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Abstract. The dynamics of the system of two bodies, connected by
a spherical hinge, that moves along a circular orbit under the action
of gravitational torque is investigated. Computer algebra method based
on the resultant approach was applied to reduce the satellite stationary
motion system of algebraic equations to a single algebraic equation in
one variable that determines all planar equilibrium configurations of the
two—body system. Classification of domains with equal numbers of equi-
librium solutions is carried out using algebraic methods for constructing
discriminant hypersurfaces. Bifurcation curves in the space of system
parameters that determine boundaries of domains with a fixed number
of equilibria of the two—body system were obtained symbolically. Depend-
ing on the parameters of the problem, the number of equilibria was found
by analyzing the real roots of the algebraic equations.
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1 Introduction

In this work, we investigate the dynamics of a system of two bodies (satellite
and stabilizer) connected by a spherical hinge that moves in a central Newtonian
force field on a circular orbit using computer algebra methods.

Determining the equilibria for the system of connected bodies on a circular
orbit is of practical interest for designing composite gravitational orientation
systems of satellites that can stay on the orbit for a long time without energy
consumption. The dynamics of various composite schemes for satellite—stabilizer
gravitational orientation systems was discussed in detail in [1].
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The study of the satellite—stabilizer dynamics under the influence of gravita-
tional torque is an important topic for the practical implementation of attitude
control systems of the artificial satellites. The dynamics of a satellite—stabilizer
subjected to gravitational torque was considered in many papers indicated in [1].
In [2] and [3], planar equilibrium orientations were found in special cases, when
the spherical hinge is located at the intersection of the satellite and stabilizer
principal central axis of inertia. In [4], all equilibrium orientations were found
in the case of axisymmetric satellite and stabilizer. In paper [5], some classes of
spatial equilibrium orientations of the satellite—stabilizer system in the orbital
coordinate system were analyzed, using computer algebra methods.

In this paper, we consider the planar equilibria (equilibrium orientations)
of the satellite-stabilizer system in the orbital coordinate frame for certain val-
ues of the principal central moments of inertia of the bodies when the spherical
hinge is located at the intersection of the satellite and stabilizer principal central
planes of inertia. The action of the stabilizer on the satellite provides new equi-
librium orientations for the two-body system, as well as introduces dissipation
into the system. The investigation of satellite equilibria was performed by using
the Computer Algebra resultant method. The regions with an equal number of
equilibria were specified by using the Meiman theorem [13] for the construction
of discriminant hypersurfaces.

The algebraic methods for determining the equilibrium orientations of the
two-body system described in this work were successfully used to analyze the
dynamics of a satellite-gyrostat system [6,7] as well as the dynamics of a satellite
with an aerodynamic orientation system [8,9].

In mechanics, computer algebra is widely employed to analyze polynomial
systems with the use of symbolic computations. Some computer algebra algo-
rithms for solving these problems were described in [11,12,15]. The question
of finding regions of parameter space with certain equilibria properties also
occurred in relevance to a biology problem was presented at the CASC 2017
Workshop [16].

2 Equations of Motion

Let us consider the system of two bodies connected by a spherical hinge that
moves along a circular orbit [1]. To write equations of motion for two bodies, we
introduce the following right-handed Cartesian coordinate systems (Fig. 1). The
absolute coordinate system C'X,Y,Z, with the origin at the Earth’s center of
mass C'. The plane C X, Y, coincides with the equatorial plane and the C'Z, axis
coincides with the Earth axis of rotation, and OXY Z is the orbital coordinate
system. The OZ axis is directed along the radius vector that connects the Earth
center of mass C' with the center of mass of the two-body system O, the OX
axis is directed along the linear velocity vector of the center of mass O. Then,
the OY axis is directed along the normal to the orbital plane. The coordinate
system for the ith body (i = 1,2) is Ox;y;2;, where Ox;, Oy;, and Oz; are the
principal central axes of inertia for the ith body. The orientation of the coordi-
nate system Ox;y;2; with respect to the orbital coordinate system is determined
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using the pitch («;), yaw (5;), and roll (v;) angles, and the direction cosines in
the transformation matrix between the orbital coordinate system OXY Z and
Ox;y;z; are expressed in terms of aircraft angles using the relations [1]:
aﬁ) = cos a; cos (3,
(@)

