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Abstract. In this paper, we suggest an implementation of elementary
version of Runge’s method for solving a family of diophantine equa-
tions of degree four. Moreover, the corresponding solving algorithm (in
its optimized version) is implemented in the computer algebra system
PARI/GP.
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1 Introduction

There is a wide class of diophantine equations in two variables

f(x, y) = 0 (1.1)

for which one can propose an effective solving method (that provides explicit
upper bounds for the size of integer solutions), the so-called Runge’s method.
A description of the standard version of Runge’s method can be found in the
well-known monographs [4] and [10] (for more detailed proof, see [3, Ch. 4]). The
original version (see old Runge’s paper [9] or a modern paper [12]) is more gen-
eral, below we give main theoretical result (so-called Runge’s theorem). Despite
the fact that Runge’s method has been known for more than 100 years, its imple-
mentation in computer algebra systems (CAS) is very limited. At the same time,
there is a small number of publications (see [6,8,11] and, especially, [1]) which
refer to algorithmic aspects of implementation of this method (at least for some
special cases) in CAS.

Assume that the polynomial f(x, y) ∈ Z[x, y] is irreducible over Q and let
d0 = max {m,n} where m = degx f(x, y) and n = degy f(x, y). If f(x, y) satisfies
Runge’s condition (see below), then the estimate

max {|x|, |y|} < (2d0)18d
7
0h12d6

0 (1.2)

holds for all integer solutions (x, y) of the Eq. (1.1) (see [12]). As usually, h
denotes the height of given polynomial. This general result shows that the trivial
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implementation (brute force in the mentioned bounds) makes no sense in terms
of the time required even in the case of d0 small enough.

Let

f(x, y) =
m∑

i=0

n∑

j=0

aijx
iyj (1.3)

be an irreducible polynomial in Z[x, y].

Runge’s theorem. Assume that the Eq. (1.1) has infinitely many solutions
(x, y) ∈ Z

2. Then each of the following conditions holds:
(a) ain = amj = 0 for all i > 0 and j > 0,
(b) aij = 0 for all pairs (i, j) satisfying ni + mj > mn,
(c) the leading part

fL(x, y) =
∑

ni+mj=mn

aijx
iyj

is a constant multiple of a power of an irreducible polynomial in Z[x, y],
(d) the algebraic function y = Ψ(x) defined by (1.1) has only one class of

conjugate Puiseux expansions.

We say that polynomial (1.3) satisfies Runge’s condition, if at least one of
the conditions (a), (b), (c) or (d) does not hold. Runge’s theorem can be refor-
mulated in the following equivalent form: if f(x, y) satisfies Runge’s condition,
then Eq. (1.1) has a finite set of integer solutions. In the literature, the following
simplified version of this theorem is widely known. Denote by fd(x, y) the leading
homogeneous part of polynomial (1.3), d = deg f(x, y).

Corollary. If fd(x, y) can be decomposed into a product of non-constant rel-
atively prime polynomials in Z[x, y], then Eq. (1.1) has a finite set of integer
solutions.

Below, the condition of Corollary will be called the standard Runge’s condi-
tion. Under standard Runge’s condition, in the case d = 3, a realistic (practically
working) solving algorithm was proposed in [6]. This algorithm is based on the
elementary version of Runge’s method for diophantine equations of degree d � 4
(see [5]). In the case d = 4, an algorithmic implementation of elementary version
of Runge’s method is obtained only in some particular cases (see [8] and more
recent paper [7]). It is necessary to refer to preprint [1] where it is proposed to
avoid “the use of Puiseux series and algebraic coefficients” which leads to “bad”
estimates (i.e., estimates of type (1.2)) for integer solutions.

