = n2. The crossover point
where our full algorithm improves over MP-PDP in communication cost is obtained
by solving the equation: C(n) + 3n2 ≤ n3 + n(n − 1) which yields n > 94, with
one recursive call. This means that for any instance of dimension larger than 96,
the proposed MP-SW algorithm has a better communication cost than MP-PDP.

5 Experiments

We implemented the algorithms under study3 to demonstrate their behavior in
practice and compared them to the state of the art implementations of other
solutions. In the following SPDZ2k refers to a run of a textbook matrix multipli-
cation algorithm performed with the general purpose library SPDZ2k [6]4, YTP-SS
refers to n2 applications of [13, Algorithm 15]; MP-PDP refers the relaxation and
3 C++ source files, including benchmarks for YTP-SS and SPDZ2k , are available on

request via the PC chair and will be made publicly available if the paper is accepted.
4 https://github.com/bristolcrypto/SPDZ-2.

https://github.com/bristolcrypto/SPDZ-2

82 J.-G. Dumas et al.

improvement of this algorithm to the current setting; MP-SW refers to our imple-
mentation of Protocol 7 using Protocol 5 as a basecase with threshold set to
n = 56. The Naccache-Stern cryptosystem is set with public keys of size 2048
bits and message space of 224 bits (using 14 primes of 16 bits).

Please note that, while MP-PDP and MP-SW share the same security model,
YTP-SS and SPDZ2k achieve better security: malicious adversaries over insecure
channels. Also, SPDZ2k uses a different approach based on oblivious transfer and
secret sharing. However, as they were the only state of the art implementations
available, we still chose to include them in our comparisons.

Figure 2 presents the volume of communication performed by these four vari-
ants. Communication-wise, for n = 100 players, MP-SW is 4% cheaper than MP-PDP
(271 vs. 261 MB), but becomes 24% cheaper for n = 400 (15.3 vs. 11.7 GB) and
up to 27.8% for n = 528 (35.2 vs. 25.4 GB). Note that the cross-over point
of n = 96 between MP-PDP and MP-SW is confirmed experimentally. For SPDZ2k ,
computations were performed for small matrices only because of computational
power requirements: on a workstation with 16 GB of RAM and an Intel i5-7300U
@2.60GHz, computations stalled for any matrices larger than 37 × 37.

To reach this communication improvement, the price to pay is that of some
computational slowdown, as shown in Table 1.

Fig. 2. Comparing communication volume for multiparty matrix multiplications.

Table 1. Computation time (in s) per player of Multiparty Strassen-Winograd MP-SW
compared to MP-PDP on an Intel Xeon E7-8860 2.2 Ghz.

Key size 1024 2048

n 16 32 64 16 32 64

MP-PDP 0.58 2.68 11.01 4.54 18.05 69.80

MP-SW 2.87 6.19 13.27 23.63 49.22 196.24

Secure Multiparty Matrix Multiplication 83

However, with the same order of magnitude for the computational cost and
the communication cost, communications should be largely dominant. Therefore,
the improvement in communication volume is the one that matters.

6 Conclusion and Perspective

We have presented in this paper a novel secure multiparty matrix multiplica-
tion where each player owns one row of the different matrices. For this we use
Strassen-Winograd algorithm and reduce for the first time the total communi-
cation volume from O(N3) to O(N log2(7)). The improvement in communication
cost over state of the art algorithms takes effect for dimension as small as 96.

The version of Strassen-Winograd we presented here is secure against semi-
honest adversaries. However, as many of its building blocks have a stronger
security level anyway, it would be interesting to see if it is possible to increase the
security of the whole MP-SW protocol and how it would impact its performance.

Even if this paper is a about improving the communication cost while pre-
serving security, several arithmetic cost improvements could be envisioned. For
instance, removing the need for players to encrypt their share of the B matrix
beforehand. While this is required in order to preserve security, a large part of
the computing cost lies in the operations required to decipher and re-cipher that
data. In particular, the MP-COPY protocol is actually a proxy re-encryption, and
we want to further investigate how dedicated proxy re-encryption techniques
like [2,4] could be used in this context. Another possibility would be to replace
the Naccache-Stern by a faster cryptosystem. The difficulty is to be able to
combine the masking schemes with the homomorphic encryption.

A Security Proofs

A.1 Base Case Security Proof

Theorem 4 (From Sect. 3.4). If players shares a 0-data-layout, Protocol
BaseCase is secure against one semi-honest adversary.

Proof. We start by proving that both subprotocols MaskAndDecrypt (M&D)
and PointwiseProducts (PWP) are secure against one semi-honest adversary.

Protocol MaskAndDecrypt is a 2-party protocol such that: outputM&D

(({b1}P2 , s1),−) = (−,u1), with b1 = bk,∗, s1 = sk, u1 = {uk,j}j∈{1..n}. The
proof is then divided in two parts: one for each corruption case. We labeled P1

the player providing the seeds as input.
P1 is corrupted. The view of P1 is: viewM&D

P1
= (t1,β1). From the inputs of

P1, the simulator is able to perfectly simulate the view of P1.
P2 is corrupted. The view of P2 is: viewM&D

P2
= (β1). From the output u1 of

P2, the simulator S2 ciphers each of its elements with the key of P2. From the
IND-CPA security, the simulated view is computationally indistinguishable from
the real one.

84 J.-G. Dumas et al.

Protocol PointwiseProducts is a 4-parties protocol. However, the 4th player
does not have any input nor output: only its public key is used. In the same vein,
P2 only sends s2 and does not interact otherwise. Its view is empty, so that its
simulator is trivial. Therefore, the proof is only divided in two part. The output
of the protocol is: outputPWP ({a1}P4 , s2,uk ,−) = (ε,−,−,−) with a1 = ai,k,
uk = uk,∗ and ε = {εi,k,j}j∈{1..n}.

P1 is corrupted. The view of P1 is: viewPWP
P1

= (s2, t1, δ1). The simulator

S1 picks s′
2

$← Zσ and computes t′
1 as in the protocol. Then, from the output

ε and the input {a1}P4 , it computes δ′ = ε ∗ {a1}t′
1

P4
component wise. Since the

δ values are ciphered with the key of P4, and that s1 is a random value, both
views are indistinguishable.

P3 is corrupted. We have viewPWP
P3

= ({a1}P4 , δ1). S3: a′
1

$← Zσ, then the
value is ciphered with the public key of P4 to obtain {a′

1}P4 . Next, it computes
δ′
1 as in protocol using the simulated value {a′

1}P4 . This simulation is computa-
tionally indistinguishable from the real view thanks to the IND-CPA security of
the cryptosystem.

We denote by FM&D (respectively FPWP) the ideal functionalities associated
to the protocol MaskAndDecrypt (resp. PointwiseProducts). If players shares a
0-data-layout, the BaseCase protocol is secure against one semi-honest adversary
in the (FM&D, FPWP)-hybrid model.

BaseCase is a N -party protocol, where the view depends on which group
the player belongs. Since players share a 0-data-layout, there are four distinct
possibilities: {LA,KA, LB ,KB}. The cases where PKA[i] or PLB [i] is corrupted
are trivial, since their respective view are empty in the (FM&D, FPWP)-hybrid
model.

PLA[i] is corrupted. The view of PLA[i] is: viewBaseCase
PLA[i]

= ({ε}PKA[i]) where εi

is the output of a call to FPWP . The simulator Si executes: for each k ∈ {1..N}:
from the BaseCase output int the ideal world, it picks N − 1 random shares in
Zσ the (denoted ε′

i, i ∈ {1..N − 1}), and ciphers them using PkKA
[i]. Then, it

chooses the last share ε′
n such that: ε′

n ∗ ∏n−1
k=1 ε′

i. If ε′
n belongs to Zm, then it

outputs each component of ε′, otherwise it redoes the process from the beginning
for the kth step. The definition of the data layout ensures that PLA[i] �= PKA[i],
so that εi and ε′

i are indistinguishable as long as the encryption scheme is IND-
CPA. Moreover, since the choice of each share is consistent with the output of
the protocol (i.e., their product is equal to the output), the adversary is not able
to computationally distinguish between the real and the simulated execution.

PLB [i] is corrupted. The view of PLB [i] is: {viewBaseCase
PLB [i]

= (u)}. The output of
the protocol is empty for this player. The simulator picks n random values from
Zσ, and outputs each of them to form u′. In the real world, each ui is masked
by a random value (unknown by PLB [i] since PLB [i] �= PKB [i]), so that ui and u′

i

are then perfectly indistinguishable.
Finally, we apply the composition Theorem1: since we have proven the secu-

rity of BaseCase protocol in the (FM&D, FPWP)-hybrid model, and that the pro-
tocols PointwiseProducts and MaskAndDecrypt are secure, and that each call

Secure Multiparty Matrix Multiplication 85

to both of these protocols are sequentially made, we conclude that the BaseCase
protocol is secure against one semi-honest adversary. Moreover, the 0-data layout
ensures that the seed sharing does not leak information. �

A.2 Multiparty Strassen-Winograd Security Proof

Theorem 6 (From Section 4.1). Assuming an �-data layout, Protocol MP-SW
is secure against one semi-honest adversary.

Proof. First, we prove that MP-SW is secure in the F BaseCase, FCopy, F MP-SW
N/2 -hybrid

model, where F BaseCase, FCopy and F MP-SW
N/2 respectively denotes the ideal func-

tionality associated to the protocol BaseCase, MP-MAT-COPY, and MP-SW with N/2
players. In this model, calls to MP-MAT-COPY are replaced by ideals calls to FCopy.
In the same vein, if N ≤ T , the MP-SW calls are replaced by F BaseCase, or by F MP-SW

N/2

otherwise. e need to prove that for any corrupted player, its real view is indis-
tinguishable from the simulated one.

From the inputs described as in MP-SW (implicit in the following), the outputs
for the player PLAX [i] are the rows of the following matrices, ciphered with
PkKAX [i] , with X ∈ {U,L}. outputMP-SWAU

(U1, U5) and outputMP-SWAL
(U6, U7). Using

the same notations, we obtains the following views:

viewMP-SW
LAU

= (S′
2, S4, R

′
1, R2, R3, U

′
4),

viewMP-SW
LAL

= (S1, A
′
11, S2, S3, R1, R4, R5, R6, R7, U2, U3, U4),

viewMP-SW
LBU

= (T1, B
′
22, T2, T3, T4), viewMP-SW

LBL
= (−).

We construct a generic simulator, where differences depending on the cor-
rupted player are explicitly detailed. The simulator Si∈{1..N} takes two random
matrices in α and β both in Z

(N∗N)
σ . Then, it replaces the rows for the corrupted

player with its actual inputs (i.e., the rows of A and B owned by the corrupted
player). The remaining coefficients are ciphered accordingly to the data layout.
The first part of the protocol (i.e. the computation of Si and Ti, i ∈ {1..4}) is
simulated using the inputs and ideal calls to FCopy. This simulates the views for
the LB cases. Then, there are two cases.

PLAU [i] is corrupted: From the output, the simulator SLAU [i] takes N/2 ran-
dom values from Zm to obtain the simulation of the row of U4. Then, it computes
the row of R3 = HOM-MAT-SUB(U5, U4). Similarly, it take the row R′

1 at random,
and computes R1 = HOM-MAT-SUB(U1, R

′
1).

PLAL[i] is corrupted: SLAL[i] samples 3N/2 random values from Zm

to simulate the row of U2, R1 and R7. Next, it computes: R6 =
HOM-MAT-SUB(U2, R1), U3 = HOM-MAT-ADD(U2, R7), R4 = HOM-MAT-SUB(U3, U6),
R5 = HOM-MAT-SUB(U7, U3 and U4 = HOM-MAT-ADD(U2, R5).

We now prove that the simulated view is indistinguishable from the real one.
The proof relies on a sequence of hybrid games, where each transition is based
on indistinguishability.

H0: The first game represents the view of a real protocol execution in the
(FCopy, F BaseCase, F MP-SW

N/2)-hybrid model.

86 J.-G. Dumas et al.

H1: for each call to FCopy, we replace the output of the functionality
by random numbers, accordingly ciphered with the data layout. i.e.: ∀j ∈
{1..N}, ri

$← Zσ and {rj}KX [j] with X ∈ {AL, BU}. As only one player is
corrupted, and (LA,KA, LB ,KB) is a l-recursive data layout which verifies
(LXU

∪ KXU
) ∩ (LXL

∪ KXL
) = ∅,X ∈ {A,B}, then the player obtains ciphers

which it cannot decipher. Then, the IND-CPA security of the cryptosystem
ensures that H0 and H1 are indistinguishable.

H2: this game, we replace the output obtained from: F BaseCase if N ≤ T ; or
F MP-SW

N/2 otherwise; by the previously detailed simulation for the Ri, i ∈ {1..N}.
From the data layout, the corrupted player (PLAU [i] or PLAL[i]) in the real case
gets undecipherable values that cannot be guessed from the inputs of the adver-
sary (which knows one row of each matrix in the worst case) so that the simu-

lation is computationally indistinguishable. Then, H1
C≡ H ′

2.
H3: In this game, we replace the Ui of the real view with the simulated ones

Ui, i ∈ {2..4}. Each of the simulated values is directly computed from the output,
so that as long as the adversary is not able to distinguish ciphers, the simulation
is computationally indistinguishable from the real execution.

H3 represents the simulated view for N players. We have then proven that
MP-SW is secure against one semi-honest adversary in the (FCopy, F BaseCase,
F MP-SW

N/2)-model.
Second, we prove that if we assume a l-data layout between the players, the

MP-SW protocol is secure against one semi-honest adversary under a sequential
composition of the sub-protocols MP-MAT-COPY and BaseCase. By induction, we
suppose that the protocol MP-SW is secure with N/2 players, and we show that
the protocol MP-SW for N players.

Base Case: N ≤ T . In this case, MP-SW calls are replaced by calls to BaseCase.
By construction, the data layout is now 0-recursive. Then, the corrupted player
cannot act as more than one player in the execution, so that the security of the
protocol against one-semi honest is enough.

Induction: N > T . In this case, each call to the MP-SW protocol is assumed
secure from the induction hypothesis. Then, each of these calls can be sequen-
tially realized.

Then, since all sub-protocols calls can be realized sequentially, and since we
have proven that MP-SW is secure in the F BaseCase, FCopy, F MP-SW

N/2 -hybrid model, the
sequential composition theorem ensures that the protocol obtained by composi-
tion is also secure. Henceforth, by induction, we have proven that from F MP-SW

N/2 ,
we are able to construct a secure execution of MP-SW. In conclusion, the protocol
MP-SW is secure against one semi-honest adversary. �

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms (1974)

2. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

https://doi.org/10.1007/BFb0054122

Secure Multiparty Matrix Multiplication 87

3. Boyer, B., Dumas, J.-G.: Matrix multiplication over word-size modular rings using
approximateformulas. ACM Trans. Math. Softw. 42, 20 (2016)

4. Castagnos, G., Imbert, L., Laguillaumie, F.: Encryption switching protocols revis-
ited: switching modulo p. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 255–287. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 9

5. Cramer, R., Damg̊ard, I.B., Nielsen, J.B.: Secure Multiparty Computation and
Secret Sharing (2015)

6. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : efficient MPC
mod 2k for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96881-0 26

7. Dagdelen, Ö., Venturi, D.: A multi-party protocol for privacy-preserving cooper-
ative linear systems of equations. In: Ors, B., Preneel, B. (eds.) BalkanCryptSec
2014. LNCS, vol. 9024, pp. 161–172. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21356-9 11

8. Damg̊ard, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The tinytable protocol for
2-party secure computation, or: gate-scrambling revisited. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 167–187. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 6

9. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

10. Du, W., Zhan, Z.: A practical approach to solve secure multiparty computation
problems. In: NSPW 2002 (2002)

11. Dumas, J.-G., Giorgi, P., Pernet, C.: Dense linear algebra over word-size prime
fields: The FFLAS andFFPACK packages. ACM Trans. Math. Softw. 35, 19 (2008)

12. Dumas, J.-G., Hossayni, H.: Matrix powers algorithms for trust evaluation in
public-key infrastructures. In: Jøsang, A., Samarati, P., Petrocchi, M. (eds.) STM
2012. LNCS, vol. 7783, pp. 129–144. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38004-4 9

13. Dumas, J.-G., Lafourcade, P., Orfila, J.-B., Puys, M.: Dual protocols for private
multiparty matrix multiplication and trustcomputations. Comput. Secur. 71, 51–
70 (2017)

14. Gascón, A., et al.: Privacy-preserving distributed linear regression on high-
dimensional data. Proc. Priv. Enhancing Technol. 2017, 345–364 (2017)

15. Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On private scalar product
computation for privacy-preserving data mining. In: Park, C., Chee, S. (eds.) ICISC
2004. LNCS, vol. 3506, pp. 104–120. Springer, Heidelberg (2005). https://doi.org/
10.1007/11496618 9

16. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications (2004)
17. Ishai, Y., Mittal, M., Ostrovsky, R.: On the message complexity of secure mul-

tiparty computation. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol.
10769, pp. 698–711. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76578-5 24

18. Jarecki, S.: Efficient covert two-party computation. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018. LNCS, vol. 10769, pp. 644–674. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76578-5 22

19. Josang, A.: Probabilistic logic under uncertainty. In: 13th Computing: Australasian
Theory Symposium (CATS 2007) (2007)

20. Kaliski, B., Staddon, J.: RSA Cryptography Specifications. RFC 2437 (1998)

https://doi.org/10.1007/978-3-319-63688-7_9
https://doi.org/10.1007/978-3-319-63688-7_9
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-96881-0_26
https://doi.org/10.1007/978-3-319-21356-9_11
https://doi.org/10.1007/978-3-319-21356-9_11
https://doi.org/10.1007/978-3-319-63688-7_6
https://doi.org/10.1007/978-3-642-38004-4_9
https://doi.org/10.1007/978-3-642-38004-4_9
https://doi.org/10.1007/11496618_9
https://doi.org/10.1007/11496618_9
https://doi.org/10.1007/978-3-319-76578-5_24
https://doi.org/10.1007/978-3-319-76578-5_24
https://doi.org/10.1007/978-3-319-76578-5_22
https://doi.org/10.1007/978-3-319-76578-5_22

88 J.-G. Dumas et al.

21. Kaporin, I.: A practical algorithm for faster matrix multiplication. In: Numerical
Linear Algebra with Applications (1999)

22. Karstadt, E., Schwartz, O.: Matrix multiplication, a little faster. In: SPAA 2017
(2017)

23. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: ISSAC 2014
(2014)

24. Lindell, Y.: How to simulate it – a tutorial on the simulation proof technique. In:
Lindell, Y. (ed.) Tutorials on the Foundations of Cryptography. ISC, pp. 277–346.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57048-8 6

25. Mishra, P.K., Rathee, D., Duong, D.H., Yasuda, M.: Fast secure matrix multipli-
cations over ring-based homomorphic encryption. Cryptology ePrint, 2018/663

26. Naccache, D., Stern, J.: A new public key cryptosystem based on higher residues.
In CCS 1998 (1998)

27. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

28. Rindal, P., Rosulek, M.: Faster malicious 2-party secure computation with
online/offline dual execution. In: USENIX Security Symposium (2016)

29. Shamir, A.: How to share a secret. ACM Commun. 22, 612–613 (1979)
30. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik (1969)

https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/3-540-48910-X_16

An Anonymous Credential System with
Constant-Size Attribute Proofs for CNF

Formulas with Negations

Ryo Okishima and Toru Nakanishi(B)

Graduate School of Engineering, Hiroshima University,
Higashi-Hiroshima, Hiroshima, Japan

{m186746,t-nakanishi}@hiroshima-u.ac.jp

Abstract. To enhance the user’s privacy in electronic ID, anonymous
credential systems have been researched. In the anonymous credential
system, a trusted issuing organization first issues a certificate certify-
ing the user’s attributes to a user. Then, in addition to the possession
of the certificate, the user can anonymously prove only the necessary
attributes. Previously, an anonymous credential system was proposed,
where CNF (Conjunctive Normal Form) formulas on attributes can be
proved. The advantage is that the attribute proof in the authentication
has the constant size for the number of attributes that the user owns and
the size of the proved formula. Thus, various expressive logical relations
on attributes can be efficiently verified. However, the previous system
has a limitation: the proved CNF formulas cannot include any negation.
Therefore, in this paper, we propose an anonymous credential system
with constant-size attribute proofs such that the user can prove CNF
formulas with negations. For the proposed system, we extend the previ-
ous accumulator for the limited CNF formulas to verify CNF formulas
with negations.

Keywords: Anonymous credentials · Accumulator · Pairing ·
Attributes

1 Introduction

1.1 Backgrounds

Electronic identity (eID) such as eID card is often used for physical user authen-
tication for entering buildings, use of facilities and so on, and furthermore it can
be used for network-based user authentication in Web services. In eID, in addi-
tion to the user’s ID, the user’s attributes such as gender, occupation, and birth
date are authorized, and thus the attribute-based authentication using the eID
can be performed. However, one of serious problem in the existing eID system
is the user’s privacy: Since the eID may reveal the user’s unique ID, the verifier

c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 89–106, 2019.
https://doi.org/10.1007/978-3-030-26834-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_6

90 R. Okishima and T. Nakanishi

can collect the user’s history. As the solution, the anonymous credential system
was proposed [9].

In the anonymous credential system, an issuer issues each user a certificate.
The certificate is a proof of membership, qualification, or privilege, and ensures
the user’s own attributes. The user with the certificate can anonymously convince
a service provider (SP) of the possession of the certificate. Additionally, the user
can prove the possession of attributes, and furthermore a logical relation on
the attributes. By the AND relation, the user can prove the possession of all
attributes in the relation. By the OR relation, the user can prove the possession
of one attribute from the attributes in the relation. As the advantage of the
anonymous credential system with attribute proofs, it does not leak any other
information beyond the satisfaction of the proved relation.

1.2 Previous Works

In [7,11,14], anonymous credential systems with attribute proofs have been pro-
posed, where the proof size is constant for the number of user’s attributes and
the size of proved logical relation. However, available relations are only AND
or OR relations on attributes. In [12], an anonymous credential system with
attribute proofs of constant size has been proposed, where inner product rela-
tions on attributes can be proved. This means that CNF (Conjunctive Normal
Form) and DNF (Disjunctive Normal Form) formulas are available by using
polynomial-based encoding. However, this system has a problem of the com-
putational cost: The proof generation requires the exponentiations depending
on the number of OR literals in the proved formula. Thus, when the formula
contains lots of OR literals, it requires large time on users’ devices such as eID
cards.

In the backgrounds, in [4], an efficient anonymous credential system with
constant-size attribute proofs was proposed, where the user can prove CNF for-
mulas on attributes. In this system, by newly constructing an efficient accumu-
lator to verify CNF formulas and applying it to the system, the proof generation
requires only the multiplications depending on the number of OR literals in the
proved formula, and thus it is more efficient than [12]. However, this system has
the problem that a user cannot directly prove any CNF relation with negations.

1.3 Our Contributions

In this paper, we construct an accumulator to verify CNF formulas with nega-
tions, and we apply it to the previous system [4] with the constant-size attribute
proofs. In the proposed system, a user can prove any CNF formula with nega-
tions, where the proof generation cost is similar to the previous, i.e., the proof
generation needs only multiplications depending on the number of OR literals.

In the previous accumulator [4] for the limited CNF formula without nega-
tions, the set relation U ∩V� �= ∅ can be verified for the user’s attribute set U and
the attribute set V� in the �-th OR clause in the CNF formula, which implies that

An Anonymous Credential System with Constant-Size Attribute Proofs 91

the user owns some attribute in each OR clause. In this paper, we consider non-
limited CNF formulas of

∧
i

∨
j ăij , where ăij is a literal that is a non-negated

attribute aij (the user owns the attribute) or a negated attribute aij (the user
does not own the attribute). Any logical formula can be transformed to a CNF
formula. In the proposed accumulator, in addition to U ∩ V +

� �= ∅ for the non-
negated attribute set V +

� in the �-th OR clause, the relation U ∩ V −
� �= V −

� can
be verified for the negated attribute set V −

� in the �-th OR clause. These means
that the user owns some non-negated attribute or does not own some negated
attribute, which implies the satisfaction of the CNF formula with negations.

1.4 Related Works

In [13], as the extension of [4], an anonymous credential system with the constant-
size attribute proofs was proposed. The advantage is that a user can prove any
monotone formula on attributes. However, in the system, negations are not avail-
able. Our idea is to support negations based on the previous accumulator [4] for
the limited CNF formulas, and it does not work well in the accumulator of [13]
for monotone formulas.

2 Preliminaries

2.1 Bilinear Maps

In this paper, we use the following bilinear groups with a bilinear map.

1. G1,G2, T are cyclic groups of prime order p.
2. g1, g2 are randomly chosen generators of G1,G2, respectively.
3. e : G1 × G2 → T is an efficiently calculated bilinear map satisfying

(a) Bilinearity: for all u ∈ G1, v ∈ G2, a, b ∈ Z, e(ua, vb) = e(u, v)ab.
(b) Non-degeneracy: e(g1, g2) �= 1T (1T is the identity element of group

T).

The bilinear map e can be efficiently implemented with a pairing. There are two
types of bilinear pairings, symmetric (G1 = G2) and asymmetric (G1 �= G2). In
the following descriptions, for simplicity, we adopt the symmetric one, i.e., e is
defined as G × G → T .

2.2 Assumptions

As in the previous system [4], the security of our system is based on the
DLIN (Decision Linear) assumption, the q-SFP (Simultaneous Flexible Pair-
ing) assumption, and n-DHE (DH Exponent) assumption. Hereafter, we use the
notation a ∈R A as sampling a from the set A according to the uniform distri-
bution.

92 R. Okishima and T. Nakanishi

Definition 1 (DLIN assumption). For all PPT algorithm A,

|Pr[A(g, ga, gb, gac, gbd, gc+d) = 1] − Pr[A(g, ga, gb, gac, gbd, gz) = 1]|
is negligible, where g ∈R G and a, b, c, d, z ∈R Zp.

Definition 2 (q-SFP assumption). For all PPT algorithm A, the probability

Pr[A(gz, hz, gr, hr, a, ã, b, b̃, {(zj , rj , sj , tj , uj , vj , wj)}q
j=1)

= (z∗, r∗, s∗, t∗, u∗, v∗, w∗) ∈ G7

∧e(a, ã) = e(gz, z
∗)e(gr, r

∗)e(s∗, t∗)
∧e(b, b̃) = e(hz, z

∗)e(hr, u
∗)e(v∗, w∗)

∧z∗ �= 1G ∧ z∗ �= zj for all 1 ≤ j ≤ q]

is negligible, where (gz, hz, gr, hr, a, ã, b, b̃) ∈ G8 and all tuples {(zj , rj , sj , tj , uj ,
vj , wj)}q

j=1 satisfy

e(a, ã) = e(gz, zj)e(gr, rj)e(sj , tj) ∧ e(b, b̃) = e(hz, zj)e(hr, uj)e(vj , wj),

and 1G is the identity element of group G.
Definition 3 (n-DHE assumption). For all PPT algorithm A, the probability

Pr[A(g, ga, . . . , gan

, gan+2
, . . . , ga2n

) = gan+1
]

is negligible, where g ∈R G and a ∈R Zp.

2.3 AHO (Abe-Haralambiev-Ohkubo) Signatures

As in the previous system [4], we adopt AHO signatures [2] as the structure-
preserving signatures, where multiple messages can be signed, and the verifi-
cation using pairings can be proved by the following GS proofs. In this paper,
we use it for a single message. As proved in [2], this signature is existentially
unforgeable against the chosen message attacks under the q-SFP assumption.

AHOKeyGen: Select bilinear groups G, T with a prime order p and bilinear
map e. Select g,Gr,Hr ∈R G, and μz, νz, μ, ν, αa, αb ∈R Zp. Compute Gz =
Gμz

r ,Hz = Hνz
r , G = Gμ

r ,H = Hν
r , A = e(Gr, g

αa), B = e(Hr, g
αb). Output

the public key as pk = (G, T , p, e, g,Gr,Hr, Gz,Hz, G,H,A,B) and the secret
key as sk = (αa, αb, μz, νz, μ, ν).

AHOSign: The message M given as element of G is signed with the secret key
sk. Choose β, ε, η, ι, κ ∈R Zp, and compute θ1 = gβ and

θ2 = gε−μzβM−μ, θ3 = Gη
r , θ4 = g(αa−ε)/η,

θ5 = gι−νzβM−ν , θ6 = Hκ
r , θ7 = g(αb−ι)/κ.

Output the signature σ = (θ1, . . . , θ7).
AHOVerify: Given the message M and the signature σ = (θ1, . . . , θ7), accept

these if the following equations hold:

A = e(Gz, θ1) · e(Gr, θ2) · e(θ3, θ4) · e(G,M),
B = e(Hz, θ1) · e(Hr, θ5) · e(θ6, θ7) · e(H,M).

An Anonymous Credential System with Constant-Size Attribute Proofs 93

2.4 GS (Groth-Sahai) Proofs

GS proofs [10] are Non-Interactive Witness Indistinguishable (NIWI) proofs
for pairing relations. GS proofs need a CRS (Common Reference String)
(f1,f2,f3) ∈ (G3)3, where f1 = (f1, 1, g),f2 = (1, f2, g) for f1, f2 ∈ G. Two
types of CRS are used. In the soundness setting, set f3 = f1

ξ1 ·f2
ξ2 for ξ1, ξ2 ∈R

Z∗
p . Compute the commitment to element X as C = (1, 1,X) ·f1

r ·f2
s ·f3

t for
r, s, t ∈R Z∗

p . In this case, the commitment C = (fr+ξ1t
1 , fs+ξ2t

2 ,Xgr+s+t(ξ1+ξ2))
is a linear encryption [3]. Therefore, X can be extracted using the secret keys,
logg f1, logg f2. On the other hand, in the Witness Indistinguishable (WI) setting,
f1,f2,f3 are linearly independent, and thus C is perfectly hiding. Under the
DLIN assumption, the two types of CRS are computationally indistinguishable.

In order to prove that committed values satisfy the pairing relation, the
prover prepares the commitments and replaces variables in the relation with the
commitments. By GS proof, we can prove the following pairing product equation.

n∏

i=1

e(Ai, Xi) ·
n∏

i=1

n∏

j=1

e(Xi, Xj)
aij = t

for variables X1, . . . , Xn ∈ G and constants A1, . . . , An ∈ G, aij ∈ Zp, t ∈ T .

2.5 Set Membership Proof

As in the previous system [4], the set membership proof [6] is used to prove that
an element is included in a set of elements, which is constructed from signatures,
as follows. An issuer signs all elements of set A and publishes the signatures. To
prove that an element a is included in set A, a prover proves the knowledge of
a signature on a. Since the issuer does not publish the signatures on elements
that are not included in A, a ∈ A is guaranteed.

3 Accumulator to Verify CNF Formulas with Negations

3.1 Previous Accumulator and Problem

In [8], an efficient pairing-based accumulator using multiplications has been pro-
posed. An accumulator is generated from a set of values, and we can confirm
that a single value is included in the set. In the previous work [4], an extended
accumulator has been proposed, where we can verify that U ∩ V� �= ∅ (1 ≤ � ≤ L)
for sets U and V1, . . . , VL. This verification is applied to the construction of the
previous anonymous credential system [4] to verify CNF formulas on attributes.
Let V1, . . . , VL be subsets of {1, · · · , n}, and V = (V∞, . . . ,VL). Let U be a sub-
set of {1, · · · , n} that satisfies U ∩ V� �= ∅ (1 ≤ � ≤ L). In the attribute proof,
U corresponds to the attribute set of an user. Each V� corresponds to the �-th
OR clause in the proved CNF formula. In the accumulator of [4], we can verify

94 R. Okishima and T. Nakanishi

that U ∩ V� �= ∅ for 1 ≤ � ≤ L. This implies that some attribute of the user
is included in all OR clauses, and so it can be verified that this user holds the
attributes satisfying the CNF formula.

In the accumulator and the attribute proof using it in [4], we can not directly
prove any CNF formula including a negation. To solve this problem, we can con-
sider the following simple method without negations: Attributes can be divided
into attribute types such as gender, age, and occupation. Then, to prove the
non-possession of attribute a in an attribute type can be performed by proving
the possession of one of other attributes in the type. However, this is undesir-
able for two reasons. One is to assign all attributes of the same type to the CNF
formula as an OR clause, which increases the overhead of the proof. Secondly,
any user must recognize all other attributes, but a user may be not aware of a
newly added attribute to a attribute type. Therefore, we need an accumulator
to directly verify CNF formulas with negations.

3.2 Construction Idea

In this paper, based on the previous accumulator [4], we extend it to verify the
CNF formulas with negations. The accumulator accV of the previous scheme is
computed as accV =

∏
1≤�≤L

(∏
j∈V�

gn+1−j

)c�

for gi = gγi

(γ is secret) and
some integers c�. On the other hand, in the proposed scheme, for a negated
attribute j ∈ V�, g−c�

n+1−j is multiplied, instead of gc�
n+1−j . In the previous one,

the verification is successful if |U ∩V�| ≥ 1 for the attribute set U of the user and
the attribute set V� of the �-th clause of the CNF formula. In the verification,
for some witness W ,

e(
∏

i∈U gi, accV)
e(g,W)

= zδ1c1+...+δLcL , and δ� ≥ 1 for all 1 ≤ � ≤ L

are checked. In the verification, δ� = |U ∩ V�| holds. Thus, when U satisfies the
CNF formula, which means |U ∩ V�| ≥ 1, then the above δ� ≥ 1 holds for all
�. In this previous scheme, c� is |U ∩ V�| times added in the exponent of z for
each � in the left side of the verification equation. In the proposed scheme, each
V� is partitioned to the non-negated attribute set V +

� and the negated attribute
set V −

� . For the attributes of V +
� c� is added as in the previous scheme, but

for the negated attributes of V −
� , c� is subtracted. Then, in the verification, the

coefficient of c� in the exponent of z on the left side is |U ∩ V +
� | − |U ∩ V −

� |
for each �, and by checking δ� ≥ 1 − |V −

� |, we can verify |U ∩ V +
� | ≥ 1 or

|U ∩ V −
� | �= |V −

� |. This means U ∩ V +
� �= ∅ or U ∩ V −

� �= V −
� (for the detail,

see the proof of Theorem 1). Thus, in each OR clause, it means that the user
owns a non-negated attribute or does not own a negated attribute, and thus the
CNF formula is satisfied. In the proposed scheme, since we only modify c� in the
exponent to −c� for each negated attribute, it is expected that the processing
time will remain.

An Anonymous Credential System with Constant-Size Attribute Proofs 95

3.3 Proposed Algorithms

AccSetup: This algorithm outputs public parameters. Set η� as the maximum
value of |V +

� ∪ V −
� | for all 1 ≤ � ≤ L. Let c1 = 1, c� = (η�−1 + 1) · c�−1 (2 ≤

� ≤ L), C = (c1, . . . , cL). Here, it is assumed that (ηL + 1) · cL < p, as in
the previous accumulator [4]. Select bilinear groups G, T with prime order
p and the bilinear map e. Select g ∈R G. Choose γ ∈R Zp. Compute and
output the public parameters (C, p,G, T , e, g, g1 = gγ1

, . . . , gn = gγn

, gn+2 =
gγn+2

, . . . , g2n = gγ2n

, z = e(g, g)γn+1
).

AccGen: This algorithm, given the public parameters and V =
(V +

1 , V −
1 , . . . , V +

L , V −
L), outputs an accumulator for V. Here, V +

� ⊆ {1, . . . , n}
is the set of non-negated attributes in the �-th OR clause, and V −

� ⊆
{1, . . . , n} is the set of negated attributes. Accumulator accV is calculated
as follows.

accV =
∏

1≤�≤L

⎛

⎝
∏

j∈V +
�

gn+1−j

⎞

⎠

c�
⎛

⎝
∏

j∈V −
�

gn+1−j

⎞

⎠

−c�

AccWitGen: This algorithm, given the public parameters, V, and U ⊆
{1, . . . , n}, outputs the witness W . W is calculated as follows.

W =
∏

i∈U

∏

1≤�≤L

⎛

⎝
j �=i∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�
⎛

⎝
j �=i∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

Furthermore, δ� = |U ∩ V +
� | − |U ∩ V −

� | for all 1 ≤ � ≤ L are calculated and
outputted as auxiliary parameters.

AccVerify: This algorithm, given the public parameters, V, accV , U,W,
{δ�}1≤�≤L, verifies U ∩ V +

� �= ∅ or U ∩ V −
� �= V −

� for all 1 ≤ � ≤ L. Set
u = δ1c1 + . . . + δLcL. Accept if the following relations hold.

e(
∏

i∈U gi, accV)
e(g,W)

= zu, and 1 ≤ δ� + |V −
� | ≤ η� for all 1 ≤ � ≤ L.

In this case, since 1−|V −
� | ≤ δ�, this verification means the check of 1−|V −

� | ≤
|U ∩ V +

� | − |U ∩ V −
� |, which implies |U ∩ V +

� | − |U ∩ V −
� | �= −|V −

� |, and thus
U ∩ V +

� �= ∅ or U ∩ V −
� �= V −

� .

3.4 Security

At first, we show the correctness of the proposed accumulator.

Theorem 1. Suppose that all parameters of AccSetup, AccGen, and Acc
WitGen are calculated correctly. Then, AccVerify accepts V, accV , U, W,

{δ�}1≤�≤L that those algorithms output, if U ∩ V +
� �= ∅ or U ∩ V −

� �= V −
� for

all 1 ≤ � ≤ L.

96 R. Okishima and T. Nakanishi

Proof. Assume all parameters of AccSetup, AccGen, and AccWitGen are
calculated correctly. Then, the left hand of the verification equation in AccVer-
ify is transformed as follows.

e(
∏

i∈U gi, accV)
e(g,W)

=

e(
∏

i∈U

gi,
∏

1≤�≤L

⎛

⎝
∏

j∈V +
�

gn+1−j

⎞

⎠

c�
⎛

⎝
∏

j∈V −
�

gn+1−j

⎞

⎠

−c�

)

e(g,
∏

i∈U

∏

1≤�≤L

⎛

⎝
j �=i∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�
⎛

⎝
j �=i∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

)

=

e(g,
∏

i∈U

∏

1≤�≤L

⎛

⎝
∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�
⎛

⎝
∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

)

e(g,
∏

i∈U

∏

1≤�≤L

⎛

⎝
j �=i∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�
⎛

⎝
j �=i∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

)

= e(g,
∏

i∈U

∏

1≤�≤L

⎛

⎝
j=i∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�
⎛

⎝
j=i∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

)

Set δ� = |U ∩ V +
� | − |U ∩ V −

� | for all 1 ≤ � ≤ L, and u = δ1c1 + . . . + δLcL.
Then, the above expression is equal to the right side of the verification equation
as follows.

e

⎛

⎝g,
∏

1≤�≤L

gδ�c�
n+1

⎞

⎠ = e(g, gn+1)u = zu

Here, for |U ∩ V +
� |, the possible range is 0 ≤ |U ∩ V +

� | ≤ |V +
� |, and for

|U ∩ V −
� |, it is 0 ≤ |U ∩ V −

� | ≤ |V −
� |, and thus

−|V −
� | ≤ |U ∩ V +

� | − |U ∩ V −
� | ≤ |V +

� |.

On the other hand, we have U ∩ V +
� �= ∅ or U ∩ V −

� �= V −
� for all 1 ≤ � ≤ L

as the condition in this theorem. In case that the condition of the theorem
does not hold, for some �, |U ∩ V +

� | = 0 and |U ∩ V −
� | = |V −

� |, which means
|U ∩ V +

� | − |U ∩ V −
� | = −|V −

� |. Therefore, in case that the condition in this
theorem holds, we obtain

1 − |V −
� | ≤ |U ∩ V +

� | − |U ∩ V −
� | ≤ |V +

� |,

for all 1 ≤ � ≤ L. From δ� = |U ∩ V +
� |−|U ∩ V −

� |, we have 1−|V −
� | ≤ δ� ≤ |V +

� |,
and thus

1 ≤ δ� + |V −
� | ≤ |V +

� | + |V −
� | ≤ η�,

An Anonymous Credential System with Constant-Size Attribute Proofs 97

for all 1 ≤ � ≤ L. Therefore, AccVerify accepts these parameters. �
Furthermore, as in the journal version [5] of the previous work [4], using

the following lemma (the proof is in [5]), we show the security of the proposed
accumulator in Theorem 2.

Lemma 1. For any �̃ s.t. 2 ≤ �̃ ≤ L, it holds c�̃ >
∑

1≤�≤�̃−1 η� · c�.

Theorem 2. Under n-DHE assumption, given the public parameters, any
adversary cannot output U,V = {V +

� , V −
� }1≤�≤L,W, {δ�}1≤�≤L which satisfy the

following with a non-negligible probability.

– For accV correctly computed from V, AccVerify accepts
V, accV , U,W, {δ�}1≤�≤L.

– There exists some � s.t. U ∩ V +
� = ∅ and U ∩ V −

� = V −
� .

Proof. Assume an adversary that outputs U,V = {V +
� , V −

� }1≤�≤L,W, {δ�}1≤�≤L

s.t. AccVerify accepts them and U ∩ V +
� = ∅ and U ∩ V −

� = V −
� for some �

with a non-negligible probability. Since AccVerify accepts them, we have

e(
∏

i∈U gi, accV)
e(g,W)

= zu = e(g, gn+1)u,

for u = δ1c1 + . . . + δLcL. From the correctly computed

accV =
∏

1≤�≤L

⎛

⎝
∏

j∈V +
�

gn+1−j

⎞

⎠

c�
⎛

⎝
∏

j∈V −
�

gn+1−j

⎞

⎠

−c�

,

we have

e(
∏

i∈U gi,
∏

1≤�≤L

(∏
j∈V +

�
gn+1−j

)c�
(∏

j∈V −
�

gn+1−j

)−c�

)

e(g,W)
= e(g, gn+1)u

e(g,
∏

i∈U

∏

1≤�≤L

⎛

⎝
∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�
⎛

⎝
∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

) = e(g,Wgn+1
u)

Thus, we obtain the followings.

∏

i∈U

∏

1≤�≤L

⎛

⎝
∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�
⎛

⎝
∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

= Wgn+1
u

∏

1≤�≤L

∏

i∈U

⎛

⎝
j �=i∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�

·
∏

1≤�≤L

gn+1
|U∩V +

� |c�

·
∏

1≤�≤L

∏

i∈U

⎛

⎝
j �=i∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

·
∏

1≤�≤L

gn+1
−|U∩V −

� |c�

= Wgn+1
u

98 R. Okishima and T. Nakanishi

By setting λ� = |U ∩ V +
� | − |U ∩ V −

� | + |V −
� |,

∏

1≤�≤L

∏

i∈U

⎛

⎝
j �=i∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�

·
∏

1≤�≤L

∏

i∈U

⎛

⎝
j �=i∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

= Wgn+1
u−

∑
1≤�≤L(λ�−|V −

� |)c� (1)

Define Δ = u −
∑

1≤�≤L(λ� − |V −
� |)c�. Then, we have

Δ =
∑

1≤�≤L

δ�c� −
∑

1≤�≤L

(λ� − |V −
� |)c�

=
∑

1≤�≤L

(δ� − λ� + |V −
� |)c�.

Here, divide {1, . . . , L} into L>, L<, and L=, where L> consists of � s.t. δ� −
λ� + |V −

� | > 0, L< consists of � s.t. δ� − λ� + |V −
� | < 0, and L= consists of � s.t.

δ� − λ� + |V −
� | = 0.

Using L>, L<, and L=, the following equation can be obtained.

Δ =
∑

�∈L>

(δ� − λ� + |V −
� |)c� +

∑

�∈L<

(δ� − λ� + |V −
� |)c�

Let �̃ be the maximum value of � s.t. � /∈ L= (i.e., �̃ ∈ L> or �̃ ∈ L<). From
AccVerify = 1, it holds δ�+|V −

� | ≥ 1 for all �. On the other hand, since for some
�, U ∩V +

� = ∅ and U ∩V −
� = V −

� , we have λ� = |U ∩V +
� | − |U ∩V −

� |+ |V −
� | = 0

for the �. This implies that δ� −λ� + |V −
� | �= 0 for the �. Therefore, � /∈ L= exists.

Next, we will prove Δ �= 0 (mod p) for two cases (i) and (ii).

(i) Case of �̃ ∈ L< (δ�̃ − λ�̃ + |V −
�̃

| < 0):
In this case, (δ�̃ − λ�̃ + |V −

�̃
|)c�̃ ≤ −c�̃, which implies

Δ ≤ −c�̃ +
∑

�∈L>

(δ� − λ� + |V −
� |)c� +

∑

�∈L<,� �=�̃

(δ� − λ� + |V −
� |)c�.

For � ∈ L>, since λ� ≥ 0 and δ� + |V −
� | ≤ η�, we have δ� − λ� + |V −

� | ≤ η�.
For � ∈ L<, we have δ� − λ� + |V −

� | < 0. Therefore,

Δ < −c�̃ +
∑

�∈L>

η�c�.

From Lemma 1, we obtain Δ < 0 due to c�̃ >
∑

�∈(L>∪L<) η�c�.
On the other hand, from δ�+|V −

� | > 0 and λ� = |U ∩V +
� |−|U ∩V −

� |+|V −
� | ≤

|V +
� ∪ V −

� | ≤ η�,

Δ =
∑

1≤�≤L

(δ� + |V −
� |)c� −

∑

1≤�≤L

λ�c� > −
∑

1≤�≤L

η�c�

An Anonymous Credential System with Constant-Size Attribute Proofs 99

From Lemma 1, we obtain
∑

1≤�≤L−1 η�c� < cL, and thus
∑

1≤�≤L

η�c� < cL + ηLcL = (ηL + 1)cL < p.

This is why Δ > −p. Therefore, in this case, Δ �= 0 (mod p).
(ii) Case of �̃ ∈ L> (δ�̃ − λ�̃ + |V −

�̃
| > 0):

In this case, (δ�̃ − λ�̃ + |V −
� |)c�̃ ≥ c�̃, which means

Δ ≥ c�̃ +
∑

�∈L>,� �=�̃

(δ� − λ� + |V −
� |)c� +

∑

�∈L<

(δ� − λ� + |V −
� |)c�

From δ� − λ� + |V −
� | > 0 for any � ∈ L>, we have

Δ > c�̃ +
∑

�∈L<

(δ� − λ� + |V −
� |)c�.

Here, from λ� ≤ η� and δ� + |V −
� | ≥ 0, we have λ� − δ� − |V −

� | ≤ η�. Thus,
from �̃ > � for any � ∈ L< and Lemma 1, we obtain

c�̃ >
∑

�∈L<

η�c� ≥
∑

�∈L<

(λ� − δ� − |V −
� |)c�

Therefore,
c�̃ +

∑

�∈L<

(δ� − λ� + |V −
� |)c� > 0.

Namely, we can get Δ > 0.
On the other hand, from λ� ≥ 0, δ� + |V −

� | ≤ η�, and Lemma 1,

Δ =
∑

1≤�≤L

(δ� + |V −
� |)c� −

∑

1≤�≤L

λ�c�

≤
∑

1≤�≤L

(δ� + |V −
� |)c� ≤

∑

1≤�≤L

η�c� =
∑

1≤�≤L−1

η�c� + ηLcL ≤ cL + ηLcL.

Thus, Δ ≤ (ηL + 1)cL < p. Therefore, it also holds Δ �= 0 (mod p) in this
case.

Therefore, since Δ �= 0 (mod p) in both cases, from Eq. (1), we obtain

gn+1 =

⎛

⎝W−1 ·
∏

1≤�≤L

∏

i∈U

⎛

⎝
j �=i∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�

·
∏

1≤�≤L

∏

i∈U

⎛

⎝
j �=i∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�
⎞

⎠

1/Δ

.

For any i ∈ U , any j ∈ V +
� and j ∈ V −

� s.t. j �= i, it holds gn+1−j+i �=
gn+1. Therefore, we can calculate gn+1, given g1, . . . , gn, gn+2, . . . , g2n, which
contradicts the n-DHE assumption. �

100 R. Okishima and T. Nakanishi

4 Syntax and Security Model of Anonymous Credential
System

We adopt the syntax and security model of anonymous credential system with
attribute proofs in the previous work [4]. It is the non-interactive anonymous
credential system, where the user creates the attribute proof from his own cer-
tificate issued from an issuer, and the verifier can confirm the proof by himself.
Since this concept is similar to the group signature scheme, the security model
is derived from the group signature scheme, but concentrates on the security
of attribute proofs. This is why the model considers the following two security
requirements: misauthentication resistance and the anonymity.

4.1 Syntax

As in [4], each attribute values is indexed by an integer from {1, . . . , n} where
n is the total number of attribute values. Use the indexes to describe a CNF
formula Ψ (including negations) on attribute, as follows.

(ă11 ∨ ă12 ∨ . . .) ∧ (ă21 ∨ ă22 ∨ . . .) ∧ · · · ,

where each literal ăij is (non-negated) attribute index aij ∈ {1, . . . , n} or its
negation ¬aij . The literal aij means that the user owns the attribute of the index,
and the literal ¬aij means that the user does not own the attribute of the index.
Let V +

� be the set of non-negated attribute indexes in the �-th clause in CNF
formula Ψ (i.e, V +

� = {a�j |ă�j = a�j}). Let V −
� be the set of negated attribute

indexes in the �-th clause in CNF formula Ψ (i.e, V −
� = {a�j |ă�j = ¬a�j}).

Let U be a set of attribute indexes that the proving user owns. We assume
that the upper bound of each clause size, i.e., |V +

� ∪ V −
� |, is η� for all 1 ≤ � ≤ L.

Also, we assume that the maximum number of clauses of CNF formulas is L.
Then, the satisfaction of the CNF formula Ψ with (V +

1 , V −
1 , . . . , V +

� , V −
�) by

U is shown by U ∩ V +
� �= ∅ or U ∩ V −

� �= V −
� for all 1 ≤ � ≤ L.

The anonymous credential system consists of the following algorithms and pro-
tocol.

IssuerKeyGen: This algorithm, given n,L, {η�}1≤�≤L, outputs the issuer’s pub-
lic key ipk and the issuer’s secret key isk.

CertObtain: This is an interactive protocol between algorithm CertObtain-
Uk of the k-th user and algorithm CertObtain-I of the issuer, where the
issuer issues a certificate certifying the attributes to the user. CertObtain-
Uk’s inputs are ipk and Uk ⊂ {1, . . . , n} which are the user’s attribute indexes,
and its output is certificate certk that guarantees the attributes of the user.
On the other hand, CertObtain-I is given ipk, isk and Uk as inputs.

ProofGen: This algorithm for the k-th user, given ipk, Uk, certk, Ψ that is a
proved CNF formula on attributes, outputs the attribute proof σ.

Verify: This algorithm for verification, given ipk, proof σ generated on Uk of
the k-th user, and the proved CNF formula Ψ , outputs ‘valid’ if the attributes
Uk satisfy Ψ (i.e., Uk ∩ V +

� �= ∅ or Uk ∩ V −
� �= V −

� for all 1 ≤ � ≤ L), and
otherwise ‘invalid’.

An Anonymous Credential System with Constant-Size Attribute Proofs 101

4.2 Security Model

The security model in [4] consists of misauthentication resistance and anonymity.
The misauthentication resistance means the soundness of attribute proofs, i.e.,
any adversary A cannot forge an attribute proof for a CNF formula, where
the formula is not satisfied by the attributes of any user who is corrupted by
the adversary. The anonymity means the anonymity and unlinkability of proofs,
which are similar to those of group signatures. Due to the page limitation, we
omit the formal definitions (See [4]).

5 An Anonymous Credential System with Constant-Size
Attribute Proofs for CNF Formulas with Negations

We extend the anonymous credential system [4] for limited CNF formulas with-
out negations such that the user can prove any CNF formula with negations. In
the previous system, in IssuerKeyGen, an issuer publishes the signatures on
valid u’s in the accumulator verification, which is based on the concept of the set
membership proof. In CertObtain, to the user, the issuer issues a membership
certificate which is the AHO signature on Pk =

∏
i∈Uk

gi for the attribute set
Uk of the user. In ProofGen and Verify, the user proves the verification of the
AHO signature on Pk, and the equation of the accumulator verification by GS
proofs. In addition, to show the range of each δ� in u = δ1c1 + . . . + δLcL in the
accumulator verification, the user proves the verification of the AHO signature
on u.

In our extension, IssuerKeyGen and CertObtain are the almost same as
the previous system, where AHO signatures are published for the valid range
of u′ = (δ1 + |V −

1 |)c1 + . . . + (δL + |V −
L |)cL. In ProofGen and Verify, the

used accumulator is modified to our newly constructed accumulator in Sect. 3
for CNF formulas with negations. The user proves the verification equation of
the accumulator, and the verification of the AHO signature on u′ which means
1 ≤ δ� + |V −

� | ≤ η� for each �. Thus, due to the accumulator, it is ensured that
U ∩ V +

� �= ∅ or U ∩ V −
� �= V −

� for all 1 ≤ � ≤ L.

5.1 Construction

The algorithms and protocol of the proposed system is as follows.

IssuerKeyGen: Given n that is the total number of attribute values, L that
is the maximum value of clauses of proved CNF formulas, and η� that is the
upper bound of |V +

� ∪ V −
� |. This algorithm executes AccSetup to generate the

public parameters of the proposed accumulator, and generates the key pair of
AHO signatures, CRS for GS NIWI proofs, and AHO signatures for the set
membership proof.

(i) Select prime order p, bilinear group G, T and bilinear map e. Choose g ∈R G.

102 R. Okishima and T. Nakanishi

(ii) Generate public parameters of the proposed accumulator for CNF formulas
with negations: Calculate c1 = 1, c� = (η�−1 + 1) · c�−1 for 2 ≤ � ≤ L, and
set C = (c1, . . . , cL). Choose γ ∈R Zp and calculate

pkacc = (C, g1 = gγ1
, . . . , gn = gγn

, gn+2 = gγn+2
, . . . , g2n = gγ2n

, z = (g, g)γn+1
).

(iii) For AHO signatures, generate the following two key pairs for d = 0, 1.

pk
(d)
AHO = (G(d)

r ,H(d)
r , G(d)

z ,H(d)
z , G(d),H(d), A(d), B(d)),

sk
(d)
AHO = (α(d)

a , α
(d)
b , μ(d)

z , ν(d)
z , μ(d), ν(d)).

(iv) Generate CRS f = (f1,f2,f3) for GS NIWI proof:

f1 = (f1, 1, g), f2 = (1, f2, g), f3 = f1
ξ1 · f2

ξ2 ,

where f1, f2 ∈R G, ξ1, ξ2 ∈R Z∗
p .

(v) Define set Φ = {u′ =
∑L

�=1 δ′
�c�|1 ≤ δ′

� ≤ η�}. Then, |Φ| =
∏

1≤�≤L η�.

For all u′ ∈ Φ, we generate an AHO signature on gu′
1 using sk

(0)
AHO. The

signature is denoted as σ̃u′ = (θ̃u′1, . . . , θ̃u′7).
(vi) As the public key and secret key of the issuer, output

ipk = (p,G, T , e, g, pk
(0)
AHO, pk

(1)
AHO, pkacc,f , {σ̃u′}u′∈Φ),

isk = (sk(0)
AHO, sk

(1)
AHO).

CertObtain: This is the protocol between CertObtain-Uk (the k-th user) and
CertObtain-I (issuer). The input of CertObtain-Uk consists of ipk and the
set Uk of the user’s attribute indexes. The inputs of CertObtain-I are ipk, isk,
and Uk. In this protocol, the issuer issues the user the certificate certk. Here, it
is assumed that a special attribute value aSP is introduced and all users owns
aSP .

(i) CertObtain-I: Generate Pk =
∏

i∈Uk
gi.

(ii) CertObtain-I: Use sk
(1)
AHO to generate the AHO signature σk =

(θ1, . . . , θ7) on Pk, where σk is sent to CertObtain-Uk as the certificate.
(iii) CertObtain-Uk: Compute Pk =

∏
i∈Uk

gi, and verify the AHO signature
σk on Pk. Then, output certk = (Pk, σk).

ProofGen: Given ipk, Uk, certk and CNF formula Ψ = (ă11 ∨ ă12 ∨ . . .)∧ (ă21 ∨
ă22∨ . . .)∧· · · (ăL′1∨ ăL′2∨ . . .), where each literal ăij is (non-negated) attribute
index aij ∈ {1, . . . , n} or its negation ¬aij . Let V +

� be the set of non-negated
attributes in the �-th OR clause, and let V −

� be the set of negated attributes.
If L

′
< L, define V +

L′+1
= . . . = V +

L = {aSP } and V −
L′+1

= . . . = V −
L = ∅.

This algorithm generates GS proofs to prove that Pk satisfies the accumulator
verification for accV corresponding to Ψ and that Pk is signed by the issuer
using AHO signatures. In addition, the AHO signature on gu′

1 is also used in the
accumulator verification.

An Anonymous Credential System with Constant-Size Attribute Proofs 103

(i) Compute the accumulator of V = (V +
1 , V −

1 , . . .):

accV =
∏

1≤�≤L

⎛

⎝
∏

j∈V +
�

gn+1−j

⎞

⎠

c�
⎛

⎝
∏

j∈V −
�

gn+1−j

⎞

⎠

−c�

(ii) Compute the witness WV :

WV =
∏

i∈U

∏

1≤�≤L

⎛

⎝
j �=i∏

j∈V +
�

gn+1−j+i

⎞

⎠

c�
⎛

⎝
j �=i∏

j∈V −
�

gn+1−j+i

⎞

⎠

−c�

For all 1 ≤ � ≤ L, set δ� = |U ∩V +
� |−|U ∩V −

� | and set u = δ1c1+ . . .+δLcL.

(iii) Set δ
′
� = δ� + |V −

� |, u
′

= δ
′
1c1 + . . . + δ

′
LcL, and τu′ = gu

′

1 . From ipk,

pick up σ̃u′ = (θ̃u′1, . . . , θ̃u′7) that is the AHO signature on gu
′

1 . Set ũ =
−(|V −

1 |c1 + . . . + |V −
L |cL) and τũ = gũ

1 .
(iv) Compute comPk

, comWV , comτu′ as the GS commitments to Pk,WV , τu′ .
Then, re-randomize the AHO signature σk by the method of [2] to obtain
σ

′
k = {θ

′
1, . . . , θ

′
7}. Compute the GS commitments {comθ

′
i
}i∈{1,2,5} to

{θ
′
i}i∈{1,2,5}. Similarly, re-randomize the AHO signature σ̃u′ to obtain

σ̃
′
u′ = {θ̃′

u′1, . . . , θ̃
′
u′7}. Compute the GS commitments {comθ̃

′
u′i

}i∈{1,2,5}

to {θ̃
′
u′i}i∈{1,2,5}.

(v) Generate GS proofs {πi}5i=1 to prove the following.

e(τũ, gn)−1 = e(Pk, accV) · e(g,WV)−1 · e(τu′ , gn)−1, (2)

A(1) · e(θ
′
3, θ

′
4)

−1 = e(G(1)
z , θ

′
1) · e(G(1)

r , θ
′
2) · e(G(1), Pk), (3)

B(1) · e(θ
′
6, θ

′
7)

−1 = e(H(1)
z , θ

′
1) · e(H(1)

r , θ
′
5) · e(H(1), Pk), (4)

A(0) · e(θ̃′
u′3, θ̃

′
u′4)−1 = e(G(0)

z , θ̃′
u′1) · e(G(0)

r , θ̃′
u′2) · e(G(0), τu′), (5)

B(0) · e(θ̃′
u′6, θ̃

′
u′7)−1 = e(H(0)

z , θ̃′
u′1) · H(0)

r , θ̃′
u′5) · e(H(0), τu′) (6)

(vi) Output σ = ({θ
′
i}i=3,4,6,7, {θ̃′

u′i}i=3,4,6,7, comPk
, comWV , comτu′ , {comθ

′
i
}

i=1,2,5, {com
θ̃′

u′i

}i=1,2,5, {πi}5i=1).

By substituting Pk =
∏

i∈Uk
gi, τu′ = gu

′

1 , and τũ = gũ
1 in Eq. (2), it can be

transformed into the verification equation of the accumulator as follows.

e(
∏

i∈Uk
gi, accV)

e(g,WV)
= e(gu

′

1 , gn) · e(gũ
1 , gn)−1 = zu

′−ũ

Equations (3) and (4) prove the verification of the AHO signature on Pk. Equa-
tions (5) and (6) show the verification of the AHO signature on τu′ , which
ensures that u

′
= δ

′
1c1 + . . . + δ

′
LcL, where 1 ≤ δ

′
� ≤ η�. Then, we have

zu
′−ũ = z(δ

′
1−|V −

1 |)c1+...+(δ
′
L−|V −

L |)cL from ũ = −(|V −
1 |c1 + . . . + |V −

L |cL), and

104 R. Okishima and T. Nakanishi

1−|V −
� | ≤ δ

′
�−|V −

� | ≤ η�−|V −
� |. By setting δ� = δ

′
�−|V −

� |, we obtain zu
′−ũ = zu

and 1−|V −
� | ≤ δ� ≤ η� −|V −

� |, i.e, 1 ≤ δ� + |V −
� | ≤ η�. It is the verification of the

accumulator in Chap. 3. Thus, Uk ∩ V +
� �= ∅ or Uk ∩ V −

� �= V −
� for all 1 ≤ � ≤ L

is verified.

Verify: Given ipk, the proof σ, and the proved CNF formula Ψ , verify the
validity of σ as follows.

(i) As in ProofGen, compute the accumulator accV , and set ũ = −(|V −
1 |c1 +

. . . + |V −
L |cL) and τũ = gũ

1 .
(ii) If the verification of all GS proofs {πi}5i=1 succeeds, accept σ.

5.2 Efficiency Comparisons

Since the proposed system is similar to the previous system [4], it has the similar
asymptotic efficiency. The size of the attribute proof σ is O(1), and the size of
the certificate certk is also O(1). But, the size of the issuer’s public key ipk is
different from the previous. In the previous system, the maximum number of
ζ� = |U ∩V�| for V� (the attribute set of the �-th clause in CNF formulas) is fixed
in the setup. The number of the AHO signatures for Φ in ipk is

∏
1≤�≤L ζ�. But,

in our system, the number is
∏

1≤�≤L η� where η� is the maximum number of
the attributes in �-th clause which corresponds to |V�|. Due to |U ∩ V�| ≤ |V�|,
ipk in our system is longer that in the previous system, which is a trade-off to
the adaptation to negations in proved CNF formulas.

The computational costs are also similar to the previous system. In Proof-
Gen, the computation of the witness WV depends on the parameters (accV also
depends on the parameters, but the cost of WV is heavier). The cost is the same
as the previous system, since the exponentiation of the integer c� is only changed
to the exponentiation of −c� for the negated attributes, and the multiplications
of OR literals remain.

5.3 Security Considerations

As in the journal version [5] of the previous system [4], we can prove that the
proposed system satisfies the misauthentication resistance under the security of
the AHO signatures and the proposed accumulator. The security proof of the
previous system constructs two types of forgeries by interacting with an adver-
sary winning the misauthentication resistance game and extracting committed
secret values in the attribute proof σ forged by the adversary. One forgery is
for AHO signatures, and another forgery is for the accumulator. As well as the
previous system, in the proposed system, the attribute set Uk of the proving
user is ensured by the AHO signature on Pk =

∏
i∈Uk

gi, and the user proves
that Uk satisfies the proved CNF formula Ψ as Uk ∩ V +

� �= ∅ or Uk ∩ V −
� �= V −

�

for all 1 ≤ � ≤ L by the verification of the proposed accumulator, where the
correctness of τu′ = gu

′

1 is ensured by an AHO signature. Thus, similarly to the
proof for the previous system, we can prove the misauthentication resistance.

An Anonymous Credential System with Constant-Size Attribute Proofs 105

As for the anonymity, the security proof is also similar to that for the pre-
vious system, where the methodology of a sequence of games is used. For the
original anonymity game, we can consider the modified game where the GS com-
mitments are replaced by ones using the CRS in the WI setting. In this modified
game, since the adversary has no information, the advantage of the adversary
in the anonymity game is negligible. Furthermore, this modified game and the
original game are indistinguishable due to the indistinguishability of CRS in the
real protocol and the WI setting under the DLIN assumption. In our system,
the attribute proof σ consists of the same components as those in the previ-
ous system, i.e., the re-randomized AHO signatures, GS commitments, and GS
proofs. Thus, in the same proof as that for the previous system, we can prove
the anonymity.

The security proofs in our system will be shown in the journal version of this
paper.

6 Conclusions

In this paper, we have proposed an anonymous credential system with the
constant-size attribute proofs, where any CNF formula with negations can be
proved. As the key primitive, we have constructed an accumulator to verify the
CNF formulas with negations, based on the previous accumulator [4] for limited
CNF formulas without negations.

One of our future work is to apply the proposed system to eID systems.

Acknowledgments. This work was partially supported by JSPS KAKENHI Grant
Number 19K11964.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 12

2. Abe, M., Haralambiev, K., Ohkubo, M.: Singing on elements in bilinear groups
for modular protocol design. Cryptology ePrint Archive, Report 2010/133 (2010).
http://eprint.iacr.org/. (This was merged and presented in [1])

3. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

4. Begum, N., Nakanishi, T., Funabiki, N.: Efficient proofs for CNF formulas on
attributes in pairing-based anonymous credential system. In: Kwon, T., Lee, M.-K.,
Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 495–509. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37682-5 35

5. Begum, N., Nakanishi, T., Funabiki, N.: Efficient proofs for CNF formulas on
attributes in pairing-based anonymous credential system. IEICE Trans. Fundam.
96-A(12), 2422–2433 (2013)

https://doi.org/10.1007/978-3-642-14623-7_12
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-642-37682-5_35

106 R. Okishima and T. Nakanishi

6. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-
7 15

7. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. In: Pro-
ceedings of the ACM Conference on Computer and Communications Security
(ACM CCS 2008), pp. 345–356 (2008)

8. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00468-1 27

9. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

10. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

11. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes
and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 26

12. Izabachène, M., Libert, B., Vergnaud, D.: Block-wise P-signatures and non-
interactive anonymous credentials with efficient attributes. In: Chen, L. (ed.)
IMACC 2011. LNCS, vol. 7089, pp. 431–450. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25516-8 26

13. Sadiah, S., Nakanishi, T., Funabiki, N.: Anonymous credential system with efficient
proofs for monotone formulas on attributes. In: Tanaka, K., Suga, Y. (eds.) IWSEC
2015. LNCS, vol. 9241, pp. 262–278. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-22425-1 16

14. Sudarsono, A., Nakanishi, T., Funabiki, N.: Efficient proofs of attributes in pairing-
based anonymous credential system. In: Fischer-Hübner, S., Hopper, N. (eds.)
PETS 2011. LNCS, vol. 6794, pp. 246–263. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22263-4 14

https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-662-45611-8_26
https://doi.org/10.1007/978-3-642-25516-8_26
https://doi.org/10.1007/978-3-642-25516-8_26
https://doi.org/10.1007/978-3-319-22425-1_16
https://doi.org/10.1007/978-3-319-22425-1_16
https://doi.org/10.1007/978-3-642-22263-4_14
https://doi.org/10.1007/978-3-642-22263-4_14

Symmetric-Key Primitives

More Results on Shortest Linear
Programs

Subhadeep Banik1(B), Yuki Funabiki2, and Takanori Isobe3,4

1 LASEC, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
subhadeep.banik@epfl.ch

2 Sony Corporation, Tokyo, Japan
yuki.funabiki@sony.com

3 National Institute of Information and Communications Technology, Tokyo, Japan
4 University of Hyogo, Kobe, Japan
takanori.isobe@ai.u-hyogo.ac.jp

Abstract. At the FSE conference of ToSC 2018, Kranz et al. presented
their results on shortest linear programs for the linear layers of several
well known block ciphers in literature. Shortest linear programs are essen-
tially the minimum number of 2-input xor gates required to completely
describe a linear system of equations. In the above paper the authors
showed that the commonly used metrics like d-xor/s-xor count that are
used to judge the “lightweightedness” do not represent the minimum
number of xor gates required to describe a given MDS matrix. In fact
they used heuristic based algorithms of Boyar/Peralta and Paar to find
implementations of MDS matrices with even fewer xor gates than was
previously known. They proved that the AES mixcolumn matrix can be
implemented with as little as 97 xor gates. In this paper we show that the
values reported in the above paper are not optimal. By suitably includ-
ing random bits in the instances of the above algorithms we can achieve
implementations of almost all matrices with lesser number of gates than
were reported in the above paper. As a result we report an implementa-
tion of the AES mixcolumn matrix that uses only 95 xor gates.

In the second part of the paper, we observe that most standard cell
libraries contain both 2 and 3-input xor gates, with the silicon area of the
3-input xor gate being smaller than the sum of the areas of two 2-input
xor gates. Hence when linear circuits are synthesized by logic compil-
ers (with specific instructions to optimize for area), most of them would
return a solution circuit containing both 2 and 3-input xor gates. Thus
from a practical point of view, reducing circuit size in presence of these
gates is no longer equivalent to solving the shortest linear program. In
this paper we show that by adopting a graph based heuristic it is pos-
sible to convert a circuit constructed with 2-input xor gates to another
functionally equivalent circuit that utilizes both 2 and 3-input xor gates
and occupies less hardware area. As a result we obtain more lightweight
implementations of all the matrices listed in the ToSC paper.

c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 109–128, 2019.
https://doi.org/10.1007/978-3-030-26834-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_7

110 S. Banik et al.

1 Introduction

Shortest linear programs are essentially the minimum number of 2-input xor
gates required to completely describe a linear system of equations. The advan-
tages to having a short linear program solution of a given matrix over GF (2)
are obvious. Since such linear matrices are used in the diffusion layer of block
ciphers, they lead to more lightweight implementations of the block cipher circuit
in hardware.

There has been extensive study on construction of lightweight diffusion lay-
ers with Maximum diffusion property [GR15,SKOP15,SS16,SS17,LS16,LW16,
BKL16,JPST17] that guarantees optimal diffusion of differentials across the lin-
ear layer. MDS matrices ensure that the sum of the number of active cells before
and after the linear layer is at least equal to one more than the number of
rows/columns of the matrix. The advent of recursive constructions for MDS
matrices [AF14,GPV17], made block cipher and hash function circuits more com-
pact as was evidenced in the designs of LED [GPPR11] and Photon [GPP11].
Recent years have seen MDS matrices being constructed using several under-
lying structures like Toeplitz matrices, Hadamard matrices Cauchy matrices,
Vandermonde matrices etc. The end goal for all these approaches is to minimize
the xor gate count of the matrices. However since the problem of finding the
minimal xor gate count of any linear system of equations is known to be NP-
complete [BMP08], the authors resorted to heuristic methods of evaluating the
gate count of such matrices. Some such metrics like d-xor and s-xor count have
been proposed earlier [JPST17]. However, in [KLSW18b], the authors showed
that such heuristic metrics do not reflect accurately the minimum number of
xor gates required to completely describe any linear system. Instead, the app-
roach followed in [KLSW18b], was to try and find the shortest linear program
of a given matrix by using approximation algorithms like the one proposed by
Boyar-Peralta [BP10] and Paar [Paa97]. As a result, they proposed instantia-
tions of several well known matrices in crypto-literature with a smaller number
of xor gates than was previously known. In particular, they proposed a circuit
for the AES mixcolumn matrix with only 97 xor gates, which was considerably
lower than the best construction of 103 gates known at the time [JMPS17].

Shortest linear program is a well known hard problem in computer science. It
is known that the problem is NP-complete (polynomially reducible to the Vertex-
Cover problem): in fact it was proven in [BMP08], the problem is MAX-SNP
complete, which roughly means that there are no good approximation algorithms
for the problem unless P = NP. Nevertheless, over the years there have been
many attempts at proposing approximation algorithms to solve the problem
when the size of the input matrix is limited. One of the first such attempts
was by Paar in [Paa97]. The algorithm is a essentially a greedy one, which
at every stage finds the pair of operands that appear most frequently in the
set of equations and replaces them with a new variable. The process continues
until all operands appear exactly once. For obvious reasons, the algorithm only
produces cancellation-free solutions to the problem. This basically means that
if one takes any two intermediate operands in the algorithm and writes out

More Results on Shortest Linear Programs 111

the expression of each operand as a linear equation of the input variables, then
the two expressions will not contain any common term. It is well-known that
cancellation-free solutions are sub-optimal. There have been attempts to solve
the problem using SAT solvers [FS10]. The authors of this paper showed that
the problem can be formulated as a SAT instance, i.e. if one wants to know if
a given linear system can be described using t xor gates, one may frame the
problem in such a manner so that a solution returned by the SAT solver would
be a unique encoding of the underlying t-xor gate circuit. An optimal solution
is reached when the solver returns a solution for some value of t but finds the
instance unsatisfiable for t − 1. SAT based solutions have been used before to
minimize gate complexities of Sboxes [Sto16] using similar approaches. But the
problem is that the running time of the solver itself is exponential in the size of
the input and for input sizes larger than 10, it is difficult to get a solution from
the solver in reasonable time. Another algorithm for the problem is due to Boyar-
Peralta [BP10]. Unlike Paar’s method, the algorithm may produce solutions with
cancellation.

1.1 Contribution and Organization

In this paper we first show that both the Boyar-Peralta and the Paar algorithm
can be executed with additional randomness to produce shorter linear programs
for any given matrix. We explain how to efficiently incorporate additional ran-
domness and give an intuitive explanation of why our approach works. As a result
we produce shorter programs for almost all the matrices listed in [KLSW18b].
In particular, we propose an implementation of the AES mixcolumn matrix that
takes only 95 2-input xor gates.

As mentioned in the abstract, most standard cell libraries contain dedicated
two input and three input xor gates. The hardware area of the 3-input xor gate
is generally smaller than the sum of the areas of two 2-input xor gates. And
if a logic synthesizer is presented with a functional description of any linear
system in any hardware description language like VHDL or Verilog, and asked
to produce a circuit that is optimized for area, it generally comes up with a
circuit that utilizes both types of xor gates. In such a scenario, minimizing the
area of the circuit implementing the linear system can no longer be achieved by
computing the SLP solution. Indeed the solution that minimizes the hardware
area would depend on the individual areas of the 2-input and 3-input xor gates,
and this does not appear to be easier to solve than the SLP problem. In the
second part of the paper, we present a graph based approximation algorithm
that does the following: it takes as input an SLP solution and then encodes it as
a directed graph. It then recursively alters the edges of the graph till a certain
stopping criterion is reached. In the end we obtain a solution comprising both
2 and 3-input xor gates, which is smaller in area than the initial SLP solution
that we started with. As a result we provide improved circuit implementation of
all the matrices listed in [KLSW18b].

The rest of the paper is organized in the following manner. In Sect. 2, we give
a brief description of the Boyar-Peralta and Paar algorithms and explain how

112 S. Banik et al.

randomness can be incorporated in the algorithm execution to produce shorter
linear programs for a given linear system. In Sect. 3, we explain the working of
our graph based approximation algorithm that produces a circuit for a given
linear system utilizing both 2 and 3-input xor gates. Section 4, concludes the
paper.

2 Approximation Algorithms

2.1 Boyar-Peralta Method [BP10]

Before we proceed let us take a look at the Boyar-Peralta algorithm. The problem
is to find a short linear program that computes f(x) = Mx where M is an
m × n matrix over GF (2). The basic idea is as follows. A “base” S of known
linear functions is first constructed. Initially S is just the set of input variables
x1, x2, . . . , xn. The vector Dist[·] is the set of distances from S to the linear
functions given by the rows of M . That is, if fi is the linear function given by
the ith row of M then Dist[i] represents the minimum number of functions from
S that can add to give fi. Consequently, we have that initially, Dist[i] is just one
less than the hamming weight of row i. The following steps are then performed
in a loop:

• Choose a new base element by adding two existing base elements and add it
to S.

• Update Dist[i] since S has been modified.
• Do the above until Dist[i] = 0 for all i.

At any stage if the size of S is t there are
(
t
2

)
options to choose a new base.

The criterion for picking the new base element is

1. Pick one that minimizes the sum of elements of the updated Dist[·] array.
2. If there is a tie between two choices of the new base element, then resolve it

by choosing the base element that maximizes the Euclidean norm of updated
Dist[·] array.

This tie resolution criterion, may seem counter-intuitive. The basic idea is
that a distance vector like 0, 0, 3, 1 is preferred to one like 1, 1, 1, 1. In the
latter case, we would need 4 more gates to finish. In the former, 3 might do it.
The bulk of the time of the heuristic is spent on picking the new base element.

Example 1. Before proceeding it may be instructive to look at a small example of
the working of the above algorithm using an example take directly form [BP10].
Suppose we need a circuit that computes the system of equations defined as
follows. This is equivalent to finding a circuit for multiplication by the 6 × 5
matrix, M given on the left.

More Results on Shortest Linear Programs 113

x0 ⊕ x1 ⊕ x2 = y0

x1 ⊕ x3 ⊕ x4 = y1

x0 ⊕ x2 ⊕ x3 ⊕ x4 = y2

x1 ⊕ x2 ⊕ x3 = y3

x0 ⊕ x1 ⊕ x3 = y4

x1 ⊕ x2 ⊕ x3 ⊕ x4 = y5

⇒

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 0
0 1 0 1 1
1 0 1 1 1
0 1 1 1 0
1 1 0 1 0
0 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

·

⎡

⎢
⎢
⎢
⎢
⎣

x0

x1

x2

x3

x4

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

y0
y1
y2
y3
y4
y5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The target functions to be computed are given rows of M. The ini-
tial base is given by {x0, x1, x2, x3, x4}, which corresponds to S =
{10000, 01000, 00100, 00010, 00001}. The initial distance vector is Dist =
[2, 2, 3, 2, 2, 3]. The algorithm finds two base vectors whose sum, when added
to the base, minimizes the sum of the new distances. It turns out the right
choice is to calculate t5 = x1 ⊕x3. So the new base S is expanded to contain the
signal 01010. The new distance vector is Dist = [2, 1, 3, 1, 1, 2].

Step 1. According to the algorithm we have a choice between x1⊕x2 and x0⊕t5.
The updated Dist vectors for the above choices are respectively [1, 1, 3, 1, 1, 2]
and [2, 1, 3, 1, 0, 2], both of which sum to 9. However the second choice gives
a Euclidean norm of

√
19. So we choose t6 = x0 ⊕ t5 = y4.

Step 2. t7 = x2 ⊕ t5 = y3, new Dist = [2, 1, 3, 0, 0, 1].
Step 3. t8 = x4 ⊕ t5 = y1, new Dist = [2, 0, 3, 0, 0, 1].
Step 4. t9 = x2 ⊕ t8 = y5, new Dist = [2, 0, 2, 0, 0, 0].
Step 5. t10 = x0 ⊕ x1, new Dist = [1, 0, 1, 0, 0, 0].
Step 6. t11 = x2 ⊕ t10 = y0, new Dist = [0, 0, 1, 0, 0, 0].
Step 7. t12 = t8 ⊕ t11 = y2, new Dist = [0, 0, 0, 0, 0, 0].

This therefore gives a circuit with eight gates.

2.2 Our Experiments

The authors of [KLSW18b] were kind enough to make all the codes used by them
freely available in the public domain [KLSW18a]. We downloaded the C++ code
for the Boyar-Peralta algorithm which is based on the code available at [BP18]
written by the authors of [BP10]. We ran the code for the AES mixcolumn matrix
and found that it returned a solution with 96 xor gates. This was surprising for
us, since the authors of [KLSW18b] claim that their implementation of the AES
mixcolumn matrix takes 97 xor gates. Initially we concluded that it must have
been an error by the authors of [KLSW18b]. But on closer inspection we started
to make a sense of why the discrepancy arose.

In the code used by [KLSW18a], the ordering of the input byte in terms
of bits is as follows: [x0, x1, x2, . . . , x7] which essentially means that they place
the least significant bit first, whereas the ordering we used is [x7, x6, x5, . . . , x0]
which essentially means most significant bit first and arranging bits in decreasing
index order. This means that the AES mixcolumn matrices we and the authors
of [KLSW18b] have used in our respective experiments would be column and row

114 S. Banik et al.

shuffled versions of each other. However there is nothing in the steps of the Boyar-
Peralta algorithm that suggests that if we present column/row shuffled instances
of the same matrix to the algorithm, it would output different solutions. In fact
the algorithm picks out a new base element at each step which minimizes the
sum of given distance vector, and computes a Euclidean norm to resolve ties.
Since this sum or norm should not change no matter how the columns/rows are
arranged, there is every reason to believe that the output of the algorithm should
be independent of how the matrix is arranged, if the underlying linear system is
unchanged.

However as it turns out, the way in which the algorithm has been imple-
mented in [KLSW18a], it does output different results when different column
shuffled instances of the same matrix is input. The reason this happens is as
follows. Following is a snippet of the C++ code where the algorithm implements
resolution of ties via Euclidean norm:

MinDistance = BaseSize*NumTargets; //i.e. something big
OldNorm = 0; //i.e. something small
for (int i = 0; i < BaseSize - 1; i++) {

for (int j = i+1; j < BaseSize; j++) {
NewBase = Base[i] ^ Base[j];

ThisDist = TotalDistance();//also calculates NDist[]
if (ThisDist <= MinDistance) {

//calculate Norm
ThisNorm = 0;
for (int k = 0; k < NumTargets; k++) {

d = NDist[k];
ThisNorm = ThisNorm + d*d;

}
//resolve tie in favor of largest norm
if((ThisDist < MinDistance)||(ThisNorm > OldNorm))

{
besti = i;
bestj = j;
TheBest = NewBase;
for (int uu = 0; uu < NumTargets; uu++) {

BestDist[uu] = NDist[uu];
}
MinDistance = ThisDist;
OldNorm = ThisNorm;

}
}

}
}

//update Dist array

More Results on Shortest Linear Programs 115

NewBase = TheBest;
for (int i = 0; i < NumTargets; i++) {

Dist[i] = BestDist[i];
}
//update Base with TheBest
Base[BaseSize] = TheBest;

The above code is intuitively easy to understand and follow. We describe
it briefly. The variable BaseSize stores the current size of S. The algorithm
then loops over all choices of the new base element. A candidate base element
is placed in the global variable NewBase, and then the code computes the tem-
porary updated distance vector NDist[] via the function TotalDistance which
returns the sum of NDist[] in ThisDist. If ThisDist is less than or equal to the
current minimum stored in MinDistance, the code then computes the Euclidean
norm of NDist[] in ThisNorm. A final choice of new base element is made in the
variable TheBest, depending on whether the current candidate produces a sum
that is absolutely less than the current minimum MinDistance or it produces
a Euclidean norm strictly greater than the current maximum norm OldNorm.
Consider what happens when two candidates for the new base element say for
i=i0,j=j0 and i=i1,j=j1 produce identical values of ThisDist and ThisNorm.
According to the code, the new candidate would be the one which appears first
lexicographically in the double loop traversal of i,j. In general if such a sit-
uation appears for n choices for the new candidate base element, the code all
always chooses the one that appears first in the double loop traversal. Thus it
becomes clearer why the order in which the columns are arranged matrix is cru-
cial: shuffling of columns essentially means we shuffle the order of input variables
to the system, which in turn implies we shuffle the initial placement of elements
of S. This has a direct effect on how new candidates are chosen to be added to
S and takes the program execution in different directions.

2.3 New Idea

In the paper [BP10], the authors suggest other methods to resolve ties including
choosing random candidate elements. We did not take this approach for two
reasons: one it may not necessarily lead to optimal solutions and second it is
not necessarily straightforward to adapt the code snippet to accommodate ran-
dom candidate choices. However since the order of rows/columns seems to bring
about a change in the output of this particular code execution: we tried the
following idea. We take the target matrix M and multiply with randomly gen-
erated permutation matrices P and Q to get MR = P ·M ·Q. This only shuffles
the rows and columns of the matrix and so keeps the underlying linear system
unchanged. We use MR as input to the C++ code and extract a solution. The
code could be run multiple number of times with random permutation matrices
until we get a solution better than previously obtained.

We started our experiment with the AES mixcolumn matrix. After around
4 hours of execution we obtained a solution with 95 xor gates. The solution is

116 S. Banik et al.

presented in Table 1. Note that the permutation matrices P,Q has been listed
as a table. For example, PT [0] = 4 implies that in the 0th row of P , the element
in the 4th column is 1 and the rest are 0.

2.4 Paar’s Algorithm

Paar’s algorithm is essentially a greedy one, which at every stage finds the pair of
operands that appear most frequently in the set of equations and replaces them
with a new variable. The process continues until all operands appear exactly
once. The algorithm however returns cancellation-free solutions that are known
to be not always optimal. But it is always useful to use this algorithm to decrease
the gate count of larger matrices for which the Boyar-Peralta method is unable
to return a solution in practical time.

Let us look at the details of the algorithm. Let M be the matrix whose gate
count is to be minimized. Then the algorithm performs the following steps:

Step 1. Find columns whose bitwise AND has largest weight. This essentially
finds two operands xi, xj whose xor occurs most number of times in the
underlying linear system.

Step 2. Extend matrix M , by adding the above product column newcol to the
matrix.

Step 3. For the two previous columns do oldcol ← oldcol·newcol. The above two
steps adds the xor gate v = xi⊕xj to the gate list and by adding the product
column to M creates a new input variable v. By doing oldcol ← oldcol·newcol,
the algorithm removes extra xors in the matrix structure, which are no longer
needed after the addition of the new column.

Example 2. It is again instructive to understand the algorithm with a small
example. Given the following linear system.

x1 ⊕ x2 = y1

x1 ⊕ x2 ⊕ x3 = y2

x1 ⊕ x2 ⊕ x3 ⊕ x4 = y3

x2 ⊕ x3 ⊕ x4 = y4

⇒

⎡

⎢
⎢
⎣

1 1 0 0
1 1 1 0
1 1 1 1
0 1 1 1

⎤

⎥
⎥
⎦ ·

⎡

⎢
⎢
⎣

x1

x2

x3

x4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

y1
y2
y3
y4

⎤

⎥
⎥
⎦

In this example, the product of the second and third column has largest weight.
We have v1 = x2 + x3. The new column to be added is (1 1 1 1) · (0 1 1 1) =
(0 1 1 1), and after the oldcol ← oldcol · newcol step we have the following
system.

x1 ⊕ x2 = y1

x1 ⊕ v1 = y2

x1 ⊕ x4 ⊕ v1 = y3

x4 ⊕ v1 = y4

⇒

⎡

⎢
⎢
⎣

1 1 0 0 0
1 0 0 0 1
1 0 0 1 1
0 0 0 1 1

⎤

⎥
⎥
⎦ ·

⎡

⎢
⎢
⎢
⎢
⎣

x1

x2

x3

x4

v1

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

y1
y2
y3
y4

⎤

⎥
⎥
⎦

The above steps are continued until all targets are achieved.

More Results on Shortest Linear Programs 117

Table 1. AES mixcolumn using 95 xor gates

Gate # Gate # Gate

1 t0 = x0 + x2 33 t32 = x9 + t3 65 t64 = x1 + t0

2 t1 = x10 + x24 34 y21 = t9 + t32 66 t65 = t6 + t13

3 t2 = x0 + x10 35 t34 = x19 + t6 67 y4 = t64 + t65

4 t3 = x2 + x24 36 y20 = t2 + t34 68 t67 = t10 + t32

5 t4 = x3 + x5 37 t36 = t1 + t9 69 t68 = x31 + t34

6 t5 = x4 + x11 38 y18 = t34 + t36 70 y5 = t67 + t68

7 t6 = x9 + x20 39 t38 = x20 + t9 71 t70 = y18 + y4

8 t7 = x16 + x29 40 y26 = t0 + t38 72 y27 = t67 + t70

9 t8 = x6 + x23 41 t40 = x11 + t8 73 t72 = x13 + t1

10 t9 = x19 + x21 42 y9 = t14 + t40 74 t73 = t15 + t16

11 t10 = x1 + x7 43 t42 = x13 + t5 75 y14 = t72 + t73

12 t11 = x12 + x26 44 t43 = x6 + x17 76 t75 = x15 + t2

13 t12 = x8 + x30 45 y15 = t42 + t43 77 t76 = x27 + t16

14 t13 = x18 + x31 46 t45 = x11 + y10 78 t77 = t0 + t17

15 t14 = x13 + x14 47 y16 = t29 + t45 79 t78 = t14 + t77

16 t15 = x17 + x28 48 t47 = x12 + t12 80 y24 = x28 + t78

17 t16 = x15 + x22 49 y28 = t13 + t47 81 t80 = t75 + t76

18 t17 = x25 + x27 50 t49 = x18 + t11 82 t81 = x17 + t14

19 t18 = x2 + t1 51 t50 = x1 + y28 83 y2 = t80 + t81

20 y8 = t7 + t18 52 y7 = t49 + t50 84 t83 = t3 + t11

21 t20 = x16 + t2 53 t52 = x7 + x8 85 y3 = t76 + t83

22 t21 = x2 + t2 54 y30 = t49 + t52 86 t85 = t12 + t17

23 y29 = t4 + t21 55 t54 = x18 + t10 87 y1 = t75 + t85

24 t23 = x3 + y8 56 y12 = t36 + t54 88 t87 = y14 + t78

25 y25 = t20 + t23 57 t56 = x23 + t5 89 y13 = t80 + t87

26 t25 = x5 + x24 58 y17 = t15 + t56 90 t89 = x26 + x30

27 y23 = t20 + t25 59 t58 = x28 + y9 91 t90 = t77 + t89

28 t27 = x5 + t7 60 y19 = t42 + t58 92 y6 = t76 + t90

29 y10 = t8 + t27 61 t60 = x29 + t4 93 t92 = x25 + t83

30 t29 = x23 + t4 62 y31 = t5 + t60 94 t93 = y1 + y6

31 t30 = x4 + x16 63 t62 = x30 + t10 95 y0 = t92 + t93

32 y11 = t29 + t30 64 y22 = t11 + t62

PT = [4,12,11,28, 22,30,20,5, 16,26,9,17, 6,27,3,18, 1,10,7,2, 15,31,13,24,
19,8,23,14, 29,0,21,25]
QT = [24,5,11,14, 15,12,31,19, 10,3,6,28, 22,8,1,21, 0,29,23,17, 27,30,7,9,
2,16,4,13, 25,26,18,20]

118 S. Banik et al.

Again, there are no steps in the above algorithm that suggest that different
results would be output if the input matrices are row/column shuffled. However
again due to the C++ implementation of the above algorithm in [KLSW18a],
column shuffled versions of the same matrix do produce different outcomes. The
reasons due too are quite similar: for candidate column pairs Ci0 , Cj0 and Ci1 , Cj1

both of whose products have the same hamming weight, the code in [KLSW18a]
chooses the one which occurs first lexicographically during a standard double
loop search over every pair of columns. Thus shuffling of columns of M directly
impacts the outcome. Again we could multiply with randomly generated permu-
tation matrices P and Q to get MR = P ·M ·Q. The code is run multiple number
of times with random permutation matrices until we get a solution better than
previously obtained.