The elementary version of Runge’s method for diophantine equations of small
degree is based on a convenient parametrization (by means of a special integer
parameter) which provides enumerating possible integer solutions. As a result,
the resolution of diophantine equation can be reduced to solving finitely many
equations in one variable (usually, of degree two) over the integers. This idea for
algorithmic implementation of Runge’s method was applied in [6,7].
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In our paper, we consider a family of diophantine Eq. (1.1) with the left-hand
side

f(x, y) = (a1x+ b1)y2 +(a2x
2 + b2x+ c2)y +Ax4 +Bx3 +Cx2 +Dx+E. (1.4)

By default we assume this polynomial to be irreducible in Z[x, y]. In general
case, both coefficients a1 and A are non-zero and Runge’s method can be applied
because the condition (a) of Runge’s theorem is violated.

In Sect. 2, we propose solving algorithm in the main case a1 = 1 and b1 = 0
(i.e., for Eq. (2.3), see below). This algorithm is inspired by Theorem 2.1. Tech-
nically, this algorithm differs from similar algorithms introduced in [6,7] since
it requires to resolve a number of equations in one variable of degree three.
This fact must be taken into account if we want to estimate correctly the com-
plexity of an algorithm. Therefore, we introduce an additional parameter (the
so-called weight coefficient) for correct estimation of computational complexity.
The weight coefficient depends on the CAS in which we plan to implement our
algorithm (PARI/GP, see [13]). Further, we optimize the proposed algorithm in
the same way as in [6]. The final result is represented in Theorem 2.2. At the
moment, we do not know any other implementations of algorithms for solving
diophantine equations of the specified type.

In Sect. 3, we give a few examples of estimating integer solutions to several
diophantine equations of small degree. In the case d = 4, the used method does
not allow the “reasonable” estimates (i.e., estimates which are close to realistic)
for integer solutions, therefore, we do not give any general theorems (we refer to
[6] where the reader can find relevant examples of such theorems).

In Sect. 4, we give some remarks on the obtained results. In particular, we
consider different ways to construct solving algorithm for Eq. (1.1) with f(x, y)
of the general form (1.4). Also, we discuss a further application of the elementary
version of Runge’s method for diophantine equations of degree four.

2 Solving Algorithm

We begin with the case a1 = 0 which is trivial in certain sense. In this case, we
can improve the well-known solving algorithm (see, e.g., [8]).

2.1 The Equation z2 = P (x)

In the case a1 = 0 and b1 �= 0, Eq. (1.1) with polynomial (1.4) can be reduced
to the equation

z2 = P (x) (2.1)

with the polynomial P (x) ∈ Z[x] which satisfies deg P (x) � 4. Runge’s method
works for Eq. (2.1) in the case when deg P (x) = 4 and the leading coefficient of
P (x) is a perfect square in Z (here, we can assume, without loss of generality,
that P (x) is monic). Otherwise, we need to refer to more complicated methods
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(see, for instance, [10]; of course, with the exception of the case deg P (x) � 2
which is well studied).

We now consider Eq. (2.1) with the polynomial

P (x) = x4 + ax3 + bx2 + cx + d.

A well-known algorithm for solving (2.1) with this P (x) was described in [8].
Below, we refer to this algorithm as the standard algorithm (or method). Here, we
propose the following alternative approach. First, we reduce Eq. (2.1) to a certain
cubic diophantine equation. Next, we resolve the corresponding cubic equation
using the technique from [6]. Sometimes, this approach is more effective than
the standard method (for details, see Sect. 4). We demonstrate this phenomenon
in the following example.

Example 2.1. Consider the equation

z2 = x4 + 8Hx3 − 12x2 + 4, (2.2)

where the coefficient H � 1 is supposed to be rather large. Note that Eq. (2.2)
was first mentioned in the short note [2]. This equation has a solution (x, z) ∈ Z

2

with
x = 4H3 − 2H

that is quite large with respect to H. At the same time, it was proved (see ibid)
that the upper bound for the integer solutions (x, z) of (2.1) is

|x| < 26h3

where h is the height of P (x). Thus, Eq. (2.2) with h = 8H has the biggest
solution (up to a constant factor) with respect to the upper bound mentioned
above. The direct computation shows that the standard solving algorithm (see
[8]) needs ≈ 64H3 operations of taking square root for the integers with the
maximal value O(H12), and it is unexpected that Eq. (2.2) can be solved faster.

Namely, for P (x) = x4 + 8Hx3 − 12x2 + 4, we determine

R(x) = x2 + 4Hx − 8H2 − 6 =
√

P (x) + O

(
1
x

)
, x → ∞.

Next, we introduce the new variable w = z − R(x) and rewrite (2.2) in the form
F (w, x) = 0 with the cubic polynomial

F (w, x) = (R(x) + w)2 − P (x) = 2wx2 + w2 + 8Hwx +
+ (−16H2 − 12)w + (−64H3 − 48H)x + 64H4 + 96H2 + 32.

Omitting technical details, we can formulate the final result as follows. The
solving algorithm from [6] which is optimized for the equation F (w, x) = 0 “by
hands” (i.e., analytically) requires only ≈ 96H2 operations of taking square root
for the integers with the maximal value O(H6). This may appear surprising,
especially because the height of F (w, x) is much larger than the height of P (x).
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It is easy to see that the right-hand side of (2.2) is a perfect square for

x ∈ {0,H, 4H3 − 2H}.

Therefore, Eq. (2.2) has at least 6 integer solutions (x, y). In Table 1, we repre-
sent a certain statistical information on the number of additional (non-trivial)
solutions for H taking values in the range 1 � H � 500.

Table 1. Distribution of the number of non-trivial solutions of Eq. (2.2) in the range
1 � H � 500.

#(x, z) #H

0 393

2 85

4 20

6 1

8 1

2.2 The Main Case

Suppose that a1 �= 0. In the case A = 0, we obtain a cubic diophantine equation
with the leading homogenous part x(Bx2 +a2xy +a1y

2) satisfying the standard
Runge’s condition. Thus, we can use the algorithmic implementation of elemen-
tary version of Runge’s method proposed in [6]. Therefore, we can suppose that
A �= 0.

For simplicity, here we consider in detail only the particular case a1 = 1,
b1 = 0 (the general case will be discussed briefly in Sect. 4). Then, the equation
can be written as

xy2 + (ax2 + bx + c)y + Ax4 + Bx3 + Cx2 + Dx + E = 0 (2.3)

(we use simplified notation for convenience). Also, we can suppose that c �= 0
(otherwise, the possible integer values of x must be in the set of divisors of E
which can be found). Assuming x �= 0, consider the number

l =
cy + E

x
.

Clearly, the value of l must be integer for all the solutions (x, y) ∈ Z
2 of Eq. (2.3)

with x �= 0. Dividing by x, we obtain

y2 + (ax + b)y + Ax3 + Bx2 + Cx + D + l = 0.

This equality implies the congruence

y2 + by + D + l ≡ 0 (mod x)
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in the ring Z of integers. Next, we have

c2(y2 + by + D) ≡ c2D + E2 − bcE (mod cy + E)

(here we mean the congruence in the polynomial ring Z[y]). Taking into account
that

cy + E ≡ 0 (mod x),

we arrive at another congruence

c2l + c2D + E2 − bcE ≡ 0 (mod x)

(both congruences are in the ring Z). Finally, we set

k =
c2l + c2D + E2 − bcE

x
=

c3y + (c2D + E2 − bcE)x + c2E

x2
.

If (x, y) is an arbitrary integer solution of Eq. (2.3) then the value of k must be
integer as well as the value of l. Thus, we obtain the following result.

Theorem 2.1. Let (x, y) ∈ Z
2 be a solution of Eq. (2.3) with x �= 0. Then, the

number

k =
c3y + (c2D + E2 − bcE)x + c2E

x2
(2.4)

is integer.

One can propose the following straightforward and shorter proof of Theorem
2.1 which can be obtained by computer algebra methods (i.e., using symbolic
computations in a computer algebra system). Using Eq. (2.3), we find the expres-
sion for the coefficient E:

E = −xy2 − (ax2 + bx + c)y − Ax4 − Bx3 − Cx2 − Dx.