Note that in the original paper [Paa97], two algorithms were proposed of
which we have discussed the first one. The second algorithm recurses on all
possible choices of candidate intermediate steps and thus will output the optimal
result. The probabilistic version suggested in this paper is thus something in
between the two original algorithms. We did not try to implement Paar’s second
algorithm as it took a lot of time to run on the computing systems we had access
to.

2.5 Results

We ran the modified algorithms for all the matrices listed in [KLSW18b]. For
smaller 32×32 matrices the Boyar-Peralta algorithm can be executed efficiently
in reasonable time. For 64 × 64 and larger matrices we used the modified Paar
algorithm as the Boyar-Peralta took an unreasonable amount of time just to
execute the optimization of one shuffled version of the target matrix M . The
results are given in Tables 2 and 3. Table 2 contains matrices proposed in recent
literature, whereas Table 3 contains matrices used in some cryptographic con-
structions. For almost all matrices we have improved the results of [KLSW18b].

3 Optimization with 3-Input Xor Gates

One of the motivations of constructing circuits with lower number of xor gates
is that it makes for a more lightweight implementation in hardware. However
most standard cell libraries of CMOS logic processes have dedicated gates that
support both the 2-input and the 3-input xor functionality. Generally the area
of a 3-input xor gate is lower than the area of two 2-input xor gates. Take for
example, the standard cell library CORE90GPHVT v 2.1.a of the STM 90 nm
CMOS logic process. It has two types of gates

• 2-input xor gate with area: 2 GE
• 3-input xor gate with area: 3.25 GE

where GE refers to Gate equivalents which is the area of a two input NAND
gate. Our experiments started with the AES mixcolumn matrix. We presented

More Results on Shortest Linear Programs 119

Table 2. Comparison of gate counts for matrices available in literature

Matrix Type Gate count in
[KLSW18b]

Gate count in this paper

4 × 4 matrices over GF (24)

1 [SKOP15] Hadamard 48 46

2 [LS16] Circulant 44 44

3 [LW16] Circulant 44 44

4 [BKL16] Circulant 42 42

5 [SS16] Toeplitz 43 42

6 [JPST17] 43 42

7 [SKOP15] Hadamard, Involutary 48 47

8 [LW16] Hadamard, Involutary 48 46

9 [SS16] Involutary 42 40

10 [JPST17] Involutary 47 46

4 × 4 matrices over GF (28)

11 [SKOP15] Subfield 98 94

12 [LS16] Circulant 112 110

13 [LW16] 102 102

14 [BKL16] Circulant 110 108

15 [SS16] Toeplitz 107 104

16 [JPST17] Subfield 86 86

17 [SKOP15] Subfield, Involutary 100 94

18 [LW16] Hadamard, Involutary 91 90

19 [SS16] Involutary 100 98

20 [JPST17] Subfield, Involutary 91* 92

8 × 8 matrices over GF (24)

21 [SKOP15] Hadamard 194 192

22 [SS17] Toeplitz 204 203

23 [SKOP15] Hadamard, Involutary 217 212

8 × 8 matrices over GF (28)

24 [SKOP15] Hadamard 467 460

25 [LS16] Circulant 447 443

26 [BKL16] Circulant 498 497

27 [SS17] Toeplitz 438 436

28 [SKOP15] Hadamard, Involutary 428 419

29 [JPST17] Hadamard, Involutary 599 591
∗On running the code from [KLSW18a] on our PC, we got solution 92 for this matrix

120 S. Banik et al.

Table 3. Comparison of gate counts for matrices used in cryptographic constructions

Cipher Type Gate count

[KLSW18b] This paper

4 × 4 matrices over GF (28)

1 AES [DR02] Circulant 97 95

2 ANUBIS [BR00a] Hadamard,
Involutary

113 102

3 CLEFIA M0* [SSA+07] Hadamard,
Involutary

106 102

4 CLEFIA M1 [SSA+07] Hadamard 111 110

5 FOX MU4 [JV04] 137 131

6 TWOFISH [SKW+98] 129 125

8 × 8 matrices over GF (28)

7 FOX MU8 [JV04] 594 592

8 GRØSTL [GKM+09] Circulant 475 460

9 KHAZAD [BR00b] Hadamard,
Involutary

507 492

10 WHIRLPOOL [BR11] Circulant 465 464

4 × 4 matrices over GF (24)

11 JOLTIK [JNP13] Hadamard,
Involutary

48 47

12 SMALLSCALE AES [CMR05] Circulant 47 45

8 × 8 matrices over GF (24)

13 WHIRLWIND M0 [BNN+10] Hadamard, Subfield 212 210

14 WHIRLWIND M1 [BNN+10] Hadamard, Subfield 235 234

Non MDS matrices

15 QARMA128 [Ava17] Circulant (4× 4 over
GF (28))

48 48

16 ARIA [KKP+03] Involutary (16 × 16
over GF (28))

416 392

17 MIDORI [BBI+15] Involutary (4 × 4
over GF (24))

24 24

18 PRINCE M0, M1 [BCG+12] (16×16 over GF (2)) 24 24

19 PRIDE L0-L3 [ADK+14] (16×16 over GF (2)) 24 24

20 QARMA64 [Ava17] Circulant (4× 4 over
GF (24))

24 24

21 SKINNY64 [BJK+16] (4 × 4 over GF (24)) 12 12
∗ANUBIS and CLEFIA M0 matrices are the same. [KLSW18b] gives different results
for them.
It might have been an error.

More Results on Shortest Linear Programs 121

a functional description of the matrix written in VHDL to the Synopsys design
compiler and instructed it to compile a circuit optimized for area. It returned
a solution with 39 3-input xor and 31 2-input xor gates. The area of the above
circuit is 39 ∗ 3.25 + 31 ∗ 2 = 188.75 GE which is less than 2 ∗ 95 = 190 GE (the
area of 95 2-input xor gates).

However the situation is different for another library CORE65GPHVT v 5.1
which is based on the STM 65 nm CMOS logic process. It has two types of xor
gates listed as follows:

• 2-input xor gate with area: 1.981 GE
• 3-input xor gate with area:: 3.715 GE

If we took the previous solution and tried to apply it to this library the gate
area would be 39 ∗ 3.715 + 31 ∗ 1.981 = 206.296 GE which is much more than
95 ∗ 1.981 = 188.195 GE that would be obtained by using only the 2-input xor
gate. In fact when we repeated the exercise for this library and asked the design
compiler to synthesize an area optimized circuit it returned a solution with 38
3-input xors and 32 2-input xors which amounts to 204.56 GE. The experiments
bring out three crucial facts: (a) The SLP solution does not always represent
the optimal circuit area when the circuit compiler can additionally use 3-input
xor gates, (b) the optimal solution is heavily dependent on the target standard
cell library, a solution that is optimal for a given library may not be optimal for
a different library, (c) the solutions returned by circuit compilers may also not
represent the optimal solution in terms of circuit area.

3.1 Incremental Graph Based Technique

Since a single 3-input xor is smaller in area than two 2-input xors, we started
with the rule of thumb that, given any matrix, we should convert all instances
of two 2-input xors to a single 3-input xor wherever possible. However, consider
the following linear system before proceeding.

Example 3. y1 = x1 ⊕ x2 ⊕ x3, y2 = x2 ⊕ x3 ⊕ x4.

One could solve the above problem in a straightforward manner by using two
3-input xor gates that would cost 6.5 GE in the 90 nm library and around 7.4
GE in the 65 nm library. However an SLP based solution that reuses the sum
x2 ⊕x3 could give us a solution using three 2-input xors, that would cost around
6 GE in both libraries.

• Solution: t1 = x2 ⊕ x3, y2 = t1 ⊕ x4 and y1 = x1 ⊕ t1.

Let us say we already have a SLP solution for a given matrix obtained by
either the Boyar-Peralta or the Paar method and we want to take this solution
as a starting point and make incremental modifications to it to get a circuit that
uses both 2 and 3-input xor gates. The standard way to do this would be to
check if there are pairs of 2-input xors in the original SLP solution that could be
replaced with a 3-input xor gate thereby reducing the area of the circuit. This

122 S. Banik et al.

approach has an additional advantage that the final solution of this approach is
guaranteed to have less area than the corresponding SLP solution, irrespective
of the library of synthesis. Given the information in the above example, a handy
way to proceed is to check if the output of a particular 2-input xor gate is used
multiple times in the circuit. If so then it is best to avoid removing this xor gate
from the SLP solution to facilitate insertion of another 3-input xor gate. Let us
formalize this intuitive approach.

Let L be the SLP solution for an underlying linear system given by the
matrix M . Each line of L represents a 2-input xor gate used to implement the
circuit. Define a directed graph G = (V,E) in the following manner. Each line
of L is a vertex in the graph: thus the size of |V | is simply the length of L. Two
vertices vi, vj are connected by a directed edge in E, if the output of the xor
gate represented by vi is an input to the xor gate represented by vj . In such a
graph, a node with outdegree strictly equal to 1 are those whose outputs are
used only once. Nodes with outdegree 0 represent the gates which produce the
output bits of the linear system, although it may be possible that nodes with
larger outdegree produces output bits of the system. All other nodes are those
that are used multiple number of times. Thus our strategy would be as follows:

1. Make a list of all nodes of outdegree 1 and 0, and additionally those nodes
that produce output bits but have outdegree larger than 0.

2. If there exist two nodes vi, vj such that (vi, vj) ∈ E and outdegree (vi) = 1 and
vi does not produce an output of the underlying linear system then merge
them to form a new node X that represents a 3-xor gate in the following
manner: the incoming edges of vi and vj are made the incoming edges of X
and if the outdegree of vj is 1, the outgoing edge of vj is made the outgoing
edge of X.

3. Essentially what the above step does is as follows: if vi represents the 2-input
xor gate t = x⊕ y and vj represents the 2-input xor gate u = t⊕ z, then the
outdegree of vi = 1, guarantees that t does not appear elsewhere in the SLP
solution. We merge them to a 3-input xor node X representing u = x⊕y⊕ z.
Note that if t = x ⊕ y was an output of the system then the above merge
procedure would have proven counter-productive because we would have lost
the output signal t after the merge procedure.

4. The algorithm is recursively executed until all nodes of outdegree 1 of the
required property are exhausted.

The algorithm starts with an SLP solution for a given matrix obtained by either
the Boyar-Peralta or the Paar method, and runs the above steps iteratively until
a solution is found. Since permutation matrices P,Q for which we get the optimal
SLP solution for MR = P · M · Q, may not necessarily lead to the optimal area
after running the above algorithm, we run the above algorithm for a number of
randomly generated P,Q till a solution is obtained. In particular, for the AES
mixcolumn matrix we were able to get a solution with 39 2-input xor and 28
3-input xor gates. This gives an area of 169 GE with the CORE90GPHVT v 2.1.a
library and 181.3 GE with CORE65GPHVT v 5.1. This is well below the hardware
area of the corresponding SLP solution.

More Results on Shortest Linear Programs 123

Table 4. Comparison of areas for matrices available in literature. Lib1 and Lib2 refer
to CORE90GPHVT v 2.1.a and CORE65GPHVT v 5.1 respectively.

Matrix Type # 2-xor #3-xor Area in GE

SLP Lib 1 Lib 2

4 × 4 matrices over GF (24)

1 [SKOP15] Hadamard 26 10 92.0 84.5 88.7

2 [LS16] Circulant 20 12 88.0 79.0 84.2

3 [LW16] Circulant 20 12 88.0 79.0 84.2

4 [BKL16] Circulant 18 12 84.0 75.0 80.2

5 [SS16] Toeplitz 18 12 84.0 75.0 80.2

6 [JPST17] 13 15 84.0 74.8 81.5

7 [SKOP15] Hadamard, Involutary 16 16 94.0 84.0 91.1

8 [LW16] Hadamard, Involutary 13 15 86.0 74.8 81.5

9 [SS16] Involutary 20 10 80.0 72.5 76.8

10 [JPST17] Involutary 16 15 92.0 80.8 87.4

4 × 4 matrices over GF (28)

11 [SKOP15] Subfield 45 25 188.0 171.3 182.0

12 [LS16] Circulant 28 42 220.0 192.5 211.5

13 [LW16] 31 35 204.0 175.8 191.4

14 [BKL16] Circulant 40 34 216.0 190.5 205.6

15 [SS16] Toeplitz 26 40 208.0 182.0 200.1

16 [JPST17] Subfield 26 30 172.0 149.5 163.0

17 [SKOP15] Subfield, Involutary 32 32 188.0 168.0 182.3

18 [LW16] Hadamard, Involutary 48 21 180.0 164.3 173.1

19 [SS16] Involutary 44 27 196.0 175.8 187.5

20 [JPST17] Subfield, Involutary 36 28 184.0 163.0 175.3

8 × 8 matrices over GF (24)

21 [SKOP15] Hadamard 78 57 384.0 341.3 366.2

22 [SS17] Toeplitz 87 58 406.0 362.5 387.8

23 [SKOP15] Hadamard, Involutary 90 61 424.0 378.3 404.8

8 × 8 matrices over GF (28)

24 [SKOP15] Hadamard 181 141 920.0 820.3 882.2

25 [LS16] Circulant 181 141 920.0 820.3 882.2

26 [BKL16] Circulant 157 144 886.0 782.0 845.8

27 [SS17] Toeplitz 153 144 872.0 782.0 837.9

28 [SKOP15] Hadamard, Involutary 167 126 838.0 743.5 798.8

29 [JPST17] Hadamard, Involutary 205 193 1182.0 1037.3 1022.9

124 S. Banik et al.

Table 5. Comparison of areas for matrices used in cryptographic constructions. Lib1
and Lib2 refer to CORE90GPHVT v 2.1.a and CORE65GPHVT v 5.1 respectively.

Matrix Type #2-xor #3-xor Area in GE

SLP Lib 1 Lib 2

4 × 4 matrices over GF (28)

1 AES [DR02] Circulant 39 28 190.0 169.0 181.3

2 ANUBIS [BR00a] Hadamard and

Involutary

60 20 200.0 185.0 193.2

3 CLEFIA M0 [SSA+07] Hadamard

Involutary

60 20 200.0 185.0 193.2

4 CLEFIA M1 [SSA+07] Hadamard 38 36 220.0 193.0 209.0

5 FOX MU4 [JV04] 46 43 262.0 231.8 250.9

6 TWOFISH [SKW+98] 43 42 250.0 222.5 241.2

8 × 8 matrices over GF (28)

7 FOX MU8 [JV04] 212 190 1184.0 1041.5 1125.8

8 GRØSTL [GKM+09] Circulant 190 129 920.0 799.3 855.6

9 KHAZAD [BR00b] Hadamard and

Involutary

224 134 984.0 883.5 941.6

10 WHIRLPOOL [BR11] Circulant 154 155 928.0 811.8 880.9

4 × 4 matrices over GF (24)

11 JOLTIK [JNP13] Hadamard and

Involutary

16 16 94.0 84.0 91.1

12 SMALLSCALE AES [CMR05] Circulant 19 13 90.0 80.3 85.9

8 × 8 matrices over GF (24)

13 WHIRLWIND M0 [BNN+10] Hadamard and

Subfield

82 64 420.0 372.0 400.2

14 WHIRLWIND M1 [BNN+10] -do- 96 69 468.0 416.3 446.5

Non MDS matrices

15 QARMA128 [Ava17] Circulant

(4 × 4 over GF (28))

34 7 96.0 90.8 93.4

16 ARIA [KKP+03] Involutary

(16 × 16 over

GF (28))

136 128 784.0 688.0 744.8

17 MIDORI [BBI+15] Involutary

(4 × 4 over GF (24))

16 4 48.0 45.0 46.6

18 PRINCE M0, M1[BCG+12] (16 × 16 over GF (2)) 16 4 48.0 45.0 46.6

19 PRIDE L0-L3 [ADK+14] (16 × 16 over GF (2)) 16 4 48.0 45.0 46.6

20 QARMA64 [Ava17] Circulant

(4 × 4 over GF (24))

16 4 48.0 45.0 46.6

21 SKINNY64 [BJK+16] (4 × 4 over GF (24)) 12 0 24.0 24.0 24.0

3.2 Results

We applied the above algorithm to all the SLP solutions that are listed above
in Sect. 2. For all the matrices that we experimented with, we obtained a circuit
implementation smaller in area than the area of the corresponding SLP solution.
The results are presented in Tables 4 and 5. We compare the area of the circuit
obtained after running the algorithm with the corresponding area of the SLP
solution (for the sake of conciseness we fix this value to 2 times the length of
SLP solution, in GE). Results for both the libraries CORE90GPHVT v 2.1.a and
CORE65GPHVT v 5.1 are tabulated.

More Results on Shortest Linear Programs 125

4 Conclusion

In this paper we took another look at the shortest linear program problem for
implementing linear systems. We found implementation issues that may result
in a situation where the order of appearance of columns in a matrix affect the
outcome of heuristic based algorithms like the ones due to Boyar-Peralta and
Paar. We showed that by suitably including randomness in the execution of
these algorithms it is possible to obtain even more efficient solutions to the
SLP problem. We applied our method to the diffusion layer matrices of well
known constructions in literature. We were able to improve the number of xor
gates required for the implementations for most of these matrices. We have also
reported an implementation of the AES mixcolumn matrix that uses only 95 xor
gates which is 2 gates better than the currently known best implementation.

In the second part of the paper, we observed that most standard cell libraries
contain both 2 and 3-input xor gates, with the silicon area of the 3-input xor gate
being smaller than the sum of the areas of two 2-input xor gates. Hence when
linear circuits are synthesized by logic compilers (with specific instructions to
optimize for area), most of them would return a solution circuit containing both 2
and 3-input xor gates. Thus from a practical point of view, reducing circuit size in
presence of these gates was not equivalent to solving the shortest linear program.
In this paper we showed that by adopting a graph based heuristic it is possible
to convert a circuit constructed with 2-input xor gates to another functionally
equivalent circuit that utilizes both 2 and 3-input xor gates and occupies less
hardware area. As a result we obtain more lightweight implementations of all
the matrices listed in first half of the paper.

Acknowledgments. Subhadeep Banik is supported by the Ambizione Grant
PZ00P2 179921, awarded by the Swiss National Science Foundation (SNSF). Takanori
Isobe is supported by Grant-in-Aid for Scientific Research (B) (KAKENHI 19H02141)
for Japan Society for the Promotion of Science.

References

[ADK+14] Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın,
T.: Block ciphers – focus on the linear layer (feat. PRIDE). In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 57–76.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-
2 4

[AF14] Augot, D., Finiasz, M.: Direct construction of recursive MDS diffusion
layers using shortened BCH codes. In: Cid, C., Rechberger, C. (eds.) FSE
2014. LNCS, vol. 8540, pp. 3–17. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46706-0 1

[Ava17] Avanzi, R.: The QARMA block cipher family: almost MDS matrices over
rings with zero divisors, nearly symmetric even-mansour constructions
with non-involutory central rounds, and search heuristics for low-latency
s-boxes. IACR Trans. Symmetric Cryptol. 2017(1), 4–44 (2017)

https://doi.org/10.1007/978-3-662-44371-2_4
https://doi.org/10.1007/978-3-662-44371-2_4
https://doi.org/10.1007/978-3-662-46706-0_1
https://doi.org/10.1007/978-3-662-46706-0_1

126 S. Banik et al.

[BBI+15] Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T.,
Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3 17

[BCG+12] Borghoff, J., et al.: PRINCE – a low-latency block cipher for per-
vasive computing applications. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34961-4 14

[BJK+16] Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53008-5 5

[BKL16] Beierle, C., Kranz, T., Leander, G.: Lightweight multiplication in
GF (2n) with applications to MDS Matrices. In: Robshaw, M., Katz,
J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 625–653. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53018-4 23

[BMP08] Boyar, J., Matthews, P., Peralta, R.: On the shortest linear straight-line
program for computing linear forms. In: Ochmański, E., Tyszkiewicz, J.
(eds.) MFCS 2008. LNCS, vol. 5162, pp. 168–179. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85238-4 13

[BNN+10] Barreto, P.S.L.M., Nikov, V., Nikova, S., Rijmen, V., Tischhauser, E.:
Whirlwind: a new cryptographic hash function. Des. Codes Cryptogr.
56(2–3), 141–162 (2010)

[BP10] Boyar, J., Peralta, R.: A new combinational logic minimization technique
with applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol.
6049, pp. 178–189. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13193-6 16

[BP18] Boyar, J., Peralta, R.: C++ implementation of SLP algorithm (2018).
http://www.imada.sdu.dk/∼joan/xor/Improved2.cc

[BR00a] Barreto, P.S.L.M., Rijmen, V.: The anubis block cipher (2000). Sub-
mission to NESSIE project. https://www.cosic.esat.kuleuven.be/nessie/
workshop/submissions/anubis.zip

[BR00b] Barreto, P.S.L.M., Rijmen, V.: The khazad legacy-level block
cipher (2000). Submission to NESSIE project. https://www.cosic.esat.
kuleuven.be/nessie/workshop/submissions/khazad.zip

[BR11] Barreto, P.S.L.M., Rijmen, V.: Whirlpool. In: van Tilborg, H.C.A., Jajo-
dia, S. (eds.) Encyclopedia of Cryptography and Security, 2nd edn,
pp. 1384–1385. Springer, Boston (2011). https://doi.org/10.1007/978-
1-4419-5906-5 626

[CMR05] Cid, C., Murphy, S., Robshaw, M.J.B.: Small scale variants of the
AES. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol.
3557, pp. 145–162. Springer, Heidelberg (2005). https://doi.org/10.1007/
11502760 10

[DR02] Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, Berlin (2002). https://doi.org/10.1007/
978-3-662-04722-4

[FS10] Fuhs, C., Schneider-Kamp, P.: Synthesizing shortest linear straight-line
programs over GF(2) using SAT. In: Strichman, O., Szeider, S. (eds.)
SAT 2010. LNCS, vol. 6175, pp. 71–84. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14186-7 8

https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53018-4_23
https://doi.org/10.1007/978-3-540-85238-4_13
https://doi.org/10.1007/978-3-642-13193-6_16
https://doi.org/10.1007/978-3-642-13193-6_16
http://www.imada.sdu.dk/~joan/xor/Improved2.cc
https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions/anubis.zip
https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions/anubis.zip
https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions/khazad.zip
https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions/khazad.zip
https://doi.org/10.1007/978-1-4419-5906-5_626
https://doi.org/10.1007/978-1-4419-5906-5_626
https://doi.org/10.1007/11502760_10
https://doi.org/10.1007/11502760_10
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-642-14186-7_8

More Results on Shortest Linear Programs 127

[GKM+09] Gauravaram, P., et al.: Grøstl - a SHA-3 candidate. In: Symmetric Cryp-
tography, 11–16 January 2009 (2009)

[GPP11] Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight
hash functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 222–239. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 13

[GPPR11] Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block
cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 326–341. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23951-9 22

[GPV17] Gupta, K.C., Pandey, S.K., Venkateswarlu, A.: Towards a general con-
struction of recursive MDS diffusion layers. Des. Codes Cryptogr. 82(1–
2), 179–195 (2017)

[GR15] Kishan Chand Gupta and Indranil Ghosh Ray: Cryptographically sig-
nificant MDS matrices based on circulant and circulant-like matrices for
lightweight applications. Cryptogr. Commun. 7(2), 257–287 (2015)

[JMPS17] Jean, J., Moradi, A., Peyrin, T., Sasdrich, P.: Bit-sliding: a generic tech-
nique for bit-serial implementations of SPN-based primitives. In: Fis-
cher, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 687–707.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 33

[JNP13] Jean, J., Nikolić, I., Peyrin, T.: Joltik v1.3 (2013). Submission to caesar
competition. https://competitions.cr.yp.to/round2/joltikv13.pdf

[JPST17] Jean, J., Peyrin, T., Sim, S.M., Tourteaux, J.: Optimizing implementa-
tions of lightweight building blocks. IACR Trans. Symmetric Cryptol.
2017(4), 130–168 (2017)

[JV04] Junod, P., Vaudenay, S.: FOX: a new family of block ciphers. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 114–129.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-
4 8

[KKP+03] Kwon, D., et al.: New block cipher: ARIA. In: Lim, J.-I., Lee, D.-H.
(eds.) ICISC 2003. LNCS, vol. 2971, pp. 432–445. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24691-6 32

[KLSW18a] Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Github repository:
shorter linear SLPs for MDS matrices (2018). https://github.com/rub-
hgi/shorter linear slps for mds matrices

[KLSW18b] Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Shorter linear straight-
line programs for MDS matrices. IACR Trans. Symmetric Cryptol.
2018(4), 188–211 (2018)

[LS16] Liu, M., Sim, S.M.: Lightweight MDS generalized circulant matrices.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 101–120. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 6

[LW16] Li, Y., Wang, M.: On the construction of lightweight circulant involu-
tory MDS matrices. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783,
pp. 121–139. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-52993-5 7

[Paa97] Paar, C.: Optimized arithmetic for Reed-Solomon encoders. In: Proceed-
ings of IEEE International Symposium on Information Theory, p. 250,
June 1997

https://doi.org/10.1007/978-3-642-22792-9_13
https://doi.org/10.1007/978-3-642-22792-9_13
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-319-66787-4_33
https://competitions.cr.yp.to/round2/joltikv13.pdf
https://doi.org/10.1007/978-3-540-30564-4_8
https://doi.org/10.1007/978-3-540-30564-4_8
https://doi.org/10.1007/978-3-540-24691-6_32
https://github.com/rub-hgi/shorter_linear_slps_for_mds_matrices
https://github.com/rub-hgi/shorter_linear_slps_for_mds_matrices
https://doi.org/10.1007/978-3-662-52993-5_6
https://doi.org/10.1007/978-3-662-52993-5_7
https://doi.org/10.1007/978-3-662-52993-5_7

128 S. Banik et al.

[SKOP15] Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution
matrices. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 471–493.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-
5 23

[SKW+98] Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson,
N.: Twofish: a 128-bit block cipher (1998). https://www.schneier.com/
academic/paperfiles/paper-twofish-paper.pdf

[SS16] Sarkar, S., Syed, H.: Lightweight diffusion layer: importance of toeplitz
matrices. IACR Trans. Symmetric Cryptol. 2016(1), 95–113 (2016)

[SS17] Sarkar, S., Syed, H.: Analysis of toeplitz MDS matrices. In: Pieprzyk,
J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10343, pp. 3–18. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59870-3 1

[SSA+07] Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-
bit blockcipher CLEFIA (extended abstract). In: Biryukov, A. (ed.)
FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74619-5 12

[Sto16] Stoffelen, K.: Optimizing S-box implementations for several criteria using
SAT solvers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 140–160.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-
5 8

https://doi.org/10.1007/978-3-662-48116-5_23
https://doi.org/10.1007/978-3-662-48116-5_23
https://www.schneier.com/academic/paperfiles/paper-twofish-paper.pdf
https://www.schneier.com/academic/paperfiles/paper-twofish-paper.pdf
https://doi.org/10.1007/978-3-319-59870-3_1
https://doi.org/10.1007/978-3-540-74619-5_12
https://doi.org/10.1007/978-3-662-52993-5_8
https://doi.org/10.1007/978-3-662-52993-5_8

Tweakable TWINE: Building a Tweakable
Block Cipher on Generalized

Feistel Structure

Kosei Sakamoto1(B), Kazuhiko Minematsu2, Nao Shibata3, Maki Shigeri3,
Hiroyasu Kubo3, Yuki Funabiki4, Andrey Bogdanov5, Sumio Morioka6,

and Takanori Isobe1,7

1 University of Hyogo, Kobe, Japan
aa18s502@ai.u-hyogo.ac.jp

2 NEC Corporation, Tokyo, Japan
k-minematsu@ah.jp.nec.com

3 NEC Solution Innovators, Tokyo, Japan
4 Sony corporation, Tokyo, Japan

5 Technical University of Denmark, Lyngby, Denmark
6 Interstellar Technologies, Obihiro, Japan

7 National Institute of Information and Communications Technology, Tokyo, Japan
takanori.isobe@ai.u-hyogo.ac.jp

Abstract. Tweakable block cipher (TBC) is an extension of conven-
tional block cipher. We study how to build a TBC based on general-
ized Feistel structure (GFS), a classical block cipher construction. While
known dedicated TBC proposals are based on substitution-permutation
network (SPN), GFS has not been used for building TBC. In particular,
we take 64-bit GFS block cipher TWINE and try to make it tweakable
with a minimum change. To find a best one from a large number of candi-
dates, we performed a comprehensive search with a help of mixed integer
linear programming (MILP) solver. As a result, our proposal Tweakable
TWINE is quite efficient, has the same number of rounds as TWINE with
extremely simple tweak schedule.

1 Introduction

Tweakable Block Cipher. Tweakable block cipher (TBC) is an extension of a
conventional block cipher. An encryption of TBC is a function takes a public
input called tweak T in addition to key K and plaintext M , and the pair (K,T)
specifies the permutation over the message space. Since its inception by Liskov
et al. [17] TBC has been extensively studied, and now it is widely acknowledged
as a powerful primitive to build efficient and highly-secure symmetric-key modes
of operations. For example, the seminal OCB authenticated encryption [14,24,
25] scheme can be seen as a mode of TBC with TBC instantiated as a block
cipher mode called XEX [24].

As proposed by Liskov et al., TBCs can be built on block ciphers. Typi-
cal examples are LRW and XEX modes of operations. They are efficient, as it
c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 129–145, 2019.
https://doi.org/10.1007/978-3-030-26834-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_8

130 K. Sakamoto et al.

requires few block cipher calls for one TBC encryption/decryption. For security,
they have provable security guarantee up to around 2n/2 queries for TBC of n-bit
block. Unfortunately, this level of security is not always enough, in particular
when a TBC is used by modes of operation achieving “beyond-the-birthday-
bound” (BBB) security. Some modes of operations to achieve BBB security have
been proposed [15,16], however, they are usually much more costlier than the
simple LRW/XEX.

Another approach, which is our focus, is a dedicated construction. To our
knowledge the earliest proposal is HPC (where tweak is called “spice”) pro-
posed for AES competition [23]. In recent years, dedicated TBCs are becoming
popular, such as Threefish [21], Deoxys-BC [12], SKINNY [2] and QARMA [1].
One strong advantage of dedicated construction is one can expect the full secu-
rity when properly designed. While dedicated TBCs are possible in principle,
by somehow absorbing tweak in the ordinary block cipher structures such as
SPN or Feistel, but the challenge is how to make it efficient, in a small number
of rounds, while keeping the sufficient security. Tweakey flamework [11] is one
prominent methodology to SPN-based dedicated TBCs. However, in general,
the constructions of TBCs are far less studied than those for block ciphers or
fixed-key permutations.

Building TBC on GFS. In this paper, we study how to build a TBC on gener-
alized Feistel structure (GFS) [22,30], one of the classical structures for block
ciphers. GFS has been adopted by a number of block cipher proposals [9,27].
However, it has never been used to build a TBC, to the best of our knowl-
edge. Goldenberg et al. [7] and Mitsuda and Iwata [19] studied GFS-based TBC
constructions from the viewpoint of provable security, where the round func-
tions are instantiated by PRFs and the focus is to evaluate (S)PRP security
of GFS. While these results give us a baseline, they tell little about the design
and security of concrete TBCs. GFS has a large freedom regarding the choice
of sub-block permutation. Suzaki and Minematsu [26] showed a comprehensive
study on the effect of permutation, including the diffusion, the number of dif-
ferential/linear active S-boxes, etc. Subsequently Suzaki et al. proposed 64-bit
block cipher TWINE [27]. It uses a permutation over 16 nibbles selected from
the result of [26] for achieving the best characteristics.

To build a TBC on GFS, we set our primary goal to reduce the cost of
design, security evaluation, and implementation. Consequently, we choose to
reuse TWINE as much as possible. We design an extremely simple tweak schedul-
ing based on SKINNY’s tweakey schedule [2] and attach it to TWINE. This
reusing approach to dedicated TBC is useful for both designers and users, and
we think our approach itself has some novelties (of course, some of the afore-
mentioned work convert a block cipher into a TBC, but they are provably secure
constructions). We evaluated linear/differential/impossible/integral characteris-
tics for single-key, related-key and chosen-tweak setting. For finding the best
parameter of tweak schedule against these attacks, we extensively used Mixed
Integer Linear Programming (MILP) solver, which is now quite common for
designing ciphers. With these efforts, our proposal, called Tweakable TWINE (or

Tweakable TWINE 131

T-TWINE), becomes quite efficient: it has 64-bit tweak (the same as the block
size) and has the same number of 36 rounds as the original. Key schedule and
tweak schedule are independent, which will be useful for some use cases, e.g, when
a key is hardwired. Tweakable TWINE is obtained by adding few nibble XORs
to TWINE, therefore the hardware cost is essentially the same as TWINE except
the registers for tweak. We also show basic hardware implementation results to
verify this claim.

1.1 Organization of This Paper

For simplicity (and not to describing almost the same algorithms twice), we first
present our proposal Tweakable TWINE at Sect. 2. At Sect. 3 we show our design
goals and tweak schedule function. Section 4 shows the security evaluation on our
proposal. We present hardware implementation results at Sect. 5, and conclude
at Sect. 6.

2 Specification

Tweakable TWINE is based on TWINE [27], which is a 64-bit block cipher sup-
porting two key lengths of 80 bits and 128 bits. Tweakable TWINE takes a 64-bit
tweak value T as an additional input, and consists of a data processing part, a
key scheduling function and a tweak scheduling function. The data processing
part and the key scheduling function are the same as those of TWINE except
additional inputs of tweaks in the data processing part. We, hereafter, refer
Tweakable TWINE [27] with an 80-bit key and a 128-bit key to T-TWINE-80 and
T-TWINE-128, respectively.

2.1 Notation

A bitwise exclusive-OR is denoted by ⊕. For binary strings, x and y, x||y denotes
their concatenation. Let |x| denote the bit length of x. If |x| = m, we may write
x(m) to emphasize its bit length. If |x| = 4c for a positive integer c, we write
x → (k0||k1|| · · · ||kc−1), where |ki| = 4, is the partition operation into the 4-bit
sub-blocks. The opposite operation, (k0||k1|| · · · ||kc−1) → x, is similarly defined.
The partition operation may be implicit, i.e., we may simply write xi to denote
the i-th 4-bit subsequence for any 4c-bit string x.

2.2 Data Processing Part

The data processing part is based on a variant of Type-2 GFS with 16 4-bit
nibbles [26]. The round function consists of a 4-bit S-box S, a round-key XOR,
a round-tweak XOR and a nibble shuffle operation π, which permutes 16 nibbles
as shown in Fig. 1. The S-box S and the nibble shuffle operation π are described
in Fig. 2. The number of rounds for both of T-TWINE-80 and T-TWINE-128 is
36, where the nibble shuffle operation in the last round is omitted.

132 K. Sakamoto et al.

TWINE round function

TWINE key schedule

tweak
schedule
input

key
schedule
input

round input

tweak
schedule
output

key
schedule
output

round output

Fig. 1. Overview of Tweakable TWINE

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 0 F A 2 B 9 5 8 3 D 7 1 E 6 4

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π[h] 5 0 1 4 7 12 3 8 13 6 9 2 15 10 11 14

π−1[h] 1 2 11 6 3 0 9 4 7 10 13 14 5 8 15 12

Fig. 2. S-box S and nibble shuffle π

For i = 1, . . . , 36, i-th round uses a 32-bit (8 nibbles) round key RKi, which
is derived from the secret key K(n) with n ∈ {80, 128}, using the key schedul-
ing function, and i-th round also uses a 24-bit (6 nibbles) round tweak RT i,
which is derived from the 64-bit tweak T using the tweak scheduling function.
The detailed algorithm of encryption and decryption is given as Fig. 3. The key
scheduling function is described in Appendix B.

2.3 Tweak Scheduling Function

The tweak scheduling function produces RT(24×36) from the 64-bit tweak T . It
is a permutation-based function as shown in Fig. 1. In each round, all nibbles are
shifted by 6 nibbles, and 6 nibbles which are inserted to a round function are
shuffled using a 6-nibble permutation πt, s.t. (0, 1, 2, 3, 4, 5) → (1, 0, 4, 2, 3, 5).
The detailed algorithm is given as Fig. 4.

Tweakable TWINE 133

Fig. 3. Encryption and decryption of Tweakable TWINE

Algorithm TweakScheduling(T(64), RT(24×36))

1. t10(4)‖t11(4)‖ · · · ‖t116(4) ← T

2. for i = 1 to 36 do
RT r

(24) ← ti0‖ti1‖ti2‖ti3‖ti4‖ti5‖
for h = 0 to 5 do tiπt[h] ← tih
for h = 0 to 15 do ti+1

(h−6) mod 16 ← tih
3. RK(24×36) ← RT 1‖RT 2‖ · · · ‖RT 36

Fig. 4. Tweak scheduling function of Tweakable TWINE

134 K. Sakamoto et al.

3 Design Decision

In this section, we describe design goals of Tweakable TWINE, and explain how
to design the tweak key scheduling function and choose its parameters.

3.1 Design Goals

Our primal motivation is to build a dedicated TBC on GFN, which is one of the
classical structures for block ciphers. To minimize design and evaluation costs,
we decide to choose a lightweight block cipher TWINE, which is based on GFN,
as an underlying cipher. Then we are able to focus on how to design a tweak
scheduling function, and to add it to TWINE. Our design goals of Tweakable
TWINE are as follow.

1. Reuse the core of original TWINE.
2. Minimize additional H/W cost, especially area.
3. Keep a nice S/W performance of TWINE by SIMD instructions.
4. Minimize additional rounds to keep throughput of TWINE as possible.

Following the requirement 1, we choose a tweak scheduling function that
is independent from the key scheduling function unlike the tweakey framework
of SKINNY [2] so that Tweakable TWINE is realized by only adding the new
tweak scheduling function to TWINE in software and hardware. Besides, the
security in the single-key setting and the related-key setting is reduced to that
of TWINE. Thus, we can focus on only the security evaluation in the chosen-tweak
setting where the adversary can control of the value of a tweak for Tweakable
TWINE.

Following the requirements 2 and 3, we choose a permutation-based tweak
scheduling function that outputs d nibble out of 16 nibbles as round tweak
nibbles and permutes 16 nibbles in each round as shown in Fig. 5. While the
independence of key and tweak schedule is differs from Tweakey framework,
our tweak scheduling function itself has a similarity to tweakey scheduling of
SKINNY. We further simplify it by removing nibble LFSRs and observe no
noticeable security loss. It is well known that the H/W cost (esp. gate size) of
the permutation-based scheduling is very small as shuffle layers are implemented
by cost-free wire operations in hardware. In software, such shuffle operations are
executed by shuffle instructions of SIMD.

3.2 How to Design Permutation-Based Tweak Scheduling Function

To achieve the requirement 4, we properly design the permutation-based schedul-
ing function. Specifically, we need to carefully choose the patterns of the permu-
tation and the locations where tweak nibbles are inserted in the round function,
and the number of tweak nibbles to be inputted to each round. As a criteria for
finding the best tweak scheduling function, we use the number of differentially
active S-boxes.

Tweakable TWINE 135

TWINE round function

TWINE key schedule

tweak
schedule
input

key
schedule
input

round input

tweak
schedule
output

key
schedule
output

round output

Fig. 5. Permutation-based tweak scheduling function

Permutation. Since the number of possible 16-nibble permutations is 16! ≈
244, it is computationally infeasible to evaluate the number of active S-boxes
for all permutations. To reduce the search space, we choose the SKINNY-type
scheduling function [2] such that in each round, d nibbles which are inserted to
a round function are shuffled and all nibbles are shifted by d nibbles as shown
in Fig. 6, because the SKINNY-type permutation guarantees that each nibble
is included in every �16/d� round. The total number of candidates of this-type
permutation is estimated as

∑8
d=1(d!)

An example of d = 4 is given as follows. In the figure, we first shuffle the first
four nibbles and then shift all 16 nibbles by 4.

P4 : (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) →
(4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 3, 1, 0, 2)

tweak
schedule
input

tweak
schedule
output

Fig. 6. Permutation of d = 4

Position of Tweak Inputs in the Round Function. In each round function,
we add d nibble-wise tweak inputs before S-boxes as shown in Fig. 7. Thus, the
number of candidates of the positions of round tweak inputs is estimated as

(
8
d

)
.

136 K. Sakamoto et al.

Fig. 7. Positions for tweak inputs

Therefore, the total number of target tweak scheduling functions to be eval-
uated is estimated as

8∑

d=1

(d! ×
(

8
d

)

) ≈ 216.7.

For these all candidates, we have evaluated the lower bounds on the number of
active S-boxes in each round by the MILP-aided autormatic search algorithm
(See Sect. 4.1 for details), and then find the optimal one of Sect. 2.3. It takes
about 40 days by the computer with 44 cores. To be more specific, when d = 6,
the number of rounds to achieve 32 active S-boxes is the smallest, namely 19
rounds. There are 32 permutations having 32 active S-boxes in 19 rounds (see
Table 4). Among them, we choose the one having more active S-boxes of than
the others in each number (1 in Table 4).

4 Security Evaluation

As mentioned in Sect. 3, the security of Tweakable TWINE in the single-key and
related-key settings is reduced to that of TWINE. This section focuses on the
security of Tweakable TWINE in the chosen-tweak setting where the adversary
fully controls values of a 64-bit tweak. Specifically, we evaluate the security of
Tweakable TWINE against differential, linear, impossible differential, and inte-
gral attacks by Mixed-Integer Linear Programming (MILP) in the chosen-tweak
setting. Our evaluation uses Gurobi Optimizer [10] as an MILP solver.

Tweakable TWINE claims single-key, related-key, and chosen-tweak security
and does not claim chosen-tweak-and-related-key security where the adversary
can control both of values of tweaks and key relations as it is not relevant in our
target application.

4.1 Differential/Linear Attack

Differential and linear attacks were proposed by Biham et al. [5] and Matsui [18],
respectively. To evaluate the security against differential and linear attacks,
we obtain the lower bound on the number of differentially and linearly active
S-boxes by the MILP-aided automatic search method, which is proposed by

Tweakable TWINE 137

Mouha et al. [20]. Since Tweakable TWINE is based on nibble-wise operations,
we evaluate all nibble-wise differential and linear trails.

Table 1 shows our search results up to 25 rounds in each setting, where ASD
SK ,

ASD
RK80

, ASD
RK128

, ASD
CT , ASD

CTRK80
and ASD

CTRK128
, and ASL

CT are the num-
ber of differentially active S-boxes in the single-key setting, the related-key set-
ting (80-bit key), the related-key setting (128-bit key), the chosen-tweak setting,
the chosen-tweak-and-related-key setting (80-bit key) and the chosen-tweak-and-
related-key settings (128-bit key), respectively, and ASL

CT denotes the number
of linearly active S-boxes in the chosen-tweak setting.

Since the maximum differential and linear probability of the S-box is 2−2, 32
active S-boxes (2−2·32 = 2−64) are sufficient to guarantee the security against
differential and linear attacks. In the chosen-tweak setting, T-TWINE-80 and T-
TWINE-128 has at least 32 active S-boxes in 19 rounds. Note that the linear mask
in the round function is not canceled by the input linear mask from the tweak
schedule. Thus ASL

RT in the chosen tweak setting is the same as the number of
active S-boxes in the single-key setting. Therefore, we expect that the full-round
Tweakable TWINE has enough immunity against differential and linear attacks
in the chosen-tweak setting.

In the chosen-tweak-and-related-key setting, 25 rounds are required to
achieve 32 active S-boxes for T-TWINE-80 and T-TWINE-128. Although we do
not claim the chosen-tweak-and-related-key security, if it is needed, for the rea-
son that the number of rounds to achieve 32 active S-boxes increase 6 rounds
from the chosen-tweak setting, we recommend to add 6 more rounds.

Table 1. Lower bound on the number of differentially and linearly active S-boxes in
each model

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ASD
SK 0 1 2 3 4 6 8 11 14 18 22 24 27 30 32 - - - - - - - - - -

ASD
RK80

0 0 0 0 0 1 3 5 6 8 10 13 16 18 21 23 25 28 32 35 - - - - -

ASD
RK128

0 0 0 0 0 1 2 3 4 6 8 10 14 18 20 21 24 26 28 33 - - - - -

ASD
CT 0 0 0 0 2 3 4 6 8 10 12 15 18 21 23 25 28 30 32 34 - - - - -

ASD
CTRK80

0 0 0 0 0 0 0 1 3 4 6 9 11 13 15 18 19 21 23 24 25 27 29 30 32

ASD
CTRK128

0 0 0 0 0 0 1 2 3 5 7 8 10 12 14 15 17 19 21 23 25 27 29 31 32

ASL
CT 0 1 2 3 4 6 8 11 14 18 22 24 27 30 32 - - - - - - - - - -

4.2 Impossible Differential Attack

Generally, the cryptanalysis with impossible differentials, which is proposed by
Biham et al. [4], is one of the most powerful attacks against Feistel and GFS-
based ciphers. By the miss-in-the-middle approach, we search the impossible
differential characteristics that have one active nibble in the 16 tweak nibbles
and one active nibble in 16 ciphertext nibbles at the decryption side. Therefore,
we explore the space of 24(1 + 24) inputs. As a result, we find an 18-round
impossible differential characteristic in the chosen tweak setting as shown in

138 K. Sakamoto et al.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 R 0 1 1 R 0 1 R R R R

R R R R R R 1 R 1 R R R 1 R R R

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

contradiction

Round function

Tweak schedule function1R

2R

3R

8R

8R

18R

17R

16R

1R

2R

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

7R

9R

17R

18R

19R

Encryption side

Decryption side

<

<

<

<

<

<

<

0 1 R: Non-active : Active : Random

Fig. 8. 18-round impossible differential characteristic

Fig. 8. We remark that we do not have to search the input patterns with one
active nibble in the 16 plaintext nibbles (and no active nibble in the tweak)
because they already have been studied by the original paper of TWINE, showing
64 instances of 14-round characteristic as the longest possible ones among them,
in the single-key setting. Due to the structure of Tweakable TWINE, this result is
directly applicable to ours. Thus, by controlling tweak inputs, the adversary can
improve an impossible differential characteristic by 4 rounds. Since we have 36
rounds, we expect that the full-round Tweakable TWINE has enough immunity
against impossible differential attacks.

Tweakable TWINE 139

4.3 Integral Attack

The integral attack was first proposed by Daemen et al. [6], and then it was
formalized by Knudsen and Wagner [13]. After that, it is generalized to the
division property by Todo [28], and is defined as follows.

ALL (A). The set contains all possible taken values the same number of times.
CONSTANT (C). All values in the set are equal.
BALANCE (B). The XOR of all values in the set is zero.
UNKNOWN (U). Each value in the set is random.

To evaluate the nibble-based division property, we use an MILP-aided auto-
matic search method which is proposed by Xiang et al. [29], which enable us to
efficiently explore the propagation of the division property in the chosen tweak
setting. In our evaluation, the division property of plaintext is fixed to all C and
division property of tweak is freely chosen from 216 nibble-wise candidates.

As a result, we find the 11-round integral distinguisher in the chosen tweak
setting as shown in Fig. 9. Thus, we expect that the full-round Tweakable
TWINE has enough immunity against integral attack in the chosen plaintext
setting and chosen tweak setting.

11R
Plaintext

Tweak

ALL CONSTANT BALANCE UNKNOWN

Fig. 9. 11-round integral characteristic

5 Hardware Implementation Results

We evaluated ASIC implementation of Tweakable TWINE and compared it with
TWINE. See Table 2. We used Yosys ver. 0.71 with osu018 stdcells.lib process

Table 2. Hardware results for round-based, enc-only implementations.

TBC Yosys (GE) Known results (GE) Library used by known results

T-TWINE-80 2180 – –

SKINNY-64-128 – 1696 [2] UMCL18G212T3 standard cell library

CRAFT-128 – 1193 [3] 130 nm standard cell library

BC Yosys (GE) Known results (GE) Library used by Known results

TWINE-80 1627 1503 [27] 90 nm standard cell library

PRESENT-80 1841 1570 [27] 90 nm standard cell library

LED-80 3029 1040 [8] UMCL18G212T3 standard cell library

1 http://www.clifford.at/yosys/.

http://www.clifford.at/yosys/

140 K. Sakamoto et al.

library. This process library is comparable to TSMC 0.18µm. To see the validity
of the tool, we also list some known results. We warn that this consists of several
different synthesis environments. Unfortunately, we were not able to compile
Tweakable TWINE using tools other than Yosis. We emphasize that, unlike the
results of [27], we did not use Scan FF for registers which will reduce total GE
counts if available.

The difference between TWINE-80 and T-TWINE-80 are around 550 GEs.
Our library has 4 GEs for 1-bit DFF and 3-1 MUX, and 2.3 GEs for 1-bit XOR,
thus an implementation of tweak schedule needs 64-bit DFF and 64-bit 3-1 MUX,
and 24-bit XOR which amounts to 567 GEs. Thus the difference in size is almost
from the additional tweak schedule function.

The results of Table 2 imply that T-TWINE-80 requires more GEs than the
other tweakable block ciphers listed in the table. However, we focus on how
to build a TBC on TWINE while minimizing the additional cost and keeping
the security, which is basically a different goal from building a small TBC from
scratch (even though TWINE has an excellent hardware performance). Regarding
our goal, and that the additional cost is close to be what we can do, we consider
that the hardware performance of T-TWINE-80 is reasonably good.

Table 3. Hardware results for multi-round, enc-only implementation of T-TWINE-
80. (Top) ASIC (Yosys with osu018 stdcells.lib) (Bottom) FPGA (Intel/Altera
10CL120YF780I7G, Quartus 18.1)

Tweakable TWINE 141

We also evaluated multi-round implementations of T-TWINE-80 as shown in
Table 3. The fact that Tweakable TWINE has 36 rounds enables a very flexible
choice for multi-round implementations with small overhead, which is a property
inherited from the original.

6 Conclusion

With a motivation of designing a tweakable block cipher based on generalized
Feistel structure, we have presented Tweakable TWINE, a tweakable variant of
lightweight block cipher TWINE. Our primary design goal is to build a TBC with
minimum cost for both design and implementation, so we use TWINE as is and
attach an extremely lightweight tweak schedule to it. The design challenge was
how to find the best tweak schedule in terms of security and efficiency, and we
extensively used Mixed integer linear programming (MILP) solver for this pur-
pose. Consequently, Tweakable TWINE maintains TWINE’s efficiency by keeping
the same number of rounds, with very little (almost unavoidable) overhead due
to the existence of tweak. One of the possible future directions is to apply the
same methodology to other block ciphers, and see how efficiently we can turn
them into tweakable block ciphers.

Acknowledgement. Takanori Isobe is supported by Grant-in-Aid for Scientific
Research (B)(KAKENHI 19H02141) for Japan Society for the Promotion of Science.

A Test Vectors

We give test vectors of T-TWINE for each key length. The data are represented
in hexadecimal form.

A. T-TWINE-80

Plaintext : 0123456789abcdef
Key : 00112233445566778899
Tweak : fedcba9876543210
Ciphertext : fbb33219433a42f2

B. T-TWINE-128

Plaintext : 0123456789abcdef
Key : 00112233445566778899aabbccddeeff
Tweak : fedcba9876543210
Ciphertext : ce9e755fffeca2f8

142 K. Sakamoto et al.

B Key Scheduling Function

The key schedule produces RK(32×36) from the secret key, K(n), for n ∈
{80, 128}. It is a variant of GFS with few S-boxes, which is the same as one
used at the data processing. The 80-bit key schedule uses 6-bit round constants,
CONi

(6) = CONi
H(3)‖CONi

L(3) for i = 1 to 35.
The 80-bit and 128-bit key schedules are shown in Fig. 10. Here, Rotz(x)

means z-bit left cyclic shift of x. We note that CONi corresponds to zi in GF(26)
with primitive polynomial z6 + z + 1.

Algorithm KeySchedule − 80(K(80), RK(32×36))

1. WK0(4)‖WK1(4)‖ · · · ‖WK19(4) ← K
2. for r = 1 to 35 do
3. RKr

(32) ← WK1‖WK3‖WK4‖WK6‖WK13‖WK14‖WK15‖WK16
4. WK1 ← WK1 ⊕ S(WK0)
5. WK4 ← WK4 ⊕ S(WK16)
6. WK7 ← WK7 ⊕ 0‖CONr

H

7. WK19 ← WK19 ⊕ 0‖CONr
L

8. WK0‖ · · · ‖WK3 ← Rot4(WK0‖ · · · ‖WK3)
9. WK0‖ · · · ‖WK19 ← Rot16(WK0‖ · · · ‖WK19)
10. RK36

(32) ← WK1‖WK3‖WK4‖WK6‖WK13‖WK14‖WK15‖WK16

11. RK ← RK1‖RK2‖ · · · ‖RK36

Algorithm KeySchedule − 128(K(128), RK(32×36))

1. WK0(4)‖WK1(4)‖ · · · ‖WK31(4) ← K
2. For r = 1 to 35 do
3. RKr

(32) ← WK2‖WK3‖WK12‖WK15‖WK17‖WK18‖WK28‖WK31
4. WK1 ← WK1 ⊕ S(WK0)
5. WK4 ← WK4 ⊕ S(WK16)
6. WK23 ← WK23 ⊕ S(WK30)
7. WK7 ← WK7 ⊕ 0‖CONr

H

8. WK19 ← WK19 ⊕ 0‖CONr
L

9. WK0‖ · · · ‖WK3 ← Rot4(WK0‖ · · · ‖WK3)
10. WK0‖ · · · ‖WK31 ← Rot16(WK0‖ · · · ‖WK31)
11. RK36

(32) ← WK2‖WK3‖WK12‖WK15‖WK17‖WK18‖WK28‖WK31

12. RK(32×36) ← RK1‖RK2‖ · · · ‖RK36

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
CONi 01 02 04 08 10 20 03 06 0C 18 30 23 05 0A 14 28 13 26

i 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
CONi 0F 1E 3C 3B 35 29 11 22 07 0E 1C 38 33 25 09 12 24

Fig. 10. Key schedules of TweakableTWINE, for 80-bit and 128-bit keys. S-box S is the
same as Fig. 3, and key schedule constants, CONi, are described in the bottom.

Tweakable TWINE 143

Table 4. The number of active S-box of each round for 32 tweak scheduling functions
with d = 6 that achieve 32 active Sbox in 19 rounds.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 0 2 3 4 6 8 10 12 15 18 21 23 25 28 30 32 34

2 0 0 0 0 1 2 3 4 7 9 11 13 16 20 21 24 27 29 32 34

3 0 0 0 0 1 2 4 5 6 8 10 12 15 18 22 24 26 28 32 33

4 0 0 0 0 1 3 4 5 6 7 8 10 12 14 18 23 27 29 32 34

5 0 0 0 0 1 2 3 5 7 8 9 12 16 17 20 22 24 27 32 33

6 0 0 0 0 2 2 4 5 6 8 11 15 17 20 22 24 26 29 32 34

7 0 0 0 0 2 3 4 6 8 9 11 13 15 18 21 24 26 30 32 34

8 0 0 0 0 1 2 4 6 8 10 12 14 16 19 21 23 26 28 32 33

9 0 0 0 0 1 2 3 5 8 10 13 15 17 18 22 24 26 29 32 33

10 0 0 0 0 1 3 4 5 7 9 11 14 17 20 22 23 25 28 32 34

11 0 0 0 0 2 3 5 6 7 8 10 13 16 19 23 25 27 29 32 33

12 0 0 0 0 1 2 3 5 7 10 12 15 16 19 22 25 27 30 32 33

13 0 0 0 0 1 3 4 6 7 9 11 14 16 19 22 23 27 29 32 33

14 0 0 0 0 1 2 3 5 7 9 12 14 17 20 22 25 26 30 32 33

15 0 0 0 0 2 3 4 6 7 9 11 13 15 18 21 25 26 29 32 34

16 0 0 0 0 2 3 3 6 8 10 12 14 17 19 21 25 28 29 32 34

17 0 0 0 0 1 2 4 5 7 8 10 12 15 17 20 23 26 29 32 34

18 0 0 0 0 1 2 3 5 6 8 11 14 16 18 21 24 27 29 32 34

19 0 0 0 0 1 3 4 5 6 9 12 15 16 19 22 24 27 30 32 34

20 0 0 0 0 1 3 5 6 7 8 10 12 15 18 21 24 26 29 32 33

21 0 0 0 0 1 2 3 5 6 8 10 12 15 19 21 24 26 29 32 33

22 0 0 0 1 1 3 4 6 8 10 11 13 15 16 20 24 26 29 32 33

23 0 0 0 1 1 2 3 5 6 8 11 13 15 19 22 24 26 30 32 33

24 0 0 0 0 1 2 4 5 7 9 11 13 16 18 21 23 26 29 32 33

25 0 0 0 0 1 3 4 5 6 8 11 15 18 21 22 25 27 29 32 34

26 0 0 0 0 1 2 3 5 6 9 11 14 17 20 23 24 27 29 32 33

27 0 0 0 0 1 2 3 5 7 9 12 15 17 19 22 24 27 29 32 33

28 0 0 0 0 2 3 4 5 6 9 11 13 16 19 20 23 26 29 32 34

29 0 0 0 0 1 3 4 6 8 10 11 13 16 18 20 23 26 29 32 34

30 0 0 0 0 2 2 2 5 6 7 9 11 15 18 22 25 27 30 32 33

31 0 0 0 0 1 2 3 5 6 7 9 12 16 18 22 24 27 29 32 34

32 0 0 0 1 1 2 3 4 6 8 11 14 15 17 20 23 26 29 32 34

144 K. Sakamoto et al.

References

1. Avanzi, R.: The QARMA block cipher family. IACR Trans. Symmetric Cryptol.
2017(1), 4–44 (2017)

2. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

3. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: lightweight tweak-
able block cipher with efficient protection against DFA attacks. IACR Trans. Sym-
metric Cryptol. 2019, 5–45 (2019)

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 2

5. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 1

6. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0052343

7. Goldenberg, D., Hohenberger, S., Liskov, M., Schwartz, E.C., Seyalioglu, H.: On
tweaking Luby-Rackoff blockciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 342–356. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76900-2 21

8. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 22

9. Hong, D., et al.: HIGHT: a new block cipher suitable for low-resource device. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer,
Heidelberg (2006). https://doi.org/10.1007/11894063 4

10. Gurobi Optimization Inc.: Gurobi optimizer 6.5 (2015). http://www.gurobi.com/
11. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

Framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45608-8 15

12. Peyrin, T., Seurin, Y., Jean, J., Nikolić I.: Deoxys v1.41. Submitted to CAESAR
(2016)

13. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45661-9 9

14. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9 18

15. Lampe, R., Seurin, Y.: Tweakable blockciphers with asymptotically optimal secu-
rity. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 133–151. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-43933-3 8

16. Landecker, W., Shrimpton, T., Terashima, R.S.: Tweakable blockciphers with
beyond birthday-bound security. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 14–30. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32009-5 2

https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-48910-X_2
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-3-540-76900-2_21
https://doi.org/10.1007/978-3-540-76900-2_21
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/11894063_4
http://www.gurobi.com/
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.1007/978-3-662-43933-3_8
https://doi.org/10.1007/978-3-642-32009-5_2
https://doi.org/10.1007/978-3-642-32009-5_2

Tweakable TWINE 145

17. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 3

18. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

19. Mitsuda, A., Iwata, T.: Tweakable pseudorandom permutation from generalized
feistel structure. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008.
LNCS, vol. 5324, pp. 22–37. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-88733-1 2

20. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

21. Schneier, B., et al.: The SKEIN hash function family (2010). http://www.skein-
hash.info

22. Nyberg, K.: Generalized feistel networks. In: Kim, K., Matsumoto, T. (eds.) ASI-
ACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996). https://
doi.org/10.1007/BFb0034838

23. Schroeppel, R.: An overview of the hasty pudding cipher (1998). http://www.cs.
arizona.edu/∼rcs/hpc

24. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-
2 2

25. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: ACM CCS 2001, pp. 196–205.
ACM Press, November 2001

26. Suzaki, T., Minematsu, K.: Improving the generalized feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13858-4 2

27. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE : a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Huapeng, W. (eds.) SAC
2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

28. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

29. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 24

30. Zheng, Y., Matsumoto, T., Imai, H.: Impossibility and optimality results on con-
structing pseudorandom permutations. In: Quisquater, J.-J., Vandewalle, J. (eds.)
EUROCRYPT 1989. LNCS, vol. 434, pp. 412–422. Springer, Heidelberg (1990).
https://doi.org/10.1007/3-540-46885-4 41

https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/978-3-540-88733-1_2
https://doi.org/10.1007/978-3-540-88733-1_2
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
http://www.skein-hash.info
http://www.skein-hash.info
https://doi.org/10.1007/BFb0034838
https://doi.org/10.1007/BFb0034838
http://www.cs.arizona.edu/~rcs/hpc
http://www.cs.arizona.edu/~rcs/hpc
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-642-13858-4_2
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-662-53887-6_24
https://doi.org/10.1007/3-540-46885-4_41

Malware Detection and Classification

Correlating High- and Low-Level
Features:

Increased Understanding of Malware Classification

Sergii Banin(B) and Geir Olav Dyrkolbotn

Department of Information Security and Communication Technology,
NTNU, Gjøvik, Norway
sergii.banin@ntnu.no

Abstract. Malware brings constant threats to the services and facil-
ities used by modern society. In order to perform and improve anti-
malware defense, there is a need for methods that are capable of mal-
ware categorization. As malware grouped into categories according to its
functionality, dynamic malware analysis is a reliable source of features
that are useful for malware classification. Different types of dynamic fea-
tures are described in literature [5,6,13]. These features can be divided
into two main groups: high-level features (API calls, File activity, Net-
work activity, etc.) and low-level features (memory access patterns, high-
performance counters, etc). Low-level features bring special interest for
malware analysts: regardless of the anti-detection mechanisms used by
malware, it is impossible to avoid execution on hardware. As hardware-
based security solutions are constantly developed by hardware manu-
facturers and prototyped by researchers, research on low-level features
used for malware analysis is a promising topic. The biggest problem with
low-level features is that they don’t bring much information to a human
analyst. In this paper, we analyze potential correlation between the low-
and high-level features used for malware classification. In particular, we
analyze n-grams of memory access operations found in [6] and try to
find their relationship with n-grams of API calls. We also compare per-
formance of API calls and memory access n-grams on the same dataset
as used in [6]. In the end, we analyze their combined performance for
malware classification and explain findings in the correlation between
high- and low-level features.

Keywords: Malware analysis · Malware classification ·
Information security · Low-level features · Hardware-based features

1 Introduction

Malware, or malicious software, is one of the threats that modern digitized
society faces every day. The use of malware ranges from showing ads to users,

The research leading to these results has received funding from the Center for Cyber
and Information Security, under budget allocation from the Ministry of Justice and
Public Security.

c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 149–167, 2019.
https://doi.org/10.1007/978-3-030-26834-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_9

150 S. Banin and G. O. Dyrkolbotn

spreading spam and stealing of private data, to attacks on power grids, trans-
portation and banking facilities [19,23]. The more severe consequences of mal-
ware use, the more likely they are a part of malicious campaign performed by an
APT: Advanced Persistent Threat [9], an organization or a human that performs
stealthy, adaptive, targeted and data focused [8] attack. APTs utilize different
methods, tools and techniques to achieve their goals. Malware can be used at the
different steps of APT kill-chain [6]: from reconnaissance and denial-of-service
attacks to data stealing and creation of backdoors (for remote access) in the
victim system. Since malware can be used for the variety of purposes, it is not
only important to detect it, but also to be able to categorize it into different
categories based on certain properties.

Malware classification (categorization) is an important step for understand-
ing goals and methods of adversaries [1], analyzing security of systems and oper-
ations as well as for improving defense and security mechanisms. Static malware
detection may fail due to obfuscation and encryption techniques used by the cre-
ators of malware. Because of this dynamic, or behavior-based detection methods
are used. Moreover, malware samples are categorized into types and families by
anti-virus vendors based on their behavior [6]. Hence, it is possible to assume
that the use of features derived from malware behavior for malware classifica-
tion can outperform static methods due to the nature of categories. Both static
and dynamic methods need predefined sets of features: properties derived from
a malicious file itself or its behavior.

We can divide features for dynamic analysis into two main groups: high-level
(API and system calls, network activity, etc.) and low-level (memory access
operation, opcodes, operations on hard-drive, etc). Generally speaking, we con-
sider low-level features as those that directly emerge from the system’s hardware
[6,14,18]. Malware authors can try to conceal their malware and its behavior
from anti-malware solutions and malware analysts by utilizing different tech-
niques such as obfuscation, encryption, polymorphism or anti-debug. Despite
their attempts, they can not avoid execution on the systems hardware [6,17].
That’s why hardware-based, or low-level, features (since they are behavior fea-
tures) are a reliable source of information for malware detection [7,18] and clas-
sification [6]. Different low-level features have been used for malware detection
and classification: Hardware Performance Counters [5], frequencies of memory
reads and writes [17], memory access patterns [6,7], architectural and micro-
architectural events [22]. To the author’s knowledge, there are no attempts
to explain how particular low-level features correspond to high-level activity.
Hardware-based features describe behavior of an executable on a very fine-
grained level, so it is hard, by looking at the low-level feature itself, to explain
which role in the behavior of an executable it has. Therefore, in this paper,
we made an attempt to explain how memory access patterns correlate with the
behavior of malware described by high-level features. This will make it easier
for a human analyst to understand what exactly makes malware samples to be
distinctive.

Correlating High- and Low-Level Features 151

In order to describe our problem more generally we use an approach pictured
on the Figure 1. Assume we have a dataset that contains N samples and the
task is to classify them into M classes. From the dataset we can extract features
of types A (e.g. low-level features) and B (e.g. high-level features). Different
feature types are derived from different sources of information: different ways to
describe properties of samples in the dataset. After feature selection, features
of both types can be independently used for classification of samples from the
dataset. Here we suggest a hypothesis that features from feature sets A and B
can correlate with each other. In this paper, we focus on finding a correlation
between n-grams of memory access operations and API calls. To address this
problem we take paper [6] as baseline. In their paper authors used patterns of
memory access operations to classify malware into 10 malware families and 10
malware types. The best 29 n-grams of memory access operations are selected,
and we reuse them in our case since our datasets are identical. As the high-
level, or human understandable, features we decided to use n-grams of API
calls since they are shown to be a reliable source of information for malware
detection [4] and classification [13]. To get the most complete picture of possible
correlations between memory access operations and API calls we need to search
for all-to-all correlations. However, such an exhaustive search is computationally
infeasible. In order to be able to carry out the search, we had to adjust the
method, as described in Subsect. 4.7. We record an execution flow of malware
samples that contains memory access operations performed by single instructions
as well as calls to the API functions (more details in Sect. 4). First, we perform
classification and feature selection for n-grams of API calls. Our goal is not to
study the performance of API calls for malware classification, but rather to find
good and relatively short feature set of API calls n-grams as it will be more useful
for research and analysis purposes. This feature set is later used in an attempt
to find a possible relationship between memory access patterns and API calls,
which existence or non-existence will help to reveal nature of memory access
patterns that were successfully used for the same classification task.

Fig. 1. Generalized problem description

152 S. Banin and G. O. Dyrkolbotn

The key findings of our paper are following. Our results show no significant
correlation between information relevant for multinomial malware classification
represented by best API-calls and best memory access patterns. This is impor-
tant, as it shows that memory access patterns are not redundant to the higher
level features such as API calls. As the result, feature set combined from mem-
ory access patterns and API calls show improved classification performance.
This contributes to better malware detection and classification as well as to the
potential hardware-based security solutions.

This paper is a proof of concept, and our main goal is to address challenges
and possibility of a high-level explanation of low-level events as well as creation of
a stepping stone towards an explanation of a performance of low-level features
in malware classification context. The remainder of the paper is arranged as
follows. In Sect. 2 we provide an overview of the related studies and focus on
the baseline paper [6]. In Sect. 3 we describe our problem more specifically and
describe an approach for validating of our hypothesis. In Sect. 4 we describe our
experimental design, analysis environment, methods used for feature extraction
and selection, explain how we search for correlation between features of different
types as well as provide terms, definitions and assumptions important for our
study. Finally, in Sect. 5 we present results, analyze them and provide conclusions
in Sect. 6.

2 Background

In this section, we present a short overview of articles that are related to features
and methods we use in this paper. There are many papers that use hardware-
based features for malware detection or categorization. For example in [5] a
real-time dynamic malware detection with the use of special-purpose registers
of modern CPUs as a source of features is proposed. Special-purpose registers,
or hardware performance counters, are used for CPU scheduling, performance
monitoring, integrity checking or workload pattern identification. In their paper,
authors used four different events to construct features: retiring of a branch, load
and store instructions as well as mispredicted branch instructions. With the use
of various machine learning algorithms, they achieved up to 96% accuracy when
classifying malicious and benign executables. Even though their dataset is small,
consisting of only 20 benign and 11 malicious samples, their paper shows that
hardware-based (or low-level) features can be used for malware detection.

In [17] Ozsoy et al. propose so-called malware-aware processors: processors
that has a built-in hardware module that is capable of malware detection. In
their work authors also mention hardware performance counters, but choose
slightly different features to be used in malware detection: frequency of memory
reads and writes, immediate and taken branches as well as unaligned memory
accesses. They implemented a malware-aware processor in an FPGA emulator
and state that their system is capable of malware detection with detection rates
up to 94% and false positive rates of up to 7%. As they didn’t achieve low-enough
false positive rates, they propose to use malware-aware processor together with a

Correlating High- and Low-Level Features 153

software-based solution. They also emphasize the importance of malware-aware
processor to be always on, so that it is hard to avoid detection from it.

Paper [7] is of particular interest for us, since it proposes a novel method
for malware detection based on memory access pattern. In their work Banin et
al. recorded sequences of memory access operations produced by malicious and
benign executables. They didn’t take into account addresses and values used
by these operations but utilized only a type of operation: read or write. Each
sample in their dataset was launched under surveillance of specially crafted Intel
Pin [12] tool and was made to produce up to 10 millions of memory access
operations. Later, larger sequences of memory access operations were split into
a set of overlapping sub-sequences - n-grams of a size from 16 to 96. With the
use of a feature selection and various machine learning algorithms they achieved
a classification accuracy of up to 98%. Results showed, that 800 memory access
n-grams are enough to achieve the highest accuracy on their dataset of 455
benign and 759 malicious executables. They claimed, that n-grams of memory
access operations of a size 96 extracted from only the first million of memory
access operations performed by executables are reliable features for malware
against benign classification. Later, in [6] they evaluated performance of 96-
grams derived from the first million of memory access operations for the malware
classification task. They used two different datasets, one consisted of 952 malware
samples and was label according to malware types while the other had 983
malicious executables that were labeled according to malware families. With
the use of feature selection, they compared results from feature sets of a size
50,000 and 29. Even though machine learning algorithms showed a decline in
performance while given 29 features instead of 50000, this decline was only of a
5%. With only 29 features they achieved a classification accuracy of up to 78% for
malware families and 66% for types. Even though it was far from the 98% from
their previous paper they stated, that 78% can be considered good enough for 10-
class classification problem. They also compared their results to the results from
a paper [20], where authors used the same malware families and types but on
the different dataset. In [20] Shalaginov et al. used static features, and achieved
lower true positive and higher false positive rates. As we stated in the Sect. 1
we use paper [6] as a baseline: we use the same datasets, execution environment
(Virtual Machine) and use their feature set as low-level features which origin
we tend to explain. We will elaborate more on the similarities between our data
collection processes in the Sect. 4.

Finally, we will look at some articles that make use of API-calls performed
by malware during its execution for malware detection and classification. In
their paper [13] Islam et al. used frequencies of occurrence of API calls during
the execution of malware to detect malware and categorize into one of the 9
malware families. They also carve several static-based features such as lengths
of functions or printable strings. Combining dynamic and static features they
created so-called integrated feature vector and evaluated the classification per-
formance of different features separately and together. They achieved a classi-
fication accuracy of up to 97% and showed that integrated feature vector can

154 S. Banin and G. O. Dyrkolbotn

outperform other feature vectors. On its turn, Lim et al. in [16] proposed to use
k-grams (special modification of n-grams derived from behavior automatons) of
API-calls for malware detection. Even though authors didn’t clearly picture the
performance of their algorithm, they explained how small sequences of API calls
can be used to measure the similarity between the behavior of different malware
samples.

Shijo et al. [21] (similarly to [13]) utilized integrated feature vector con-
structed from dynamic and static features. As dynamic features, they used API
calls n-grams of a size 3 and 4. With the use of only dynamic features they
achieved a classification accuracy of up to 97% for malware against benign clas-
sification. Integrated feature vector allowed them to gain an increase in classi-
fication accuracy of up to 1%. The last paper we want to mention is [4] where
Alazab et al. used API calls n-grams of a size 1 to 5 for malware detection. With
the use of Support Vector Machines they achieved a classification accuracy of
up to 96% and concluded, that for their dataset the best features were actually
1-grams or unigrams: n-grams of a size 1.

As we have seen, different high- and low-level features are used for malware
detection and classification. Our goal in this paper is to find possible correlation
between memory access patterns (low-level features) and API calls (high-level
features).

3 Problem Description

From the literature overview, we can state that low-level features (despite diffi-
culties with their extraction) can be a reliable source of information for malware
detection and classification. However, system counters, opcodes and memory
access patterns don’t give much information about malware functionality to the
security analyst. An n-gram of opcodes of a size 4, when given out of context,
does not reveal what it was used for by itself. The same can be said about
sequence of memory access operations: it is challenging to grasp which goals
were achieved by malware when a certain sequence of memory access operations
was performed. For example, a typical n-gram of a size 96 of memory access
operations found in [6] looks like this: WRWRRRRR...WWWRRRRRW . It
is obvious, that such features, even if they can be effectively used for malware
classification, do not bring much useful information about malware’s behavior.
As different papers describe the use of low-level features for malware detection
and classification, to the author’s knowledge there have been no attempts to find
a relationship between low-level activity and high-level events such as API-calls.
Because of everything said above, first, we propose two following statements:

1. N-grams of memory access operations can be used for malware classification
(shown in [6]).

2. N-grams of API calls can be used for malware classification (shown in e.g.
[21]).

Based on statements 1 and 2 we propose the following hypothesis: if statements
1 and 2 are true, then it should be possible to find a correlation between some of

Correlating High- and Low-Level Features 155

the features from both feature spaces. An approach for validating this hypothesis
is described in Subsect. 4.7. For example, we assume that some memory access
n-grams might originate in API call n-grams. If we are able to validate this
hypothesis then we will find a way to correlate sequences of memory access
operations to the events of higher level which are more human understandable.
If our hypothesis is rejected, then API calls and memory access n-grams are
independent features, thus combining them into an integrated feature vector
should increase overall classification accuracy. Generally speaking, our goal is to
check whether sequences of memory access operations that were successfully used
for multinomial malware classification can be attributed to certain sequences of
API calls, thus can be explained with high-level events and become more human
understandable.

4 Experimental Design

In this section, we present terms and definitions, provide the assumptions used
and describe experimental setup and properties of datasets. Later on, we explain
methods used for data collection and processing, list the machine learning and
feature selection algorithms and describe the way we were searching for correla-
tion between high- and low-level event.

4.1 Terms, Definitions and Assumptions

In this subsection, we provide terms and definitions and assumptions used during
this study. We begin with the definitions:

– N-gram. An n-gram is a sub-sequence of length n of an original sequence
of length L. For example if an original sequence of length L = 6 [RRWRWW]
is split into n-grams of length n = 4 (4-grams) then our n-grams set will be:
RRWR, RWRW, WRWW [6]. In this example, similarly to baseline paper [6],
and our paper we use overlapping n-grams: the next n-gram begins from the
second element of the preceding one.

– Memory access operations: when an executable is reading from virtual
memory, read (or R) memory operation is recorded. When writing to virtual
memory performed by an executable, write (or W) memory operation is
recorded.

– API call: or Application Programming Interface call is a call to a function
provided by the operating system (Windows 7 in our case). API calls are
usually used by malware and goodware to perform network, file, process and
other kinds of activity.

– Malware types and families. Malware types and families are different
ways to divide malware into categories. Malware types describe general func-
tionality of malware: what it does, which goals it pursues. Malware families
describe particular functionality of malware: which methods it use and how
it pursues its goals [6]. For example, virus, worm and backdoor are malware
types, while hupigon, vundo and zlob are malware families.

156 S. Banin and G. O. Dyrkolbotn

We continue with the following assumptions:

1. We assume that for the research and analytic purposes it is better to use
smaller feature sets even if their performance in terms of classification accu-
racy is slightly lower [6]. For example, it is way easier to understand feature
set of a size 33 that brings classification accuracy of around 70% than the one
of a size 20000 with classification accuracy 73%.

2. We assume that if features from different sources (memory access operations
and API calls) are related to each other, then this relationship can be found
among small sets of the best features.

4.2 Experimental Flow

In this subsection, we will describe our experimental flow. On the Fig. 2 we pic-
ture a schematic view of our experiment. By running malware samples from
two datasets (see Subsect. 4.3), we collect data (memory access operations and
API calls, Subsect. 4.5) and perform feature construction (n-grams of API calls),
later on, we use feature selection to reduce feature space and train machine learn-
ing algorithms in order to assess quality of a newly built feature vectors (Sub-
sect. 4.6). For the consistency (to the baseline paper) reasons, we run malware
samples until they generate 1,000,000 of memory access operations. Some sam-
ples stop execution before they generate the desired amount of memory access
operations, but we keep such data as is since this is a real-world scenario where
one can’t expect malware to produce as much traces as needed. While running
malware, we record memory access operations and API calls (if present) for every
executed instruction. From the literature review we understood, that API call
n-grams of a size 3 and 4 are the most promising features. However, we also
decided to use n-grams of length 8 in order to get a slightly more complete pic-
ture of API calls n-grams capabilities for malware classification. This also gives
us more data to use in the search for correlation between memory access patterns
and API calls. The number of n-grams is quite big, so in order to pursue one
of our goals (shorter and more understandable feature set) we perform feature
selection to reduce the dataset. As well as authors of [6] we used Correlation
Based feature selection [11] from machine learning tool Weka [3] as it showed
quite good performance while reducing the size of a feature set in several times
of magnitude. After getting a reduced feature set, we store data in the format
that can be used for training of machine learning models. In our case, similarly
to the baseline paper, as feature values, we store only the fact of presence (1 or
0) of a certain feature in the behavior of a malicious sample. The logic here is
similar to [6]: in contrast to other articles, where authors rely on frequencies of
appearance of certain features, we want to find features that work regardless the
time malicious executable has run. Our data looks like a bitmap of presence,
where each row represents a single malicious sample, first column represents a
category of a sample (family or type) and the rest of the columns represent fea-
tures. Cells contain 1 if a certain feature is present in the behavior of malware
and 0 if not. The bitmap of presence is later used for training the machine

Correlating High- and Low-Level Features 157

learning models (see Subsect. 4.6), which classification performance (classifica-
tion accuracy) is compared with the one from baseline paper. Having API call
n-grams as features, we later search through the entire records or behavior data
from each malware sample in order to find whether these n-grams are related to
the 29 memory access n-grams derived by authors of [6]. We elaborate on the
search technique in the Subsect. 4.7.

Fig. 2. Detailed experimental flow

4.3 Dataset

Similarly to [6], our two datasets are derived from the original dataset collected
under the initiative of Testimon [10] research group. It consists of 400k mal-
ware samples: malicious PE32 executables gathered from VirusShare [2]. Initial
dataset was used for research purposes and is described in [20]. Both our datasets
are the same as in baseline paper [6]. The authors of a baseline paper provide
a detailed description of their datasets, while we focus only on the most impor-
tant properties of these datasets. First of all, one dataset (952 files) has malware
samples that are labeled according to ten types: backdoor, pws, rogue, trojan, tro-
jandownloader, trojandropper, trojanspy, virtool, virus, worm. Secondly, another
dataset (983 files) has its malware samples label according to ten families: agent,
hupigon, obfuscator, onlinegames, renos, small, vb, vbinject, vundo, zlob. The
choice of categories was made by the simple rule: 10 most prevalent categories in
the original dataset were chosen. To simplify automated malware analysis (see
Sect. 4.4) sample were chosen to be without anti-VM and anti-Debug features.
As described in [6], dealing with anti-analysis functionality of malware is out
of scope in such research, since their goal was to study a possibility of malware
classification with memory access patterns as features. The distributions of cate-
gories within datasets are almost uniform, so we assume that datasets are nearly
balanced, so there is no need to study the influence of categories distribution on
the results of an assessment of machine learning models.

158 S. Banin and G. O. Dyrkolbotn

4.4 Analysis Environment

Our analysis environment was almost identical to the one in [6], apart from
different versions of host OS and VirtualBox. We assume that these changes
will not influence the results of the experiments since hardware and guest OS
are identical. We run our experiments on Virtual Dedicated Server (VDS) with
Intel Core CPU running at 3.60 GHz, 4 cores, SSD RAID storage and 32 GB
of virtual memory. As a main operating system, Ubuntu 18.04 64bit was used.
Additionally, Intel Pin 3.6 [12], Python 2.7 and VirtualBox 5.2.22 were used.
Windows 7 32-bit was installed on the VirtualBox virtual machine as a guest OS.
We used a virtual machine as an isolated environment to run malware together
with a specially crafted Intel Pin tool. The virtual machine is reverted to the
same snapshot before each run, so we avoid the influence of the environment on
the results of data acquisition. To be consistent with a baseline paper, we choose
the 32-bit version of Windows 7.

4.5 Data Collection

We focus on “correlating” the n-grams of memory access operations with n-grams
of API calls. We need to: (a) record memory access operations produced by mal-
ware (b) record calls to API functions. The first task is the easiest one. With
the use of dynamic binary instrumentation framework Intel Pin, one can put
instrumentation on each executed instruction and record memory access opera-
tions performed by it. For the consistency reasons, we chose the same amount of
memory access operations to record as was used in [6]. A malicious executable
run until it produces 1 million of memory access operations. As it was shown in
the previously published papers, this is not only enough to reveal maliciousness
of an executable [7] but also to perform multinomial classification of malware
into categories and types [6]. The second task is more difficult. When a call
instruction is performed it only contains an address of a function. In order to
get its name from a library, one should find which one of the export symbols
correspond to a certain address. Moreover, some native Windows libraries per-
form inter- and intra-modular calls not to the functions themselves (a call to
a first instruction of a function) but to the subroutines within these functions.
Most of the papers that use dynamic API call sequences do not describe how
they treat such calls: it is not clear whether they record or just ignore them.
In this paper, we treat a call to a first instruction of an API function and a
call to a subroutine in an API function equally. Our reason for this is that if
a logic of an executable requires such calls to be done and we can collect this
information, it may improve the understanding of malware’s current execution
goals and context.

The call instruction can be used to invoke internal (to an executable itself)
function. It is usually impossible to derive a name of an internal function of
an executable (unless you have debug file, which is not the case in malware
analysis), so we store a name of a section where a function of interest is placed.
We also keep this information and treat such calls equally to the API calls.

Correlating High- and Low-Level Features 159

Having raw data recorded, we split a sequence of API calls generated by each
malicious sample into n-grams.

For better analysis capabilities as well as future work we record additional
information for each instruction executed after launching a malware sample. A
real example of raw data is present in the Listing 2 in AppendixA. In order to
record this data, we created an Intel Pin based tool that is launched together
with each sample from a dataset. A tool records all data into a file and stops
if an executable generated 1 million of memory access operations. Some sam-
ples generate less memory activity than others, but we consider it a real-world
scenario where one can’t rely on malware to generate a particular amount of
data.

From the raw data we extract names of the called functions, store them into
the sequence according to their execution order and split the sequence into n-
grams of a different size. For example, one of the API call n-grams of a size 4
derived from malware families dataset looks as following: memset, GetModule-
HandleW, ferror, freea. From the raw data, we extract API calls and memory
access operations, that are later used in training the machine learning models
and searching for mutual correlation.

4.6 Machine Learning Algorithms and Feature Selection

For the consistency reasons, we chose the same machine learning (ML) algo-
rithms as in [6]: k-Nearest Neighbors (kNN), RandomForest (RF), Decision Trees
(J48), Support Vector Machines (SVM), Naive Bayes (NB) and Artificial Neural
Network (ANN). The following parameters (default for Weka [3] package) were
used for ML algorithms: kNN used k = 1; RF had 100 random trees; J48 used
pruning confidence of 0.25 and a minimum split number of 2; SVM used radial
basis as function of kernel; NB used 100 instances as the preferred batch size;
ANN used 500 epochs, learning rate 0.3 and a number of hidden neurons equal
to half of the sum of a number of classes and a number of attributes. In order
to assess the quality of machine learning models we used 5-fold cross validation,
and chose accuracy (number of correctly classified instances) as the measure of
evaluation. To reduce the feature set we used Correlation Based feature selection
from Weka. Correlation-based feature selection [11] is an algorithm that chooses
a subset of features that have the highest correlation with classes, lowest cor-
relation with each other and give the best merit among other possible subsets.
First reason to choose this feature selection method as it helped authors of a
baseline paper to go from 50 thousands of features to just 29, so we wanted to
get a number of features of nearly the same magnitude. Second reason is that
one of our goals is to have relatively short feature set that can be easily analyzed
by a human analyst.

4.7 Correlating Features Derived from Different Sources

In this section, we present a method to validate our hypothesis presented in
Sect. 3. There are several approaches that can be used to validate our hypothesis.

160 S. Banin and G. O. Dyrkolbotn

The first one is the most obvious: create the entire feature sets for memory access
operations and API calls n-grams and find correlations between them (all-to-all
approach). This approach will reveal the full picture of correlation between the
two feature types. But it also has one major drawback, that makes its use almost
impossible. The entire feature space of memory access n-grams in [6] consists
of 15 millions distinctive features for malware families dataset. Finding their
correlation with around 12 thousands of API calls 3-grams (see Subsect. 5.1) can
not be finished in feasible time. Slightly less time consuming variant is to search
for correlation between the best memory access operations features and the entire
feature space of API calls n-grams (best-to-all approach). This method would
provide a less complete overview over the possible correlations, but would still be
very time consuming, and is left for the future work. To some initial results we
used a best-to-best approach: instead of taking the entire feature sets of memory
access operations and API calls, we use only the best features out of both feature
spaces. This approach allowed us to finish the experiments in feasible time, but
also has some limitations that will be discussed in the following sections. As this
paper is aiming to provide a proof of concept for searching for correlations, we
believe that this approach properly fits our purposes.

One of the challenges we met during this research is how to correlate a certain
n-gram of memory access operations to an n-gram (n-grams) of API calls. First of
all, we need to locate a place in a raw data, where a certain n-gram of memory
access operations is found. To do this, we iterate over the raw data, collect
memory access operation into a buffer of a size 96 (see Sect. 2) and check if the
pattern in the buffer is found among one of the features taken from the baseline
paper. If match occurs - we save the position where memory n-grams starts and
begin the search for API call n-gram. There can be various approaches to this
and we selected the following one, as it brings wider coverage of execution flow.
To state that a certain memory access n-gram is related to an API call n-gram
we use the following criteria:

1. If the beginning of memory access n-gram lays after first call in API calls n-
gram and before the call that follows current n-gram - these memory and API
call n-grams correlate. In this case we assume that memory access n-gram is
correlated to an API calls n-gram.

2. For any other case we state, that memory access and API call n-grams are
not correlated.

The above mentioned criteria works as shown in Fig. 3 where we present a sim-
plified version of our data. On this Figure, memory access n-gram of a size 96
correlates with API calls 3-grams [APIcall 1, APIcall 2, APIcall 3], [APIcall 2,
APIcall 3, APIcall 4] and [APIcall 3, APIcall 4, APIcall 5] but does not corre-
late with [APIcall 4, APIcall 5, APIcall 6].

5 Results and Analysis

In this section we provide the results of feature selection and classification for
API calls n-grams, compare them to the results achieved with memory access

Correlating High- and Low-Level Features 161

Fig. 3. Correlation between API calls and memory access n-grams

n-grams from [6] and evaluate our findings in correlating these two types of
features.

5.1 API Call n-grams for Malware Classification

From the raw captured data we extracted 12818 3-grams, 17407 4-grams and
33900 8-grams in the malware family dataset and 17252 3-grams, 24054 4-grams
and 49513 8-grams in the malware types dataset. Using correlation based feature
selection allowed us to reduce number of features to the following: 23 3-grams,
33 4-grams and 47 8-grams in the malware family dataset and 52 3-grams, 62
4-grams and 76 8-grams in the malware types dataset. The reduction of feature
vectors worked similarly to the baseline paper: we went down from tens of thou-
sands to less than hundred features. As assessment of classification performance
of API call n-grams is not the main goal of this paper, we provide only the
results for reduced feature sets. However, we performed classification on the full
feature sets and their classification accuracy was only a few percents higher then
in reduced feature sets. It is again similar to [6], so we assume that it is possible
to compare newly acquired feature set with the one from [6]. In the Table 1 the
classification accuracy achieved by different machine learning algorithms is pre-
sented. On the left and right sides of the table we present the results achieved on
malware families and malware types datasets respectively. First row represent
results achieved with n-grams of memory access operations of a size 96 from [6].
We name this feature type Mem96. Rows from 2 to 4 represent results achieved
with API calls n-grams of sizes 3,4, and 8. We name them API3, API4 and API8
respectively. As we can see, most of the time API calls n-grams performed on
the same or even higher level then memory access n-grams for the malware fam-
ilies dataset. In contrast, performance of API calls n-grams for malware types
dataset most of the time was lower then the one by memory access n-grams.
These results help us to prove Statement 2 from Sect. 3. In the Table 1 we use
bold font in order to underline best classification accuracy for a certain type of
features. It is also worth mentioning, that in general API calls n-grams of a size
4 performed better then other types of n-grams. We have to draw an important
conclusion from the results we achieved with API calls n-grams. Classification
performance of less then a hundred API calls n-grams are comparable to those
achieved with tens of thousands of memory access n-grams in [6].

162 S. Banin and G. O. Dyrkolbotn

Table 1. Classification accuracy for baseline feature set, API call n-grams feature sets
and combined feature sets.