Next, we plug it into the right-hand side of (2.4). After dividing the numerator
of the fraction in (2.4) by x2, we obtain the explicit (but rather large) expression
for k as a polynomial in the ring Z[x, y]. Hence, the value of k must be integer.
In order to illustrate this method, consider the equation

xy2 + (x2 + 1)y + x4 + 1 = 0

with the polynomial f(x, y) = xy2 + (x2 + 1)y + x4 + 1. We want to prove that
the number

k =
y + x + 1

x2

is integer for each solution (x, y) ∈ Z
2 with x �= 0. Indeed, using the method

described above we obtain

y + x + 1
x2

= xy4 + (2x2 + 2)y3 + (2x4 + x3 + 2x)y2 + (2x5 + 2x3 − 1)y + x7 − x2
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which can be viewed as an equality in the residue class ring of Z[x, y] modulo
f(x, y). Note that this representation can be simplified:

y + x + 1
x2

= y3 + (x − 1)y2 + (x3 − x − 1)y − x3 − x2.

Our further reasoning is based on the following idea. It is easy to check that
both explicit real solutions y = Ψi(x) (i = 1, 2) of Eq. (2.3) admit the estimate

Ψi(x) = O(|x|3/2), x → ∞.

Hence, we have

c3Ψi(x) + (c2D + E2 − bcE)x + c2E

x2
→ 0, x → ∞.

As a corollary, for any m � 1, there exists a number Q = Q(m) > 0 such that
∣∣∣∣
c3Ψi(x) + (c2D + E2 − bcE)x + c2E

x2

∣∣∣∣ < Q(m)

for any x satisfying |x| > m (of course, here we can use only those values of x
for which Ψi(x) are defined). Using this assertion, we can propose the following
algorithm for solving Eq. (2.3) over the integers.

Solving algorithm

1. Choose m � 1 and compute the number Q(m).
2. For all integers x satisfying |x| � m, solve Eq. (2.3) (as a quadratic equation

in y) over the integers.
3. For all integers k with |k| < Q(m), solve the system of equations

{
xy2 + (ax2 + bx + c)y + Ax4 + Bx3 + Cx2 + Dx + E = 0,
c3y + (c2D + E2 − bcE)x + c2E − kx2 = 0 (2.5)

over the integers.

Let us consider an example in order to illustrate the proposed method.

Example 2.2. We show in detail how the equation

x4 − x2y − xy2 − y2 + 1 = 0

can be solved over the integers (the resolution of this equation is outlined in [5]).
Substituting x − 1 for x, we get the equation

xy2 + (x2 − 2x + 1)y − x4 + 4x3 − 6x2 + 4x − 2 = 0 (2.6)

of the form (2.3). By Theorem 2.1, the number

k =
y + 4x − 2

x2
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must be integer for any solution (x, y) ∈ Z
2 with x �= 0. Eliminating y, we obtain

an explicit expression for k, namely:

k =
7x2 − 2x − 1 ± √

4x5 − 15x4 + 20x3 − 10x2 + 4x + 1
2x3

.

Thus, if x satisfies |x| > m then we certainly get |k| < Q(m) with

Q(m) =
7m2 + 2m + 1 +

√
4m5 + 15m4 + 20m3 + 10m2 + 4m + 1

2m3
.

Further, we can proceed in various ways.
(1) Firstly, we can determine m0 so that the number Q(m0) is close to 1

(which is due to the fact that Q(m) → 0 as m → ∞). This is reasonable since
when m = m0 we need to solve (mainly) only quadratic Eq. (2.3) in y over the
integers. For example, taking m0 = 8, we obtain Q(m0) < 1. Thus, it is necessary
to solve: (a) for x ∈ {0,±1, . . . ,±8}, Eq. (2.6) and, (b) for k = 0, system (2.5),
namely {

xy2 + (x2 − 2x + 1)y − x4 + 4x3 − 6x2 + 4x − 2 = 0,
y + 4x − 2 = 0.

It is easy to see that this system can be reduced to the (again) quadratic equation

x2 − 16x + 12 = 0.

Finally, we obtain that all the solutions of Eq. (2.6) are

(x, y) ∈ {(0, 2), (1,−1), (1, 1)}.

(2) Secondly, we can find m∗ such that the total number of equations needed
to resolve happens to be minimal (possibly, close to being minimal) when m =
m∗. For instance, we can take m∗ = 4 which provides Q(m∗) < 2. This is
somewhat better than using the previous tactics.

The first issue of the proposed method is the following: we need to determine
the number Q(m) as an explicit function of the so-called control parameter m.
This can be overcome by Lemma 2.1 (see below). The second issue can be for-
mulated as follows: how to choose the optimal value of m? More precisely, we
want to minimize the cost-function of the form

cost (m) = 2m + 2qQ(m), (2.7)

where the weight coefficient q > 1 can be determined by experiments in a given
CAS (in our case, PARI/GP). Here, for q, we take the ratio of the complexity of
resolution of quadratic equations and the complexity of resolution of algebraic
system of the form (2.5) (in both cases over the integers).

Now, consider system (2.5) in detail. Eliminating y, we obtain just a cubic
(with the exception of the case k = 0) equation with respect to x, namely

k2x3 + K1x
2 + K2x + K3 = 0. (2.8)
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Here, the coefficients Kj given as follows:

K1 = (−2c2D − 2E2 + 2bcE + ac3)k + c6A,
K2 = c2(−2E + bc)k + c6B + c4D2 + 2c2DE2 − 2bc3DE − ac5D +

+E4 − 2bcE3 − ac3E2 + b2c2E2 + abc4E,
K3 = c4k + c6C + 2c4DE − bc5D + 2c2E3 − 3bc3E2 + c4(b2 − ac)E.

(2.9)

Therefore, we need to determine how much harder is the problem of solving
cubic equations over the integers compared to that for quadratic equations. In
PARI/GP, we intend to solve both problems via the function nfroots which
provides, in particular, finding all rational roots of a univariate polynomial with
integer coefficients. Preliminary computer experiments with the quadratic and
cubic polynomials of moderate height (up to 1020) have shown that, for this
purpose, one can take q = 2. In Sect. 4, we discuss the method of choosing q in
detail.

Note that, although we can use the value m = m0 with Q(m0) close to 1 (the
motivation for this can be found in Example 2.2) in the algorithm, this can be
disadvantageous due to the fact that m0 may happen to be too large.

Example 2.3. Consider the equation

xy2 + (x2 + 1)y + x4 + H = 0 (2.10)

where the coefficient H is supposed to be rather large. The direct computation
of Q(m) based on Lemma 2.1 (see below) shows that the inequality

Q(m) >
|H|2
m

holds. Hence, if Q(m0) = 1 then m0 > |H|2. On the other hand, taking m∗ =
|H|, we get Q(m∗) ∼ |H| as H → ∞. Obviously, for Eq. (2.10), the proposed
algorithm with m = m∗ works faster than that with m = m0.

For every H, Eq. (2.10) has the trivial solution (x, y) = (0,−H). A statistical
information on the number of non-trivial solutions in the range 1 � H � 104 is
represented in Table 2.

For convenience purposes, let us introduce the notation:

Q1 = 2c2D + 2E2 − 2bcE − ac3,
Q2 = 2c2E − bc3,
Q3 = −c4,
Q4 = −4A,
Q5 = −4B + a2,

Q6 = −4C + 2ab,
Q7 = −4D + 2ac + b2,
Q8 = −4E + 2bc,
Q9 = c2.

(2.11)

The following technical result is necessary for an algorithmic implementation of
the described method.
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Table 2. Distribution of the number of non-trivial solutions of the Eq. (2.10) in the
range 1 � H � 104.

#(x, y) #H

0 9200

1 639

2 133

3 26

4 1

5 1

Lemma 2.1. For any m � 1, the number Q(m) can be defined as follows:

Q(m) =
1
2

3∑

i=1

|Qi|
mi

+
|c|3
2

(
6∑

i=1

|Qi+3|
mi

)1/2

, (2.12)

where the coefficients Q1, . . . , Q9 are given by (2.11).