#Feature type Feature set size Families Types

Fam. Typ. kNN RF J48 SVM NB ANN kNN RF J48 SVM NB ANN

1 Mem96 29 29 0.784 0.781 0.769 0.740 0.724 0.784 0.668 0.668 0.626 0.584 0.498 0.617

2 API3 23 36 0.775 0.780 0.746 0.709 0.652 0.774 0.616 0.631 0.587 0.533 0.521 0.607

3 API4 33 46 0.813 0.810 0.792 0.765 0.677 0.805 0.636 0.636 0.604 0.541 0.566 0.616

4 API8 47 67 0.799 0.801 0.784 0.751 0.694 0.797 0.643 0.660 0.605 0.537 0.562 0.615

5 API3+Mem96 52 65 0.834 0.856 0.817 0.781 0.711 0.845 0.680 0.700 0.641 0.573 0.556 0.682

6 API4+Mem96 62 75 0.838 0.859 0.824 0.786 0.716 0.842 0.680 0.694 0.662 0.580 0.566 0.676

7 API8+Mem96 76 96 0.832 0.845 0.801 0.773 0.717 0.835 0.667 0.687 0.649 0.586 0.575 0.686

5.2 Correlating Memory Access and API Call n-grams

The results we got were quite surprising. With the feature selection, we used
and feature correlation search method we described in Subsect. 4.7 we found no
correlation between memory access n-grams and API call n-grams for malware
types dataset. For malware types dataset our hypothesis about the correlation
between features derived from different sources was rejected. Results for malware
families dataset was not much different. One memory access n-gram was found
to be related to a certain API calls 3-gram in different malicious samples, and
the other was found to be related to two API calls 4-grams in different malicious
samples as shown in Listing 1.1. So our initial hypothesis was mostly rejected for
malware families dataset as well. Having this information we decided to create
integrated feature sets by combining memory n-grams feature set with API call
n-grams feature sets. We analyze the performance of an integrated feature set
in the next subsection.

5.3 Performance of Integrated Feature Sets

We found an idea about combining features of different types into an integrated
feature vector from [16]. In the Table 1 we present classification accuracy achieved
with integrated feature vectors. In the rows 5 to 7 results of combining memory
n-grams feature vector with all API call n-gram feature vectors are present. As
we can see, with several exceptions, most of the time integrated feature vector
outperform separate feature vectors. Moreover, with an integrated feature vector
(which size didn’t exceed 100) we achieved a classification accuracy of 85.9%
for families and 70% for types, which are higher than respective 84.5% and
66.8% achieved in [6] with use of 50,000 memory access n-grams. This indicates
that combining API call and memory access n-grams does not bring redundant
information which often results in lower classification accuracy [15]. Even though
our hypothesis was rejected, the increased classification accuracy of an integrated
feature set show that our correlation search method (Subsect. 4.7) was correct.

Correlating High- and Low-Level Features 163

5.4 Discussion and Analysis of Correlation Findings

As we already said, for the two entire datasets, we found only two memory
access n-grams that we found to be related to the API call n-grams from a
reduced feature set. In the Listing 1.1 we show found relationships of memory
access n-grams and API call n-grams. As we can see, for our family dataset,
a memory access n-gram is related to only one API call 3-gram. However, the
relationship between memory access n-gram and API 4-grams can look a little bit
more complicated. We found that the same memory access n-gram can originate
from different API call n-grams. But this can be easily explained after analysis
of the API 4-grams themselves. As we can see, these two API call 4-grams can
easily overlap: last three API calls of the first 4-gram can be the first three API
calls in the second 4-gram. And as we described in Subsect. 4.7 if the beginning
of memory access n-gram lays between first and last call in the API call n-gram
- these memory and API call n-grams are related. So it is easy to understand
now, that if selected API call n-grams are overlapping - the same memory access
n-gram can originate from both of them.
Memory ngram WWWRRRRRRRWRRWRRWWWWRRWWWWRWRRRRRWRRWWRWWR

↪→ RRWWWRRRWWRRRRWRWRRRRRRWRRRRRRRRRRRWRWWRWWWWWRRRWRRRWW
is related to the following API call 3-gram: RtlTryEnterCriticalSection ,

↪→ RtlLeaveCriticalSection ,memset

Memory ngram WRWRRRRRRWRRWRWRRRWRRRRRRWRRRWRWRRRRRRWRRR
↪→ RRRRRWWRWRRRWWWRRWWRWRRRRRWRWWRWRWWRRWWRWWRWWWWWRRRRRW

is related to the following API call 4-grams: RtlEnterCriticalSection ,
↪→ RtlEnterCriticalSection ,RtlEnterCriticalSection ,
↪→ RtlCompareUnicodeStrings

and RtlEnterCriticalSection ,RtlEnterCriticalSection ,RtlCompareUnicodeStrings ,
↪→ RtlCompareUnicodeStrings

Listing 1.1. Memory access n-grams and correlated API call n-grams from malware
families dataset

As a way to improve our search technique it is possible to split a sequence of
API calls into non-overlapping n-grams. However, in some rare cases, it might
result in several memory trace n-grams to be related to a single API call n-gram.
Another reason of small correlation findings can be a best-to-best approach that
we chose for correlation search. Utilizing a best-to-all approach together with an
in-depth explanation of correlated API calls n-grams is one of the priority goals
for the future work.

There is one thing that is important to look at after presenting relatively poor
correlation findings. As we have written above, we trace the execution of mal-
ware samples until they generate 1 million of memory access operations. Some
samples produce less than the expected number of memory access operations.
It is important to understand, that the execution of PE file does not start from
the main module of a file. Instead, different API calls are invoked by an operat-
ing system (they still executed under the process of malware, so we trace them
anyway) in order to prepare an execution environment. The amount and type
of calls performed before execution of main logic (main module) of a malware
depends on the way an executable was compiled and the resources it needs for
execution. It is important to notice, that even if an API call is made from the

164 S. Banin and G. O. Dyrkolbotn

main module of an executable, its instructions will be corresponded to the exter-
nal module (e.g. ntdll.dll). To go deeper into this problem first we counted the
number of instructions executed by malware from its main module and divided
it by the total number of instructions in the trace. Amount of instructions per-
formed from the main module (defined by the malware directly) ranges from 0%
to 99.9% with an average of around 20%. It means that some samples didn’t
even reach to the execution of their main module. From first glance, it should
have led to the sample being indistinguishable from each other. Nevertheless,
as we already said, this platform-specific (PE is an executable format used in
Windows) preamble depends on the properties of the file. Another thing that we
checked was the percentage of call instructions executed from the main module.
These numbers range from 0% to 8% with an average of up to 1.5%. From what
was said above, and from additional data analysis, it is possible to draw the
following conclusion: most of the API calls in our experiments didn’t originate
from the main modules of executables. Moreover, as the number of instructions
performed from the main modules is relatively low, the memory access n-grams
from [6] also did not originate from main modules either. The first conclusion
that can be drawn from this is that some malicious executables can be cate-
gorized into families and types (with an accuracy we achieved) based on the
activity they produce before executing their main logic. On the first hand, these
are very promising results since detection mechanisms based on the features used
in this paper can potentially detect malware before anything malicious is done.
However, we didn’t study what changes to our victim system our malicious sam-
ples did. So this is clearly a question for future research. On the other hand we
might have actually detected malicious behavior by itself: there are known mal-
ware samples that achieve its goals from TLS callbacks or by inserting malicious
code into legitimate DLLs or executables (other than malware’s main modules)
and performing direct jumps or calls to the infected parts of legitimate DLL’s
or executables.

As a final remark to this subsection we suggest the following solution to
the questions we outlined in the beginning. To understand if API calls that
actually produce memory access patterns from [6] can be useful for malware
classification we have to use only a certain amount of API calls made around
a place from where memory access n-gram is originated from. Based on these
API call sequences we may try to find features that are relevant for malware
classification. This is planned to be done in the future work, as the amount of
“API calls made around a place from where memory access n-gram is originated
from” has to be found after a number of experiments. Also, the type of features
in this future case has to be discussed as well.

6 Conclusions

In this paper, we examined the nature of memory access n-grams that were
successfully used for malware classification by authors of [6]. We also attempted
to understand the relationship between those low-level features and high-level

Correlating High- and Low-Level Features 165

activity patterns such as API call n-grams. Our findings showed no significant
correlation between the best n-grams of memory access operations and the best
n-grams of API calls (at least under our experimental design). We also showed
that API calls n-grams can be used for malware classification on the dataset
from [6] and found that combining features derived from different sources (low-
and high-level activity) can bring improvement in classification accuracy. While
analyzing our data we concluded, that both low- and high-level features used
in our experiments often have their origin outside of the main module of an
executable. This paper brings important findings and outlines the direction of
future research about the use of low-level features in malware analysis.

Appendix A. Raw Data Sample

In this Appendix we present a sample of a raw data gather during our experi-
ments. We also explain each field included in the data.

1. Opcode id: each opcode is given a unique identifier. If this opcode is executed
again (e.g. in a loop), it will receive the same id.

2. Module name: a name of a module where current instruction is executed, It
can be a name of a library or a name of an executable itself.

3. Section name: a name of a section in executable file or library where current
instruction is executed. Often it will be .text or CODE, however it some cases
(especially with malware) a name of an executable section can be different
from standard.

4. Current function name: if a function name of a current instruction can be
found we record it to understand which function performed a certain part of
logic.

5. Opcode: text representation of an assembly instruction together with argu-
ments but without arguments values.

6. Type of module: whether an instruction is executed from the main module of
executable under analysis or from the external library.

7. Memory operations: memory operations performed by an instruction. Only
read or write without addresses and values.

8. Name of a function being called: if a current instruction is call - a name of a
function is being stored.

A real example of raw data is present in the Listing 2. The first line represents
header: names of fields are in the same order as in the list above.
OPID;MODULE;SECTION;ROUTINE;OPCODE;MODULETYPE;MEMOPS;ROUTINETOCALL
6712;C:\ Windows\SYSTEM32\ntdll.dll;.text; RtlInitializeExceptionChain;xor ecx ,

↪→ ecx;isNotMainModule ;;
6713;C:\ Windows\SYSTEM32\ntdll.dll;.text; RtlInitializeExceptionChain;call eax

↪→ ;isNotMainModule;W;BaseThreadInitThunk
6369;C:\ Windows\system32\kernel32.dll;.text;BaseThreadInitThunk;mov edi , edi;

↪→ isNotMainModule ;;
6370;C:\ Windows\system32\kernel32.dll;.text;BaseThreadInitThunk;push ebp;

↪→ isNotMainModule;W;
6371;C:\ Windows\system32\kernel32.dll;.text;BaseThreadInitThunk;mov ebp , esp;

↪→ isNotMainModule ;;
6372;C:\ Windows\system32\kernel32.dll;.text;BaseThreadInitThunk;test ecx , ecx

↪→ ;isNotMainModule ;;

166 S. Banin and G. O. Dyrkolbotn

6373;C:\ Windows\system32\kernel32.dll;.text;BaseThreadInitThunk;jnz 0
↪→ x76f4853d;isNotMainModule ;;

6374;C:\ Windows\system32\kernel32.dll;.text;BaseThreadInitThunk;push dword
↪→ ptr [ebp+0x8]; isNotMainModule;RW;

6375;C:\ Windows\system32\kernel32.dll;.text;BaseThreadInitThunk;call edx;
↪→ isNotMainModule;W; unnamedImageEntryPoint

6714;C:\Users\win7\Documents\malware_PE32 \1 b6142e3c80362a3f49666856f330510;.
↪→ duciuni;unnamedImageEntryPoint;inc ebx;isMainModule ;;

6715;C:\Users\win7\Documents\malware_PE32 \1 b6142e3c80362a3f49666856f330510;.
↪→ duciuni;unnamedImageEntryPoint;pushad ;isMainModule;W;

Listing 2. Raw data sample

References

1. Types of malware. https://usa.kaspersky.com/resource-center/threats/types-of-
malware. Accessed 17 Mar 2019

2. Virusshare.com. https://virusshare.com/. Accessed 12 Mar 2019
3. Weka: Data mining software in Java (2019). http://www.cs.waikato.ac.nz/ml/

weka/. Accessed 12 Mar 2019
4. Alazab, M., Layton, R., Venkataraman, S., Watters, P.: Malware detection based

on structural and behavioural features of api calls (2010)
5. Bahador, M.B., Abadi, M., Tajoddin, A.: HPCMalHunter: behavioral malware

detection using hardware performance counters and singular value decomposition.
In: 2014 4th International eConference on Computer and Knowledge Engineering
(ICCKE), pp. 703–708. IEEE (2014). https://doi.org/10.1109/iccke.2014.6993402

6. Banin, S., Dyrkolbotn, G.O.: Multinomial malware classification via low-level fea-
tures. Digit. Invest. 26, S107–S117 (2018). https://doi.org/10.1016/j.diin.2018.04.
019

7. Banin, S., Shalaginov, A., Franke, K.: Memory access patterns for malware detec-
tion. (NISK) 96–107 (2016). Norsk informasjonssikkerhetskonferanse

8. Cole, E.: Advanced Persistent Threat: Understanding the Danger and How to
Protect Your Organization. Newnes, Amsterdam (2012)

9. Hoglund, G.: What APT Means To Your Enterprise (2011). https://pdfs.
semanticscholar.org/d0a0/47c6b19fc3645973f8f300b507886b54196a.pdf

10. Group, T.R.: Testimon research group (2017). https://testimon.ccis.no/
11. Hall, M.A.: Correlation-based feature subset selection for machine learning. Ph.D.

thesis, University of Waikato, Hamilton, New Zealand (1998)
12. IntelPin: A dynamic binary instrumentation tool (2019)
13. Islam, R., Tian, R., Batten, L.M., Versteeg, S.: Classification of malware based on

integrated static and dynamic features. J. Netw. Comput. Appl. 36(2), 646–656
(2013). https://doi.org/10.1016/j.jnca.2012.10.004

14. Khasawneh, K.N., Ozsoy, M., Donovick, C., Abu-Ghazaleh, N., Ponomarev, D.:
Ensemble learning for low-level hardware-supported malware detection. In: Bos,
H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS, vol. 9404, pp. 3–25. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26362-5 1

15. Kononenko, I., Kukar, M.: Machine Learning and Data Mining: Introduction to
Principles and Algorithms. Horwood Publishing, Cambridge (2007)

16. Lim, H.I.: Detecting malicious behaviors of software through analysis of api
sequence k-grams i (2016). https://doi.org/10.13189/csit.2016.040301

17. Ozsoy, M., Donovick, C., Gorelik, I., Abu-Ghazaleh, N., Ponomarev, D.: Malware-
aware processors: a framework for efficient online malware detection. In: 2015
IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA), pp. 651–661. IEEE (2015). https://doi.org/10.1109/hpca.2015.7056070

https://usa.kaspersky.com/resource-center/threats/types-of-malware
https://usa.kaspersky.com/resource-center/threats/types-of-malware
https://virusshare.com/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
https://doi.org/10.1109/iccke.2014.6993402
https://doi.org/10.1016/j.diin.2018.04.019
https://doi.org/10.1016/j.diin.2018.04.019
https://pdfs.semanticscholar.org/d0a0/47c6b19fc3645973f8f300b507886b54196a.pdf
https://pdfs.semanticscholar.org/d0a0/47c6b19fc3645973f8f300b507886b54196a.pdf
https://testimon.ccis.no/
https://doi.org/10.1016/j.jnca.2012.10.004
https://doi.org/10.1007/978-3-319-26362-5_1
https://doi.org/10.13189/csit.2016.040301
https://doi.org/10.1109/hpca.2015.7056070

Correlating High- and Low-Level Features 167

18. Ozsoy, M., Khasawneh, K.N., Donovick, C., Gorelik, I., Abu-Ghazaleh, N., Pono-
marev, D.: Hardware-based malware detection using low-level architectural fea-
tures. IEEE Trans. Comput. 65(11), 3332–3344 (2016). https://doi.org/10.1109/
tc.2016.2540634

19. Reuters: Ukraine’s power outage was a cyber attack: Ukrenergo (2017).
https://www.reuters.com/article/us-ukraine-cyber-attack-energy/ukraines-
power-outage-was-a-cyber-attack-ukrenergo-idUSKBN1521BA

20. Shalaginov, A., Grini, L.S., Franke, K.: Understanding neuro-fuzzy on a class of
multinomial malware detection problems. In: 2016 International Joint Conference
on Neural Networks (IJCNN), pp. 684–691. IEEE (2016). https://doi.org/10.1109/
ijcnn.2016.7727266

21. Shijo, P., Salim, A.: Integrated static and dynamic analysis for malware detection.
Procedia Comput. Sci. 46, 804–811 (2015). https://doi.org/10.1016/j.procs.2015.
02.149

22. Tang, A., Sethumadhavan, S., Stolfo, S.J.: Unsupervised anomaly-based malware
detection using hardware features. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.)
RAID 2014. LNCS, vol. 8688, pp. 109–129. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11379-1 6

23. The Verge: the petya ransomware is starting to look like a cyberattack in dis-
guise (2017). https://www.theverge.com/2017/6/28/15888632/petya-goldeneye-
ransomware-cyberattack-ukraine-russia

https://doi.org/10.1109/tc.2016.2540634
https://doi.org/10.1109/tc.2016.2540634
https://www.reuters.com/article/us-ukraine-cyber-attack-energy/ukraines-power-outage-was-a-cyber-attack-ukrenergo-idUSKBN1521BA
https://www.reuters.com/article/us-ukraine-cyber-attack-energy/ukraines-power-outage-was-a-cyber-attack-ukrenergo-idUSKBN1521BA
https://doi.org/10.1109/ijcnn.2016.7727266
https://doi.org/10.1109/ijcnn.2016.7727266
https://doi.org/10.1016/j.procs.2015.02.149
https://doi.org/10.1016/j.procs.2015.02.149
https://doi.org/10.1007/978-3-319-11379-1_6
https://doi.org/10.1007/978-3-319-11379-1_6
https://www.theverge.com/2017/6/28/15888632/petya-goldeneye-ransomware-cyberattack-ukraine-russia
https://www.theverge.com/2017/6/28/15888632/petya-goldeneye-ransomware-cyberattack-ukraine-russia

Towards Efficient Detection of Malicious
VBA Macros with LSI

Mamoru Mimura(B) and Taro Ohminami

National Defense Academy, Yokosuka, Japan
mim@nda.ac.jp

Abstract. Targeted email attacks are one of main threats for organiza-
tions of all sizes and across every field. In targeted email attacks, mali-
cious VBA (Visual Basic for Applications) macros are often contained
in the attachment files to exploit the target computers. These malicious
VBA macros are obfuscated in several ways to evade detection. Hence,
pattern-based detection has a limitation in detecting these new malicious
VBA macros. To detect new malicious VBA macros, some methods with
machine learning techniques have been proposed. A method extracts
words from the source code, and constructs a language model to represent
VBA macros for machine learning techniques. This method, however,
constructs a language model from all the extracted words. Therefore,
this model might contain unnecessary words to classify. To construct an
efficient language model, we focus on LSI (Latent Semantic Indexing).
LSI is one of the foundational techniques in topic modeling, and cal-
culates similarity of documents. Our method uses LSI to construct an
efficient language model, which produces more accuracy and efficiency.
To the best of our knowledge, our method is the first method to detect
new malicious VBA macros with LSI. Our method extracts words from
the source code and converts into feature vectors with some Natural Lan-
guage Processing techniques. Our method trains a classifier with benign
and malicious VBA macros and detects new malicious VBA macros. Sev-
eral thousands of samples for evaluation are obtained from Virus Total.
The experimental result shows that our method can detect new mali-
cious VBA macros more accurately and efficiently. The best F-measure
achieves 0.95.

Keywords: VBA macro · SVM · NLP · Bag-of-Words · TFIDF · LSI

1 Introduction

Targeted email attacks are one of main threats for organizations of all sizes and
across every field. In targeted email attacks, malicious VBA macros are often
contained in the attachment files to exploit the target computers. According to
a report, Microsoft (MS) document files account for a large percentage of the
attachments in targeted email attacks, and the most of the MS document files
contain malicious VBA macros [6]. VBA (Visual Basic for Applications) is the
c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 168–185, 2019.
https://doi.org/10.1007/978-3-030-26834-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_10

Towards Efficient Detection of Malicious VBA Macros with LSI 169

programming language of Office programs and enables to automate tasks in MS
document files. These malicious VBA macros are obfuscated in several ways to
evade detection. Some attackers confirm that the obfuscated VBA macro is not
detected by anti-virus programs with the latest definitions in advance. In fact,
main anti-virus programs with the latest definitions barely detect new malware
samples [9,14]. Hence, pattern-based detection has a limitation in detecting these
new malicious VBA macros. Moreover, malicious VBA macros do not require
vulnerabilities to compromise a computer.

To detect new malicious VBA macros, some methods with machine learning
techniques have been proposed [7,11,16,17]. Due to the restricted evaluation
methods, the practical performance and long-term effect are still open to discus-
sion. A method extracts words from the source code, and constructs a language
model to represent VBA macros for machine learning techniques [13,16,17].
Thereafter, these represented feature vectors are classified by the trained mod-
els such as SVM (Support Vector Machine). This method, however, constructs
a language model from all the extracted words. Thus, this model might contain
unnecessary words to classify. For instance, common words included in most
VBA macros are not useful to classify VBA macros as benign or malicious.
Conversely, very rare words hardly appear in VBA macros, thus, might be not
useful.

Our method assumes VBA macros are written by a natural language. To
construct a more efficient language model, our method uses Latent Semantic
Indexing (LSI). LSI is a natural language processing technique for extracting
semantics of words in documents. This model assumes that words that are close
in meaning will occur in similar pieces of documents, and reduces the number
of words while preserving the similarity structure by singular value decomposi-
tion (SVD). Our method extracts words from the source code and converts into
feature vectors with some Natural Language Processing (NLP) techniques such
as LSI. Our method trains a model with benign and malicious VBA macros,
and detects new malicious VBA macros with the trained model. Our method
requires benign and malicious samples for training. We obtain several thousands
of benign and malicious samples from Virus Total [4], one of the most popu-
lar sites which share malware samples. To evaluate the practical performance
and long-term effect against new malicious VBA macros, the time series of sam-
ples is very important. The datasets for evaluation are constructed, considering
the time series. The experimental result shows that our method can detect new
malicious VBA macros containing new malware families. The best F-measure
achieves 0.95.

To the best of our knowledge, our method is the first method to detect new
malicious VBA macros with LSI. Likewise, the previous works do not reveal the
effectiveness of LSI in VBA macros nor evaluate the long-term effect of their
methods. Even though required time is an essential part to evaluate practical
performance, these works did not pay attention to required time either. This
paper provides the following contributions:

170 M. Mimura and T. Ohminami

1. Propose a more accurate and efficient method to detect new malicious VBA
macros with LSI.

2. Reveal the effectiveness of LSI in VBA macros.
3. Evaluate the long-term effect by time series analysis with actual VBA macros.
4. Our method requires only the time for almost one third or one quarter of the

previous method.

The structure of this paper is shown below. Section 2 describes related work.
Section 3 describes malicious VBA macros, and Sect. 4 provides NLP tech-
niques. Section 5 presents our method, and Sect. 6 demonstrates the performance.
Finally, we discuss the results and conclude this paper.

2 Related Work

Our method examines MS document files without executing files on a real or
virtual computer. Several methods without dynamic analysis are proposed to
examine MS document files.

2.1 MS Document File

OfficeMalScanner is a basic tool to detect malicious MS document files [8]. This
tool scans the entire MS document file for generic shellcode patterns or embedded
objects, and the malicious index rating can be used for automated analysis as
threshold values. Mimura et al. proposed a method to extract the executable
files embedded in a document file [14]. This method can detect new malicious
document files with known obfuscation methods. Otsubo et al. developed a tool
to detect anomaly file structure of document files containing executable files [19].
They examined hundreds of malicious document files and found these document
files do not conform to the file format strictly.

The similar idea has been extended to XML-based Office documents. Cohen
et al. presented a novel structural feature extraction method for XML-based
Office documents [9]. This method extracts discriminative features from mali-
cious documents based on their structure, and detects malicious document files
with machine learning algorithms. Nissim et al. created a detection model that
detects new malicious docx files [18]. In this model, detection relies upon their
structural feature extraction methodology [9].

Another approach is a visualization based method for malware detection
[10]. In this approach, the target file is converted into an image to examine. Deep
learning methods have brought outstanding performance on image classification.
Mimura et al. proposed some methods to detect malicious document files with
Convolutional Neural Network (CNN) [15]. This method converts a document
file into an image, and attempts to detect shellcode with CNN.

These methods examine document files and detect new malicious document
files. Some methods might detect malicious document files which contain VBA
macros. These methods, however, do not examine the contents of VBA macros.

Towards Efficient Detection of Malicious VBA Macros with LSI 171

2.2 VBA Macro

Bearden et al. proposed a method of classifying MS Office files containing macros
as malicious or benign using the K-Nearest Neighbors machine learning algo-
rithm [7]. This method extracts important features from p-code opcode (trans-
lated VBA macro code) with TFIDF. Our method uses raw VBA macro code,
and constructs a LSI model from the TFIDF scores. Kim et al. focused on
the obfuscation techniques and proposed an obfuscated macro code detection
method using machine learning classifiers [11]. To train these classifiers, their
method uses 15 discriminant static features, taking into account the character-
istics. Because cross-validation is not valid for time series models, the practical
performance and long-term effect are still open to discussion.

Miura et al. proposed a method to detect new malicious VBA macros
with Doc2Vec [16,17]. Doc2Vec learns fixed-length feature representations from
variable-length pieces of texts, such as documents [12]. This method extracts
words from the source code, and constructs a Doc2Vec model to represent VBA
macros for classifiers. This method, however, constructs a language model from
all the extracted words. Hence, this model might contain unnecessary words to
classify.

3 Malicious VBA Macro

3.1 Behavior

Malicious VBA macros are mainly contained in MS document files conform to
Compound File Binary (CFB) file format or Office Open XML (OOXML) file
format. CFB file format is the binary file format used by Microsoft Office 2003
and earlier. OOXML stores a document as a collection of separate files and
folders in a compressed zip package, and is used by Microsoft Word 2007 and
later. Many extensions conform to both file formats support VBA macros. VBA
is a programming language running with Office programs, and provides useful
functions. VBA macros are a series of commands that can be run automatically
to perform a task. The following sample code shows how to run a VBA macro
automatically.

1: Sub Auto_Open()
2: Msgbox "Hello World!"
3: End Sub

This simple example shows a welcome message with specific text. Thus,
attackers abuse this useful functions to compromise other computers. They code
a malicious VBA macro into a MS document file, and send it to the target by
e-mail. Malicious VBA macros mainly could be used to drop malware and down-
load malware. The former is called dropper and the latter is called downloader.
Once a malicious document file is opened, only a single click is required for the
malicious VBA macro to activate.

172 M. Mimura and T. Ohminami

Dropper contains and extracts the main body from itself. The main body
is encoded or obfuscated by various methods. Thus, dropper enables persistent
access to the computer without Internet connection. Downloader downloads the
main body from the Internet as its name suggests. Thus, downloader requires
Internet connection to gain persistent access to the computer. Downloader does
not contain the main body. Hence, the size tends to be less than dropper’s.

As described in this section, malicious VBA macros tend to contain func-
tions to download or extract the main body in the source code. Traditional app-
roach attempted to represent these features manually. In contrast, our method
attempts to detect these features automatically with NLP techniques.

3.2 Obfuscation

Malicious VBA macros are often obfuscated by various methods such as Base64.
The typical obfuscation techniques are summarized in Table 1.

Table 1. Typical obfuscation techniques

Method Example

1 Encode strings Convert to ASCII code

2 Replace strings Replace with random strings

3 Split strings Divide strings into characters

Encode strings is converting parameters with reversible algorithms. Several
functions are used for encoding strings. For instance, some functions such as
Asc(), Hex(), and Chr() change characters to the number of the ASCII code.
These functions convert strings into numerous numerical characters. Therefore,
malicious VBA macros tend to contain these functions and formatted numerical
characters.

Replace strings is replacing strings with random strings. Several functions
are used for replacing strings. For instance, some functions such as Replace(),
Right(), or Left() are used to replace strings to other random strings. These
functions mainly convert function names and variable names into random strings.
Therefore, malicious VBA macros tend to contain these functions and random
strings.

Split strings is dividing strings into other characters. This technique is effec-
tive to avoid signature-based anti-virus programs. The divided characters are
restored to its original strings by join operators such as “and” or “plus”.

As described in this section, malicious VBA macros tend to contain these
functions and characteristic strings. Kim et al. extracted these features manu-
ally to use machine learning classifiers [11]. Our method does not extract these
fixed features. Our method expects that NLP techniques extract these features
automatically.

Towards Efficient Detection of Malicious VBA Macros with LSI 173

4 NLP Technique

4.1 Bag-of-Words

Bag-of-Words (BoW) is a basic method to extract feature vectors from docu-
ments. BoW represents the frequency of a word in a document, and extracts
matrix from documents. In this matrix, each row corresponds to each document,
and each column corresponds to each unique word in documents. This method
does not consider word order or meaning. In this method, the number of unique
words corresponds to the dimension of matrix. Thus, the more number of unique
words increases, the more dimension of matrix increases. Therefore, methods to
adjust the number of dimensions are required. To adjust the number of dimen-
sions, important words have to be selected.

4.2 Term Frequency-Inverse Document Frequency

Term Frequency-Inverse Document Frequency (TFIDF) is one of the most pop-
ular methods to define word importance. TFIDF value is calculated as follows.

TFIDFi,j = frequencyi,j × log2
D

document frequencyi

The frequencyi,j is the frequency of a word i in a document j. The
document frequencyi is the frequency of documents in which the word i appears.
The TF is the frequencyi,j . The IDF is the logarithm of a value in which D (the
number of total documents) is divided by the document frequencyi. TFIDF
value is a value which is the multiplication of TF and IDF. Finally, TFIDF val-
ues are normalized. In this model, if a word appears rarely in an entire corpus
and appears frequently in a document, the TFIDF value increases.

4.3 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is one of the foundational techniques in topic
modeling. The core idea is to take a matrix of documents and words, and decom-
pose it into a separate document-topic matrix and a topic-word matrix. LSI is
used for classifying documents, data clustering and calculating similarity of doc-
uments. Given m documents and n words in our vocabulary, we can construct
an m x n matrix T in which each row represents a document and each column
represents a word. T is described as follows.

T =

⎡
⎢⎣
tf11 · · · tf1n

...
. . .

...
tfm1 · · · tfmn

⎤
⎥⎦

In this matrix, a row will be a vector corresponding to a word, giving its
relation to each document. Likewise, a column in this matrix will be a vector
corresponding to a document, giving its relation to each word. In the simplest

174 M. Mimura and T. Ohminami

version of LSI, each entry can simply be a raw count of the number of times the
j-th word appeared in the i-th document. In practice, however, raw counts do
not work particularly well because they do not account for the significance of
each word in the document. In all likelihood, T is sparse and redundant across
its many dimensions. As a result, to find the few latent topics that capture the
relationships among the words and documents, we want to perform dimensional-
ity reduction on T. Dimensionality reduction can be performed using truncated
Singular Value Decomposition (SVD). From the theory of linear algebra, there
exists a decomposition of T such that D and W are orthogonal matrices and V
is a diagonal matrix. Matrix T’ is calculated from T by SVD using TFIDF as
follows.

T′ = DVW ≈

⎡
⎢⎣
d1
...
dr

⎤
⎥⎦

⎡
⎢⎢⎣
v1 0

. . .

0 vr

⎤
⎥⎥⎦

[
w1 · · · wr

]

An element of V corresponds to each topic of all the documents. A row
of D corresponds to each document. A column of W corresponds to each word.
Thus, SVD reduces dimensionality by selecting only the r largest singular values,
and only keeping the first r columns or rows of D and W. To select the largest
values, we can use TFIDF scores. In this case, r is a hyper parameter we can
select and adjust to reflect the number of topics. In our method, this parameter
is used to reduce dimensionality while keeping the significance of each word in
the document.

5 Proposed Method

5.1 Outline

This paper proposes a method to detect new malicious VBA macros with LSI.
Our method requires benign and malicious VBA macros as training data. The
outline of our method is shown in Fig. 1.

In training phase, our method extracts words from their source code, and
constructs a LSI model. Thereafter, our method extracts feature vectors, and
trains a classifier with the feature vectors and labels. In test phase, our method
extracts feature vectors from unknown samples with the LSI model, and detects
malicious VBA macros with the trained classifier.

5.2 Training Phase

In training phase, our method requires benign and malicious VBA macros as
training data. These samples are obtained from web pages such as Virus Total
[4]. First, our method extracts VBA macros from benign and malicious MS

Towards Efficient Detection of Malicious VBA Macros with LSI 175

Fig. 1. Proposed method

document files. Thereafter, our method divides their source code into words
(1©). Special characters shown in Table 2 are used as the delimiter.

Second, our method constructs a LSI model from these words extracted from
all the samples (2©). The LSI model converts benign and malicious VBA macros
into feature vectors. The dimension of feature vectors is compressed into the
number of topics. Finally, a SVM classifier is trained by these feature vectors
with their labels (3©). SVM is a supervised learning model that assigns new
examples to one category or the other.

5.3 Test Phase

In test phase, our method investigates unknown samples. These unknown sam-
ples are assumed as the attachments in targeted email attacks. First, our method
extracts words from MS document files in the same way (4©). Second, these words
are converted into feature vectors by the LSI model (5©) which was constructed
in training phase. Finally, the trained classifier investigates these feature vectors,
and predicts the label (6©).

5.4 Implementation

We implemented our method with Python2.7 in an environment as shown in
Table 3. Our method uses olevba [2] to extract VBA macros from MS document
files. Olevba is a script to parse OLE and OpenXML files such as MS docu-
ment files to detect VBA macros and extract their source code in clear text. Our

176 M. Mimura and T. Ohminami

Table 2. Special characters as the delimiter

Symbol Pronounce Symbol Pronounce

” Double quote \r Carriage return

‘ Backquote \f Form feed

<> Less/greater than \v Vertical tab.

{} Brace \t Horizontal tab.

() Parenthesis \n Line feed

. Period Underline

, Comma % Percent sign

: Colon $ Dollar sign

; Semicolon / Slash

= Equals ! Exclamation mark

+ Plus ? Question mark

- Dash @ At sign

* Asterisk

Table 3. Environment

CPU IntelCorei7 (3.40 GHz)

Memory 16 GB

OS Windows 10 home

method uses scikit-learn-0.19.2 [3] to implement SVM. Scikit learn is a machine
learning library and has many classification algorithms. The parameters are pro-
vided from grid search, which exhaustively generates candidates from a grid of
parameter values. We used gensim-3.4.0 [1] to implement a LSI model. Gensim
has many functions related to NLP techniques such as BoW or LSI. Moreover,
we implemented the previous methods [16,17] with BoW and Doc2Vec. In this
paper, the same parameters are chosen for comparison in a fair condition.

6 Evaluation

6.1 Dataset

To evaluate our method, actual VBA macros were obtained from Virus Total
[4]. These VBA macros contain both benign and malicious VBA macros. Table 4
shows the number of samples.

Towards Efficient Detection of Malicious VBA Macros with LSI 177

Table 4. The number of samples obtained from Virus Total

2015 2016 2017

benign malicious benign malicious benign malicious

622 870 1200 1150 2220 1083

We selected all MS document files containing VBA macros. Their file exten-
sions are doc, docx, xls, xlsx, ppt, and pptx. These samples were uploaded to
Virus Total between April 2015 and March 2018 for the first time. Each year in
the Table corresponds to fiscal year from April to March. In general, unknown
samples are investigated as soon as possible. Hence, we assume these samples
appeared at the time. In targeted email attacks, anti-virus programs with the
latest definitions barely detect new malware samples [9,14]. This fact means
some anti-virus programs cannot detect malicious samples correctly. Hence, we
determined to use malicious samples, which are judged malicious by a rate of
more than 50 % anti-virus vendors. The benign samples are judged benign by
all anti-virus vendors. We compared the hash values and removed duplicated
samples.

Table 5 shows the main malware families in each dataset.

Table 5. Main malware families in each dataset

Dataset Family name

2015 TrojanDownloader:O97M/Donoff

TrojanDownloader:O97M/Adnel

TrojanDownloader:O97M/Bartallex

TrojanDownloader:W97M/Adnel

TrojanDownloader:W97M/Donoff

2016 TrojanDownloader:O97M/Donoff

Virus:W97M/Thus.GB

Trojan:Win32/Tiggre!rfn

Virus:X97M/Metcol.A

Trojan:Win32/Occamy.C

2017 TrojanDownloader:O97M/Donoff

Trojan:O97M/Madeba.A!det

TrojanDownloader:JS/Swabfex.P

Virus:W97M/Thus.GB

TrojanDownloader:O97M/Donoff.CD

These names are defined by Windows Defender Antivirus [5]. Thus, each
dataset is adequately distributed and contains a wide variety of malware samples.
Furthermore, the consecutive datasets contain new malware families, which are
not defined yet.

178 M. Mimura and T. Ohminami

6.2 Evaluation Metrics

To evaluate accuracy, we use Accuracy, Precision, Recall, and F-measure as
metrics. These metrics are defined as follows.

Accuracy =
TP + TN

TP + FP + FN + TN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F − measure =
2Recall × Precision

Recall + Precision

Table 6 shows the confusion matrix.

Table 6. Confusion matrix

Actual value

True False

Predicted result Positive TP FP

False FN TN

In this experiment, TP means detecting malicious VBA macros correctly.

6.3 Experimental Method

To reveal the performance and long-term effect against new VBA macros, the
time series of samples is very important. The purpose of our method is detecting
new malicious VBA macros. In practical use, many methods which contain our
method can only use previous samples for training, and the test samples should
not be the previous samples. If test samples contain previous samples, it is not
possible to evaluate the performance appropriately. Hence, cross-validation is not
appropriate in this case. Therefore, the datasets for evaluation are constructed,
considering the time series.

First, we conduct a preliminary experiment to find the optimum value of
a hyper parameter. As described in the previous section, this hyper parameter
is the number of topics, and is used to reduce dimensionality while keeping
the significance of each word in the document. In this preliminary experiment,
we conduct 10-fold cross-validation with the 2015’s dataset. We trace changes
to the value of the dimension. Since this preliminary experiment, subsequent
experiments will be conducted with the optimum value.

Next, we conduct 10-fold cross-validation with 2015’s and 2016’s datasets to
confirm the generalization performance.

Towards Efficient Detection of Malicious VBA Macros with LSI 179

Finally, we conduct time series analysis to reveal the performance and long-
term effect. The combinations of the training data and test data are shown in
Table 7.

Table 7. The combinations of the training data and test data

1 2 3 4

Training data 2015 2015 2016 2015 + 2016

Test data 2016 2017 2017 2017

To compare with the previous method [16,17], we perform the first com-
bination with the previous method and our method. Other combinations are
performed to reveal the long-term effect.

6.4 Result

Figure 2 shows the result of the preliminary experiments.

100 200 300 400 500 600 700 800 900 1000

Fig. 2. Results of the preliminary experiments

The horizontal axis corresponds to the dimensions, and the vertical axis cor-
responds to each metrics. The dimensions are adjusted by varying the parameter
described in the previous section. As described in Fig. 2, the precision and recall
are in the relationship of trade-off. The accuracy and F-measure are maximized
at 400 dimensions. Thus, we determined the optimum value, and fix the number
of topics to 400 in subsequent experiments.

Table 8 shows generalization performance of the 10-fold cross-validation with
2015’s and 2016’s datasets.

180 M. Mimura and T. Ohminami

Table 8. Generalization performance of the 10-fold cross-validation with 2015’s and
2016’s datasets

Metrics Score Range

Accuracy 0.79 ± 0.21

Precision 0.74 ± 0.20

Recall 0.98 ± 0.04

F-measure 0.84 ± 0.13

The recall has produced better results than precision. Owing to the unstable
performances, the average precision is less than recall. In each time, however,
the recall achieves at least 0.94. This suggests that benign samples are biased.
Therefore, we conclude that the generalization performance is appropriate.

Table 9 shows performance of the time series analysis with the previous
method.

Table 9. Performance of the time series analysis with the previous method

BoW Doc2Vec

Training data 2015 2015

Test Data 2016 2016

Accuracy 0.915 0.908

Precision 0.979 0.886

Recall 0.846 0.943

F-measure 0.908 0.918

Extracting time 6.05(s) 29.6(s)

Training time 12.4(s) 0.46(s)

Test time 20.0(s) 3.99(s)

Total time 60.8(s) 82.3(s)

In the previous method, Doc2Vec produced better performance than BoW.
Doc2Vec requires more time for extracting words, that includes constructing a
language model. Doc2Vec, however, does not demand much time for detecting.
Overall, Doc2Vec is better than BoW in the previous method.

Table 10 shows generalization performance of the time series analysis with
each combination.

Towards Efficient Detection of Malicious VBA Macros with LSI 181

Table 10. Performance of the time series analysis with each combination

1 2 3 4

Training data 2015 2015 2016 2015+ 2016

Test data 2016 2017 2017 2017

Accuracy 0.949 0.886 0.814 0.833

Precision 0.981 0.816 0.682 0.691

Recall 0.914 0.842 0.809 0.885

F-measure 0.946 0.829 0.740 0.776

Extracting time 8.05(s) 8.75(s) 21.1(s) 29.6(s)

Training time 0.795(s) 0.625(s) 1.68(s) 4.46(s)

Test time 1.24(s) 1.39(s) 2.28(s) 3.56(s)

Total time 21.9(s) 20.4(s) 40.7(s) 60.0(s)

In the combination 1, our method produced better performance than the
previous method, the F-measure achieves almost 0.95. Our method requires only
less than half the time for detecting. Thereafter, our method is more effective
than the previous method. In the combination 2, the performance is slightly
reduced due to aging. The training samples were discovered over a year ago,
nevertheless the F-measure maintains almost 0.83. Hence, the performance of our
method does not become excessively reduced due to aging. In the combination
3 and 4, there is no great difference in the performances. This suggests new and
much samples are not always appropriate for training.

7 Discussion

7.1 Accuracy

In practical use, many methods with machine learning techniques cannot use
following samples for training. These methods should be evaluated with the
previous samples. In the time series analysis, our method used only previous
samples for training. The best F-measure achieves almost 0.95. Thus, our method
is effective to new VBA macros. Despite the training samples were discovered
over a year ago, the F-measure maintains almost 0.83. Hence, our method is
accurate, and the performance does not become excessively reduced due to aging.

Next, Table 11 shows detection rate of known and unknown malware families.
Each detection rate is in almost the same range. Therefore, our method is

effective to not only known families, but also unknown malware families.
Several samples were detected incorrectly by our method. We analyzed these

samples, and counted the unique words included in only benign and malicious
files. Table 12 show numbers of the unique words in the files detected incorrectly.

The overlooked malicious samples (FN) tend to contain more words included
in only benign files than other samples. Therefore, these malicious samples were

182 M. Mimura and T. Ohminami

Table 11. Each detection rate of known and unknown malware families

Dataset 2016 2017

Total number 1150 1083

Each number Known Unknown Known Unknown

850 300 542 541

Detection count 779 272 466 446

Detection rate (%) 91.6 90.7 82.3 86.1

Table 12. Number of the unique words in the files detected incorrectly

FN FP

Number of words included
in only benign files

4118 2384

Number of words included
in only malicious files

3195 1955

classified as benign. The detected benign samples (FP) also tend to contain words
included in only benign files. However, the words included in only malicious file
are relatively numerous. We conclude that is why these benign samples were
classified as malicious.

7.2 Topic Vector

We analyzed the contents of the topic vectors to reveal the effectiveness of LSI.
Some examples of the words classified by LSI are shown in Table 13.

Table 13. Some examples of the words classified by the topic vector

Topic Parts of the contents

1 epcrazkwlscpbqm, ipathwdinj, ylabbu, ynvneqrhdqazxz, vxqhus, ubepnlsziosn

2 wlijflsdkj, ghrj32, 2k3h, sdlkjfwhfe, rkj23, njqkwndjwqd

3 qs8juqb1am, qa94, zyprern, e5iqj, twkk, zytologischen

4 control, checkbox, range, click, cells, sheets

5 range, selection, select, activewindow, long, macro

6 lirdifqhvefomgkmsysaqvqrpufmtkkkzqskk

ujphtxxljdvsoljplwzpklvf

fcyityvgxyuvedjncjpiqgmhiglvowacmdhjbadhsocwne

smgytipxywbmgnqedtxarqgyiqsnquisnbobbxwzgy

The topic 1, 2, 3, and 6 consist of random strings, which are often contained in
obfuscated malicious VBA macros. Each topic has regularity such as alphabetical

Towards Efficient Detection of Malicious VBA Macros with LSI 183

character, alphanumeric character, numerical character or the length. The topic
4 and 5 contain meaningful words. Some words are related with VBA macros.
Thus, LSI classifies related words into each topic vector. This enables to reduce
dimensions without lowering classification accuracy. Therefore, LSI represents
VBA macros efficiently, and produces more accuracy.

7.3 Comparison

There are several methods to detect malicious VBA macros.
Bearden et al. conducted 10-fold cross-validation with several dozens of sam-

ples to evaluate their method [7]. The number of malicious VBA macros is only
40. Kim et al. conducted 10-fold cross-validation with several thousands of sam-
ples to evaluate their method [11]. Nevertheless, they used 90% of samples for
training, the detection rate was no more than 0.915. Moreover, they did not
describe the details of malware samples. As we described before, cross-validation
is not appropriate to evaluate the performance for detecting new malicious VBA
macros. Because, training samples could contain only previous samples. There-
fore, it is not clear that their method could detect new malicious VBA macros
in practical environment. We used only previous samples for training from more
than ten thousand of samples. The training samples account for almost 25% of
our samples. As a result, our method could detect new malicious VBA macros.
Furthermore, this paper described the details of malware samples.

Miura et al. evaluated their method with several thousand of samples for
2 years [13,16,17]. The best F-measure achieved 0.93. However, they did not
evaluate the long-term effect of their methods. We obtained 6 thousands of
samples for 3 years from Virus Total. We categorized these samples into each
year, and evaluated the long-term effect by time series analysis. Moreover, the
best F-measure achieved almost 0.95. Previous works did not evaluate required
time of their methods either. Required time is an essential part to evaluate
practical performance. Our method requires only the time for almost one third
or one quarter of the previous method. Furthermore, we compared each detection
rate of known and unknown malware families. This revealed that our method was
effective to detect not only known families, but also unknown malware families.

7.4 Ethics

Our method requires benign and malicious samples which can be collected from
the Internet. Our method is light-weight and easy to implement. We used mal-
ware samples obtained from a commercial web site. We indicated clear condi-
tions to choose malware samples from the web site. The details of samples were
described and investigated. Hence, our method is reproducible and has high
transparency.

8 Conclusion

In this paper, we propose a more accurate and efficient method to detect new
malicious VBA macros with LSI. Our method extracts words from the source

184 M. Mimura and T. Ohminami

code and converts into feature vectors with a LSI model. To the best of our
knowledge, our method is the first method to detect new malicious VBA macros
with LSI. Previous works do not reveal the effectiveness of LSI in VBA macros
nor evaluate the long-term effect of their methods. The experimental results
reveal the effectiveness of LSI in VBA macros. Furthermore, we evaluate the
long-term effect by time series analysis with actual VBA macros. The best F-
measure achieves almost 0.95. Hence, our method is more accurate and can
detect new malware families.

Our method is light-weight and investigates VBA macros without requiring
much time. Thus, one of future work is to implement real time detection system.
We can implement our method on a mail server or proxy server to investigate
files in real time.

References

1. gensim topic modelling for humans. https://radimrehurek.com/gensim/
2. olevba. https://github.com/decalage2/oletools/wiki/olevba
3. scikit-learn machine learning in Python. https://scikit-learn.org/
4. Virus total. https://www.virustotal.com/
5. Windows defender antivirus. https://www.microsoft.com/en-us/windows/

windows-defender/
6. Wolf in sheep’s clothing: a SophosLabs investigation into delivering malware

via VBA. https://nakedsecurity.sophos.com/2017/05/31/wolf-in-sheeps-clothing-
a-sophoslabs-investigation-into-delivering-malware-via-vba/

7. Bearden, R., Lo, D.C.T.: Automated microsoft office macro malware detection
using machine learning. In: Nie, J.Y., et al. (eds.) 2017 IEEE International Con-
ference on Big Data, BigData 2017, Boston, MA, USA, 11–14 December 2017,
pp. 4448–4452. IEEE (2017). http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?
punumber=8241556

8. Boldewin, F.: Analyzing msoffice malware with officemalscanner, 30 July 2009
9. Cohen, A., Nissim, N., Rokach, L., Elovici, Y.: SFEM: structural feature extraction

methodology for the detection of malicious office documents using machine learning
methods. Expert Syst. Appl. 63, 324–343 (2016)

10. Kancherla, K., Mukkamala, S.: Image visualization based malware detection. In:
2013 IEEE Symposium on Computational Intelligence in Cyber Security (CICS),
pp. 40–44, April 2013

11. Kim, S., Hong, S., Oh, J., Lee, H.: Obfuscated VBA macro detection using machine
learning. In: DSN, pp. 490–501. IEEE Computer Society (2018). http://ieeexplore.
ieee.org/xpl/mostRecentIssue.jsp?punumber=8415926

12. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents.
In: Proceedings of the 31th International Conference on Machine Learning, ICML
2014, Beijing, China, 21–26 June 2014, pp. 1188–1196 (2014). http://jmlr.org/
proceedings/papers/v32/le14.html

13. Mimura, M., Miura, H.: Detecting unseen malicious VBA macros with NLP tech-
niques. J. Inf. Process. (JIP) 27 (2019, in press)

14. Mimura, M., Otsubo, Y., Tanaka, H.: Evaluation of a brute forcing tool that
extracts the rat from a malicious document file. In: AsiaJCIS, pp. 147–154.
IEEE Computer Society (2016). http://ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=7781470

https://radimrehurek.com/gensim/
https://github.com/decalage2/oletools/wiki/olevba
https://scikit-learn.org/
https://www.virustotal.com/
https://www.microsoft.com/en-us/windows/windows-defender/
https://www.microsoft.com/en-us/windows/windows-defender/
https://nakedsecurity.sophos.com/2017/05/31/wolf-in-sheeps-clothing-a-sophoslabs-investigation-into-delivering-malware-via-vba/
https://nakedsecurity.sophos.com/2017/05/31/wolf-in-sheeps-clothing-a-sophoslabs-investigation-into-delivering-malware-via-vba/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8241556
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8241556
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8415926
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8415926
http://jmlr.org/proceedings/papers/v32/le14.html
http://jmlr.org/proceedings/papers/v32/le14.html
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7781470
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7781470

Towards Efficient Detection of Malicious VBA Macros with LSI 185

15. Mimura, M., Otsubo, Y., Tanaka, H., Goto, A.: Is emulating “binary grep
in eyes” possible with machine learning? In: CANDAR, pp. 337–343. IEEE
Computer Society (2017). http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?
punumber=8338657

16. Miura, H., Mimura, M., Tanaka, H.: Discovering new malware families using a
linguistic-based macros detection method. In: 2018 Sixth International Symposium
on Computing and Networking Workshops (CANDARW), pp. 431–437, November
2018

17. Miura, H., Mimura, M., Tanaka, H.: Macros finder: do you remember LOVELET-
TER? In: Su, C., Kikuchi, H. (eds.) ISPEC 2018. LNCS, vol. 11125, pp. 3–18.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99807-7 1

18. Nissim, N., Cohen, A., Elovici, Y.: ALDOCX: detection of unknown malicious
microsoft office documents using designated active learning methods based on new
structural feature extraction methodology. IEEE Trans. Inf. Forensics Secur. 12(3),
631–646 (2017)

19. Otsubo, Y., Mimura, M., Tanaka, H.: O-checker : detection of malicious documents
through deviation from file format specifications. In: Black Hat USA (2016)

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8338657
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8338657
https://doi.org/10.1007/978-3-319-99807-7_1

Intrusion Detection and Prevention

IDS Alert Priority Determination Based
on Traffic Behavior

Shohei Hiruta1(B), Satoshi Ikeda1, Shigeyoshi Shima1, and Hiroki Takakura2

1 NEC Security Research Laboratories, Kanagawa, Japan
s-hiruta@cb.jp.nec.com, s-ikeda@fd.jp.nec.com, shima@ap.jp.nec.com

2 National Institute of Informatics, Tokyo, Japan
takakura@nii.ac.jp

Abstract. With the increase in the variety of devices connected to the
Internet, each with their own vulnerabilities, we are currently observing
an explosion of cyber attacks patterns. Furthermore, the overwhelming
number of alerts from security sensors, such as intrusion detection sys-
tems (IDSs), makes it impossible to take appropriate countermeasures
against attacks. A method to prioritize IDS alerts is therefore required
for the next generation of security operation centers (SOCs). To this
end, we have developed an IDS alert priority determination method that
combines IDS alert information with traffic behavior and uses the dif-
ference in the distribution of traffic behavior to determine the priority
of the alerts. We performed experiments with 2 million IDS alerts and
20 billion traffic flows in a real large-scale environment over two months
and found that our method could identify 553 IDS alerts out of 2 million
as high priority, which is a small enough number for SOC analysts to
investigate them in detail.

Keywords: Intrusion detection and prevention · Alert prioritization ·
Traffic behavior analysis

1 Introduction

Security operation centers (SOCs) play a key role in the cyber security domain.
A SOC monitors the traffic on the boundary between an organization and the
Internet to detect cyber attacks and sends notifications as soon as a risky threat is
found. Among the various security sensors used in a SOC, the intrusion detection
system (IDS) is one of the most important [1]. The IDS detects cyber attacks
by performing either pattern matching with the signatures it has [2] or anomaly
detection by learning normal behavior [3]. An SOC typically uses IDS alerts as
the starting point for cyber attack investigation.

As the number and types of cyber attacks increase, the IDS issues more
alerts. Therefore, many SOCs reduce the number of IDS alerts by monitoring
only alerts identified as high severity by IDS. However, it is becoming impossible
for SOC analysts to deal with the number of alerts even after they have been
c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 189–206, 2019.
https://doi.org/10.1007/978-3-030-26834-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_11

190 S. Hiruta et al.

reduced. Moreover, the insufficient number of SOC analysts also makes it difficult
to deal with the increase of alerts. In addition, various types of devices, each of
which has its own specific vulnerabilities, are now connected to the Internet,
which means that a huge amount of signatures are frequently provided. This
makes it nearly impossible for analysts to understand all the vulnerabilities and
determine if detailed analysis of the corresponding alerts is necessary or not. To
solve these problems, it is necessary to determine the priority of alerts.

Security information and event management (SIEM) systems that determine
the priority of IDS alerts by combining with various logs are used in SOCs.
However, due to computer resources and storage capacity issues, SIEM systems
do not make good use of the logs so that they actually determine the priority
by only using alert information. Furthermore, SIEM systems must manually
define rules for each threat, and can’t reuse the rules for other threats. For these
reasons, it is now crucial to come up with a general method to determine the
priority of IDS alerts combined with other logs.

In actual operation, SOCs are attempting to solve these problems by ana-
lyzing the traffic behavior of attacks. In this paper, we propose an IDS alert
priority determination method based on traffic behavior. Our method identi-
fies IDS alerts that have suspicious traffic behavior as high priority and notifies
SOC analysts so that they can preferentially analyze them in detail. To achieve
this goal, our main concern is what kind of IDS alert traffic behavior should
be considered high priority. We developed a method based on our definition of
this and on the opinions of SOC analysts. We then evaluated our method with
experiments using data in a real large-scale environment.

The main contributions of this paper are:

1. We propose a general IDS alert priority determination method based on traffic
behavior. We came up with the method on the basis of our own experience
and the opinions of SOC analysts.

2. We experimented and evaluated our method in a real large-scale environment.

In Sect. 2 of this paper, we provide an overview of related works. Sect. 3 presents
our definition of high priority IDS alerts, and Sect. 4 describes the details of our
method. We report the experimental results in Sect. 5 and discuss them in greater
detail in Sect. 6. We conclude in Sect. 7 with a brief summary and mention of
future work.

2 Related Work

Many IDS alert reduction methods based on alert correlation have been pro-
posed. Lv et al. proposed an alert correlation algorithm called TPPrefixSpan
that is based on the sequence pattern mining of IDS alerts [4]. They focused on
the relationship between alerts and time sequence and found that considering
these relationships improved the PrefixSpan algorithm [5]. In addition, methods
using alert sequences based on graphs [6], codebooks [7], Markov models [8,9],
Bayesian networks [10] have been proposed. The common point of these methods

IDS Alert Priority Determination Based on Traffic Behavior 191

is that similar alert sequences are regarded as the same threat. However, in an
SOC, we still need to further determine the priority among the reduced alerts.

Shittu et al. proposed OutMet which measures the degree to which an
alert belongs to anomalous behavior [11]. Firstly, they perform alert correlation
based on four perspectives: Time Proximity, which represents the time proxim-
ity between two alerts, Common Prefix, which means that two alerts are from
the same attacker or/and target the same destination, Crossed Common Prefix,
which represents two alerts in correspondence, and Port Similarity, which indi-
cates that the destination port numbers of two alerts are the same. Secondly,
based on the results of the alert correlation, they generate a meta-alert consist-
ing of all the low level IDS alerts that are part of the same or a similar attack.
Finally, they identify outliers from multiple meta-alerts and define them as high
priority. Other methods that have been proposed include one using clustering
to gather similar alerts [12,13] and one using alert correlation based on entropy
[14]. However, even if IDS alerts have high correlation with each other or belong
to the same cluster, if all we have is the IDS alert information, it is still not
enough to determine if they are the same.

In response to the problems of the above methods, an IDS alert prioritizing
method that combines IDS alerts with other information has been proposed.
Gupta et al. proposed a post-processor for IDS alerts using knowledge-based
evaluation (PIKE) [15], which combines an IDS alert, host information, and
vulnerabilities. Firstly, PIKE gathers the information about the OS and ser-
vices/applications running on a particular host. Then, it collects vulnerability
information on the OS and services/applications. Secondly, it extracts the attack
target host and the signature from the IDS alert. Finally, it matches the signa-
ture with the vulnerability of the attack target host and determines the priority
of the IDS alert as follows: If the OS of the attack target host and the target
OS of the vulnerability are different, it decides the priority is low and ignores
it. Otherwise, it determines the priority based on the CVSSv2 score [16]. How-
ever, collecting the information of all hosts is very expensive. In addition, some
attackers intentionally insert dummy codes into their programs to cause false
positive alerts. Because such alerts report the existence of vulnerabilities that
are frequently meaningless to the actual targets, the analysts can be deceived
into misjudgment. When an IDS alert that is different between the attack target
host OS and the target OS of the vulnerability is prioritized as low, such attacks
will be missed.

Our method differs from the ones above in that it prioritizes IDS alerts on
the basis of traffic behavior.

3 Definition of High Priority IDS Alert

Our research goal is to notify the SOC analysts of IDS alerts that must be
analyzed in detail by determining their priority on the basis of traffic behavior.
To achieve this, we must define what kind of IDS alert traffic behavior is high
priority. We investigated the traffic behavior and came up with the following
definitions based on our own experience and the opinions of SOC analysts.

192 S. Hiruta et al.

Fig. 1. 2D scatter plots of SSH BruteForce from same attack source on different days.
Most points are clustered together, but the received byte size of only one point (sur-
rounded by red line circle) on the left figure is bigger than the others. (Color figure
online)

1. A small amount of traffic is different from a large amount of traffic in a short
period of time. Figure 1 shows a 2D scatter plot of the traffic sizes of Secure
Shell (SSH) BruteForce from the same attack source on different days. As
shown on the left side of the figure, only one attack shows different behavior
from the others, i.e., large traffic sizes (about 3.6 × 103 bytes). In such a case
two scenarios can be considered:
(a) Successful attack: To put it simply, there is a possibility that the attack

is successful. Intuitively, when an attack is failing, the features of the
related traffic are similar, and when an attack succeeds, the traffic fea-
tures may become different. For example, in the case of SSH BruteForce
attack, if a login has failed, a SSH server always returns the same phrase.
Also, most SSH servers disconnect if there are three login failures in a
row, so the traffic sizes typically remain uniform. However, if the login is
successful, the servers return a login shell, so the traffic sizes increase. In
addition, attackers continue their attacks to hide the success log in the
failure cases even if they succeeded in the attack. Therefore, the difference
in traffic between successful and unsuccessful attacks becomes significant.

(b) Attack with smokescreen: According to SOC analysts, if a large num-
ber of attacks occur in a short period of time, most of them can be
considered smokescreens intended to conceal the real attack. Attackers
often use this technique to deceive SOC analysts. In this case, there is
a high possibility that only a small amount of the traffic is for the true
purpose.

2. The traffic behavior of an attack is different from past attacks even though
they were detected by the same signature. In this case, three scenarios can
be considered:

IDS Alert Priority Determination Based on Traffic Behavior 193

Fig. 2. 2D scatter plot of traffic behavior of SQLMAP. Left: Successful attack. Right:
Fail attack.

(a) Successful attack: Attackers often use tools to attack mechanically and
automatically. Therefore, we expect that traffic behavior when an attack
is successful will be different from when it is a failure. Figure 2 shows the
traffic behavior when we tested the SQLMAP tool1 in our own environ-
ment. A successful attack is shown on the left and a failed one on the
right. As we can see, the traffic behavior is completely different between
successful and unsuccessful attacks.

(b) Changing attack methods: Various tools are used in attacks. When
such tools are updated or new tools are released, the traffic behavior may
change from past ones even if an attack is targeting the same vulnerabil-
ities. In such a case, it is necessary to ask SOC analysts to check early.

(c) Completely different threats: According to SOC analysts, threats
detected by IDS may be different from actual threats. There are two
possible cases here. The first is when tools or exploit code that attack
a new vulnerability have diverted from past ones and IDS detects it as
a past threat. Since IDS performs matching with signatures, there is a
possibility of mistakenly divert them as past threats. The second is when
attackers intentionally insert the past exploit code into their code so that
IDS mistakenly determines them as past threats. This technique is also
used for the purpose of misleading SOC analysts.

Since an IDS alert contains no information on the traffic sizes and does
not issue alerts for all traffic related to an attack, alert priority determination
methods using only alerts such as [4–14] cannot correctly determine the priority
of the alerts. In order to define these alerts as high priority, it is necessary to
use traffic information.

1 SQLMAP: http://sqlmap.org.

http://sqlmap.org

194 S. Hiruta et al.

Our method uses traffic flow that represents the session information of com-
munications per line as traffic information. The traffic flow has the following
features:

Ease of obtaining traffic flows: IDS alert priority determination methods that
combine IDS alerts with endpoint logs such as host information or Windows
Event Log are very effective (e.g., Gupta et al.’s [15]). However, collecting
endpoint logs is very expensive because agents must be installed at each end-
point. In contrast, collecting traffic flows is cheaper and easy to introduce to
SOCs because the devices that collect them are deployed only at the bound-
ary between the Internet and the intranet. In addition, recent IDSs have a
function of collecting traffic flows as a standard.

Difficulty of falsifying traffic flows: If attackers successfully intrude on an
endpoint, the endpoint logs can be easily falsified by simple commands. How-
ever, in order to falsify traffic flows, attackers have to search for the devices
or servers that collect the logs, and then intrude on them and falsify logs.
This is very expensive for attackers.

No payload information: Using payload to prioritize or reduce the number of
IDS alerts is useful. However, there are two problems when it comes to using
them. The first problem is payload encryption. More than 50% of Internet
traffic is encrypted and recent malware uses encrypted communication [17,18],
so it is impossible to investigate payloads without a specific method for doing
so. The most popular method currently is a wildcard certification installed
into all end hosts by which a proxy server can decrypt payloads, but it is
often unacceptable in many environments. The second problem is log size.
All traffic must be captured and recorded in order to analyze payloads, and
the bigger the organization to be monitored is, the bigger the log size becomes,
which makes it is very expensive to prepare adequate storages. In contrast,
since traffic flow does not include payload information, it can be used even if
the payload is encrypted. Also, traffic flow represents session information, so
the log size is smaller.

4 IDS Alert Priority Determination

Our method determines the priority of IDS alerts on the basis of traffic
behavior. Firstly, we introduce the items of the IDS alerts and traffic flows
that we use for our method. An IDS alert consists of many items, but we
focus only on some of them. Each alert is represented using a 7-tuple A =
(asn, asc, asip, adip, asport, adport, atime) where each element is as follows: asn is
signature name, asc is signature category, asip is source IP address, adip is desti-
nation IP address, asport is source port number, adport is destination port num-
ber, and atime is date-time. Traffic flow represents information from the start
to the end of a session per line. Traffic flow also consists of many fields, but
we focus only on some of them. Each traffic flow is represented using 8-tuple
F = (fsip, fdip, fsport, fdport, fsbyte, fdbyte, ftime, fdur) where each element is as

IDS Alert Priority Determination Based on Traffic Behavior 195

follows: fsip is source IP address, fdip is destination IP address, fsport is source
port number, fdport is destination port number, fsbyte is sent traffic size (in
bytes), fdbyte is received traffic size (in bytes), ftime is date-time, and fdur is
duration (in seconds). We use the traffic flow feature f = (fsbyte, fdbyte, fdur),
and we perform base-10 logarithmic transform on each element of f . We also use
the source and destination IP addresses, source and destination port numbers,
and date-time for matching with IDS alerts.

Secondly, we introduce the two phases comprising our method: the training
phase and the test phase. When a signature name set is S, both phases are
performed for each element in S. In the test phase, our method assigns an IDS
alert one of the following six priorities:

1. High priority: suspicious, new pattern, outlier
2. Low priority: failed
3. Undetermined: new signature, no flow

For the two “undetermined” priorities, new signature means the signature
name does not exist in the training phase and no flow means there is no traffic
flow that matches the source and destination IP addresses and source and des-
tination port numbers of the alert. We describe new signature in detail when we
explain the test phase and discuss no flow in Sect. 6.

4.1 Training Phase

In this phase, our method builds the training data for determining the priority
of IDS alerts in the test phase. When an IDS alert set is A, we use an IDS alert
set AS of each element S ∈ S:

AS = {A ∈ A|asn = S} (1)

We also use a traffic flow set F, and when an IDS alert A ∈ AS is given, the
traffic flow set FA is used:

FA = {F ∈ F|atime − β ≤ ftime ≤ atime + α, fsip = asip, fdip = adip, fdport = adport}
(2)

where α, β are minutes and may be fixed values or variables, respectively.
We introduce the training phase in detail. This phase applies the following

three steps: Clustering, Distribution Generation, and Sub Clustering based on
Distribution.

Step 1 Clustering. In this step, we perform clustering using the traffic flow
features f of F ∈ FA where fsip = asip, fdip = adip, fsport = asport, and
fdport = adport for each element A ∈ AS . We use DBSCAN, which is a non-
hierarchical clustering methods based on density [19]. Compared with other clus-
tering methods, DBSCAN does not need to predefine the number of clusters and
only needs two parameters, eps and minPts. DBSCAN adds points less than
the distance eps from a certain point to the cluster and repeats this process on

196 S. Hiruta et al.

the added points. If the number of points belonging to the cluster is less than
minPts, these points are considered outliers. Figure 3 shows the results of clus-
tering with f responding to a certain signature name of IDS. We display the 2D
plot of sent and received traffic sizes because the 3D plot is very hard to see. As
shown, the red cluster is far from the others despite having the same signature
name. Even in the case of the same signature name, the Distribution Generation
and the Sub Clustering based on Distribution steps must be performed for each
cluster since the traffic flow features of attacks are different.

Fig. 3. 2D scatter plot of traffic flows of a certain signature. Only the received size of
the red cluster is bigger than 103 bytes despite belonging to the same threat. (Color
figure online)

Step 2 Distribution Generation. In this steps, we generate the distribution
of traffic flow features f of each element F ∈ FA. As shown in Fig. 2, traffic
behavior may be different even with the same signature name. Our method must
determine a distribution like the one on the left side of Fig. 2 as high priority
because this one shows the attack success behavior and SOC analysts have to
deal with it immediately. In order to distinguish such behavioral differences, our
method calculates the distribution differences. The distribution is represented
using kernel density estimation (KDE) to calculate the distribution differences
in the next step. KDE is a non-parametric method to estimate the probability
density function of a random variable. When a set X = {x1, x2, ..., xn}, where x
is d-dimensional feature and n is the number of elements of X, is given as input,
the probability density function is calculated as:

f̂(x) =
1

nhd

n∑

i=1

K(
x − xi

h
) (3)

where h is a smoothing parameter called bandwidth and K is the
kernelfunction. When a traffic flow features of Fig. 2 is given as input, the

IDS Alert Priority Determination Based on Traffic Behavior 197

distribution by Eq. (3) can be represented as shown in Fig. 4 (since it is difficult
to illustrate the KDE applied to 3D data, we show the KDE applied to 2D data
here). As shown in Fig. 4, our method can represent the distribution of the traffic
behavior.

Fig. 4. KDEs applied to traffic behaviors in Fig. 2. Left: Successful attack. Right: Failed
attack.

Step 3 Sub Clustering Based on Distribution. In this steps, we generate
sub clusters with similar distribution based on KDE for each cluster. Our method
uses the Kullback-Leibler divergence to calculate the distribution difference. The
divergence is a measure of the difference between two probability densities. Here,
we represent the distribution of traffic behavior with probability density func-
tions based on KDE, so that we can use it to calculate the difference. When the
probability density functions to be compared are p(x) and q(x), the divergence
DKL is calculated as:

DKL(P ||Q) =
∫

p(x)log
p(x)
q(x)

dx (4)

where P and Q are the probability distributions and DKL(P ||Q) ≥ 0. A value
close to 0 for DKL means that the distributions are similar. In our case, the traffic
flow feature is 3-dimensional, so let x, y, and z be random variables representing
sent traffic size, received traffic size, and duration respectively, DKL is as follows:

DKL(P ||Q) =
∫ ∫ ∫

p(x, y, z)log
p(x, y, z)
q(x, y, z)

dxdydz (5)

Furthermore, DKL is asymmetric, DKL(P ||Q) �= DKL(Q||P), and x, y, z
are discrete values. Therefore, when two probability distributions P (x, y, z) and

198 S. Hiruta et al.

Q(x, y, z) which are KDEs obtained in Distribution Generation step are given,
we estimate divergence D as follows:

D =
1
2

∑

x∈X

∑

y∈Y

∑

z∈Z

[
P (x, y, z)log

P (x, y, z)
Q(x, y, z)

+ Q(x, y, z)log
Q(x, y, z)
P (x, y, z)

]
(6)

where X,Y = {1.0, 1.1, ..., 10.0} and Z = {1.0, 1.1, ..., 3.5}. That is, we use only
probabilities at grid points obtained by dividing the 3-dimensional space into
equal intervals in logarithmic scale.

We generate sub clusters using the D. We set a threshold, ThΔ, and assume
that distributions with D less than ThΔ are similar and assign them to the same
sub cluster.

When the training phase is completed, the training data is consisted as fol-
lows: the clusters are generated for each signature name on the basis of traffic
flow features f of F ∈ FA, where fsip = asip, fdip = adip, fsport = asport, and
fdport = adport for each element A ∈ AS , and the sub clusters are generated for
each cluster on the basis of the distribution of traffic flow features f of F ∈ FA.

4.2 Test Phase

We introduce how to determine the priority of IDS alerts by using the training
data for each signature name S ∈ S. Our method determines the priority of IDS
alerts every γ (in minutes) and uses IDS alert set A

′
S within the interval I as

follows:
A

′
S = {A ∈ A|Imin ≤ atime ≤ Imax, asn = S} (7)

where Imin and Imax are the minimum and maximum date-times in the interval
I. Also, when we determine the priority at date-time T and IDS alert A′ =
(a′

sn, a′
sc, ..., a

′
time) is given, the traffic flow set FA′ is:

FA′ = {F ∈ F|Imin − β ≤ ftime ≤ Imax + α, fsip = a′
sip, fdip = a′

dip, fdport = a′
dport}

(8)
Imax + α ≤ T − γ (9)

where α and β are minutes and may be fixed values or variables respectively.
This phase applies the following four steps: Outlier Detection, Distance Cal-

culation, Distribution Difference Calculation, and Verification. However, if the
signature category of IDS alert is brute-force, this phase only applies Outlier
Detection because the success or failure of a brute-force attack can be deter-
mined by outlier detection and there is no need to compare with past traffic
behavior. This phase determines the priority of IDS alerts for each signature
name S ∈ S.

Step 1 Outlier Detection. In this step, we perform outlier detection in the
traffic flow set FA′ . This step is used differently depending on if the signature
category is brute-force or not.

IDS Alert Priority Determination Based on Traffic Behavior 199

Brute-force: As mentioned in Sect. 3, since the traffic sizes of the login success
and failure are different and most of the login attempts fail, determining the
priority of brute-force alerts can be done just with the outlier detection. Our
method performs DBSCAN (described in Sect. 4.1) with traffic flow features
f of F ∈ FA′ . We do not use only the traffic flows that perfectly match each
item of IDS alert A′ because IDS detects brute-force by the frequency of login
attempts, so it does not issue alerts to all login attempts related to brute-
force. As a result of the clustering, if there is an outlier with an amount of
data is less than the minPts parameter, the traffic flow belonging to it is
suspected of successful login and our method determines A′ as suspicious. If
there is no outlier, our method determines A′ as failed.

In other categories: This step is intended to find outliers, as shown in Fig. 3. As
mentioned in Sect. 3, if attacks from the same source IP address are detected
by the same signature but few attacks with different traffic flow features are
involved, there are two possible scenarios: a successful attack or an attack
with smokescreen. Outlier detection effective for finding such outliers. This
step is also intended to eliminate scan activities, which are performed in large
quantities in a short time against the same IP address ranges. Therefore, IDS
issues a huge number of alerts and it is pointless to analyze all of them. Scan
activities are performed mechanically and automatically, and most of them
seem to fail, so we assume we should investigate only those that are outliers.
We use outlier detection for this. Our method uses the traffic flow features f
of F ∈ FA′ where fsip = a′

sip, fdip = a′
dip, fsport = a′

sport, and fdport = a′
dport

for each element A′ ∈ A
′
S , and performs DBSCAN with traffic flow features

for each combination of a′
sip and a′

dport of A′
S . The reason each combination

is clustered is that attacks detected by the same signature and from the same
source IP address to the same destination port number of multiple destination
IP addresses are likely to be scan activities. Therefore, our method finds
outliers of a large number of scan activities and only analyzes these ones
in detail. As a result of the clustering, if there are outliers, the traffic flows
belonging to them are considered suspicious and our method analyzes them in
detail in the Distance Calculation step. If there are no outliers, those attacks
are considered to be failures and the priority of IDS alerts is set as failed.

Step 2 Distance Calculation. In this step, we perform distance calculation
between traffic flow features belonging to the outlier and each one belonging
to the clusters of the same signature name generated in the Clustering step of
the training phase. This step is intended to confirm whether or not the outlier
is actually an outlier compared to the past behavior. If the traffic flow fea-
tures are different from the past ones despite having the same signature name,
these attacks may be successful or different threats. Therefore, IDS alerts corre-
sponding to such traffic flows are considered high priority and must be analyzed
immediately by the SOC analysts. Our method calculates the Euclidean dis-
tances between the traffic flow features f belonging to an outlier and each one
belonging to the clusters of the same signature name and obtains the minimum

200 S. Hiruta et al.

distance. We set a threshold Thd, and define the priority of the corresponding
IDS alert as suspicious if the minimum distance is greater than Thd. If the min-
imum distance is equal to or less than Thd, we take the nearest cluster and go
to the Distribution Difference Calculation step.

Step 3 Distribution Difference Calculation. In this step, we calculate the
distribution difference between the distributions of traffic behavior and past
ones of the same signature name. As mentioned in Sect. 3, when an IDS alert
indicates that the traffic behavior is completely different from that of past ones
even though they are detected by the same signature, there are three possible
scenarios: a successful attack, changing attack methods, or a completely different
threat. Our method uses the traffic flow features f of F ∈ FA′ of the IDS
alert A′. Firstly, we generate the distribution of the traffic flow features based
on Eq. (3). Secondly, we also generate the past distributions of the traffic flow
features of the IDS alerts belonging to each sub cluster in the nearest cluster
obtained in the Distance Calculation step. Thirdly, we calculate the differences
between the distribution and each past distribution based on Eq. (6) and obtain
the minimum difference. Finally, we set a threshold ThΔ, and define the priority
of the corresponding IDS alert A′ as new pattern if the minimum difference is
greater than ThΔ. If it is less than ThΔ, we take the nearest sub cluster and go
to the Verification step.

Step 4 Verification. In this step, we determine whether there is any unknown
behavior in the traffic behavior, including past ones. Our method represents
traffic behavior as a distribution based on KDE. However, KDE might not be
able to represent the distribution well if there is bias in the number of elements.
For example, some of the outliers (especially data where sent traffic size is about
1.9× 103 and received traffic size is about 1.8× 103) on the left side of Fig. 2 are
not represented in the distribution on the left side of Fig. 4. If these outliers do
not exist in the past traffic behavior of the same signature name, we define the
priority as high because this is suspicious behavior. Our method achieves this
by using the traffic flow features f of F ∈ FA′ of IDS alert A′ and the past ones
of the nearest sub cluster obtained in the Distribution Difference Calculation
step. Our method runs DBSCAN on all the traffic flow features described above.
If one of the f is an outlier, we define the priority of IDS alert A′ as outlier.
Otherwise, we define it as failed.

Finally, we describe how to deal with an IDS alert that appears in the test
phase when its signature name does not exist in the training phase. In such a
case, we perform the same processing as the training phase for one day from the
time it first appeared to generate the training data for the test phase. During this
process, we output new signature as the priority of IDS alert. We determine the
priority of the IDS alert in the same way as the test phase using the generated
data from the next day. In actual operation, it is necessary to fully test the
training data before it is used for the test phase.

IDS Alert Priority Determination Based on Traffic Behavior 201

5 Experiments

To evaluate the effectiveness of our method, we performed experiments using
IDS alerts and traffic flows from the real network of a large-scale environment.
This network has over a million hosts and its traffic rate is 5 Gbps on average.
The experiments were performed using data collected over roughly two months.

5.1 Experimental Data

IDS alerts and traffic flows were collected from Palo Alto Networks PA-5060
deployed at the boundary between the Internet and the organization being mon-
itored. Data from October 25 to December 31, 2018 were used. Among them,
data from the first week were utilized for training considering our machine specs
and the rest for testing. IDS alerts in the following six signature categories were
used in these experiments: autogen, brute-force, code-execution, info-leak, over-
flow, and sql-injection, as these account for over 99% of all signature categories.
To avoid side effect caused by well-known institute, i.e., Shodan, Rapid7, and
Shadowserver2, we eliminated IDS alerts whose source IP addresses belong to
them. The IDS alerts and traffic flows used in our experiments are listed in
Table 1.

Table 1. Numbers of IDS alerts and traffic flows from October 25 to December 31,
2018.

IDS alerts Traffic flows

Training 20, 802 2, 049, 588, 595

Test 2, 067, 888 18, 591, 128, 533

In our method, we set the following parameters: α = 30.0 min, β = 30.0
min, γ = 30.0 min, I = 30.0 min, Thd = 0.173, ThΔ = 0.30, eps = 0.173,
minPts = 5, bandwidth = 0.30, K = Gaussian. These parameters weren’t
based on equations but rather were determined manually, they may not be the
optimum values.

5.2 Result

The results of our method are shown in Table 2. It defined 553(0.0267%) IDS
alerts as high priority and 1, 960, 603(94.7%) as low priority. It is considered
that 553 high priority alerts are small enough for analysts to investigate in
detail and our method is effective as one of the general priority determination

2 Shodan: https://www.shodan.io
Rapid7: https://www.rapid7.com
Shadowserver: https://shadowserver.org/wiki.

https://www.shodan.io
https://www.rapid7.com
https://shadowserver.org/wiki

202 S. Hiruta et al.

method in SIEM. However, our method was unable to determine the priority
of 108, 303(5.24%) of the IDS alerts. We will discuss these results in detail in
Sect. 6

Table 2. Results of IDS alert priority determination.

Priority High Low Undetermined

Type Suspicious New pattern Outlier Failed New signature No flow

Autogen 4 7 0 76 3 3

Brute-force 47 0 0 669 0 0

Code-execution 214 143 0 1,953,723 1,853 3,286

Info-leak 9 2 0 1,193 391 102,734

Over-flow 25 79 0 3,320 0 24

Sql-injection 15 8 0 51 9 0

Total 553 1,959,032 108,303

314 239 0 2,256 106,047

We were not able to evaluate the effectiveness by SOC analysts for 553 IDS
alerts that were high priority. Therefore, we investigated the all destination IP
addresses (214 IP addresses) of the alerts for the existence of vulnerability, which
is one of the analyst’s point of view. We searched for these addresses on SHODAN
on January 15, 2019. Information on 70 IP addresses could not be found, and
58 IP addresses had some vulnerabilities at the time of the investigation. We
also randomly extracted 1, 000 IP addresses from 65, 656 unique destination IP
addresses of IDS alerts that were low priority and investigated the existence of
vulnerability. We found that three of the IP addresses had some vulnerabili-
ties. These results clearly demonstrate that our method can effectively extract
suspicious IDS alerts of attacks on vulnerable servers.

6 Discussion

Firstly, we discuss the possibility of false positives of the result by our method.
Signature Microsoft IIS WebDAV ScStrongPathFromUrl Buffer Overflow Vul-
nerability(30464)3 detected 104 IDS alerts out of 553. Figure 5 shows the traffic
behavior distributions of this signature. The left side of Fig. 5 was determined as
new pattern, the center of Fig. 5 was determined as failed, and the right of Fig. 5
shows the distribution in training data determined to be most similar to them
by our method. At first glance, the distributions of the left and center are quite
similar and we actually confirmed that both cases were failure ones. However,
divergence D between the left and right was 0.335 and between the center and
right was 0.206. Because ThΔ was defined as 0.30, the former was mistakenly

3 Signature name provided by Palo Alto Networks.

IDS Alert Priority Determination Based on Traffic Behavior 203

judged as new pattern and the latter was judged as failed. This is because the
distribution shown on the left is bigger in overall received bytes than other dis-
tributions and D reacts sensitively to the deviation of distributions. To solve this
problem, it is necessary to adjust the parameters. In this case, we can change
the values of TΔ and bandwidth. If TΔ is bigger than 0.335, the left one is deter-
mined as existing traffic behavior. If we increase the range of distribution by
increasing the bandwidth, D gets smaller. However, it is difficult to apply this
solution because if TΔ or bandwidth are increased, other alerts correctly deter-
mined as new pattern may be incorrectly determined as failed. Another solution
is to change the algorithm to calculate the distribution difference. For example,
we could change D to an algorithm that calculates the difference based on the
shape of the distribution, or to a combination of both.

new pattern failed training data

Fig. 5. Distributions of traffic behavior concerning Microsoft IIS WebDAV ScStrong-
PathFromUrl Buffer OverflowVulnerability(30464).

Secondly, we discuss the false positive alerts of IDS. According to FireEye
report, more than 50% of alerts that most organizations received are false pos-
itives [20]. There is a possibility that the false positive alerts exist in the alerts
determined as new pattern. However, we consider that such alerts can be covered
by operation. Because our method determined 533 alerts as high priority for two
months data and SOC analysts can analyze them in detail. If the analysts deter-
mine that the alert is false positive, they can add the relevant traffic flows of
the alert to the training data. Then, the alerts showing the same traffic behavior
will not be determined as new pattern. However, if the traffic behavior of the
successful attacks and the traffic behavior of the false positive alerts are simi-
lar, this solution cannot be applied. Therefore, careful investigation is required
before adding traffic flows to training data.

Thirdly, we discuss no flow alerts. As shown in Table 2, the alerts of the
info-leak signature category accounted for the majority of no flow alerts. After
investigating these in detail, we found that they were detected by signature
RPC Portmapper Dump Request detected(32796). The 120 alerts per day on
average were determined as no flow, but 91, 187(85.9%) were determined in two
days. This is due to the limitation on the IDS that reports an alert together

204 S. Hiruta et al.

with its corresponding traffic flow. If the IDS raises an enormous amount of
alerts in a short period, it cannot have enough resources to handle the traffic
flows. Therefore, our approach could not determine the priorities because there
were IDS alerts but no traffic flows matching them. To solve this problem, it is
necessary to adopt a method that determines the priority of alerts or reduces the
number of alerts without using the traffic behavior, such as the ones introduced
in Sect. 2. Since our method takes a totally different approach from these, it can
be combined with them.

Finally, we discuss the application of our method to practical operation. In
the experiments, we collected traffic flows for a certain period time and then
prioritized the alerts in order to simplify the experiment. However, in practical
operation, the time at which the SOC analysts must deal with an attack after the
IDS detects it will vary depending on the case. To solve this problem, we need an
algorithm that changes the priority of IDS alerts in accordance with elapsed time.
Such an algorithm would first determine the priority of the alert by using the
traffic behavior prior to the IDS detection, and then re-determine the priority in
the same way every specific time. Even if the first priority determination result
is high, if the priority decreases with each re-determination, the alert will be
moved to a lowerpriority and the analyst can put off the analysis. Conversely,
if the priority gets higher with elapsed time, the analyst must prioritize the
analysis. Our method can easily change the time for priority determination, and
as such, can flexibly deal with actual operation.

7 Conclusion and Future Work

In this paper, we proposed an general IDS alert priority determination method
based on traffic behavior. We defined what kind of traffic behavior in an IDS
alert indicates high priority based on our own experiences and the opinions of
SOC analysts. We developed a method to judge IDS alerts that have defined
traffic behavior as high priority using outlier detection and distribution differ-
ence calculation. The proposed method was evaluated with experiments using 2
million IDS alerts and 20 billion traffic flows on a real large-scale environment
over two months. Results showed that our method defined that 553 IDS alerts as
high priority, which is a small number for SOC analysts to investigate in detail.
Our method is expected to be more effective when combined with other existing
method.

For future work, we plan to investigate how changing the parameters affects
the result and examine the IDS alerts determined as high priority in more detail
cooperate with SOC analysts. We will also devise a method to detect attacks
that can’t currently be detected by IDS because the real threats are attacks that
IDS can’t detect.

IDS Alert Priority Determination Based on Traffic Behavior 205

References

1. Denning, D.E.: An intrusion-detection model. J. IEEE Trans. Softw. Eng. 13, 222–
232 (1987)

2. Lunt, T.F., Jagannathan, R., Lee, R., Whitehurst, A., Listgarten, S.: Knowledge-
based intrusion detection. In: AI Systems in Government Conference, Washington,
USA, pp. 102–107 (1989)

3. Garcia-Teodoro, P., Diaz-Verdejp, J., Macia-Fernandez, G., Vazquez, E.: Anomaly-
based network intrusion detection: techniques, systems and challenges. J. Comput.
Secur. 28, 18–28 (2009)

4. Lv, Y., Xiang, S., Geng, J., Li, Y., Xia, C.: An alert correlation algorithm based
on the sequence pattern mining. In: 2015 IEEE Advanced Technology, Electronic
and Automation Control Conference, Chongqing, China, pp. 1146–1151 (2015)

5. Pei, J., Han, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.-C.: PrefixSpan:
mining sequential patterns efficiently by prefix-projected pattern growth. In: 17th
International Conference on Data Engineering, Heidelberg, Germany, pp. 215–224
(2001)

6. Wang, L., Liu, A., Jajodia, S.: Using attack graphs for correlating, hypothesizing,
and predicting intrusion alerts. J. Comput. Commun. 29, 2917–2933 (2006)

7. Yemini, S.A., Kliger, S., Mozes, E., Yemini, Y., Ohsie, D.: High speed and robust
event correlation. J. IEEE Commun. Mag. 34, 82–90 (1996)

8. Zan, X., Gao, F., Han, J., Sun, Y.: A hidden Markov model based framework
for tracking and predicting of attack intention. In: 2009 International Conference
on Multimedia Information Networking and Security, Hubei, China, pp. 498–501
(2009)

9. Zhicai, S., Yongxiang, X.: A novel hidden Markov model for detecting complicate
network attacks. In: 2010 IEEE International Conference on Wireless Communi-
cations, Networking and Information Security, Beijing, China, pp. 312–315 (2010)

10. Steinder, M., Sethi, A.S.: Probabilistic fault localization in communication systems
using belief networks. J. IEEE/ACM Trans. Netw. 12, 809–822 (2004)

11. Shittu, R., Healing, A., Ghanea-Hercock, R., Bloomfield, R., Muttukrishnan, R.:
OutMet: a new metric for prioritising intrusion alerts using correlation and outlier
analysis. In: 39th Annual IEEE Conference on Local Computer Networks, Edmon-
ton, Canada, pp. 322–330 (2014)

12. Njogu, H.W., Jiawei, L.: Using alert cluster to reduce IDS alerts. In: 2010 3rd Inter-
national Conference on Computer Science and Information Technology, Chengdu,
China, pp. 467–471 (2010)

13. Vaarandi, R., Podins, K.: Network IDS alert classification with frequent itemset
mining and data clustering. In: 2010 International Conference on Network and
Service Management, Niagara Falls, Canada, pp. 451–456 (2010)

14. GhasemiGol, M., Ghaemi-Bafghi, A.: A new alert correlation framework based on
entropy. In: 3rd International eConference on Computer and Knowledge Engineer-
ing, Mashhad, Iran, pp. 184–189 (2013)

15. Gupta, D., Joshi, P.S., Bhattacharjee, A.K., Mundada, R.S.: IDS alerts classifica-
tion using knowledge-based evaluation. In: 2012 Fourth International Conference
on Communication Systems and Networks, Bangalore, India, pp. 1–8 (2012)

16. Mell, P., Scarfone, K., Romansky, S.: A Complete Guide to the Common Vul-
nerability Scoring System Version 2.0, National Infrastracture Advisory Council.
https://ws680.nist.gov/publication/get pdf.cfm?pub id=51198. Accessed 15 Feb
2019

https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=51198

206 S. Hiruta et al.

17. The Global Internet Phenomena Report. https://www.sandvine.com/hubfs/
downloads/phenomena/2018-phenomena-report.pdf. Accessed 15 Feb 2019

18. Uncovering Hidden Threats within Encrypted Traffic. https://www.a10networks.
com/sites/default/files/A10-EB-14106-EN.pdf. Accessed 15 Feb 2019

19. Evangelos, S., Jiawei, H., Usama, M.F.: A density-based algorithm for discover-
ing clusters in large spatial databases with noise. In: The Second International
Conference on Knowledge Discovery and Data Mining, Oregon, USA, pp. 226–231
(1996)

20. How many Alerts is Too Many to Handle?. https://www2.fireeye.com/
StopTheNoise-IDC-Numbers-Game-Special-Report.html. Accessed 5 Jun 2019

https://www.sandvine.com/hubfs/downloads/phenomena/2018-phenomena-report.pdf
https://www.sandvine.com/hubfs/downloads/phenomena/2018-phenomena-report.pdf
https://www.a10networks.com/sites/default/files/A10-EB-14106-EN.pdf
https://www.a10networks.com/sites/default/files/A10-EB-14106-EN.pdf
https://www2.fireeye.com/StopTheNoise-IDC-Numbers-Game-Special-Report.html
https://www2.fireeye.com/StopTheNoise-IDC-Numbers-Game-Special-Report.html

(Short Paper) Effectiveness
of Entropy-Based Features

in High- and Low-Intensity DDoS
Attacks Detection

Abigail Koay1(B), Ian Welch2, and Winston K. G. Seah2

1 University of Waikato, Hamilton, New Zealand
abigail.koay@waikato.ac.nz

2 Victoria University of Wellington, Wellington, New Zealand
{ian.welch,winston.seah}@ecs.vuw.ac.nz

Abstract. DDoS attack detection using entropy-based features in net-
work traffic has become a popular approach among researchers in the
last five years. The use of traffic distribution features constructed using
entropy measures has been proposed as a better approach to detect Dis-
tributed Denial of Service (DDoS) attacks compared to conventional vol-
umetric methods, but it still lacks in the generality of detecting various
intensity DDoS attacks accurately. In this paper, we focus on identifying
effective entropy-based features to detect both high- and low-intensity
DDoS attacks by exploring the effectiveness of entropy-based features in
distinguishing the attack from normal traffic patterns. We hypothesise
that using different entropy measures, window sizes, and entropy-based
features may affect the accuracy of detecting DDoS attacks. This means
that certain entropy measures, window sizes, and entropy-based features
may reveal attack traffic amongst normal traffic better than the others.
Our experimental results show that using Shannon, Tsallis and Zhou
entropy measures can achieve a clearer distinction between DDoS attack
traffic and normal traffic than Rényi entropy. In addition, the window
size setting used in entropy construction has minimal influence in differ-
entiating between DDoS attack traffic and normal traffic. The result of
the effectiveness ranking shows that the commonly used features are less
effective than other features extracted from traffic headers.

Keywords: DDoS · Entropy · Traffic features

1 Introduction

Denial of Service (DoS) is a popular type of cyber attack that has remained a
problem for users of the Internet for over twenty years. This attack is popular
for its ability to effectively cripple servers and networks [6]. Now, DoS attacks
are often distributed where it is called Distributed Denial of Service (DDoS)
attack. In a recent case, a DDoS attack disrupted GitHub.com, a highly used
c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 207–217, 2019.
https://doi.org/10.1007/978-3-030-26834-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_12

208 A. Koay et al.

site for code repository and version control using a powerful DDoS attack that
peaked at 1.35Tbps [5]. The increasing severity of DDoS attacks has motivated
increased efforts to develop solutions to counter the attack.

Entropy-based features are a popular measure to detect DDoS attacks [10].
Generally, entropy-based features are computed by applying entropy measures
such as Shannon entropy [11] to raw traffic attributes. Entropy measures are
algorithms used to calculate the uncertainty of these raw traffic attributes. Typ-
ically these attributes are packet header fields such as source and destination IP
addresses, source and destination port numbers, and protocol. Entropy-based
features provide a distributional view of the network traffic where it shows the
variations of raw traffic attributes. For example, a high entropy value computed
using the source IP address attribute indicates that there is a high variation in
the origin of the traffic whereas a low entropy value indicates a smaller variation
in the traffic packets’ origins. This is useful for attack detection since a typical
DDoS attack with a large number of attack sources targeting a single or small
set of devices usually has a high variation in the source IP addresses and low
variation in destination IP addresses as compared to normal traffic [7].

The usage of entropy-based features is more appealing to researchers and
security professionals compared to the traditional volumetric based approaches
in DDoS attack detection because they provide the following advantages: simple
calculation, high sensitivity, and independence from the level of network utilisa-
tion. However, most existing approaches [4,9,10,13] use a limited set of entropy-
based features for detection that is only effective for specific DDoS attacks and
may fail to detect different types of DDoS attacks accurately. Choosing the right
set of entropy-based features to detect all types of DDoS attacks is a hard prob-
lem where it requires a deep understanding of each feature and their effectiveness
in distinguishing between various attack and normal traffic. In addition, it is also
important to understand the effect of entropy measures and window size used
in constructing entropy-based features on the effectiveness of detecting DDoS
attacks, in particularly in high- and low-intensity DDoS attacks.

The main contribution of this paper is the evaluation of a set of useful
entropy-based features based upon two types of investigation: (1) exploration
of the effectiveness of alternative entropy measures such as Tsallis, Rényi and
Zhou as opposed to the more commonly used Shannon entropy for highlighting
DDoS attack traffic patterns and (2) understanding the tradeoffs between detec-
tion window size and detection accuracy of entropy-based features to construct
effective entropy-based features.

2 Related Work

Most recent existing work on DDoS Detection concentrates on using entropy-
based features [4,7,10,14]. Most research focused on using a single entropy-based
feature for detecting anomalies in the network rather than multiple entropy
features [7]. In most entropy-based DDoS attack detection systems, Shannon
entropy [11] measure is used. Gu et al. [2] proposed a maximum entropy and

Effectiveness of Entropy-Based Features in DDoS Attack Detection 209

relative entropy approach based on Shannon entropy to detect network traffic
anomalies in the network traffic. The reported experimental results showed that
this approach is highly accurate in achieving very low false positive and false neg-
ative rates. In another approach, Zhang et al. [14] proposed an advanced entropy-
based method using Shannon entropy that splits variable rate attacks into dif-
ferent fields and treats each field with different methods to detect Low-rate DoS
(LDoS) attacks. However, the method has a significantly longer response time
and uses substantially more resources than prior entropy-based approaches.

Other entropy measures such as Tsallis or Rényi entropies have also been
used. For example, Ma et al. [7] proposed a DDoS detection method using Tsallis
entropy with an exponent separation detection algorithm based upon a variation
of Lyapunov Exponent. Their method measures the rate of exponent separation
between the source and destination IP addresses where the rate of exponent
separation in attack traffic tends to be much higher than normal traffic. Bhuyan
et al. [1] used an extended entropy metric based on Rényi entropy to calcu-
late the entropy difference between two traffic samples taken at different times
for detecting DDoS attacks. However, their method only analyses sample traf-
fic where important information or evidence of DDoS attack might be missed,
especially in low-intensity DDoS attacks.

Apart from entropy measures, DDoS attack detection approaches also adopt
different window sizes to detect DDoS attack traffic. For example, Mousavi
et al. [8] chose 50 packets as the window size by calculating the entropy of 50
new incoming packets that are sent to the software-defined network controller.
Their approach is able to detect the presence of DDoS attack traffic after observ-
ing only the first five window periods. Another study [7] on the various window
sizes, using a single dataset, found that 50 s window size yields the best result.

3 Entropy-Based Features

To construct the entropy-based features, we used the UNB ISCX 2012 intrusion
detection evaluation dataset (ISCXIDS2012) [12], a recent widely used dataset.
This dataset contains seven days (Monday through to Sunday) of network activ-
ities which include high-. and low-intensity attack traffic. IRC Botnet DDoS
attack traffic represents the high-intensity DDoS attack and HTTP Denial of
Service attack traffic represents the low-intensity DDoS attack traffic. Each day
has a different combination of attacks.

Entropy-based features can be constructed using two steps: (1) extract fea-
tures from the raw dataset, (2) compute entropy values based on pre-defined
entropy measures using a specific time interval.

3.1 Step 1 - Extract Features from the Raw Dataset

All possible traffic features that can be extracted from packet header information
(Table 1) are used to construct entropy-based features except redundant features
(i.e., Absolute time, resolved/unresolved addresses) or features that contain null
values (i.e., Cisco VSAN, 802.1Q VLAN id, Expert Info Severity).

210 A. Koay et al.

Table 1. List of regular entropy-based features constructed

Regular entropy-based features

Delta time (D.Time) Protocol identifier (Protocol)

Source IP address (S.IP) Destination IP address (D.IP)

Source port address (S.Port) Destination port address (D.Port)

Source MAC address (S.MAC) Destination MAC address (D.MAC)

Source network address (S.Net) Destination network address (D.Net)

Packet length (P.Length) IP DSCP value (DSCP)

TCP sequence number (Seq) TCP window length (W.Length)

TCP payload (Payload)

3.2 Step 2 - Compute Entropy Values

In the second step, the entropy value of each feature is calculated based on a pre-
defined entropy measure and window size. Entropy value can be calculated using
several different entropy measures, namely Shannon, Tsallis, Rényi and Zhou
entropies. On the other hand, the window size is defined as the distance between
two time points. For example, a window size of 60 s means that the entropy of
each feature of all packets within the 60 s time frame will be calculated.

Two types of entropy-based features are computed: regular entropy-based
features (Table 1) created by calculating the entropy of a single traffic features
and entropy variation features (Table 2) created by calculating the variation
between two distinct regular entropy-based features.

Table 2. List of Entropy variation features constructed

Entropy variation features

Separation IP address (V.IP) Separation port number (V.Port)

Separation MAC address (V.MAC) Separation network address (V.Net)

Separation TCP information (V.TCP)

4 Influence of Entropy Measures in Traffic Patterns

This section examines the influence of different entropy algorithms on the accu-
racy of detecting DDoS attack traffic. We compare the traffic patterns generated
using four different entropy measures, namely, Shannon, Tsallis, Rényi and Zhou
entropy measures in both high- and low-intensity DDoS attack traffic. Due to
space constraint, we did not show patterns of commonly used features such as
S.IP, D.IP, S.Port, D.Port and Protocol.

Effectiveness of Entropy-Based Features in DDoS Attack Detection 211

4.1 Network Traffic Containing High-Intensity DDoS Attack

The Tuesday’s network activities in the ISCXIDS2012 dataset contains the IRC
Botnet based DDoS attack traffic. This dataset is used as a representation of
network traffic containing high-intensity DDoS attack traffic.

Figure 1 shows entropy values generated using Shannon, Tsallis and Zhou
entropy measures; Rényi entropy shows a different traffic pattern from the others.
Since Tsallis and Zhou entropies are a generalisation of Shannon entropy, traffic
patterns generated will be similar.

0.0
0.5
1.0

D
.T

im
e

Shannon

0.0

0.5

1.0

S
.M

AC

0.0

0.5

1.0

D
.M

AC

0.0

0.5

1.0

D
S

C
P

0.0

0.5

1.0

S
eq

0.0

0.5

1.0

W
.L

en
gt

h

0.0

0.5

1.0

Pa
yl

oa
d

0.0

0.5

1.0

S
.N

et

0.0

0.5

1.0

D
.N

et

0.0

0.5

1.0

V.
IP

0.0

0.5

1.0

V.
Po

rt

0.0

0.5

1.0

V.
M

AC

0.0

0.5

1.0

V.
N

et

0.0
0.5
1.0

0 500 1000 150
Time

V.
TC

P

Tsallis

0 500 1000 150
Time

Rényi

0 500 1000 150
Time

Zhou

0 500 1000 150
Time

Fig. 1. Different entropy measures of entropy-based features with high-intensity attack
traffic; grey area shows the period of the DDoS attack.

We observe that it is possible to distinguish high-intensity DDoS attack traffic
from normal traffic quite easily when entropy measures are applied to most of
the traffic features except for entropy measures calculated using the Seq field as
shown in Fig. 1. This is because for most of the entropy-based features generated,
the entropy values of attack traffic have a much smaller range than normal traffic.

212 A. Koay et al.

For example, the attack traffic entropy values of the DSCP feature, using the
Shannon entropy algorithm, lie between 0.1 to 0.35 whereas the normal traffic
entropy values of the same entropy lie between 0.05 to 0.95.

The differences between these entropies represent the distributional differ-
ences between attack and normal traffic. There is not much of a difference in the
distributional patterns of attack and normal traffic using entropy-based features
constructed using Rényi entropy, which may not be useful in identifying stealthy
DDoS attacks. This is because the differences between attack and normal traffic
entropy values are too small to be noticeable and can be easily misclassified. On
the other hand, Shannon, Tsallis and Zhou entropies provide clearer differences
in distributional patterns and entropy values between attack and normal traffic.

Overall, Rényi entropy does not perform well at distinguishing high-intensity
DDoS attack traffic from normal traffic whereas Shannon, Tsallis and Zhou
entropies perform better and can identify DDoS attack traffic relatively well.

4.2 Network Traffic Containing Low-Intensity DDoS Attack

The Monday’s network activities in ISCXIDS2012 dataset contains HTTP Denial
of Service attack traffic, an example of low-intensity DDoS attack (Fig. 2.)

Unlike high-intensity DDoS attacks, it is difficult to distinguish between low-
intensity attack traffic and normal traffic. Most entropy-based features such as
D.Time, S.MAC, D.MAC, S.Net, D.Net, V.IP, and V.Net show the entropy values
decreases during the attack. However, this is true for only a small part of the
attack, specifically in the middle of the attack (i.e. around 1200 s). This phe-
nomenon indicates that low-intensity attacks require some time before there are
significant changes in the traffic distribution in the network. Entropy-based fea-
tures such as Seq and W. Length entropies using Shannon and Zhou entropies
show a clear distinction between attack traffic and normal traffic.

Similar to Rényi entropy gives almost no difference in the traffic patterns
between attack traffic and normal traffic. However, Rényi entropy shows signifi-
cant differences between the traffic patterns of attack traffic and normal traffic
when applied to V.IP, V.Port and V.Net entropy features, in which it shows sim-
ilar differences to the other entropy algorithms (Zhou, Shannon, and Tsallis)
examined.

5 Effects of Window Size in Traffic Patterns

This section examines the influence of window size in calculating entropy values
for DDoS detection on network traffic. If the window size is set too large, DDoS
attacks that lasted for a shorter period than the window size may be hidden and
the entropy value computed may not show the distinct difference between attack
traffic and normal traffic. However, if the window size is set too small, entropy
values generated may be too sensitive to the changes in the traffic. This means
that a slight change in the network can be regarded as an attack even though it
is not. In this case, a lot of false alarms may occur.

Effectiveness of Entropy-Based Features in DDoS Attack Detection 213

0.0
0.5
1.0

D
.T

im
e

Shannon

0.0

0.5

1.0
S

.M
AC

0.0

0.5

1.0

D
.M

AC

0.0

0.5

1.0

D
S

C
P

0.0

0.5

1.0

S
eq

0.0

0.5

1.0

W
.L

en
gt

h

0.0

0.5

1.0

Pa
yl

oa
d

0.0

0.5

1.0

S
.N

et

0.0

0.5

1.0

D
.N

et

0.0

0.5

1.0

V.
IP

0.0

0.5

1.0

V.
Po

rt

0.0

0.5

1.0

V.
M

AC

0.0

0.5

1.0

V.
N

et

0.0
0.5
1.0

0 500 1000 150
Time

V.
TC

P

Tsallis

0 500 1000 150
Time

Rényi

0 500 1000 150
Time

Zhou

0 500 1000 150
Time

Fig. 2. Different entropy measures of entropy-based features with low-intensity attack
traffic; grey area shows the period of the DDoS attack.

We compared six different window sizes (30, 60, 90, 120, 150, and 180 s)
and observe the traffic patterns generated. Traffic patterns based on the entropy
values of traffic features in high-intensity DDoS attack scenarios are shown in
Fig. 3. We observe that all features have similar traffic patterns even though
different window intervals are applied.

Furthermore, there is almost no difference in traffic patterns between these
four window intervals. Entropy is being calculated more frequently in the 30-
s interval compared to the 60-s interval, but both gave similar traffic patterns.
The lack of differences in attack traffic and normal traffic patterns (also observed
in low-intensity DDoS attack scenarios) suggest that the window size used for
generating traffic feature entropy values only has a slight effect on the accuracy
of DDoS attack detection.

214 A. Koay et al.

0.000.250.500.751.00

D
.T

im
e

30 seconds

0.0

0.5

1.0

S
.M

AC

0.0

0.5

1.0

D
.M

AC

0.0

0.5

1.0

D
S

C
P

0.0

0.5

1.0

S
eq

0.0

0.5

1.0

W
.L

en
gt

h

0.0

0.5

1.0

Pa
yl

oa
d

0.0

0.5

1.0

S
.N

et

0.0

0.5

1.0

D
.N

et

0.0

0.5

1.0

V.
IP

0.0

0.5

1.0

V.
Po

rt

0.0

0.5

1.0

V.
M

AC

0.0

0.5

1.0

V.
N

et

0.0
0.5
1.0

0 1000 2000 3000
Time

V.
TC

P

60 seconds

0 500 1000 1500
Time

90 seconds

0 250 500 750 1000
Time

120 seconds

0 200 400 600
Time

150 seconds

0 200 400 600
Time

180 seconds

0 100 200 300 400 500
Time

Fig. 3. Shannon entropy-based features with high-intensity attack constructed using
different window sizes; grey area shows the period of the DDoS attack.

6 Effectiveness of Individual Entropy-Based Features

We analysed the effectiveness of each feature by using Pearson’s Correlation,
gain ratio, and information gain techniques found in the WEKA tool [3]. Table 3
shows the effectiveness ranking (correlation, information gain, and gain ratio) of
entropy-based features in detecting low-intensity DDoS attacks based on 10-fold
cross-validation on a single seed (seed = 1). D.Time, Protocol, W.Length, Payload,
V.MAC, and V.TCP are consistently ranked within the top five in at least two
out of three feature selection algorithms. These features, except for protocol, are
not one of the commonly used features on most DDoS detection systems.

Table 4 shows the effectiveness ranking of entropy-based features in detecting
high-intensity DDoS attacks. The top features in the high-intensity DDoS attack
dataset are D.Port, D.MAC, Protocol, P.Length, Seq, V.Port and V.MAC. Unlike
the results for low-intensity DDoS attack dataset, the top features that are effec-
tive in detecting high-intensity DDoS attacks include one of the normally used
in DDoS attack detection systems as the attack used in this dataset focused on
attacking the victim using the same destination port address.

Effectiveness of Entropy-Based Features in DDoS Attack Detection 215

Table 3. Effectiveness ranking in
detecting low-intensity DDoS attacks

Feature Correlation Information gain Gain ratio

D.Time 3.5± 0.5 17.6± 0.49 3.3± 2.37

S.IP 14.4± 0.66 9.9± 0.83 14.4± 0.66

D.IP 9.9± 0.3 12.4± 1.11 17.5± 0.5

S.Port 16.2± 0.4 6.9± 0.3 6.8± 0.75

D.Port 19± 0 15.9± 0.54 10.9± 1.22

S.MAC 8.2± 0.6 14.7± 0.64 13.7± 1.62

D.MAC 6± 0 8.1± 0.3 12.5± 0.5

S.Net 16.8± 0.4 13.5± 1.96 12.1± 4.04

D.Net 11± 0 13± 1.34 17.5± 0.5

Protocol 5± 0 6.3± 0.64 1± 0

P.Length 18± 0 10.5± 1.91 15± 1.41

DSCP 8.9± 0.3 18.5± 1.02 19± 0

Seq 7± 0 16.6± 3.93 9.2± 0.6

W.Length 3.5± 0.5 1± 0 2.8± 0.6

Payload 12.5± 0.5 2± 0 5.4± 0.49

V.IP 12.7± 0.78 11± 1 11.3± 0.46

V.Port 14.4± 0.66 3.6± 0.49 8.4± 0.8

V.MAC 1± 0 3.4± 0.49 5.4± 1.2

V.TCP 2± 0 5.1± 0.3 3.8± 0.6

Table 4. Effectiveness ranking in
detecting high-intensity DDoS attacks

Feature Correlation Information gain Gain ratio

D.Time 15± 0.77 2± 0 2± 0

S.IP 18.9± 0.3 8.4± 0.49 7.5± 1.86

D.IP 12± 0.77 11.7± 0.9 7.2± 1.4

S.Port 2.8± 0.4 14.9± 0.3 15.3± 0.46

D.Port 4± 0 4± 0 4± 0

S.MAC 14.3± 0.46 8.2± 0.98 9.3± 1.68

D.MAC 6± 0 1± 0 1± 0

S.Net 17± 0 7± 0.89 8.5± 1.75

D.Net 10.9± 0.83 10.6± 0.8 7.9± 1.37

Protocol 15.7± 0.46 3± 0 3± 0

P.Length 5± 0 11.6± 1.11 13.9± 0.54

DSCP 18.1± 0.3 14.1± 0.3 9.4± 1.36

Seq 7.9± 0.54 5± 0 13.2± 0.6

W.Length 10.9± 1.04 16± 0 16.7± 0.46

Payload 7.2± 0.4 6.4± 0.49 12.2± 0.4

V.IP 8.9± 0.3 19± 0 18.6± 0.66

V.Port 1± 0 12.1± 1.04 5.3± 0.64

V.MAC 2.2± 0.4 17.6± 0.49 18.3± 0.46

V.TCP 12.2± 1.08 17.4± 0.49 15.8± 1.54

From the results, we found several features that are more effective than the
commonly used entropy-based features. We also found that D.Time and Protocol
are the top features for detecting both high- and low-intensity DDoS attacks.

7 Summary of the Usefulness of Entropy-Based Features

In this paper, we examined the usefulness of entropy-based features in detecting
DDoS attacks by analysing each entropy-based feature as shown in Fig. 1 to
Fig. 3. We found that entropy-based features such as Protocol, and P.Length can
show a more distinct difference between attack and normal traffic (refer Fig. 1).
Our effectiveness ranking based on three feature selection algorithms shows that
uncommon features such as D.Time, V.Port and V.MAC entropy-based features
are the most effective in detecting both high- and low-intensity based DDoS
attacks.

Although some entropy-based features can be effective in detecting a DDoS
attack, they may not be effective for all types of DDoS attack. For example,
Payload can be effective against DDoS attacks that transmit attack traffic at
a low-intensity rate but may not be effective against DDoS attacks that send
attack traffic at a high-intensity rate. D.IP is effective against DDoS attacks that
send attack traffic to the same IP Address but may not be effective against DDoS
attacks that send attack traffic to multiple IP addresses. An attacker can easily
defeat the detection scheme based on single entropy features by randomising the
attack traffic sending rate and IP addresses.

Also, at the earlier stage of an attack, the temporal change of a single entropy
feature may be too small to be noticed by the detection scheme, especially when
it is observed close to the attack source. Temporal changes are changes that could
be observed over time. Entropy values before an attack and during an attack
could be different based on the characteristics of attack traffic and its differences

216 A. Koay et al.

with normal traffic. These differences might not be noticeable in the early stage
of an attack before the aggregated attack traffic meets at the aggregation point,
but become more noticeable after some time where attack volumes are increasing
over time.

8 Conclusion and Future Work

This paper evaluated a set of useful entropy-based features by exploring the
effectiveness of entropy measures in detecting DDoS attacks and understanding
the tradeoffs between detecting window size and detection accuracy of entropy-
based features to construct effective entropy-based features. Our experiments
showed that not all regular entropy-based features provide a clear distinction
between attack and normal traffic patterns and window size used in entropy
construction has minimal impact on overall accuracy. We also found that several
uncommon features are more effective than the commonly used features in DDoS
attack detection. In the future, we plan to work on the following items to further
enhance the accuracy and generality of this approach:

– Sliding window intervals. In this paper, we only used a single fixed window
interval. We plan to optimise the detection results by adopting a sliding win-
dow interval approach.

– New machine learning classifier. We found the top features that are effective
and useful in detecting both high- and low-intensity DDoS attacks. We plan
to further investigate the best machine learning classifier using those features
to improve the results of DDoS detection.

– Newer type of attacks. Our evaluation dataset uses older types of DDoS
attack. We plan to test the approach with newer and more recent of DDoS
attacks such as NTP reflection attacks and DNS Amplification attacks.

References

1. Bhuyan, M.H., Bhattacharyya, D., Kalita, J.: E-LDAT: a lightweight system for
DDoS flooding attack detection and IP traceback using extended entropy metric.
Secur. Commun. Netw. 9(16), 3251–3270 (2016)

2. Gu, Y., McCallum, A., Towsley, D.: Detecting anomalies in network traffic using
maximum entropy estimation. In: Proceedings of the 5th ACM SIGCOMM Con-
ference on Internet Measurement, p. 32. USENIX Association (2005)

3. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1),
10–18 (2009)

4. Jun, J.H., Ahn, C.W., Kim, S.H.: DDoS attack detection by using packet sampling
and flow features. In: Proceedings of the 29th Annual ACM Symposium on Applied
Computing, pp. 711–712. ACM (2014)

5. Kottler, S.: February 28th DDoS Incident Report (2018). https://githuben
gineering.com/ddos-incident-report/

https://githubengineering.com/ddos-incident-report/
https://githubengineering.com/ddos-incident-report/

Effectiveness of Entropy-Based Features in DDoS Attack Detection 217

6. Loukas, G., Öke, G.: Protection against denial of service attacks: a survey. Comput.
J. 53, 1020–1037 (2009)

7. Ma, X., Chen, Y.: DDoS detection method based on chaos analysis of network
traffic entropy. IEEE Commun. Lett. 18(1), 114–117 (2014)

8. Mousavi, S.M., St-Hilaire, M.: Early detection of DDoS attacks against SDN con-
trollers. In: Proceedings of the International Conference on Computing, Networking
and Communications (ICNC), pp. 77–81. IEEE (2015)

9. Nychis, G., Sekar, V., Andersen, D.G., Kim, H., Zhang, H.: An empirical evalua-
tion of entropy-based traffic anomaly detection. In: Proceedings of the 8th ACM
SIGCOMM Conference on Internet Measurement, pp. 151–156 (2008)

10. Özçelik, İ., Brooks, R.R.: Deceiving entropy based DoS detection. Comput. Secur.
48, 234–245 (2015)

11. Shannon, C.E.: Communication theory of secrecy systems. Bell Labs Tech. J. 28(4),
656–715 (1949)

12. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a sys-
tematic approach to generate benchmark datasets for intrusion detection. Comput.
Secur. 31(3), 357–374 (2012)

13. Zhang, C., Cai, Z., Chen, W., Luo, X., Yin, J.: Flow level detection and filtering
of low-rate DDoS. Comput. Netw. 56(15), 3417–3431 (2012)

14. Zhang, J., Qin, Z., Ou, L., Jiang, P., Liu, J., Liu, A.: An advanced entropy-based
DDoS detection scheme. In: Proceedings of the International Conference on Infor-
mation Networking and Automation (ICINA), vol. 2, pp. V2–67 (2010)

Web and Usable Security

API Usability of Stateful
Signature Schemes

Alexander Zeier(B) , Alexander Wiesmaier , and Andreas Heinemann

Darmstadt University of Applied Sciences,
Haardtring 100, 64295 Darmstadt, Germany

{alexander.zeier,alexander.wiesmaier,andreas.heinemann}@h-da.de

Abstract. The rise of quantum computers poses a threat to asymmetric
cryptographic schemes. With their continuing development, schemes such
as DSA or ECDSA are likely to be broken in a few years’ time. We there-
fore must begin to consider the use of different algorithms that would be
able to withstand powerful quantum computers. Among the considered
algorithms are hash-based signature schemes, some of which, including
XMSS, are stateful. In comparison to stateless algorithms, these state-
ful schemes pose additional implementation challenges for developers,
regarding error-free usage and integration into IT systems. As the cor-
rect use of cryptographic algorithms is the foundation of a secure IT
system, mastering these challenges is essential.

This work proposes an easy-to-use API design for stateful signature
schemes, using XMSS(MT) as an example. Our design is based on find-
ings from literature as well as on a series of interviews with software
developers. It has been prototypically implemented and evaluated in
small-scale user-studies. Our results show that the API can manage the
stateful keys in a way that is transparent to the user. Furthermore, a
preliminary online-study has shown that the API’s documentation and
applicability are comprehensible. However, due to the transparent state
management, many of the study’s participants were unaware of using a
stateful scheme. This might lead to possible obstacles. Our current API
design will serve as the basis for a larger user-study in order to review
our preliminary findings in the next step.

Keywords: Post-quantum cryptography · API usability ·
Stateful signature schemes · Cryptographic agility

1 Introduction

1.1 The Need for Post-quantum Crypto Schemes

Quantum computers are the subject of ongoing research. With sufficient perfor-
mance, they will be able to break the asymmetric schemes currently in use, such
as RSA, DSA, ECDSA, and ECDH [10]. Their security is based on the prime
factorization of large numbers and on the calculation of discrete logarithms,
c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 221–240, 2019.
https://doi.org/10.1007/978-3-030-26834-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_13&domain=pdf
http://orcid.org/0000-0003-1717-5029
http://orcid.org/0000-0002-1144-549X
http://orcid.org/0000-0003-0240-399X
https://doi.org/10.1007/978-3-030-26834-3_13

222 A. Zeier et al.

respectively. For conventional computers, these are sufficiently difficult to solve
if the parameters are suitably selected. However, this will no longer be the case
when Shor’s algorithms [28] are used on a sufficiently large quantum computer.
The need for post-quantum cryptography (PQC), i.e. schemes secure enough to
withstand a large quantum computer, is therefore evident.

In 2016, the National Institute of Standards and Technology (NIST) initiated
a standardization process for PQC schemes.1 These schemes are based on mathe-
matical principles which are believed not to be vulnerable to quantum computer
attacks. Hash-based schemes including XMSS [15], LMS [20] or SPHINCS [4] are
possible candidates for post-quantum-secure algorithms. These schemes use hash
functions to sign data and each signature requires a one-time key. Therefore, the
private key contains a set of one-time keys. To record which keys have already
been used, XMSS and LMS require a state. SPHINCS does not use a state and
is therefore not considered within this work.

1.2 The Need for Usable Crypto APIs

The wrong usage of cryptographic functionality bears great risks and may lead
to the leakage of personal data or identity theft. Therefore, the usage of cryp-
tographic tools is indicated, if not for other reasons at least to be compliant
with regulations such as GDPR2. This leads to an increasing integration of
cryptographic functionality in software, including every-day applications such as
instant messaging. Thus, more and more programmers, usually from other fields
than cryptography, are using these APIs. Since these programmers are often
unfamiliar with the required cryptographic principles, they struggle with the
current APIs, which are too low-level for their needs [23]. Prior work shows that
developers encounter problems using cryptographic APIs correctly [3,23,30].
Incorrect use of cryptographic APIs leads to insecure code, which in turn leads to
an insecure application [11]. Therefore, easy-to-use APIs are playing an increas-
ingly important role. Lazar et al. [19] have analyzed the vulnerabilities listed
in the CVE database3 and found that 83% of those vulnerabilities were caused
by the incorrect use of cryptographic libraries, e.g. unsafe algorithms or hash
functions were unknowingly applied, especially when using the default values
provided by the API. Other errors included the use of weak random generators
or private keys specified in the code.

Nadi et al. [23] have carried out 4 studies to point out typical problems regard-
ing the use of cryptographic Java APIs. Problems included the time required to
read resources such as the documentation, finding the correct sequence to call
individual methods and insufficient knowledge about the domain. Similar to Acar
et al. [3], the authors have identified good documentation, which should include
examples for frequent tasks, as an important characteristic of a usable API.
Many participants also mentioned the API design itself. The developers wish for

1 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography (2019-02-12).
2 https://eugdpr.org (2019-06-07).
3 https://cve.mitre.org (2019-03-09).

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://eugdpr.org
https://cve.mitre.org

API Usability of Stateful Signature Schemes 223

a high-level API that allows solving frequent tasks with only few method calls.
Likewise, many developers requested tools to automatically detect faulty code
and to provide code templates.

Stateful signature schemes introduce new challenges to the developer. In con-
trast to conventional signature schemes, the state of the private key changes with
each signature. This property puts an extra burden to developers on their way
to create secure applications. Even experienced developers may struggle with
this new concept, as it differs from their experience and mental model. Our app-
roach is to design an appropriate library that is easy to use from the developer’s
perspective. As to our knowledge, current implementations of stateful signature
schemes (e.g. the XMSS implementation of Bouncy Castle4) do not automati-
cally handle the states of the keys. How and whether the state is managed at all
is entirely up to the developer, which indicates insufficient usability.

1.3 Goal and Approach

The goal of this paper is to design a cryptoagile, easy-to-use API for stateful and
stateless signature schemes, focusing on a novel approach to handle the state of
the private key.

To reach this goal, we investigate general design recommendations through
literature research and conduct interviews with software developers (experts and
non-experts) to collect a first set of requirements for our API. With these require-
ments, a prototype API for digital signatures, including the stateful scheme
XMSS(MT), is designed and implemented. We evaluate our API in multiple iter-
ations of small scale laboratory- and online-studies, improving our design with
each iteration. These evaluation steps will provide us with an initial version of
our API, ready to be used in a future, large-scale user-study.

The remainder of this work is structured as follows: we discuss related work
(Sect. 2) as well as a new API layer for non-experts (Sect. 3), introduce our
easy-to-use API for digital signatures, including stateful schemes (Sect. 4) and
evaluate our API in user studies (Sect. 5). Section 6 concludes the paper and
provides an outlook.

2 Related Work

Due to our interdisciplinary work, we discuss related work regarding stateful
signature schemes and the management of their states (Sect. 2.1), the concept of
cryptographic agility (Sect. 2.2), general recommendations for good API design
(Sect. 2.3), research aiming to improve the usability of (cryptographic) APIs
(Sect. 2.4) and methodology of online and laboratory studies (Sects. 2.5 and 2.6,
respectively).

4 https://www.bouncycastle.org/docs/docs1.5on/org/bouncycastle/pqc/jcajce/
provider/xmss/package-frame.html (2019-02-21).

https://www.bouncycastle.org/docs/docs1.5on/org/bouncycastle/pqc/jcajce/provider/xmss/package-frame.html
https://www.bouncycastle.org/docs/docs1.5on/org/bouncycastle/pqc/jcajce/provider/xmss/package-frame.html

224 A. Zeier et al.

2.1 Stateful Signature Schemes and State Management

Buchmann et al. [8] describe the eXtended Merkle Signature Scheme (XMSS),
an extension of the Merkle Signature Scheme (MSS) [22]. In XMSS, as well as
in other hash-based signature schemes, the private key contains a limited set
of one-time keys. As the name implies, these one-time keys can only be used
once and therefore, only a limited amount of signatures can be performed with a
single private key. The so-called state of the private key contains the information
about which of the one-time keys have already been used. A further extension of
XMSS is XMSSMT (XMSS Multi Tree). Through the introduction of subtrees in
several layers, a practically unlimited number of signatures can be generated with
comparable performance. Both schemes (XMSS and XMSSMT) are an Internet
standard by the IETF [15].

Besides the reference implementation in C5, a Java implementation for
Bouncy Castle6 exists as a lightweight API since version 1.57 and as a provider7

implementation since version 1.58. Since we are using Java for our prototype
implementation, we use the BC provider API as the basis to implement our own
API (see Sect. 4). As of now, this is the only existing Java implementation for
XMSS(MT).

McGrew et al. [21] investigate which measures must be taken to securely
manage the states of hash-based signature schemes. They point out the danger
of cloning in particular, especially by copying a virtual machine (VM) and with
it the contained key material. A private key contained therein would then exist in
two independent instances and could be used by both without synchronization.

Their work also mentions the risk of a synchronization failure in case the
private key stored in the persistent storage fails to update at the same time or
before the private key in RAM does, e.g. due to an application crash.

The authors consider the secure use of stateful signature methods possible
in scenarios with dedicated hardware, but propose a hybrid scheme for general
use. This includes scenarios that take the occurrence of cloning into account.

The paper also presents a strategy to increase efficiency by reserving states.
The stateful private key is persistently stored n states in advance. Thus n keys
are reserved for signing. Only if all reserved keys were used, the persistent storage
would have to be accessed again.

We will take these considerations into account when designing our own API,
by measures taken either in the implementation or in the documentation.

2.2 Cryptographic Agility

In order to respond to the constantly improving attacks on cryptographic
schemes and primitives, APIs, cryptographic system components, and support-
ing libraries must be designed in a crypto-agile manner.
5 https://github.com/joostrijneveld/xmss-reference (2019-03-09).
6 https://www.bouncycastle.org (2019-03-09).
7 https://docs.oracle.com/javase/8/docs/api/java/security/Provider.html (2019-03-

09).

https://github.com/joostrijneveld/xmss-reference
https://www.bouncycastle.org
https://docs.oracle.com/javase/8/docs/api/java/security/Provider.html

API Usability of Stateful Signature Schemes 225

In RFC7696 [14] the agility of algorithms is described as follows: “Algorithm
agility is achieved when a protocol can easily migrate from one algorithm suite to
another more desirable one, over time”. RFC6421 [24] offers a similar definition.

Schneider described cryptographic agility in a more general way: “Crypto-
graphic agility refers to how easy it is to evolve or replace the hardware, soft-
ware, or entire information technology (IT) systems being used to implement
cryptographic algorithms or protocols (and, in particular, whether the resulting
systems remain “interoperable”)” (opening remarks at a workshop on Crypto-
graphic Agility and Interoperability [17]).

The replacement of algorithms is necessary, for example, if weaknesses are
found in the algorithms or their implementation. But also simply the age of the
algorithms and the increasing processing power of modern computers will make
the use of more advanced algorithms a necessary step [14]. A faulty protocol
design can also lead to weaknesses. However, in general, an simple exchange of
cryptographic algorithms does not solve the problem. Instead, the protocol itself
has to be adapted [14].

The crypto-agile integration of stateful schemes into IT systems poses a chal-
lenge. Compared to classical schemes, additional steps have to be performed in
order to manage the state of the private key. Our goal is to take the above men-
tioned factors into account when designing our own API, providing a crypto-agile
solution for stateful and stateless cryptographic schemes.

2.3 API Design

Several authors formulate usability principles for APIs or for systems in general
[5,13,25]. We designed our API according to the following principles, as they
best fit our use case and provide a good starting point: easy to learn, easy to
use, hard to misuse, safe default values, good documentation, easy to read and to
maintain code, easily extensible.

2.4 Usability of (cryptographic) APIs

Acar et al. [1] investigate the usability of cryptographic APIs in Python. Their
work compares 5 of such APIs, 3 of which state to have good usability. The results
show that simpler APIs usually lead to more secure code. Auxiliary functions,
e.g. for storing the key material, should also be part of the API, although often
this is not the case. Good official documentation was also considered as crucial.
If no clear documentation is provided, the developer may turn to other sources
(e.g. StackOverflow8), resulting in erroneous code [3].

Acar et al. [1] also introduced a new usability scale that better fits for the
evaluation of APIs than the System Usability Scale (SUS, [6]). This new scale
correlates with the SUS. 11 statements (see Appendix) about an API’s usability
are used to calculate a score between 0 and 100, where higher values represent
a better usability. The statements have to be rated by the participants of a

8 https://stackoverflow.com (2019-03-09).

https://stackoverflow.com

226 A. Zeier et al.

usability study from 1 = strongly disagree to 5 = strongly agree. We make use
of this usability scale during our small-scale user-studies.

Google is developing the cryptographic API Tink9 with focus on usability.
Accordingly, the API is “secure, easy to use correctly, and hard(er) to misuse”.
Tink is the (unofficial) successor to Keyczar10. Currently, however, Tink does
not support stateful signature schemes. The design and development of such
APIs, as it is carried out in the work at hand, is therefore still necessary. To the
best of our knowledge, scientific literature on Tink, especially on usability tests
of the API, does not (yet) exist.

CogniCrypt is an extension for the Eclipse IDE [18]. It provides a wizard
for secure code generation and static code analysis to continuously ensure the
correctness of the code. While this helps the developer to create and maintain
secure code, the usability of the cryptographic API itself is not improved. In
contrast, our goal is to address the problem in an earlier phase by designing
an easy-to-use cryptographic API, independent from any IDE or platform used
by the developer. Tools like CogniCrypt may further be used complementary to
further improve the process of code creation and maintenance.

2.5 Related Online Studies

Acar et al. [1] conducted their online study using a specifically developed online
test environment which is described in detail by Stransky et al. [29]. The par-
ticipants, most of whom were acquired from GitHub11, were asked to solve a
number of cryptographic problems using a randomly assigned API. After com-
pleting the tasks, they were asked to participate in an online survey. Gorski et
al. [12] use a similar methodology, including test environment and participant
acquisition, evaluating the integration of security warnings into the API.

For our own study, we are using the same test environment as mentioned
above. While our methodology is similar, we focus on the usability of stateful
signature schemes in particular. To our knowledge, this is the first work that
examines the usability of such schemes.

2.6 Related Laboratory Studies

Scheller and Kühn [26,27] have conducted various laboratory studies to investi-
gate factors that influence the usability of an API’s methods and classes and to
compare different configuration-based design concepts. For this purpose, partic-
ipants were invited into a laboratory environment in which they were asked to
solve a number of programming tasks. Screen recordings were made to analyze
the results. These recordings made it possible to determine, for example, precise
time values required to perform various steps, such as reading a specific section

9 https://github.com/google/tink (2019-03-09).
10 https://github.com/google/keyczar (2019-03-17).
11 These were sent invitations by e-mail that had previously been extracted from git

commits.

https://github.com/google/tink
https://github.com/google/keyczar

API Usability of Stateful Signature Schemes 227

of the tutorial or documentation, or initializing a required class. In [27] there
were three groups of 9 participants each. All groups were asked to solve a series
of tasks with a different design concept. The time required for these tasks was
analyzed and evaluated in combination with other collected information. In [26]
a total of 20 participants took part in the study. They were divided into 2 groups
of 10 participants each. For each group, a different API was provided to solve
a number of tasks. Both studies were moderated by a supervisor sitting next to
the participant during the entire execution period, giving explanations on each
task.

As mentioned before, the online studies discussed in Sect. 2.5 served as an
orientation as we use their methodology to evaluate our own API.

To summarize, we create and evaluate a crypto-agile, easy-to-use API design
for digital signature schemes, including stateful ones, using various methods and
principles described in this section.

3 A New Layer for Non-experts

There are established Crypto-APIs providing standardized access to crypto-
graphic functionality. Prominent examples are the Microsoft Cryptography API:
Next Generation12 (CNG) for MS Windows applications and the Java Cryp-
tography Architecture13 (JCA) for Java-based applications. These are used by
professional programmers to implement cryptography code in the respective lan-
guage for the given platforms.

While these APIs provide very flexible access to cryptographic functionality,
they also demand a detailed understanding of the underlying mechanisms. On
the one hand, this allows the experienced developer to make detailed decisions
on how to implement their IT security measurements; a possibility that is surely
needed when out-of-the-box solutions do not fit. On the other hand, this also
leaves much room for errors, especially when the programmer is not skilled in
the use of cryptography; errors that should be avoided, especially when out-of-
the-box solutions suffice.

In order to provide suitable cryptographic APIs for both, experts with the
need for detailed tweaking and inexperienced programmers with everyday needs,
our design consists of a new abstraction layer.

Figure 1 shows the conceptual integration of our new layer on top of the
JCA. On the right hand side, the expert user directly accesses the JCA API
as it comes with the Java Development Kit14 (JDK). On the left hand side,
the non-expert user employs an easy-to-use API that provides out-of-the-box
cryptography methods for common cryptography tasks. The easy-to-use API in

12 https://docs.microsoft.com/en-us/windows/desktop/seccng (2019-02-27).
13 https://docs.oracle.com/en/java/javase/11/security/java-cryptography-

architecture-jca-reference-guide.html (2019-02-21).
14 https://www.oracle.com/technetwork/java/javase/downloads/jdk11-downloads-

5066655.html (2019-02-21).

https://docs.microsoft.com/en-us/windows/desktop/seccng
https://docs.oracle.com/en/java/javase/11/security/java-cryptography-architecture-jca-reference-guide.html
https://docs.oracle.com/en/java/javase/11/security/java-cryptography-architecture-jca-reference-guide.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk11-downloads-5066655.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk11-downloads-5066655.html

228 A. Zeier et al.

Fig. 1. Conceptual layer integration

turn, makes use of the JCA API. Note that the same design model can also be
built upon other underlying standard APIs, e.g. CNG.

Besides providing a solution to the above described requirement of an expert
API and to the demand for an error-proof API, this layered design comes with
some additional advantages. Firstly, programmers that are already used to (and
confident in) using the existing API (e.g. JCA or CNG) can continue to do so,
they are not forced to use or learn an additional API. Secondly, the implemen-
tation of the easy-to-use API (by expert programmers) may be based (as in the
example at hand) on an existing standard that already provides a suitable level of
abstraction, especially regarding the exchange of underlying cryptographic algo-
rithms. This way, our API inherits the cryptographic agility of that standard
(see also Sect. 4.2).

4 EasySigner API

This section describes the EasySigner API15, an easy-to-use API for digital
signatures, providing a uniform interface for stateful and stateless signature
schemes, both classical and post-quantum. A first prototype of this API, focus-
ing on stateful signature schemes, is implemented in order to conduct small-scale
usability tests (see Sect. 5). For the time being, we focus on a Java implementa-
tion of the API. We chose Java, as it is one of the most popular programming
languages16.

4.1 Requirements

Section 2 dealt with general design recommendations for (cryptographic) APIs.
These were taken into account for the design of the EasySigner API.

Additionally, the results of four interviews with software developers from
different German institutions were taken into account. These interviews were
conducted to gain a deeper insight into the specific requirements for stateful sig-
nature schemes, also providing ideas and inspirations for the required methods,
their naming and their placement. As is common in usability research, these

15 Source code available at https://github.com/azeier-ucs/EasySigner-API.
16 It was the most popular programming language in the StackOverflow developer

survey 2018: https://insights.stackoverflow.com/survey/2018/ (2019-03-07).

https://github.com/azeier-ucs/EasySigner-API
https://insights.stackoverflow.com/survey/2018/

API Usability of Stateful Signature Schemes 229

interviews are intended to ensure that the API design meets the requirements
and wishes of potential users.

Two of the interviewees were experienced Java developers with good knowl-
edge of XMSS(MT) and cryptography in general (both rating their own Java (J)
and crypto (C) knowledge with high or very high), working professionally with
Java for 17 and 2 years, mostly on cryptographic tasks. The other two devel-
opers are less familiar with cryptography (C: very low, J: medium) or Java (J:
low, C: high), respectively. All interviewees were acquaintances of the authors of
this paper. The participation was voluntary and no incentive was given. These
developers were chosen in order to gain insights from users with different skill
sets. We will elaborate on the interviews in the following.

Interview Conduction. After familiarizing the interviewees with the topic
at hand, they were asked about the challenges of using cryptographic APIs in
general and stateful APIs in particular. In case of the two participants that were
already familiar with the Bouncy Castle XMSS(MT) implementation, example
code was presented at this point. For the other two participants, this was done
at a later point during the interview. Here, the interviewees were asked to point
out code fragments they felt were well or badly implemented. They were asked
for example whether certain method calls appeared intuitive or whether the
interviewees were unsure about their meaning. If an interviewee had already used
the XMSS(MT) Java Provider, they could also report their own experiences.

Furthermore the interviewees were asked to write down their own ideas for an
easy-to-use API for digital signatures, this way providing ideas for method names
and required parameters as well as for the call sequence of related methods.

Interview Findings. According to all interviewees, a cryptographic API
should be easy to use, even without any knowledge of cryptography or IT secu-
rity, should provide secure default values that make it difficult to use the API
incorrectly as well as a good documentation. In the following, several aspects
are discussed in more detail:

Regarding the API’s documentation, the interviewees stated missing exam-
ples for typical use cases. Instead, Google and StackOverflow are used, often
resulting in insecure code, as already shown by Acar et al. [2].

In order to provide secure default values, usage profiles were suggested by
some interviewees. Depending on the use case, e.g. for a Certification Authority
(CA) or for code signatures, the respective usage profile contains predefined
values17 to be used by the developer. For some algorithms, suitable parameters
already exist in literature. Hülsing et al. describe XMSS(MT) parameters for the
use cases Document and Code Signing and Communication Protocol [16].

All interviewees preferred an automatic key management that does not
require any interaction with the developer. This means the update of the key
state is performed by the API with each signature. This requires the API to
interact with the persistent storage of the key material.
17 They are referred to as predefined values within the API’s documentation, since the

term profiles proved to be confusing in the first iteration of our usability tests.

230 A. Zeier et al.

Furthermore, backup strategies and parallel signing (which are also men-
tioned by Butin et al. [9]) were discussed. These aspects will not be considered
further in this work, but will be part of future work.

Summarized Requirements. To summarize, Table 1 shows the requirements
for the EasySigner API as determined through literature research and interviews.
Additionally, the table states the source of each requirement and whether it was
integrated in our prototype implementation (see Sect. 4.2).

Table 1. Requirements for the EasySigner API

Requirements Source Prototype

Functional
requirements

Usage profiles
containing predefined
values, e.g. for key
generation

Interview Yes

Storing and loading key
pairs from various
storage formats, e.g.
KeyStore file or HSM

Interview & Literature Only
KeyStore

Automatic management
of the key material, i.e.
updating and persistent
storage with every
signature generation

Interview & Literature Yes

Reservation of states as
described in Sect. 2.1

Literature Yes

Providing support for
backups and parallel
signing

Interview & Literature No

Non-functional
requirements

Easy to use for both
experts and non-experts

Interview & Literature Yes

Good and complete
documentation,
including code examples

Interview & Literature Yes

In spite of the
automated
administration of the
stateful key, the user
should be aware that he
is working with stateful
keys and about the
resulting risks

Interview & Literature Yes

API Usability of Stateful Signature Schemes 231

4.2 Design

We implemented a prototype of the EasySigner API. Since we are interested
in the usability of stateful schemes in particular, only XMSS(MT) was imple-
mented. We created dummy classes for RSA and ECDSA to demonstrate how
stateless schemes fit within the API. This was also necessary to generate addi-
tional documentation and thus to be able to conduct a more realistic user-study.

We introduce a common abstraction layer for stateful and stateless signature
schemes as presented in Sect. 3, meaning the state of a key will be handled by the
API without any necessary actions from the developer. While other APIs, e.g.
Java JCA, already provide ways to exchange the used algorithms in a modular
way, we extend this ability to the exchange of stateless and stateful schemes.
Therefore, the administration of the states must be within the scope of the API.
Otherwise, additional method calls for stateful methods would be necessary. As
our research show, this is also in the interest of the interviewed developers.

Fig. 2. API design Fig. 3. API overview

For our implementation, we focus on non-expert users, trying to provide a
high level API with the priority on easy usability. A JCA/JCE provider imple-
mentation, aiming at more experienced users, will be part of future work. Figure 2
shows a first design of the API. Depending on the signature scheme in use, the
API calls the signing method for stateless or stateful schemes.

Figure 3 shows an overview of the EasySigner API. The API consists of the
main class EasySigner that contains all methods needed for signing and verifi-
cation. The class KeyManager is responsible for the management of the crypto-
graphic keys. During initialization, the EasySigner object is given a KeyManager
object, or has alternatively to be provided with the required parameters in order
to create a KeyManager object by itself. There are two types of parameters:
AlgorithmParameters and StorageParameters.

232 A. Zeier et al.

To give an example, the code to create a new XMSS key pair, stored in a
KeyStore, looks like this:
AlgorithmParameters algorithmParameters = AlgorithmParameters.

XMSSforSmallSignatures();
StorageParameters storageParameters = new KeystoreParameters ("pathToFile",

password);
EasySigner signer = EasySigner.withNewKeyPair(algorithmParameters ,

storageParameters);

This example uses predefined values for XMSS signatures. These default
parameters ensure secure programming even for developers who lack the knowl-
edge about which parameters to choose. These parameters may change over time,
but can be renewed simply by updating the API or a corresponding configura-
tion file. Changing any code is not necessary. This will be investigated further
in future work. Nevertheless, by calling e.g.
AlgorithmParameters algorithmParameters = new XMSSParameters (20,

XMSSParameters.SHA512);

the developer regains full control of the used parameters.
For the prototypical implementation of the API, the two predefined values

XMSSforSmallSignatures and XMSSMTforFastSigning were taken from [16].
These two parameters are sufficient to test the concept of usage profiles and
their placement within the API during the user study.

If a developer needs to use a different algorithm (e.g. XMSSMT), the respec-
tive line has to be changed to
AlgorithmParameters algorithmParameters = AlgorithmParameters.

XMSSMTforFastSigning ();

The rest of the code requires no changes. This also applies to subsequent oper-
ations, e.g. verify or sign, since the selection of the algorithm or the storage
location is determined only once during initialization. A definition of the usage
profiles as e.g. String values would make it possible to change the algorithm
or parameters at runtime, without even changing a single line of code. This
showed to be less usable in our study and we decided to employ the method
demonstrated above. Further investigation of this (apparent) trade-off between
cryptographic agility and usability will be part of our future large-scale study.

In case the sign method is called, either the signStateless() or sign-
Stateful() method will be executed depending on which algorithm is used
(stateless or stateful). This is depicted in the architecture proposal in Fig. 2. To
prevent corruption of the state, for example by multi-threading, signStateful()
contains a synchronized18 block for obtaining the current key as well as updating
and storing the new key on the persistent storage. For this, the new updated
key must first be stored before the old key is used. Otherwise a synchronization
failure might occure (see Sect. 2.1).

The methods of the KeyManager class createNewKeyPair() and loadKey-
Pair() can either be called directly or by using the methods withNewKeyPair()
and withExistingKeyPair() of the EasySigner class. These are Factory meth-
ods returning so-called Singletons. This prevents the initialization of several inde-
pendent handles to the same Keypair. Once a new KeyManager is created with

18 https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html
(2019-03-13).

https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

API Usability of Stateful Signature Schemes 233

the same Keypair as an existing one, the method returns the earlier created
object. The Keypair is identified by its path.

For the StorageParameters only KeystoreParameters were implemented
in the context of this work. The use of other formats or HSMs to store the key
material will not be discussed any further.

The storage location is indicated by the StorageParameters. These can be
for example KeystoreParameters, in which case a Java KeyStore object is used
to store the key material on the hard disk. The KeystoreParameters object
therefore contains at least the path to the file and the password to the KeyStore.
For other parameters, such as the aliases for public and private keys as well as
for the certificate, predefined values are assumed. If the actual values differ, for
example from an already existing key pair, another constructor, also allowing
the specification of these parameters, may be used.

Depending on what AlgorithmParameters are passed to the KeyManager
during initialization, the KeyManager automatically creates and returns an
instance of the subclass StatefulKeyManager or StatelessKeyManager. The
main difference between these subclasses is the management of the key material.
The StatefulKeyManager ensures that the stateful key is updated and persis-
tently stored again before each signature automatically. This prevents the user
from making mistakes during the implementation of his application, which might
result in the key material not being updated correctly. Furthermore, the same
code can be executed regardless of the chosen scheme, without any adjustments
for stateful methods. Exchanging the algorithm, in our case the Algorithm-
Parameters, is enough. This supports our goal of cryptographic agility.

For the realization of the state reservation strategy (see Sect. 2.1) the meth-
ods signMultipleData() in the EasySigner class and updateKeyInAdvance()
in the KeyManager class were implemented. While signMultipleData() can be
used for both stateful and stateless schemes, updateKeyInAdvance() is mean-
ingful only with the use of stateful schemes, since otherwise no key updates are
necessary. Nevertheless, for the sake of cryptographic agility, this method should
also be available for stateless schemes, while calling it will have no effect.

5 User-Studies

To evaluate the usability of the designed API, a total of three iterations of small-
scale user-studies were performed. Two in a laboratory setting with a total of
8 participants and one online study with 9 participants. After each iteration,
the API was adjusted based on the results of the respective iteration. At the
same time, we evaluated and adjusted the tasks, test environment and survey
questions, leaving us prepared for our future large-scale study.

We conducted moderated laboratory studies. Since we had to change the
location for almost each participant and therefore had to use a mobile laboratory
setup, a non-moderated execution was not possible. The online study on the
other hand was non-moderated, so we were able to gain results for both kinds
of study. In the following, we will first present the procedures of the studies and
then discuss the summarized results in a separate section.

234 A. Zeier et al.

Tasks. The user-study tasks were selected to test the complete functional range
of the designed API. This includes the following API functions: Generating a key
pair, storing and loading a key pair, creating a signature, verifying a signature,
and increasing efficiency by reducing disk access.

Another crucial goal was to find out whether the participants were aware of
working with stateful keys during the tasks.

For the first iteration, 4 tasks were given, each of them designed to cover at
least one of the functions above. For the sake of a more realistic scenario and
to save time, in the second iteration the same functions were tested within a
single task. For the online study that same single task was used. Only the task’s
description was modified, adding details to better fit the online scenario and to
compensate for the missing moderator.

Exit Survey. After completing the task(s), the participants were asked to
answer questions about the API’s usability. This was done to gain better insight
into the difficulties that were encountered while solving the tasks and to receive
further feedback. For the laboratory studies, this was done in form of an inter-
view. In the online study, the participants were forwarded to a survey. Besides
closed-ended questions, in which the participants could rate e.g. the correctness
and security of their code and state whether they were aware of using a stateful
scheme, they were also able to report usability issues in free text form.

In all iterations the participants were asked to rate a number of statements,
leading to a usability score (see Sect. 2.4).

5.1 Laboratory Study

In the first two iterations of the evaluation, moderated usability tests were carried
out with a total of 8 software developers. All developers had experience using
Java, varying from only 2–3 years over 6–8 years to a maximum of 17 years. The
experience with cryptography also varied from very high to almost non-existent.
Before the study, none of the developers were familiar with XMSS(MT).

Furthermore, ethical considerations had to be taken into account. There were
no ethical concerns regarding the laboratory study as the participation did cause
no disadvantages of any kind. All participants took part in our study during their
working hours with their employer’s permission. No further risks were involved.

5.2 Online Study

After the completion of the laboratory studies, an online study was carried out
to increase the number of participants and gain more significant data.

Setup. The online study was strongly based on the online studies conducted
in [1,12]. From these studies, the test environment (Developer Observatory19),

19 Developer Observatory, including setup guide, is available for download at https://
github.com/developer-observatory/developer-observatory (2019-03-09).

https://github.com/developer-observatory/developer-observatory
https://github.com/developer-observatory/developer-observatory

API Usability of Stateful Signature Schemes 235

including the consent form and introductory texts, was reused and only modified
according to the deviating test subject.

Since Developer Observatory was originally implemented to test Python code,
a few adjustments had to be made. In Developer Observatory the Jupyter20 edi-
tor is used, which supports various programming languages via different kernels.
For our online study the SciJava21 kernel was chosen, because it worked most
reliably during testing and allows the integration of custom JAR files.

Acquisition of Participants. Invitations to the online study were sent to
mailing lists focusing on cryptography and online forums as well as posted to
reddit boards about software, especially Java, development. As an incentive,
three Amazon vouchers at a value of 100e each were offered and randomly
assigned to three participants after the study had been completed. Initially, there
were no participants, presumably because of the required time to solve the task
(about 1,5 hours was given as an estimate in the invitation) and the incentive
not being guaranteed. Due to the lack of participants, additional invitations were
sent to students and former students of our university. As a result, a total of 9
participants eventually completed the task (together with the exit survey). This
is a sufficient amount for our pre-study, giving us a first insight into the current
state of our API. The participants showed a broad variety regarding Java and
cryptography knowledge, most of them being students or software developers.

5.3 Results

After each iteration the participants were asked to answer the API usability
score in order to compare the results.

The result of the first iteration indicates a mediocre usability with an average
of 68,06. After integrating the feedback (e.g. about naming or method placement)
into the API, a much better result could be achieved in the second iteration
with an average of 87,08. After the second iteration, only a small number of
adjustments had to be made. In the following we will present the results of our
online study in more detail. Since this was the latest study we conducted, all
previous findings had been already integrated in the API’s design, and therefore
represents our current end result.

Table 2 (see Appendix) shows the determined API usability score of the
EasySigner API. The table contains the 11 statements as described in Sect. 2.4.
The score of 72,56 is slightly above the average value of 68 [7]. However, with
a standard deviation of 12,86 there is also a strong dispersion of the results. In
the following, the individual aspects of the score are discussed.

Comprehension. Statements 1–4 were rated mostly average or negative. These
refer to the participant’s comprehension of the API. Hence, the mere use of the
API does not lead to a clear understanding of its functionality. The laboratory

20 http://jupyter.org (2019-03-09).
21 https://github.com/scijava/scijava-jupyter-kernel (2019-03-09).

http://jupyter.org
https://github.com/scijava/scijava-jupyter-kernel

236 A. Zeier et al.

studies showed that the documentation is hardly and rather reluctantly read,
which may be a reason for the poor comprehension.

The lack of understanding of the API’s functionality also leads to the fact
that the participants were partly uncertain whether they had securely solved the
task. They answered the question about the security of their solution with an
average of 3,63/5 wherein half of the participants answered with a 3 or less.

Of the 9 participants, 6 did not realize they were working with a stateful
signature scheme, even though it was mentioned in various places in the docu-
mentation and in a console output when generating or loading the key pair. This
seems to confirm the assumption that most participants did not carefully read
the documentation.

Documentation. The documentation was consistently perceived as helpful.
With an average of 4, a satisfactory result was achieved. Two faulty examples
in the documentation were pointed out in the commentary by a participant,
explaining his mediocre assessment of the documentation.

Also the API Usability Score. clearly shows that the documentation was
perceived by the participants as very positive and helpful. They were able to
find useful help easily (statement 7: 4,22), helpful explanations (statement 8:
4,56) and code examples (statement 9: 4,56).

Naming and Usage. With an average of 4,89, a nearly perfect score was
achieved regarding naming. The usage of the API for solving the task was eval-
uated with an average of 4,11. Analyzing the code written by the participants
revealed that all of them had correctly and securely solved the task. As the
survey showed, the participants themselves were confident about their solution.

Error Messages/Exceptions. Any error messages that occurred were also
assessed as largely comprehensive by the participants (statement 10: 4,13, state-
ment 11: 4,5, each with a minimum of 3).

6 Conclusion and Outlook

In this paper, we present an easy-to-use API design for signature schemes,
introducing a novel approach to handle stateful signature schemes such as
XMSS(MT). The design is based on a literature review and findings from inter-
views, conducted with software developers (experts and non-experts). We evalu-
ate our design through small-scale laboratory and online studies, using a proto-
typical Java implementation of our API. We achieved our goal as it was described
in Sect. 1.3. We were able to achieve very good results regarding the documen-
tation and the usage of the API (ratings of the respective statements of the
API Usability Score with an average >4 out of 5). Among the participants
of the online study, however, the use of the API only resulted in a mediocre
understanding of its functions and the used algorithms (average ratings of the
respective statements ≈3 out of 5). This also includes the developers’ awareness

API Usability of Stateful Signature Schemes 237

about working with stateful schemes. Most participants did not realize that they
were using stateful keys. This may lead to security-critical errors. While the API
ensures the update and persistent storage of the key material, it cannot prevent
the key material from being duplicated outside the application or API. This
could result in multiple use of a single state, ultimately compromising the key
material. If the developer is not aware of this fact, he cannot assess whether or
not such a scheme is suitable for a particular application.

Therefore, future work will investigate ways to make sure the developer fully
aware of the statefulness of the schemes. This may include further improvement
of the API’s documentation or changing the API in a way that the statefulness
is not transparent to the user, while still providing a crypto-agile solution.

Throughout the paper, various aspects for future work were mentioned. We
summarize them here: (a) Investigating the possible trade-off between usabil-
ity and cryptographic agility regarding the full fledged parameterization of the
API, (b) Designing an update mechanism for the predefined values in our usage
profiles, (c) Enhancing the API to support advanced functionality such as back-
ing up the key material and perform parallel signing, (d) Transferring our key
management approach to a JCA provider implementation.

The API will also be the subject of further improvements, including more
usability tests at a larger scale. Part of these tests will be a comparison to other
cryptographic APIs, e.g. regarding the time needed to solve certain tasks. It will
be put into a larger context, being part of a comprehensive library for classical
and post-quantum cryptography methods.

Acknowledgements. This project (HA proj. no. 633/18-56) is financed with funds
of LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzel-
lenz, Förderlinie 3 (State Offensive for the Development of Scientific and Economic
Excellence). We thank our reviewers and the shepherd for their valuable feedback.

Appendix. API Usability Score of the Online Study

Table 2. API usability score of the online study.

Statement O1 O2 O3 O4 O5 O6 O7 O8 O9 ∅ σ

1: I had to understand how most of the
assigned library works in order to
complete the tasks

5 3 3 4 2 2 2 5 2 3,11 1,27

2: It would be easy and require only small
changes to change parameters or
configuration later without breaking my
code

4 2 4 5 4 4 4 3 5 3,89 0,93

3: After doing these tasks, I think I have a
good understanding of the assigned library
overall

2 1 4 2 3 3 3 3 3 2,67 0,87

(continued)

238 A. Zeier et al.

Table 2. (continued)

Statement O1 O2 O3 O4 O5 O6 O7 O8 O9 ∅ σ

4: I only had to read a little of the
documentation for the assigned library to
understand the concepts that I needed for
these tasks

3 2 5 2 5 2 5 2 3 3,22 1,39

5: The names of classes and methods in
the assigned library corresponded well to
the functions they provided

4 5 5 5 5 5 5 5 5 4,89 0,33

6: It was straightforward and easy to
implement the given tasks using the
assigned library

3 4 5 3 5 4 5 3 5 4,11 0,93

7: When I accessed the assigned library
documentation, it was easy to find useful
help

4 5 5 4 4 2 5 5 4 4,22 0,97

8: In the documentation, I found helpful
explanations

4 5 5 4 4 4 5 5 5 4,56 0,53

9: In the documentation, I found helpful
code examples

4 5 5 4 5 4 5 4 5 4,56 0,53

10: When I made a mistake, I got a
meaningful error message/exception

4 3 5 0 4 4 4 5 4 4,13 0,64

11: Using the information from the error
message/exception, it was easy to fix my
mistake

4 3 5 0 5 5 4 5 5 4,50 0,76

Result 57,5 62,5 90 60,5 82,5 65 87,5 65 82,5 72,56 12,81
∅=average
σ =standard deviation

References

1. Acar, Y., et al.: Comparing the usability of cryptographic APIs. In: 2017 IEEE
Symposium on Security and Privacy (SP), pp. 154–171 (2017). https://doi.org/10.
1109/SP.2017.52

2. Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek, M.L., Stransky, C.: You get
where you’re looking for: the impact of information sources on code security. In:
2016 IEEE Symposium on Security and Privacy (SP), pp. 289–305 (2016). https://
doi.org/10.1109/SP.2016.25

3. Acar, Y., Stransky, C., Wermke, D., Weir, C., Mazurek, M.L., Fahl, S.: Developers
need support, too: a survey of security advice for software developers. In: 2017
IEEE Cybersecurity Development (SecDev), pp. 22–26 (2017). https://doi.org/10.
1109/SecDev.2017.17

4. Bernstein, D., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 15

5. Bloch, J.: Slides on how to design a good API and why it matters. In: Companion to
the 21st ACM SIGPLAN Symposium on Object-Oriented Programming Systems,
Languages, and Applications. ACM (2006)

6. Brooke, J.: SUS - a quick and dirty usability scale. Usability Eval. Ind. 189(194),
4–7 (1996)

7. Brooke, J.: SUS: retrospective. J. Usability Stud. 8(2), 29–40 (2013)
8. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure sig-

nature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 8

https://doi.org/10.1109/SP.2017.52
https://doi.org/10.1109/SP.2017.52
https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1109/SecDev.2017.17
https://doi.org/10.1109/SecDev.2017.17
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-642-25405-5_8

API Usability of Stateful Signature Schemes 239

9. Butin, D., Wälde, J., Buchmann, J.: Post-quantum authentication in OpenSSL
with hash-based signatures. In: 2017 Tenth International Conference on Mobile
Computing and Ubiquitous Network (ICMU), pp. 1–6. IEEE (2017). https://doi.
org/10.23919/ICMU.2017.8330093

10. Chen, L., et al.: Report on Post-Quantum Cryptography. US Department of Com-
merce, National Institute of Standards and Technology (2016). https://doi.org/10.
6028/NIST.IR.8105

11. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., Smith, M.:
Why Eve and Mallory Love Android: an analysis of Android SSL (in) security.
In: Proceedings of the 2012 ACM Conference on Computer and Communications
Security, pp. 50–61. ACM (2012). https://doi.org/10.1145/2382196.2382205

12. Gorski, P.L., et al.: Developers deserve security warnings, too: on the effect of
integrated security advice on cryptographic API misuse. In: Fourteenth Symposium
on Usable Privacy and Security, SOUPS 2018, pp. 265–281. USENIX Association
(2018)

13. Green, M., Smith, M.: Developers are not the enemy!: the need for usable security
APIs. IEEE Secur. Priv. 14(5), 40–46 (2016). https://doi.org/10.1109/MSP.2016.
111

14. Housley, R.: Guidelines for Cryptographic Algorithm Agility and Selecting
Mandatory-to-Implement Algorithms. BCP 201, RFC Editor (2015)

15. Hülsing, A., Butin, D., Gazdag, S., Rijneveld, J., Mohaisen, A.: XMSS: eXtended
Merkle Signature Scheme. RFC 8391, RFC Editor, May 2018

16. Hülsing, A., Rausch, L., Buchmann, J.: Optimal parameters for XMSSMT . In:
Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013.
LNCS, vol. 8128, pp. 194–208. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40588-4 14

17. Johnson, A.F., Millett, L.I. (eds.): Cryptographic Agility and Interoperability: Pro-
ceedings of a Workshop. The National Academies Press, Washington, DC (2017).
https://doi.org/10.17226/24636

18. Krüger, S., et al.: CogniCrypt: supporting developers in using cryptography. In:
Proceedings of the 32nd IEEE/ACM International Conference on Automated Soft-
ware Engineering, pp. 931–936. IEEE Press (2017). https://doi.org/10.1109/ASE.
2017.8115707

19. Lazar, D., Chen, H., Wang, X., Zeldovich, N.: Why does cryptographic software
fail? A case study and open problems. In: Proceedings of 5th Asia-Pacific Workshop
on Systems, pp. 1–7. ACM Press (2014). https://doi.org/10.1145/2637166.2637237

20. McGrew, D., Curcio, M., Fluhrer, S.: Leighton-Micali Hash-Based Signatures. RFC
8554, RFC Editor, April 2019

21. McGrew, D., Kampanakis, P., Fluhrer, S., Gazdag, S.-L., Butin, D., Buchmann, J.:
State management for hash-based signatures. In: Chen, L., McGrew, D., Mitchell,
C. (eds.) SSR 2016. LNCS, vol. 10074, pp. 244–260. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49100-4 11

22. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

23. Nadi, S., Krüger, S., Mezini, M., Bodden, E.: Jumping through hoops: why do
Java developers struggle with cryptography APIs? In: Proceedings of the 38th
International Conference on Software Engineering, pp. 935–946. ACM Press (2016).
https://doi.org/10.1145/2884781.2884790

24. Nelson, D.: Crypto-Agility Requirements for Remote Authentication Dial-In User
Service (RADIUS). RFC 6421, RFC Editor (2011)

https://doi.org/10.23919/ICMU.2017.8330093
https://doi.org/10.23919/ICMU.2017.8330093
https://doi.org/10.6028/NIST.IR.8105
https://doi.org/10.6028/NIST.IR.8105
https://doi.org/10.1145/2382196.2382205
https://doi.org/10.1109/MSP.2016.111
https://doi.org/10.1109/MSP.2016.111
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.17226/24636
https://doi.org/10.1109/ASE.2017.8115707
https://doi.org/10.1109/ASE.2017.8115707
https://doi.org/10.1145/2637166.2637237
https://doi.org/10.1007/978-3-319-49100-4_11
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1145/2884781.2884790

240 A. Zeier et al.

25. Nielsen, J.: Usability Engineering. Elsevier, Amsterdam (1994)
26. Scheller, T., Kuhn, E.: Influencing factors on the usability of API classes and meth-

ods. In: 2012 IEEE 19th International Conference and Workshops on Engineering
of Computer-Based Systems, pp. 232–241 (2012). https://doi.org/10.1109/ECBS.
2012.27

27. Scheller, T., Kühn, E.: Usability evaluation of configuration-based API design con-
cepts. In: Holzinger, A., Ziefle, M., Hitz, M., Debevc, M. (eds.) SouthCHI 2013.
LNCS, vol. 7946, pp. 54–73. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39062-3 4

28. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997).
https://doi.org/10.1137/S0097539795293172

29. Stransky, C., et al.: Lessons learned from using an online platform to conduct
large-scale, online controlled security experiments with software developers. In:
10th USENIX Workshop on Cyber Security Experimentation and Test, CSET 2017
(2017)

30. Xie, J., Lipford, H.R., Chu, B.: Why do programmers make security errors?
In: 2011 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pp. 161–164 (2011). https://doi.org/10.1109/VLHCC.2011.6070393

https://doi.org/10.1109/ECBS.2012.27
https://doi.org/10.1109/ECBS.2012.27
https://doi.org/10.1007/978-3-642-39062-3_4
https://doi.org/10.1007/978-3-642-39062-3_4
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1109/VLHCC.2011.6070393

(Short Paper) Method for Preventing
Suspicious Web Access
in Android WebView

Masaya Sato(B), Yuta Imamura, Rintaro Orito, and Toshihiro Yamauchi(B)

Graduate School of Natural Science and Technology, Okayama University,
Okayama 700-8530, Japan

{sato,yamauchi}@cs.okayama-u.ac.jp

Abstract. WebView is commonly used by applications on the Android
OS. Given that WebView is used as a browsing component on applica-
tions, they can be attacked via the web. Existing security mechanisms
mainly focus on web browsers; hence, securing WebView is an important
challenge. We proposed and implemented a method for preventing sus-
picious web access in Android WebView. Attackers distribute their mali-
cious content including malicious applications, potentially unwanted pro-
grams, and coin miners, by inserting contents into a web page. Because
loading malicious content involves HTTP communication, our proposed
method monitors HTTP communication by WebView and blocks suspi-
cious web accesses. To apply the proposed method to widely used appli-
cations, we implemented our method inside WebView. We also evaluated
the proposed method with some popular applications and confirmed that
the method can block designated web content without impeding the func-
tionality of applications.

Keywords: WebView · Android · Web access ·
HTTP communication · Content blocking

1 Introduction

Android is a widely used operating system for mobile devices. As of Febru-
ary 2019, approximately 74% of mobile devices in the world run Android [1].
Many Android applications use WebView, which is a framework to embed a
browser component inside applications. Developers can insert a web page within
an application using WebView. This means developers can create applications
content using HTML and JavaScript by using WebView [2]. This implies that
a web-based attack can be effective against Android applications. For example,
JavaScript code for mining cryptocurrency can be executed on applications using
WebView. Although many existing attacks exploit vulnerabilities in applications
or operating systems [3], web-based attacks present a significant opportunity for
attackers. Security researchers statically and dynamically analyze applications
to find and remove vulnerabilities. WebView is a browser component, i.e., the
c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 241–250, 2019.
https://doi.org/10.1007/978-3-030-26834-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_14

242 M. Sato et al.

content in applications is dynamically loaded during run-time. Thus, static anal-
ysis is useless for detecting attacks via WebView. Even though dynamic analysis
is effective for analyzing applications using WebView, it is difficult to prevent
malicious or suspicious content from being loaded. While the same versions of
applications and operating systems are used, web content is changed dynami-
cally. Therefore, security analysts cannot guarantee that the web content loaded
via WebView is secure, thus run-time protection for dynamic content is required.

Google’s safe browsing technology can protect users from suspicious web-
pages [4]. Web browsers can check if the accessing URL is secure using the safe
browsing API. The safe browsing lists are maintained by Google. The list holds
the hash values of unsafe URLs including malware, unwanted software, and social
engineering. Safe browsing is employed by the Chrome web browser. Following
this, safe browsing features have been added to WebView for Android 8.0 and
above. Since WebView 66, safe browsing is turned on by default in all applica-
tions using WebView. However, the detection rate for safe browsing is not high.
In our survey, safe browsing only detects 34 out of 100 phishing sites and can-
not detect a fake alert window. In addition, safe browsing only blocks content
based on URL information. If the URL corresponding to a malicious web site is
changed, it is no longer detected as malicious.

Herein, we propose a method for preventing suspicious communication on
Android WebView. The proposed method monitors HTTP requests within the
WebView framework and blocks suspicious content based on a blacklist. Given
that the proposed method only blocks HTTP requests to suspicious content, the
functionality of the application itself is not affected. We modified WebView to
apply the proposed method to various applications. To verify the effectiveness of
the proposed method, we conducted experiments to detect and block malicious
web sites and found that the proposed method successfully blocked the content.

2 WebView

WebView is a framework to insert web contents within applications running on
Android. Developers can create portable application components with HTML
and JavaScript. In addition, developers can change the design and content of
applications by changing the content loaded by WebView without updating
the application itself. Conventionally, WebView is a component in the Android
Framework. Since Android 5.0, WebView has been independent of the Android
Framework and has been implemented as a system application. This enables us
to update WebView without updating the entire Android system.

Figure 1 shows the overview of a process for accessing a web page via Web-
View. First, an application calls the WebView API. The Android framework
receives the call and calls a method inside the WebView application. The Java
layer of the WebView application receives the request and calls the URLRequest
API, which is implemented as a C/C++ layer of the WebView application.
Finally, the C/C++ component layer requests communication with the Linux
kernel.

(Short Paper) Method for Preventing Suspicious Web Access 243

Java

C/C++

Fig. 1. Overview of WebView

3 Related Work

3.1 Run-Time Detection of Malicious Behavior

MADAM is a malware detection tool for Android [5]. MADAM monitors multiple
behaviors in Android at four levels and five groups of features including system
calls, SMS messages, critical APIs, user activities, and application metadata.
Combining multiple features at multiple levels and various groups, MADAM
enables run-time detection anomalous behaviors. Although MADAM is an effi-
cient and accurate detection method for an Android system as a whole, we mainly
focus on its behavior of WebView. Hence complicated analysis combining mul-
tiple features is not required. This simplifies our approach and makes it easier
to integrate multiple components. AdCapsule is a sandboxing technique specifi-
cally aimed at advertisements in Android applications [6]. AdCapsule intercepts
APIs have privacy issues without modification to applications’ code and Android
framework using the Java dynamic proxy mechanism. This technique enables
hooking APIs called by in-app ad libraries. Zhu et al. implemented two types of
sandboxes for isolating untrusted ad libraries from the application considering
permissions and file operations [6]. Although AdCapsule also covers WebView
and does not requires rooting, it can only acquire information related to observ-
able APIs. Because our approach modifies WebView’s code, more information
can be acquired before calling APIs. Furthermore, our approach focuses not only
on the ad but also on other communication.

3.2 Network-Based Blocking

Detecting malicious web access by network monitoring is a conventional and
effective approach. Although host-based approaches strongly depend on the soft-
ware and hardware of the device, network-based approaches are not affected
by the device. This means that the monitor cannot distinguish the software
or devices being used. Because various applications are installed on Android

244 M. Sato et al.

devices, distinguishing the applications used is an important challenge. Some
studies focus on identifying Android applications using only TCP/IP headers;
however, their accuracy makes them impractical [7]. Additionally, network-based
monitoring is complicated if HTTP traffic is encrypted.

4 Blocking HTTP Communication in WebView

4.1 Purpose

The main goal of this study is to detect suspicious communication of WebView
and prevent access. Thus, dynamic analysis is effective for detecting and prevent-
ing access to malicious content; however, exploring WebView requires insight into
the processing of WebView. Because modules are abstracted and isolated, gain-
ing insights into WebView from the outside incurs a high cost. Network-based
detection and blocking are effective without extensive knowledge of WebView;
however, they cannot determine which communications are triggered by Web-
View. Thus, detecting and blocking communication in WebView is required.

4.2 Requirements

There are two requirements for preventing web access in WebView.

R1. Detect web access triggered by WebView
R2. Control web access based on a policy

To prevent access to malicious web sites, detecting web access in WebView
is required. Thus, the present study applied a method presented in a previous
study to detect web access in WebView [8].

To decide which access must be prevented, web access must be controlled
based on some information after detection. For example, if only some of the
content on a web page is malicious, it is better to prevent loading just the
malicious parts. A naive approach, such as this is effective; however, it reduces
usability. A more fine-grained control for web access is required.

Moreover, maintaining usability is necessary. A security mechanism that dis-
turbs usability is not preferable, especially for smartphone use; hence, a mecha-
nism that does not affect functionality of the application and has a low overhead
is required.

4.3 Detecting Communication

We developed and implemented WebView Monitor, a web access monitor-
ing mechanism for Android WebView to monitor web access by WebView on
Android [8]. It is implemented as a modified WebView; thus, it is possible to
install WebView Monitor by simply replacing the WebView system application
on an Android device. We modified WebView’s C++ layer to monitor web access
including HTTP/1, HTTP/1.1, SPDY, and HTTP/2 via WebView on Android.

(Short Paper) Method for Preventing Suspicious Web Access 245

The modified part is web access request processing and web access response pro-
cessing, as shown in Fig. 1. The monitor detects web access on WebView and
logs the following information:

1. Time stamp
2. The package name of an application
3. HTTP request header
4. URL
5. IP address
6. Port number of the web server
7. HTTP request body
8. HTTP response header
9. HTTP response body

Information of items 1 to 6 can be acquired immediately after generation of
the HTTP request header. Information of item 7 can be acquired before sending
the HTTP request body. Information of item 8 can be acquired after reception of
the HTTP response header. Information of item 9 can be acquired after reception
of the HTTP response body. Using WebView Monitor, R1 is fulfilled.

4.4 Blocking Communication

Certain triggers are considered as a step to block web access in WebView. The
triggers and acquirable information can be summarized as:

1. Immediately after generation of the HTTP request header
WebView first constructs the request header. In this phase, the proposed
method can acquire the time stamp, package name of an application, HTTP
request header, URL, IP address, and the port number of the web server.

2. Before sending the HTTP request body
WebView sends the HTTP request body after sending the request header
based on the constructed header. In this phase, the proposed method can
acquire the HTTP request body.

3. After reception of the HTTP response header
WebView receives the HTTP response header before receiving a response
body. In this phase, the proposed method can acquire the HTTP response
header.

4. After reception of the HTTP response body
WebView receives the HTTP response body from the web server. In this
phase, the proposed method can acquire the HTTP response body.

From the viewpoint of fine-grained inspection and control of web access,
triggers 1 and 4 fulfill R2. It is difficult to control web access in triggers 2 and
3 because acquirable information is less characteristic. Because the proposed
method can acquire various information using trigger 1, several types of con-
trol policies can be considered. Moreover, controlling and blocking web access

246 M. Sato et al.

after reception of the HTTP response body is not suitable for R2 and maintain-
ing usability. Inspecting and removing malicious parts of the web content after
reception of the HTTP response body would enable improved control for users;
however, this requires a fully functional interpreter for the web content. This
requires a comprehensive analysis and a long time. Compared to this, control-
ling the web access in trigger 1 requires no connection to the servers because
the proposed method can control before establishing the connection. There is no
need to wait for the reception of a HTTP response body from the server; there-
fore, no delay occurs. In addition, the size of information that can be acquired
in trigger 1 is typically constant compared to the HTTP response body. Thus,
comprehension of the information acquirable in trigger 1 takes a short time. It
is beneficial for retaining usability. For this reason, we employed trigger 1 for
controlling web access in WebView.

The proposed method controls web access in trigger 1, using the above men-
tioned acquirable information. In particular, as the URL and IP address are char-
acteristic and commonly used in detection for malicious web sites, we employed
them for policy construction. Construction of prevention policy is described in
Sect. 5.2.

5 Implementation

5.1 Blocking HTTP Request

WebView supports various protocols including HTTP/1, HTTP/1.1, SPDY,
and HTTP/2. Methods for these protocols are not shared and are defined in
various source codes. To summarize, we implemented the proposed method in
HttpStreamParser and SpdyHttpStream interfaces for HTTP/1.1 and SPDY,
respectively. However, the basic structure of each implementation is similar;
therefore, we describe the implementation in the HTTP case.

Some implementation methods are considered to block HTTP access: if a
method fails, a failed value is returned, or stops calling the method from the
first. The former two implies an interrupt for the method. This may cause unex-
pected side effects on the application; hence, it could lead to a crash or reduction
of usability of the application. HTTP requests in particular are invoked in an
asynchronous manner in Android WebView. Interrupting or causing a call to fail
will result in an unexpected situation. In contrast, giving up calling a method
for the HTTP request has no effect. Thus, WebView stops calling a method for
HTTP requests when the constructed HTTP request header is detected as poten-
tially malicious. For this reason, the proposed method stops calling a method
for the HTTP request when the acquired information matches the blacklist.

5.2 Prevention Policy

In our prototype, we defined domain names and IP addresses as a key to deter-
mine what access to block. For example, URLs of phishing web sites are fre-
quently changed and have a short lifetime to avoid detection [9]. Therefore,

(Short Paper) Method for Preventing Suspicious Web Access 247

prevention based on just URL is not effective. For covering a wider range web
sites, we added an IP address as an entry of prevention policy. IP addresses cor-
respond to web sites for phishing or malware distribution have a longer lifetime
compared to URLs [10]. Thus, prevention via IP addresses in addition to URLs
is more effective for detecting and preventing access to malicious web sites.

Other information, that can be acquired using the proposed method would
help to construct a more effective blacklist. For example, the port number of
the web server or HTTP response header/body will help us find characteristics
of malicious web sites. Constructing a prevention policy with this additional
information and experiments with malicious web sites will be addressed in the
future.

5.3 Limitation

To install modified WebView the original WebView must be removed. While the
proposed method is simple and powerful, it requires the Android device to be
rooted. Installing new applications into devices does not require rooting; how-
ever, WebView is a system application. Android requires rooting when replacing
system applications.

6 Evaluation

6.1 Experimental Detection and Prevention

To verify the effectiveness of the proposed method, we performed experiments
to detect and block loading of suspicious content. Because our prototype just
accepts blacklists with URLs and IP addresses, we experimented blocking based
on URLs and IP addresses.

We chose two types of malicious web pages: coin miners and fake alerts.
Coin miner is a program to mine cryptocurrency. Cryptomining has become
popular not only for legitimate use but also in criminal activities [11]. One of
the most famous coin miner application was hosted by Coinhive [12] and 52% of
organizations were affected [13]. Coinhive executes a small chunk of JavaScript
code instead of displaying an advertisement to the website visitor. This makes
it possible to mine “Monero”, which is a cryptocurrency, with the processing
power of their devices, and earn money. However, Coinhive can be injected by
attackers without the web site owner’s knowledge or permission. Thus, Coinhive
can be used to mine “Monero,” illegally [14]. As of March 2018, it has been
reported that Coinhive is running on 32,000 websites [15]. Although Coinhive is
no longer operational, other similar services can be used in the same manner.

In addition to coin miners, we also verified the detection of fake alerts. Fake
alerts are mainly used to lead users to click ads or malicious links by inciting a
sense of danger. A fake ad suddenly appears on the web site and redirects users
to malicious web sites. Viewers were alarmed when they saw the alert claiming
that their smartphone was not secure or sensitive data has been leaked. Then,

248 M. Sato et al.

Fig. 2. Communication log of installing Coinhive.

they would click the ad showing security applications, ignoring its reliability. To
make matters worse, the JavaScript code within the fake alerts automatically
redirects the page to malicious contents. Consequently, viewers load malicious
JavaScript exploiting vulnerabilities or download malicious applications.

We verified the proposed method from the following viewpoints:

1. Detection and prevention of loading JavaScript codes hosted by Coinhive
2. Detection and prevention of sending mining results to the Coinhive server
3. Detection and prevention of loading fake alerts

To prevent loading of mining JavaScript code, we added the domain name
of Coinhive to the blacklist. This also prevents sending mining results to the
Coinhive server. Although the JavaScript code is not loaded from the Coinhive
server, embedded scripts can mine “Monero.” The mining results must be sub-
mitted to the Coinhive server; thus, it is also necessary to prevent mining results
from being sent. In addition to blocking based on domain names, we also added
the IP address of a server, which was hosting fake alerts.

Figure 2 shows the communication log of downloading JavaScript of Coinhive.
This result shows that the proposed method can detect and prevent downloading
the JavaScript code of Coinhive. Moreover, all web access to the Coinhive server,
including the establishment of a mining pool, was prevented as the download was
blocked.

Figure 3 shows the communication log of sending mining result to Coinhive
server. This result shows that the proposed method can detect and prevent estab-
lishing connections to send the mining results to the Coinhive server. Addition-
ally, the complete mining pool was not established by blocking this access using
the Coinhive domain.

We also confirmed that no fake alert or redirections to malicious web sites
occurred when accessing the web page showing fake alerts in regular access. In
summary, the experimental results show that blocking with domain names and
IP addresses was successful and the functionality of the application was not lost.

(Short Paper) Method for Preventing Suspicious Web Access 249

Fig. 3. Communication log of sending mining result to Coinhive server.

6.2 Performance Measurement

We also evaluated the overhead of the proposed method. We measured the per-
formance for accessing the Coinhive server per Request/Response with the pro-
posed method. The evaluation results showed that the overheads in detecting
and preventing access to Coinhive server using HTTP and SPDY protocols was
0.017 ms and 0.015 ms, respectively. These overheads are very small, and the
total effect on the performance of WebView itself is limited; thus, the proposed
method can detect and prevent such access without reducing usability.

7 Conclusion

We proposed a method to detect and prevent access to suspicious web pages
on Android WebView. We modified WebView to monitor HTTP, HTTPS, and
SPDY access to web pages and match its domain names and IP addresses with
a blacklist. Because applications using WebView calls a system WebView appli-
cation, replacing the WebView application with the modified version enables us
to apply the proposed method to all applications using WebView. We evaluated
the effectiveness of the proposed method using the Coinhive mining JavaScript
and fake alerts. The evaluation results showed that the proposed method suc-
cessfully prevented loading of the Coinhive JavaScript, sending mining results,
and displaying fake alerts. The performance evaluation showed that the proposed
method does not reduce usability. Further experiments on malicious web sites
will be performed in the future.

Acknowledgement. The research results have been achieved by “WarpDrive: Web-
based Attack Response with Practical and Deployable Research InitiatiVE,” the Com-
missioned Research of National Institute of Information and Communications Technol-
ogy (NICT), Japan.