Proof. The formulas (2.9) for the coefficients Kj show that Eq. (2.8) is quadratic
in k. Dividing by the leading coefficient x3 and resolving with respect to k, we
obtain

k =
1
2

3∑

i=1

Qi

xi
± c3

2

(
6∑

i=1

Qi+3

xi

)1/2

.

Obviously, the condition |x| > m implies the required estimate |k| < Q(m) with
Q(m) given by (2.12).

Unfortunately, the analytic expression for Q(m) provided by Lemma 2.1 is too
complicated to minimize the cost-function (2.7) by means of symbolic methods.
Therefore, we need to focus on the reasonable estimates for cost (m∗) where m∗

is a such value of m that it delivers the global minimum of cost (m). Further, the
proposed solving algorithm with m = m∗ will be called the optimized algorithm.
Denote by H the height of the left hand side of Eq. (2.3).

Theorem 2.2. For the optimized algorithm, the estimate

cost (m∗) � C1|c|4/3H (2.13)

holds. Here C1 > 0 is a constant which depends only on q.

Proof. Let m1 = 4|c|4/3H. Since

cost (m∗) � cost (m1) = 2m1 + 2qQ(m1) = 8|c|4/3H + 2qQ(m1),

it is sufficient to estimate the number Q(m1). We can perform this in a straight-
forward manner (i.e., by estimating each of the fractions |Qi|/mi, |Qi+3|/mi at



An Algorithm for Solving a Quartic Diophantine Equation 387

m = m1 in the right-hand side of (2.12); also, we use the obvious inequality√
α1 + . . . + αn � √

α1 + . . . +
√

αn). The extremal case is the following:

|c|3
√

|Q4|
m1

� |c|3
√

4H

4|c|4/3H = |c|7/3 = |c|4/3 · |c| � |c|4/3H.

As a result, we arrive at the inequality Q(m1) � 2|c|4/3H. Thus,

cost (m1) � (8 + 4q)|c|4/3H,

and we can set C1 = 8 + 4q.

The estimate (2.13) of complexity of the optimized algorithm in some cases
occurs to be accurate (of course, up to a constant factor). For example, this is
true for Eq. (2.10) because m∗ 
 m1 
 H and cost (m∗) 
 H as H → ∞. On
the other hand, it happens that sometimes the general estimate (2.13) can be
improved.

Example 2.4. For the equation

xy2 + (Hx2 + 1)y + x4 + 1 = 0 (2.14)

we have m∗ 
 |H|1/2 and, consequently, cost (m∗) 
 |H|1/2 as H → ∞. Using
the optimized algorithm, we can check that for 1 � H � 105, Eq. (2.14) has no
solutions (x, y) �= (0,−1), with the exception of H = 2 and H = 8 (see Example
3.5 below).

In general, the minimization of the cost-function (2.7) can be performed by
a numerical method (for instance, we can use the well-known golden-section
search). The starting (and, probably, rough) approximation m∗ ≈ m1 proposed
in the proof of Theorem 2.2 can be used as follows. Let us introduce m2 = tm1

where a constant factor t > 1 will be determined later. Earlier, we showed that
the inequality Q(m1) � m1/2 holds. Hence, we have

cost (m2) = 2tm1 + 2qQ(m2) > 2tm1 = 2m1 + 2(t − 1)m1 �
� 2m1 + 4(t − 1)Q(m1) � 2m1 + 2qQ(m1) = cost (m1)

whenever 4(t−1) � 2q. Therefore, setting t = q/2+1, we localize m∗ in the inter-
val [1,m2]. It remains to apply a numerical search algorithm in the given interval.
Heuristically, this additional procedure of optimization has a small (negligible)
contribution to the total computational complexity.

3 Estimates for Integer Solutions

In this section, we give a few examples of explicit bounds for integer solutions
of diophantine equations of small degree satisfying Runge’s condition. Usually,
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these bounds are supposed to be used in order to find the solutions them-
selves, but the method (based on the elementary version of Runge’s method)
provides some estimates for solutions as an additional result (for more informa-
tion, see [6]).

We start with three examples of cubic diophantine equations in order to
demonstrate that the result entirely depends on the specifics of an equation.