250 M. Sato et al.

References

1. StatCounter: Mobile operating system market share worldwide. http://gs.
statcounter.com/os-market-share/mobile/worldwide. Accessed 2 Apr 2019

2. Acar, Y., Backes, M., Bugiel, S., Fahl, S., McDaniel, P., Smith, M.: Sok: Lessons
learned from android security research for appified software platforms. In: 2016
IEEE Symposium on Security and Privacy (SP), pp. 433–451. IEEE (2016)

3. Hur, J.B., Shamsi, J.A.: A survey on security issues, vulnerabilities and attacks in
android based smartphone. In: 2017 International Conference on Information and
Communication Technologies (ICICT), pp. 40–46. IEEE (2017). https://doi.org/
10.1109/ICICT.2017.8320163

4. Google: Safe Browsing. https://safebrowsing.google.com/. Accessed 2 Apr 2019
5. Chin, E., Wagner, D.: Bifocals: analyzing webview vulnerabilities in android appli-

cations. In: Kim, Y., Lee, H., Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267, pp.
138–159. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05149-9 9

6. Zhu, X., Li, J.: AdCapsule: Practical confinement of advertisements in android
applications. In: IEEE Transactions on Dependable and Secure Computing. IEEE
(2018). https://doi.org/10.1109/TDSC.2018.2814999

7. Alan, H.F., Kaur, J.: Can android applications be identified using only TCP/IP
headers of their launch time traffic? In: Proceedings of the 9th ACM Conference
on Security & Privacy in Wireless and Mobile Networks, pp. 61–66. ACM (2016).
https://doi.org/10.1145/2939918.2939929

8. Imamura, Y., Uekawa, H., Ishihara, Y., Sato, M., Yamauchi, T.: Web access mon-
itoring mechanism for android webview. In: Proceedings of the Australasian Com-
puter Science Week Multiconference, pp. 1:1–1:8. ACM (2018). https://doi.org/10.
1145/3167918.3167942

9. Dou, Z., Khalil, I., Khreishah, A., Al-Fuqaha, A., Guizani, M.: Systematization of
knowledge (SoK): a systematic review of software-based web phishing detection.
IEEE Commun. Surv. Tutor. 19(4), 2797–2819 (2017). https://doi.org/10.1109/
COMST.2017.2752087

10. Lever, C., Kotzias, P., Balzarotti, D., Caballero, J., Antonakakis, M.: A lustrum
of malware network communication: evolution and insights. In: 2017 IEEE Sym-
posium on Security and Privacy (SP), pp. 788–804. IEEE (2017)

11. Rüth, J., Zimmermann, T., Wolsing, K., Hohlfeld, O.: Digging into browser-based
crypto mining. In: Proceedings of the Internet Measurement Conference 2018, pp.
70–76. ACM (2018). https://doi.org/10.1145/3278532.3278539

12. Coinhive: Coinhive. https://coinhive.com/. Accessed 3 Dec 2018
13. Check Point: 2017 Global Cyber Attack Trends Report. https://research.

checkpoint.com/cyber-attack-trends-mid-year-report/. Accessed 2 Apr 2019
14. Segura, J.: Drive-by cryptomining campaign targets millions of Android users.

https://blog.malwarebytes.com/threat-analysis/2018/02/drive-by-cryptomining-
campaign-attracts-millions-of-android-users/. Accessed 2 Apr 2019

15. Krebs, B.: Who and what is coinhive? https://krebsonsecurity.com/2018/03/who-
and-what-is-coinhive/. Accessed 2 Apr 2019

http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide
https://doi.org/10.1109/ICICT.2017.8320163
https://doi.org/10.1109/ICICT.2017.8320163
https://safebrowsing.google.com/
https://doi.org/10.1007/978-3-319-05149-9_9
https://doi.org/10.1109/TDSC.2018.2814999
https://doi.org/10.1145/2939918.2939929
https://doi.org/10.1145/3167918.3167942
https://doi.org/10.1145/3167918.3167942
https://doi.org/10.1109/COMST.2017.2752087
https://doi.org/10.1109/COMST.2017.2752087
https://doi.org/10.1145/3278532.3278539
https://coinhive.com/
https://research.checkpoint.com/cyber-attack-trends-mid-year-report/
https://research.checkpoint.com/cyber-attack-trends-mid-year-report/
https://blog.malwarebytes.com/threat-analysis/2018/02/drive-by-cryptomining-campaign-attracts-millions-of-android-users/
https://blog.malwarebytes.com/threat-analysis/2018/02/drive-by-cryptomining-campaign-attracts-millions-of-android-users/
https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive/
https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive/

Public-Key Primitives 2

Equivalence Between Non-malleability
Against Replayable CCA and Other

RCCA-Security Notions

Junichiro Hayata1,3(B), Fuyuki Kitagawa2, Yusuke Sakai3, Goichiro Hanaoka3,
and Kanta Matsuura1

1 The University of Tokyo, Tokyo, Japan
{hayata,kanta}@iis.u-tokyo.ac.jp

2 NTT Secure Platform Laboratories, Tokyo, Japan
fuyuki.kitagawa.yh@hco.ntt.co.jp

3 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

{yusuke.sakai,hanaoka-goichiro}@aist.go.jp

Abstract. Replayable chosen ciphertext (RCCA) security was intro-
duced by Canetti, Krawczyk, and Nielsen (CRYPTO 03) in order to han-
dle an encryption scheme that is “non-malleable except tampering which
preserves the plaintext”. RCCA security is a relaxation of CCA secu-
rity and a useful security notion for many practical applications such as
authentication and key exchange. Canetti et al. defined non-malleability
against RCCA (NM-RCCA), indistinguishability against RCCA (IND-
RCCA), and universal composability against RCCA (UC-RCCA). More-
over, they proved that these three security notions are equivalent when
considering a PKE scheme whose plaintext space is super-polynomially
large. Among these three security notions, NM-RCCA seems to play
the central role since RCCA security was introduced in order to cap-
ture “non-malleability except tampering which preserves the plaintext.”
However, their definition of NM-RCCA is not a natural extension of that
of classical non-malleability, and it is not clear whether their NM-RCCA
captures the requirement of classical non-malleability. In this paper, we
propose definitions of indistinguishability-based and simulation-based
non-malleability against RCCA by extending definitions of classical non-
malleability. We then prove that these two notions of non-malleability
and IND-RCCA are equivalent regardless of the size of plaintext space
of PKE schemes.

Keywords: Public-key encryption · Non-malleability ·
Replayable chosen ciphertext security

1 Introduction

1.1 Background

Non-malleability [1] is one of the most fundamental security requirement for
public key encryption (PKE). Non-malleability guarantees that an adversary
c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 253–272, 2019.
https://doi.org/10.1007/978-3-030-26834-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_15

254 J. Hayata et al.

cannot modify the plaintext of a given ciphertext. For example, consider the
electronic bidding using a PKE scheme played by companies A and B. Suppose
that the company A places its bid of $1,000,000 by sending an encryption c
of $1,000,000 generated by the PKE scheme over the internet. In this case, if
the PKE scheme does not satisfy non-malleability, the company B might be
able to intercept c, make an encryption of $1,500,000 by modifying c, and use
it as its bid. In order to prevent such kind of malicious activities, the PKE
scheme should satisfy non-malleability. There are both simulation-based and
indistinguishability-based definitions of non-malleability for PKE. Bellare and
Sahai [8] showed these two definitions are equivalent when considering each of
chosen plaintext attack (CPA), non-adaptive chosen ciphertext attack (CCA1),
and adaptive chosen ciphertext attack (CCA2). In this work, we study non-
malleability against replayable chosen ciphertext attacks (RCCA) [3].

The notion of RCCA security was introduced by Canetti, Krawczyk, and
Nielsen [3] in order to handle an encryption scheme that is “non-malleable
except tampering which preserves the plaintext”. RCCA security is a relaxation
of CCA security and a useful security notion for many practical applications
such as authentication and key exchange. To formulate “non-malleability except
tampering which preserves the plaintext”, in the security experiment of RCCA
security, the decryption oracle returns a symbol “Test” when an adversary queries
an encryption of m0 and m1, where m0 and m1 are challenge messages. Canetti
et al. defined non-malleability against RCCA (NM-RCCA), indistinguishability
against RCCA (IND-RCCA), and universal composability against RCCA (UC-
RCCA). Moreover, they proved that these three security notions are equivalent
when considering a PKE scheme whose plaintext space is super-polynomially
large.

As noted above, RCCA security was introduced in order to handle an encryp-
tion scheme that is non-malleable except tampering which preserves the plain-
text. To clarify whether a security notion against RCCA such as IND-RCCA
captures non-malleability except tampering which preserves the plaintext, we
should consider the equivalence between the security notion and NM-RCCA.
Therefore, NM-RCCA seems to play the central role among security notions
against RCCA.

However, the definition of NM-RCCA proposed by Canetti et al. is not a nat-
ural extension of that of classical non-malleability, and it is not clear whether
the definition plays the above required role. More specifically, in the security
experiment of their NM-RCCA, an adversary is required to make an encryption
of m1−b given an encryption of mb, where b is the challenge bit and (m0,m1) are
challenge messages. It is not clear whether this definition captures the require-
ment of classical non-malleability that given an encryption of some message
m, an adversary cannot generate that of any message related to m. In fact,
Canetti et al. claimed the validity of the definition of their NM-RCCA rely-
ing on the equivalence between NM-RCCA and UC-RCCA, but it does not hold
when considering an encryption scheme the size of whose plaintext space is poly-
nomial. For this reason, we need to study non-malleability against RCCA more

Equivalence Between NM Against RCCA and Other RCCA-Security Notions 255

deeply and propose a definition of it that captures the requirement of classical
non-malleability.

1.2 Our Contribution

In this paper, we propose simulation-based and indistinguishability-based defi-
nitions of non-malleability against RCCA. The proposed definitions are natural
extensions of that of classical non-malleability, and thus they have the same
spirit as classical definitions capturing the intuition that given an encryption of
some message m, an adversary cannot generate that of any message related to
m. Moreover, we prove that these two security notions and IND-RCCA security
proposed by Canetti et al. [3] are all equivalent regardless of the size of plaintext
space.

While we can easily formalize indistinguishability-based non-malleability by
naturally extending the definition of IND-RCCA proposed by Canetti et al.,
there is a problem when formalizing simulation-based non-malleability. The most
non-trivial point is what decryption oracle we should allow an adversary to access
when we formalize a simulation-based security against RCCA. At first glance,
the decryption oracle in RCCA environment seems to leak less information than
the decryption oracle in CCA environment. However, compared to the ordinary
CCA, the decryption oracle seems to leak much more information about mes-
sages when considering RCCA due to the special symbol “Test” returned by
the decryption oracle. Thus, when formalizing a simulation-based security under
RCCA environment, we need to formalize the intuition that an adversary cannot
obtain any information about the plaintext encrypted in the ciphertext except
information leaked from the decryption oracle. To capture the intuition, we use
a predicate in the definition of simulation-based non-malleability against RCCA.
See Sect. 3.1 for more details.

We can see the usefulness of using a predicate when formalizing RCCA secu-
rity from the following fact. We can define semantic security under RCCA by
using a predicate in a similar way as the definition of simulation-based non-
malleability against RCCA. Then, we can prove the semantic security under
RCCA is equivalent to IND-RCCA proposed by Canetti et al. In AppendixA,
we show the definition of semantic security under RCCA and its equivalence to
IND-RCCA.

We summarize our results in Fig. 1.

1.3 Related Work

Goldwasser and Micali [6] proved the equivalence between semantic security and
indistinguishability against CPA. Watanabe et al. [7] proved the equivalence
between semantic security and indistinguishability against CCA1 and CCA2.
Bellare et al. [2] proved the equivalence between indistinguishability and non-
malleability under CCA2 environment. Bellare and Sahai [8] proved equivalence
between simulation based non-malleability and indistinguishability based non-
malleability. In addition to above, Pass et al. [4] considered the situation that

256 J. Hayata et al.

NM-RCCA IND-RCCA INM-RCCA

UC-RCCA SNM-RCCASS-RCCA

[3]

[3]
[3]

Sec. 4

Sec. 5Appendix A

Fig. 1. The summary of our results and previous results regarding security notions
against RCCA. SNM-RCCA and INM-RCCA indicate proposed definitions of
simulation-based and indistinguishability-based non-malleability, respectively. SS-
RCCA indicates proposed definition of semantic security. Solid arrows indicate implica-
tions. Red arrows indicate our results. Dashed arrows indicate implication for a PKE
scheme whose plaintext space is super polynomially large. The slashed arrow from
IND-RCCA to NM-RCCA indicates that there exists IND-RCCA secure but not NM-
RCCA secure PKE scheme the size of whose plaintext space is polynomial. (Color
figure online)

an adversary outputs a ciphertext which is decrypted to ⊥ in the experiment,
and proved the relation of simulation based non-malleability and indistinguisha-
bility based non-malleability under the condition they considered. Specifically,
they proved that those two definitions are equivalent for a PKE scheme that
allows efficient sampling of a ciphertext decrypted to ⊥. On the other hand,
they proved a separation scheme exists between the two definitions in the case
that a PKE scheme does not allow efficient sampling of a ciphertext decrypted to
⊥. Katz and Yung [5] proved relations among notions of security for symmetric-
key encryption.

Several studies on the construction of RCCA secure PKE schemes have been
done since RCCA security was proposed by Canetti et al. [3]. Also, there are
studies that consider RCCA security for various cryptographic primitives such as
proxy re-encryption, hybrid encryption, signcryption and steganography [9–15].
A specific construction of a rerandomizable PKE scheme satisfying a weaker vari-
ant of RCCA security was proposed by Groth [16]. Subsequently, a construction
of a rerandomizable PKE scheme satisfying RCCA security using non-standard
cryptographic groups was proposed by Prabhakaran et al. [17]. In addition, a
construction of a rerandomizable PKE scheme satisfying RCCA security from a
standard assumption was proposed by Chase et al. [18], and Libert et al. [19]
improved the efficiency of their construction.

1.4 Organization

In Sect. 2, we review the definition of PKE and IND-RCCA defined by Canetti
et al. [3]. In Sect. 3, we then give our simulation-based definition of non-
malleability against RCCA (SNM-RCCA) and indistinguishability-based one

Equivalence Between NM Against RCCA and Other RCCA-Security Notions 257

(INM-RCCA). In Sect. 4, we prove the equivalence of IND-RCCA and INM-
RCCA. In Sect. 5, we also prove the equivalence of INM-RCCA and SNM-RCCA.
In Sect. 6, we state the conclusion of this work. In AppendixA, we give our def-
inition of semantic security against RCCA, and prove that it is equivalent to
IND-RCCA.

2 Preliminaries

Notations. We denote probabilistic polynomial time algorithm by PPTA, and
for an algorithm A, we denote the procedure that A is given input a and outputs
b by b ← A(a). In addition, for a set S, we denote the cardinality of S by ‖S‖.

2.1 Public Key Encryption

We define public key encryption (PKE). In this work, we consider PKE schemes
whose plaintext space is binary, that is, {0, 1}�, where � is a polynomial of the
security parameter.

Definition 1 (Public key encryption). A PKE scheme Σ is a tuple (Gen,
Enc,Dec) of PPT algorithms. Below, let the message space of Σ be {0, 1}�, where
� is a polynomial of the security parameter.

– The key generation algorithm Gen, given a security parameter 1λ, outputs a
public key pk and a secret key sk.

– The encryption algorithm Enc, given a public key pk and message m ∈ {0, 1}�,
outputs a ciphertext c.

– The decryption algorithm Dec, given a secret key sk and ciphertext c, outputs
a plaintext m̃ ∈ {⊥} ∪ {0, 1}�.

Correctness. We require Dec(sk,Enc(pk,m)) = m for every m ∈ {0, 1}� and
(pk, sk) ← Gen(1λ).

2.2 Definition of IND-RCCA

We review the definition of IND-RCCA security introduced by Canetti et al. [3].
They formalized RCCA security by letting the decryption oracle in the second
phase O2 return a special symbol “Test” when an adversary queries a ciphertext
of m0 or m1, where m0 and m1 are the challenge messages. The formulation
that O2 returns “Test” relaxes CCA security. For example, even if an adversary
queries a ciphertext generated by rerandomizing the challenge ciphertext to O2,
the adversary cannot obtain any information about the challenge bit in the
experiments of RCCA security.

Then we give a formal definition of the IND-RCCA security. Let Σ = (Gen,
Enc,Dec) be a PKE scheme, and A = (A1,A2) be a pair of PPTAs. We consider
the following experiments IND-RCCA-b (b = 0, 1):

258 J. Hayata et al.

ExpIND-RCCA-b
Σ,A (λ)

(pk, sk) ← Gen(1λ);
(m0,m1, st1) ← AO1

1 (pk);
c∗ ← Enc(pk,mb);
b′ ← AO2

2 (c∗, st1);
output b′

where,

O1(c) = Dec(sk, c),

O2(c) =

{
Test (Dec(sk, c) ∈ {m0,m1})
Dec(sk, c) (otherwise).

We define the advantage AdvIND-RCCA
Σ,A (λ) as AdvIND-RCCA

Σ,A (λ) :=
|Pr[ExpIND-RCCA-0

Σ,A (λ) → 1] − Pr[ExpIND-RCCA-1
Σ,A (λ) → 1]|.

Definition 2 (IND-RCCA). We say that Σ is IND-RCCA secure if Adv
IND-RCCA
Σ,A (λ) is negligible for any pair of PPTAs A.

3 Definitions of SNM-RCCA and INM-RCCA

In this section, we introduce our definitions of simulation-based and
indistinguishability-based non-malleability against RCCA.

3.1 Definition of SNM-RCCA

We give our definition of simulation-based non-malleability under RCCA envi-
ronment (SNM-RCCA) as follows.

Let Σ = (Gen,Enc,Dec) be a PKE scheme, A = (A1,A2) and S = (S1,S2) be
pairs of PPTAs, and h be a polynomial time computable function. We consider
the following experiments SNM-RCCA-0 and SNM-RCCA-1:

ExpSNM-RCCA-0
Σ,A,h (λ) ExpSNM-RCCA-1

Σ,S,h (λ)

(pk, sk) ← Gen(1λ);
(M,P (·, ·), st1) ← AO1

1 (pk);
m ← M;
c∗ ← Enc(pk,m);
(c1, . . . , cn, st2) ← AO2

2 (c∗, h(m), st1);
For i = 1 to n

di :=

{
Test (P (m,Dec(sk, ci)) = 1)
Dec(sk, ci) (otherwise)

output (M,m,P (·, ·), d1, . . . , dn, st2)

(pk, sk) ← Gen(1λ);
(M,P (·, ·), st1) ← S1(pk);
m ← M;
(c1, . . . , cn, st2) ← SP (m,·)

2 (h(m), st1);
For i = 1 to n

di :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Test (P (m,Dec(sk, ci)) = 1

∨ci = Test)
⊥ (ci = ⊥)
Dec(sk, ci) (otherwise)

output (M,m,P (·, ·), d1, . . . , dn, st2)

Equivalence Between NM Against RCCA and Other RCCA-Security Notions 259

where, the predicate P should satisfy P (m,m) = 1 for any m which is included
in the support of M, and

O1(c) = Dec(sk, c),

O2(c) =

{
Test (P (m,Dec(sk, c)) = 1)
Dec(sk, c) (otherwise).

In the above two experiments, M is a distribution over the plaintext space.
We define the advantage AdvSNM-RCCA

Σ,A,S,D,h (λ) as AdvSNM-RCCA
Σ,A,S,D,h (λ) :=

|Pr[D(ExpSNM-RCCA-0
Σ,A,h (λ)) → 1] − Pr[D(ExpSNM-RCCA-1

Σ,S,h (λ)) → 1]|.
Definition 3 (SNM-RCCA security). We say that Σ is SNM-RCCA secure
if for any polynomial time computable function h and for any pair of PPTAs A,
there exists a pair of PPTAs S such that AdvSNM-RCCA

Σ,A,S,D,h (λ) is negligible for any
PPTA D.

When formalizing SNM-RCCA, we refer to the formulation of Pass et al. [4].
They considered the case where an adversary outputs challenge ciphertext
directly in the experiment of simulation-based and indistinguishability-based
non-malleability under CCA environment. They allowed a simulator to output
the symbol “COPY” and formulated it. Similarly to the definitions of Pass et
al., we allow a simulator to output special symbols in order to handle replays of
ciphertexts.

On the Use of Predicate. We use a predicate in the definition of SNM-RCCA
above. The reason is as follows. When we formalize the simulation-based RCCA
security, it is not trivial what decryption oracle we should allow an adversary to
access. For example, suppose that we allow an adversary to access the decryption
oracle which returns “Test” only when he queries a ciphertext of m, where m
is the plaintext chosen in the experiment as the target of tampering. Then, this
decryption oracle seems to leak m entirely to the adversary in some cases. In
fact, when the size of the plaintext space is polynomial, by querying a ciphertext
of all plaintexts contained in the plaintext space, the adversary can learn m by
the decryption oracle’s response “Test”.

In this way, in RCCA environment, the decryption oracle leaks the infor-
mation of the plaintext m chosen in the experiment. Thus, when we formal-
ize simulation-based RCCA security, we need to formalize it by capturing the
intuition that an adversary cannot obtain any information about the plaintext
encrypted in the ciphertext except the information leaked from the decryption
oracle. To capture the intuition, in our definition, we make an adversary output
a predicate that determines whether a decryption result of a decryption query is
“Test” or not. In other words, this predicate indicates which kind of tampering
is considered to be success. More importantly, we allow a simulator to access
the predicate oracle in order to give him the same information leaked from the
decryption oracle which the adversary accesses. We see that if such a simulator
can simulate an adversary, the adversary does not obtain any information of

260 J. Hayata et al.

the plaintext from the ciphertext except information leaked from the decryption
oracle.

We can observe the usefulness of using a predicate when formalizing RCCA
security from the following fact. We can define semantic security under RCCA
environment using a predicate in a similar way as the definition of SNM-RCCA.
Then, we can prove semantic security under RCCA is equivalent to IND-RCCA
security proposed by Canetti et al. [3]. In AppendixA, we show the definition of
semantic security under RCCA and its equivalence to IND-RCCA.

3.2 Definition of INM-RCCA

We give our definition of indistinguishability-based non-malleability under
RCCA environment (INM-RCCA) as follows.

Let Σ = (Gen,Enc,Dec) be a PKE scheme, and A = (A1,A2,A3) be a triple
of PPTAs. We consider the following experiments INM-RCCA-b (b = 0, 1):

ExpINM-RCCA-b
Σ,A (λ)

(pk, sk) ← Gen(1λ);
(m0,m1, st1) ← AO1

1 (pk);
c∗ ← Enc(pk,mb);
(c1, . . . , cn, st2) ← AO2

2 (c∗, st1);
For i = 1 to n

di :=

{
Test (Dec(sk, ci) ∈ {m0,m1})
Dec(sk, ci) (otherwise)

b′ ← A3(d1, . . . , dn, st2);
output b′

where,

O1(c) = Dec(sk, c),

O2(c) =

{
Test (Dec(sk, c) ∈ {m0,m1})
Dec(sk, c) (otherwise).

We define the advantage AdvINM-RCCA
Σ,A (λ) as AdvINM-RCCA

Σ,A (λ) := |Pr[Exp
INM-RCCA-0
Σ,A (λ) → 1] − Pr[ExpINM-RCCA-1

Σ,A (λ) → 1]|.
Definition 4 (INM-RCCA security). We say that Σ is INM-RCCA secure
if AdvINM-RCCA

Σ,A (λ) is negligible for any triple of PPTAs A.

4 Equivalence of IND-RCCA and INM-RCCA

We can prove the equivalence between IND-RCCA and INM-RCCA. Specifically,
the following two theorems, Theorems 1 and 2 hold.

Theorem 1. If a PKE scheme Σ = (Gen,Enc,Dec) is INM-RCCA secure, then
Σ is IND-RCCA secure.

Equivalence Between NM Against RCCA and Other RCCA-Security Notions 261

Fig. 2. The constructions of B used in Theorem1

Proof. We assume that for any INM-RCCA adversary B = (B1,B2,B3), Adv
INM-RCCA
Σ,B (λ) is negligible. Then, we show AdvIND-RCCA

Σ,A (λ) is negligible for any
IND-RCCA adversary A = (A1,A2).

We construct an INM-RCCA adversary B = (B1,B2,B3) who uses internally
A as in Fig. 2. When A2 queries a ciphertext c to B2, B2 sends c to the decryption
oracle that he can access. Then B2 sends the response from the oracle to A2.

By the construction of B as in Fig. 2, B simulates IND-RCCA-0 exper-
iment for A when B receives an encryption of m0. Moreover, B outputs 1
only when A outputs 1, and thus it holds that Pr[ExpINM-RCCA-0

Σ,B (λ) → 1] =
Pr[ExpIND-RCCA-0

Σ,A (λ) → 1]. Likewise, it holds that Pr[ExpINM-RCCA-1
Σ,B (λ) → 1] =

Pr[ExpIND-RCCA-1
Σ,A (λ) → 1].

Therefore, we can derive

AdvIND-RCCA
Σ,A (λ) = |Pr[ExpIND-RCCA-1

Σ,A (λ) → 1] − Pr[ExpIND-RCCA-0
Σ,A (λ) → 1]|

= |Pr[ExpINM-RCCA-0
Σ,B (λ) → 1] − Pr[ExpINM-RCCA-1

Σ,B (λ) → 1]|
= AdvINM-RCCA

Σ,B (λ).

Since we assume Σ is INM-RCCA secure, it is negligible. �

Theorem 2. If a PKE scheme Σ = (Gen,Enc,Dec) is IND-RCCA secure, then
Σ is INM-RCCA secure.

Proof. We assume that for any IND-RCCA adversary B = (B1,B2), AdvIND-RCCA
Σ,B

(λ) is negligible. Then, we show AdvINM-RCCA
Σ,A (λ) is negligible for any INM-RCCA

adversary A = (A1,A2,A3).
We construct an IND-RCCA adversary B = (B1,B2) who uses internally A

as in Fig. 3. When A2 queries a ciphertext c to B2, B2 sends c to the decryption
oracle that he can access. Then B2 sends the response from the oracle to A2.

By the construction of B as in Fig. 3, B simulates INM-RCCA-0 experi-
ment for A when B runs in IND-RCCA-0 experiment. Moreover, B outputs
1 only when A outputs 1. Therefore, we have Pr[ExpIND-RCCA-0

Σ,B (λ) → 1] =
Pr[ExpINM-RCCA-0

Σ,A (λ) → 1]. Similarly, it holds that Pr[ExpIND-RCCA-1
Σ,B (λ) → 1] =

Pr[ExpINM-RCCA-1
Σ,A (λ) → 1].

262 J. Hayata et al.

BO1
1 (pk) BO2

2 (c∗, st1)
(m0,m1, st1) ← AO1

1 (pk) (c1, . . . , cn, st2) ← AO2
2 (c∗, st1)

st1 := st1 For i = 1 to n
output (m0,m1, st1) di := O2(ci)

b ← A3(d1, . . . , dn, st2)

Fig. 3. The constructions of B used in Theorem2

Therefore, we can derive

AdvINM-RCCA
Σ,A (λ) =|Pr[ExpINM-RCCA-1

Σ,A (λ) → 1] − Pr[ExpINM-RCCA-0
Σ,A (λ) → 1]|

=|Pr[ExpIND-RCCA-0
Σ,B (λ) → 1] − Pr[ExpIND-RCCA-1

Σ,B (λ) → 1]|
=AdvIND-RCCA

Σ,B (λ).

Since we assume Σ is IND-RCCA secure, it is negligible. �

5 Equivalence of SNM-RCCA and INM-RCCA

In this section, we prove the equivalence between SNM-RCCA and INM-RCCA
proposed in this paper.

5.1 INM-RCCA Implies SNM-RCCA

We prove that INM-RCCA implies SNM-RCCA by a case analysis. We can
consider two cases where the size of the plaintext space which a PKE scheme Σ
supports is polynomial or not. We consider the case that the size of the plaintext
space is polynomial at first, and give a proof. After that, we consider the other
case, and give a proof.

Theorem 3. If a PKE scheme Σ = (Gen,Enc,Dec) is INM-RCCA secure, and
the size of the plaintext space of Σ is polynomial, then Σ is SNM-RCCA secure.

Proof. We assume AdvINM-RCCA
Σ,B (λ) is negligible for any INM-RCCA adversary

B = (B1,B2,B3). Then, we show for any SNM-RCCA adversary A = (A1,A2)
and for any polynomial time computable function h, there exists a simulator
S = (S1,S2) such that AdvSNM-RCCA

Σ,A,S,D,h (λ) is negligible for any distinguisher D.
To give a proof, we use a sequence of games (Game 0 to Game 3), and the
construction of S is as in Fig. 4.

We define Game 0 to Game 3 as follows:

Game 0: Game 0 is the same as SNM-RCCA-0 for A and D. We denote the
plaintext sampled in SNM-RCCA-0 as m0.

Equivalence Between NM Against RCCA and Other RCCA-Security Notions 263

Fig. 4. The construction of S used in Theorem3

Game 1: The difference from Game 0 is to create (pk′, sk′) ← Gen(1λ) newly
and change the game so that (pk′, sk′) are used throughout the game. The
input to A1 is changed to pk′, the challenge ciphertext is generated using pk′,
and the oracles O1 and O2 that A accesses are changed to the oracles that use
sk′. In addition, the secret key used to decrypt ciphertexts ci (i = 1, . . . , n)
output by A2 is changed to sk′.

Game 2: The difference from Game 1 is that m1 ← Pm0 is sampled in addition
to m0, where Pm0 is the uniform distribution over all plaintexts m′ such that
P (m0,m

′) = 1. In addition, the challenge ciphertext c∗ ← Enc(pk′,m0) is
changed to c∗ ← Enc(pk′,m1).

Game 3: Game 3 is the same as SNM-RCCA-1 under PPTA S and pk.

We can sample efficiently from Pm0 which is used in Game 2 and S2. This is
because, since the size of the plaintext space is polynomial, by inputting all plain-
texts to P (m0, ·), we can identify all plaintexts m′ which satisfy P (m0,m

′) = 1.
Note that there always exists at least one plaintext m′ satisfying P (m0,m

′) = 1
because m0 satisfies P (m0,m0).

Let Ti be the event that 1 is output in Game i.

Lemma 1. It holds that Pr[T1] = Pr[T0].

Proof. Game 1 is SNM-RCCA-0 under (pk′, sk′), and (pk, sk) is not used. Since
(pk, sk) ← Gen(1λ) is not input to A in Game 1, Game 0 and Game 1 are
equivalent from A’s view. Thus, it holds that Pr[T1] = Pr[T0]. �

Lemma 2. There exists B as in Fig. 5 such that |Pr[T2] − Pr[T1]| =

AdvINM-RCCA
Σ,B (λ).

Proof. We construct a reduction B that breaks INM-RCCA security from A.
We construct INM-RCCA adversary B = (B1,B2,B3) under (pk′, sk′) who uses
internally A and D as in Fig. 5. When A2 queries a ciphertext c to B2, B2 sends

264 J. Hayata et al.

Fig. 5. The construction of B used in Lemma 2

c to the decryption oracle that he can access. Then, B2 receives m or “Test”
from the oracle. After that, if P (m0,m) = 1 or B2 receives “Test”, then B2

sends “Test” to A2. Otherwise, B2 sends m to A2. Since the plaintext m1 which
is generated in B1 satisfies P (m0,m1) = 1, B2 can simulate the decryption
oracle correctly. Likewise, B2 can simulate the sequence of di which is input to
D correctly.

When B runs in INM-RCCA-0, B simulates Game 1 for A and D. Moreover,
B outputs 1 only when D outputs 1. Therefore, we have Pr[ExpINM-RCCA-0

Σ,B (λ) →
1] = Pr[T1]. Similarly, we have Pr[ExpINM-RCCA-1

Σ,B (λ) → 1] = Pr[T2].
Therefore, we can derive

|Pr[T2] − Pr[T1]| = |Pr[ExpINM-RCCA-1
Σ,B (λ) → 1] − Pr[ExpINM-RCCA-0

Σ,B (λ) → 1]|
= AdvINM-RCCA

Σ,B (λ).

�

Lemma 3. It holds that Pr[T3] = Pr[T2].

Proof. In Game 3, S uses A internally as in Fig. 4. Since Game 3 is SNM-RCCA-
1, S cannot access to the decryption oracle. However, S generates (pk′, sk′)
internally, and he can access the predicate oracle P (m0, ·). In addition, an input
to A is pk′ as in Game 2, and thus S2 can respond to decryption queries from
A by using sk′ and P (m0, ·).

S2 inputs a ciphertext of m1 which is generated internally in S2 to A2, and
A2 outputs a sequence of ciphertexts. S2 decrypts them using sk′. After that,
each di is encrypted by using pk, and the encrypted sequence is the output of
S2. All ciphertexts are decrypted using sk after S2 outputs, and these sequence
is input to D. Here, the distributions of the inputs to D in Game 2 and Game 3
are identical. Thus, it holds that Pr[T3] = Pr[T2]. �

Equivalence Between NM Against RCCA and Other RCCA-Security Notions 265

By using Lemma 1 to Lemma 3, we can derive

AdvSNM-RCCA
Σ,A,S,D,h (λ)

= |Pr[D(ExpSNM-RCCA-0
Σ,A,h (λ)) → 1] − Pr[D(ExpSNM-RCCA-1

Σ,A,h (λ)) → 1]|
= |Pr[T0] − Pr[T3]| = |Pr[T1] − Pr[T2]|
= AdvINM-RCCA

Σ,B (λ).

Therefore, for any A, there exists S as in Fig. 4 such that AdvSNM-RCCA
Σ,A,S,D,h (λ) is

negligible for any D. �

Theorem 4. If a PKE scheme Σ = (Gen,Enc,Dec) is INM-RCCA secure, and
the size of the plaintext space of Σ is super polynomially large, then Σ is SNM-
RCCA secure.

Proof. Let the plaintext space of Σ be {0, 1}�. We assume AdvINM-RCCA
Σ,B (λ) is

negligible for any INM-RCCA adversary B = (B1,B2,B3). Then, we show for any
SNM-RCCA adversary A = (A1,A2) and for any polynomial time computable
function h, there exists a simulator S = (S1,S2) such that AdvSNM-RCCA

Σ,A,S,D,h (λ) is
negligible for any distinguisher D. To give a proof, we use a sequence of games
(Game 0 to Game 5), and the construction of S is as in Fig. 6.

We define Game 0 to Game 5 as follows:

Game 0: Game 0 is the same as SNM-RCCA-0 for A and D. We denote the
plaintext sampled in SNM-RCCA-0 as m0.

Game 1: The difference from Game 0 is to create (pk′, sk′) ← Gen(1λ) newly
and change the game so that (pk′, sk′) are used throughout the game. The
input to A1 is changed to pk′, the challenge ciphertext is generated using pk′,
and the oracles O1 and O2 that A accesses are changed to oracles that use
sk′. In addition, the secret key used to decrypt ciphertexts ci (i = 0, . . . , n)
output by A2 is changed to sk′.

Game 2: The difference from Game 1 is that m1 ← {0, 1}� is sampled in addition
to m0. In additon, when decrypting c′

i, if P (m0,Dec(sk′, c′
i)) = 1 ∨ m1 =

Dec(sk′, c′
i), then let di be “Test”.

Game 3: The difference from Game 2 is that O′
2 returns “Test” when a cipher-

text of m1 is queried or a ciphertext of m satisfying P (m0,m) = 1 is queried.
Game 4: The difference from Game 3 is that the challenge ciphertext c∗ ←

Enc(pk′,m0) is changed to c∗ ← Enc(pk′,m1).
Game 5: Game 5 is the same as SNM-RCCA-1 under PPTA S and pk.

Let Ti be the event that 1 is output in Game i.

Lemma 4. It holds that Pr[T1] = Pr[T0].

Proof. Game 1 is SNM-RCCA-0 under (pk′, sk′), and (pk, sk) is not used. Since
(pk, sk) ← Gen(1λ) is not input to A in Game 1, Game 0 and Game 1 are
equivalent from A’s view. Thus, it holds that Pr[T1] = Pr[T0]. �

266 J. Hayata et al.

Fig. 6. The construction of S used in Theorem 4

Lemma 5. It holds that |Pr[T2] − Pr[T1]| < poly(λ)
2� .

Proof. Game 1 and Game 2 are identical if A2 does not output a ciphertext of
m1. Here, m1 is chosen at uniformly random from {0, 1}�. Since the number of
ciphertexts that A2 outputs is polynomial, it holds that |Pr[T2]−Pr[T1]| < poly(λ)

2�

using the difference lemma and the union bound. �

Lemma 6. It holds that |Pr[T3] − Pr[T2]| < poly(λ)
2� .

Proof. Game 2 and Game 3 are identical if A2 does not query a ciphertext of
m1 as a decryption query. Here, m1 is chosen at uniformly random from {0, 1}�.
Since the number of ciphertexts that A2 queries is polynomial, it holds that
|Pr[T3] − Pr[T2]| < poly(λ)

2� using the difference lemma and the union bound. �

Lemma 7. There exists B such that |Pr[T4] − Pr[T3]| = AdvINM-RCCA
Σ,B (λ).

Proof. We construct a reduction B that breaks INM-RCCA security from A.
We construct an INM-RCCA adversary B = (B1,B2,B3) who uses internally A
and D as in Fig. 7. When, A2 queries a ciphertext c to B2, B2 sends c to the
decryption oracle that he can access. Then, B receives m or “Test” from the
oracle. After that, if P (m0,m) = 1 ∨ m = m1 or B2 receives “Test”, then B2

sends “Test” to A2. Otherwise, B2 sends m to A2. We see that B simulate the
decryption oracles in Game 3 and Game 4 for A. Likewise, B2 can simulate the
sequence of di which is input to D correctly.

When B runs in INM-RCCA-0, B simulates Game 3 for A and D. Moreover,
B outputs 1 only when D outputs 1. Therefore, we have Pr[ExpINM-RCCA-0

Σ,B (λ) →
1] = Pr[T3]. Similarly, we have Pr[ExpINM-RCCA-1

Σ,B (λ) → 1] = Pr[T4].

Equivalence Between NM Against RCCA and Other RCCA-Security Notions 267

Fig. 7. The construction of B used in Lemma 7

Therefore, we can derive

|Pr[T4] − Pr[T3]| = |Pr[ExpINM-RCCA-1
Σ,B (λ) → 1] − Pr[ExpINM-RCCA-0

Σ,B (λ) → 1]|
= AdvINM-RCCA

Σ,B (λ).

�

Lemma 8. It holds that Pr[T5] = Pr[T4].

Proof. In Game 5, S uses A internally as in Fig. 6. Since Game 5 is SNM-RCCA-
1, S cannot access to the decryption oracle. However, S generates (pk′, sk′)
internally, and he can access predicate oracle P (m0, ·). In addition, an input to
A is pk′ as in Game 4, and thus S2 can respond the decryption query from A
by using sk′ and P (m0, ·).

S2 inputs a ciphertext of m1 which is generated internally in S1 to A2, and
A2 outputs a sequence of ciphertexts. S2 decrypts them by using sk′. After that,
each di is encrypted by using pk, and the encrypted sequence is output of S2. All
ciphertexts are decrypted by using sk after S2 outputs them, and these sequence
is input to D. Here, the distributions of the inputs to D in Game 4 and Game 5
are identical. Thus, it holds that Pr[T5] = Pr[T4]. �

By using Lemma 4 to Lemma 8, we can derive

AdvSNM-RCCA
Σ,A,S,D,h (λ)

= |Pr[D(ExpSNM-RCCA-0
Σ,A,h (λ)) → 1] − Pr[D(ExpSNM-RCCA-1

Σ,A,h (λ)) → 1]|
= |Pr[T0] − Pr[T5]|
= |Pr[T1] − Pr[T4]|
= |Pr[T1] − Pr[T2] + Pr[T2] − Pr[T3] + Pr[T3] − Pr[T4]|
≤ |Pr[T1] − Pr[T2]| + |Pr[T2] − Pr[T3]| + |Pr[T3] − Pr[T4]|

≤ poly(λ)
2�

+
poly(λ)

2�
+ AdvINM-RCCA

Σ,B (λ).

268 J. Hayata et al.

Since we assume that 2� is super polynomially large and Σ is INM-RCCA secure,
for any A, there exists S as in Fig. 6 such that AdvSNM-RCCA

Σ,A,S,D,h (λ) is negligible for
any D. �

The following theorem holds from Theorems 3 and 4.

Theorem 5. If a PKE scheme Σ = (Gen,Enc,Dec) is INM-RCCA secure, then
Σ is SNM-RCCA secure.

5.2 SNM-RCCA Implies INM-RCCA

We prove that SNM-RCCA implies INM-RCCA.

Theorem 6. If a PKE scheme Σ = (Gen,Enc,Dec) is SNM-RCCA secure, then
Σ is INM-RCCA secure.

Proof. We denote ExpINM-RCCA
Σ,A as the experiment that chooses the challenge

bit b randomly and execute INM-RCCA-b. Without loss of generality, we can
assume Pr[ExpINM-RCCA

Σ,A (λ) → b] ≥ 1/2 for any INM-RCCA adversary A. It is
because if Pr[ExpINM-RCCA

Σ,A (λ) → b] < 1/2, then we consider the adversary A′

whose output is the reverse of A’s output. Then, the advantage of A′ is same
as A, and it holds Pr[ExpINM-RCCA-b

Σ,A′ (λ) → b] ≥ 1/2. Thus, if we can bound the
advantage of A′, it means we can bound the advantage of A at the same time.

We assume that for any SNM-RCCA adversary B = (B1,B2) and for any
polynomial time computable function h, there exists a simulator S = (S1,S2)
such that AdvSNM-RCCA

Σ,B,D,h (λ) is negligible for any distinguisher D. Then, we show
AdvINM-RCCA

Σ,A (λ) is negligible for any INM-RCCA adversary A = (A1,A2,A3).
We consider the SNM-RCCA-0 experiment with h : m �→ ε, where ε is the

empty string, and we construct an SNM-RCCA adversary B and a distinguisher
D who uses A internally as in Fig. 8. When A2 submits a decryption query c to
B2, B2 submits c to the decryption oracle that B2 can access. Then B2 sends the
response from the oracle to A2.

By the construction of B and D above, D outputs 1 when A guesses bit b
which is chosen in the experiment correctly. Thus, we can derive

Pr[D(ExpSNM-RCCA-0
Σ,B,h (λ)) → 1] = Pr[ExpINM-RCCA-b

Σ,A (λ) → b].

Let E be the event that S outputs M and S such that ‖M‖ = 2 and
P (m,m0) = 1 ∧P (m,m1) = 1, and p be the probability that E occurs in SNM-
RCCA-1, where [{m0,m1},Pr(m0) = Pr(m1) = 1/2] = M. When the event E
occurs in SNM-RCCA-1, S does not receive the challenge ciphertext, and he
cannot obtain any information about the choice of m0 and m1 even if he access
the predicate oracle. Thus, since ‖M‖ = 2 when E occurs, it holds that

Pr
[
D

(
ExpSNM-RCCA-1

Σ,S,h (λ)
)

→ 1
]

= Pr
[
D

(
ExpSNM-RCCA-1

Σ,S,h (λ)
)

→ 1
∣∣∣E]

· Pr[E]

=
p

2
≤ 1

2
. (1)

Equivalence Between NM Against RCCA and Other RCCA-Security Notions 269

Fig. 8. The constructions of B and D used in Theorem 6

Here, AdvINM-RCCA
Σ,A (λ) can be rewritten as follows.

AdvINM-RCCA
Σ,A (λ) = |Pr[ExpINM-RCCA-0

Σ,A (λ) → 1] − Pr[ExpINM-RCCA-1
Σ,A (λ) → 1]|

= |2 · Pr[ExpINM-RCCA
Σ,A (λ) → b] − 1|.

Then, it holds that

AdvINM-RCCA
Σ,A (λ)

= |2 · Pr[ExpINM-RCCA
Σ,A (λ) → b] − 1|

= |2 · Pr[D(ExpSNM-RCCA-0
Σ,B,h (λ)) → 1] − 1|

≤ |2 · Pr[D(ExpSNM-RCCA-0
Σ,B,h (λ)) → 1] − 2 · p/2|

= 2(|Pr[D(ExpSNM-RCCA-0
Σ,B,h (λ)) → 1] − Pr[D(ExpSNM-RCCA-1

Σ,S,h (λ)) → 1])

= 2 · AdvSNM-RCCA
Σ,B,D,h (λ).

The transformation of the third equality is derived from the fact that we can
assume the advantage of A is greater than 1/2. Therefore, for any PPTA A,
AdvINM-RCCA

Σ,A (λ) is negligible. �

6 Conclusion

NM-RCCA proposed by Canetti et al. [3] as non-malleability under RCCA envi-
ronment is not a natural extension of classical non-malleability. Canetti et al.
argued that the validity of their definition is evidenced by its equivalence to
the universal composability against RCCA, but this equivalence does not hold
when the size of the plaintext space is polynomial. Therefore, the validity of
their formulation of NM-RCCA is not clear. In this paper, we formulated sim-
ulation based non-malleability and indistinguishability based non-malleability

270 J. Hayata et al.

under RCCA environment by extending classical definitions of non-malleability.
In addition to this, we prove that these two proposed security notions and IND-
RCCA proposed by Canetti et al. are all equivalent regardless of the size of
plaintext space.

Acknowledgments. The third and fourth authors are supported by JST CREST
Grant Number JPMJCR19F6, Japan.

A Definition of SS-RCCA and Its Equivalence
with IND-RCCA

We give our definition of semantic security under RCCA environment (SS-
RCCA) as follows.

Let Σ = (Gen,Enc,Dec) be a PKE scheme, A = (A1,A2) and S = (S1,S2)
be a pair of PPTAs, and h and f be polynomial time computable function. We
consider the following experiments SS-RCCA-0 and SS-RCCA-1:

ExpSS-RCCA-0
Σ,A,h,f (λ) ExpSS-RCCA-1

Σ,S,h,f (λ)
(pk, sk) ← Gen(1λ);
(M,P (·, ·), st1) ← AO1

1 (pk);
m ← M;
c∗ ← Enc(pk,m);
v ← AO2

2 (c∗, h(m), st1);
If v = f(m), then β := 1
Else β := 0
output (M,P (·, ·), β)

(pk, sk) ← Gen(1λ);
(M,P (·, ·), st1) ← S1(pk);
m ← M;
c∗ ← Enc(pk,m);
v ← SP (m,·)

2 (h(m), st1);
If v = f(m), then β := 1
Else β := 0
output (M,P (·, ·), β)

where, a predicate P satisfies P (m,m) = 1 for any m which is included in
support of M, and

O1(c) = Dec(sk, c),

O2(c) =

{
Test (P (m,Dec(sk, c)) = 1)
Dec(sk, ·) (otherwise).

In above two experiments, M is a distribution over the plaintext space.
We define the advantage AdvSS-RCCA

Σ,A,S,D,h,f (λ) as AdvSS-RCCA
Σ,A,S,D,h,f (λ) :=

|Pr[D(ExpSS-RCCA-0
Σ,A,h,f (λ)) → 1] − Pr[D(ExpSS-RCCA-1

Σ,S,h,f (λ)) → 1]|.
Definition 5 (SS-RCCA security). We say that Σ is SS-RCCA secure if for
any polynomial time computable function h and f , and for any pair of PPTAs
A, there exists a simulator S such that AdvSS-RCCA

Σ,A,S,D,h,f (λ) is negligible for any
PPTA D.

Equivalence Between NM Against RCCA and Other RCCA-Security Notions 271

A.1 IND-RCCA Implies SS-RCCA

We prove that IND-RCCA implies SS-RCCA by a case analysis. Like as proofs
of Theorems 3 and 4, we consider two cases that the size of the plaintext space
which a PKE scheme Σ supports is polynomial or not.

Theorem 7. If a PKE scheme Σ = (Gen,Enc,Dec) is IND-RCCA secure, and
the size of plaintext space of Σ is polynomial, then Σ is SS-RCCA secure.

We omit proof of the theorem.

Theorem 8. If a PKE scheme Σ = (Gen,Enc,Dec) is IND-RCCA secure, and
the size of the plaintext space of Σ is super polynomially large, then Σ is SS-
RCCA secure.

We omit proof of the theorem.
The following theorem holds from Theorems 7 and 8.

Theorem 9. If a PKE scheme Σ = (Gen,Enc,Dec) is IND-RCCA secure, then
Σ is SS-RCCA secure.

A.2 SS-RCCA Implies IND-RCCA

Theorem 10. If a PKE scheme Σ = (Gen,Enc,Dec) is SS-RCCA secure, then
Σ is IND-RCCA secure.

We omit proof of the theorem.

References

1. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: STOC, pp. 542–552 (1991)

2. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055718

3. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 33

4. Pass, R., Shelat, A., Vaikuntanathan, V.: Relations among notions of non-
malleability for encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 519–535. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-76900-2 32

5. Katz, J., Yung, M.: Characterization of security notions for probabilistic private-
key encryption. J. Cryptol. 19(1), 67–95 (2006)

6. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/978-3-540-45146-4_33
https://doi.org/10.1007/978-3-540-76900-2_32
https://doi.org/10.1007/978-3-540-76900-2_32

272 J. Hayata et al.

7. Watanabe, Y., Shikata, J., Imai, H.: Equivalence between semantic security and
indistinguishability against chosen ciphertext attacks. In: Desmedt, Y.G. (ed.)
PKC 2003. LNCS, vol. 2567, pp. 71–84. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-36288-6 6

8. Bellare, M., Sahai, A.: Non-malleable encryption: equivalence between two
notions, and an indistinguishability-based characterization. IACR Cryptology
ePrint Archive 2006/228 (2006)

9. Chen, Y., Dong, Q.: RCCA security for KEM+DEM style hybrid encryptions and
a general hybrid paradigm from RCCA-secure KEMs to CCA-secure encryptions.
Secur. Commun. Netw. 7(8), 1219–1231 (2014)

10. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1 21

11. Li, K., Wang, J., Zhang, Y., Ma, H.: Key policy attribute-based proxy re-encryption
and RCCA secure scheme. J. Internet Serv. Inf. Secur. 4(2), 70–82 (2014)

12. Dai, H., Wang, D., Chang, J., Xu, M.: On the RCCA security of hybrid signcryption
for internet of things. Wirel. Commun. Mob. Comput. 2018, 8646973:1–8646973:11
(2018)

13. Lu, R., Lin, X., Shao, J., Liang, K.: RCCA-secure multi-use bidirectional proxy re-
encryption with master secret security. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K.,
Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 194–205. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12475-9 14

14. Backes, M., Cachin, C.: Public-key steganography with active attacks. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 210–226. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30576-7 12

15. Abe, M., Gennaro, R., Kurosawa, K.: Tag-KEM/DEM: a new framework for hybrid
encryption. J. Cryptol. 21(1), 97–130 (2008)

16. Groth, J.: Rerandomizable and replayable adaptive chosen ciphertext attack secure
cryptosystems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 152–170.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 9

17. Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 517–534. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5 29

18. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof sys-
tems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4 18

19. Libert, B., Peters, T., Qian, C.: Structure-preserving chosen-ciphertext security
with shorter verifiable ciphertexts. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10174, pp. 247–276. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54365-8 11

https://doi.org/10.1007/3-540-36288-6_6
https://doi.org/10.1007/3-540-36288-6_6
https://doi.org/10.1007/978-3-540-78440-1_21
https://doi.org/10.1007/978-3-319-12475-9_14
https://doi.org/10.1007/978-3-540-30576-7_12
https://doi.org/10.1007/978-3-540-24638-1_9
https://doi.org/10.1007/978-3-540-74143-5_29
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-662-54365-8_11
https://doi.org/10.1007/978-3-662-54365-8_11

Cocks’ Identity-Based Encryption
in the Standard Model, via Obfuscation

Techniques (Short Paper)

Xin Wang1,2, Shimin Li1,2, and Rui Xue1,2(B)

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

{wangxin9076,lishimin,xuerui}@iie.ac.cn

Abstract. Identity-based encryption (IBE) is an attractive primitive in
modern cryptography. Cocks first gave an elegant construction of IBE
under Quadratic Residuosity (QR) assumption. Unfortunately, its secu-
rity works only in the Random Oracle (RO) model. In this work, we
aim at providing Cock’s scheme with provable security in the standard
model. Specifically, we modify Cocks’ scheme by explicitly instantiating
the hash function using indistinguishability obfuscation in two differ-
ent ways which yield two variants of Cocks’ scheme. Their security are
promised under well-defined selective-ID and adaptive-ID model respec-
tively. As an additional contribution, we adapt the same method into
the Boneh, LaVigne, Sabin (BLS) eth residuosity based IBE cryptosys-
tem and obtain an adaptive chosen-ID secure scheme under Modified eth

Residuosity (MER) assumption.

Keywords: Identity-based encryption · Cocks’ scheme ·
Random oracle

1 Introduction

Identity-Based Encryption (IBE), first initiated by Shamir [13], offers an alter-
native way to implement public key infrastructure and sheds light on deriving a
user’s public key from arbitrary string together with a common public parame-
ter. The early constructions mainly grounded on the structure of a bilinear group
where a pairing operation is allowed. This ramification, known as pairing-based
IBE, first achieved provable security in the Random Oracle (RO) model [2] and
later developed in the standard model [3–5]. In recent years, lattices has become
a candidate algebraic structure for designing cryptographic primitives including
IBE [1,9]. An entirely different method to build IBE was due to Cocks [7]. The
construction takes place in a well investigated group Z

∗
N and merely depends on

simple and efficient number-theoretic operations. The security is proved under

c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 273–283, 2019.
https://doi.org/10.1007/978-3-030-26834-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_16

274 X. Wang et al.

a well-known assumption called Quadratic Residuosity (QR) assumption [10] in
the random oracle model. Cocks’ scheme, in comparison with the other two types
of constructions (pairing-based and lattice-based), has many advantages such as
working in a standard composite-order group, relying on quite basic mathemat-
ics, and so forth. But it is hard to do any security proof in the standard model.
In Cocks’ scheme, the public key corresponding to an identity is designated as
the hash value of this identity, which is a quadratic residue and the secret key
of the identity is a square root of it. When trying to reduce the security to QR
assumption, the simulator needs to respond to the adversary’s secret key queries.
The tricky part naturally appears: how to compute square root of a quadratic
residue, even without the factorization of a public modulus? With the help of
random oracle heuristic, this obstacle could be tackled, in a reverse direction.
The simulator maintains an empty list that stores entries of hash value and
square roots. It randomly picks a uniform distributed value within a certain
group and then squares it to be the hash value whenever a query comes. In this
way the key extraction issue no longer bothers since the simulator always knows
a root of hash value of any identity except the challenge one.

Our Results. In this paper, we dedicate to investigating Cocks’ scheme in the
standard model. As was mentioned in [11], their techniques for proving security of
a certain signature scheme are applicable for Boneh-Franklin IBE scheme so that
it can be proved both selectively and adaptively secure in the standard model
under different paring-based assumptions. Yet no explicit evidence reveals that
the QR-based scheme could have such results in the standard model. Inspired by
the work of [11], which provides a subtle framework of instantiating random ora-
cle using indistinguishability obfuscation in full domain hash signature schemes,
we inspected Cocks’ scheme and carefully examined the feasibility of establishing
concrete hash functions in the group Z

∗
N . Specifically, we instantiate the hash

function in two different ways using indistinguishability obfuscation and reach
the goal of basing the security of Cocks’ scheme on QR assumption in commonly
accepted selective-ID and adaptive-ID security model. As our first attempt, we
give a selectively secure scheme, namely Cocks’ Variant I. In this scheme, we
could securely map a bitstring to a quadratic residue within Z

∗
N using indistin-

guishability obfuscation together with puncturable pseudorandom function and
security proof works in a very natural way. To get adaptive security, we combine
indistinguishability obfuscation with admissible hash function to implement the
hash function, which derives Cocks’ Variant II. For security, we take advantage
of the techniques appeared in [11].

As an additional contribution, we adapt the constructing and proving meth-
ods into the Boneh, LaVigne, Sabin (BLS) eth residuosity based IBE cryptosys-
tem [6] and obtain an adaptive chosen-ID secure scheme.

(Short Paper) Cocks’ Identity-Based Encryption in the Standard Model 275

2 Preliminaries

Let N = pq be the product of two primes p and q. The set of integers with Jacobi
symbol 1 is denoted by JN . The quadratic residues form a subgroup QRN . The
set of quadratic non-residues with Jacobi symbol +1 is denoted by QNR

+.

Definition 1 (Quadratic Residuosity Assumption [10]). Let RSAGen be
an algorithm that, given a security parameter λ, outputs primes p, q and their
product N = pq. The Quadratic Residuosity (QR) assumption relative to RSAGen
asserts that the probability below is negligible for any p.p.t distinguisher D:

∣
∣Pr[D(v,N) = 1 | v ← QRN] − Pr[D(v,N) = 1 | v ← QNR

+]
∣
∣ .

Assuming that strong primes are sufficiently dense [8], the QR assumption
also implies that if p, q are strong primes, the distinguishing task above will be
computationally infeasible too. In this case, we call the modulus as an strong
RSA modulus for convenience. Next, we will introduce some useful notions in
higher residue case. We follow the notations in [6].

Let e ≥ 2 be an integer and N = pq be an RSA modulus with p, q ≡ 1 mod e.
The eth power residue symbol of an integer a modulo N is written as

(
a
N

)

e
. The

symbol will always yield an eth root of unity. The trivial eth root of unity is
1. Some eth roots of unity are called degenerate since if they are leaked, the
factorization of N is easy to get. Z denotes the set of nontrivial, non-degenerate
eth roots of unity in ZN . The set of eth residues in Z

∗
N is denoted by ERN and

the set of elements that have symbol 1 is represented by PRN . Boneh et al. [6]
formalized the Modified eth Residuosity (MER) assumption which posits that
given an integer which has symbol 1 with a non-degenerate eth root of unity
published, it is hard to tell whether it is an eth residue or not.

2.1 Admissible Hash Functions

Definition 2 ([4,11]). Let �, n and θ be efficiently computable univariate poly-
nomials. Let h : {0, 1}�(λ) → {0, 1}n(λ) be an efficiently computable function and
AdmSample a p.p.t algorithm that takes as input 1λ and an integer Q, and out-
puts u ∈ {0, 1,⊥}n(λ). For any u ∈ {0, 1,⊥}n(λ), define Pu : {0, 1}�(λ) → {0, 1}
as follows:

Pu(x) =

{

1 if ∃j ≤ n(λ), uj = h(x)j

0 if ∀j ≤ n(λ), uj �= h(x)j ,

where uj , h(x)j denote the j-th bit of u, h(x) respectively.
We say that (h,AdmSample) is θ-admissible if the following condition holds:

For any efficiently computable polynomial Q, for all x1, . . . , xQ(λ), x
∗ ∈

{0, 1}�(λ), where x∗ /∈ {xi}Q(λ)
i=1 , Pr[(∀i ≤ Q(λ), Pu(xi) = 1) ∧ Pu(x∗) = 0] ≥

1
θ(Q(λ)) , where the probability is taken over u ← AdmSample(1λ, Q(λ)).

276 X. Wang et al.

2.2 Identity-Based Encryption

Definition 3 (Identity-Based Encryption [5]). An identity-based encryp-
tion scheme with message space M and ciphertext space C consists of four algo-
rithms (Setup,KeyGen,Enc,Dec):

– Setup(1λ): Inputs a security parameter λ and outputs public parameters mpk
and a master secret key msk.

– KeyGen(msk, id): Inputs msk and an arbitrary id ∈ {0, 1}∗, and outputs a
corresponding secret key skid.

– Enc(mpk, id,m): Inputs mpk, id, and m ∈ M, and outputs a ciphertext c ∈ C.
– Dec(c, skid): Inputs c ∈ C, and a user secret key skid, and outputs m ∈ M.

Definition 4 (IND-aID-CPA security [5]). We say that an identity-based
encryption scheme Π has indistinguishable encryptions against adaptive chosen-
ID, chosen plaintext attack (IND-aID-CPA) if no p.p.t adversary A has a non-
negligible advantage over the Challenger in the following IND-aID-CPA game:

Setup: A challenger runs the Setup algorithm. It gives A the resulting public
parameters mpk and keeps the corresponding master secret key msk.

Phase 1: A issues key extraction queries id1, . . . , idn1 . The challenger responds
by running algorithm KeyGen to generate user secret key skidi corresponding to
identity idi. It sends skidi to A. These queries may be asked adaptively.

Challenge: Once A decides that Phase 1 is over it outputs two equal length
messages m0,m1 ∈ M and an identity id∗ on which it wishes to be challenged
subject to the constraint that id∗ �= idi for 1 ≤ i ≤ n1. The challenger picks a
random bit b and sends C∗ = Enc(mpk, id∗,mb) as the challenge to A.

Phase 2: A issues more key extraction queries idn1+1, . . . , idn where idi �= id∗

for n1 + 1 ≤ i ≤ n. The challenger responds as in Phase 1.

Guess: Finally, A outputs a guess b′ and wins the game if b′ = b.
We refer to such an adversary A as an IND-aID-CPA adversary. We define

the advantage of it against the IBE scheme Π as

AdvΠ
A =

∣
∣
∣
∣
Pr[b′ = b] − 1

2

∣
∣
∣
∣
.

3 Cocks’ Variant I (Selectively Secure)

We instantiate the hash function in Cocks’ scheme with an obfuscated program
that returns square of an output of puncturable PRF.

– Setup(1λ): Generate an RSA modulus N = pq. Next, sample a key K for the
puncturable PRF F (K, ·) : {0, 1}� → {0, 1}n where n = log N . Then build an
obfuscation of the program id-to-qr hash (Fig. 1). The size of this program
is padded to the maximum of itself and the program id-to-qr hash* (Fig. 2).
This obfuscated program is used as the hash function H : {0, 1}� → QRN .
The master public key mpk is (N,H). The master secret key msk is (p, q).

(Short Paper) Cocks’ Identity-Based Encryption in the Standard Model 277

Input: Identity id
Constants: RSA modulus N , punctured PRF key K

1. Compute a = F (K, id).
2. Output a2 mod N .

Fig. 1. Program id-to-qr hash

Fig. 2. Program id-to-qr hash*

– KeyGen(msk, id): Compute rid = H(id)1/2 mod N . Return key skid = rid.
– Enc(mpk, id,m): To encrypt a message m ∈ {±1} to user whose identity is

id ∈ {0, 1}�, choose random t ∈ ZN such that
(

t
N

)

= m. Then compute
c = t + H(id)

t mod N. Return ciphertext c.
– Dec(c, skid): The message m is recovered as m =

(
c+2rid

N

)

.

Theorem 1. If the obfuscation scheme is indistinguishably secure, F is a secure
puncturable PRF, and QR assumption holds in Z

∗
N , then Cocks’ Variant I is

selectively secure.

The proof is straightforward and can be found in the full version.

4 Cocks’ Variant II (Adaptively Secure)

We build the hash function for Cocks’ scheme more subtly to prove adaptive
security. The only difference compared with the selective case is how to setup:

– Setup(1λ): Generate a strong RSA modulus N = pq. Next, pick n pairs
of integers (a1,0, a1,1), . . . , (an,0, an,1), uniformly at random from the range
[1, φ(N)/4−1]. Sample v ← QRN . Then build an obfuscation of the program
Admissible Hash (Fig. 3). The size of this program is padded to the maximum
of itself and the program Admissible Hash* (Fig. 4). This obfuscated program
is used as the hash function H : {0, 1}� → QRN . The master public key mpk
is composed of (N,H). The master secret key msk is (p, q).

Theorem 2. If the obfuscation scheme is indistinguishably secure, and the QR
assumption holds in Z

∗
N , then Cocks’ Variant II is IND-aID-CPA.

278 X. Wang et al.

Fig. 3. Program Admissible Hash

Fig. 4. Program Admissible Hash*

Suppose there is a p.p.t IND-aID-CPA adversary A against Cocks’ Variant II.
We list a sequence of games to bound its advantage ε. Let Suci be the event that
A succeeds in Gamei and Q denote an upper bound of key extraction queries.

– Game0: The original IND-aID-CPA security game. Specifically,
1. The challenger sets N = pq where p = 2p′ +1, q = 2q′ +1 are safe primes.
2. The challenger chooses n pairs of integers, (a1,0, a1,1), . . . , (an,0, an,1), uni-

formly at random from [1, φ(N)/4 − 1]. It also samples v ← QRN .
3. The hash function H(·) is created as an obfuscation of the program Admis-

sible Hash. The master public key mpk is (N,H).
4. The adversary queries the key extraction oracle a polynomial number of

times on id �= id∗. The challenger answers by computing H(id)1/2 through
its knowledge of factorization of N . Once this phase is over, the adversary
announces target identity id∗.

5. During the challenge phase, the challenger first samples a bit b ← {0, 1},
then samples t ← ZN such that

(
t
N

)

= (−1)b and finally outputs a
challenge ciphertext C∗ = t + H(id∗)

t mod N .
6. The adversary receives C∗ and could still issue key extraction queries for

polynomial times with the same restriction that id �= id∗, finally it outputs
b′ as its guess of b. If b′ = b, the game outputs 1, else outputs 0.

– Game1: The same as Game0 except that the challenger begins by sampling
AdmSample(1λ, Q) → u. Suppose that A made η ≤ Q queries on identities
id1, . . . , idη. Whenever any of the adversary’s queries and its target identity
fail to satisfy the condition Pu(id1) = Pu(id2) = · · · = Pu(idη) = 1∧Pu(id∗) =
0, the challenger aborts and chooses a random bit β ← {0, 1}. If the challenger
aborts, A succeeds if β = 1. By definition, we already have a non-negligible
lower bound on the probability of successfully partitioning:

Pr[(∀i ≤ Q,Pu(idi) = 1) ∧ Pu(id∗) = 0] ≥ 1
θ(Q)

= ζmin.

(Short Paper) Cocks’ Identity-Based Encryption in the Standard Model 279

Artificial Abort. Besides, the challenger needs to perform an artificial abort
step [14] to even out the probability of abort over all possible sequences
of queries. Let the sequence of queries issued by A be denoted as

⇀
id=

{id1, . . . , idQ, id∗}, and ζ(
⇀
id) be the probability that the challenger does not

abort on this set of issued queries. After A terminates, the queried sequence
⇀
id is well-defined, therefore the challenger estimates the probability of not
aborting ζ(

⇀
id) as ζ ′ by freshly sampling w ← AdmSample(1λ, Q) T -times

(where T will be defined later in Lemma1), and checking whether for all
j ∈ [1, Q], Pw(idj) = 1 and Pw(id∗) = 0. Finally, the challenger artificially
aborts with probability max(0, 1− ζmin/ζ ′). If it aborts then it chooses a ran-
dom bit β ← {0, 1}, and A wins if β = 1. Otherwise, A wins if b′ = b. Note
that this does not require running the adversary again.

– Game2: The same as Game1 except for a few changes. First yi,b is picked
uniformly at random from [1, N−1

4]. The challenger computes

ci,b =

{

2 · yi,b if b = ui

2 · yi,b + 1 if b �= ui.

Set ai,b = (ci,b mod φ(N)
4) for i ∈ [n] and b ∈ {0, 1}. In this game, we change

the way that the challenger responding to key extraction queries. When the
adversary requests an identity id, the challenger simply computes h(id) and
finds an index i such that h(id)i = ui. The challenger computes and returns

v
yi,id′

i

∏
j∈([n]\{i}) cj,id′

j mod N to the adversary as skid. Note that factorization
of N is no longer needed for the challenger.

– Game3: The same as Game2 except that the hash function H(·) is cre-
ated as an obfuscation of the program Admissible Hash* using the values
(c1,0, c1,1), . . . , (cn,0, cn,1) formed as in Game2.

– Game4: The same as Game3 except that the challenger samples v ← QNR
+.

We next analyze the above game sequence. Game0 is the IND-aID-CPA secu-
rity game, thus we have

∣
∣Pr[Suc0] − 1

2

∣
∣ = ε. We prove the following lemmas

which together conclude Theorem 2.

Lemma 1. If (h,AdmSample) is θ-admissible, then |Pr[Suc1] − 1
2 | ≥ 3ζmin

8 ε.

Proof. During the artificial abort step in Game1, the challenger takes T =
O(ε−2 ln(ε−1)ζ−1

min ln(ζ−1
min)) samples to approximate the abort probability ζ(

⇀
id).

Let abort be the event that the challenger aborts. Using standard techniques
appeared previously in [12,14], we get the useful bounds below:

Pr[abort] ≥ 1 − ζmin − ζmin
3ε

8
, Pr[abort] ≥ ζmin(1 − ε

4
).

Then the probability of Suc1 can be analyzed using these bounds in a similar
way like [12]. We conclude that |Pr[Suc1] − 1

2 | ≥ 3ζmin
8 |Pr[Suc0] − 1

2 |. �
Lemma 2. The success probability of any p.p.t adversary in Game1 is negligibly
close to that in Game2.

280 X. Wang et al.

Proof. The main difference between Game1 and Game2 is the choice of the ai,b

values. We next show that these values are statistically indistinguishable. In
Game1, ai,b values are uniformly distributed from [1, φ(N)/4 − 1]. In Game2,
yi,b is uniformly chosen from [1, N−1

4], which is statistically close to the uniform
distribution over the range [1, φ(N)

4 − 1]. Then, the output distribution of any
ai,b value derived from the distributions (2 · yi,b mod φ(N)

4) and (2 · yi,b + 1
mod φ(N)

4) is statistically close to [1, φ(N)/4 − 1], which is promised by that
gcd(2, φ(N)/4) = 1. This tells us that Pr[Suc1] ≈ Pr[Suc2]. �
Lemma 3. If the obfuscation scheme is indistinguishably secure, then the suc-
cess probability of any p.p.t adversary in Game2 is negligibly close to Game3.

Proof. We build two algorithms Samp and D to give a reduction to the indistin-
guishability of the obfuscator.

Samp(1λ) algorithm first invokes the adversary A to get its state σ′, then runs
the Setup algorithm as in the scheme to get N = pq. It picks an integer v ← QRN .
It chooses (c1,0, c1,1), . . . , (cn,0, cn,1) and (a1,0, a1,1), . . . , (an,0, an,1) derived from
them, as in Game2. It sets σ = (N, p, q, (c1,0, c1,1), . . . , (cn,0, cn,1), (a1,0, a1,1), . . . ,
(an,0, an,1), v, σ′) and builds C0 as the program for Admissible Hash, and C1 for
Admissible Hash*. We show that the functionality of programs C0 and C1 are
always the same on every input. Since v ← QRN , it is of order φ(N)/4 w.h.p. If

so we have v
∏

i∈[n] ci,id′
i = v

(∏
i∈[n] ci,id′

i

)
mod φ(N)/4 = v

∏
i∈[n]

(
ci,id′

i
mod φ(N)/4

)

=
v

∏
i∈[n] ai,id′

i . This concludes the equivalence between two programs.
We now set up algorithm D. It takes as input σ and iO(λ,Cd) where d ∈

{0, 1}. D runs A and when A asks for an identity id, it returns v
2−1∏

j∈[n] cj,id′
j

mod N through its knowledge of v and ci,b values within σ. Once A submits
an identity id∗, D picks a random bit b, chooses t ← ZN s.t.

(
t
N

)

= (−1)b and
forwards C∗ = t + H(id∗)

t mod N to A. D answers the extraction queries as
above. When D has received A’s guess b′, it outputs 1 if b′ = b, or 0 otherwise.

By observation, when d = 0, i.e. iO(λ,C0) = H(·), the environment D sim-
ulated for A is exactly the same as Game2. As a result, Pr[D(σ, iO(λ,C0)) =
1] = Pr[Suc2]. Similarly, Pr[D(σ, iO(λ,C1)) = 1] = Pr[Suc3]. Due to the indis-
tinguishability of iO, we have

∣
∣
∣ Pr[D(σ, iO(λ,C0)) = 1] − Pr[D(σ, iO(λ,C1)) = 1]

∣
∣
∣ ≤ εiO,

where εiO is a negligible function. Thus
∣
∣ Pr[Suc2] − Pr[Suc3]

∣
∣ ≤ εiO. �

Lemma 4. If QR assumption holds in Z
∗
N , then the success probability of any

p.p.t adversary in Game3 is negligibly close to that in Game4.

Proof. We set up an algorithm B to solve the QR problem. B takes as input
(N, v). It simulates the game for an IND-aID-CPA adversary A. Initially, B sam-
ples u ← AdmSample(1λ, Q). Then it sets integers (c1,0, c1,1), . . . , (cn,0, cn,1) in
the following way. For i ∈ [n] and b ∈ {0, 1}, if b = ui, choose yi,b uniformly at

(Short Paper) Cocks’ Identity-Based Encryption in the Standard Model 281

random in [1, N−1
4], and set ci,b = 2 · yi,b. Otherwise, set ci,b = 2 · yi,b + 1. Next

B creates an obfuscation of the program Admissible Hash* as the hash func-
tion H(·) using the values (c1,0, c1,1), . . . , (cn,0, cn,1) and the challenge (N, v) it
received. So far, the Setup phase of Game3 (or Game4) is perfectly simulated. B
then invokes A using the above generated parameters. B responds to the key
extraction queries as in Game2. In the challenge phase, if the identity output
by A satisfies h(id∗)j �= uj for j ∈ [n], B samples b ← {0, 1} and t ← ZN s.t.
(

t
N

)

= (−1)b. B constructs the challenge ciphertext C∗ = t+ H(id∗)
t mod N and

sends it to A. Finally, A outputs a bit b′. If b′ = b, B outputs 1, otherwise 0.
If v ∈ QRN , the environment B simulated for A is exactly the same as

Game3. Thus, Pr[B(N, v) = 1 | v ← QRN] = Pr[Suc3]. Else if v ∈ QNR
+,

A interacts with B as in Game4. Therefore, Pr[B(N, v) = 1 | v ← QNR
+] =

Pr[Suc4]. The distinguishing advantage of B is computed as: |Pr[B(N, v) = 1 | v
← QRN]−Pr[B(N, v) = 1 | v ← QNR

+]|, which must be bounded by a negligible
εQR by QR assumption. This leads to

∣
∣ Pr[Suc3] − Pr[Suc4]

∣
∣ ≤ εQR. �

Lemma 5. The advantage of any p.p.t adversary in Game4 is negligible.

Proof. It was noted [7] that if H(id∗) ∈ QNR
+, then the challenge ciphertext

C∗ leaks no information about the bit encrypted. We will show that it’s exactly
the case in Game4. Remember that the identity id∗ submitted by the adversary
will satisfy ∀i ∈ [n], h(id∗)i �= ui. As a result, in Game4, the ci,h(id∗)i values will
always be generated as odd integers as shown in Game2. Therefore, H(id∗) =
v

∏
i∈[n] ci,h(id∗)i mod N must be in QNR

+. So Pr[Suc4] ≤ 1
2 . �

5 BLS Variant (Adaptively Secure)

– Setup(1λ): Generate an RSA modulus N = pq where e|(p − 1) and e|(q − 1).
Next, pick (a1,0, a1,1), . . . , (an,0, an,1), uniformly at random from the range
[1, φ(N)/e2 −1]. Sample an element v ← ERN . Next choose a non-degenerate
primitive eth root of unity ζ ∈ Z. Then build an obfuscation of the program
id-to-eth residue Hash (Fig. 5). The size of this program is padded to the
maximum of itself and the program id-to-eth residue Hash* (Fig. 6). This
obfuscated program is used as the hash function H : {0, 1}� → ERN . The
master public key mpk is composed of (N, e, ζ,H). The master secret key msk
is (p, q).

– KeyGen(msk, id): Set v = H(id). Compute eth root of v using p, q, which is
denoted by rid = v1/e mod N . Return secret key skid = rid.

– Enc(mpk, id,m): Let v = H(id). To encrypt a message m ∈ {0, . . . , e − 1},
choose a random e−1 degree polynomial f(x) ← Z

∗
N [x] and t ← ZN . Compute

g(x) = fe(x) mod xe − v. Then derive the polynomial c(x) = g(x)
t . Let

M = ζm. Return ciphertext C := (c(x),M · (
t
N

)

e
).

– Dec(C, skid): Parse C as (c(x), d). Using skid = r = v1/e, compute c(r) = g(r)
t .

Then compute M = d ·
(

c(r)
N

)

and recover the message by finding an integer
m ∈ {0, . . . , e − 1} such that ζm = M .

282 X. Wang et al.

Fig. 5. Program id-to-eth residue Hash

Fig. 6. Program id-to-eth residue Hash*

Theorem 3. If the obfuscation scheme is indistinguishably secure, and the MER
assumption holds in Z

∗
N , the BLS Variant scheme is IND-aID-CPA.

The security proof is analogous to the process of acquiring adaptive security
of Cocks’ Variant II scheme. We list the game sequence in the full version.

Acknowledgments. The authors would like to thank anonymous reviewers for their
helpful comments and suggestions. This work was supported by National Natural Sci-
ence Foundation of China (Grants 61772514,61602061), and National Key R&D Pro-
gram of China (2017YFB1400700).

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: CCS (1993)

3. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

4. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 27

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

6. Boneh, D., LaVigne, R., Sabin, M.: Identity-based encryption with eth residuosity
and its incompressibility. In: TRUST (2013)

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/3-540-44647-8_13

(Short Paper) Cocks’ Identity-Based Encryption in the Standard Model 283

7. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3 32

8. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

9. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC (2008)

10. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

11. Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain
hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 12

12. Hohenberger, S., Waters, B.: Constructing verifiable random functions with large
input spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–
672. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 33

13. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

14. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 7

https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-55220-5_12
https://doi.org/10.1007/978-3-642-13190-5_33
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/11426639_7

Cryptanalysis on Symmetric-Key
Primitives

Finding Ordinary Cube Variables
for Keccak-MAC with Greedy Algorithm

Fukang Liu(B), Zhenfu Cao, and Gaoli Wang

Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

liufukangs@163.com

Abstract. In this paper, we introduce an alternative method to find
ordinary cube variables for Keccak-MAC by making full use of the key-
independent bit conditions. First, we select some potential candidates for
ordinary cube variables by properly adding key-independent bit condi-
tions, which do not multiply with the chosen conditional cube variables
in the first two rounds. Then, we carefully determine the ordinary cube
variables from the candidates to establish the conditional cube tester.
Finally, based on our new method to recover the 128-bit key, the con-
ditional cube attack on 7-round Keccak-MAC-128/256/384 is improved
to 271 and 6-round Keccak-MAC-512 can be attacked with at most 240

calls to 6-round Keccak internal permutation. It should be emphasized
that our new approach does not require sophisticated modeling. As far
as we know, it is the first time to clearly reveal how to utilize the key-
independent bit conditions to select ordinary cube variables for Keccak-
MAC.

Keywords: Hash function · Keccak · Keccak-MAC ·
Ordinary cube variables · Conditional cube attack

1 Introduction

In 2007, the U.S. National Institute of Standards and Technology (NIST)
announced a public contest aiming at the selection of a new standard for a cryp-
tographic hash function after Wang et al. made a break-through in MD-SHA
hash family [14,15]. After five years of intensive scrutiny, Keccak was selected
as the new SHA-3 standard [2].

Due to the low algebraic degree of a Keccak round, algebraic cryptanalysis has
been deeply studied for Keccak, including cube attack [5], cube-attack-like crypt-
analysis [3,5,11], conditional cube attack [8,9,12], linear structures for preimage
attack [7], one/two/three-round connector for collision attack [4,10,13].

Recently, the application of cube attack on Keccak keyed mode has attracted
researchers’ interest and several results have been obtained [3,5,8,9,11,12]. Cube
attack was first proposed by Dinur and Shamir at Eurocrypt 2009 [6], where a
primitive is treated as a black-box polynomial in terms of plaintext and secret
c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 287–305, 2019.
https://doi.org/10.1007/978-3-030-26834-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_17

288 F. Liu et al.

key. The first application of cube attack to Keccak keyed mode was presented at
Eurocrypt 2015 [5]. Two years later, at Eurocrypt 2017, Huang et al. introduced
the conditional cube attack [8] on round-reduced Keccak keyed modes based on
the pioneer work, i.e. cube attack [5,6] and cube tester [1]. Cube tester was first
proposed by Aumasson et al. [1], aiming at detecting the non-random behaviour
e.g. the cube sums are always equal to zero. Conditional cube tester detects a
non-random behaviour (the cube sums are zero) only when some conditions hold.
Therefore, once the key is involved in the conditions, conditional cube tester can
be utilized to mount key-recovery attack. Indeed, conditional cube tester can be
viewed as a key-dependent distinguisher.

At Eurocrypt 2017, Huang et al. firstly applied the conditional cube tester
to mount key-recovery attack on 5/6/7-round Keccak-MAC-512/384/256 [8].
Later at Asiacrypt 2017, an MILP-based method [9] was proposed to identify
good parameters for the conditional cube tester. Therefore, the conditional cube
attack on Keccak-MAC-512/384 was extended by one more round. However,
it seems that the modelling in [9] did not capture all factors influencing the
performance of attack. Consequently, by taking more factors into consideration,
Song et al. developed a new general MILP approach for Keccak-based primitives
at Asiacrypt 2018 [12] and presented many applications. Despite that Song et
al. claimed that 64-dimensional cube variables with only 2 key-dependent bit
conditions were found, the details of the 64-dimensional cube variables were not
reported in [12]. For the new modeling in [12], it seems sophisticated at the first
glance. However, since more factors are taken into account, it is more general and
powerful to mount new or improved attack on many Keccak-based constructions.

Due to the limited number of bits of Keccak-MAC-512 that can be controlled
for an attacker, it is very difficult to find 64-dimensional cube variables under
the conditional cube attack framework proposed by Huang et al. [8]. However,
cube-attack-like cryptanalysis works quite well for Keccak-MAC-512 and attack
on 7-round Keccak-MAC-512 was first achieved in [3], which was later slightly
improved in [11].

Up until now, the improvement for [8] are all based on the MILP app-
roach [9,12], which sometimes requires sophisticated modeling. This motivates
us to consider whether there exist other simple approaches to find sufficient cube
variables to establish the conditional cube tester.

Our Contributions. In this paper, we present an alternative method to find
ordinary cube variables for Keccak-MAC-512/384. First, we observe that there
are many potentially useful key-independent conditions to slow down the prop-
agation of ordinary cube variables, which will help determine the candidates for
ordinary cube variables. Then, we introduce a clever way to choose the ordinary
cube variables from the candidates by considering their relations in the first
round. With such a method, sufficient ordinary cube variables can be discov-
ered to establish the conditional cube tester for 6-round Keccak-MAC-512 and
7-round Keccak-MAC-384. Meanwhile, the number of key-dependent bit condi-
tions is minimum. It should be stressed that we do not use any specific greedy

Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm 289

algorithms but use the idea of greedy algorithm. Specifically, we determine a
small region of potential candidates at first and then select the final candidates
from these potential candidates. As far as we know, it is the first time to clearly
reveal how to utilize the key-independent bit conditions to select ordinary cube
variables for Keccak-MAC.

Moreover, we observe that there are many unnecessary iterations of the con-
ditional cube tester to recover the full key in [8]. Therefore, an optimal procedure
to recover the full key for 7-round Keccak-MAC-256/128 based on the conditional
cube tester in [8] is proposed and the new key-recovery attack is twice faster.
Such an optimal approach is applied to the newly discovered 64-dimensional cube
variables for 7-round Keccak-MAC-384. Consequently, conditional cube attack
on 7-round Keccak-MAC-384 is improved to 271 from 275. By carefully choosing
the order to recover the full key, we can recover the 128-bit key for 6-round
Keccak-MAC-512 with at most 240 calls to 6-round Keccak internal permuta-
tion, while it costs � 128

3 � × 22
5+3 = � 128

3 � × 235 ≈ 240.4 calls in [12]. The results
are summarized in Table 1.

Table 1. Related results of Keccak-MAC

Attack type Capacity Rounds Time Ref.

Conditional cube attack 256/512 7 272 [8]

768 7 275 [9]

1024 6 240.4 [12]

256/512/768 7 271 Sect. 4

1024 6 240 Sect. 5

Cube-attack-like cryptanalysis 1024 7 2112.6 [3]

1024 7 2111 [11]

Organization. The rest of the paper is organized as follows. The preliminaries
of this paper will be presented in Sect. 2. In Sect. 3, our tracing algorithm will
be introduced. Then, we will show our method to find enough ordinary cube
variables for Keccak-MAC-384 and Keccak-MAC-512 in Sects. 4 and 5 respec-
tively. Next, a slightly improved key-recovery method will be given in Sect. 6.
The difference between our work and previous work is explained in Sect. 7. At
last, we summarize the paper in Sect. 8.

2 Preliminaries

In this section, we will introduce the details of Keccak-MAC and some related
techniques such as cube tester and conditional cube tester.

290 F. Liu et al.

2.1 Description of Keccak-MAC

Keccak is a family of hash functions and Keccak-MAC is based on Keccak.
The Keccak internal permutations denoted by Keccak-p[b, nr] are specified by
two parameters, which are the width of permutation in bits b and the number of
rounds nr. There are many choices for b, i.e. b = 25×2l with l ∈ {0, 1, 2, 3, 4, 5, 6}.
Keccak-p[b, nr] works on a b-bit state A and iterates an identical round function
R for nr times. The state A can be viewed as a three-dimensional array of bits,
namely A[5][5][w] with w = 2l. The expression A[x][y][z] represents the bit with
(x, y, z) coordinate. At lane level, A[x][y] represents the w-bit word located at
the xth column and the yth row. In this paper, the coordinates are considered
within modulo 5 for x and y and within modulo w for z. The round function R
consists of five operations R = ι ◦ χ ◦ π ◦ ρ ◦ θ as follows.

θ : A[x][y] = A[x][y] ⊕ (
4⊕

y′=0

A[x − 1][y′]) ⊕ (
4⊕

y′=0

(A[x + 1][y′] ≪ 1)).

ρ : A[x][y] = A[x][y] ≪ r[x, y].
π : A[y][2x + 3y] = A[x][y].
χ : A[x][y] = A[x][y] ⊕ (A[x + 1][y] ∧ A[x + 2][y]).
ι : A[x][y] = A[x][y] ⊕ RC.

According to the above definition of θ operation, it could be seen that if
certain variable in every column of state has even parity, the variable will not
diffuse to other columns. In Keccak specification [2], this property is called col-
umn parity kernel, CP kernel for short.

The construction of Keccak-MAC-n is illustrated in Fig. 1. For the sake of
convenience, we denote the state A after θ, ρ, and π in round i (i ≥ 0) by Ai

θ, Ai
ρ

and Ai
π respectively. The input state of round i is denoted by Ai. The 128-bit

key is denoted by k, where ki represents the ith bit of k.

Fig. 1. Construction of Keccak-MAC-n

For Keccak-MAC-n, where n ∈ {128, 256, 384, 512}, the size of the internal
state is 1600 bits and the 128-bit key is placed at A0[0][0] and A0[1][0]. Specifi-
cally, ki is placed at A0[0][0][i] and ki+64 is placed at A0[1][0][i], where 0 ≤ i ≤ 63.
Therefore, we can obtain Observation 1.

Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm 291

Observation 1. Since

A0
θ[3][i] = A0[3][i] ⊕ (

4⊕

y=0

A0[2][y]) ⊕ (
4⊕

y=0

(A0[4][y] ≪ 1))

for 0 ≤ i ≤ 4, A0
θ[3][i] is independent of the 128-bit key. In other words, if we

add bit conditions on A0
θ[3][i], all of them are key-independent.

Then, we consider the influence of π ◦ ρ operation as shown in Fig. 2. Conse-
quently, Observation 2 can be obtained.

Fig. 2. π ◦ ρ operation

Observation 2. After π ◦ ρ operation, A0
θ[2][i] and A0

θ[4][t] are next to A0
θ[3][j]

in each row, where (i, j, t) ∈ {(2, 3, 4), (4, 0, 1), (1, 2, 3), (3, 4, 0), (0, 1, 2)}.
Our approach to determine the candidates for ordinary cube variables is

heavily based on the two observations.

2.2 Cube Tester

Cube tester was first proposed by Aumasson et al. at FSE 2009 [1] after Dinur
et al. introduced cube attack at Eurocrypt 2009 [6]. Different from standard
cube attack, which aims at key extraction, cube tester performs non-randomness
detection. In our paper, we only concentrate on a specific non-random behaviour,
i.e. the cube sums are zero. To describe cube tester, we first recall the concept
of cube attack as follows.

Theorem 1 [6]. Given a polynomial f: {0, 1}n → {0, 1} of degree d. Suppose
0 < k < d and t denotes the monomial x0 . . . xk−1. Then, f can be written as

f = t · Pt(xk, . . . , xn−1) + Qt(X),

where none of the terms of Qt(X) is divisible by t. Then the sum of f over all
values of the cube (defined by t) is

∑

x′∈Ct

f =
∑

x′∈Ct

f(x′, xk, . . . , xn−1) = Pt(xk, . . . , xn−1).

292 F. Liu et al.

If there exists such a cube Ct that the following equation always hold, then
Ct can be viewed as one type of cube tester [1], i.e. the sum over it always equals
zero.

∑

x′∈Ct

f =
∑

x′∈Ct

f(x′, xk, . . . , xn−1) = Pt(xk, . . . , xn−1) = 0.

For example, consider the following polynomial f :

f(x0, x1, x2, x3) = x0x1 + x1x2 + x2x4 + x1x3 + x1x2x4.

Then, the following equation always hold:
∑

(x0,x3)∈{0,1}2

f(x0, x1, x2, x3) = 0.

The reason is that none of the monomial in f(x0, x1, x2, x3) is divisible by x0x3.
However, if we sum f over all values of (x1, x2), then we can obtain the following
equation:

∑

(x1,x2)∈{0,1}2

f(x0, x1, x2, x3) = 1 + x4.

That is, the sum is dependent on the value of x4.

2.3 Conditional Cube Tester

The concept of conditional cube tester was firstly proposed by Huang et al. [8]
at Eurocrypt 2017. Their goal is to construct a key-dependent distinguisher.
Therefore, they have to overcome the obstacle of how to involve the key infor-
mation into the distinguisher. Motivated by this, they firstly classify the cube
variables into two types: conditional cube variable and ordinary cube variable.
The classification is based on the multiplying relations of the cube variables in
the first two rounds as follows.

• Conditional cube variables can not multiply with each other after the second
round.

• Ordinary cube variables can not multiply with each other after the first round.
• Ordinary cube variables can not multiply with conditional cube variables after
the second round.

Then, they develop a theorem to confirm the number of each type of the
cube variables in order to establish a conditional cube tester, as specified below,
whose proof is based on the relations of the cube variables in the first two rounds
as above.

Theorem 2 [8]. For (n+2)-round Keccak sponge function (n > 0), if there are
p conditional cube variables v0, v1, . . . , vp−1 and q = 2n+1 − 2p+1 ordinary cube
variables vp, vp+1, . . . , vp+q−1, then the term v0v1 . . . vp+q−1 will not appear in
the output polynomials of (n + 2)-round Keccak sponge function.

Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm 293

To make conditional cube tester work, it is essential to introduce some condi-
tions which will influence the above multiplying relations between the conditional
cube variable and ordinary cube variable in the first two round. Specifically,
only when all the introduced conditions hold will their multiplying relations
be satisfied, thus making Theorem 2 work. Among the introduced conditions,
the key-independent conditions can always be satisfied by controlling the input.
For the key-dependent conditions, whether they are satisfied is detected by the
conditional cube tester based on Theorem 2. To be more specific, the attack
procedure can be briefly divided into three steps.

Step 1: Except for the cube variables in the input state, the attacker assigns
a random value to the remaining part of it, while keeping the key-
independent bit conditions satisfied.

Step 2: The attacker starts to exhaust all possible values of the cube variables
and calculates the sum of all outputs.

Step 3: If the sum is zero, then the attacker knows that the key-dependent bit
conditions are satisfied with an overwhelming probability and therefore
he can extract some equations for the involved key bits. Otherwise, the
attacker knows the key-dependent bit conditions do not hold. For this
case, the attacker will flip some bits involved in the key-dependent bit
conditions and located in the controllable part of the input state. Then,
he goto Step 2 again.

The above procedure is only used to extract a small number of equations for
the key bits. To recover the full key, the attacker will repeat the above proce-
dure by changing the parameters of the conditions cube tester to extract more
equations for the key bits. Finally, the attacker can solve the obtained equation
system to recover some key bits. The remaining key bits can be recovered by
brute force.

3 Tracing Algorithm

Several algorithms to determine the relations of cube variables in the first two
rounds have been presented in [8]. In this section, we introduce a new method to
achieve the same goal. We do not claim that our new method have any advantages
over [8]. The purpose to use this new method is only to suit our programming.
Before introducing how to determine the candidates for ordinary cube variables,
we firstly describe how to trace the propagation of a variable in A0

θ to A1
π.

Since θ, ρ, π are all linear transformations, an equivalent linear transforma-
tion matrix M ∈ F 1600×1600

2 can be derived to express these three consecutive
operations π ◦ρ◦θ. From the definitions of the three operations, it can be known
that for each row of M , there are only 11 non-zero elements, whose values are
all 1. To reduce the size of M , we can only record the positions of M where the
corresponding value is 1 in a smaller matrix SM of size 1600 × 11. Specifically,
suppose M [i][J] = 1 (J ∈ {j0, . . . , j10}), then we construct a smaller matrix
SM where SM [i][t] = jt for 0 ≤ t ≤ 10. Moreover, since the operation π ◦ ρ

294 F. Liu et al.

is equivalent to a permutation of bit positions, an equivalent permutation P of
size 1600 can be derived to express it.

To make the tracing algorithm more explicit, we should consider the internal
state as a boolean vector denoted by V rather than a three-dimensional array.
In addition, assume the internal state is an 1600-bit variable. For other sizes of
the internal state, the procedure to trace the propagation is similar. For the sake
of convenience, we denote the state V after θ, ρ, and π in round i (i ≥ 0) by V i

θ ,
V i

ρ and V i
π respectively. The input state of round i is denoted by V i.

Now we describe how to trace the propagation of the variable in A0
θ to A1

π.

Step 1. Suppose A0
θ[x][y][z] contains a variable, we record t0 = (5x+y)×64+z.

Step 2. Calculate how the variable in V 0
θ [t0] propagates through π ◦ ρ operation

with P . Consequently, we record t1 = P [t0].
Step 3. According to the definition of χ, after ι ◦ χ operation, three bits of V 1

will contain the variable from V 0
π [t1]. We denote the corresponding three

bit positions by t2, t3 and t4. Among the three bits, one bit will always
contain this variable. The other two bits contain this variable depending
on bit conditions. We classify these three bits into three types. The first
type is the bit that always contains the variable. The second type is
the bit that contains the variable depending on a key-independent bit
condition. The third type is the bit that contains the variable depending
on a key-dependent bit condition. Then, for each of the three bits, we
trace how the variable in V 1[pos] (pos ∈ {t2, t3, t4}) propagates to V 1

π

with Algorithm 1. The bit positions of V 1
π containing the variable from

V 1[pos] are stored in the array finalPosition.

Algorithm 1. Tracing the influenced bit positions after π ◦ ρ ◦ θ operation
1: for row in (0. . .1599) do
2: for col in (0. . .10) do
3: if SM [row][col] = pos then
4: finalPosition.push back(row)
5: break

Up until now, the propagation of the variable in A0
θ to A1

π is known, i.e. the
bit positions of A1

π containing the variable from A0
θ are known and are classified

into three types. At last, we only need focus on how the cube variable in A0

propagates to A0
θ, which can be easily finished by considering the influence of θ

operation.
Once knowing and recording how a variable propagates in the first two rounds

with or without bit conditions to slow down this propagation, it is quite easy
to determine their multiplying relations in the first two rounds. For example,
suppose we know that A0

π[x][y][z] contains a variable v′ and A0
π[x − 1][y][z] con-

tains a different variable v′′, then v′′ will multiply with v′ after the first round.
In the same way, suppose we know that A1

π[x][y][z] contains a variable v′ and

Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm 295

A1
π[x−1][y][z] contains a different variable v′′, then v′′ will multiply with v′ after

the second round.

4 Finding Ordinary Cube Variables for Keccak-MAC-384

In this section, we will expand on the procedure to find sufficient ordinary cube
variables for Keccak-MAC-384. First, the potential candidates for ordinary cube
variables will be determined by carefully adding key-independent bit conditions
to slow down its propagation. Then, we consider the multiplying relations of
these candidates after the first round and deduce some contradictions. As will
be shown, from these contradictions, we can efficiently determine how many
ordinary cube variables can eventually survive.

4.1 Determining Candidates for Keccak-MAC-384

The initial state of Keccak-MAC-384 is shown in Fig. 3 with 12 lanes set to
0. In the same way as [8,9,12], A[2][0][0] = A[2][1][0] = v0 is chosen as the
conditional cube variable with four bit conditions (A0

θ[1][4][60] = 1, A0
θ[1][0][5] =

1, A0
θ[3][1][7] = 0, A0

θ[3][2][45] = 0) to slow down its propagation. Then, the
ordinary cube variables are set in the CP kernel. The complete procedure is as
follows.

Fig. 3. Initial state of Keccak-MAC-384

• For the first column, we exhaust all 64 possible variables A[0][1][i] = A[0][2][i]
(0 ≤ i ≤ 63). Based on Observations 1 and 2, if we add bit conditions to
slow down the propagation of the variables in this case, all of them are key-
dependent bit conditions. Therefore, we do not add bit conditions. For each
of these 64 possible variables, the tracing algorithm is applied to determine
its multiplying relation with the chosen conditional cube variable in the first
two rounds. Only those are selected as candidates that they do not multiply
with v0 in the first two rounds.

• For the second column, we exhaust all 64 possible variables A[1][1][i] =
A[1][2][i] (0 ≤ i ≤ 63) and process in the same way as the first column.

296 F. Liu et al.

• For the third column, we exhaust 63× 3 possible variables A[2][0][i] =
A[2][1][i], A[2][0][i] = A[2][2][i] and A[2][1][i] = A[2][2][i] (1 ≤ i ≤ 63). Based
on Observations 1 and 2, we can add key-independent bit conditions on
A0

θ[3][t] (0 ≤ t ≤ 4) to slow down the propagation of the variables. To remove
the redundant conditions, we add a condition only when it is necessary. In
other words, if such a condition is not added and the variable satisfies the
required relation with v0 in the first two rounds, this condition is not neces-
sary and redundant. Moreover, if such a condition is added, the variable still
does not satisfy the requirement, we filter this variable.

• For the forth column, we exhaust all 64 possible variables A[3][0][i] = A[3][1][i]
(0 ≤ i ≤ 63) and process in the same way as the first column since there are
no key-independent bit conditions to slow the propagation of variables.

• For the fifth column, we exhaust 64 possible variables A[4][0][i] = A[4][1][i]
(0 ≤ i ≤ 63). Based on Observations 1 and 2, we can add key-independent
bit conditions to slow down the propagation of variables as the third column.

The candidates found with our method are presented in Table 2.

4.2 Discussion

Adding some bit conditions on A0
θ[3][t] (0 ≤ t ≤ 4) as described above will cause

the following bad cases.

Case 1: Contradiction of conditions will occur. Specifically, for the third column,
the bit condition on a certain bit i of A0

θ[3][t0] is A0
θ[3][t0][i] = 0. How-

ever, for the fifth column, the bit condition on a certain bit j of A0
θ[3][t1]

is A0
θ[3][t1][j] = 1. If i = j and t0 = t1, the contradiction of conditions is

detected. In other words, we can not choose both of their corresponding
variables as the final ordinary cube variables. Moreover, if A0

θ[3][y0][z0]
and A0

θ[3][y1][z0] are added on different bit conditions for y0 > 1, y1 > 1,
this is also a contradiction since A[3][y][z0] is set to a constant 0 for
Keccak-MAC-384 for y > 1.

Case 2: Contradiction between conditions and ordinary cube variables will
occur. Specifically, for the forth column, some of A[3][0][i] = A[3][1][i]
(0 ≤ i ≤ 63) will be chosen as candidates. The bad case is that
A[3][0][t] = A[3][1][t] is chosen as a candidate and A0

θ[3][0][t] or A0
θ[3][1][t]

is added on a condition.

Indeed, the second case can be processed in a simple way. After the candidates
are determined, if a contradiction in the second case is detected, it implies that
two ordinary variables multiplies with each other in the first round. For example,
supposing A0

θ[3][0][t] is added on a condition and A[3][0][t] = A[3][1][t] is chosen
as a candidate, it implies a variables set in A[2][4] or A[4][1] is chosen as a
candidate, which will multiply with the variable set to A[3][0][t] after the first
round. This can be seen from the π ◦ρ operation in Fig. 2. Thus, the second case
is equivalent to the case that two ordinary cube variables multiply with each
other in the first round. Benefiting from this new property, we do not have to

Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm 297

Table 2. Candidates for Keccak-MAC-384, where c is an adjustable constant over
GF(2) for each variable.

A[0][1][i] = A[0][2][i] + c

i 15 22 28 34 37 46 47 58 59
Variable v1 v2 v3 v4 v5 v6 v7 v8 v9

A[1][1][i] = A[1][2][i] + c

i 7 15 20 26 30 38 39 40 52 54 57
Variable v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20

A[2][0][i] = A[2][1][i] + c

i 1 8 12 14 15 20 23 25 28 41 42 43 45 50 52 53 61 62 63
Variable v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34 v35 v36 v37 v38 v39
Condition i=1: A0

θ[3][2][46] = 0 i=14: A0
θ[3][1][21] = 0

i=15: A0
θ[3][1][22] = 0 i=23: A0

θ[3][2][4] = 0
i=25: A0

θ[3][1][32] = 0 i=42: A0
θ[3][1][49] = 0

i=50: A0
θ[3][2][31] = 0 i=52: A0

θ[3][1][59] = 0
i=63: A0

θ[3][1][6] = 0, A0
θ[3][2][44] = 0

A[3][0][i] = A[3][1][i] + c

i 3 4 9 13 15 23 30 35 39 40 46 56 57
Variable v40 v41 v42 v43 v44 v45 v46 v47 v48 v49 v50 v51 v52

A[4][0][i] = A[4][1][i] + c

i 3 5 8 10 12 14 20 22 25 30 31 35 38 41 47 57 58 62 63
Variable v53 v54 v55 v56 v57 v58 v59 v60 v61 v62 v63 v64 v65 v66 v67 v68 v69 v70 v71
Condition i=3: A0

θ[3][0][59] = 1 i=8: A0
θ[3][0][0] = 1

i=20: A0
θ[3][0][12] = 1 i=22: A0

θ[3][0][14] = 1
i=25: A0

θ[3][0][17] = 1 i=30: A0
θ[3][4][1] = 1, A0

θ[3][0][22] = 1
i=35: A0

θ[3][4][6] = 1, A0
θ[3][0][27] = 1 i=38: A0

θ[3][4][9] = 1
i=41: A0

θ[3][0][33] = 1 i=57: A0
θ[3][0][49] = 1

A[2][0][i] = A[2][2][i] + c

i 1 5 6 14 15 16 20 21 27 30 33 38 39 40 41 46 51 52 57 61 62
Variable v72 v73 v74 v75 v76 v77 v78 v79 v80 v81 v82 v83 v84 v85 v86 v87 v88 v89 v90 v91 v92
Condition i=1: A0

θ[3][3][23] = 0 i=14: A0
θ[3][1][21] = 0, A0

θ[3][3][36] = 0
i=15: A0

θ[3][1][22] = 0 i=20: A0
θ[3][3][42] = 0

i=30: A0
θ[3][1][37] = 0 i=33: A0

θ[3][3][55] = 0
i=38: A0

θ[3][1][45] = 0 i=40: A0
θ[3][1][47] = 0

i=46: A0
θ[3][1][53] = 0 i=52: A0

θ[3][1][59] = 0
i=57: A0

θ[3][1][0] = 0 i=62: A0
θ[3][3][20] = 0

A[2][1][i] = A[2][2][i] + c

i 1 11 14 15 18 19 20 24 41 52 56 58 61 62
Variable v93 v94 v95 v96 v97 v98 v99 v100 v101 v102 v103 v104 v105 v106
Condition i=1: A0

θ[3][2][46] = 0, A0
θ[3][3][23] = 0 i=14: A0

θ[3][3][36] = 0
i=18: A0

θ[3][2][63] = 0 i=20: A0
θ[3][3][42] = 0

i=56: A0
θ[3][3][14] = 0 i=62: A0

θ[3][3][20] = 0

process the second bad case and only need concentrate on the relation of the
candidates in the first round as well as the contradiction caused by conditions.

4.3 Deducing Contradictions

The contradictions of candidates are deduced from two cases. The first case is
that variables multiply with each other in the first round. The second case is that
there is contradiction of conditions. The contradictions deduced are displayed in
Table 3. In this table, vi{vj0 , . . . , vjn} means vi can not be chosen with any of
{vj0 , . . . , vjn} as the final candidates at the same time. We count the times that

298 F. Liu et al.

each variable appears in these contradictions and do not choose the one which
appears more than one time as marked in red and blue. However, although
some variables appear two times as marked in green in this table, we can still
choose them. Therefore, for the obtained contradictions, at most 28 variables
can be derived. Moreover, there are 56 fully free variables, i.e. there are no
contradictions on them.

Table 3. Contradictions of candidates

v1{v70} v2{v54, v63} v3{v19} v5{v59} v7{v62}
v8{v12, v53, v66} v11{v77} v12{v79} v13{v80} v15{v84}
v16{v85} v17{v86, v101} v20{v104} v22{v44} v27{v46}
v29{v47} v34{v52} v37{v41} v41{v57, v91} v43{v74}
v45{v63, v77} v46{v65} v48{v67} v49{v82} v50{v84}

Observe that we consider the third column under three cases, which will cause
two problems. Specifically, if A[2][0][t] = A[2][1][t] + c, A[2][0][t] = A[2][2][t] + c
and A[2][1][t] = A[2][2][t]+c are chosen simultaneously, only two variables rather
than three variables can be obtained. In this case, we should change the variables
as A[2][0][t] = vx0 , A[2][1][t] = vx1 , A[2][2][t] = vx0 + vx1 + c. This is due to that
the ordinary cube variables are set in the CP kernel. According to Table 2, there
are 8 possible values for t and they are {1, 14, 15, 20, 41, 52, 61, 62}. Therefore,
for the worst case, we can finally obtain 28+56−8 = 76 ordinary cube variables,
which is much larger than the required number (63) to mount key-recovery attack
on 7-round Keccak-MAC-384.

On the other hand, if two of A[2][0][t] = A[2][1][t]+ c, A[2][0][t] = A[2][2][t]+
c, A[2][1][t] = A[2][2][t] + c are chosen simultaneously, we should change the
variables as A[2][0][t] = vx0 , A[2][1][t] = vx1 , A[2][2][t] = vx0 + vx1 + c.

One choice of the 64-dimensional cube variables to establish the conditional
cube tester is displayed in Table 4.

5 Finding Ordinary Cube Variables for Keccak-MAC-512

Although 32-dimensional cube variables have been found with MILP to establish
the 6-round conditional cube tester for Keccak-MAC-512 and the time complex-
ity is practical, we want to explain how to apply our method to achieve the
same goal. This is for a better understanding of the differences between our
method and others based on MILP. Now, we expand on how to find sufficient
cube variables for Keccak-MAC-512.

In a similar way for Keccak-MAC-384, 32 candidates for ordinary cube vari-
ables are discovered as displayed in Table 5. The corresponding contradictions
are as follows.

v2{v24}, v7{v26}, v9{v27}, v14{v32}, v17{v21}.

Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm 299

Table 4. One choice of ordinary cube variables for Keccak-MAC-384

Free ordinary cube variables
(56 − 6 = 50 in total)

v4, v6, v9, v10, v14, v18, v21, v23, v24, v25,
v26, v28, v30, v31, v32, v33, v35, v36, v38, v39,
v40, v42, v51, v55, v56, v58, v60, v61, v64, v68,
v69, v71, v72, v73, v75, v76, v78, v81, v83, v87,
v88, v89, v90, v92, v93, v94, v95, v96, v97, v98,
v99, v100, v102, v103, v105, v106
{v21, v72, v93}, {v24, v75, v95}, {v25, v76, v96}
{v26, v78, v99}, {v35, v89, v102} and {v38,
v92, v106} provide two variables respectively

Ordinary cube variables derived
from contradictions (13 in total)

v1, v54, v63, v3, v5, v7, v53, v66, v11, v79, v13,
v15, v16

Conditional cube variable v0

Key-dependent conditions A0
θ[1][4][60] = 1, A0

θ[1][0][5] = 1

Key-independent conditions for v0 A0
θ[3][1][7] = 0, A0

θ[3][2][45] = 0

Other key-independent conditions
for ordinary cube variables

Refer to Table 3 according to the chosen
variables

Table 5. Candidates for Keccak-MAC-512, where c is an adjustable constant over
GF(2) for each variable.

A[2][0][i] = A[2][1][i] + c

i 1 8 12 14 15 20 23 25 28 41 42 43 45 50 52 53 61 62 63
Variable v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19
Condition i=1: A0

θ[3][2][46] = 0 i=14: A0
θ[3][1][21] = 0

i=15: A0
θ[3][1][22] = 0 i=23: A0

θ[3][2][4] = 0
i=25: A0

θ[3][1][32] = 0 i=42: A0
θ[3][1][49] = 0

i=50: A0
θ[3][2][31] = 0 i=52: A0

θ[3][1][59] = 0
i=63: A0

θ[3][1][6] = 0, A0
θ[3][2][44] = 0

A[3][0][i] = A[3]1][i] + c

i 3 4 9 13 15 23 30 35 39 40 46 56 57
Variable v20 v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32

Therefore, there will be 32 − 5 = 27 possible ordinary cube variables in total
if the ordinary cube variables are set only in the CP kernel. As a result, we can
not mount key-recovery attack on 6-round Keccak-MAC-512, which requires 31
ordinary cube variables if only v0 is chosen to be the conditional cube variable.

Based on [12], the variables which multiply with v0 only in the second round
can be leveraged as well. For an intuitive example, suppose one variable vx0

multiplies with v0 only in the second round and the multiplying bit position is
p0. If another variable vx1 multiplies with v0 only in the second round and the
multiplying bit position is p0 as well, then setting vx0 = vx1 will cause the already
filtered two variables become one possible variable. Then, the goal becomes how
to find these possible variables.

Suppose A0
θ[i][j][k] contains a variable, then after χ operation, three bits will

contain this variable. Based on the definition of χ operation, among the three

300 F. Liu et al.

bits, one bit will always contain this variable and the other two bits contain this
variable depending on the conditions. We classify the three bits into three types.

Type-1: It always contains this variable.
Type-2: It contains this variable depending on a key-independent bit condition.
Type-3: It contains this variable depending on a key-dependent bit condition.

Then, we trace how the three bits propagate to the second round with the tracing
algorithm. Specifically, we trace the Type-1 bit and record the influenced bits of
A1

π multiplying with v0 in the second round. For the Type-2 and Type-3 bits,
we process in the same way. The recorded bits for Type-1, Type-2 and Type-3
are defined as core bits, independent-key bits and key-dependent bits. Since our
focus is the minimal key-dependent conditions, once the key-dependent bits are
detected, the corresponding variable should not be chosen as a candidate.

With the above method, we reconsider the filtered ordinary cube variables
set in the CP kernel. Besides, the variables set to a single bit are also considered.
The final result obtained is displayed in Table 6.

For a better understanding of this table, we take the variable A[3][1][8] as
instance. For the first column, it means A[3][1][8] is set to be a variable. For
the second column, it means 5 bits of A1

π will multiply with v0 only in the
second round. For the third column, {656,1003} means the two bits of A1

π, i.e.
A1

π[0][2][16] and A1
π[0][3][43], will multiply with v0 only in the second round

depending on the same key-independent bit condition. The last column means
A[3][1][8] can not be chosen as a variable with any of v1 and v31 in Table 5
simultaneously.

According to Table 6, at most three more possible ordinary cube variables
can be obtained. One choice is as follows:

A[3][0][58] = A[3][1][58] = A[2][0][24] = A[2][1][24] = ve0 ,

A[3][0][61] = ve1 , A[3][1][61] = ve2 ,

A[2][0][26] = A[2][1][26] = ve3 , ve3 = ve2 + ve1

A[2][0][46] = A[2][1][46] = ve2 .

Condition : A0
θ[3][3][20] = 0, A0

θ[3][4][21] = 0, A0
θ[3][1][53] = 0.

According to Table 6, adding A[2][0][37] = A[2][1][37] = ve2 to the above
variables and converting the bit condition A0

θ[3][1][53] = 0 into A0
θ[3][1][53] = 1 is

also possible. However, it can not help improve the number of possible variables.
In fact, there are many interesting cases. For example, if A[3][0][60] = A[3][1][60]
does not multiply with v16 in the first round, we can obtain one more candidate.
For the third row, if {652, 1109} does not depend on the same condition, then
we can add one key-independent bit condition to prevent the propagation to the
652-nd bit and another key-independent bit condition to allow the propagation
to the 1109-th bit of A1

π.
Then we test whether vei

(0 ≤ i ≤ 3) multiplies with each other in the first
round and check whether the three bit conditions to slow down the propagation
of ve1 and ve2 are contradict with the conditions in Table 5. It is shown that the

Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm 301

Table 6. Possible candidates for Keccak-MAC-512

Possible variables Core bits Key-independent bits Contradictions

A[2][0][4] = A[2][1][4] 1540

A[2][0][5] = A[2][1][5] 1109 {652, 1109}
A[2][0][9] = A[2][1][9] 848, 467 {656, 1003}
A[2][0][13] = A[2][1][13] 652, 1109

A[2][0][16] = A[2][1][16] 1472 515 v25

A[2][0][24] = A[2][1][24] 515

A[2][0][26] = A[2][1][26] 665

A[2][0][29] = A[2][1][29] 71, 1032 241

A[2][0][33] = A[2][1][33] 491 v29

A[2][0][35] = A[2][1][35] 1131, 42 1242

A[2][0][37] = A[2][1][37] 1040

A[2][0][46] = A[2][1][46] 903 1040

A[2][0][51] = A[2][1][51] 767, 1160

A[2][0][54] = A[2][1][54] 1510

A[2][0][57] = A[2][1][57] 170 205

A[2][0][60] = A[2][1][60] 1280 1540 v20

A[3][0][41] = A[3][1][41] 113

A[3][0][43] = A[3][1][43] 848

A[3][0][50] = A[3][1][50] 42 v12

A[3][0][58] = A[3][1][58] 515

A[3][0][60] = A[3][1][60] 665 v16

A[3][0][61] = A[3][1][61] 903

A[3][1][8] 170, 848, 467, 1382, 1003 {656,1003}, {903}, {1237} v1, v31

A[3][0][32] 491, 903, 1382 {13}, {848}, {775} v29

A[3][0][61] 665 {42}, {1348}
A[3][1][61] 903, 665 {42}, {1348}

three variables are all valid. Therefore, we can obtain at most 32 − 5 + 3 = 30
ordinary cube variables without key-dependent bit conditions. It reveals in a
way why [12] can only discover the same number of such ordinary variables with
a solver. However, to mount key-recovery attack on 6-round Keccak-MAC-512,
we need 31 ordinary cube variables. Thus, we try to search ordinary cube vari-
ables set in the CP kernel with only one key-dependent bit condition, which
satisfy the required relation with v0 and the chosen 32 + 4 = 36 candidates
for ordinary cube variables. Our searching result is displayed in Table 7. Thus,
there are many possible choices for 31 ordinary cube variables, i.e. at least
25 × 12. The verification can be found at https://github.com/Crypt-CNS/
Keccak ConditionalCubeAttack.git.

6 Recovering Full Key

In this section, a new slightly improved way to recover 128-bit key for Keccak-
MAC is presented by removing unnecessary iterations of conditional cube tester.

https://github.com/Crypt-CNS/Keccak_ConditionalCubeAttack.git
https://github.com/Crypt-CNS/Keccak_ConditionalCubeAttack.git

302 F. Liu et al.

Table 7. Candidates for Keccak-MAC-512 with one key-dependent bit condition

Variable Conditions

A[2][0][11] = A[2][1][11] A0
θ[1][4][7] = 1

A[2][0][19] = A[2][1][19] A0
θ[1][4][15] = 1

A[2][0][21] = A[2][1][21] A0
θ[1][0][26] = 1, A0

θ[3][2][2] = 0

A[2][0][22] = A[2][1][22] A0
θ[1][0][27] = 1

A[2][0][30] = A[2][1][30] A0
θ[3][1][37] = 0, A0

θ[1][0][35] = 1

A[2][0][34] = A[2][1][34] A0
θ[1][0][39] = 1, A0

θ[3][2][15] = 0

A[2][0][44] = A[2][1][44] A0
θ[3][1][51] = 0, A0

θ[1][0][49] = 1

A[2][0][56] = A[2][1][56] A0
θ[1][4][52] = 1, A0

θ[3][1][63] = 0

A[3][0][12] = A[3][1][12] A0
θ[4][1][20] = 0

A[3][0][20] = A[3][1][20] A0
θ[4][2][36] = 0

A[3][0][29] = A[3][1][29] A0
θ[2][4][60] = 1

A[3][0][34] = A[3][1][34] A0
θ[2][4][1] = 1

In [8], 64 iterations of the conditional cube tester were used to recover the 128-
bit key for Keccak-MAC-256. For each iteration, it costs 264+2 = 266 to recover
2-bit key. Observe that once there are only a few key bits to be recovered, there
is no need to iterate the conditional cube tester since each iteration is costly and
only 2 bits are recovered.

Taking Keccak-MAC-128/256 for instance, for the 64-dimensional cube vari-
able [8], after 31 iterations in z-axis of the conditional cube tester, 62 bits of key
can be recovered. Then, the remaining 66 bits can be recovered by brute force.
Therefore, the time complexity is improved to 266 × 31 + 266 = 271 from 272.
Similarly, for the 64-dimensional cube variables in Table 4, we can recover the
128-bit key for 7-round Keccak-MAC-384 with time complexity 271.

For the conditional cube attack on 6-round Keccak-MAC-512, we choose
A[2][0][11] = A[2][1][11] in Table 7 as the ordinary cube variable with one key-
dependent bit condition A0

θ[1][4][7] = 1, while A[2][0][19] = A[2][1][19] is chosen
in [12]. For our choice, only 31 iterations in z-axis is enough. Then, 3 × 31 = 93
bits can be recovered with time complexity 232+3×31 = 235×31. The remaining
128 − 93 = 35 bits can be recovered by brute force. The order to recover 93 bits
of key with conditional cube tester is shown in Table 8. Therefore, the total
time complexity becomes 235 × 31 + 235 = 240. However, the time complexity
is estimated as � 128

3 � × 22
5+3 = � 128

3 � × 235 = 240.4 in [12], which implies 64
iterations of the conditional cube tester are used to recover the 128-bit key.

7 Comparison with Previous Work

Our work is heavily based on [8]. However, Huang et al. did not consider the
potentially useful key-independent bit conditions to slow down the propagation
of ordinary cube variables [8].

Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm 303

Table 8. The order to recover 93 bits of key with conditional cube tester

(k0, k53, k62 ⊕ k126), (k1, k54, k63 ⊕ k127), (k2, k55, k0 ⊕ k64), (k3, k56, k1 ⊕ k65),
(k4, k57, k2 ⊕ k66), (k5, k58, k3 ⊕ k67), (k6, k59, k4 ⊕ k68), (k7, k60, k5 ⊕ k69),
(k8, k61, k6 ⊕ k70), (k9, k62, k7 ⊕ k71), (k10, k63, k8 ⊕ k72), (k22, k11, k20 ⊕ k84),
(k23, k12, k21 ⊕ k85), (k24, k13, k22 ⊕ k86), (k25, k14, k23 ⊕ k87), (k26, k15, k24 ⊕ k88),
(k27, k16, k25 ⊕ k89), (k28, k17, k26 ⊕ k90), (k29, k18, k27 ⊕ k91), (k30, k19, k28 ⊕ k92),
(k31, k20, k29 ⊕ k93), (k32, k21, k30 ⊕ k94), (k44, k33, k42 ⊕ k106), (k45, k34, k43 ⊕ k107),
(k46, k35, k44 ⊕ k108), (k47, k36, k45 ⊕ k109), (k48, k37, k46 ⊕ k110), (k49, k38, k47 ⊕ k111),
(k50, k39, k48 ⊕ k112), (k51, k40, k49 ⊕ k113), (k52, k41, k50 ⊕ k114).

As for [9], it seems that the key-independent bit conditions have been consid-
ered. However, it is strange that Li et al. found 63 ordinary cube variables with
6 key-dependent bit conditions for Keccak-MAC-384, while we can find much
more ordinary cube variables without key-dependent bit conditions, i.e. at least
76 variables. Besides, Li et al. only found 25 ordinary cube variables set in the
CP kernel for Keccak-MAC-512, while we can find 32 − 5 = 27 ordinary cube
variables set in the CP kernel. Therefore, we guess that the key-independent bit
conditions were not fully leveraged in [9].

As for [12], minimum key-dependent bit conditions is considered in the model.
In that paper, one instance of 31 ordinary cube variables for Keccak-MAC-
512 was presented, which is almost the same with what we found. However, it
is strange that there are 18 key-independent bit conditions to slow down the
propagation of the ordinary cube variables. With our approach, there are at
most 10+3+1 = 14 key-independent bit conditions for ordinary cube variables.
If we choose the same cube variables as [12], only 9+3 = 12 key-independent bit
conditions are sufficient. Indeed, we can reach the minimum key-independent
bit conditions, which is 8 + 3 = 11. Thus, we guess the redundancy in key-
independent bit conditions are not well processed in the modeling in [12]. It
should be noted that the redundancy of key-independent bit conditions will not
affect the time complexity to recover the key. However, from the scientific point,
if there is a more accurate answer, why not choose it?

In addition, a new slightly improved approach to recover the 128-bit key is
introduced. This is based on the observation that many iterations of the con-
ditional cube tester are costly once a few bits of key are left. Consequently, we
improve the conditional cube attack on 7-round Keccak-MAC-128/256/384 and
6-round Keccak-MAC-512.

8 Conclusion

An algorithm to search ordinary cube variables for Keccak-MAC is developed.
The first step is to identify a small region of potential candidates by making
full use of the key-independent bit conditions. Then, these candidates are fur-
ther filtered according to their relations after the first round with an efficient

304 F. Liu et al.

approach. In this way, sufficient ordinary cube variables can be discovered to
establish the conditional cube tester. Combined with the new slightly improved
way to recover the key, the time complexity of the conditional cube attack on
7-round Keccak-MAC-128/256/384 and 6-round Keccak-MAC-512 are improved
to 271 and 240 respectively.

Acknowledgement. We thank the anonymous reviewers of IWSEC 2019 for their
insightful comments and suggestions. Fukang Liu and Zhenfu Cao are supported
by National Natural Science Foundation of China (Grant No.61632012, 61672239).
Gaoli Wang is supported by the National Natural Science Foundation of China (No.
61572125) and National Cryptography Development Fund (No. MMJJ20180201).

References

1. Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery
attacks on reduced-round MD6 and trivium. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03317-9 1

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference (2011).
http://keccak.noekeon.org

3. Bi, W., Dong, X., Li, Z., Zong, R., Wang, X.: MILP-aided cube-attack-like crypt-
analysis on Keccak keyed modes. Cryptology ePrint Archive, Report 2018/075
(2018). https://eprint.iacr.org/2018/075

4. Dinur, I., Dunkelman, O., Shamir, A.: New attacks on Keccak-224 and Keccak-
256. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 442–461. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5 25

5. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and
cube-attack-like cryptanalysis on the round-reduced Keccak sponge function. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 733–761.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 28

6. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 16

7. Guo, J., Liu, M., Song, L.: Linear structures: applications to cryptanalysis of round-
reducedKeccak. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10031, pp. 249–274. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53887-6 9

8. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack
on reduced-round Keccak sponge function. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10211, pp. 259–288. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56614-6 9

9. Li, Z., Bi, W., Dong, X., Wang, X.: Improved conditional cube attacks on Keccak
keyed modes with MILP method. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 99–127. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 4

10. Qiao, K., Song, L., Liu, M., Guo, J.: New collision attacks on round-reduced Kec-
cak. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212,
pp. 216–243. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7 8

https://doi.org/10.1007/978-3-642-03317-9_1
https://doi.org/10.1007/978-3-642-03317-9_1
http://keccak.noekeon.org
https://eprint.iacr.org/2018/075
https://doi.org/10.1007/978-3-642-34047-5_25
https://doi.org/10.1007/978-3-662-46800-5_28
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-319-56614-6_9
https://doi.org/10.1007/978-3-319-70694-8_4
https://doi.org/10.1007/978-3-319-70694-8_4
https://doi.org/10.1007/978-3-319-56617-7_8

Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm 305

11. Song, L., Guo, J.: Cube-attack-like cryptanalysis of round-reduced Keccak using
MILP. IACR Trans. Symmetric Cryptol. 2018(3), 182–214 (2018)

12. Song, L., Guo, J., Shi, D., Ling, S.: New MILP modeling: improved conditional
cube attacks on Keccak-based constructions. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018. LNCS, vol. 11273, pp. 65–95. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03329-3 3

13. Song, L., Liao, G., Guo, J.: Non-full sbox linearization: applications to collision
attacks on round-reduced Keccak. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 428–451. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63715-0 15

14. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 2

15. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 2

https://doi.org/10.1007/978-3-030-03329-3_3
https://doi.org/10.1007/978-3-030-03329-3_3
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/11426639_2

Preimage Attacks on Reduced Troika
with Divide-and-Conquer Methods

Fukang Liu1,3(B) and Takanori Isobe2,3

1 East China Normal University, Shanghai, China
liufukangs@163.com

2 National Institute of Information and Communications Technology, Tokyo, Japan
3 University of Hyogo, Hyogo, Japan
takanori.isobe@ai.u-hyogo.ac.jp

Abstract. Troika is a recently proposed sponge-based hash function
for IOTA’s ternary architecture and platform, which is developed by
CYBERCRYPT. In this paper, we introduce the preimage attack on 2
and 3 rounds of Troika with a divide-and-conquer approach. Instead of
directly matching a given hash value, we propose equivalent conditions
to determine whether a message is the preimage before computing the
complete hash value. As a result, for the two-round hash value that can
be generated with one block, we can search the preimage only in a valid
space and efficiently enumerate the messages which can satisfy most
of the equivalent conditions with a guess-and-determine technique. For
the three-round preimage attack, an MILP-based method is applied to
separate the one-block message space into two parts in order to obtain
the best advantage over brute force. Our experiments show that the time
complexity of the preimage attack on 2 (out of 24) rounds of Troika can
be improved to 379, which is 3164 times faster than the brute force. For
the preimage attack on 3 (out of 24) rounds of Troika, we can obtain
an advantage of 325.7 over brute force. In addition, how to construct the
second preimage for two-round Troika in seconds is presented as well.
Our attacks do not threaten the security of Troika.

Keywords: Hash function · Troika · Preimage ·
Guess-and-determine · Divide-and-conquer · MILP

1 Introduction

IOTA and CYBERCRYPT announced a new lightweight ternary cryptographic
hash function named Troika as well as the competition for cryptanalysts to eval-
uate Troika with a e 200,000 prize pool for breaking its round-reduced variants
on December 20, 2018 [1]. The motivation to design Troika is to develop suit-
able new lightweight hash function for the ternary architecture of the IOTA
protocol. Since the announcement of this competition, practical collisions for
one/two-round Troika with two blocks have been found by Virginie Lallemand.

c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 306–326, 2019.
https://doi.org/10.1007/978-3-030-26834-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_18

Preimage Attacks on Reduced Troika with Divide-and-Conquer Methods 307

The one-round preimage challenge was solved by H̊avard Raddum, John-Petter
Indrøy and Morten Øygarden.

Troika [3] is a hash function h : F ∗
3 → F 243

3 mapping arbitrary-length inputs
to hash values of 243 trits. It follows the sponge construction with a rate of 243
and a capacity of 486 trits, yielding a total state of 729 trits, as shown in Fig. 1.
Furthermore, the rate part of the state of Troika is overwritten by the input
instead of added to it, in order to enable distributed hashing where only the
capacity part of the state (486 trits) needs to be sent instead of the entire state
(729 trits). Troika has to satisfy the following three requirements in order to be
considered secure.

• Preimage resistance: No preimage attack of non-negligible success probability
with a complexity of less than 3243 queries.

• Second preimage resistance: No second preimage attack of non-negligible suc-
cess probability with a complexity of less than 3243 queries.

• Collision resistance: No collision attack of non-negligible success probability
with a complexity of less than 3243/2 queries.

Although Troika shares many similarities with Keccak [4], which is the win-
ner of SHA-3, the nonlinear transform is placed before the linear transform in
Troika. Moreover, the algebraic degree of one-round Troika is 4 while it is 2 for
Keccak. Cryptanalysts are obviously aware of the low algebraic degree of one-
round Keccak. As a result, the linearizing techniques are widely exploited in
the collision attack and preimage attack on Keccak [5,7,8,10,11]. However, the
disadvantage of such linearizing techniques is the fast consumption of degree of
freedom.

Considering the high algebraic degree of one-round Troika, it is not wise
to use similar linearizing techniques since the degree of freedom will be faster
utilized. Therefore, we will use a different strategy to achieve linearization with-
out consuming degree of freedom. In addition, we observe that the length of
hash value is almost equal to the length of one-block message, i.e. the padding
rule must be satisfied. This motivates us to investigate whether it is possible to
search the preimage only in a smaller potential space when the preimage can be
generated with one block. As will be shown, invalid preimages can be efficiently
discarded and no degree of freedom are consumed with our method.

Our Contributions. Firstly, we propose equivalent conditions to pre-determine
whether a message is the preimage of a given hash value. As a consequence, when
the hash value can be derived from one block, the search for the preimage of
two-round Troika can be limited in a much smaller space, which can be fur-
ther accelerated with a guess-and-determine approach. Indeed, it is expected
that our algorithm to find the preimage of two-round Troika can be applied to
arbitrary hash value, as shown in our partially solving the two-round preimage
challenge [1], though it is difficult to give an accurate estimation of the time
complexity. Moreover, we can construct several second preimages for arbitrary
messages in seconds for two-round Troika.

308 F. Liu and T. Isobe

Table 1. Summary of preimage and collision attack on Troika

Attack type Rounds Time Generic Ref.

Collision 1 Practical 3243/2 [1]

2 Practical 3243/2 [1]

Preimage 1 Practical 3243 [1]

2 379 3243 Section 4

3 3217.3 3243 Section 5

Second preimage 2 36 3243 Section 4.6

For the preimage attack on three rounds of Troika, the variables set at the
rate part of input state can be separated into two parts with an MILP-based
method, one of which is used to verify some equivalent conditions. Only those
conditions are satisfied will we start guessing the values for the variables in
another part. Due to the sufficient diffusion of three-round Troika permutation,
we expect our approach can be applied to arbitrary hash value. All our results
are displayed in Table 1.

Organization. The paper is organized as follows. The description of Troika
is presented at Sect. 2. Then, we introduce how to derive equivalent conditions
to match a given hash value in Sect. 3. The preimage attack on two and three
rounds of Troika are displayed in Sects. 4 and 5 respectively. Finally, the paper
is summarized in Sect. 6.

2 Description of Troika

The hash function Troika h : F ∗
3 → F 243

3 maps arbitrary-length inputs to hash
values of 243 trits [3]. It should follow the sponge construction with a rate of
243 and a capacity of 486 trits, yielding a total state of 729 trits as shown in
Fig. 1. The state is initially initialized with all zeros. A message m ∈ F ∗

3 is firstly
padded with a trit “1” and non-negative number of “0” until the trit length
of the padded message becomes multiple of 243. Then, the padded message is
divided into n blocks of 243 trits each. Each block will be loaded in the rate
part before processed. Formally, Troika operates on a state A ∈ F 729

3 , which is
organized as a 9 × 3 × 27 cuboid of trits A ∈ F 9×3×27

3 .
The individual trits of the state are identified as A[x][y][z] via their x, y, z

coordinates where 0 ≤ x < 9, 0 ≤ y < 3 and 0 ≤ z < 27. as illustrated in
Fig. 2. A[·][y][z] composed of 9 trits is called a row of A, A[x][·][z] composed of 3
trits is called a column, A[x][y][·] composed of 27 trits is called a lane, A[·][·][z]
composed of 27 trits is called a slice, and A[·][y][·] composed of 243 trits is called
a plane. The rate part is A[·][·][z] (0 ≤ z < 9) and the capacity part is A[·][·][z]
(9 ≤ z < 27).

Preimage Attacks on Reduced Troika with Divide-and-Conquer Methods 309

Fig. 1. Overview of Troika’s Sponge Structure

Fig. 2. Coordinate

The internal permutation of Troika consists of 24 rounds. Each round is com-
posed of five operations: SubTrytes, ShiftRows, ShiftLanes, AddColumn-
Parity and AddRoundConstant, where only SubTrytes is the nonlinear
transform.

SubTrytes. The SubTrytes mapping consists of the application of a 3-trit S-box
S : F 3

3 → F 3
3 to each tryte of the state as follows:

(a2, a1, a0) ← S(9A[3i][y][z] + 3A[3i + 1][y][z] + A[3i + 2][y][z]),
(A[3i][y][z], A[3i + 1][y][z], A[3i + 2][y][z]) ← (a2, a1, a0),

where 0 ≤ i < 3, 0 ≤ y < 3, 0 ≤ z < 27 and ti ∈ F3 (0 ≤ i ≤ 2). The lookup
table of the S-box is specified in Table 2.

Table 2. Lookup table for the tryte S-box

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
S (x) 6 25 17 5 15 10 4 20 24 0 1 2 9 12 26 18 16 14 3 13 23 7 11 12 8 21 19

ShiftRows. The ShiftRows provides diffusion along the x-axis in each row by
shifting entire trytes cyclically to the right as follows:

310 F. Liu and T. Isobe

Table 3. Specification of rotational constants r[x][y]

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8

y = 0 19 13 21 10 24 15 2 9 3

y = 1 14 0 6 5 1 25 22 23 2

y = 2 7 17 26 12 8 18 16 11 4

A[x][0][z] ← A[x][0][z], A[x][1][z] ← A[(x − 3)][1][z], A[x][2][z] ← A[(x − 6)][2][z],

where 0 ≤ x < 9 and 0 ≤ z < 27.

ShiftLanes. ShiftLanes is to provide diffusion along the z-axis in each lane by
shifting trits cyclically to the right as follows:

A[x][y][z] ← A[x][y][(z − r[x][y])%27],

where 0 ≤ x < 9, 0 ≤ y < 3 and 0 ≤ z < 27. The specification of r[x][y] can be
referred to Table 3.

AddColumnParity. AddColumnParity provides diffusion along columns by
adding to each column A[x][·][z] the parities of the two adjacent columns A[x −
1][·][z] and A[x + 1][·][z + 1], where indices are taken modulo their respective
dimensions:

A[x][y][z] ← A[x][y][z] + Σ2
y′=0A[x − 1][y′][z] + Σ2

y′=0A[x + 1][y′][z + 1],

where 0 ≤ x < 9, 0 ≤ y < 3 and 0 ≤ z < 27.

AddRoundConstant. The operation AddRoundConstant only works on the
first plane A[·][0][·] in each round. Suppose RCi represents the round constant
in round i, which is a vector of size 243 then, the internal state A is updated as
follows:

A[x][0][z] ← A[x][0][z] + RCi[x + 9z],

where 0 ≤ x < 9 and 0 ≤ z < 27.
For convenience, we denote these five operations by ST , SR, SL, AP and

AC respectively and define L = AP ◦SL ◦SR and L−1 = SR−1 ◦SL−1 ◦AP−1.
For simplicity, we denote the input state of round i by Ai (0 ≤ i ≤ 23). The
states after ST , SR, SL, AP and AC in round i are denoted by Ai

ST , Ai
SR, Ai

SL,
Ai

AP and Ai
AC respectively. Obviously, the state A can be viewed as a trit vector

of size 729 as well. When it is viewed as a trit vector, A[x][y][z] will correspond
to the (27z + 9y + x)-th trit in the vector. The complete description of Troika
can be found at [3].

Preimage Attacks on Reduced Troika with Divide-and-Conquer Methods 311

3 Equivalent Conditions to Find the Preimage

In this section, we introduce equivalent conditions to determine whether an input
state is the preimage of a given hash value. Given a hash value of (t + 1)-round
(0 ≤ t ≤ 23) Troika permutation, 243 trits in the rate part of At

AC are constants.
Set variables to the remaining 486 trits in the capacity part of At

AC and construct
an equation system

L−1 · At
AC = At

ST .

Note that such an equation system must have solutions to At
AC . Otherwise, it

is impossible to obtain the given hash value. Therefore, we define a space S
satisfying the following two constraints:

Constraint 1. For each At
ST belonging to S, the equation system L−1 · At

AC =
At

ST must have solutions to At
AC .

Constraint 2. For those At
ST not belonging to S, the equation system L−1 ·

At
AC = At

ST must not have solutions to At
AC .

Obviously, At
ST ∈ S is a necessary but not sufficient condition to obtain the

(t + 1)-round preimage of the given hash value with one block. This is due to
that the capacity part of the input state is fixed. However, when we start from a
random input state A0 with a correct fixed capacity part and compute forward
until At

ST , the corresponding A0 must be the preimage of the given hash value
if At

ST ∈ S. As a result, the equivalent condition to match a given hash value
with one block can be stated as follows.

The Equivalent Condition. To find the preimage of (t+1)-round Troika, when
starting from a random input state with a correct fixed capacity part, the preimage
is found only when At

ST belongs to a specific space S satisfying Constraints 1
and 2 .

3.1 Deriving the Space S

Let At
AC = (C||V), where C is a 243-trit constant dependent on the hash value

and V is a 486-trit variable. Then, the equation becomes

L−1 · (C||V) = L−1 · (C||0) + L−1 · (0||V) = At
ST .

Let T = At
ST − L−1 · (C||0), we have

L−1 · (0||V) = T.

Define a matrix SL−1, where SL−1[i][j] = L−1[i][j + 243] for (0 ≤ i < 729, 0 ≤
j < 486), we obtain

SL−1 · V = T.

312 F. Liu and T. Isobe

Suppose there is a space TS, which is used to store all valid T that make the
equation system SL−1 · V = T have solutions to V . Then, the space S used to
store all valid At

ST can be trivially derived since At
ST = T + L−1 · (C||0).

The space TS can be easily calculated based on Gauss elimination. Then, a
linear equation system ET in terms of T can be derived to store all valid values of
T which can make SL−1 ·V = T have solutions to V . Apply Gauss elimination to
ET , the solution structure of T can be determined. Such a structure is good for
attackers since it reveals that some trits of T are fixed as shown in Table 8 (see
AppendixA), implying that the some trits of At

ST must be constants in order to
match a given hash value. The space TS is obviously the set of T satisfying the
conditions in Table 8.

Taking into account the equivalent condition to determine whether an input
state is the preimage, instead of computing until At+1, we can only compute until
At

ST and check whether these conditions on At
ST hold. If they do not hold, such

an input state must not be the preimage and we can try another input state.
Such a strategy is ultimately exploited in our preimage attack on two/three
rounds of Troika.

To make this paper clear, we define some terms. A tryte is called a con-
ditional tryte if this tryte can not take arbitrary values. A trit is called a
conditional trit if its value is fixed to a constant. A condition is called a
single-tryte condition if only one tryte is involved in it. A condition is called
a multi-tryte condition if more than one tryte are involved in it. A condi-
tion is called a single-trit/two-trit/three-trit condition if it is imposed on
a conditional tryte, where one/two/three trits of this tryte are fixed to con-
stants. According to Table 8, there are 162 conditional trytes, 216 conditional
trits, 162 single-tryte conditions, 115 single-trit conditions (marked in black), 40
two-trit conditions (marked in blue), 7 three-trit conditions (marked in red) and
27 multi-tryte conditions.

4 Preimage Attack on Two-Round Troika

To find the preimage for two-round Troika, according to Table 8, there are 7
three-trit conditions and 40 two-trit conditions on A1

ST . If we can guess the
message in a proper way to ensure these conditions always hold, an advantage
over brute force is achieved. This motivates us to investigate the property of
an S-box.

4.1 Linearizing the Inputs of an S-Box

Denote the input and output of an S-box by (x0, x1, x2) ∈ F 3
3 and (y0, y1, y2) ∈

F 3
3 respectively. If (y0, y1, y2) is a constant, then (x0, x1, x2) is a constant as

well. When two trits of (y0, y1, y2) are fixed, there are 3 × 32 = 27 patterns for
(y0, y1, y2) since it take values from F 3

3 . We list all these 27 cases in Table 7 (see
AppendixA). Based on this table, we observe Property 1.

Preimage Attacks on Reduced Troika with Divide-and-Conquer Methods 313

Property 1. When two trits of the output of an S-box are fixed, at least one
linear equation of its corresponding input can be derived. In other words, the
two-trit condition on the output hold with a probability of at least 3−1 if the
inputs are linearized with such linear equations.

4.2 Naive Preimage Attack on Two-Round Troika

Since there are 7 three-trit conditions and 40 two-trit conditions on A1
ST , if

we linearize the corresponding inputs of the S-box in A1 based on Table 7,
the probability that these conditions hold is improved to at least 3−40 from
3−21−80 = 3−101.

Observe that the nonlinear transform (SubTrytes) in the first round can be
fully peeled off. In other words, we start from the state A0

ST and set variables V1

to A0
ST [·][·][z] (0 ≤ z ≤ 8). After linearizing some inputs of the S-box in A1 as

discussed above, there are at least 3×7+40 = 61 linear equations in terms of A1

in order to satisfy the 7 three-trit conditions and 40 two-trit conditions. Since
A1 is linear with V1, these linear equations are converted to the linear equations
in terms of V1 and form a linear equation system. Then, we can arbitrary choose
V1 from the solution space of this linear equation system and test whether the
hash value is matched. In this way, we can gain an advantage of at least 361 over
brute force to find the preimage of two-round Troika.

4.3 Improved Preimage Attack on Two-Round Troika

Only the three-trit and two-trit conditions on A1
ST are exploited in the above

naive two-round preimage attack. Indeed, the single-trit conditions on A1
ST can

be utilized as well to significantly improve the attack.
In the same way, we start from the middle state A0

ST and set variables at
A0

ST [·][·][z] (0 ≤ z ≤ 8). Formally, let A0
ST = (V1||P), where P is a 486-trit

constant representing the capacity part of A0
ST and V1 is a 243-trit variable.

Consider the following relation:

L · (V1||P) = L · (V1||0) + L · (0||P) = A0
AP .

Let V0 = A0
AP − L · (0||P), we have

L · (V1||0) = V0.

To leverage all the single-tryte conditions on A1
ST , we can firstly com-

pute all valid inputs of the S-box for the corresponding conditional trytes in
A1

ST . For example, there is a single-trit condition on (A1
ST [0][2][0], A1

ST [1][2][0],
A1

ST [2][2][0]) (see Table 8). As a result, the tryte (A1[0][2][0], A1[1][2][0],
A1[2][2][0]) can only take 9 possible values, thus resulting that (A0

AP [0][2][0],
A0

AP [1][2][0], A0
AP [2][2][0]) can only take 9 possible values as well. Note that

V0 = A0
AP − L · (0||P) and L · (0||P) is a constant for a fixed capacity part of

the input state. Therefore, the corresponding tryte in V0 can also only take 9

314 F. Liu and T. Isobe

possible values. Similarly, for each conditional tryte in A1
ST , we store the valid

values for the corresponding tryte in V0 in a two-dimensional dynamic array PV .
However, due to the non-full diffusion of L, there are 15 trits in A0

AP as listed
below, which only depend on P . Therefore, before storing each valid value, we
firstly check whether it is contradictory with the values of these 15 trits. Only
those values that are consistent with these 15 trits will be stored. If there is no
valid value for a specific conditional tryte, it implies that such a fixed capacity
P can never lead to the given hash value. In this case, it is essential to generate
another value for the capacity part of A0 by compressing random messages until
there is at least one valid value for each conditional tryte in A1

ST .

A0
AP [8][1][5], A0

AP [6][1][7], A0
AP [6][2][7], A0

AP [7][1][12], A0
AP [7][1][13],

A0
AP [7][1][14], A0

AP [7][1][15], A0
AP [3][1][16], A0

AP [3][1][17], A0
AP [3][1][18],

A0
AP [3][0][19], A0

AP [3][1][19], A0
AP [3][0][20], A0

AP [3][1][20], A0
AP [2][1][26].

According to the equivalent condition in Sect. 3, if we can find a solution
V1 such that V0 = L · (V1||0) can be contained in PV , then we ensure all the
single-tryte conditions on A1

ST . Since only the 162 single-tryte conditions are
considered at this phase, we only need compute the corresponding 162 trytes in
V0. Consequently, we only need to focus on the 162 × 3 = 486 linear equations
between V1 and V0. Denote the equation system composed of these 486 linear
equations by S1: SL ·V1 = V ′

0 , where SL is the coefficient matrix of size 486×243
and V ′

0 is of size 486×1. Note that all valid values for the trytes in V ′
0 have been

stored in PV .
With Gauss elimination, it is easy to derive a linear equation system S0 in

terms of V ′
0 , which is used to store all valid values of V ′

0 that makes the equation
system S1: SL · V1 = V ′

0 have solutions to V1. If we can find a value for V ′
0 such

that it is not only a solution of S0 and but also contained in PV , then V1 is
found to satisfy all the single-tryte conditions. In next parts, we will expand on
how to find such V ′

0 with a guess-and-determine approach. Before searching for
such V ′

0 , a preprocessing phase is necessary to pre-determine whether it can be
found.

Note that all single-trit/two-trit/three-trit conditions have been taken into
account. Therefore, for different trytes in V ′

0 , the number of their valid values
stored in PV will be different. Specifically, some trytes in V ′

0 can only take a
unique value if they correspond to a three-trit condition. Some trytes in V ′

0 can
only take at most 3 values if they correspond to a two-trit condition. And some
trytes in V ′

0 can take at most 9 values if they correspond to a single-trit condition.
For the trytes taking 1 or 3 values, it has been discussed previously that at least
61 linear equations in terms of V ′

0 can be derived.
Therefore, after obtaining S0, we derive linear equations for each tryte of V ′

0

based on its valid values stored in PV as far as possible and add them to S0.
Once new equations are introduced in S0, more variables in S0 will become fixed.
As a result, it is possible to remove invalid values for some trytes in V ′

0 from PV ,
which can be proceeded by checking whether each valid value is contained in the
solution space of the updated S0 via Gauss elimination. As invalid values are

Preimage Attacks on Reduced Troika with Divide-and-Conquer Methods 315

removed, the number of valid values for some trytes will decrease, thus having
the potential to be linearized. Such a procedure is repeated until S0 becomes
stable, which means the size of the solution space S0 will not be changed when
adding the derived linear equations to it.

Observe that it is possible that none valid values for some trytes in V ′
0 are

left after removing operation. In this case, it implies that such a fixed capacity
P can never lead to the given hash value and it is necessary to generate another
P by compressing arbitrary message.

4.4 Guess-and-Determine Method to Find the Preimage

After obtaining the stable linear equation system S0, whose coefficient matrix is
the row simplest form matrix, instead of naively exhausting the solution space
of S0 and checking whether it is contained in PV , we use a guess-and-determine
technique to find V ′

0 which is not only contained in PV but also contained in
the solution space of S0.

As is known, for the coefficient matrix of S0, each non-zero row will corre-
spond to an equation

α0V
′
0 [0] + α1V

′
0 [1] + · · · + α485V

′
0 [485] = α486,

where αi ∈ F3 (0 ≤ i ≤ 486). Since it corresponds to a non-zero row, there must
exists αi �= 0 (0 ≤ i ≤ 485). Suppose αi �= 0 and αj = 0 (j < i ≤ 485), if there
exists αk �= 0 (i < k ≤ 485), then we define V ′

0 [k] as the free variable in the
equation system S0. Moreover, we define this equation as the equation on the
trit V ′

0 [i].
Note that the coefficient matrix of S0 is the row simplest form matrix. If we

guess the values for V ′
0 in the order that

(V ′
0 [485], V ′

0 [484], V ′
0 [483]) → (V ′

0 [482], V ′
0 [481], V ′

0 [480]) →
(V ′

0 [3i + 2], V ′
0 [3i + 1], V ′

0 [3i]) → · · · → (V ′
0 [2], V ′

0 [1], V ′
0 [0]),

we can always verify the equations on (V ′
0 [3i+2], V ′

0 [3i+1], V ′
0 [3i]) (0 ≤ i ≤ 161)

when (V ′
0 [3i + 2], V ′

0 [3i + 1], V ′
0 [3i]) (0 ≤ i ≤ 161) is guessed. In other words,

when choosing a valid value from PV for the tryte (V ′
0 [3i+2], V ′

0 [3i+1], V ′
0 [3i])

(0 ≤ i ≤ 161), we can verify whether it is contained in the solution space of
S0 before guessing the remaining free variables. If it is not contained, such a
guess for this tryte is obviously wrong. Following such an order to guess, there
are several advantages over simply exhausting the solution space of S0 when
properly using the guess-and-determine technique below.

How to Guess. Firstly, note that each tryte of V ′
0 can take at most 9 possible

values. If all the three trits in a tryte are free variables, we have to try 27 possible
values of this tryte when simply exhausting the solution space of S0. However, if
we only choose valid values from PV for the three trits, we only need to guess at
most 9 times, thus obtaining an advantage of at least 31. If two trits in a tryte are

316 F. Liu and T. Isobe

free variables, we can obtain an advantage by guessing values from PV for this
tryte when the number of valid values for this tryte stored in PV is smaller than
9, which is possible to occur. If only one trit in a tryte is a variable, advantages
can be gained when the number of valid values for this tryte stored in PV is
smaller than 3. Otherwise, we simply guess this free variable and determine the
whole tryte and then check whether it is contained in the corresponding PV .
The last case is that no trit in a tryte is a variable. In this case, according to the
guess order, the value for this tryte can be computed based on the corresponding
three equations on them. Then, we simply check whether the computed value for
this tryte is contained in the corresponding PV , which can be finished in 1 time.

Local Test. When guessing a value for a tryte from PV , it is necessary to check
whether such a guessed value is contained in the solution space of S0. This can
be efficiently checked by verifying the equations on this tryte due to the guess
order. If a guessed value can not pass the test, i.e. the equations on this tryte do
not hold, there is no need to move ahead to next tryte from this guessed value,
thus reducing the search space further more.

Look-Ahead and Fast Backtracking. Although local test can provide early
stop in a way, it is possible to occur that one value of a first guessed tryte
will always lead to a contradiction for a later guessed tryte. In this case, there
will be a lot of unnecessary backtracking if the two trytes locate far from each
other since the guess order is predetermined. To improve the efficiency of looking
ahead, we can construct a table for each tryte, which is used to record the trytes
to be checked when this tryte is guessed. Only when all trytes in the recorded
table can pass the local test can we move ahead to guess another tryte. In this
case, for each checked tryte, the index of the first valid value in PV are recorded
in order to remove redundant operations when the search actually reach these
trytes.

Although look-ahead can be used to achieve faster early stop, another bad
case may occur, which causes many unnecessary backtracking. Specifically, we
can ensure that there is at least one valid value for a later guessed tryte with
the look-ahead strategy. However, when we actually reach this tryte, we have to
look ahead from this tryte as far as possible. It is possible that there is no valid
value for this tryte that can pass look-ahead. As a result, backtracking starts.
However, there will be many unnecessary backtracking if the value of this tryte
is only influenced by a pre-guessed tryte that locates far from it. Obviously, if we
can immediately backtrack to this pre-guessed tryte, the backtracking between
this tryte and the pre-guessed tryte is removed, thus further reducing the search
space on the whole. To achieve efficiency of fast backtracking, we construct a
table for each tryte, which is used to record the tryte to be backtracked when
this tryte fails to move ahead.

Preimage Attacks on Reduced Troika with Divide-and-Conquer Methods 317

4.5 Complexity Evaluation

When a valid V ′
0 is found with the guess-and-determine approach, start exhaust-

ing the solution space of SL · V1 = V ′
0 and check whether the given hash value

can be generated with V1. The size of the solution space of SL · V1 = V0 is 36

based on our analysis, which is only related to the fixed coefficient matrix SL.
According to our guess-and-determine technique above, the found V ′

0 can
only ensure the single-tryte conditions on A1

ST . Therefore, each solution of the
equation system SL · V1 = V ′

0 can also only ensure the single-tryte conditions
on A1

ST . For the multi-tryte conditions on A1
ST , they are not taken into account

in our guess-and-determine technique to find a valid V ′
0 . To remove unnecessary

enumeration of V1 for each found V ′
0 , when a valid V ′

0 is found, we firstly check
some multi-tryte conditions composed of the trits that can be computed based
on the fully determined V ′

0 . There are 8 such multi-tryte conditions. Only when
they are satisfied will we start exhausting the solution space of SL · V1 = V ′

0 .
Consequently, the time complexity to find a preimage with one block is equivalent
to the time complexity to enumerate all valid V ′

0 with our guess-and-determine
technique.

To calculate the time complexity to enumerate all valid V ′
0 , we firstly omit

the influence of local test, look-ahead and fast backtracking and only focus on
the size of solution space if adopting our method to guess values for each tryte.
Initialize a counter cnt = 0. After a stable S0 is obtained, we check the positions
of free variables. Suppose there are f0 free variables in a tryte of V ′

0 and the
number of valid values for this tryte stored in PV is f1. For each of the 162
trytes of V ′

0 , update cnt based on the following relations between f0 and f1.

cnt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cnt (if f0 = 0)
cnt + log3(f1) (if f0 = 1 and f1 ≤ 3)
cnt + 1 (if f0 = 1 and 3 < f1 ≤ 9)
cnt + log3(f1) (if f0 = 2)
cnt + log3(f1) (if f0 = 3)

We generate hundreds of thousands of hash values used as the inputs to the
program with random one-block messages. After a stable equation system S0

and PV are obtained, start computing cnt. Among all these values for cnt, the
largest one is cnt = 92. However, the effect of local test, look-ahead and fast
backtracking has not been taken into account. It is reasonable to estimate that
these early stop strategies can at least reduce the whole search space by a factor
of 313 according to our experiments. Specifically, when it is computationally
feasible, we exhaust all possible values from the first guessed tryte to a certain
later tryte. Then, record the total trying times in order to enumerate all valid
solutions until this tryte. Meanwhile, the number of valid solutions is recorded
as well. Suppose the total trying times is 3cnt0 , the number of valid solutions
is 3cnt1 and the search space is 3cnt2 without early stop strategy. In this way,
we can reduce the whole search space by a factor of at least 3cnt2−cnt1 . As
a consequence, for the hash value of two-round Troika that can be generated
with one block, the time complexity to find its preimage is upper bounded by

318 F. Liu and T. Isobe

392−13 = 379, which is 3164 times faster than brute force. Due to this significant
advantage over brute force as well as our algorithm to predetermine whether a
hash value can be generated with one block, it is expected that our algorithm
can be applied to arbitrary hash values.

Attempt to Solve the Two-Round Preimage Challenge. For the two-
round preimage challenge [1], our algorithm shows that one block is not sufficient
to generate this hash value. Therefore, we append random message blocks before
the last block to generate a suitable capacity part for the last block. Such a
capacity part can pass the test of our algorithm to determine whether it is
potential to match the given hash value by using the degree of freedom of the
last block. Then, the guess-and-determine technique will be applied to enumerate
all valid V ′

0 and the corresponding V1. The appended message block Mapp we
found is shown in Table 4. With such an appended message block, the two-round
preimage challenge can be partially solved. Specifically, we found a solution Mlast

for the last block in seconds. There are only 40 different trits between the two-
round preimage challenge and the hash value computed from Mapp||Mlast, as
displayed in Table 4.

4.6 Second Preimage Attack on Two-Round Troika

To find the preimage of two-round Troika with one block, two linear equation
systems S0 in terms of V ′

0 and S1: SL · V1 = V ′
0 are constructed. The goal is

to find a valid V ′
0 . After it is found, start exhausting the solution space of S1:

SL · V1 = V ′
0 . However, when given a message M0 and its corresponding hash

value H0 after two-round Troika permutation, the corresponding value for V ′
0

computed from M0 is known! To find the second preimage for (M0,H0), we
simply set V ′

0 the same with that computed from M0. Then, we start exhausting
the solution space S1: SL ·V1 = V ′

0 . Note that there is at least one solution to V1

that can lead to the hash value H0, which exactly corresponds to M0. However,
our program suggests that there are several V1 that can lead to the same hash
value H0. For the sake of correctness, we generate many random messages and
compute the corresponding hash value. Our program suggests that there are
always several V1 which can lead to the same given hash value. Since the size of
the solution space of S1 is 36, the time complexity to find the second preimage is
upper bounded by 36. To support our approach, we randomly generate a value
for M0 and compute the corresponding hash value H0. Then we found that there
are many second preimages for H0. Due to the space limit, we only list 6 second
preimages (M1,M2,M3,M4,M5,M6) in Table 9 (see Appendix A).

Preimage Attacks on Reduced Troika with Divide-and-Conquer Methods 319

Table 4. Partially solving the two-round preimage challenge

Two-round preimage challenge
100222202111012011001001110100211221021212210220201121
111111211000221112102012121212121020210211112202122212
111112221020112011200112222202010020010022022101020202
220012011012010000111111120102011222212011022121011122
121111111001201002212110012

Mapp

202112201010011210202110200210010222102000011201012021
022111110012202011112121220100010202122201111210120102
201022100200121011102101112102001221101221011102120100
000221212011102001211211120212110102011220111021020212
011101122101212011000210021

Mlast

211110012221000010020000220200212201102120112202022000
212102222210010022100012222020110212101010001211111000
110120212012222100222102102101110100210000021101110211
212011111021210011221122121221211102221201222211202100
001121000001112121210022100

Hash value computed from Mapp Mlast

200222202211012011101001110101211221002212210221201121
111111211000221112102012121212121020210211112202122212
111112221020112011200112222202010020010022022101020202
210012010002010002101111122102111202211111002021111102
222101002002100221111211200

5 Preimage Attack on Three-Round Troika

The preimage attack on two-round Troika can be viewed as the interaction
between two linear equation systems. As the attacked round increases, it is
almost impossible to establish similar linear equation systems. However, we can
still construct two interacting systems to find the preimage of three-round Troika.
Such an idea is much inspired from the cube-attack-like cryptanalysis of Keccak-
MAC by Dinur et al. [6].

Note that an equivalent condition to match a given hash value has been
proposed in Sect. 3. Specifically, when starting from a state with a correct fixed
capacity part, matching a three-round hash value is equivalent to satisfying the
243 trit conditions on A2

ST as displayed in Table 8. The main technique is to
separate the 243 variables set at A0

ST [·][·][z] (0 ≤ z ≤ 8) into two parts PA1 and
PA2. Then, exhaust all possible values of the variables at PA1 and compute

320 F. Liu and T. Isobe

some trytes in A2
ST . Only when the equivalent conditions on these trytes hold

can we start exhausting all possible values of the variables in PA2. When all
variables in PA1 and PA2 are guessed, the one-block message is fixed and we
can determine whether it is the preimage of the three-round hash value.

As has been mentioned in [3], after three-round Troika permutation, the
computation of one S-box requires the knowledge of all S-boxes in the first round.
Therefore, it is reasonable to assume that three-round Troika provides sufficient
diffusion and the 243 trits of the three-round hash value are independent from
each other. In other words, suppose the capacity part of A0

ST is fixed and there
are 243 variables at A0

ST [·][·][z] (0 ≤ z ≤ 8), we expect that one hash value only
corresponds to one value of these 243 variables. Note that matching a given hash
value is equivalent to satisfying the 243 conditions on A2

ST when starting from a
correct fixed capacity part. Suppose the 243 trit conditions are not independent
from each other, it may occur that more than one values of the variables can
make the all the 243 trit conditions on A2

ST hold, suggesting that one hash value
may correspond to more than one value of the 243 variables. Consequently, we
can assume the 243 conditions on A2

ST are independent based on the assumption
that three-round Troika provides sufficient diffusion.

If there are t0 trit conditions on A2
ST that can be tested by only guessing

all the t1 variables at PA1, based on the assumption that these trit conditions
are independent, we can expect that only 3t1−t0 valid values are left for these
t1 variables after 3t1 computations. Then, for each of the 3t1−t0 valid values,
exhaust the remaining (243 − t1) variables and compute the three-round hash
value. As a result, with time complexity 3t1 +3243−t0 , we can exhaust all possible
one-block messages. Suppose the given hash value can be generated with only
one block, the preimage must be found. When it can not be generated with
only one block, we can append random blocks before the last block to generate
a valid capacity part of the last block and exhaust all possible values of the
last block with the above method. As a result, with at most 3 × (3t1 + 3243−t0)
computations, we can expect to find the preimage of three-round Troika.

Based on the above analysis, achieving the optimal time complexity is equiv-
alent to finding the optimal separation of the 243 variables. As will be shown,
such a problem can be solved with MILP (Mixed-Integer Linear Programming),
which was firstly introduced to cryptanalysis in [9].

5.1 Finding Optimal Separation with MILP

Our attack starts from the middle state A0
ST and the 243 variables (v0, ..., v242)

are set at A0
ST [·][·][z] (0 ≤ z ≤ 8), i.e. v27z+9y+x = A0

ST [x][y][z]. First of all,
for each conditional tryte CTi (0 ≤ i ≤ 161) at A2

ST , record the corresponding
variables in (v0, ..., v242) that need knowing in order to compute this conditional
tryte, which can be easily finished with the linear transform matrix L. Suppose
the recorded variables for the conditional tryte CTi are (vj0 , vj1 , ..., vjr), then
we construct the following inequalities to ensure that when CTi needs to be
determined, each of (vj0 , vj1 , ..., vjr) must be guessed:

TVi − V Vjs ≤ 0, s ∈ {0, 1, .., r},

Preimage Attacks on Reduced Troika with Divide-and-Conquer Methods 321

where TVi = 1 (0 ≤ i ≤ 161) denotes that the tryte CTi needs to be determined
and V Vi = 1 (0 ≤ i ≤ 242) denotes that the variable vi belongs to PA1, while
TVi = 0 (0 ≤ i ≤ 161) denotes that the tryte CTi does not need to be determined
and V Vi = 0 (0 ≤ i ≤ 242) denotes that the variable vi belongs to PA2. In this
way, as many as 16305 inequalities can be derived.

The objective function of the MILP model is set as

MAX
161∑

i=0

ci · TVi,

where ci denotes the number of conditional trits in the conditional tryte CTi.
To ensure that the number of variables in PV1 is not too large, we adaptively

add the following inequality to the constraints

242∑

i=0

V Vi ≤ bd,

where bd is used to constrain the number of variables in PA1. To obtain opti-
mal time complexity of the preimage attack on three-round Troika, bd should
be as small as possible while the objective function should be as large as possi-
ble. Therefore, we adaptively choose values for bd and record the results of the
objective function returned by the Gurobi solver [2]. Some results are displayed
in Table 5.

Table 5. Results for different bd

bd Result of obj. Time complexity of attack

124 5 3 × (3124 + 3238)

160 10 3 × (3160 + 3233)

170 13 3 × (3170 + 3230)

190 18 3 × (3190 + 3225)

200 20 3 × (3200 + 3223)

210 24 3 × (3210 + 3219)

215 27 3 × (3215 + 3216)

Based on the results displayed in Table 5, the optimal value for bd is 215.
For bd = 215, the corresponding separation of the variables (v0, ..., v242) and the
conditional trits in A2

ST to be checked are listed in Table 6. Therefore, the time
complexity of the preimage attack on three-round Troika is 3217.3, which is 325.7

times faster than brute force.

322 F. Liu and T. Isobe

Table 6. The optimal separation of variables to achieve best time complexity

PA1

v0, v1, v2, v3, v4, v5, v6, v8, v9, v11, v12, v13, v14, v15, v16,
v17, v18, v20, v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32,
v33, v34, v35, v36, v38, v39, v40, v41, v42, v43, v44, v45, v46, v47, v48,
v51, v52, v53, v54, v55, v57, v58, v59, v60, v63, v64, v65, v66, v67, v69,
v70, v71, v72, v73, v74, v75, v76, v77, v78, v79, v80, v82, v83, v84, v85,
v86, v87, v88, v89, v90, v91, v92, v93, v94, v95, v97, v98, v99, v100, v101,
v102, v103, v104, v105, v106, v107, v108, v109, v110, v111, v113, v114, v115, v116, v117,
v118, v119, v120, v121, v122, v123, v124, v125, v126, v128, v129, v130, v131, v132, v133,
v134, v135, v137, v138, v140, v141, v142, v143, v144, v145, v146, v147, v148, v149, v150,
v151, v152, v153, v155, v156, v157, v158, v159, v160, v161, v162, v163, v165, v166, v167,
v168, v170, v171, v172, v173, v174, v175, v177, v178, v179, v180, v181, v182, v183, v185,
v187, v188, v190, v192, v193, v194, v195, v197, v198, v199, v200, v201, v202, v203, v204,
v205, v206, v207, v208, v209, v210, v212, v213, v214, v215, v216, v217, v218, v220, v221,
v222, v223, v224, v225, v226, v227, v228, v229, v230, v232, v233, v234, v235, v236, v237,
v238, v239, v240, v241, v242.

27 conditional trits on A2
ST to be checked

A2
ST [4][0][3], A

2
ST [5][2][3], A

2
ST [6][0][4], A

2
ST [8][0][4], A

2
ST [7][1][4], A

2
ST [2][0][6],

A2
ST [1][1][6], A

2
ST [2][1][6], A

2
ST [4][0][7], A

2
ST [3][1][7], A

2
ST [4][1][7], A

2
ST [5][1][7],

A2
ST [4][0][8], A

2
ST [3][1][8], A

2
ST [4][1][8], A

2
ST [5][1][8], A

2
ST [5][2][8], A

2
ST [4][0][9],

A2
ST [3][1][9], A

2
ST [4][1][9], A

2
ST [5][1][9], A

2
ST [5][0][13], A

2
ST [5][1][13], A

2
ST [4][2][13],

A2
ST [0][1][23], A

2
ST [1][2][23], A

2
ST [2][2][23].

6 Conclusion and Future Work

By discovering some equivalent conditions to pre-determine whether a message
is the preimage of a given hash value, invalid messages can be filtered at an
early stage and the search can be limited to a smaller potential space. To speed
up the search in this potential smaller space for two-round preimage attack, two
interacting linear equation systems are constructed. Then, a guess-and-determine
technique involving fast cutting branches to efficiently enumerate valid solutions
for one of the equation systems is proposed. Consequently, the time complexity
to find the preimage of two-round Troika with one block is at most 379, which
is 3164 times faster then brute force. Moreover, with the divide-and-conquer
method, the one-block message space is separated in an optimal way with MILP
so as to achieve optimal time complexity of the preimage attack on three-round
Troika. As a result, the preimage of three-round Troika can be found with time
complexity 3217.3.

Our algorithm shows that the second preimage for two-round Troika can be
found with pretty small time complexity. In other words, we can efficiently enu-
merate several two-round differential characteristics which can lead to a collision
for two-round Troika with only one block. To construct a collision for three-round
Troika, we have placed the obtained two-round differential characteristic in the
last two rounds and computed backward by one round to obtain the actual
input difference. However, there is always difference in the capacity part of the

Preimage Attacks on Reduced Troika with Divide-and-Conquer Methods 323

input, which implies that we cannot find a three-round differential characteristic
to generate a collision with only one block. We also have tested whether the
obtained two-round differential characteristics for collision can be extended to
three rounds. However, it is shown that there is always difference in the rate part
of the output. Our future work is to improve the strategy to search the (second)
preimage for two-round Troika and see whether it is possible to actually solve
the three-round collision challenge and two-round preimage challenge.

Acknowledgement. We thank the anonymous reviewers of IWSEC 2019 for their
insightful comments and suggestions. We also thank the Troika Group for the discus-
sion. Fukang Liu is supported by Invitation Programs for Foreigner-based Researchers
of the National Institute of Information and Communications Technology (NICT).
Takanori Isobe is supported by Grant-in-Aid for Scientific Research (B) (KAKENHI
19H02141) for Japan Society for the Promotion of Science.

A Some Tables and Example

Table 7. Linearizing the input of an S-box

Output

(y0, y1, y2)

Inputs

(x0, x1, x2)

Equations

(-, 0, 0) (1, 0, 0), (1, 1, 0), (1, 2, 0) x0 = 1, x2 = 0

(-, 0, 1) (0, 1, 2), (1, 0, 1), (2, 2, 2) x0 + x1 = 1

(-, 0, 2) (0, 2, 1), (1, 0, 2), (2, 1, 1) x0 − x1 = 1

(-, 1, 0) (2, 0, 0), (2, 1, 2), (2, 2, 1) x0 = 2, x1 + x2 = 0

(-, 1, 1) (0, 2, 0), (1, 1, 1), (2, 0, 1) x0 + x1 = 2

(-, 1, 2) (0, 1, 0), (1, 2, 2), (2, 0, 2) x0 − x1 = 2

(-, 2, 0) (0, 0, 0), (0, 1, 1), (0, 2, 2) x0 = 0, x1 − x2 = 0

(-, 2, 1) (0, 0, 1), (1, 2, 1), (2, 1, 0) x0 + x1 = 0

(-, 2, 2) (0, 0, 2), (1, 1, 2), (2, 2, 0) x0 − x1 = 0

(0, -, 0) (0, 0, 0), (1, 0, 0), (2, 0, 0) x1 = 0, x2 = 0

(0, -, 1) (0, 2, 0), (1, 0, 1), (2, 1, 0) x0 − x1 = 1

(0, -, 2) (0, 1, 0), (1, 0, 2), (2, 2, 0) x0 + x1 = 1

(1, -, 0) (0, 1, 1), (1, 1, 0), (2, 1, 2) x1 = 1, x0 + x2 = 1

(1, -, 1) (0, 1, 2), (1, 2, 1), (2, 0, 1) x0 − x1 = 2

(1, -, 2) (0, 0, 2), (1, 2, 2), (2, 1, 1) x0 + x1 = 0

(2, -, 0) (0, 2, 2), (1, 2, 0), (2, 2, 1) x1 = 2, x0 − x2 = 1

(2, -, 1) (0, 0, 1), (1, 1, 1), (2, 2, 2) x0 − x1 = 0

(2, -, 2) (0, 2, 1), (1, 1, 2), (2, 0, 2) x0 + x1 = 2

(0, 0, -) (1, 0, 0), (1, 0, 1), (1, 0, 2) x0 = 1, x1 = 0

(0, 1, -) (0, 1, 0), (0, 2, 0), (2, 0, 0) x2 = 0

(0, 2, -) (0, 0, 0), (2, 1, 0), (2, 2, 0) x2 = 0

(1, 0, -) (0, 1, 2), (1, 1, 0), (2, 1, 1) x1 = 1, x0 − x2 = 1

(1, 1, -) (1, 2, 2), (2, 0, 1), (2, 1, 2) x0 + x1 − x2 = 1

(1, 2, -) (0, 0, 2), (0, 1, 1), (1, 2, 1) x0 − x1 − x2 = 1

(2, 0, -) (0, 2, 1), (1, 2, 0), (2, 2, 2) x1 = 2, x0 + x2 = 1

(2, 1, -) (1, 1, 1), (2, 0, 2), (2, 2, 1) x0 − x1 + x2 = 1

(2, 2, -) (0, 0, 1), (0, 2, 2), (1, 1, 2) x0 + x1 + x2 = 1

324 F. Liu and T. Isobe

Table 8. Conditions on T

Preimage Attacks on Reduced Troika with Divide-and-Conquer Methods 325

Table 9. Instances of second preimage

M0

010111010120012002222211020001011221011201111110102021
011220112102112001012000110220000211022212112220221200
022220002100110000012011202010212212112211201212002111
021102000112202120120010200202000102120211210212012222
002210111200011200202200101

H0

201122002102220012201001121112002110102101210010010000
211020121011111222011201021220212210011022020101011220
202010222210112101212020102111202112211000220021012122
122220000020222021210102021010122120122111122221022201
110011212021210221220022111

M1

010111010022012002222211020001011221110201111110102021
011220112102112001012000110220000211022212112210221200
022102011100110000012011202010110212112211201212002111
021102000112202120120010200202000102120211210212012222
002210111200011200202200101

M2

010111010022012002222211020001011221110201111110102021
011220112102112001012000110220000211022212112210221200
022102011100110000110011202010110201112211201212002111
021102000112202120120010200202000102120211210212012222
002210111200011200202200101

M3

010111010022012002222211020001011221110201111110102021
011220112102112001012000110220000211022212112220221200
022102002100110000012011202010110212112211201212002111
021102000112202120120010200202000102120211210212012222
002210111200011200202200101

M4

010111010120012002222211020001011221011201111110102021
011220112102112001012000110220000211022212112210221200
022220011100110000012011202010212212112211201212002111
021102000112202120120010200202000102120211210212012222
002210111200011200202200101

M5

010111010120012002222211020001011221011201111110102021
011220112102112001012000110220000211022212112220221200
022220002100110000110011202010212201112211201212002111
021102000112202120120010200202000102120211210212012222
002210111200011200202200101

M6

010111010120012002222211020001011221212201111110102021
011220112102112001012000110220000211022212112220221200
022220002100110000110011202010011201112211201212002111
021102000112202120120010200202000102120211210212012222
002210111200011200202200101

326 F. Liu and T. Isobe

References

1. Cybercrypt. https://www.cyber-crypt.com/troika-challenge/
2. Gurobi. https://www.gurobi.com/
3. Troika: a ternary hash function (2018). https://www.cyber-crypt.com/wp-

content/uploads/2018/12/20181221.iota .troika-reference.v1.0.1.pdf
4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference (2011).

http://keccak.noekeon.org
5. Dinur, I., Dunkelman, O., Shamir, A.: New attacks on Keccak-224 and Keccak-

256. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 442–461. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5 25

6. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and
cube-attack-like cryptanalysis on the round-reduced keccak sponge function. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 733–
761. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 28

7. Guo, J., Liu, M., Song, L.: Linear structures: applications to cryptanalysis of round-
reduced Keccak. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10031, pp. 249–274. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53887-6 9

8. Li, T., Sun, Y., Liao, M., Wang, D.: Preimage attacks on the round-reduced Kec-
cak with cross-linear structures. IACR Trans. Symmetric Cryptol. 2017(4), 39–57
(2017)

9. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

10. Qiao, K., Song, L., Liu, M., Guo, J.: New collision attacks on round-reduced Kec-
cak. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212,
pp. 216–243. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7 8

11. Song, L., Liao, G., Guo, J.: Non-full sbox linearization: applications to collision
attacks on round-reduced Keccak. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 428–451. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63715-0 15

https://www.cyber-crypt.com/troika-challenge/
https://www.gurobi.com/
https://www.cyber-crypt.com/wp-content/uploads/2018/12/20181221.iota_.troika-reference.v1.0.1.pdf
https://www.cyber-crypt.com/wp-content/uploads/2018/12/20181221.iota_.troika-reference.v1.0.1.pdf
http://keccak.noekeon.org
https://doi.org/10.1007/978-3-642-34047-5_25
https://doi.org/10.1007/978-3-662-46800-5_28
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15

Cryptographic Protocols 2

VSS Made Simpler

Yvo Desmedt2 and Kirill Morozov1(B)

1 Department of Computer Science and Engineering, University of North Texas,
Denton, USA

Kirill.Morozov@unt.edu
2 Department of Computer Science, The University of Texas at Dallas,

Richardson, USA
Yvo.Desmedt@utdallas.edu

Abstract. Verifiable secret sharing (VSS) allows honest parties to
ensure consistency of their shares even if a dealer and/or a subset of
parties are corrupt. We focus on perfect VSS, i.e., those providing per-
fect privacy, correctness and commitment with zero error, in the uncon-
ditional (information-theoretic) security setting where no assumption on
the computational power of the participants is imposed.

Our study is motivated by both practical and theoretical consider-
ations. For the practical side, MPC with perfect security is now being
implemented. Multi-cloud storage has been implemented by IBM. Mod-
ern users rely on smartphones with limited internet connectivity, limited
battery power, etc. We focus on such a user outsourcing her data to
multi-clouds with the capability to have these multi-clouds participate
on her behalf in MPC protocols. We show that in the case of VSS based
on the replicated secret sharing scheme, there is no need for that user to
be involved in any interaction. In addition, this scheme has an optimal
number of rounds. This construction is derived from Maurer’s VSS based
on the replicated secret sharing scheme.

A disadvantage of the replicated scheme is that it generally requires
a considerable amount of randomness. We address this issue by showing
a VSS scheme based on Shamir’s secret sharing, where the dealer does
not need any randomness at all.

Keywords: Secret sharing · Verifiable secret sharing ·
Round complexity · Randomness complexity

1 Introduction

Secret sharing [5,35] allows a dealer to share a secret among n parties such
that certain “access” sets of them will be able to reconstruct it, while certain
other “forbidden” sets will not. Verifiable secret sharing (VSS) [10] allows the
honest parties to reliably reconstruct the secret even in the presence of active
adversary who may corrupt both the dealer and a forbidden set of parties. VSS

c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 329–342, 2019.
https://doi.org/10.1007/978-3-030-26834-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_19&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_19

330 Y. Desmedt and K. Morozov

finds numerous applications in cryptography, most notably for secure multi-party
computations [3,9,20].

In this work, we focus on unconditionally secure VSS, where no assumption
is made on the computational power of the participants [3,9]. A number of VSS
schemes in this setting, starting from [3], were constructed that tolerate the so-
called Q3 adversary – this condition requires that no union of any three forbidden
sets covers the set of all parties.1 Two important directions in the studies on VSS
can be identified: (1) Characterization of (ordinary) secret sharing schemes that
can be transformed into VSS; (2) Optimization of the existing constructions in
terms of their round, communication, and computation complexities. In the first
line of research, Cramer, Damg̊ard and Maurer (Eurocrypt’00) [11] proposed a
general transformation from any linear secret sharing scheme (LSSS) into VSS
(we will call this protocol the CDM scheme), however it requires O(k2) random
field elements, where k is the number of random field elements used by the
underlying LSSS. Fehr and Maurer (Crypto’02) [16] presented a purely algebraic
condition on whether a given secret sharing scheme can be used as VSS.

Recent research on optimizing VSS [12,17,18,25,34] seems somewhat unbal-
anced in the sense that it is mainly devoted to reducing round complexity. At
the same time, reducing randomness complexity appears to be an important
goal, in the light of recent discoveries [21,28] showing that proper generation
and management of randomness is by far a non-trivial task.

We focus on the “error-free” scenario, where robustness against Q3 adversary
is achieved in the perfect sense (see Definition 1). There exist other variants
of verifiable secret sharing, see, e.g., [19,32,34], in which correctness and/or
commitment are not error-free – they are out of scope of this work.

1.1 Motivation

We provide the following motivations for our work, the first two are practical,
and the other is theoretical:

1. Consider a cloud storage scenario, where the data are secret-shared and placed
onto the cloud (or the cloud of clouds). Now, if one wants to run multi-party
computation (MPC) with such data as an input, then consistency of the shares
must be verified first. Note that the VSS schemes considered so far either use
some special form of secret sharing, or require interaction with the dealer for
verification. This extra involvement with the dealer (i.e., the owner of the
data) may be undesirable. Indeed, leaders, such as CEOs, heads of states,
etc., do not have the time to be involved in protocols that are interactive. So,
in our context, they want to start the delegation process and then no longer
be involved in any interaction.
Another motivation is that when initially secret-sharing the data for the
cloud, the owner may not consider the future MPC applications, hence choos-
ing some ordinary secret sharing scheme, rather than a VSS.

1 In fact, Q3 is also necessary for perfect VSS [22].

VSS Made Simpler 331

A dealer who made a backup of the data using ordinary secret sharing, may
decease. Some of this data might be so private it should never be recon-
structed, while other might be important for the inheritants. The inheritants
may want to use MPC to sort out what data (or computed data) should be
made public, without reconstructing the complete backup.

2. The dealer uses a mobile device such that connection problems may limit her
capability for interaction, while possible implementation faults may hinder
her generation of good randomness (see, e.g., [21,28]). Suppose now that the
parties who hold the shares are cloud servers, which are powerful in terms
of their computation and communication resources. In this case, it would be
reasonable to relieve the dealer from the burden of both interacting with the
servers and generating a lot of randomness. Note that in the information-
theoretic VSS, security depends on the quality of randomness in a crucial
manner. In addition, we note that randomness complexity is also of theoretical
importance.

3. We observe that in many VSS schemes (e.g., [11,12,16]), a corrupt dealer
is effectively given the “second chance” by the honest parties. Specifically,
if the dealer originally distributed incorrect shares, she may, upon receiving
complaints, broadcast the correct shares and hence get away with her incor-
rect behavior. This is not a problem in the currently used VSS framework,
where the shares are verified immediately after their distribution. However,
this observation raises a theoretical question: May be it is unnecessary to give
the dealer such an opportunity? We answer this question in the affirmative.

The above points motivate the study of secret sharing schemes that can be
verified without interaction with the dealer. In our approach, the dealer does not
have to be honest either, e.g., she might distribute most of the shares correctly
in order to ensure reliability, but make only a few of them incorrect to ensure
equivocation.

We advocate the use of unconditionally secure protocols in the real-world
applications, such as cloud storage. First of all, if the primitives at hands are
unconditionally secure, it is easier to construct security proofs, which are an
indispensable part of the modern cryptographic standards. Moreover, having
perfect security (as in our case) is sometimes better than having statistical secu-
rity: For instance, Damg̊ard et al. [13, p. 246] used a VSS protocol with perfect
security, since “This makes it simpler to analyze its security in the presence of
adaptive corruptions”. One more advantage of unconditionally secure protocols
is that their security is not affected by advances in computation technologies.
For instance, the Committee on National Security Systems (linked to NSA) in
their “CNSS Advisory Memorandum Information Assurance 02–15,” July 2015
stated: “... we anticipate a need to shift to quantum-resistant cryptography in
the near future.” Unconditionally secure protocols will not be affected by such
paradigm shifts.

332 Y. Desmedt and K. Morozov

1.2 Our Contributions

Our work primarily concerns the case of external dealer.2 A typical VSS consists
of two protocols: sharing and reconstruction. In the sharing protocol, the parties
interact with the dealer in order to ensure that the honest parties hold consistent
shares of some value according to a particular secret sharing scheme. As a result,
either the sharing protocol succeeds, or a corrupt dealer is declared dishonest.
In the former case, the honest parties are guaranteed to be able to reconstruct a
unique value from their shares. In this work, we study the concept of VSS with
non-interactive dealer (VSS-NID). Such a scheme consists of the following three
protocols: sharing, verification and reconstruction. The sharing protocol can be
that of any secret sharing scheme (SSS), and it is typically non-interactive for the
ordinary SSS. The later two realize the same functionality as an ordinary VSS,
except that no interaction with the dealer in the verification protocol is allowed.
In an ordinary VSS, the sharing protocol would be immediately followed by the
verification, while in VSS-NID, verification can be performed at any point in
time after distribution, but before reconstruction or before its use in MPC.