Let H be a positive integer, C2, C3, etc. denote some positive absolute
constants.

Example 3.1. For all the solutions (x, y) of the equation

x(y2 − x2) = Hy + 1 (3.1)

in positive integers, we have the estimate

y � (H + 3)/2

(the elementary proof can be obtained via the technique proposed in [6]). The
upper bound is achieved for any odd H since the pair (x, y) = ((H + 1)/2, (H +
3)/3) satisfies (3.1).

Example 3.2. For all the solutions (x, y) of the equation

x(y2 − x2) = Hy (3.2)

in positive integers, we can propose the estimate

y � (H + 1)3/4

(the proof is also elementary, yet it requires some effort). The upper bound is
achieved for infinitely many H since the pair (x, y) = ((H + 1)1/4, (H + 1)3/4)
satisfies (3.2). This improves the expected estimate y < C2H (see Exercise 4.15
[3]).

Example 3.3. For all the solutions (x, y) of the equation

x(y2 − 2x2) = Hy

in integers, the estimate
|x| < C3H

3/2

holds (see [6] for further details). There are no proved results on the accuracy of
this estimate (apparently, it is achieved for infinitely many H).

For diophantine equations of degree four, the problem of estimating integer
solutions is much harder. In the case of (2.3), we can hope to obtain an estimate
for integer solutions (x, y) by rewriting the auxiliary Eq. (2.8) as

1 +
K1

k2x
+

K2

k2x2
+

K3

k2x3
= 0

and showing that |x| cannot be too large. However, this method leads to quite
rough estimates which are overvalued (not achieved in reality). In order to illus-
trate this fact, we consider the following three examples.
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Example 3.4. For integer solutions (x, y) of Eq. (2.10), we have the estimate

|x| < C4H
2

which can be obtained by the above-mentioned technique. Using the optimized
algorithm, we can see that this estimate is unrealistic for 1 � H � 104. On the
other hand, for H = t3 + t2, the pair (x, y) = (−t2 − t,−t3 − t2) satisfies (2.10)
and for this solution, we have |x| ∼ H2/3 as H → ∞. The hypothetical estimate

|x| < C5H
2/3

for non-trivial integer solutions (x, y) �= (0,−H) is confirmed by computer exper-
iments. This estimate seems more realistic, but it is not clear how to prove it.

Example 3.5. Similarly, for integer solutions (x, y) of Eq. (2.14), we can give the
estimate

|x| < C5H.

At the same time, computer experiments (see Example 2.4) suggest the following
conjecture: Eq. (2.14) has integer solutions (x, y) �= (0,−1) if and only if H ∈
{2, 8}.

This conjecture is actually true, and we now outline the proof. Rewrite
Eq. (2.14) in the form

H = −xy2 + y + x4 + 1
x2y

.

From this, one can conclude that the number

l =
y + x4 + 1

xy

must be in Z. The last equality can be rewritten as

y =
x4 + 1
lx − 1

.

Since y ∈ Z, the number

d =
x2 + l2

lx − 1
(3.3)

is also in Z. Next, eliminating l, we get the equation

y2 − (dx2 − 2)y + x4 + 1 = 0

which implies

y =
dx2 − 2 ± xz

2
, z =

√
(d2 − 4)x2 − 4d � 0.

Since x �= 0, it follows that z ∈ Z. Finally, eliminating y, we obtain

2H = −d(x + 1) ∓ z +
2 ± z

x
.
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Since H ∈ Z, we have 2 ± z ≡ 0 (mod x) that yields

4d + 4 ≡ 0 (mod x). (3.4)

It remains to prove that congruence (3.4) and the condition z ∈ Z can be simul-
taneously held for finitely many pairs (x, d) at most. Thus, there are only finitely
many possible values of H. More precisely, in the case of an arbitrary integer H,
we conclude that

H ∈ {−14,−9,−5,−4,−2, 0, 2, 8}.

Using Pell’s equations, we can somewhat simplify the proof. Namely, we can use
the following well-known result: if a triple (x, l, d) of integers satisfies (3.3) then
d = 5 or d = −t where t is a perfect square.