First and foremost, we emphasize that in principle, one must be able to
achieve VSS-NID for any LSSS via secure MPC. Indeed, the Q3 assumption
would allow the parties to re-share their shares using VSS and then to use general
MPC to check their consistency. In this work, we avoid reliance on general MPC
in our first protocol.

First, we show that the Maurer VSS [30] (based on the replicated scheme
by Ito et al. [24]) tolerating Q3 active adversary can be modified to work as
VSS-NID. As in the Maurer VSS, the complexity is polynomial in the size of the
access structure. Unfortunately, for many access structures, this scheme is very
costly on randomness. We address this aspect in our second protocol.

In our second scheme, we observe that in a VSS-NID protocol the dealer does
not need to generate any randomness at all. The basic idea is to delegate the
generation of randomness to the players.

1.3 Related Works

Assuming Q4 active adversaries, the VSS-NID schemes can be trivially obtained
from some existing ones in the literature, such as, e.g., [36], [12, Sect. 3]. Note
that these schemes use O(k2) randomness, since they are based on [3] and [11],
respectively. Moreover, (t, n) threshold asynchronous VSS (AVSS) are known [2]
to tolerate t < n/4 adversaries. Therefore, we may expect perfect AVSS to be
easily adaptable as perfect VSS-NID, simply assuming that the dealer in the
former never responds after distributing the shares. We emphasize however that
the focus of this study are perfect VSS-NID schemes tolerating Q3adversaries,
while no perfect AVSS are known in this setting.

The round complexity of VSS was studied in a line of works originating from
the paper by Gennaro et al. [18]. The paper by Patra et al. [34] investigates, in
2 In the current literature on VSS and MPC, it is common to allow the dealer to be

one of the parties that later takes part in the protocol.

VSS Made Simpler 333

particular, the roundness complexity of VSS with external dealer, but this work
focuses on the setting of statistical security.

Our work is also related to the studies on randomness complexity of crypto-
graphic protocols [7,8,27]. In these works, the randomness complexity is defined
as a total number of bits generated by the honest parties. In our work, we seek
to optimize randomness complexity of the dealer, i.e., the number of random
bits generated by her, while not restricting that of the parties. Hereby, in our
protocol of Sect. 4, the dealer’s randomness complexity is reduced to zero.

1.4 Organization

After presenting relevant notation and definitions in Sect. 2, we introduce VSS-
NID based on Maurer’s scheme in Sect. 3 and the VSS-NID with no randomness
from the dealer in Sect. 4. Concluding remarks and open questions are discussed
in Sect. 5.

2 Preliminaries

Let F be a finite field of appropriate size. We denote by x ←R X a uniformly
random sampling of an element x from its domain X . The scalar product of
x, y ∈ F

n is written as 〈x, y〉. The cardinality of a set A is denoted as |A|. For
M ∈ F

n×e, and A ⊆ {1, . . . , n} we denote by MA ∈ F
|A|×e a restriction of

M to rows whose indexes are in A. We set [n] = {1, 2, . . . , n}. The expression
n∨

i=0

xi denotes the OR operation on the bits x0, x1, . . . , xn. For any n ∈ N, and

x,y ∈ F
n, we will write the element-wise summation of these vectors as x + y

(and replacing “+” with “−” denotes the element-wise subtraction). Running
an algorithm A on an input x and obtaining the output y will be written as
y = A(x).

2.1 Communication and Adversary Models

We assume that a set of n parties P = {P1, . . . , Pn} and an extra party called a
dealer D are connected by a synchronous network3 of pairwise channels, which
are private and authenticated. In addition, we assume that all the entities have
access to a broadcast channel.

A computationally unbounded adversary is allowed to corrupt D and some
subset of P in a static manner, meaning that the corrupted entities are decided
prior to the protocol execution.

3 In asynchronous network, the global clocking is present so that the protocol execution
can be divided into rounds, and hereby, a failure to send a message is easy to detect,
for every player. Note that to prevent malleability type of attacks, parties should not
be able to see data sent by others before they sent theirs. A strict synchronization
enforces this in an obvious way.

334 Y. Desmedt and K. Morozov

Adversary can be passive in which case she follows the protocol, or active in
which case she can deviate from the protocol in an arbitrary manner.

We denote by an access structure a non-empty collection Γ of subsets A ⊆ P,
if Γ is closed under taking supersets: ∀A ∈ Γ , and all B ⊆ P with A ⊆ B it
holds that B ∈ Γ . In other words, we require access structures to be monotone.
The subsets in Γ are called access sets. We denote by an adversary structure a
collection Λ of subsets A ⊆ P, if Λ is closed under taking subsets: ∀A ∈ Λ, and
∀B ⊆ P with B ⊆ A it holds that B ∈ Λ. The subsets in Λ are called forbidden
sets. We call a forbidden set maximal, if after adding any new element to it, the
resulting set will no longer belong to Λ.

In our work, we assume that Λ satisfies the Q3 condition [22], meaning that
there exists no three sets in Λ whose union covers P. Note that in (t, n)-threshold
case, the Q3 condition is equivalent to t < n/3.

Our protocols guarantee perfect security (see Definition 1) meaning that they
provide perfect privacy, while correctness and commitment are guaranteed with
zero error.

Q3 condition on Λ implies that we can lift an assumption on access to broad-
cast channel for the price that the parties simulate it using Byzantine agreement.

In the protocols which we consider, if a corrupt party fails to broadcast a
prescribed message, she will be declared dishonest. For simplicity of our analysis,
we assume that corrupt parties do not take this course of action. If a corrupt
party fails to send a prescribed message over a private channel, then the honest
party will assume that a default value was sent.

For convenience sake, we will occasionally abuse our notation by associating
P with [n] rather than {P1, . . . , Pn}.

2.2 (Verifiable) Secret Sharing

A secret sharing scheme consists of two protocols. The sharing protocol is used
by the dealer D to distribute shares of a secret s ∈ F to the parties in P
according to an access structure Γ . The reconstruction protocol can be used by
any set of parties in Γ to compute s from their shares. In this work, we focus on
linear secret sharing scheme (LSSS) [11,12], where the shares are computed as
a linear function of the secret and the randomness. Consequently, the secret is
reconstructed as a linear function of the involved shares. An LSSS for a monotone
access structure Γ associated with a matrix G ∈ F

n×k is constructed as follows:

Sharing Protocol:

(1) On input a secret s ∈ F, D computes r1, . . . , rk−1 ←R F, and then
(s1, . . . , sn)T = G(s, r1, . . . , rk−1)T .

(2) D privately sends si to Pi.

Reconstruction Protocol: For every set B ∈ Γ , the linear span of GB must
contain (1, 0, . . . , 0). Therefore, there must exist αB ∈ F

|B| (called a reconstruc-
tion vector) such that αBMB = (1, 0, . . . , 0). Let sB ∈ F

|B| denote a vector of

VSS Made Simpler 335

shares held by the parties in B. Then, they reconstruct the secret by computing
s = 〈αB , sTB〉.

The above presentation is a simplification of the general case, where each
party can hold more than one share by “owning” more than one row of G. As
pointed out in [11, p. 326]: “... the generalization to many rows per player is
straightforward...”, but the notation would become more complicated.

A (t, n) threshold Shamir secret sharing scheme [35] works as follows. In the
sharing protocol, for fixed and public x1, . . . , xn ∈ F, D computes a1, . . . , at ←R

F, sets a0 = s, hereby defining a polynomial f(x) = a0 + a1x + . . . + atx
t of

degree at most t, and then privately sends si = f(xi) to Pi for i = 1, . . . , n.
Now, Γ consists of all sets of P of size at least t + 1, and Λ consists of those
of size at most t. The reconstruction protocol uses Lagrange interpolation to
compute a0 = s. Shamir scheme can easily be shown to be linear by taking in
the above general definition: t = k − 1, ri = ai for i = 1, . . . , t, and G to be the
Vandermonde matrix.

In verifiable secret sharing [10] the sharing protocol includes a verification
procedure, in which the dealer is involved, such that either the honest parties
ensure that they hold consistent shares or a corrupt dealer is disqualified.

In our scenario of verifiable secret sharing with non-interactive dealer (VSS-
NID), the dealer performs a non-interactive sharing protocol. Then, the parties
execute a verification protocol which ensures consistency of shares, while the
reconstruction protocol works as in ordinary VSS.

Definition 1. VSS-NID is called perfectly Λ-secure if the following properties
hold, even if the adversary corrupts the parties in Λ:

(1) Privacy: If D is honest, then the adversary learns no information about s
during an execution of both sharing and verification protocols.

(2) Correctness: If D is honest, then the honest parties will output s in the
reconstruction protocol.

(3) Commitment: If D is corrupt, then given that the verification protocol suc-
ceeds, there exists a unique value s∗ ∈ F, such that in the reconstruction
protocol, the honest parties will output s∗ regardless of the behavior of cor-
rupt parties.

A primitive called distributed commitment [11] differs from VSS in that it
requires the dealer to submit the secret along with her local randomness in the
reconstruction protocol.

We call the shares “almost consistent”, if they are consistent everywhere
except for a forbidden set of the Q3 access structure. For example, consider a
(1, 4)-Shamir scheme where the polynomial of degree 1 (a “line”) is used. Then,
if all the shares are lying on the line, then they are called consistent, and if only
one of them is not on the line, then they are called almost consistent.

3 VSS-NID for Maurer’s Scheme

Let us present a VSS-NID scheme tolerating Q3 active adversaries which is
inspired by Maurer VSS [30]. The latter is based on the replicated secret sharing

336 Y. Desmedt and K. Morozov

scheme [24]. In this scheme, D associates a random field element to every for-
bidden set A ∈ Λ, and then every party not in A receives this element as a part
of her share. The secret is masked by the sum of the elements in a one-time pad
manner.

Let Λ1, . . . , Λk ∈ Λ be the list of all maximal forbidden sets of Λ. The sharing
protocol is provided in Fig. 1, and the verification and reconstruction protocols
are provided respectively in Figs. 2 and 3.

Lemma 1 ([24,30]). The sharing protocol in Fig. 1 leaks no information on s
to any subset of parties in Λ.

Proof (Sketch). Any (forbidden) set of parties in Λ is jointly missing at least one
element ri that is masking s in the one-time pad manner. �	

Maurer observed [30] that as long as the parties holding the same elements
check their consistency in a pairwise manner, the replicated scheme can be turned
into VSS. If inconsistency is detected, the party complains in public and D
broadcasts the share in question.

We modify this step such that if inconsistencies are found, the parties com-
plain and broadcast the elements in question among themselves. Then, the local
computation stage allows the honest parties to agree on a correct element or
to disqualify a corrupt D. We provide the verification and reconstruction pro-
tocols in, respectively, Figs. 2 and 3. The reconstruction protocol is the same as
in Maurer scheme [30], we provide it for self-containment. Note that here, the
broadcast is not required for reconstruction.

Fig. 1. VSS-NID based on Maurer’s scheme: sharing protocol.

Claim 1. The verification protocol in Fig. 2 leaks no information on s to the
parties in Λ.

Proof. As in [30], it follows by observing that a complaint is broadcast only when
the element ri is already known to the adversary. Therefore, making ri public
does not affect the privacy of s. �	

The following fact concerning the setting of our verification protocol with
honest dealer will be useful.

VSS Made Simpler 337

Fig. 2. VSS-NID based on Maurer’s scheme: verification protocol.

Claim 2. If D is honest and a complain was raised related to ri, then the Q3

condition implies that there exists a set A ∈ Λ such that for any i = 1, . . . , k,
there exists a unique value ri for which the set of values broadcast by the parties
in P \Λi, that are distinct from ri, correspond to A. Moreover, this unique value
ri was broadcast by a set of parties that belong to Γ .

Proof. First, since D was honest, a complain can only be raised due to a dis-
honest party. Second, we prove that if D was honest and a complain was raised,
there exists a set of parties B that belongs to Γ that will broadcast the same
value, i.e., ri, they received from D. Let us call A the set of parties in P \ Λi

that broadcast values different from the one received from the dealer, i.e., dif-

Fig. 3. VSS-NID based on Maurer’s scheme: reconstruction protocol.

338 Y. Desmedt and K. Morozov

ferent from ri. We now claim that B = P \ (Λi ∪ A) ∈ Γ . Indeed, this follows
immediately from the Q3 property.

Finally, due to our first observation, we know some A ∈ Λ exists and our
definition of A used in our proof is the same as the one in our claim. �	
Claim 3. An honest D is never declared dishonest in the verification protocol
of Fig. 2.

Proof. Follows by observing that if D is honest then the unique value ri in
Step (a) of the local computation always exists by Claim 2. Then, the value of
ri which are not equal to ri can only be broadcast by parties in Λ, therefore D
is not declared dishonest in Step (b) of the local computation. �	
Lemma 2. If the verification protocol of Fig. 2 succeeds, then there exists s∗ ∈ F

such that in the reconstruction protocol the honest parties will output s∗.

Proof. Note that the shares of honest parties consistently define some value
s∗ ∈ F as long as their corresponding values ri are the same for all i = 1, . . . , k.
This point is ensured in Step (a) of the local computation in the verification pro-
tocol. Then, these (consistent) values are reconstructed regardless of the values
submitted by parties in A ∈ Λ. �	
Theorem 1. The scheme presented in Figs. 1, 2 and 3 constitute a VSS-NID
tolerating Q3 active adversaries.

Proof. We use the results given above. Correctness: Follows by Claim 3 and
correctness of the replicated scheme. Privacy: Follows by Lemma 1 and Claim 1.
Commitment: Follows by Lemma 2. Using the sets Ci, we arrange an overall
check for all the shares ri and all the sets P \ Λi. �	

It is easy to verify that the communication, computation and dealer’s ran-
domness complexities of this scheme are polynomial in the size of the access
structure Γ .

4 Randomness Versus Interaction

The above results show that secret sharing schemes satisfying the Q3 condition,
even ideal ones, can be turned into a VSS without any additional randomness
generated by the dealer.

The next question one may ask could be: Can we further reduce dealer’s
randomness in VSS, preferably relieving the dealer of the need to generate any
randomness at all?

We can answer this question in affirmative using the following simple con-
struction. As before, the dealer D and the players are assumed to be connected
by the pairwise secure channels.

Although our idea may be applicable to the schemes supporting the general
access structures as well, we focus on the (t, n) Shamir scheme here, for the

VSS Made Simpler 339

didactic purposes. In our version of Shamir’s scheme, t players each generate a
random field element, send it to the dealer, and save it as their respective share.
The dealer uses the received values and his secret as the input to the Lagrange
interpolation to compute a polynomial of degree at most t, and then the shares
of the remaining n− t players, are defined and distributed according to the (t, n)
Shamir scheme.

We say that the scheme is passivelyt-private, if the passive adversary control-
ling at most t players has no information about the secret.

Lemma 3. If the dealer is honest, the above protocol results in a consistent
passively t-private (t, n)-Shamir sharing of dealer’s secret, assuming that at most
t − 1 players are corrupted by an active adversary.

Proof (Sketch). Consistency follows by observing that any t + 1 field elements
define the polynomial of degree at most t. Privacy follows by the standard argu-
ment that any t-subset of corrupt players is jointly missing at least one random
share generated by an honest player. Indeed, there must be at least one such
player in the above protocol, since at most t − 1 players are actively corrupt. �	

Note that the resulting scheme remains non-interactive in the sense that the
first t−1 players send their shares to the dealer, while she further contacts other
players.

If we allow the active adversary to corrupt up to t < n/3 players, then
the conditions of Lemma 3 are surely satisfied, and then the general MPC, or
alternatively the techniques from [14] for the special case of VSS, can be used
to verify consistency of the shares, even if the dealer is dishonest.

When extending this construction to general access structures, we may need
to allow interaction in the non-ideal case, since the player have to send random-
ness to the dealer and to obtain some of her shares in response. The extension
to the case of general access structures is rather straightforward.

5 Conclusion

We present new verifiable secret sharing schemes, where the dealer does not need
to interact with the parties. In particular, our second protocol (in Sect. 4) shows
how to relieve the dealer from the necessity to generate randomness in VSS-NID.

Our emphasis is on reducing the round and randomness complexity of the
dealer. Obviously, to achieve a truly cloud-friendly VSS, one should also have
minimal randomness for the parties (cloud servers). Hence, we wonder whether
our techniques can be applied in order to optimize the randomness used by the
parties or proving that this randomness is minimal (order-wise).

Our work looks at the process of VSS in an asymmetric way, in the sense that
we assume the dealer has less power than the other parties. We wonder whether
this viewpoint can be generalized.

Our verification protocol focused on the synchronous model. We leave the
asynchronous one as an open problem.

340 Y. Desmedt and K. Morozov

Acknowledgments. The authors would like to thank the anonymous reviewers for
their helpful comments.

References

1. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly-secure
multiparty computation. Cryptology ePrint Archive: Report 2011/136. https://
eprint.iacr.org/2011/136.pdf

2. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In:
STOC, pp. 52–61 (1993)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1–10 (1988)

4. Berlekamp, E.R., Welch, L.R.: Error correction of algebraic block codes. U.S.
Patent Number 4.633.470 (1986)

5. Blakley, G.: Safeguarding cryptographic keys. In: AFIPS 1979 National Computer
Conference, pp. 313–317 (1979)

6. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 13

7. Canetti, R., Kushilevitz, E., Ostrovsky, R., Rosen, A.: Randomness vs. fault-
tolerance. J. Cryptol. 13(1), 107–142 (2000). Conference version in PODC 1997

8. Blundo, C., De Santis, A., Persiano, G., Vaccaro, U.: Randomness complexity of
private computation. Comput. Complex. 8(2), 145–168 (1999)

9. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: STOC, pp. 11–19 (1988)

10. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract). In: FOCS, pp.
383–395 (1985)

11. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

12. Choudhury, A., Kurosawa, K., Patra, A.: The round complexity of perfectly secure
general VSS. In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 143–162. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20728-0 14

13. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable mul-
tiparty computation with nearly optimal work and resilience. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 14

14. Desmedt, Y., Morozov, K.: Parity Check based redistribution of secret shares. In:
ISIT, pp. 959–963 (2015)

15. Schoenmakers, B.: Verifiable secret sharing. In: van Tilborg, H.C.A., Jajodia, S.
(eds.) Encyclopedia of Cryptography and Security, vol. 1357. Springer, Boston
(2011). https://doi.org/10.1007/978-1-4419-5906-5 14

16. Serge, F., Ueli, M.: Linear VSS and distributed commitments based on secret
sharing and pairwise checks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442,
pp. 565–580. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-
9 36

https://eprint.iacr.org/2011/136.pdf
https://eprint.iacr.org/2011/136.pdf
https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/978-3-642-20728-0_14
https://doi.org/10.1007/978-3-540-85174-5_14
https://doi.org/10.1007/978-1-4419-5906-5_14
https://doi.org/10.1007/3-540-45708-9_36
https://doi.org/10.1007/3-540-45708-9_36

VSS Made Simpler 341

17. Fitzi, M., Garay, J., Gollakota, S., Rangan, C.P., Srinathan, K.: Round-optimal
and efficient verifiable secret sharing. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 329–342. Springer, Heidelberg (2006). https://doi.org/10.
1007/11681878 17

18. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifi-
able secret sharing and secure multicast. In: STOC, pp. 580–589 (2001)

19. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fact-track multiparty
computations with applications to threshold cryptography. In: PODC, pp. 101–111
(1998)

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

21. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and
Qs: detection of widespread weak keys in network devices. In: 21st USENIX Con-
ference on Security symposium (Security 2012), vol. 35 (2012)

22. Hirt, M., Maurer, U.: Player simulation and general adversary structures in perfect
multi-party computation. J. Cryptol. 13(1), 31–60 (2000). (Preliminary version in
PODC 1997: 25–34.)

23. Hirt, M., Maurer, U., Przydatek, B.: Efficient secure multi-party computation. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 12

24. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. Electron. Commun. Jpn. (Part III: Fundam. Electron. Sci.) 72(9), 56–
64 (1989)

25. Katz, J., Koo, C.-Y., Kumaresan, R.: Improving the round complexity of VSS in
point-to-point networks. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp.
499–510. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-
3 41

26. Kushilevitz, E., Mansour, Y.: Randomness in private computations. SIAM J. Dis-
cret. Math. 10(4), 647–661 (1997)

27. Kushilevitz, E., Ostrovsky, R., Rosen, A.: Amortizing randomness in private mul-
tiparty computations. In: PODC, pp. 81–90 (1998)

28. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 626–642. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 37

29. Ling, S., Wang, H., Xing, C.: Algebraic Curves in Cryptography. CRC Press, Boca
Raton (2013)

30. Maurer, U.M.: Secure multi-party computation made simple. Discret. Appl. Math.
154(2), 370–381 (2006). Journal version of Ueli M. Maurer: Secure Multi-party
Computation Made Simple. SCN 2002, 14–28

31. McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed-Solomon codes. Com-
mun. ACM 24(9), 583–584 (1981)

32. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: STOC, pp. 73–85 (1989)

33. Roth, R.: Introduction to Coding Theory. Cambridge University Press, Cambridge
(2006)

https://doi.org/10.1007/11681878_17
https://doi.org/10.1007/11681878_17
https://doi.org/10.1007/3-540-44448-3_12
https://doi.org/10.1007/978-3-540-70583-3_41
https://doi.org/10.1007/978-3-540-70583-3_41
https://doi.org/10.1007/978-3-642-32009-5_37
https://doi.org/10.1007/978-3-642-32009-5_37

342 Y. Desmedt and K. Morozov

34. Patra, A., Choudhary, A., Rabin, T., Rangan, C.P.: The round complexity of ver-
ifiable secret sharing revisited. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 487–504. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03356-8 29

35. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
36. Stinson, D.R., Wei, R.: Unconditionally secure proactive secret sharing scheme

with combinatorial structures. In: Heys, H., Adams, C. (eds.) SAC 1999. LNCS,
vol. 1758, pp. 200–214. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-46513-8 15

https://doi.org/10.1007/978-3-642-03356-8_29
https://doi.org/10.1007/978-3-642-03356-8_29
https://doi.org/10.1007/3-540-46513-8_15
https://doi.org/10.1007/3-540-46513-8_15

Bidirectional Asynchronous Ratcheted
Key Agreement with Linear Complexity

F. Betül Durak1 and Serge Vaudenay2(B)

1 Robert Bosch LLC - Research and Technology Center, Pittsburgh, USA
2 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

serge.vaudenay@epfl.ch

Abstract. Following up mass surveillance and privacy issues, modern
secure communication protocols now seek more security such as for-
ward secrecy and post-compromise security. They cannot rely on an
assumption such as synchronization, predictable sender/receiver roles,
or online availability. Ratcheting was introduced to address forward
secrecy and post-compromise security in real-world messaging protocols.
At CSF 2016 and CRYPTO 2017, ratcheting was studied either with-
out zero round-trip time (0-RTT) or without bidirectional communica-
tion. At CRYPTO 2018, ratcheting with bidirectional communication
was done using heavy key-update primitives. At EUROCRYPT 2019,
another protocol was proposed. All those protocols use random oracles.
Furthermore, exchanging n messages has complexity O(n2) in general.

In this work, we define the bidirectional asynchronous ratcheted key
agreement (BARK) with formal security notions. We provide a simple
security model and design a secure BARK scheme using no key-update
primitives, no random oracle, an with O(n) complexity. It is based
on a public-key cryptosystem, a signature scheme, one-time symmet-
ric encryption, and a collision-resistant hash function family. We further
show that BARK (even unidirectional) implies public-key cryptography,
meaning that it cannot solely rely on symmetric cryptography.

1 Introduction

In standard communication systems, protocols are designed to provide messaging
services with end-to-end encryption. Essentially, secure communication reduces
to continuously exchanging keys, because each message requires a new key. In
bidirectional two-party secure communication, participants alternate their role
as senders and receivers. The modern instant messaging protocols are substan-
tially asynchronous. In other words, for a two-party communication, the mes-
sages should be transmitted (or the key exchange should be done) even though
the counterpart is not online. Moreover, to be able to send the payload data
without requiring online exchanges is a major design goal called zero round trip
time (0-RTT). Finally, the moment when a participant wants to send a message

A full version of this paper is available as eprint 2018/889 [8].

c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 343–362, 2019.
https://doi.org/10.1007/978-3-030-26834-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_20&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_20

344 F. B. Durak and S. Vaudenay

is undefined, meaning that participants use random roles (sender or receiver)
without any synchronization. They could send messages at the same time.

Even though many systems were designed for the privacy of their users,
they rapidly faced security vulnerabilities caused by the compromises of the
participants’ states. In this work, compromising a participant means to obtain
some information about its internal state. We will call it exposure. The desired
security notion is that compromised information should not uncover more than
possible by trivial attacks. For instance, the compromised state of participants
should not allow decryption of messages exchanged in the past. This is called
forward secrecy. Typically, forward secrecy is obtained by updating states with
a one-way function x → H(x) → H(H(x)) → ... and deleting old entries [13,14].
A popular technique in mechanics, that allows forward movement but prevents
moving backward is the use of a device called ratchet. In the context of secure
communication, a ratchet-like action is achieved by using randomness in every
state update so that a compromised state is not sufficient for the decryption of
any future communication either. This is called future secrecy or backward secrecy
or post-compromise security or even self-healing. One thesis of the present work
is that healing after an active attack involving a forgery is not a nice property.
We show that it implies insecurity. After one participant is compromised and
impersonated, if communication self-heals, it means that some adversary can
make a trivial attack which is not detected. We also show other insecurity cases.
Hence, we rather mandate communication to be cut after active attacks.

Previous Work. The security of key exchange was studied by many authors. The
prominent models are the CK and eCK models [4,12].

Techniques for ratcheting first appeared in real life protocols. It appeared
in the Off-the-Record (OTR) communication system by Borisov et al. [3]. The
Signal protocol designed by Open Whisper Systems [16] later gained a lot of
interest from message communication companies. Today, the WhatsApp messag-
ing application reached billions of users worldwide [18]. It uses the Signal pro-
tocol. A broad survey about various techniques and terminologies was made at
S&P 2015 by Unger et al. [17]. At CSF 2016, Cohn-Gordon et al. [6] studied bidi-
rectional ratcheted communication and proposed a protocol. However, their pro-
tocol does not offer 0-RTT and requires synchronized roles. At EuroS&P 2017,
Cohn-Gordon et al. [5] formally studied Signal.

0-RTT communication with forward secrecy was achieved using puncturable
encryption by Günther et al. at EUROCRYPT 2017 [9]. Later on, at EURO-
CRYPT 2018, Derler et al. made it reasonable practical by using Bloom filters [7].

At CRYPTO 2017, Bellare et al. [2] gave a secure ratcheting key exchange
protocol. Their protocol is unidirectional and does not allow receiver exposure.

At CRYPTO 2018, Poettering and Rösler (PR) [15] studied bidirectional
asynchronous ratcheted key agreement and presented a protocol which is secure
in the random oracle model. Their solution further relies on hierarchical identity-
based encryption (HIBE) but offers stronger security than required for practical
usage, leaving ample room for improving the protocol. At the same conference,
Jaeger and Stepanovs (JS) [10] had similar results but focused on secure commu-

BARK Agreement with Linear Complexity 345

nication rather than key agreement. They proposed another protocol relying on
HIBE. In both results, HIBE is used to construct encryption/signature schemes
with key-update security. This is a rather new notion allowing forward secrecy
but is expensive to achieve. In both cases, it was claimed that the depth of
HIBE is really small. However, when participants are disconnected and continue
sending several messages, the depth increases rapidly. Consequently, HIBE needs
unbounded depth.

At EUROCRYPT 2019, Jost, Maurer, and Mularczyk (JMM) [11] designed
another ratcheting protocol which has “near-optimal” security, and does not use
HIBE. Nevertheless, it still has a huge complexity: When messages alternate well
(i.e., no participant sends two messages without receiving one in between), pro-
cessing n messages requires O(n) operations in total. However, when messages
accumulate before alternating (for instance, because the participants are discon-
nected by the network), the complexity becomes O(n2). This is also the case for
PR [15] and JS [10].1 One advantage of the JMM protocol [11] comes with the
resilience with random coin leakage as discussed below.

At EUROCRYPT 2019, Alwen, Coretti, and Dodis (ACD) [1] designed two
other ratcheting protocols aiming at instant decryption, i.e. the ability to decrypt
even though some previous messages have not been received yet. This is closer
to real-life protocols but this comes with a potential threat: keys to decrypt
un-delivered messages are stored until the messages are delivered. Hence, the
adversary could choose to hold messages and decrypt them with future state
exposure. This prevents forward secrecy. Furthermore, unless the direction of
communication changes (or more precisely, if the epoch increases), their protocols
are not really ratcheting as no random coins are used to update the state. This
weakens post-compromise security as well. In Table 1, we call this weaker security
“id-optimal” (not to say “insecure” in the model we are interested in) because
it is the best we can obtain with immediate decryption. The lighter of the two
protocols is not competing in the same category because it mostly uses symmetric
cryptography. It is more efficient but with lower security. Namely, corrupting the
state of a participant A implies impersonating B to A, and also decrypting the
messages that A sends. Other protocols do not have this weakness. The second
ACD protocol [1] (in the full version) uses asymmetric cryptography.

Some authors address the corruption of random coins in different ways.
Bellare et al. [2] and JMM [11] allow leaking the random coins just after use.
JS [10] allow leaking it just before usage only. ACD [1] allow adversarially chosen
random coins. In most of the protocols, revealing (or choosing) the random coins
imply revealing some part of the new state which allows decrypting incoming
messages. It is comparable to state exposure. JMM [11] offers better security as
revealing the random coins reveals the new state (and allows to decrypt) only
when the previous state was already known.

1 For JS, this is only visible in the corrected version of the paper on eprint [10]. Our
complexity analysis is based on how those protocols have been implemented (https://
github.com/qantik/ratcheted). It was presented at the WSM 2019 workshop.

https://github.com/qantik/ratcheted
https://github.com/qantik/ratcheted

346 F. B. Durak and S. Vaudenay

Table 1. Comparison of protocols: complexity for exchanging n messages in alter-
nating or accumulating mode, with timing (in seconds) for n = 900 of comparable
implementations and asymptotic; and types of coin-leakage security (⇒ state exposure
means coins leakage implies a state exposure).

Security Complexity Coins leakage

resilience

Model

Alternating Accumulating

Poettering-Rösler [15] Optimal 86.3, O(n) 5897, O(n2) No ROM

Jaeger-Stepanovs [10] Optimal 58.1, O(n) 9087, O(n2) Pre-send leakage,

⇒ state exposure

ROM

Jost-Maurer-Mularczyk [11] Near-optimal 2.08, O(n) 11.4, O(n2) Post-send leakage ROM

BARK [this paper] Sub-optimal 1.46, O(n) 1.09, O(n) No Plain

Alwen-Coretti-Dodis [1] Id-optimal 1.18, O(n) 0.92, O(n) Chosen coins, ⇒
state exposure

Plain

Our Contributions. We give a definition for a bidirectional asynchronous key
agreement (BARK) along with security properties. We start setting the stage
with some definitions (such as matching status) then identify all cases leading
to trivial attacks. We split them into direct and indirect leakages. Then, we
define security with a KIND game (privacy). We also consider the resistance to
forgery (impersonation) and the resistance to attacks which would heal after
active attacks (RECOVER security). We use these two notions as building blocks
to prove KIND-security. We finally construct a secure protocol. Our design choices
are detailed below and compared to other papers.

1. Simplicity. Contrary to previous work, we define KIND security in a very
comprehensive way by bringing all notions under the umbrella of a cleanness
predicate which identifies and captures all trivial ways of attacking.

2. Strong security. In the same line as previous works, the adversary in our
model can see the entire communication between participants and control
the delivery. Of course, he can replace messages with anything. Scheduling
communications is under the control of the adversary. This means that the
time when a participant sends or receives messages is decided by the adver-
sary. Moreover, the adversary is capable of corrupting participants by making
exposures of their internal data. We separate two types of exposures: the expo-
sure of the state (that is kept in internal machinery of a participant) and the
exposure of the key (which is produced by the key agreement and given to an
external protocol). This is because states are (normally) kept secure in our
protocol while the generated key is transferred to other applications which
may leak for different reasons. We do not consider exposure of the random
coins.

3. Slightly sub-optimal security. Using the result from exposure allows the
adversary to be active, e.g. by impersonating the exposed participant. How-
ever, the adversary is not allowed to use exposures to make a trivial attack.
Identifying such trivial attacks is not easy. As a design goal, we adopt not to
forbid more than what the intuitive notion of ratcheting captures. We do for-
bid a bit more than PR [15] and JS [10] which are considered of having optimal

BARK Agreement with Linear Complexity 347

security and than JMM [11] (which has near-optimal security)2, though,
allowing lighter building blocks. Namely, we need no key-update primitives
and have linear-time complexity in terms of the number of exchanged mes-
sages, even when the network is occasionally down. This translates to an
important speedup factor, as shown on Table 1. We argue that this is
a reasonable choice enabling ratchet security as we define it: unless trivial
leakage, a message is private as long as it is acknowledged for reception in a
subsequent message from the receiver.

4. Sequence integrity. We believe that duplex communication is reliably
enforced by a lower level protocol. This is assumed to solve non-malicious
packet loss e.g. by resend requests and also to reconstruct the correct sequence
order. What we only have to care of is when an adversary prevents the deliv-
ery of a message consistently. We make the choice to make the transmission
of the next messages impossible under such an attack. Contrarily, ACD [1]
advocates for immediate decryption, even though one message is missing.
This lowers the security and we chose not to have it.

In the BARK protocol, the correctness implies that both participants generate
the same keys. We define the stages matching status, direct leakage, indirect
leakage. We aim to separate trivial attacks and trivial forgeries from non-trivial
cases with our definitions. Direct and indirect leakages define when the adversary
can trivially deduce the key generated due to the exposure of a participant who
can either be the same participant (direct) or their counterpart (indirect).

We construct a secure BARK protocol. We build our constructions on top of
a public-key cryptosystem and a signature scheme and achieve strong security,
without key-update primitives or random oracles. We further show that a weakly
secure unidirectional BARK implies public-key encryption.

Notations. We have two characters: Alice (A) and Bob (B). When P designates
a participant, P refers to P’s counterpart. We use the roles send and rec for
sender and receiver respectively. We define send = rec and rec = send. When
participants A and B have exclusive roles (like in unidirectional cases), we call
them sender S and receiver R. PPT stands for probabilistic polynomially bounded.
Negligible in terms of λ means in ∩c>0O(λ

−c) as λ → +∞.

Structure of the Paper. In Sect. 2, we define our BARK protocol along with cor-
rectness definition and KIND security. Section 3 proves that a simple unidirec-
tional scheme implies public-key cryptography. In Sect. 4 we define the security
notions unforgeability and unrecoverability. In Sect. 5, we give our BARK con-
struction. Due to space limitation, some material was moved to the full version
of this paper [8], including the definition of underlying primitives and the proofs
of our results.

2 Those terms are more formally explained on p. 12.

348 F. B. Durak and S. Vaudenay

2 Bidirectional Asynchronous Ratcheted Communication

2.1 BARK Definition and Correctness

Definition 1 (BARK). A bidirectional asynchronous ratcheted key agreement
(BARK) consists of the following PPT algorithms:

– Setup(1λ)
$−→ pp: This defines the common public parameters pp.

– Gen(1λ, pp) $−→ (sk, pk): This generates the secret key sk and the public key pk
of a participant.

– Init(1λ, pp, skP, pkP,P) → stP: This sets up the initial state stP of P given his
secret key and the public key of his counterpart.

– Send(stP)
$−→ (st ′

P, upd,k): The algorithm inputs a current state stP for P ∈
{A,B}. It outputs a tuple (st ′

P, upd,k) with an updated state st ′
P, a message

upd, and a key k.
– Receive(stP, upd) → (acc, st ′

P,k): The algorithm inputs (stP, upd) where P ∈
{A,B}. It outputs a triple consisting of a flag acc ∈ {true, false} to indicate an
accept or reject of upd information, an updated state st ′

P, and a key k i.e.
(acc, st ′

P,k).

For convenience, we define the following initialization procedure for all games.
It returns the initial states as well as some publicly available information z.

Initall(1λ, pp):
1: Gen(1λ, pp) → (skA, pkA)

2: Gen(1λ, pp) → (skB, pkB)

3: stA ← Init(1λ, pp, skA, pkB,A)

4: stB ← Init(1λ, pp, skB, pkA,B)
5: z ← (pp, pkA, pkB)

6: return (stA, stB, z)

Initialization is splittable in the sense that private keys can be generated by their
holders with no need to rely on an authority (except maybe for authentication of
pkA and pkB). Other protocols from the literature assume a trusted initialization.

We consider bidirectional asynchronous communications. We can see, in
Fig. 1, Alice and Bob running some sequences of Send and Receive operations
without any prior agreement. Their time scale is different. This means that
Alice and Bob run algorithms in an asynchronous way. We consider a notion
of time relative to a participant P. Formally, the time t for P is the number of
elementary steps that P executed since the beginning of the game. We assume
no common clock. However, events occur in a game and we may have to compare
the time of two different participants by reference to the scheduling of the game.
E.g., we could say that time tA for A happens before time tB for B. Normally,
scheduling is under the control of the adversary except in the CORRECT game
in which there is no adversary. There, we define the scheduling by a sequence of
actions. Reading the sequence tells who executes a new step of the protocol.

The protocol also uses random roles. Alice and Bob can both send and
receive messages. They take their role (sender or receiver) in a sequence, but
the sequences of roles of Alice and Bob are not necessarily synchronized. Send-
ing/receiving is refined by the RATCH(P, role, [upd]) call in Fig. 2.

BARK Agreement with Linear Complexity 349

Correctness. We say that a ratcheted communication protocol functions cor-
rectly if the receiver accepts the update information upd and generates the
same key as its counterpart. Correctness implies that the received keys for
participant P have been generated in the same order as sent keys of partici-
pant P. We formally define the CORRECT game in Fig. 2. We define variables.
receivedP

key (respectively sentPkey) keeps a list of secret keys that are generated by
P when running Receive (respectively, Send). Similarly, receivedP

msg (respectively
sentPmsg) keeps a list of upd information that are received (respectively sent) by
P and accepted by Receive. The received sequences only keep values for which
acc = true.

Each variable v such as receivedP
msg, kP, or stP is relative to a participant P.

We denote by v(t) the value of v at time t for P. For instance, receivedA
msg(t) is

the sequence of upd which were received and accepted by A at time t for A.

Fig. 1. The message exchange between Alice and Bob.

We initialize the two participants in the CORRECT game in Fig. 2. The
scheduling is defined by a sequence sched of tuples of form either (P, send) (say-
ing that P must send) or (P, rec) (saying that P must receive). In this game,
communication between the participants uses a waiting queue for messages in
each direction. Each participant has a queue of incoming messages and is pulling
them in the order they have been pushed in. Sent messages from P are buffered
in the queue of P.

350 F. B. Durak and S. Vaudenay

Fig. 2. The CORRECT game.

Definition 2 (Correctness of BARK). We say that BARK is correct if for all
sequence sched, the CORRECT game of Fig. 2 never returns 1. Namely, for each
P, receivedP

key is always prefix of sentPkey
3 and each RATCH(., rec, .) call accepts.

Security. We model our security notion with an active adversary who can have
access to some of the states of Alice or Bob along with access to their secret
keys enabling them to act both as a sender and as a receiver. For simplicity,
we have only Alice and Bob as participants. (Models with more participants
would be asymptotically equivalent.) We focus on three main security notions
which are key indistinguishability (denoted as KIND) under the compromise of
states or keys, unforgeability of upd information (FORGE) by the adversary which
will be accepted, and recovery from impersonation (RECOVER) which will make
the two participants restore secure communication without noticing a (trivial)
impersonation resulting from a state exposure. A challenge in these notions is
to eliminate the trivial attacks. FORGE and RECOVER security will be useful to
prove KIND security.

2.2 KIND Security

The adversary can access four oracles called RATCH, EXPst, EXPkey, and TEST.

3 By saying that receivedP
key is prefix of sentPkey, we mean that when n is the number of

keys generated by P running Receive, then these keys are the first n keys generated
by P running Send.

BARK Agreement with Linear Complexity 351

RATCH. This is essentially the message exchange procedure. It is defined in
Fig. 2. The adversary can call it with three inputs, a participant P, where
P ∈ {A,B}; a role of P; and an upd information if the role is rec. The adversary
gets upd (for role = send) or acc (for role = rec) in return.

EXPst. The adversary can expose the state of Alice or Bob. It inputs P ∈ {A,B}

to the EXPst oracle and it receives the full state stP of P.
EXPkey. The adversary can expose the generated key by calling this oracle. Upon

inputting P, it gets the last key kP generated by P. If no key was generated,
⊥ is returned.

TEST. This oracle can be called only once to receive a challenge key which is
generated either uniformly at random (if the challenge bit is b = 0) or given
as the last generated key of a participant P specified as input (if the challenge
bit is b = 1). The oracle cannot be queried if no key was generated yet.

We specifically separate EXPkey from EXPst because the key k generated by
BARK will be used by an external process which may leak the key. Thus, EXPkey

can be more frequent than EXPst, however it harms security less.
To define security, we avoid trivial attacks. Capturing the trivial cases in a

broad sense requires a new set of definitions. All of them are intuitive.
Intuitively, P is in a matching status at a given time if his state is not depen-

dent on an active attack (i.e. could result from a CORRECT game).

Definition 3 (Matching status). We say that P is in a matching status at
time t for P if 1. at any moment of the game before time t for P, receivedP

msg is
a prefix of sentPmsg—this defines the time t for P when P sent the last message in

receivedP
msg(t); 2. at any moment of the game before time t for P, receivedP

msg is
a prefix of sentPmsg. We further say that time t for P originates from time t for
P.

The first condition clearly states that each of the received (and accepted) upd
message was sent before by the counterpart of P, in the same order, without any
loss in between. The second condition similarly verifies that those messages from
P only depend on information coming from P. In Fig. 1, Bob is in a matching
status with Alice because he receives the upd information in the exact order as
they have sent by Alice (i.e. Bob generates k2 after k1 and k4 after k2 same as
it has sent by Alice). In general, as long as no adversary switches the order of
messages or creates fake messages successfully for either party, the participants
are always in a matching status.

The key exchange literature often defines a notion of partnering which is
simpler. Here, asynchronous random roles make it more complicated.

Here is an easy property of the notion of matching status.

Lemma 4. If P is in a matching status at time t, then P is also in a matching
status at any time t0 � t. Similarly, if P is in a matching status at time t and
t for P originates from t for P, then P is in a matching status at time t.

352 F. B. Durak and S. Vaudenay

Definition 5 (Forgery). Given a participant P in a game, we say that upd ∈
receivedP

msg is a forgery if at the moment of the game just before P received upd,
P was in a matching status, but no longer after receiving upd.

In a matching status, any upd received by P must correspond to an upd sent
by P and the sequences must match. This implies the following notion.

Definition 6 (Corresponding RATCH calls). Let P be a participant. We con-
sider the RATCH(P, rec, .) calls by P returning true. We say that the ith receiving
call corresponds to the jth RATCH(P, send) call if i = j and P is in matching
status at the time of this ith accepting RATCH(P, rec, .) call.

Lemma 7. In a correct BARK protocol, two corresponding RATCH(P, rec, upd)
and RATCH(P, send) calls generate the same key kP = kP.

Definition 8 (Ratcheting period of P). A maximal time interval during
which there is no RATCH(P, send) call is called a ratcheting period of P.

In Fig. 1, the intervals T1 − T3 and T5 − T6 are ratcheting periods.
We now define when the adversary can trivially obtain a key generated by P

due to an exposure. We distinguish the case when the exposure was done on P

(direct leakage) and on P (indirect leakage).

Definition 9 (Direct leakage). Let t be a time and P be a participant. We
say that kP(t) has a direct leakage if one of the following conditions is satisfied:

– There is an EXPkey(P) at a time te such that the last RATCH call which is
executed by P before time t and the last RATCH call which is executed by P

before time te are the same.
– P is in a matching status and there exists t0 � te � tRATCH � t and t such

that time t originates from time t; time t originates from time t0; there is
one EXPst(P) at time te; there is one RATCH(P, rec, .) at time tRATCH; and
there is no RATCH(P, ., .) between time tRATCH and time t.

P P

t0

(EXPst) te

tRATCH

t

tReceive

no RATCH

In the first case, it is clear that EXPkey(P) gives
kP(te) = kP(t). In the second case (in the figure4),
the state which leaks from EXPst(P) at time te allows
to simulate all deterministic Receive (by skipping all
Send) and to compute the key kP(tRATCH) = kP(t).
The reason why we can allow the adversary to skip all
Send is that they make messages which are supposed
to be delivered to P after time t, so they have no
impact on kP(t).

Consider Fig. 1. Suppose t is in between time T3
and T4. According to our definition P = A and the
last RATCH call is at time T3. It is a Send, thus the

4 Origin of dotted arrows indicate when a time originates from.

BARK Agreement with Linear Complexity 353

second case cannot apply. The next RATCH call is at time T4. In this case, kA(t)
has a direct leakage if there is a key exposure of Alice between T3 and T4.

Suppose now that T8 < t < T9. We have P = B, the last RATCH call is a
Receive, it is at time tRATCH = T8, and t originates from time t = T0 which itself
originates from the origin time t0 = TInit for B. We say that t has a direct leakage
if there is a key exposure between T8−T9 or a state exposure of Bob before time
T8. Indeed, with this last state exposure, the adversary can ignore all Send and
simulate all Receive to derive k0.

Definition 10 (Indirect leakage). We consider a time t and a participant P.
Let tRATCH be the time of the last successful RATCH call and role be its input role.
(We have kP(tRATCH) = kP(t).) We say that kP(t) has an indirect leakage if P

is in matching status at time t and one of the following conditions is satisfied

– There exists a RATCH(P, role, .) corresponding to that RATCH(P, role, .) and
making a kP which has a direct leakage for P.

– There exists t ′ � tRATCH � t and t � te such that P is in a matching status
at time te, t originates from t, te originates from t ′, there is one EXPst(P)
at time te, and role = send.

P P

t ′

tRATCH

t

t

te (EXPst)
Send

no RATCH

In the first case, kP(t) = kP(tRATCH) is also com-
puted by P and leaks from there. The second case
(in the figure) is more complicated: it corresponds to
an adversary who can get the internal state of P by
EXPst(P) then simulate all Receive with messages from
P until the one sent at time tRATCH, ignoring all Send
by P, to recover kP(t).

For example, let t be a time between T1 and T2 in
Fig. 1. We take P = A. The last RATCH call is at time
tRATCH = T1, it is a Send and corresponds to a Receive
at time T10, but t originates from time t = TInit. We
say that t has an indirect leakage for A if there exists
a direct leakage for P = B at a time between T10 and T11 (first condition) or
there exists a EXPst(B) call at a time te (after time t = TInit), originating from
a time t ′ before time T1, so te < T10 (second condition). In the latter case, the
adversary can simulate Receive with the updates sent at time T0 and T1 to derive
the key k1.

Exposing the state of a participant gives certain advantages to the attacker
and make trivial attacks possible. In our security game, we avoid those attack sce-
narios. In the following lemma, we show that direct and indirect leakage capture
the times when the adversary can trivially win. The proof is straightforward.

Lemma 11 (Trivial attacks). Assume that BARK is correct. For any t and
P, if kP(t) has a direct or indirect leakage, the adversary can compute kP(t).

So far, we mostly focused on matching status cases but there could be situ-
ations with forgeries. Some are unavoidable. We call them trivial forgeries.

354 F. B. Durak and S. Vaudenay

Definition 12 (Trivial forgery). Let upd be a forgery received by P. At the
time t just before the RATCH(P, rec, upd) call, P was in a matching status. We
assume that time t for P originates from time t for P. If there is an EXPst(P)
call during the ratcheting period of P starting at time t, we say that upd is a
trivial forgery.

We define the KIND security game in Fig. 3. Essentially, the adversary plays
with all oracles. At some point, he does one TEST(P) call which returns either
the same result as EXPkey(P) (case b = 1) or some random value (case b = 0).
The goal of the adversary is to guess b. The TEST call can be done only once and
it defines the participant Ptest = P and the time ttest at which this call is made. It
also defines updtest, the last upd which was used (either sent or received) to carry
kPtest

(ttest) from the sender to the receiver. It is not allowed to make this call at
the beginning, when P did not generate a key yet. It is not allowed to make a
trivial attack as defined by a cleanness predicate Cclean appearing on Step 6 in
the KIND game in Fig. 3. Identifying the appropriate cleanness predicate Cclean is
not easy. It must clearly forbid trivial attacks but also allow efficient protocols.
In what follows we use the following predicates:

– Cleak: kPtest
(ttest) has no direct or indirect leakage.

– CP
trivial forge: P received no trivial forgery until P has seen updtest.

(This implies that updtest is not a trivial forgery. It also implies that if P never
sees updtest, then P received no trivial forgery at all.)

– CP
forge: P received no forgery until P has seen updtest.

– Cratchet: updtest was sent by a participant P, then received and accepted by P,
then some updack was sent by P, then updack was received and accepted by P.
(Here, P could be Ptest or his counterpart. This accounts for the receipt of
updtest being acknowledged by P through updack.)

– CnoEXP(R): there is no EXPst(R) and no EXPkey(R) query. (R is the receiver.)

Lemma 11 says that the adopted cleanness predicate Cclean must imply Cleak in all
considered games. Otherwise, no security is possible. It is however not sufficient
as it only hardly trivial attacks with forgeries.

Cratchet targets that any acknowledged sent message is secure. Another way
to say is that a key generated by one Send starting a round trip must be safe.
This is the notion of healing by ratcheting. Intuitively, the security notion from
Cclean = Cleak ∧ Cratchet is fair enough.

Bellare et al. [2] consider unidirectional BARK with Cclean = Cleak ∧

CPtest

trivial forge ∧ CnoEXP(R). Other papers like PR [15] and JS [10] implicitly use
Cclean = Cleak ∧ CPtest

trivial forge as cleanness predicate. They show that this is suf-
ficient to build secure protocols but it is probably not the minimal cleanness
predicate. (It is nevertheless called “optimal”.) JMM [11] excludes cases where
Ptest received a (trivial) forgery then had an EXPst(Ptest) before receiving updtest.
Actually, they use a cleanness predicate (“near-optimal” security) which is some-
where between Cleak ∧ CPtest

trivial forge and Cleak ∧ CA
trivial forge ∧ CB

trivial forge: this
cleanness implies the JMM cleanness which itself implies the PR/JS cleanness.

BARK Agreement with Linear Complexity 355

In our construction (“sub-optimal”), we use the predicate Cclean = Cleak ∧

CA
forge ∧ CB

forge. However, in Sect. 4.1, we define the FORGE security (unforge-
ability) which implies that (Cleak ∧ CA

forge ∧ CB
forge)-KIND security and (Cleak ∧

CA
trivial forge ∧ CB

trivial forge)-KIND security are equivalent. (See Theorem 16.) One
drawback is that it forbids more than (Cleak ∧ CPtest

trivial forge)-KIND security. The
advantage is that we can achieve security without key-update primitives. We
will prove in Theorem 19 that this security is enough to achieve security with
the predicate Cclean = Cleak ∧ Cratchet, thanks to RECOVER-security which we
define in Sect. 4.2. Thus, our cleanness notion is fair enough.

Fig. 3. Cclean-KIND game. (Oracle RATCH is defined in Fig. 2.)

Definition 13 (Cclean-KINDsecurity). Let Cclean be a cleanness predicate. We
consider the KINDA

b,Cclean
game of Fig. 3. We say that the ratcheted key agreement

BARK is Cclean-KIND-secure if for any PPT adversary, the advantage

AdvA(1λ) =
∣
∣Pr

[

KINDA
0,Cclean

(1λ) → 1
]

− Pr
[

KINDA
1,Cclean

(1λ) → 1
]∣
∣

of A in KINDA
b,Cclean

(1λ) security game is negligible.

3 uniARK Implies KEM

We now prove that a weakly secure uniARK (a unidirectional asynchronous ratch-
eted key exchange—a straightforward variant of BARK in which messages can
only be sent from a participant whom we call S and can only be received by
another participant whom we call R) implies public key encryption. Namely, we
can construct a key encapsulation mechanism (KEM) out of it. We recall the KEM
definition in the full version [8]. We consider a uniARK which is KIND-secure for
the following cleanness predicate:

Cweak: the adversary makes only three oracle calls which are, in order,
EXPst(S), RATCH(S, send), and TEST(S).

356 F. B. Durak and S. Vaudenay

(Note that R is never used.) Cweak implies cleanness for all other considered
predicates. Hence, it is more restrictive. Our result implies that it is unlikely to
construct even such weakly secure uniARK from symmetric cryptography.

Theorem 14. Given a uniARK protocol, we can construct a KEM with the fol-
lowing properties. The correctness of uniARK implies the correctness of KEM.
The Cweak-KIND-security of uniARK implies the IND-CPA security of KEM.

Proof. Assuming a uniARK protocol, we construct a KEM as follows:

KEM.Gen(1λ)
$−→ (sk, pk): run uniARK.Setup(1λ)

$−→ pp, uniARK.Initall(1λ, pp) $−→
(stS, stR, z), and set pk = stS, sk = stR.

KEM.Enc(pk) $−→ (k, ct): run uniARK.Send(pk) $−→ (., upd,k) and set ct = upd.
KEM.Dec(sk, ct) → k: run uniARK.Receive(sk, upd) → (., .,k).

The IND-CPA security game with adversary A works as in the left-hand side
below. We transform A into a KIND adversary B in the right-hand side below.

Game IND-CPA:
1: KEM.Gen $−→ (sk, pk)

2: KEM.Enc(pk) $−→ (k, ct)
3: if b = 0 then set k to random
4: A(pk, ct,k) $−→ b ′

5: return b ′

Adversary B(z):
1: call EXPst(S) → pk
2: call RATCH(S, send) → ct
3: call TEST(S) → k

4: run A(pk, ct,k) → b ′

5: return b ′

We can check that Cweak is satisfied. The KIND game with B simulates perfectly
the IND-CPA game with A. So, the KIND-security of uniARK implies the IND-CPA
security of KEM. �	

4 FORGE and RECOVER Security

4.1 Unforgeability

Another security aspect of the key agreement BARK is to have that no upd infor-
mation is forgeable by any bounded adversary except trivially by state exposure.
This security notion is independent from KIND security but is certainly nice to
have for explicit authentication in key agreement. Besides, it is easy to achieve.
We will also use it as a helper to prove KIND security: to reduce CP

trivial forge-
cleanness to CP

forge-cleanness.
Let the adversary interact with the oracles RATCH,EXPst, EXPkey in any

order. For BARK to have unforgeability, we eliminate the trivial forgeries (as
defined in Definition 12). The FORGE game is defined in Fig. 4.

Definition 15. (FORGE security). Consider FORGEA(1λ) game in Fig. 4
associated to the adversary A. Let the advantage of A be the probability that
the game outputs 1. We say that BARK is FORGE-secure if, for any PPT adver-
sary, the advantage is negligible.

BARK Agreement with Linear Complexity 357

Fig. 4. FORGE, RECOVER, and PREDICT games.

We can now justify why forgeries in the KIND game must be trivial for a
BARK with unforgeability.

Theorem 16. If a BARK is FORGE-secure, then (Cleak ∧ CPtest

forge)-KIND-security
implies (Cleak ∧ CPtest

trivial forge)-KIND-security and (Cleak ∧ CA
forge ∧ CB

forge)-KIND-
security implies (Cleak ∧ CA

trivial forge ∧ CB
trivial forge)-KIND-security.

4.2 Recovery from Impersonation

A priori, it seems nice to be able to restore a secure state when a state exposure
of a participant takes place. We show here that it is not a good idea.

Let A be an adversary playing the two games in Fig. 5. On the left strategy, A

exposes A with an EXPst query (Step 2). Then, the adversary A impersonates A

by running the Send algorithm on its own (Step 3). Next, the adversary A “sends”
a message to B which is accepted due to correctness because it is generated with
A’s state. In Step 5, A lets the legitimate sender generate upd ′ by calling RATCH
oracle. In this step, if security self-restores, then B accepts upd ′ which is sent by
A, hence acc ′ = 1. It is clear that the strategy shown on the left side in Fig. 5 is
equivalent to the strategy shown on the right side of the same figure (which only
switches Alice and the adversary who run the same algorithm). Hence, both lead
to acc ′ = 1 with the same probability p. The crucial point is that the forgery
in the right-hand strategy becomes non-trivial, which implies that the protocol
is not FORGE-secure. In addition to this, if such phenomenon occurs, we can
make a KIND adversary passing the Cleak ∧ CPtest

trivial forge condition. Thus, we lose
KIND-security. Consequently, security should not self-restore.

358 F. B. Durak and S. Vaudenay

Fig. 5. Two recoveries succeeding with the same probability.

We define the RECOVER security notion with another game in Fig. 4. Essen-
tially, in the game, we require the receiver P to accept some messages upd sent
by the sender after the adversary makes successful forgeries in seq1. We further
use it as a second helper to prove KIND security with Cratchet-cleanness.

Definition 17 (RECOVER security). Consider RECOVERA
BARK(1

λ) game in
Fig. 4 associated to the adversary A. Let the advantage of A in succeeding play-
ing the game be Pr(win = 1). We say that the ratcheted communication protocol
is RECOVER-secure, if for any PPT adversary, the advantage is negligible.

RECOVER-security iseasy to achieve using a collision-resistant hash function.
To be sure that no message was received before it was sent, we need the

following security notion. In the PREDICT game, the adversary tries to make P

receive a message upd before it was sent by P.

Definition 18 (PREDICT security). For the PREDICTA
BARK(1

λ) game in
Fig. 4, let A be an adversary. The advantage of A is the probability that 1 is
returned. We say that the ratcheted communication protocol is PREDICT-secure,
if for any adversary limited to a polynomially bounded number of queries, the
advantage is negligible.

Theorem 19. If a BARK is RECOVER-secure, PREDICT-secure, and (Cleak ∧

CA
forge ∧ CB

forge)-KIND secure, then it is (Cleak ∧ Cratchet)-KIND secure.

5 Our BARK Protocol

We construct a BARK in Fig. 6. We use a public-key cryptosystem PKC, a digital
signature scheme DSS, a one-time symmetric encryption Sym, and a collision-
resistant hash function H. They are all defined in the full version [8]. First, we
construct a naive signcryption SC from PKC and DSS by

BARK Agreement with Linear Complexity 359

SC.Enc(

stS
︷ ︸︸ ︷

skS, pkR, ad, pt) = PKC.Enc(pkR, (pt,DSS.Sign(skS, (ad, pt))))
SC.Dec(skR, pkS

︸ ︷︷ ︸

stR

, ad, ct) = (pt,σ) ← PKC.Dec(skR, ct) ;
DSS.Verify(pkS, (ad, pt),σ) ? pt : ⊥

Second, we extend SC to multi-key encryption called onion due to the multiple
layers of keys. Third, we transform onion into a unidirectional ratcheting scheme
uni. Finally, we design BARK. (See Fig. 6.)

The state of a participant is a tuple st = (λ, hk, ListS, ListR,Hsent,Hreceived)
where hk is the hashing key, Hsent is the iterated hash of all sent messages, and
Hreceived is the iterated hash of all received messages. We also have two lists ListS
and ListR. They are lists of states to be used for unidirectional communication:
sending and receiving. Both lists are growing but entries are eventually erased.
Thus, they can be compressed. (Typically, only the last entry is not erased.)

The idea is that the ith entry of ListS for a participant P is associated to the ith

entry of ListR for its counterpart P. Every time a participant P sends a message,
it creates a new pair of states for sending and receiving and sends the sending
state to his counterpart P, to be used in the case P wants to respond. If the
same participant P keeps sending without receiving anything, he accumulates
some receiving states this way. Whenever a participant P who received many
messages starts sending, he also accumulated many sending states. His message
is sent using all those states in the uni.Send procedure. After sending, all but
the last send state are erased, and the message shall indicate the erasures to the
counterpart P, who shall erase corresponding receiving states accordingly. Our
onion encryption needs to ensure O(n) complexity (so we cannot compose SC
encryptions as ciphertext overheads would produce O(n2) complexity). For that,
we use a one-time symmetric encryption Sym using a key k in {0, 1}Sym.kl. which
is split into shares k1, . . . ,kn. Each share is SC-encrypted in one state. Only the
last state is updated (as others are meant to be erased).

The protocol is quite efficient when participants alternate their roles well,
because the lists are often flushed to contain only one unerased state. It also
becomes more secure due to ratcheting: any exposure has very limited impact.
If there are unidirectional sequences, the protocol becomes less and less efficient
due to the growth of the lists.

We state the security of our protocol below. Proofs are provided in the full
version [8]. In the full version [8], we also show that our protocol does not offer
(Cleak ∧ CPtest

forge)-KIND security.

Theorem 20. We consider the BARK protocol from Fig. 6.

– BARK is correct.
– BARK is PREDICT-secure.
– If H is collision-resistant, then BARK is RECOVER-secure.
– If DSS is SEF-OTCMA-secure and H is collision-resistant, then BARK is

FORGE-secure.
– If PKC is IND-CCA-secure and Sym is IND-OTCCA-secure, then BARK is

(Cleak ∧ CA
forge ∧ CB

forge)-KIND-secure.

360 F. B. Durak and S. Vaudenay

Fig. 6. Our BARK protocol.

BARK Agreement with Linear Complexity 361

Consequently, due to Theorem16, we deduce (Cleak ∧ CA
trivial forge ∧ CB

trivial forge)-
KIND-security. The advantage of treating (Cleak ∧ CA

forge ∧ CB
forge)-KIND-security

specifically is that we clearly separate the required security assumptions for SC.
Similarly, due to Theorem19, we deduce (Cleak ∧ Cratchet)-KIND-security.

6 Conclusion

We studied the BARK protocols and security. For security, we marked three
important security objectives: the BARK protocol should be KIND-secure; the
BARK protocol should be resistant to forgery attacks (FORGE-security), and the
BARK protocol should not self-heal after impersonation (RECOVER-security).
By relaxing the cleanness notion in KIND-security, we designed a protocol based
on an IND-CCA-secure cryptosystem and a one-time signature scheme. We used
neither random oracle nor key-update primitives.

Acknowledgements. We thank Joseph Jaeger for his valuable comments to the first
version of this paper. We thank Paul Rösler for insightful discussions and comments.
We also owe to Andrea Caforio for his implementation results.

References

1. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: security notions,
proofs, and modularization for the signal protocol. In: Ishai, Y., Rij-
men, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 129–158.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 5. Full ver-
sion: https://eprint.iacr.org/2018/1037.pdf

2. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted
encryption and key exchange: the security of messaging. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 619–650. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 21

3. Borisov, N., Goldberg, I., Brewer, E.: Off-the-record communication, or, why not to
use PGP. In: Proceedings of the 2004 ACM Workshop on Privacy in the Electronic
Society, WPES 2004, pp. 77–84. ACM, New York (2004)

4. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 28

5. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: 2017 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pp. 451–466, April 2017

6. Cohn-Gordon, K., Cremers, C., Garratt, L.: On post-compromise security. In: 2016
IEEE 29th Computer Security Foundations Symposium (CSF), pp. 164–178, June
2016

7. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and appli-
cations to efficient forward-secret 0-RTT key exchange. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 425–455. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78372-7 14

https://doi.org/10.1007/978-3-030-17653-2_5
https://eprint.iacr.org/2018/1037.pdf
https://doi.org/10.1007/978-3-319-63697-9_21
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-319-78372-7_14

362 F. B. Durak and S. Vaudenay

8. Betül Durak, F., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
with linear complexity. https://eprint.iacr.org/2018/889.pdf

9. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full for-
ward secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 519–548. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 18

10. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1 2. Full version: https://eprint.iacr.org/2018/553.pdf

11. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guar-
antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11476, pp. 159–188. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17653-2 6. Full version: https://eprint.iacr.org/2018/954.pdf

12. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

13. Ohkubo, M., Suzuki, K., Kinoshita, S.: Cryptographic approach to “privacy-
friendly” tags. In: RFID Privacy Workshop (2003)

14. Ohkubo, M., Suzuki, K., Kinoshita, S.: Efficient hash-chain based RFID privacy
protection scheme. In: International Conference on Ubiquitous Computing (Ubi-
comp), Workshop Privacy: Current Status and Future Directions (2004)

15. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 3–
32. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 1. Full ver-
sion: https://eprint.iacr.org/2018/296.pdf

16. Open Whisper Systems. Signal protocol library for Java/Android. GitHub reposi-
tory (2017). https://github.com/WhisperSystems/libsignal-protocol-java

17. Unger, N., et al.: SoK: secure messaging. In: 2015 IEEE Symposium on Security
and Privacy, pp. 232–249, May 2015

18. WhatsApp. Whatsapp encryption overview. Technical white paper (2016). https://
www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

https://eprint.iacr.org/2018/889.pdf
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-319-96884-1_2
https://eprint.iacr.org/2018/553.pdf
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://eprint.iacr.org/2018/954.pdf
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-319-96884-1_1
https://eprint.iacr.org/2018/296.pdf
https://github.com/WhisperSystems/libsignal-protocol-java
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

A New Approach to Constructing Digital
Signature Schemes

(Short Paper)

Ahto Buldas1, Denis Firsov1,2, Risto Laanoja1,2, Henri Lakk2,
and Ahto Truu1,2(B)

1 Tallinn University of Technology, Akadeemia tee 15a, 12618 Tallinn, Estonia
2 Guardtime AS, A. H. Tammsaare tee 60, 11316 Tallinn, Estonia

ahto.truu@guardtime.com

Abstract. A new hash-based, server-supported digital signature scheme
was proposed recently in [7]. We decompose the concept into forward-
resistant tags and a generic cryptographic time-stamping service. Based
on the decomposition, we propose more tag constructions which allow
efficient digital signature schemes with interesting properties to be built.
In particular, the new schemes are more suitable for use in personal sign-
ing devices, such as smart cards, which are used infrequently. We define
the forward-resistant tags formally and prove that (1) the discussed con-
structs are indeed tags and (2) combining such tags with time-stamping
services gives us signature schemes.

1 Introduction

Recently, Buldas, Laanoja, and Truu [7] proposed a new type of digital signature
scheme (which we will refer to as the BLT scheme in the following) based on the
idea of combining one-time time-bound keys with a time-stamping service. A
limitation of the BLT scheme is the fact that keys are pre-generated and have to
be used at their designated time-slots only. On practical parameters the number
of keys is rather large, which would make key generation on resource-constrained
platforms prohibitively slow.

BLT scheme prevents other parties from misusing keys by making each key
expire immediately after a legitimate use. First, each key is explicitly bound to a
time slot at the key-generation time, and keys would automatically expire when
their designated time-slots passed. Second, the legitimate use of a key is proven
by time-stamping the message-key pair. Back-dating a new pair (a new message
with an already used key) would allow a signature to be forged. Therefore, the
hash-then-publish time-stamping [12] that avoids key-based cryptography and
trusted third parties is particularly suitable for the scheme.

This research was supported by the European Regional Development Fund through
the Estonian smart specialization program NUTIKAS and by the research measure of
the Estonian IT Academy programme.

c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 363–373, 2019.
https://doi.org/10.1007/978-3-030-26834-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_21

364 A. Buldas et al.

Based on this observation, we generalize and decompose the scheme into two
functional components: forward-resistant tags and a cryptographic time-stamping
service. As the forward-resistant tag is a novel construct, we define it formally
and prove that the BLT scheme is indeed an instance of forward-resistant tag-
based schemes. We then propose other forward-resistant tag systems, prove their
security, and observe that the resulting new signature schemes are efficient and
have some interesting properties.

2 Related Work and Background

Due to space constraints, we refer the reader to either [7] or the extended
e-print [4] for overview of related work on hash-based signatures, server-
assisted signatures, and interactive signature protocols.

Non-Repudiation. An important property of digital signatures (as an alter-
native to hand-written ones) [10] is non-repudiation, i.e. the possibility to use
the signature as evidence against the signer. Solutions where trusted third par-
ties are (technically) able to sign on behalf of their clients are not desirable
for non-repudiation, because clients may use that argument to fraudulently call
their signatures into question. Therefore, solutions where clients have personal
signature devices are preferable to those relying entirely on trusted parties.

Another real-world complexity is key revocation. Without such capability
clients may (fraudulently) claim that their private keys were stolen and someone
else may have created signatures in their name. With revocation tracking, sig-
natures created before a key revocation event can be treated as valid, whereas
signatures created afterwards can be considered invalid. Usually this is imple-
mented using cryptographic time-stamping and certificate status distribution
services. No matter the implementation details, this can not be done without
online services, which means that most practical deployments of digital signa-
tures are actually server-supported.

Cryptographic Time-Stamping. Cryptographic time-stamps prove that data
existed before a particular time. The proof can be a statement that the data
hash existed at a given time, cryptographically signed by a trusted third party.
Haber and Stornetta [12] made the first steps towards trustless time-stamping
by proposing a scheme where each time-stamp would include some informa-
tion from the immediately preceding one and a reference to the immediately
succeeding one. Benaloh and de Mare [1] proposed to increase the efficiency of
hash-linked time-stamping by operating in rounds, where messages to be time-
stamped within one round would be combined into a hierarchical structure from
which a compact proof of participation could be extracted for each message. The
aggregation structures would then be linked into a linear chain. The security of
linking-based hash-then-publish schemes has been proven in a very strong model
where even the time-stamping service provider does not have to be trusted [6,8],
making them particularly suitable for our use-case. It is possible to provide such
service efficiently and in global scale [5].

A New Approach to Constructing Digital Signature Schemes 365

3 Forward-Resistant Tags

Definition 1 (Tag system). By a tag system we mean a triple (Gen,Tag,Ver)
of algorithms, where:

– Gen is a probabilistic key-generation algorithm that, given as input the tag
range T , produces a secret key sk and a public key pk.

– Tag is a tag-generation algorithm that, given as input the secret key sk and
an integer t ∈ {1, . . . , T}, produces a tag τ ← Tag(sk, t).

– Ver is a verification algorithm that, given as input a tag τ , an integer t, and
the public key pk, returns either 0 or 1, such that Ver(Tag(sk, t), t, pk) = 1
whenever (sk, pk) ← Gen(T) and 1 ≤ t ≤ T .

The above definition of a tag system is somewhat similar to that of a signature
scheme consisting of procedures for key generation, signature generation, and
signature verification [11]. The fundamental difference is that a signature binds
the use of the secret key to a message, while a tag binds the use of the secret
key to a time.

Definition 2 (Forward-resistant tag system). A tag system (Gen,Tag,Ver)
is S-forward-resistant if every tag-forging adversary A using computational
resources ρ has success probability

Pr
[
(pk, sk) ← Gen(T), (τ, t) ← ATag(sk,·)(pk) : Ver(τ, t, pk) = 1

]
<

ρ

S
,

where A makes one oracle call Tag(sk, t′) with 1 ≤ t′ < t.

The restriction for A to make just one oracle call stems from the fact that the
very purpose of a tag system is to bind the use of the secret key to a specific
time. Informally, in order to implement a forward resistant tag system, we have
to bind each tag to a time t so that the tag can’t be re-bound to a later time.
This notion could be seen as dual to time-stamping that prevents back-dating.

The resources represented by ρ are computation time and memory. The total
resource budget of the adversary is ρ = α · time + β · memory, where α and β
are the costs of a unit of computation time and a unit of memory, respectively.

Security proofs of the proposed tag systems will be based on the following
definitions of basic cryptographic properties of functions:

Definition 3 (One-way function). A function f : D → R is S-secure one-
way (S-OW in short) if every f-inverting adversary A using computational
resources ρ has success probability

Pr
[
x ← D,x′ ← Af(·)(f(x)) : f(x′) = f(x)

]
<

ρ

S
.

Definition 4 (Collision resistant function). A function f : D → R is S-
secure collision resistant (S-CR) if for every collision-finding adversary A using
computational resources ρ:

Pr
[
x1, x2 ← Af(·) : x1 �= x2, f(x1) = f(x2)

]
<

ρ

S
.

366 A. Buldas et al.

Definition 5 (Undetectable function). A function f : D → D is S-secure
undetectable (S-UD) if for every detecting adversary A using computational
resources ρ:

∣∣∣Pr
[
x ← U : A(x) = 1

]
− Pr

[
x ← U : A(f(x)) = 1

]∣∣∣ <
ρ

S
,

where U generates random values uniformly from D.

Lemma 1. If f : D → D is S-UD, then fn is S
n -UD. (Proof in the e-print [4].)

In the following, we will consider general hash functions f : {0, 1}� → {0, 1}k

mapping arbitrary-length inputs to fixed-length outputs. We will write f(x1, x2)
or f(x1, x2, . . . , xn) to mean the result of applying f to a bit-string encoding the
pair (x1, x2) or the tuple (x1, x2, . . . , xn), respectively.

Cryptographic Time-Stamping. We model the ideal time-stamping service
as a trusted repository R that works as follows:

– The time t is initialized to 1, and all the cells Ri to ⊥.
– The query R.time is answered with the current value of t.
– The query R.get(t) is answered with Rt.
– On the request R.put(x), first Rt ← x is assigned and then the value of t is

incremented by 1.

This is done for the sake of simplicity. It turns out that refining the model of
the time-stamping service would make the proofs really complex. For example,
even for a seemingly trivial change, where R publishes a hash h(m, τ) instead of
just (m, τ), one needs non-standard security assumptions about h such as non-
malleability. In this paper, we try to avoid these technical difficulties and focus
on the basic logic of the security argument of the tag-based signature scheme.

Definition 6 (Induced signature scheme). A tag system (Gen,Tag,Ver)
and a time-stamping repository R induce a one-time signature scheme as fol-
lows:

The signer SR(m) queries t ← R.time, then creates τ ← Tag(sk, t), stores
R.put((m, τ)), and returns σ = (τ, t).

The verifier V R(m, (τ, t), pk) queries x ← R.get(t), and checks that x =
(m, τ) and Ver(pk, t, τ) = 1.

Definition 7 (Existential unforgeability). A one-time signature scheme is
S-secure existentially unforgeable (S-EUF) if every forging adversary A using
computational resources ρ has success probability

Pr
[
(pk, sk) ← Gen(T), (m,σ) ← ASR,R(pk) : V R(m,σ, pk) = 1

]
<

ρ

S
,

where A makes only one S-query and not with m.

Theorem 1. If the tag system is S-secure forward-resistant then the induced
one-time signature scheme is (almost) S-secure existentially unforgeable.

A New Approach to Constructing Digital Signature Schemes 367

Proof. Having a ρ-adversary ASR,R for the signature scheme, we construct an
adversary BTag(sk,·) for the tag scheme as follows. The adversary B simulates
the adversary A by creating a simulated R of its own. A signing query S(m) is
simulated by making an oracle query τ ← Tag(sk, t), where t is the time value
in the simulated R, and then assigning Rt ← (m, τ).

Every time the simulated A makes (a direct) query R.put(x), B checks
whether x is in the form (m, τ) and Ver(pk, τ, t) = 1, where t is the current
time in the simulated R, and then returns (τ, t) if either: (a) A has never made
any S-calls, or (b) A has made an S-call with m′ �= m.

It is easy to see that one of these events must occur whenever A is successful.
In the first case, B is also successful, because it outputs a correct tag without
making any Tag(sk, ·)-calls. In the second case, the S(m′)-query was made at
t′ < t (as every S-query makes one R.put(·)-query which advances t) and then
also the Tag(sk, t′)-query was made at t′ < t and hence B is successful again.

If the overhead of B in simulating the environment for A is small, the reduc-
tion is tight and thus the signature scheme must indeed be almost as secure as
the underlying tag scheme. �	

3.1 The BLT Scheme as a Tag System (BLT-TB)

Ignoring the aggregation of individual time-bound keys into a hash tree, the
essence of the BLT signature scheme proposed in [7] can be modeled as a tag
system as follows:

– The secret key sk is a list (z1, z2, . . . , zT) of T unpredictable values and the
public key pk the list (f(z1), f(z2), . . . , f(zT)), where f is a one-way function.

– The tagging algorithm Tag(z1, z2, . . . , zT ; t) outputs zt.
– The verification algorithm Ver, given as input a tag τ , an integer t, and the

public key (x1, x2, . . . , xT), checks that 1 ≤ t ≤ T and f(τ) = xt.

We will refer to this model as the BLT-TB tag system.

Theorem 2. If f is S-OW, then BLT-TB is an S
T -forward-resistant tag system.

Proof. We assume there’s a tag-forging adversary A and construct an f -inverting
adversary B based on oracle access to A. Since f is S-OW, irrespective of B’s
construction, its success probability δ′ < ρ

S (Definition 3). We construct B to
process the input x = f(z) as follows:

– generate the secret key components zi ← {0, 1}k and compute the corre-
sponding public key components xi = f(zi) for 1 ≤ i ≤ T ;

– uniformly randomly pick an index j ← {1, . . . , T};
– call A on a modified public key to produce a forged tag and its index

(τ, t) ← ATag(sk,·)(x1, . . . , xj−1, x, xj+1, . . . , xT);

– if A succeeded and t = j then return τ , else return ⊥.

368 A. Buldas et al.

By construction, B’s success probability δj = Pr
[
A succeeded∧ t = j

]
. Since the

distribution of x is identical to the distribution of xi, the events “A succeeded”
and “t = j” are independent and thus we have δj = Pr

[
A succeeded

] ·Pr[t = j
]
.

Since j was drawn uniformly from {1, . . . , T}, we further have δj = δ · 1
T , where

δ is A’s success probability (Definition 2).
From f being S-OW, we have δ

T = δj ≤ δ′ < ρ
S . Thus, δ < ρ

S/T , and BLT-TB
is indeed an S

T -forward-resistant tag system. �	

3.2 The BLT-OT Tag System

We now define the BLT-OT tag system (inspired by Lamport’s one-time signa-
tures [9]) as follows:

– The secret key sk is a list (z0, z1, . . . , z�−1) of � = �log2(T +1)� unpredictable
values and the public key pk the list (f(z0), f(z1), . . . , f(z�−1)), where f is a
one-way function.

– The tagging algorithm Tag(z0, . . . , z�−1; t) outputs an ordered subset
(zj1 , zj2 , . . . , zjm) of components of the secret key such that 0 ≤ j1 < j2 <
. . . < jm ≤ � − 1 and 2j1 + 2j2 + . . . + 2jm = t.

– The verification algorithm Ver, given as input a sequence (zj1 , zj2 , . . . , zjm),
an integer t, and the public key (x0, x1, . . . , x�−1), checks that:
1. f(zj1) = xj1 , . . . , f(zjm) = xjm ; and
2. 0 ≤ j1 < j2 < . . . < jm ≤ � − 1; and
3. 2j1 + 2j2 + . . . + 2jm = t; and
4. 1 ≤ t ≤ T .

Theorem 3. If f is S-OW, then BLT-OT is an S
� -forward-resistant tag system.

(Proof is very similar to Theorem 2 and available in the e-print [4].)

3.3 The BLT-W Tag System

We now define the BLT-W tag system (inspired by Winternitz’s idea [14] for
optimizing the size of Lamport’s one-time signatures) as follows:

– The secret key sk is an unpredictable value z and the public key pk is fT (z),
where f is a one-way function.

– The tagging algorithm Tag(z; t) outputs the value fT−t(z).
– The verification algorithm Ver, given as input a tag τ , an integer t, and the

public key x, checks that 1 ≤ t ≤ T and f t(τ) = x.

Theorem 4. If f is S1-OW and S2-CR and S3-UD function, then BLT-W is
a min(S1,S2,S3)

2·T -forward-resistant tag system. (Proof is similar to Theorem 2 and
available in the e-print [4].)

A New Approach to Constructing Digital Signature Schemes 369

4 BLT-OT One-Time Signature Scheme

The signature scheme induced by the BLT-OT tag system according to Defini-
tion 6 would require the signer to know in advance the time when its request
reaches the time-stamping service. This is hard to achieve in practice, in partic-
ular for devices such as smart cards that lack built-in clocks. To overcome this
limitation, we construct the BLT-OT one-time signature scheme as follows.

Key Generation. Let � be the number of bits that can represent any time value
t when the signature may be created (e.g. � = 32 for POSIX time up to year
2106). The private key is generated as sk = (z0, z1, . . . , z�−1), where zi are unpre-
dictable values, and the public key as pk = f(X), where X = (x0, x1, . . . , x�−1),
xi = f(zi), and f is a one-way function.

The public key certificate should contain (a) the public key pk, (b) the
identity IDc of the client, and (c) the identity IDs of the designated time-
stamping service. Recording the identity of the designated time-stamping service
in certificate enables instant key revocation. Upon receiving a revocation notice,
the designated service stops serving the affected client, and thus it is not possible
to generate signatures using revoked keys.

Signing. To sign a message m, the client:

– gets a time-stamp St on the record (m,X, IDc) from the time-stamping ser-
vice designated by IDs;

– extracts the �-bit time value t from St and creates the list W = (w0,
w1, . . . , w�−1), where wi = zi if the i-th bit of t is 1, or wi = xi = f(zi)
otherwise;

– disposes of the private key (z0, z1, . . . , z�−1) to prevent its re-use;
– emits (W,St) as the signature.

Verification. To verify the signature (W,St) on the message m against the
certificate (pk, IDc, IDs), the verifier:

– extracts time t from the time-stamp St;
– recovers the list X = (x0, x1, . . . , x�−1) by computing xi = f(wi) if the i-th

bit of t is 1, or xi = wi otherwise;
– checks that the computed X matches the public key: f(X) = pk;
– checks that St is a valid time-stamp issued at time t by service IDs on the

record (m,X, IDc).

Using the reduction techniques from previous sections to formally prove the
security of this optimized signature scheme is complicated by both the iterated
use of f and the more abstract view of the time-stamping service.

Details of other optimized signature schemes are skipped for brevity. Practical
properties are discussed in the following section.

370 A. Buldas et al.

5 Discussion

The BLT-TB scheme proposed in [7] works well for powerful devices that are
constantly running and have reliable clocks. These are not reasonable assump-
tions for personal signing devices such as smart cards, which have very limited
capabilities and are not used very often. Generating keys could take hours or
even days of non-stop computing on such devices. This is clearly impractical,
and also wasteful as most of the keys would go unused.

The BLT-OT scheme proposed in Sect. 4 solves the problems described above
at the cost of introducing state on the client side. As the scheme is targeted
towards personal signing devices, the statefulness is not a big risk, because these
devices are not backed up and also do not support parallel processing. The
benefit in addition to improved efficiency is that the device no longer needs to
know the current time while preparing a signing request. Instead, it can just use
the time from the time-stamp when composing the signature.

Table 1. Efficiency of hash-based one-time signature schemes. We assume 256-bit hash
functions, 32-bit time values, and time-stamping hash-tree with 33 levels. Times are in
hashing operations and signature sizes in hash values. TS in BLT schemes stands for
the time-stamping service call.

Scheme Key generation Signing time Verification time Signature size

Lamport 1 025 1 024 513 256

Winternitz (w = 4) 1 089 1 088 1 021 68

BLT-OT 65 64 + TS 33 + 33 32 + 33

BLT-W (w = 2) 65 64 + TS 49 + 33 16 + 33

Efficiency as One-Time Scheme. When implemented as described in Sect. 4,
the cost of generating a BLT-OT key pair is � random key generations and
� + 1 hashing operations, the cost of signing � hashing operations and one time-
stamping service call, and the cost of signature verification at most �+1 hashing
operations and one time-stamp verification. In this case the private key would
consist of � one-time keys and the public key of one hash value, and the signature
would contain � hash values and one time-stamp token. The private storage
size can be optimized by generating the one-time keys from one true random
seed using a pseudo-random generator. Then the cost of signing increases by �
operations, as the one-time keys would have to be re-generated from the seed
before signing. This version is listed as BLT-OT in Table 1.

Winternitz’s idea [14] for optimizing the size of Lamport’s one-time sig-
natures [9] can also be applied to BLT-OT. Instead of using one-step hash
chains zi → h(zi) = xi to encode single bits of t, we can use longer chains
zi → h(zi) → . . . → hn(zi) = xi and publish the value hn−j(zi) in the signature
to encode the value j of a group of bits of t. When encoding groups of w bits of

A New Approach to Constructing Digital Signature Schemes 371

t in this manner, the chains have to be n = 2w steps long. This version is listed
as BLT-W in Table 1. Note that in contrast to applying this idea to Lamport’s
signatures, in BLT-W no additional countermeasures are needed to prevent an
adversary from stepping the hash chains forward: the time in the time-stamp
takes that role.

To compare BLT-OT signature sizes and verification times to other schemes,
we also need to estimate the size of hash-trees built by the time-stamping service.
Even assuming the whole world (8 billion people) will use the time-stamping
service in every aggregation round, an aggregation tree of 33 layers will suffice.
We also assume that in all schemes one-time private keys will be generated on-
demand from a single random seed and public keys will be aggregated into a
single hash value. Therefore, the key sizes will be the same for all schemes and
are not listed in Table 1.

Table 2. Efficiency of hash-based many-time signature schemes. We assume key supply
for at least 3 650 signatures, 256-bit hash functions, 32-bit time values, and time-
stamping hash-tree with 33 levels. Times are in hashing operations and signature sizes
in hash values. TS in BLT schemes stands for the time-stamping service call.

Scheme Key generation Signing time Verification time Signature size

XMSS 897 024 8 574 1 151 79

SPHINCS ca 16 000 ca 250 000 ca 7 000 ca 1 200

BLT-TB ca 96 000 000 50 + TS 25 + 33 25 + 33

BLT-OT-N 240 900 64 + TS 45 + 33 44 + 33

BLT-W-N (w = 2) 240 900 64 + TS 61 + 33 28 + 33

Efficiency as Many-Time Scheme. A one-time signature scheme is not prac-
tical by itself. Merkle [13] proposed aggregating multiple public keys of a one-
time scheme using a hash tree to produce so-called N -time schemes. Assuming
10 signing operations per day, a set of 3 650 BLT-OT keys would be sufficient
for a year. The key generation costs would obviously grow correspondingly. The
change in signing time would depend on how the hash tree would be handled. If
sufficient memory is available to keep the tree (which does not contain private
key material and thus may be stored in regular memory), the authenticating
hash chains for individual one-time public keys could be extracted with no extra
hash computations. Signature size and verification time would increase by the 12
additional hashing steps linking the one-time public keys to the root of the aggre-
gation tree. This scheme is listed as BLT-OT-N in Table 2, where we compare it
with the following schemes:

– XMSS is a stateful scheme, like the N -time scheme built from BLT-OT; the
values in Table 2 are computed by taking N = 212 = 4096 and leaving other
parameters as in [3];

372 A. Buldas et al.

– SPHINCS is a stateless scheme and can produce an indefinite number of
signatures; the values in Table 2 are inferred from [2] counting invocations of
the ChaCha12 cipher on 64-byte inputs as hash function evaluations;

– the values for BLT-TB in Table 2 are from [7].

As can be seen from the table, the performance of BLT-OT as a component in N -
time scheme is very competitive when signing and verification time and signature
size are concerned. Only SPHINCS has significantly faster key generation, but
much slower signing and verification and much larger signatures.

6 Conclusions and Outlook

We have presented a new approach to constructing digital signature schemes
from forward-resistant tags and time-stamping services. We observe that this
new framework can be used to model an existing signature scheme, and also
to construct new ones. The newly derived signature schemes are practical and
it would be interesting to further study their security properties, e.g. present
security proofs in the standard model. The novel concept of forward-resistant
tags has already proven useful, and thus certainly merits further research.

References

1. Benaloh, J., de Mare, M.: Efficient broadcast time-stamping. Technical report,
Clarkson University (1991)

2. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 15

3. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure sig-
nature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 8

4. Buldas, A., Firsov, D., Laanoja, R., Lakk, H., Truu, A.: A new approach to con-
structing digital signature schemes (extended paper). Cryptology ePrint Archive,
Report 2019/673 (2019). https://eprint.iacr.org/2019/673

5. Buldas, A., Kroonmaa, A., Laanoja, R.: Keyless signatures’ infrastructure: how
to build global distributed hash-trees. In: Riis Nielson, H., Gollmann, D. (eds.)
NordSec 2013. LNCS, vol. 8208, pp. 313–320. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-41488-6 21

6. Buldas, A., Laanoja, R., Laud, P., Truu, A.: Bounded pre-image awareness and the
security of hash-tree keyless signatures. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K.,
Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 130–145. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12475-9 10

7. Buldas, A., Laanoja, R., Truu, A.: A server-assisted hash-based signature scheme.
In: Lipmaa, H., Mitrokotsa, A., Matulevičius, R. (eds.) NordSec 2017. LNCS,
vol. 10674, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70290-2 1

https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-642-25405-5_8
https://eprint.iacr.org/2019/673
https://doi.org/10.1007/978-3-642-41488-6_21
https://doi.org/10.1007/978-3-642-41488-6_21
https://doi.org/10.1007/978-3-319-12475-9_10
https://doi.org/10.1007/978-3-319-70290-2_1
https://doi.org/10.1007/978-3-319-70290-2_1

A New Approach to Constructing Digital Signature Schemes 373

8. Buldas, A., Saarepera, M.: On provably secure time-stamping schemes. In:
Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 500–514. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 35

9. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

10. European Commission: Regulation no 910/2014 of the European Parliament and
of the Council of 23 July 2014 on electronic identification and trust services for
electronic transactions in the internal market and repealing directive 1999/93/EC
(eIDAS regulation). Official Journal of the European Union L 257, 73–114 (2014)

11. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

12. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. J. Cryptol.
3(2), 99–111 (1991)

13. Merkle, R.C.: Secrecy, authentication and public key systems. Ph.D. thesis, Stan-
ford University (1979)

14. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

https://doi.org/10.1007/978-3-540-30539-2_35
https://doi.org/10.1007/3-540-48184-2_32

Forensics

GRYPHON: Drone Forensics in Dataflash
and Telemetry Logs

Evangelos Mantas and Constantinos Patsakis(B)

Department of Informatics, University of Piraeus, Piraeus, Greece
emantas000@gmail.com, kpatsak@unipi.gr

Abstract. The continuous decrease in the price of Unmanned Aerial
Vehicles (UAVs), more commonly known as drones, has pushed their
adoption from military-oriented to a wide range of civilian and business
applications. Nevertheless, the many features that they offer have started
being maliciously exploited. The latter coupled with the fact that acci-
dents or malicious acts may occur to drones has sparked the interest
towards drones forensics.

Trying to fill in the gap of the literature, this work focuses on a
particular field of drone forensics that of forensics on the flight data
logs. Therefore, we investigate one of the most widely used platforms,
Ardupilot and the dataflash and telemetry logs. In this work, we dis-
cuss a methodology for collecting the necessary information, analysing
it, and constructing the corresponding timeline. In this regard, we have
developed an open source tool that is freely available and tested it on
data provided by VTO Labs.

Keywords: UAV · Drone · Forensics · Ardupilot · Log files

1 Introduction

The rise of technology in the last decade contributed to the development of new
concepts that may change the world. Unmanned Aerial Vehicle (UAV) refers
to any reusable air vehicle that does not have a pilot on board. These vehicles
are already changing the modern day society, from the battlefield to everyday
commercial use. UAVs, or simply drones, are currently used for military appli-
cations, engaging targets, collecting intelligence or used for surveillance assisting
the ground troops. Commercial applications are more challenging since they fall
under government regulations and require special operation licensing. Infrastruc-
ture inspection, package delivery, crop dusting, first aid, emergency response, and
civilian transportation were just concepts in the past which are now becoming
a reality.

The use of drones in civilian and business applications is steadily increas-
ing. Globally, drone market volume is forecast to reach 4.7 million1 units by
1 https://www.businesswire.com/news/home/20160509005554/en/Unmanned-

Aerial-Vehicles-UAV-Market-Forecast-2020.

c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 377–390, 2019.
https://doi.org/10.1007/978-3-030-26834-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_22&domain=pdf
https://www.businesswire.com/news/home/20160509005554/en/Unmanned-Aerial-Vehicles-UAV-Market-Forecast-2020
https://www.businesswire.com/news/home/20160509005554/en/Unmanned-Aerial-Vehicles-UAV-Market-Forecast-2020
https://doi.org/10.1007/978-3-030-26834-3_22

378 E. Mantas and C. Patsakis

2020 (other estimates are even more optimistic), with the market for commer-
cial application of UAV technology estimated to soar from $2bn to $127bn2.
This growth projects that over time drones are becoming cheaper and easier to
use, as well as regulatory progress. Therefore, more and more drones will be
flying in public airspace. The trend is shifting from quadcopters with simple
flight boards, to machines with computers that run Operating Systems (OS)
and execute complex tasks. As a result, a vulnerability in these systems can be
exploited with fatal consequences. Since the flight in densely populated areas
implies several risks directly [4,24] or indirectly [22], public safety must be taken
into consideration. Even if an accident happens or a drone “falls to the wrong
hands”, it must be ensured that the responsible for this action will be identified
and held accountable. Thus, a forensic analysis of the drone flight is crucial.

It should be highlighted that regardless of how far-fetched UAV criminality
may sound, it has constantly been rising leading us to consider far more scenarios
than the typical military-oriented. Unfortunately, the list of crimes committed
through the use of drones is increasing, not only in terms of numbers but in
terms of sophistication. The recent three-day confusion at Gatwick airport due
to an unauthorised flight of drones affected almost 140,000 passengers of 1,000
flights3 in fear of public safety. While this can be considered as the most signif-
icant, as it affected the most people and due to the delays it had a huge cost
there was no physical harm. Beyond “traditional” privacy violations, drones have
been used to smuggle drugs in prisons4 and across borders5, spy on houses for
burglary6, record PINs on ATMs7. Finally, Hartmann and Giles [11] discuss how
exploitation of UAVs can be used to realise cyber power with effect in the real
world.

1.1 Scope of This Work

The continuous growth of the autonomous flying vehicles led to many different
flight firmware. One of the first was Ardupilot8, initially developed by amateur
hobbyists to control their RC model airplanes. It soon grew to an open source
software suite, widely adopted by the airspace industry and used by many enter-
prises because of its flexibility to support different types of autonomous vehi-
cles making it mainstream in the field. Drone companies like DJI may hold the
majority of the market share [1] but the fact that their proprietary software

2 https://press.pwc.com/News-releases/global-market-for-commercial-applications-
of-drone-technology-valued-at-over--127-bn/s/ac04349e-c40d-4767-9f92-
a4d219860cd2.

3 https://www.nytimes.com/2018/12/23/world/europe/gatwick-airport-drones.html.
4 https://www.bbc.com/news/uk-england-43413134.
5 https://www.rt.com/news/225051-drone-meth-crash-tijuana/.
6 https://www.telegraph.co.uk/news/uknews/crime/11613568/Burglars-use-drone-

helicopters-to-identify-targe-homes.html.
7 https://www.belfasttelegraph.co.uk/news/northern-ireland/drone-filmed-peoples-

pin-codes-at-co-antrim-atm-34945847.html.
8 http://ardupilot.org/.

https://press.pwc.com/News-releases/global-market-for-commercial-applications-of-drone-technology-valued-at-over--127-bn/s/ac04349e-c40d-4767-9f92-a4d219860cd2
https://press.pwc.com/News-releases/global-market-for-commercial-applications-of-drone-technology-valued-at-over--127-bn/s/ac04349e-c40d-4767-9f92-a4d219860cd2
https://press.pwc.com/News-releases/global-market-for-commercial-applications-of-drone-technology-valued-at-over--127-bn/s/ac04349e-c40d-4767-9f92-a4d219860cd2
https://www.nytimes.com/2018/12/23/world/europe/gatwick-airport-drones.html
https://www.bbc.com/news/uk-england-43413134
https://www.rt.com/news/225051-drone-meth-crash-tijuana/
https://www.telegraph.co.uk/news/uknews/crime/11613568/Burglars-use-drone-helicopters-to-identify-targe-homes.html
https://www.telegraph.co.uk/news/uknews/crime/11613568/Burglars-use-drone-helicopters-to-identify-targe-homes.html
https://www.belfasttelegraph.co.uk/news/northern-ireland/drone-filmed-peoples-pin-codes-at-co-antrim-atm-34945847.html
https://www.belfasttelegraph.co.uk/news/northern-ireland/drone-filmed-peoples-pin-codes-at-co-antrim-atm-34945847.html
http://ardupilot.org/

GRYPHON: Drone Forensics in Dataflash and Telemetry Logs 379

is not openly available and offers limited flexibility for developers through its
SDK, makes it less appealing for enterprises that seek customization, high flex-
ibility and robustness in their flying vehicles autopilot firmware, in contrast to
the civilian market where consumers opt for a ready-to-fly quadcopter9.

This work focuses on drone forensics performed on the ground control station
of the UAV under investigation, and the logfiles found on the internal memory.
More precisely, the research is focused on the investigation of two specific logs
for forensic evidence, the dataflash and telemetry logs.

It is clear, that by capturing a drone one may collect a wide range of forensic
evidence, from the serial number of the frame of proprietary drones leading to
the person who made the purchase, to fingerprints of the pilot or other ground
crew. Indeed, a drone might have other connected devices that store data in
an SD card and can be used as forensic evidence. A typical example can be
considered a camera. Apparently, a camera and the stored data may be a rich
source of forensic evidence since the recorded footage might contain not only
visual information but metadata in the form of EXIF data [5]. Nevertheless, the
above scenario is considered as out of scope and we only focus on forensic’s data
from the onboard SD card and the ground control station of a drone with the
“minimum” setup. Figure 1 illustrates the different aspects that can be used for
drone forensics of Ardupilot compliant UAVs.

Fig. 1. Sources of forensic evidence of UAVs compliant with Ardupilot.

1.2 Main Contributions

To the best of our knowledge, there is currently no forensics tool for Dataflash
log available, nor a detailed methodology on what data need to be collected and
how to treat them. To this end, a new tool was created and is available available
as an Open Source Project on Github10. Existing solutions such as MAVExplorer

9 https://globaluavtech.com/news-media/blog/open-source-ardupilot-software-vs-
dji-software/.

10 http://github.com/emantas/GRYPHON dft.

https://globaluavtech.com/news-media/blog/open-source-ardupilot-software-vs-dji-software/
https://globaluavtech.com/news-media/blog/open-source-ardupilot-software-vs-dji-software/
http://github.com/emantas/GRYPHON_dft

380 E. Mantas and C. Patsakis

mainly focus on displaying data with no flexibility, serving more like diagnostic
tools. Since the underlying technology is not stable enough to guarantee that
hard changes will not be pushed in the new versions, our forensics tool considers
other aspects such as maintainability, flexibility, and sustainability. Therefore, a
future update of the MAVlink protocol would have a limited impact in the code
compatibility and additions can improve the efficiency and functionality of the
forensic research with minimal changes.

1.3 Organisation of This Work

The rest of this work is organised as follows. In the next section, we give a
brief overview of the related work in drone forensics. Section 3 describes of the
UAV architecture, discussing some specific details regarding the Ardupilot logs.
Then, in Sect. 4 we detail our methodology for drone forensics in dataflash and
telemetry logs. Finally, the paper concludes, summarising our contributions and
discussing open issues and future work.

2 State of the Art

As already discussed, drone forensics can be performed either in the drone or its
corresponding ground control station. Due to the fragmentation of the market,
the UAVs come in two main families. One running proprietary firmware and one
running open-source. The proprietary firmware share is dominated by compa-
nies such as DJI, Yuneec, Parrot and 3DR with its proprietary frame and open
source autopilot firmware. In the open source share, the vast majority is using
Ardupilot and the operating system on the UAV may come in different flavours,
such as Raspbian11, ChibiOS12, and NuttX13.

Kim et al. [17] were the first ones to provide an overview of the attack surface
of a UAV. An initial risk assessment of UAVs was performed by Hartmann and
Steup [12] and later extended by Hartmann and Giles [11]. Due to their nature,
UAVs may suffer many networks attacks for which there is already some work
on trying to detect them [21], simulate them [16], and reinforce their security
while in flight [2,3,8,13,20]. The main reason behind this is that drones have
low processing power, so the use of cryptographic primitives implies a significant
computational effort. In general, the threats UAVs are exposed to include but
are not limited to jamming, interception, and spoofing of the GPS and commu-
nications, denial of service, open ports that allow for arbitrary access, injection
of forged sensor data [19,23]. For a more detailed overview of these threats for
civilian UAVs, the interested reader may refer to [4].

As outlined in [25] IoT forensics imply several new challenges for the forensics
investigator as she has to search for evidence in diverse data formats in devices
11 http://ardupilot.org/dev/docs/raspberry-pi-via-mavlink.html.
12 http://ardupilot.org/copter/docs/common-loading-chibios-firmware-onto-pixhawk.

html.
13 http://ardupilot.org/dev/docs/interfacing-with-pixhawk-using-the-nsh.html.

http://ardupilot.org/dev/docs/raspberry-pi-via-mavlink.html
http://ardupilot.org/copter/docs/common-loading-chibios-firmware-onto-pixhawk.html
http://ardupilot.org/copter/docs/common-loading-chibios-firmware-onto-pixhawk.html
http://ardupilot.org/dev/docs/interfacing-with-pixhawk-using-the-nsh.html

GRYPHON: Drone Forensics in Dataflash and Telemetry Logs 381

with different firmware, often proprietary, where physical access to the storage
and processing units can be concealed or access-protected. Moreover, digital
evidence has a short survival period and many of them reside in the cloud.
Bouafif et al. [9] highlight other issues including non-standardization of firmware,
hardware, and software, loss of evidence stored in volatile memory due to crash or
battery failure, lack of attribution of ownership, and lack of existence of forensics
tools or support from mainstream tools.

In the literature, some papers are focusing on data exfiltration from DJI
[6,10,25] and Parrot [7,9,14] drones, but the proposed procedures apply only
to specific market models. This paper focuses on a broader spectrum of flying
vehicles proposing a forensic methodology applied not only for a civilian hobbyist
but also powerful commercial drones. Since the application of drones in everyday
life is expected to be expanded, the forensic approach should not be focused on
proprietary software, but shifted to open source flight stacks like Ardupilot.
This means it is cheaper to acquire or build an open source flying vehicle, making
harder to track since there is no financial evidence of a purchase, in contrast to
ready-to-fly proprietary drones, or even programming complex flight missions
like package deliveries, in the event of an accident or a dreadful scenario.

Other papers focus on technical data, the architecture of components of
drones and physical acquisition of the hardware [15]. Although a hardware anal-
ysis of the flying vehicles is essential, no hard evidence of malicious behaviour
can be extracted, e.g. flying on a no-fly zone. This evidence falls into the scope
of software forensics, a scope that this research covers providing a tool to assist
the forensic researcher.

There were tries to include the forensic data of open source autopilots, using
the telemetry logs [18] provided by the GCS connected to the drone and extract-
ing the flying vehicle’s autopilot parameters, but no other data were recovered to
perform a thorough forensic examination. However, as it is clearly stated “GCS
and post processing systems, analyzing the sensor data tell 80% of the story”.
This should be the researcher’s main focus, exfiltrating the flight data from the
log files and if possible acquiring the data from the mobile device’s GCS, having
the full picture in constructing the forensic’s case.

3 Drone Basics

At the very core of a drone is its flight controller which is in charge of its
avionics, communications, sensor management and other actuators. Due to the
complexity of the tasks that have to be performed, the flight controller has
changed from simple micro-controllers to small computers, running on a real-
time operating system, using a limited processing unit. Depending on the needs,
the communication of the drone can be performed over short-range channels
including WiFi and Bluetooth, or long-range including radio waves and satellite
transmissions.

Before going further, it is essential to distinguish the flight of a UAV from,
e.g. a hobbyist’s quadcopter. The main difference is the onboard computer, the

382 E. Mantas and C. Patsakis

autopilot. The autopilot manages and orchestrates all the flight components,
receives the pilot input from a radio transmitter, and is capable of executing
complex commands or taking into action the fail-safe commands automatically,
without any manual intervention. For example, a drone can return to the takeoff
point, if the autopilot detects that battery level is running low. In this scenario,
the drone did not receive any command from a human; the autopilot took control
of the flying vehicle. On the contrary, a quadcopter with a flight board receives
only the signal from the pilot’s radio transmitter. It has limited flight capabil-
ities that depend on the pilot skills. It should be noted that there is a hybrid
approach in which the UAV carries out its mission with an operator supervising
the progress and intervening when deemed necessary.

Forensic analysis on non-automated vehicles is almost impossible since no
events are recorded beyond, e.g. the onboard camera, if one is installed. On the
other hand, during the flight of a drone with Ardupilot autopilot, two different
types of flight logs are generated, the Dataflash logs and the Telemetry logs.
Dataflash logs are generated from the autopilot and are stored on the onboard
flash memory, usually an SD card. Telemetry logs are generated from the Ground
Control Station (GCS), software to monitor and command the drone, should a
connection between the flying vehicle and the GCS be established14.

When a drone is ready to fly, the pilot should “arm” the system. This com-
mand can be given either through a radio transmitter or through a GCS (e.g.
Mission Planner, QGroundControl). This command is the “trigger” to generate
the Dataflash log. This type of log contains everything that happens during the
flight of the drone. More precisely, it contains the values of the RC (Radio Chan-
nel) input when the pilot flies manually the drone, the GPS location, values of
the onboard sensors, commands sent from the GCS and other data. When the
autopilot is connected to a GCS, a Telemetry log is generated and records the
flight path, which can be replayed using the Mission Planner GCS.

The autopilot communicates with all the flight components of the drone and
transmitters, through the MAVlink (Micro Air Vehicle) Communication Proto-
col. A MAVlink network is made up of systems (vehicles, GCS, antenna trackers
etc.) which are themselves made up of components (Autopilot, camera system,
etc.). The protocol defines two IDs that can be specified in messages to control
routing of the command to the necessary system and component: the system
which will execute the command, called the target system and the component
which will execute the command called the target component15. MAVLink fol-
lows a modern hybrid publish-subscribe and point-to-point design pattern. Data
streams are published as topics while configuration sub-protocols such as the
mission protocol or parameter protocol are point-to-point with retransmission.
These messages are recorded by the autopilot in the Dataflash and Telemetry
logs. A proper understanding of this protocol architecture is required to extract

14 http://ardupilot.org/copter/docs/common-diagnosing-problems-using-logs.html.
15 https://mavlink.io/en/.

http://ardupilot.org/copter/docs/common-diagnosing-problems-using-logs.html
https://mavlink.io/en/

GRYPHON: Drone Forensics in Dataflash and Telemetry Logs 383

the flight data and analyse the recorded events. A MAVLink message is com-
prised of the following features16 (Fig. 2):

Fig. 2. MAVlink packet architecture. Top: MAVlink v1, Bottom: MAVlink v2. Source:
https://mavlink.io/en/guide/serialization.html

– A 24-bit message ID - Allows over 16 million unique message definitions in a
dialect (MAVLink 1 was limited to 256).

– Packet signing - Authenticate that messages were sent by trusted systems.
– Message extensions - Add new fields to existing MAVLink message definitions

without breaking binary compatibility for receivers that have not updated.

Knowing the structure of each message facilitates the task of a forensic researcher
in extracting the necessary data and diagnosing the critical events of the UAV
flight.

4 Dataflash and Telemetry Forensics

In what follows we consider that the forensics investigator had access to the
ground base station and collected both the telemetry and dataflash logs in a
forensics sound manner. Therefore, we discuss how the collected information
should be processed and what kind of evidence can be extracted.

4.1 Logfile Acquisition

It is clear that a forensic analysis of a UAV flight requires the generated log files.
Although enterprises may come with their own custom logfile genesis solutions
for their flying vehicles, the generation of Dataflash and Telemetry logs stays the
same.

Telemetry logs, as mentioned before, are automatically generated from the
GCS in the computer that is connected to the drone. This type of log file is saved
in .kmz format and contain the flight path of the vehicle which is replayed, using
the GCS built-in functionality.
16 https://mavlink.io/en/guide/mavlink 2.html.

https://mavlink.io/en/guide/serialization.html
https://mavlink.io/en/guide/mavlink_2.html

384 E. Mantas and C. Patsakis

Dataflash logs can be downloaded through a GCS using its built-in func-
tionality or SSH connection to the flying vehicle. The autopilot automatically
creates a log file in .bin format, after the pilot has armed the drone, saved in
the SD card mounted on the autopilot dedicated slot.

It is easily understandable that in the event of a catastrophic failure, e.g.
crash-landing, components of the flying vehicle may be damaged or destroyed,
dropping the connection between the drone and the GCS. Thus, no log files can
be downloaded, and the incidence response will suffice in acquiring the SD card
of the autopilot. It is crucial that all the necessary precautions are taken into
account in order not to “disturb” the forensic chain of command. This means that
an incident response officer should follow all the procedures in ensuring that no
key component has been alerted in any way during the acquisition - intentionally
or not. For this reason, cloning of the SD card is deemed essential. A further
study in the UAV forensic acquisition seems to be decisive in establishing a
formal procedure, but this is out of the scope of this research.

4.2 Dataflash Log Analysis Methodology

This research methodology for analysing the Dataflash logs consists of 6 steps.
Their scope starts from firmware integrity and goes through trajectory, execu-
tion, and error analysis to reach low-level hardware logs and finish with timeline
analysis. More precisely, the steps of our methodology are the following:

1. Check integrity of the UAV: The goal of this step is to determine whether
the firmware running on the drone has been tampered with.

2. Trajectory analysis: By visualising the trajectory of the UAV one may
determine possible differentiation in the course and decrease the timeline
that has to be analysed. For example, one may notice that the trajectory of
the UAV is not the expected one after a specific timeframe. Moreover, by
detecting anomalies in the trajectories, one may gain further insight on an
incident. For instance, a sudden variation in the height of the UAV may imply
collision with an object.

3. Command verification: The goal of this step is to determine whether all
the commands that were submitted by the pilot have been executed.

4. Error analysis: In this step, all errors reported by MAVlink are collected
to determine whether any of the reported errors resulted in fatal errors or
warnings that affected the estimated flight capability.

5. Analysis of sensors measurements: The goal of this step is to determine
whether all the measurements from the embedded sensors can be considered
within the expected range. Anomalies in the sensor measurements may imply
a hardware problem in the UAV. Note that such issues may not trigger errors.

6. Timeline analysis: A Timeline Analysis is the process of chronologically
arranging data of the flight, a crucial part of any digital forensics examination.
This part enables the forensic investigator to correlate the found evidence and
understand what has happened in the case under investigation (Fig. 3).

GRYPHON: Drone Forensics in Dataflash and Telemetry Logs 385

Fig. 3. Brief overview of the proposed methodology.

Based on the above, GRYPHON Drone Forensics Tool provides the following
functionality.

– Extraction of flight data to find anomalies: The main functionality
of GRYPHON is data exfiltration. Since the Dataflash log is in binary format,
the recorded flight events must be converted to the corresponding MAVlink
format. Multiple independent functions extract and display the data, giving
the forensic investigator the ability to monitor the UAV flight behaviour.
Each event is displayed with the corresponding timestamp and the value of
the MAVlink message recorded. To facilitate reading, we opted for the use of
colour coding. Therefore, error information appears in red, whereas warning
or medium importance data appear in orange.

– GPS coordinates mapping: During the flight, the location of the drone
is transmitted using the GPS MAVlink message, which is recorded in the
Dataflash logfile. GRYPHON extracts the timestamp, GPS signal strength (e.g.
good fix, no signal by correlating numerical value to a readable string out-
put), latitude and longitude as well as the relative altitude (altitude from the
ground) and the absolute altitude (altitude from the sea level). These data
are displayed along with a coloured output for the GPS signal reception. All
data are displayed on a map, using the functionality of mavflightview17

embedded in the script, revealing the full trajectory of the UAV.
– Unexpected altitude variation detection: During the flight, the drone is

expected to cruise at a determined altitude. A sudden variation in the altitude
within a specific timeframe (from timestamp to timestamp) may imply that
the drone is losing altitude from an undetermined factor (e.g. obstacle hit,
propeller breakdown). GRYPHON extracts the relative altitude from the GPS
and determines if such an unexpected event has occurred.

– Determine whether a CMD command was executed: As already dis-
cussed, the UAV can execute complex commands given by the pilot through
the GCS. A MAVlink CMD message is stored in the Dataflash log, com-
manding the drone to fly at the coordinations given at a specific altitude.

17 https://github.com/ArduPilot/MAVProxy/blob/master/MAVProxy/tools/
mavflightview.py.

https://github.com/ArduPilot/MAVProxy/blob/master/MAVProxy/tools/mavflightview.py
https://github.com/ArduPilot/MAVProxy/blob/master/MAVProxy/tools/mavflightview.py

386 E. Mantas and C. Patsakis

The autopilot directly executes commands upon receiving them. Practically,
this means that newer commands would discard the previous ones if there is
a conflict, e.g. fly to new coordinates. However, conflicting commands may
indicate an attack which leads to rejection of commands as a result of a breach
by a perpetrator, or a jamming attack. GRYPHON extracts the received com-
mands and verifies that the drone has flown at the desired coordinates within
a margin of 10 cm. Failure to do so is reported to the user with a critical
error.

– Data specific extraction errors: During the flight of the drone, errors or
crashes may occur in different flight components (e.g. sensors, GPS, compass).
A MAVlink ERR message is stored in the log file and contains the timestamp
and the code of the component and the error code. GRYPHON extracts all these
error events and performs colour coding, displaying them in red to allow the
forensic investigator to distinguish them faster.

– AC/DC measurements analysis: A MAVlink CURR message records the
battery and flight board voltage and current information. During the flight
it is possible that a short circuit or a battery voltage malfunction may occur,
resulting in a crash-landing. Extracting the battery voltage and the circuit
current consumption gives the forensic researcher the ability to investigate if
the values exceeded a 10% acceptable threshold of the median voltage and
current value. The latter values are automatically extracted from the PARM
messages containing the battery voltage and capacity. These parameter values
are given from the pilot of the flying vehicle before the take-off, to ensure that
the autopilot can adequately manage the components of the drone.

– Check CRC from repositories: The Dataflash log contains the firmware
name and its current installed version. A MAVlink MSG message records the
firmware info and the vehicle type (e.g. quadrotor, VTOL plane). GRYPHON
tries to cross-validate the checksum hash of the firmware of the vehicle with
the Ardupilot official Github repository18. To achieve this GRYPHON checks
whether the collected checksum matches any of the official ones. It should
be noted that this indicator can only be considered if a negative result is
received. More precisely, if the reported value is aligned with the checksums
of the repository, this does not guarantee that the firmware has not been
tampered with. Clearly, a tampered firmware can report any value it wants
in the log file. However, if the checksum does not match any of the official
checksums of the repository, then one can safely assume that the firmware has
been tampered with. Unfortunately, vendors do not provide signed hashes of
their firmware to facilitate these checks.

– Timeline Analysis: As mentioned before the Dataflash log contains all the
events recorded during the flight. Only a specific type of messages are useful
for forensic analysis. MAVlink messages like GPS, ERR, CURR, MSG, CMD
and specific parameters of the flight components (e.g. battery capacity and
voltage) have high importance in determining the cause of a failure, or verify
that a malicious action took place. After extracting the flight event data,

18 https://github.com/ArduPilot/ardupilot.

https://github.com/ArduPilot/ardupilot

GRYPHON: Drone Forensics in Dataflash and Telemetry Logs 387

GRYPHON sorts the events according to their timestamps, creating a timeline
analysis for the forensic investigator. This analysis is generated in a new text
file for later use, under the name logfile name.bin.analysis.

4.3 Replaying Data from the Telemetry Log

A useful companion on the forensic research of a flying vehicle is the Telemetry
log. When a drone is connected to a GCS on the pilot’s device (e.g. a computer,
a tablet, a mobile phone), the Telemetry log is generated on the device once the
connect button on the GCS is pressed. It contains all the flight data sent to the
drone like the Dataflash logfile, but it is a replay log. This means that acquiring
and replaying this type of log gives the forensic analyst a better view of the
flight. The replay displays all the flight data as if the drone was flying at the
moment. Using the built-in functionality of state of the art GCS like the Mission
Planner19, the Telemetry log offers a “real-time” behavioural analysis, from the
flight path to the command request and execution. Mission Planner’s graphs
and other tools like 3D flight path generation for Google Earth, parameters
extraction make the visualisation of Telemetry log data easier, multiplying the
forensic value of the logs. It must be noted that in the event of a drone crash-
landing, the drone should be connected to an associated device GCS to have
the Telemetry log in possession. This means that in the dreadful scenario of a
drone attack or malicious behaviour (e.g. restricted area flight), the Telemetry
log cannot be acquired. Therefore, finding the perpetrator’s device connected to
the drone lies to the Authorities which have to make a forensic examination to
extract the telemetry logs. In any case, the telemetry log is useful for enterprises
that maintain fleets of drones to facilitate the forensic examination in case of
accidents.

5 Experimental Results

Using the dataset provided from VTO Labs in the Drone Forensics Project20, we
tested the compliance of our tool with the provided binary to determine whether
it satisfies the functionalities described in the previous section. More precisely,
logs of the ArduPilot DIY drone were used since it was the only Ardupilot
compliant drone available, then we used the tool to another private log file from
a drone crash. GRYPHON successfully collected the necessary information from
the binaries, extracting the data of various flights. One particular flight serves
as an example of the capabilities of the GRYPHON forensic tool. The events of
the flight are illustrated in Fig. 4c screenshots of the trajectories of four flights.
During the flight of an autonomous flying vehicle a battery failure occurred,
resulting in a crash land. The forensic analysis of the events seems to solve the
case, see Fig. 4.

19 http://ardupilot.org/planner/.
20 https://www.droneforensics.com.

http://ardupilot.org/planner/
https://www.droneforensics.com

388 E. Mantas and C. Patsakis

(a) Firmware verification and voltage
analysis.

(b) Battery failure led to voltage and
altitude error detection.

(c) Flight trajectory with colored flight
modes to be easily distinguished.

Fig. 4. Screenshots from the trajectory of the crash landing. (Color figure online)

Apart from mapping the trajectories and creating the corresponding time-
lines, GRYPHON managed to find several events in each flight but no evidence
of a malicious act. Each flight mode is displayed in a different colour to facili-
tate recognition (image flightpath1). GRYPHON reported that during the flight a
battery voltage, see Fig. 4, an anomaly caused a crash land. Since the autopilot
verified the voltage problem the Return To Land (RTL) mode was automatically
triggered. The drone did not manage to return safely to the ground as displayed
on and resulted in a crash landing. Additionally, the firmware version of the fly-
ing vehicle appears to match the checksum of the Ardupilot Github repository.
Therefore, there is no obvious tampering of the firmware.

6 Conclusions

The upcoming rise of the unmanned flying vehicles posses new threats to every-
day life. A careful examination of the forensic artifacts should ensure that the

GRYPHON: Drone Forensics in Dataflash and Telemetry Logs 389

perpetrators will face justice or identify the issues that caused e.g. a collision.
Since there is no established procedure of drone forensic research to date, this
research proposes a detailed plan on how to approach such a challenge from the
perspective of the ground control station. We argue that drone forensic examina-
tions should focus on the topics described in this work, despite the wide variety
of the underlying autopilot firmware and operating systems. In the future, we
plan to extensively test the tool to determine its effectiveness for a proper foren-
sic investigation, leading to a more robust and effective toolkit for a forensic
researcher. Nevertheless, we should highlight the lack of available datasets that
could be used as baseline for further extension of such work.

Acknowledgements. This work was supported by the European Commission under
the Horizon 2020 Programme (H2020), as part of the project YAKSHA (Grant Agree-
ment no. 780498) and is based upon work from COST Action CA17124: Digital foren-
sics: evidence analysis via intelligent systems and practices (European Cooperation in
Science and Technology).

This paper utilised datasets from droneforensics which is based on research com-
pleted by VTO Labs (Colorado, USA); sponsored by the United States Department of
Homeland Security (DHS) Science and Technology Directorate, Cyber Security Divi-
sion (DHS S&T/CSD) via contract number HHSP233201700017C.

References

1. 2018 drone market sector report (2018). http://droneanalyst.com/research
2. Abbaspour, A., Yen, K.K., Forouzannezhad, P., Sargolzaei, A.: A neural adaptive

approach for active fault-tolerant control design in UAV. IEEE Trans. Syst. Man
Cybern. Syst. 99, 1–11 (2018)

3. Abbaspour, A., Yen, K.K., Noei, S., Sargolzaei, A.: Detection of fault data injection
attack on UAV using adaptive neural network. Proc. Comput. Sci. 95, 193–200
(2016)

4. Altawy, R., Youssef, A.M.: Security, privacy, and safety aspects of civilian drones:
a survey. ACM Trans. Cyber-Phys. Syst. 1(2), 7 (2017)

5. Alvarez, P.: Using extended file information (EXIF) file headers in digital evidence
analysis. Int. J. Digit. Evid. 2(3), 1–5 (2004)

6. Barton, T.E.A., Azhar, M.A.H.B.: Open source forensics for a multi-platform drone
system. In: Matoušek, P., Schmiedecker, M. (eds.) ICDF2C 2017. LNICST, vol. 216,
pp. 83–96. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73697-6 6

7. Barton, T.E.A., Azhar, M.H.B.: Forensic analysis of popular UAV systems. In:
2017 Seventh International Conference on Emerging Security Technologies (EST),
pp. 91–96. IEEE (2017)

8. Birnbaum, Z., Dolgikh, A., Skormin, V., O’Brien, E., Muller, D., Stracquodaine, C.:
Unmanned aerial vehicle security using recursive parameter estimation. J. Intell.
Robot. Syst. 84(1–4), 107–120 (2016)

9. Bouafif, H., Kamoun, F., Iqbal, F., Marrington, A.: Drone forensics: challenges and
new insights. In: 2018 9th IFIP International Conference on New Technologies,
Mobility and Security (NTMS), pp. 1–6. IEEE (2018)

10. Clark, D.R., Meffert, C., Baggili, I., Breitinger, F.: DROP (drone open source
parser) your drone: forensic analysis of the DJI Phantom III. Digit. Invest. 22,
S3–S14 (2017)

https://project-yaksha.eu/
https://www.droneforensics.com
https://vtolabs.com
http://droneanalyst.com/research
https://doi.org/10.1007/978-3-319-73697-6_6

390 E. Mantas and C. Patsakis

11. Hartmann, K., Giles, K.: UAV exploitation: a new domain for cyber power. In:
2016 8th International Conference on Cyber Conflict (CyCon), pp. 205–221. IEEE
(2016)

12. Hartmann, K., Steup, C.: The vulnerability of UAVs to cyber attacks-an approach
to the risk assessment. In: 2013 5th International Conference on Cyber Conflict
(CyCon), pp. 1–23. IEEE (2013)

13. Hooper, M., et al.: Securing commercial WiFi-based UAVs from common security
attacks. In: MILCOM 2016–2016 IEEE Military Communications Conference, pp.
1213–1218. IEEE (2016)

14. Horsman, G.: Unmanned aerial vehicles: a preliminary analysis of forensic chal-
lenges. Digit. Invest. 16, 1–11 (2016)

15. Jain, U., Rogers, M., Matson, E.T.: Drone forensic framework: sensor and data
identification and verification. In: 2017 IEEE Sensors Applications Symposium
(SAS), pp. 1–6. IEEE (2017)

16. Javaid, A.Y., Sun, W., Alam, M.: UAVSim: a simulation testbed for unmanned
aerial vehicle network cyber security analysis. In: 2013 IEEE Globecom Workshops
(GC Wkshps), pp. 1432–1436. IEEE (2013)

17. Kim, A., Wampler, B., Goppert, J., Hwang, I., Aldridge, H.: Cyber attack vulner-
abilities analysis for unmanned aerial vehicles. In: Infotech@ Aerospace 2012, p.
2438 (2012)

18. Kovar, D., Dominguez, G., Murphy, C.: UAV (aka drone) forensics. Slides of a talk
given at SANS DFIR summit in Austin, TX July 7 (2015)

19. Pleban, J.S., Band, R., Creutzburg, R.: Hacking and securing the AR.Drone 2.0
quadcopter: investigations for improving the security of a toy. In: Mobile Devices
and Multimedia: Enabling Technologies, Algorithms, and Applications 2014, vol.
9030, p. 90300L. International Society for Optics and Photonics (2014)

20. Schumann, J., Moosbrugger, P., Rozier, K.Y.: R2U2: monitoring and diagnosis of
security threats for unmanned aerial systems. In: Bartocci, E., Majumdar, R. (eds.)
RV 2015. LNCS, vol. 9333, pp. 233–249. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-23820-3 15

21. Sedjelmaci, H., Senouci, S.M., Messous, M.A.: How to detect cyber-attacks in
unmanned aerial vehicles network? In: 2016 IEEE Global Communications Con-
ference (GLOBECOM), pp. 1–6. IEEE (2016)

22. Solodov, A., Williams, A., Al Hanaei, S., Goddard, B.: Analyzing the threat of
unmanned aerial vehicles (UAV) to nuclear facilities. Secur. J. 31(1), 305–324
(2018)

23. Valente, J., Cardenas, A.A.: Understanding security threats in consumer drones
through the lens of the discovery quadcopter family. In: Proceedings of the 2017
Workshop on Internet of Things Security and Privacy, pp. 31–36. ACM (2017)

24. Vattapparamban, E., Güvenç, İ., Yurekli, A.İ., Akkaya, K., Uluağaç, S.: Drones
for smart cities: Issues in cybersecurity, privacy, and public safety. In: 2016 Inter-
national Wireless Communications and Mobile computing Conference (IWCMC),
pp. 216–221. IEEE (2016)

25. Yaqoob, I., Hashem, I.A.T., Ahmed, A., Kazmi, S.A., Hong, C.S.: Internet of things
forensics: recent advances, taxonomy, requirements, and open challenges. Future
Gener. Comput. Syst. 92, 265–275 (2019)

https://doi.org/10.1007/978-3-319-23820-3_15
https://doi.org/10.1007/978-3-319-23820-3_15

Toward the Analysis of Distributed Code
Injection in Post-mortem Forensics

Yuto Otsuki1(B), Yuhei Kawakoya1, Makoto Iwamura1, Jun Miyoshi1,
Jacob Faires2, and Terrence Lillard2

1 NTT Secure Platform Laboratories,
3-9-11 Midoricho, Musashino-shi, Tokyo 180-8585, Japan

{yuuto.ootsuki.uh,yuuhei.kawakoya.sy,makoto.iwamura.sw,
jun.miyoshi.fu}@hco.ntt.co.jp

2 NTT Security (US), Inc.,
9420 Underwood Avenue, Omaha, NE 68114, USA

{Jacob.Faires,Terrence.Lillard}@nttsecurity.com

Abstract. Distributed code injection is a new type of malicious code
injection technique. It makes existing forensics techniques for injected
code detection infeasible by splitting a malicious code into several code
snippets, injecting them into multiple running processes, and executing
them in each process spaces. In spite of the impact of it on practical
forensics fields, there was no discussion on countermeasures against this
threat. In this paper, we present a memory forensics method for finding
all code snippets distributively injected into multiple processes to defeat
distributed code injection attacks. Our method is designed on the fol-
lowing observation for distributed code injection attacks. Even though
malicious code is split and distributed in multiple processes, the split
code snippets have to synchronize each other at runtime to maintain
the order of the execution of the original malicious code. We exploit
this characteristic of distributed code injection attacks with our method.
The experimental results showed that our method successfully found all
distributed code snippets and assisted to reconstruct the original code
from them. We believe that we are the first to present a countermea-
sure against distributed code injection attacks. We also believe that our
method is able to improve the efficiency of forensics especially for a host
compromised with distributed code injection attacks.

Keywords: Memory forensics · Code injection · Malware analysis

1 Introduction

Protecting premises from malware infections has become harder in each year
with the increasing prevalence of more sophisticated attacks and nation-state
sponsored attacks [5]. In response to this situation, the cybersecurity industry
has been shifting its focus to post-mortem investigations, i.e., forensics. Forensic
investigators gather artifacts left behind in a malware-infected host and uncover
c© Springer Nature Switzerland AG 2019
N. Attrapadung and T. Yagi (Eds.): IWSEC 2019, LNCS 11689, pp. 391–409, 2019.
https://doi.org/10.1007/978-3-030-26834-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26834-3_23&domain=pdf
https://doi.org/10.1007/978-3-030-26834-3_23

392 Y. Otsuki et al.

what (malicious) activities malware performed on the host. From that gathered
evidence, investigators seek to determine the causes of the infection and provide
recommendations to recover from the attack and protect the environment from
future similar attacks.

A problem shared among forensics practitioners is the difficulty of find-
ing injected malicious code when analyzing a memory dump acquired from an
infected host. This is because there is no evidence to know which process or
thread placed the code when you find suspicious code regions. That is, we do
not know whether a process or thread created the region by itself or another pro-
cess or thread injected that. To handle this difficulty, there are several studies
for detecting injected code in forensics scenarios [2,6,7,11,17,19,20,24].

We categorize existing detection techniques for code injection into three
groups on the basis of their target data: memory contents, memory-management
data, and execution states. Among them, pattern-matching on memory contents
is one of the most commonly used approaches in practical forensics since it likely
has fewer false positives than the other approaches. This is because this approach
directly targets injected code, whereas the others indirectly target injected code,
i.e., they search for the features often seen around injected code, such as mem-
ory regions with the writable and executable attributions or non-file-mapped
regions. Thus, forensics practitioners mainly use pattern-matching approaches
and use the other approaches complementarily.

In this situation, distributed code injection attacks have emerged as a new
type of code injection technique. This technique is composed of code splitting
at pre-runtime and; injection and coordination during runtime. It circumvents
pattern-matching approaches by breaking a specific detectable byte pattern into
multiple non-detectable smaller parts. Theoretically, it can split the malicious
code at instruction-level granularity. That is, this technique makes it difficult to
generate a pattern for detection with more than one instruction. Thus, we have to
rely on non-pattern-matching approaches, even though pattern-matching is the
most effective approach for finding injected code in forensics scenarios. This is a
challenging problem because, as we mentioned above, the other approaches may
generate more false positives than pattern-matching. We need to consider a dif-
ferent technique for reducing false positives so that we make the other approaches
practical.

To solve this problem, we present a method to identify all malicious code
snippets injected into multiple benign processes. The key idea of our method is
to combine a stack-tracking-based technique for code injection detection with a
technique for finding threads holding or waiting for synchronization objects. If we
only have a stack-tracing-based technique, we have to find code snippets that are
not related to distributed code injection attacks, such as just-in-time-compiled
(JIT) code. To eliminate those code snippets, we focus on synchronization objects
to find the relationship between threads holding the objects and threads wait-
ing for them. This design decision is based on the following observation. The
distributed code snippets have to communicate with each other to maintain the
order of the execution of the original code, even though they separately reside in

Toward the Analysis of Distributed Code Injection in Post-mortem Forensics 393

multiple processes. We exploit this characteristic by clarifying the mediator for
the communication and extracting threads related to that to find the all code
snippets executed by the threads.

We implemented our method as a plugin of Rekall [6] and performed an
experiment to assess whether our method works as designed. The experimen-
tal results show that our method correctly finds all code snippets, which were
distributively injected into eight benign processes. In this experiment, we used
malWASH1 as a representation of distributed code injection attack for protecting
a simple program, which creates a file, writes data into the file, and sleeps.

We have to acknowledge that, in this paper, we demonstrate only a detection
technique for distributed code injection attacks and do not present any technique
to reconstruct the entire original code in for analysis. However, we argue that our
paper is valuable because distributed code injection attacks will probably be a
real intrusion threat in the near future. This is because this attack is easy-to-use
for attackers (i.e., they can easily embed this attack into their malware, like a
runtime packer) and is the sole solution to defeat several security mechanisms,
such as pattern-matching or behavioral detection. Moreover, neither industry
nor academia has discussed countermeasures against this attack. As far as we
know, we are the first to shed light on a countermeasure against distributed
code injection attacks and present an approach to detect them by reasonably
extending existing techniques for forensics.

The contributions of this paper are as follows.

– We present our method for finding all distributed code snippets. Our method
mainly focuses on stack traces and synchronization objects to connect the split
code snippets residing in different processes via threads holding or waiting
for synchronization objects.

– We propose a technique using synchronization objects to reduce false positives
that occur when using the stack-tracing-based technique. Specifically, we can
eliminate code snippets associated with a just-in-time-complied code.

– We implemented our method into a plugin of Rekall [6] and performed an
experiment with malWASH. This experimental results show that our plugin
works as we design.

– We explain the details of the implementations of our method in AppendixA
so that readers can trace our implementations and the experiment, i.e., for
the reproducibility.

2 Background

In this section, we first mention existing detection techniques of code injection
attacks by categorizing them into three groups on the basis of the target data
for detection: on-memory contents, memory-management data, and execution
states. Also, we explain distributed code injection attacks using the modified
version of malWASH, as an example of distributed code injection attacks.

1 We modified the code of malWASH, which was downloaded from [9], for fixing bugs.

394 Y. Otsuki et al.

2.1 Code Injection Detection

We categorized existing techniques for code injection detections into three groups
on the basis of the target data (evidence) with which they used to identify
injected code: on-memory contents of injected code, system data for memory-
management, and the frozen execution state. Then, we consider the applicability
of these three approaches for forensics analysis from the viewpoint of false posi-
tives.

On-memory Contents. The code and data of malware are likely to have unique
byte patterns that have enough characteristics for distinguishing the malware
from other malware and benign programs. Injected code and data left in a mem-
ory dump are also likely to have such a pattern. We can identify the injected
code by finding the associated patterns in the virtual memory space of benign
processes. Signature-based scanners like yarascan [4,24] have the capability to
detect injected code of known malware on memory. Barabosch et al. [2] pro-
posed a machine-learning-based approach, named Quincy. In their proposal, they
define 38 features associated with the injected code, which include features of
both on-memory contents and memory-management data. Their experimental
results show that many features depending on memory contents contribute rel-
atively more to distinguishing injected code than the other features, such as
memory-management data.

Memory-Management Data. Memory regions containing injected code are likely
to have several unique characteristic properties dissimilar to other regions. For
example, whereas the memory regions containing executable code are likely to
reside in an image-mapped section, the ones containing injected code are often
in private memory regions. Another example is that whereas the memory regions
containing executable code are likely to have only the executable permission, the
ones containing injected code often have both the executable and writable per-
missions. malfind, an injected code detector included in The Volatility Frame-
work [24], can check both of the above properties to detect injected code in a
memory dump. Membrane [19] also use memory-management data as a feature
for machine-learning to detect code-injected processes.

Execution States. A memory dump includes the frozen execution states of pro-
cesses and threads that were running in the environment when the memory
dump was captured. These states are helpful for forensic investigators to find
processes and threads executing malicious code. In general, operating systems
(OSs) have to save the last execution state of each thread into memory when
context switching occurs. Because of this, we can retrieve the stored execution
state from a memory dump [18,21,23]. Stack-tracing is a technique that allows us
to extract the partial execution history of each thread as a call-stack even during
post-mortem memory forensics analysis [1,8,18,20,21,23]. We can assume that
each memory region containing the instructions pointed to by the last execution
state or call-stack of each thread should be a candidate of injected code regions
[20].

Toward the Analysis of Distributed Code Injection in Post-mortem Forensics 395

Applicability. Many forensics practitioners prefer to use on-memory content tech-
niques during investigations. This is because this approach tends to have fewer
false positives, even though it requires additional effort to create a signature
containing patterns for detections. One advantage of the on-memory content
approach over the others is that it finds malicious code or data directly, whereas
the other approaches find them indirectly. Due to this, the other approaches
(memory-management data and execution states) are likely to have more false
positives than on-memory contents. This is because, as we already mentioned,
these approaches focus on the properties that may appear in a memory region
containing malicious code. They do not find the actual injected malicious code
itself. One such false positive is JIT compiled code. When JIT code is contained
in a memory dump these approaches label the code region as suspicious and
generates a false positive. To avoid these false positives, forensics practitioners
only use these two approaches to complement on-memory contents approaches
and do not use them separately.

2.2 Distributed Code Injection Attacks

Distributed code injection is an evolved version of a code injection attack. This
technique first chops an executable (the original code) into small pieces of code
(code snippets). Then, at runtime, it injects the code snippets into multiple run-
ning processes. The emulator of a code snippet coordinates with other processes
to maintain the consistency of the execution of the original code.

The main purpose of distributed code injection attacks is to evade pattern-
matching based detection. Theoretically, this technique allows attackers to
split the code of malware at instruction-level granularity, i.e., injecting only
one machine-language instruction into a single process, for avoiding patterns.
Because of this, we cannot make a pattern matching more than one instruction
to detect the malicious code. This restriction is probably too severe to create a
pattern that can sufficiently distinguish the injected code from any other code.

malWASH [10] is an example of distributed code injection attacks. We can
download the code from [9] and try it in our environment. The use of malWASH
is as a running example throughout this paper.

Figure 1 explains the details of the behavior of malWASH. malWASH has two
phases: pre-runtime and runtime. In the pre-runtime phase, malWASH receives
an executable file and splits the file into several code snippets. It generates
an injector, which is an executable file responsible for injecting and initializing
the code snippets and the emulator. The code snippets are stored as a payload
in the injector. When the injector is executed it injects the code snippets and
threads into multiple running processes and each thread executes one of the
code snippets inside each process. Figure 2 details the state transition of the
emulator in a code snippet. The emulator of a code snippet starts its execution
with the state waiting for a specific synchronization object. When it successfully
acquires the object, it first checks the order of execution. The order of execution
is managed by each emulator. That is, each emulator knows which code block
is the next to be executed after its code snippet. When the emulator checks the

396 Y. Otsuki et al.

order of execution, if the next execution is itself, the emulator starts executing
its code snippet. After the execution has been done, the emulator updates the
next executing block, releases the object, and then returns to the waiting state.

Fig. 1. Overview of malWASH.

Fig. 2. State transition of the emulator of malWASH.

3 Proposal

In this section, we introduce our specialized memory forensic method for finding
split code snippets for a distributed code injection attack. First, we define the
problem we solve in this paper. Next, we explain the overview of our method.
Then, we dive into its details, i.e., stack traces and synchronization objects.
All implementations presented in this section were targeted for Windows 8.1
x64 environment. We will discuss the platform dependency of our method in
Sect. 5.2.

Toward the Analysis of Distributed Code Injection in Post-mortem Forensics 397

Fig. 3. Linked code snippets via threads sharing a synchronization object.

3.1 Problem Definition

As we explained in Sect. 2.2, distributed code injection attacks make pattern-
matching-based approaches infeasible. Thus, we should no longer rely on pattern-
matching approaches to fight against distributed code injection attacks. Given
that fact, we must rely on memory-management data or execution states to
detect them. However, as we also explained, these two approaches are likely to
have false positives and negatives, respectively. Therefore, we need a technique
to reduce them if we integrate either of these approaches into our method.

In summary, we define the problem to solve in this paper as the following
two areas. First, we explore a suitable approach for detecting distributed code
injection attacks. Second, we propose a technique, which could be used with the
first technique, to reduce false positives. After this subsection, we will explain
our method, which is designed to solve the two problem areas.

3.2 Overview

The goal of our method is to find all code snippets that will be coordinating
to form the original malicious code, which are distributed to multiple running
processes. To achieve the goal, our basic idea is to relate code snippets found
in benign processes via threads; we also relate the threads via synchronization
objects.

1. Build Code to Thread link with stack traces.
2. Build Thread to Thread link with synchronization objects.
3. Build Code to Code link with the links built in the 1 and 2 steps.

We explain each step of our method by illustrating in Fig. 3. As the first step,
we enumerate threads which were running when we acquired a memory dump
and then build the stack trace of each of them. Next, we select suspicious code
regions from the ones pointed to by the pointers in a stack trace, as a candidate
of the code snippets. In Fig. 3, we select the code region (1), (2), (3), and (4)
since each of them is pointed to from the stack trace of the thread A, B, C, and
D, respectively.

398 Y. Otsuki et al.

For the second step, we find the synchronization objects which are owned or
being waited for by the threads. Then, we relate each thread that handles the
same synchronization objects. This step mainly allows us to eliminate unrelated
code snippets, such as JIT, from valid candidates. In Fig. 3, the thread A, B,
and C are related to each other because they share the synchronization object
X. The thread D is not related to the other threads, such as A, B and C, because
it was executing the JIT code region and and never coordinates with the other
threads via the synchronization object X.

For the last step, we use the relationships collected through the first and
second steps to relate the code to code. In Fig. 3, we relate the code regions (1),
(2), and (3) via the thread A, B, and C sharing the synchronization object X.
Thus, we define the code region (1), (2), and (3) as the code snippets placed for
a distributed code injection attack.

After collecting all dependent code snippets of the original code, we have to
reconstruct the original code from the code snippets. In this paper, we mainly
focus on the collection phase of the distributed code snippets. We define the
phase for reconstructing the original code from the collected code snippets as
the out-of-scope of this paper.

Our method is implemented as a plugin for Rekall 1.6.0 [6], which is a memory
forensics framework forked from The Volatility Framework [24].

3.3 Code to Thread Link

The goal of this phase is to establish a relationship between the code and the
thread executing the code. As we mentioned above, our method is to relate code
via threads. For the first step for realizing our method, we perform stack-tracking
for each thread listed from a memory dump. Then, we examine the code pointed
to by the pointers in the collected stack trace to check if it is suspicious, in
other words, check if the code is part of the original code. If a pointer points to
suspicious code, we identify that the thread was executing a code snippet and
then establish a relationship between the code and the thread.

Stack Tracing. Stack-tracing is a technique to generate the stack trace of a
thread. A stack trace is a set of the return addresses of called functions. These
addresses point to the code being executed by the thread. We take advantage of
this feature of a stack trace to link a thread with code, which is executed by the
thread.

To build the stack traces for each thread from a memory dump, we use
the existing stack-tracing method proposed by Otsuki et al. [18]. Their method
can extract the last execution state and the stack traces of each thread from a
memory dump without depending on Windows x64 or x86 environments. The
method is built on a control flow analysis combined with several forensics tech-
niques, which focus on some data structures for exceptional handlings, such as
RUNTIME FUNCTIONs, UNWIND INFOs, and UNWIND CODEs.

Toward the Analysis of Distributed Code Injection in Post-mortem Forensics 399

Table 1. Rules for suspicious code detection.

Memory page type Detection condition

Type I (Rule1 ∨ Rule2) ∧ ¬Rule3

Type II Rule3 ∧ ¬Rule4

Type III Rule3 ∧ Rule4 ∧ ¬Rule5

Type IV (Rule1 ∨ Rule2) ∧ Rule3 ∧ Rule4

Suspicious Code Detection. The stack trace of a thread contains the pointers
to the code being executed, i.e., called, by the thread at the specific time. It
contains both pointers to a benign or malicious code. We need to filter out
the pointers to benign code regions and pick out all pointers to malicious code
regions so that the malicious code region pointed to from a stack trace becomes
a candidate of code snippets.

To do that, we focus on four types of memory pages containing code pointed
from the pointers of a stack trace.

– Type I: No file-backed pages with executable, writable, and dirty attributes.
– Type II: Executable and file-backed pages but have no executable image files
– Type III: Invalid executable image file-backed pages
– Type IV: Modified executable image file-backed pages

To find these pages, we define the five rules on the basis of our own heuristics.
Each rule is expressed as a predicate, which is a question for which we can answer
either true (�) or false (⊥). The rules are as follows.

– Rule1: Is the page writable?
– Rule2: Is the page dirty?
– Rule3: Is the page file-backed?
– Rule4: Is the page in an image mapped section?
– Rule5: Is the page in a region starting with the valid PE header?

To find each type of memory page, we define the conditions by combining
some of the rules, as shown in Table 1. For Type I, either Rule1 or Rule2 should
be � and Rule3 should be ⊥. For Type II, Rule3 should be � and Rule4 should
be ⊥. For Type III, both Rule3 and Rule4 should be � and Rule5 should be
⊥. For Type IV, either Rule1 or Rule2 should be � and both Rule3 and Rule4
should be �. When we find a memory page satisfying more than one of these
conditions, we label the memory region containing the page as a candidate of
the code snippets.

3.4 Thread to Thread Link

The goal of this phase is to make a relationship between a thread and other
threads based on synchronization objects to eliminate code snippets which are

400 Y. Otsuki et al.

not related to a distributed code injection attack. The stack-tracking based tech-
nique for detecting suspicious code regions, which was explained in the previous
subsection, sometimes generates false positives. This is because, as we explained
in Sect. 2.1, this technique does not directly detect malicious contents. This tech-
nique detects attributes often seen around injected code and indirectly detects
the injected code. Due to this, if a benign program uses a technique leaving arti-
facts similar with ones of code injections, such as JIT compiled code, we label
the region containing JIT code as a suspicious region.

To avoid these cases, we focus on synchronization objects. This is because
all code snippets of the distributed code injection attack need to use them for
communicating to other threads, and code snippets not related to the attack
probably do not have them. For example, in the case of Fig. 3, thread A holds
a synchronization object, and other threads B and C wait for the object, we
establish a relationship between these four threads A, B, and C via the synchro-
nization object. When a thread does not have any synchronization object, we do
not handle the thread as a part of distributed code injection attacks. Thus, we
simply ignore it.

3.5 Code to Code Link

The goal of this phase is to relate a code snippet to another code snippet via
threads. We already have the relationships of Code to Thread and Thread to
Thread. We use these relationships to find a new relationship between different
code snippets residing benign processes. We define these related two code snip-
pets as a part of the original code was split to perform the distributed code
injection attacks. We iterate this relationship traveling and collect all code snip-
pets related to each other. These collected code snippets become the parts for
reconstructing the original code.

4 Experiment

In this section, we explain the experiment we had to show the effectiveness of our
method. In this experiment, we used a simple program protected with malWASH
as the dataset.

4.1 Setup

We explain the dataset prepared for this experiment and the environment where
we conducted it.

We first downloaded the original code of malWASH from [9] and then mod-
ified it for fixing several bugs and stably performing distributed code injection
attacks. Also, we implemented the program for being protected with malWASH
by ourselves for this experiment. This program is a 32-bit program that creates
a file, writes its thread identifier (TID) into the file, and then sleeps indefinitely.
When we protected the program with malWASH, we configured malWASH to

Toward the Analysis of Distributed Code Injection in Post-mortem Forensics 401

Table 2. The ground truth.

PID Address TID

424 0x3a0000 1896

1628 0x3c0000 1776

1860 0xca0000 2464

2240 0x700000 2292

2492 0xe60000 2380

2596 0xb00000 2808

2604 0x7a0000 1164

2800 0x370000 1532

split the executable into code snippets at the basic block granularity and inject
the code snippets into eight running processes. Then, we generated the injector
of malWASH. Additionally, as a process for being injected a code snippet into
by malWASH, we prepared a 32-bit victim program, which simply sleeps.

We conducted the experiment on the Windows 8.1 x64 environment, which
was running as a guest OS on VMware. Note that it is as per the instructions
in [9] that we prepared both the malWASH-protected program and the victim
program as a 32-bit program and executed them on the Windows 8.1 x64 envi-
ronment.

4.2 Procedure

First, we created the eight processes from the victim program and let them start
sleeping. Next, we ran the injector of malWASH on the same environment to let
it inject all the code snippets into the victim processes and start the emulators
in each process. After the injector finished its jobs, the injector stopped its
execution and exited. Then, we suspended the guest OS and generated a memory
dump from it.

We read the memory dump with Rekall and ran the plugin in which our
method is implemented. The plugin outputted the logs related to Code to
Thread, Thread to Thread, and Code to Code links. To assess if our method
correctly works, we modified the malWASH code to generate the ground truth
that contains the addresses where the injected code snippets were stored, the
process identifiers (PIDs) to identify processes into which the code snippets were
injected, and the TIDs2 that executed the code snippets. Lastly, we compared
the outputs of our plugin to the ground truth to assess if our plugin successfully
collected all code snippets injected to the victim processes.

2 Note that a TID is globally unique in the Windows environment while a thread with
the TID is alive. We can use a TID to identify the thread uniquely.

402 Y. Otsuki et al.

Fig. 4. The results of Code to Thread step. We built a link as a pair of a Suspicious

Region and an Executor Thread. tid is the TID of the Executor Thread executing
the Suspicious Region placed at the address of the process whose PID is pid.

4.3 Results

Table 2 shows the ground truth of this experiment. For example, the first line
tells that a code snippet was placed at the 0x3a0000 address by the injector, the
process whose PID is 424 executed the code snippet, and the thread whose TID
is 1896 executed the code snippet. We used this result as the ground truth with
which to compare the output of our plugin.

Figures 4, 5 and 6 show the output of our plugin, which shows that our
method worked correctly. The output includes three types of links: Code to
Thread (Fig. 4), Thread to Thread (Fig. 5), and Code to Code (Fig. 6). We explain
each link one by one below.

Figure 4 shows that our plugin found eight threads executing suspicious code
regions. For example, the thread whose TID is 1896 executed a suspicious code
region placed at the address 0x0000003a0000. This is in the memory space of
the process whose PID is 424. If we compare the Code to Thread links to the
ground truth, shown in Table 2, we found that our method precisely established
all the relationships between code to thread. Figure 5 shows that our plugin
found a semaphore object named "ControlAccess1" that was owned by a thread
whose TID is 2808 and being waited for by the other seven threads. When we
investigated the source code of malWASH, we found that the name was used for
a semaphore for coordination. Thus, we confirmed that our plugin successfully
found the semaphore object created by the emulator of a code snippet. Also,

Toward the Analysis of Distributed Code Injection in Post-mortem Forensics 403

Fig. 5. The results of Thread to Thread step. We can build a link between the running
thread and a set of waiting threads. type and name are the type and name of the
Synchronization Object, respectively. limit is the limit number of the object owner.
Running Thread is the thread holding the SemaphoreObject. Waiting Thread is the
thread waiting for the SemaphoreObject.

Fig. 6. The results of Code to Code step. We can define a group (Code Snippets Group)
from the code snippets (Code Snippets).

we found that our plugin correctly built the Thread to Thread links via the
semaphore object. Figure 6 shows that we found the eight code snippets as Code
to Code links. This output was internally built from the Code to Thread and
Thread to Thread links that we collected in the first and second steps in our
method. Comparing this result with the ground truth shows that all injected
code snippets were identified by our plugin. Thus, we demonstrated that our
plugin successfully worked in this experiment.

5 Discussion

In this section, we discuss validity of experiment, platform dependency, and
limitations of our method.

5.1 Validity of Experiment

We have to acknowledge that our experiment that we had in Sect. 4 is not com-
prehensive. However, we believe that we could show with the experiment that the

404 Y. Otsuki et al.

detection capability of our method for distributed code injection attacks is rea-
sonable. This is because our method is totally independent of original code and
not affected by the type of original code. That is, if attackers use distributed
code injection to protect their malware, which is more complicated than the
simple program, we could detect them with our method. Also, our method is
independent of victim processes. That is, if an injector injects its code snippets
into other processes, our method is not affected by that at all. Having said that
we recognize the necessity to evaluate our method from the different angles,
such as false positives or the effects of JIT code to our method, not only for the
capability of detections, i.e., true positive point of view. We will leave them as
a future work of this paper.

5.2 Platform Dependency

We consider that the design of our method is platform-agnostic, even though we
present it targeting Windows platforms in Sect. 3. Specifically, we may be able to
implement our method as a tool for other platforms if we can acquire stack traces
and synchronization objects from the platforms. Regarding stack traces, we can
find several implementations of stack-tracing for other platforms, such as [23].
Additionally, regarding synchronization objects, modern OSs, including Linux
platforms, generally provide synchronization mechanisms for user processes and
threads. We can extract the threads or processes related to a synchronization
object from the mechanisms if we successfully parse specific data structures for
that with a forensics technique.

5.3 Limitation

We discuss limitations of our method from the viewpoints of breaking Code to
Thread and Thread to Thread links.

To design our method, we implicitly assume the following two conditions.
First is that each thread needs to be the waiting state for synchronization. Sec-
ond is that each thread needs to synchronize each other with system-supported
synchronization objects. Due to these assumptions, we have to have the following
cases as a limitation in our method.

– Threads are polling a synchronization object.
– Threads do not depend on system-supported synchronization objects.

When threads are polling a synchronization object without being the waiting
state, they do not have any wait dependencies on synchronization objects. Thus,
we fail to build Thread to Thread links with our method. We consider that we
can handle this case with the same approach for extracting threads holding a
semaphore object explained in AppendixA.

Malware can use any objects, such as a file or registry objects, for synchro-
nization among threads, instead of system-supported synchronization objects.
When code snippets synchronize each other with one of such an object, we fail

Toward the Analysis of Distributed Code Injection in Post-mortem Forensics 405

to build Thread to Thread links. We consider that we may be able to handle this
case by identifying the objects distributed code snippets use for synchronization
and then extracting processes or threads related to the object.

6 Related Work

We explain existing works related to our method. We have already presented
the most of basic techniques used for code injection detection in Sect. 2.1. Thus,
in this section, we focus on evolved code injection techniques and detections
techniques for them.

Code injection techniques have several variations and have been still evolving.
For example, Process Hollowing [12], Process Doppelgänging [13], and Gargoyle
[14] are techniques that recently appear, as a new type of code injections. Pro-
cess Hollowing is a technique involving the creation of a process from a benign
executable and replacement of the benign code with a malicious code. Process
Doppelgänging is similar to Process Hollowing, but it abuses the Transactional
NTFS (TxF) mechanism [16] to replace the benign code with a malicious code.
Gargoyle is a technique involving injections of a malicious code and a chain for
return-oriented programming (ROP) [22] in non-executable memory regions of
a process. The malicious code is given the executable permission only when the
ROP chain is activated by timer-based callbacks. So, it is difficult to generate a
memory dump just when the malicious code is being executed.

It is difficult to detect these sophisticated code injections only with a basic
technique, e.g., memory-management data that we explained in Sect. 2.1. To
detect them, we need to techniques specially adjusted for them. hollowfind [17],
doppelfind [11], and gargoyle [7] are a Volatility plugin that aims to detect
Process Hollowing, Process Doppelgänging, and Gargoyle, respectively. These
plugins heuristically take advantage of characteristic features of each technique
for detections. Distributed code injection is a variety of this line of techniques
and we proposed a method to detect them. Thus, we have added a technique
specialized for detecting distributed code injection attacks with this paper.

7 Conclusion

Distributed code injection attacks will probably become a threat in forensics
fields in the near future. Even though that, we have not thoroughly discussed
this problem and its solutions in both academic and industry. This paper is
the first to shed light on this problem and we proposed a method to detect
code snippets split and injected for distributed code injection attacks. In our
experiment, we used malWASH as a representation of distributed code injection
attacks and showed that our method correctly detected all code snippets injected
by malWASH. Additionally, we provided the details of the implementations of
our method in AppendixA for readers of this paper to trace our research. We
believe that this paper becomes the first guide for forensic practitioners and
researchers to prepare for malware armed with distributed code injection attacks.

406 Y. Otsuki et al.

A Implementation Details

In this appendix, we explain how we implemented the component for building
Thread to Thread links. To build them, we have two steps. First is how we extract
the threads waiting for a synchronization object. Second is how we extract the
thread holding a synchronization object. To simplify the explanation, we focus
our scope into only semaphore from several synchronization objects.

Extraction of Threads Waiting for a Synchronization Object. We first explain
the data structure for the extraction, i.e., KWAIT BLOCK. Then, we explain
how to extract threads using the data structure.

All threads waiting for a semaphore object are linked via KWAIT BLOCKs.
KWAIT BLOCK structure represents a list entry of the wait list for a syn-
chronization object. The wait list is a LIST ENTRY-based doubly-linked list
[15] linking with KWAIT BLOCKs as many as threads waiting for the same
synchronization object. A KWAIT BLOCK also includes two pointers: Thread
and Object. The Thread points to the thread object, i.e. KTHREAD object,
corresponding a waiting thread. A KTHREAD object has the WaitBlockList
pointing to an array of KWAIT BLOCKs for synchronization objects waited
by the thread [3]. The Object points to the synchronization object waited for
by the thread pointed to by the Thread. A synchronization object has the
WaitListHead that is the head LIST ENTRY of the KWAIT BLOCK list.

By walking each KWAIT BLOCK list, we can retrieve all waiting threads
and the waited semaphore object. After our plugin enumerates thread objects
corresponding the threads executing suspicious code regions, it firstly extracts
KWAIT BLOCKs from WaitBlockList of each of the thread objects. Second,
our plugin extracts the semaphore object and other waiting threads by travers-
ing the list of each of the KWAIT BLOCKs. Third, it distinguishes semaphore
objects waited for by only threads executing suspicious code regions and defines
the semaphore objects as ones for coordinating distributed code snippets. Our
plugin finally extracts the threads waiting for the semaphore objects.

Extraction of Threads Holding a Synchronization Object. We first explain the
problem on how to identify the thread holding a semaphore object. Then, we
explain our approach to solve the problem extracting the thread via the handle
for the object opened by a process.

The problem is that there is no explicit evidence to find the owners of
a semaphore object in Windows environment. A KWAIT BLOCK list for a
semaphore object is defined to manage only waiting threads and does not include
any information regarding the owners of the semaphore object. Semaphore
object, i.e. KSEMAPHORE object, also has no direct pointer to the owners.
Therefore, we need to find the owner threads of it from other data sources.

To solve this problem, we focus on processes opening the handles of a spe-
cific semaphore objects. All processes owning threads holding semaphore objects
must hold handles for the semaphore objects. The semaphore objects for coordi-
nating distributed code snippets must be unique and never acquired by threads

Toward the Analysis of Distributed Code Injection in Post-mortem Forensics 407

executing benign code. Therefore, we can use processes as mediators to find out
threads holding the semaphore objects.

Figure 7 illustrates how to find out the owner thread in our implementation.
The detail of our approach is as follows.

Fig. 7. Linked code snippets via threads sharing a semaphore object.

1. Find semaphore objects based on the results of waiting threads extraction.
2. Enumerate processes holding a handle for each of the objects.
3. Extract processes owning threads, which are detected as executing suspicious

code and are not waiting for the semaphore object, from the enumerated
processes.

4. Define the threads as the owners of the semaphore objects.

We explain each step of our plugin with Fig. 7. Our plugin first detects the
thread A, B, and C executing the suspicious code (1), (2), and (3), like in the case
of Fig. 3. The thread B and C are waiting for the semaphore object X and our
plugin builds a link between the thread B and C from the KWAIT BLOCK list
for the semaphore object X. After that, our plugin starts extracting the owner
threads of the semaphore objects. For the first step, it finds the semaphore object
X via the thread B and C. For the second step, our plugin enumerates the process
A’, B’, C’ as processes holding a handle for the semaphore X. For the third step,
it distinguishes the process A’ owning the thread A, which is not waiting the
semaphore object X, from the others. For the fourth step, our plugin defines the
thread A as the current owner of the semaphore object X. Our plugin finally
builds a Thread to Thread link throughout the thread A, B, and C.

408 Y. Otsuki et al.

References

1. Arasteh, A.R., Debbabi, M.: Forensic memory analysis: from stack and code to
execution history. Digit. Invest. 4(Suppl.), 114–125 (2007)

2. Barabosch, T., Bergmann, N., Dombeck, A., Padilla, E.: Quincy: detecting host-
based code injection attacks in memory dumps. In: Polychronakis, M., Meier,
M. (eds.) DIMVA 2017. LNCS, vol. 10327, pp. 209–229. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-60876-1 10

3. CodeMachine Inc.: CodeMachine – Article – Catalog of key Windows kernel data
structures. https://www.codemachine.com/article kernelstruct.html. Accessed 02
Apr 2019

4. Cohen, M.: Scanning memory with Yara. Digit. Invest. 20, 34–43 (2017). https://
doi.org/10.1016/j.diin.2017.02.005

5. FireEye, Inc.: M-trends (2019). https://content.fireeye.com/m-trends. Accessed 02
Apr 2019

6. Google Inc.: Rekall memory forensic framework. http://www.rekall-forensic.com/.
Accessed 02 Apr 2019

7. Hammond, A.: Hunting for gargoyle memory scanning evasion. https://www.
countercept.com/blog/hunting-for-gargoyle/. Accessed 02 Apr 2019

8. Hejazi, S.M., Talhi, C., Debbabi, M.: Extraction of forensically sensitive informa-
tion from windows physical memory. Digit. Invest. 6(Suppl.), S121–S131 (2009)

9. HexHive: Github – hexhive/malwash. https://github.com/HexHive/malWASH.
Accessed 02 Apr 2019

10. Ispoglou, K.K., Payer, M.: malWASH: washing malware to evade dynamic analysis.
In: 10th USENIX Workshop on Offensive Technologies (WOOT 2016). USENIX
Association (2016)

11. KSLGroup: Github – kslgroup/process-doppelganging-doppelfind: a volatility
plugin to detect process doppelganging. https://github.com/kslgroup/Process-
Doppelganging-Doppelfind. Accessed 02 Apr 2019

12. Leitch, J.: Process hollowing. https://www.autosectools.com/Process-Hollowing.
html. Accessed 02 Apr 2019

13. Liberman, T., Kogan, E.: Lost in transaction: process doppelgänging. Black Hat
Europe 2017 (2017)

14. Lospinoso, J.: Gargoyle, a memory scanning evasion technique. https://lospi.net/
security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-
analysis-evasion.html. Accessed 02 Apr 2019

15. Microsoft: Singly and doubly linked lists – Windows drivers—Microsoft
docs. https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/singly-
and-doubly-linked-lists. Accessed 02 Apr 2019

16. Microsoft: Transactional NTFS (TxF) – Windows applications—Microsoft docs.
https://docs.microsoft.com/ja-jp/windows/desktop/FileIO/transactional-ntfs-
portal. Accessed 02 Apr 2019

17. Monnappa, K.A.: Detecting deceptive process hollowing techniques using
hollowfind volatility plugin - cysinfo. https://cysinfo.com/detecting-deceptive-
hollowing-techniques/. Accessed 02 Apr 2019

18. Otsuki, Y., Kawakoya, Y., Iwamura, M., Miyoshi, J., Ohkubo, K.: Building stack
traces from memory dump of windows x64. Digit. Invest. 24, S101–S110 (2018).
https://doi.org/10.1016/j.diin.2018.01.013

https://doi.org/10.1007/978-3-319-60876-1_10
https://www.codemachine.com/article_kernelstruct.html
https://doi.org/10.1016/j.diin.2017.02.005
https://doi.org/10.1016/j.diin.2017.02.005
https://content.fireeye.com/m-trends
http://www.rekall-forensic.com/
https://www.countercept.com/blog/hunting-for-gargoyle/
https://www.countercept.com/blog/hunting-for-gargoyle/
https://github.com/HexHive/malWASH
https://github.com/kslgroup/Process-Doppelganging-Doppelfind
https://github.com/kslgroup/Process-Doppelganging-Doppelfind
https://www.autosectools.com/Process-Hollowing.html
https://www.autosectools.com/Process-Hollowing.html
https://lospi.net/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://lospi.net/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://lospi.net/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/singly-and-doubly-linked-lists
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/singly-and-doubly-linked-lists
https://docs.microsoft.com/ja-jp/windows/desktop/FileIO/transactional-ntfs-portal
https://docs.microsoft.com/ja-jp/windows/desktop/FileIO/transactional-ntfs-portal
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://doi.org/10.1016/j.diin.2018.01.013

Toward the Analysis of Distributed Code Injection in Post-mortem Forensics 409

19. Pék, G., Lázár, Z., Várnagy, Z., Félegyházi, M., Buttyán, L.: Membrane: a poste-
riori detection of malicious code loading by memory paging analysis. In: Askoxy-
lakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS,
vol. 9878, pp. 199–216. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45744-4 10

20. Pshoul, D.: Community/dimapshoul at master · volatilityfoundation/community
· github. https://github.com/volatilityfoundation/community/tree/master/Dima
Pshoul. Accessed 02 Apr 2019

21. Pulley, C.: Github – carlpulley/volatility: a collection of volatility framework plu-
gins. https://github.com/carlpulley/volatility. Accessed 02 Apr 2019

22. Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-oriented programming:
systems, languages, and applications. ACM Trans. Inf. Syst. Secur. 15(1), 2:1–2:34
(2012)

23. Smulders, E.: Github – dutchy-/volatility-plugins: container for assorted volatility
plugins. https://github.com/Dutchy-/volatility-plugins. Accessed 02 Apr 2019

24. The Volatility Foundation: The volatility foundation – open source memory foren-
sics. http://www.volatilityfoundation.org/. Accessed 02 Apr 2019

https://doi.org/10.1007/978-3-319-45744-4_10
https://doi.org/10.1007/978-3-319-45744-4_10
https://github.com/volatilityfoundation/community/tree/master/DimaPshoul
https://github.com/volatilityfoundation/community/tree/master/DimaPshoul
https://github.com/carlpulley/volatility
https://github.com/Dutchy-/volatility-plugins
http://www.volatilityfoundation.org/

Author Index

Aikawa, Yusuke 23

Banik, Subhadeep 109
Banin, Sergii 149
Bogdanov, Andrey 129
Buldas, Ahto 363

Cao, Zhenfu 287

Desmedt, Yvo 329
Dumas, Jean-Guillaume 67
Durak, F. Betül 343
Dyrkolbotn, Geir Olav 149

Faires, Jacob 391
Firsov, Denis 363
Funabiki, Yuki 109, 129

Hanaoka, Goichiro 253
Hayata, Junichiro 253
Heinemann, Andreas 221
Hiruta, Shohei 189

Ikeda, Satoshi 189
Imamura, Yuta 241
Isobe, Takanori 109, 129, 306
Ito, Takuma 37
Iwamura, Makoto 391

Kawakoya, Yuhei 391
Kitagawa, Fuyuki 253
Koay, Abigail 207
Kubo, Hiroyasu 129
Kurosawa, Kaoru 3, 53

Laanoja, Risto 363
Lafourcade, Pascal 67
Lakk, Henri 363
Li, Shimin 273
Lillard, Terrence 391

Liu, Fukang 287, 306
Lopez Fenner, Julio 67
Lucas, David 67

Mantas, Evangelos 377
Matsuhashi, Hayato 53
Matsuura, Kanta 253
Mimura, Mamoru 168
Minematsu, Kazuhiko 129
Miyoshi, Jun 391
Morioka, Sumio 129
Morozov, Kirill 329

Nakanishi, Toru 89

Ogata, Wakaha 3
Ohminami, Taro 168
Okishima, Ryo 89
Onuki, Hiroshi 23
Orfila, Jean-Baptiste 67
Orito, Rintaro 241
Otsuki, Yuto 391

Patsakis, Constantinos 377
Pernet, Clément 67
Puys, Maxime 67

Sakagami, Yusuke 53
Sakai, Yusuke 253
Sakamoto, Kosei 129
Sato, Masaya 241
Seah, Winston K. G. 207
Shibata, Nao 129
Shigeri, Maki 129
Shima, Shigeyoshi 189
Shinohara, Naoyuki 37

Takagi, Tsuyoshi 23
Takakura, Hiroki 189

Tomita, Toi 3
Truu, Ahto 363

Uchiyama, Shigenori 37
Ueda, Akinaga 53

Vaudenay, Serge 343

Wang, Gaoli 287
Wang, Xin 273

Welch, Ian 207
Wiesmaier, Alexander 221

Xue, Rui 273

Yamauchi, Toshihiro 241
Yamazaki, Tsutomu 23

Zeier, Alexander 221

412 Author Index

	Preface
	IWSEC 2019 14th International Workshop on Security Organization
	Contents
	Public-Key Primitives 1
	CCA-Secure Leakage-Resilient Identity-Based Key-Encapsulation from Simple (Not q-type) Assumptions
	1 Introduction
	1.1 Background
	1.2 Our Contribution
	1.3 Various Models for Leakage-Resilient
	1.4 Organization

	2 Preliminaries
	2.1 Notations
	2.2 External Decisional Linear Assumption
	2.3 Statistical Distance, Min-Entropy and Randomness Extractor
	2.4 Hash Functions
	2.5 Useful Facts

	3 Identity-Based Key-Encapsulation Mechanism
	4 Construction
	5 Security
	6 Conclusion
	A Proof of Lemmas
	References

	(Short Paper) A Faster Constant-Time Algorithm of CSIDH Keeping Two Points
	1 Introduction
	2 CSIDH
	2.1 Protocol of CSIDH
	2.2 Ideal Class Group

	3 Previous Works for Constant-Time Implementation of CSIDH
	3.1 Constant-Time Implementation
	3.2 Constant-Time Implementations Based on Another Definition

	4 Our Constant-Time Implementation
	4.1 Basic Idea
	4.2 Proposed Algorithm
	4.3 Security Comparison with the Implementation by Meyer et al.

	5 Experimental Results
	6 Conclusion
	References

	Cryptanalysis on Public-Key Primitives
	An Efficient F4-style Based Algorithm to Solve MQ Problems
	1 Introduction
	2 Preliminaries
	3 Gröbner Basis and F4-style Algorithm
	3.1 Gröbner basis
	3.2 F4-style Algorithm

	4 Proposed Method
	4.1 Decrease Number of Reductions
	4.2 Remove Pairs
	4.3 Selection Pair Strategy

	5 Implementation and Experimental Results
	5.1 Well Known Techniques for Polynomial-Ring Arithmetic
	5.2 Polynomials Compression
	5.3 Benchmark
	5.4 Record of Breaking Fukuoka MQ Challenge Problems

	6 Conclusion
	References

	How to Solve Multiple Short-Exponent Discrete Logarithm Problem
	1 Introduction
	1.1 Related Work

	2 Pollard's Kangaroo Algorithm
	3 Deterministic Algorithm for Solving Multiple Short-Exponent DLP
	4 Probabilistic Algorithm for Solving Multiple Short-Exponent DLP
	4.1 Algorithm
	4.2 How to Check Eq.(2)

	5 Analysis of Probabilistic Algorithm
	6 Simulation
	6.1 Pseudorandom Function
	6.2 Time-Out for Wild Kangaroo Generation
	6.3 Simulation Result

	7 Application to the Model of Preprocessing
	References

	Cryptographic Protocols 1
	Secure Multiparty Matrix Multiplication Based on Strassen-Winograd Algorithm
	1 Introduction
	2 Preliminaries
	2.1 Strassen-Winograd Algorithm
	2.2 Data Layout and Encryption
	2.3 Homomorphic Encryption
	2.4 Multiparty Protocols Security
	2.5 Relaxing an Existing Algorithm: YTP-SS

	3 Toolbox
	3.1 Initialization Phase
	3.2 Multiparty Copy
	3.3 Classical Matrix Multiplication Base Case
	3.4 Security Analysis

	4 Multiparty Strassen-Winograd
	4.1 Operation Schedule in
	4.2 Finalization Step
	4.3 Cost and Security Analysis

	5 Experiments
	6 Conclusion and Perspective
	A Security Proofs
	A.1 Base Case Security Proof
	A.2 Multiparty Strassen-Winograd Security Proof

	References

	An Anonymous Credential System with Constant-Size Attribute Proofs for CNF Formulas with Negations
	1 Introduction
	1.1 Backgrounds
	1.2 Previous Works
	1.3 Our Contributions
	1.4 Related Works

	2 Preliminaries
	2.1 Bilinear Maps
	2.2 Assumptions
	2.3 AHO (Abe-Haralambiev-Ohkubo) Signatures
	2.4 GS (Groth-Sahai) Proofs
	2.5 Set Membership Proof

	3 Accumulator to Verify CNF Formulas with Negations
	3.1 Previous Accumulator and Problem
	3.2 Construction Idea
	3.3 Proposed Algorithms
	3.4 Security

	4 Syntax and Security Model of Anonymous Credential System
	4.1 Syntax
	4.2 Security Model

	5 An Anonymous Credential System with Constant-Size Attribute Proofs for CNF Formulas with Negations
	5.1 Construction
	5.2 Efficiency Comparisons
	5.3 Security Considerations

	6 Conclusions
	References

	Symmetric-Key Primitives
	More Results on Shortest Linear Programs
	1 Introduction
	1.1 Contribution and Organization

	2 Approximation Algorithms
	2.1 Boyar-Peralta Method bp
	2.2 Our Experiments
	2.3 New Idea
	2.4 Paar's Algorithm
	2.5 Results

	3 Optimization with 3-Input Xor Gates
	3.1 Incremental Graph Based Technique
	3.2 Results

	4 Conclusion
	References

	Tweakable TWINE: Building a Tweakable Block Cipher on Generalized Feistel Structure
	1 Introduction
	1.1 Organization of This Paper

	2 Specification
	2.1 Notation
	2.2 Data Processing Part
	2.3 Tweak Scheduling Function

	3 Design Decision
	3.1 Design Goals
	3.2 How to Design Permutation-Based Tweak Scheduling Function

	4 Security Evaluation
	4.1 Differential/Linear Attack
	4.2 Impossible Differential Attack
	4.3 Integral Attack

	5 Hardware Implementation Results
	6 Conclusion
	A Test Vectors
	B Key Scheduling Function
	References

	Malware Detection and Classification
	Correlating High- and Low-Level Features:
	1 Introduction
	2 Background
	3 Problem Description
	4 Experimental Design
	4.1 Terms, Definitions and Assumptions
	4.2 Experimental Flow
	4.3 Dataset
	4.4 Analysis Environment
	4.5 Data Collection
	4.6 Machine Learning Algorithms and Feature Selection
	4.7 Correlating Features Derived from Different Sources

	5 Results and Analysis
	5.1 API Call n-grams for Malware Classification
	5.2 Correlating Memory Access and API Call n-grams
	5.3 Performance of Integrated Feature Sets
	5.4 Discussion and Analysis of Correlation Findings

	6 Conclusions
	Appendix A. Raw Data Sample
	References

	Towards Efficient Detection of Malicious VBA Macros with LSI
	1 Introduction
	2 Related Work
	2.1 MS Document File
	2.2 VBA Macro

	3 Malicious VBA Macro
	3.1 Behavior
	3.2 Obfuscation

	4 NLP Technique
	4.1 Bag-of-Words
	4.2 Term Frequency-Inverse Document Frequency
	4.3 Latent Semantic Indexing

	5 Proposed Method
	5.1 Outline
	5.2 Training Phase
	5.3 Test Phase
	5.4 Implementation

	6 Evaluation
	6.1 Dataset
	6.2 Evaluation Metrics
	6.3 Experimental Method
	6.4 Result

	7 Discussion
	7.1 Accuracy
	7.2 Topic Vector
	7.3 Comparison
	7.4 Ethics

	8 Conclusion
	References

	Intrusion Detection and Prevention
	IDS Alert Priority Determination Based on Traffic Behavior
	1 Introduction
	2 Related Work
	3 Definition of High Priority IDS Alert
	4 IDS Alert Priority Determination
	4.1 Training Phase
	4.2 Test Phase

	5 Experiments
	5.1 Experimental Data
	5.2 Result

	6 Discussion
	7 Conclusion and Future Work
	References

	(Short Paper) Effectiveness of Entropy-Based Features in High- and Low-Intensity DDoS Attacks Detection
	1 Introduction
	2 Related Work
	3 Entropy-Based Features
	3.1 Step 1 - Extract Features from the Raw Dataset
	3.2 Step 2 - Compute Entropy Values

	4 Influence of Entropy Measures in Traffic Patterns
	4.1 Network Traffic Containing High-Intensity DDoS Attack
	4.2 Network Traffic Containing Low-Intensity DDoS Attack

	5 Effects of Window Size in Traffic Patterns
	6 Effectiveness of Individual Entropy-Based Features
	7 Summary of the Usefulness of Entropy-Based Features
	8 Conclusion and Future Work
	References

	Web and Usable Security
	API Usability of Stateful Signature Schemes
	1 Introduction
	1.1 The Need for Post-quantum Crypto Schemes
	1.2 The Need for Usable Crypto APIs
	1.3 Goal and Approach

	2 Related Work
	2.1 Stateful Signature Schemes and State Management
	2.2 Cryptographic Agility
	2.3 API Design
	2.4 Usability of (cryptographic) APIs
	2.5 Related Online Studies
	2.6 Related Laboratory Studies

	3 A New Layer for Non-experts
	4 EasySigner API
	4.1 Requirements
	4.2 Design

	5 User-Studies
	5.1 Laboratory Study
	5.2 Online Study
	5.3 Results

	6 Conclusion and Outlook
	References

	(Short Paper) Method for Preventing Suspicious Web Access in Android WebView
	1 Introduction
	2 WebView
	3 Related Work
	3.1 Run-Time Detection of Malicious Behavior
	3.2 Network-Based Blocking

	4 Blocking HTTP Communication in WebView
	4.1 Purpose
	4.2 Requirements
	4.3 Detecting Communication
	4.4 Blocking Communication

	5 Implementation
	5.1 Blocking HTTP Request
	5.2 Prevention Policy
	5.3 Limitation

	6 Evaluation
	6.1 Experimental Detection and Prevention
	6.2 Performance Measurement

	7 Conclusion
	References

	Public-Key Primitives 2
	Equivalence Between Non-malleability Against Replayable CCA and Other RCCA-Security Notions
	1 Introduction
	1.1 Background
	1.2 Our Contribution
	1.3 Related Work
	1.4 Organization

	2 Preliminaries
	2.1 Public Key Encryption
	2.2 Definition of IND-RCCA

	3 Definitions of SNM-RCCA and INM-RCCA
	3.1 Definition of SNM-RCCA
	3.2 Definition of INM-RCCA

	4 Equivalence of IND-RCCA and INM-RCCA
	5 Equivalence of SNM-RCCA and INM-RCCA
	5.1 INM-RCCA Implies SNM-RCCA
	5.2 SNM-RCCA Implies INM-RCCA

	6 Conclusion
	A Definition of SS-RCCA and Its Equivalence with IND-RCCA
	A.1 IND-RCCA Implies SS-RCCA
	A.2 SS-RCCA Implies IND-RCCA

	References

	Cocks' Identity-Based Encryption in the Standard Model, via Obfuscation Techniques (Short Paper)
	1 Introduction
	2 Preliminaries
	2.1 Admissible Hash Functions
	2.2 Identity-Based Encryption

	3 Cocks' Variant I (Selectively Secure)
	4 Cocks' Variant II (Adaptively Secure)
	5 BLS Variant (Adaptively Secure)
	References

	Cryptanalysis on Symmetric-Key Primitives
	Finding Ordinary Cube Variables for Keccak-MAC with Greedy Algorithm
	1 Introduction
	2 Preliminaries
	2.1 Description of Keccak-MAC
	2.2 Cube Tester
	2.3 Conditional Cube Tester

	3 Tracing Algorithm
	4 Finding Ordinary Cube Variables for Keccak-MAC-384
	4.1 Determining Candidates for Keccak-MAC-384
	4.2 Discussion
	4.3 Deducing Contradictions

	5 Finding Ordinary Cube Variables for Keccak-MAC-512
	6 Recovering Full Key
	7 Comparison with Previous Work
	8 Conclusion
	References

	Preimage Attacks on Reduced Troika with Divide-and-Conquer Methods
	1 Introduction
	2 Description of Troika
	3 Equivalent Conditions to Find the Preimage
	3.1 Deriving the Space S

	4 Preimage Attack on Two-Round Troika
	4.1 Linearizing the Inputs of an S-Box
	4.2 Naive Preimage Attack on Two-Round Troika
	4.3 Improved Preimage Attack on Two-Round Troika
	4.4 Guess-and-Determine Method to Find the Preimage
	4.5 Complexity Evaluation
	4.6 Second Preimage Attack on Two-Round Troika

	5 Preimage Attack on Three-Round Troika
	5.1 Finding Optimal Separation with MILP

	6 Conclusion and Future Work
	A Some Tables and Example
	References

	Cryptographic Protocols 2
	VSS Made Simpler
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions
	1.3 Related Works
	1.4 Organization

	2 Preliminaries
	2.1 Communication and Adversary Models
	2.2 (Verifiable) Secret Sharing

	3 VSS-NID for Maurer's Scheme
	4 Randomness Versus Interaction
	5 Conclusion
	References

	Bidirectional Asynchronous Ratcheted Key Agreement with Linear Complexity
	1 Introduction
	2 Bidirectional Asynchronous Ratcheted Communication
	2.1 BARK Definition and Correctness
	2.2 KIND Security

	3 uniARK Implies KEM
	4 FORGE and RECOVER Security
	4.1 Unforgeability
	4.2 Recovery from Impersonation

	5 Our BARK Protocol
	6 Conclusion
	References

	A New Approach to Constructing Digital Signature Schemes
	1 Introduction
	2 Related Work and Background
	3 Forward-Resistant Tags
	3.1 The BLT Scheme as a Tag System (BLT-TB)
	3.2 The BLT-OT Tag System
	3.3 The BLT-W Tag System

	4 BLT-OT One-Time Signature Scheme
	5 Discussion
	6 Conclusions and Outlook
	References

	Forensics
	GRYPHON: Drone Forensics in Dataflash and Telemetry Logs
	1 Introduction
	1.1 Scope of This Work
	1.2 Main Contributions
	1.3 Organisation of This Work

	2 State of the Art
	3 Drone Basics
	4 Dataflash and Telemetry Forensics
	4.1 Logfile Acquisition
	4.2 Dataflash Log Analysis Methodology
	4.3 Replaying Data from the Telemetry Log

	5 Experimental Results
	6 Conclusions
	References

	Toward the Analysis of Distributed Code Injection in Post-mortem Forensics
	1 Introduction
	2 Background
	2.1 Code Injection Detection
	2.2 Distributed Code Injection Attacks

	3 Proposal
	3.1 Problem Definition
	3.2 Overview
	3.3 Code to Thread Link
	3.4 Thread to Thread Link
	3.5 Code to Code Link

	4 Experiment
	4.1 Setup
	4.2 Procedure
	4.3 Results

	5 Discussion
	5.1 Validity of Experiment
	5.2 Platform Dependency
	5.3 Limitation

	6 Related Work
	7 Conclusion
	A Implementation Details
	References

	Author Index