Example 3.6. For integer solutions (x, y) of the equation

xy2 + (Hx + 1)y + x4 + 1 = 0, (3.5)

we have the same rough estimate as in Example 3.5. However, Eq. (3.5) unlike
Eq. (2.14) is solvable for infinitely many H. For instance, the triple

x = ±√
t(t2 − 1), y = −t4 + t2 − 1, H = t4 − t2 + 1 ± √

t(t3 − 2t)

satisfies (3.5) and |x| ∼ H5/8 as H → ∞.
Note that Eq. (3.5) can be studied in the same way as Eq. (2.14). The final

description of the set of all integer solutions (x, y,H) use the Chebyshev polyno-
mials of the second kind.

The last two examples may look artificial, but they vividly illustrate that, in
general, obtaining exact bounds for integer solutions can be very difficult.

4 Concluding Remarks

In conclusion, we comment on some obtained results and discuss further appli-
cations of the elementary version of Runge’s method.

In view of Example 2.1, it is worth discussing a strategy for solving Eq. (2.1).
The following seems to be reasonable. If the height of P (x) is determined by the
coefficient of x3 (i.e., the other coefficients are small compared to it) then it is
recommended to reduce the given equation to the corresponding cubic equation
(similarly to the case of Eq. (2.2)). Otherwise, we recommend to use the standard
method since this trick does not give a significant advantage (at least, the case
of one-parametric equations of the type (2.2) confirms this).

Now, let us get back to the general case. Given polynomial (1.4), we can
use the linear substitution a1x + b1 → x that reduces the problem to solving
Eq. (2.3). However, this may lead to a significant increase in the height of the
polynomial f(x, y) as well as in the case of cubic diophantine equations (see [6]).

It seems that a more successful way is to generalize the already available
solving algorithm for Eq. (2.3) (we mean that such generalization is based on
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the direct analogue of Theorem 2.1). The expected estimate for complexity of
the generalized algorithm (which is similar to estimate (2.13), see Theorem 2.2)
will be worse than that in the case of a1 = 1, b1 = 0.

For optimization of solving algorithm we need to choose the weight coefficient
q correctly. Now, we describe how to do this in the case when H (the height of
the left-hand side of (2.3)) is moderate enough (up to 105) and |c| � H. Let H̃
be the height of the left-hand side of (2.8). Due to (2.9) and Theorem 2.2, we
can assume H̃ ≈ H4 to be moderate (up to 1020). Then,

q =
time (quadratic,H,M)

time (cubic, H̃,M)
,

where time (·) is the running time for solving M = 106 randomly chosen equa-
tions of the given type. For H = 105 (and H̃ = 1020, respectively), using the
function nfroots for finding rational roots in PARI/GP CAS, we obtain q ≈ 2.
However, in the case c 
 H, we have H̃  H, so that we recommend to increase
q up to 6. In this case, the running time of the optimized algorithm will be
reasonable for H up to at least 102.

Clearly, the results of computer experiments represented in Tables 1 and 2
should be developed further. At the moment, the running time for obtaining
Table 2 is t1 ≈ 13.5 min and the similar table for the range 1 � H � 105 requires
t2 ≈ 100t1 min (by using the processor AMD Ryzen 7 2700x 3.7 GHs and 16gb
RAM). Obviously, the running time can be decreased by implementing a parallel
version of the proposed algorithm. Namely, the procedure of finding integer roots
of a collection of univariate polynomials can be distributed between CPU threads
that allows to use computer resources more efficiently, since PARI/GP CAS
supports parallel programming.

It seems that the elementary version of Runge’s method for d = 4 proposed
in [5] can be implemented in the same way—at least for the polynomial f(x, y)
with the leading homogenous part of the form

f4(x, y) = (a1x + b1y)(a2x
3 + b2x

2y + c2xy2 + d2y
3).

We expect considerably more technical aspects in such an implementation. In
particular, the corresponding auxiliary equation (as an analog of (2.8)) will be
more complicated, although we hope that this is not crucial.
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