aj5 = sin oy siny; — cos a; sin §; cos v;,
a' = sin a; cos ; + ; sin 3; sin ~y;
i3 = 4 COS7y; + cos ay; sin 3; siny;,
@) _ @ _
ay] =sinf;, asy = cosF; cosy;, (1)

(&) _ : @) _
G5 = —cosf3;siny;, as; = —sinaq; cos F;,

aéQ) = cos a; sin 7y; + sin ay sin §; cos 7y,

aél?)) = cos ay; cos (B; — sin q; sin G; sin ;.

Suppose that (a;,b;,c;) are the coordinates of the spherical hinge P in the
body coordinate system Ox;y;z;, A;, B;, C; are the principal central moments
of inertia; M = M Ms/(M; + Ms); M; is the mass of the ith body; p;, ¢;, and
r; are the projections of the absolute angular velocity of the ith body onto the
axes Ox;, Oy;, and Oz;; and wy is the angular velocity for the center of mass
of the two-body system moving along a circular orbit. Then, using expressions
for kinetic energy and force function, which determines the effect of the Earth
gravitational field on the system of two bodies connected by a hinge [1], the
equations of motion for this system can be written as Lagrange equations of
the second kind by symbolic differentiation in the Maple system [10] in the case
when b1 = b2 =0:

(A + M})p; — Magesi; — Meiej(ai3ay + ag)agy) + aé?aé’g))p]

—M(ajcz(a%)agjg) + a22 aég) + aég)ag%)) CiCj (a%)aggl) + a22 aél)

tagya)))d; + Majei(aiyasy + ag)ag) + agiag))i

+Majc; (a§2) (TJ (p; a(1]3) - T]agjl)) —4qj (‘bagjl) —Pj ag)

+a§2 (T] (p; a(2]3) -7y agjl)) —q;(gj aéjl) —Pj a%))

+az(’)2) (qj (rj aéjz) —4qj aéj?))) p;i(p; a:(%J?)) Ty a31

+((Ci = Bi) — Mc2)qiri — Mapicig; + 3w2(Ci — B;)alyall
+Mwie;(a;(afgal?) +afdasy) + afafy)
+e;(afgaty) + afalf) + affall))

+3Mw§ciagi2)(azagl) +c,~a§3) — ajagjl) c]agjg)) 0, (2)

)
)
)
)
)
)

+a§2) (T] (p; aé? -7y a:(sjl)) —q;(gj aéjl) bj a:(ajz) )
+Mcic; ((agz) (qj (rjagjz) - qjagj?))) bj (pja%) -7 a11 )
+a52) (qj (Tjaéé) - qjaéj?))) p;j(p; aéj?)) Ty a21 )
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(Bi+ M(a? + )i — M(asej(alyall) +aSias) +al)ash)
—cici(ala) + af)all) + al)a$)))p;

(@) (@) (7) @ (5) (@) (@) (7) (@ (7)

() (4)
—M (aiaj(ajgafy + aysasy +agzazy) — aicj(ajgagy +aygas) +agzazy)

—ciaj(ay)aty) +aga) +aff o) + cic(ai ey + aé?aéf +agaf)))d;

+M (as05(atiay) + afday) + afal))
e+ 5]+
+Maj((aza13 agll))(rj pja%) - Taa%)) qj (qjan P1a12 )
+(ala23 - claéll))(r pja23 Tjag)) — 4 (q]an p]am ))
+(aza:(’,3 c1a 21))(7“3 pjagj?)) - Tjagjl)) —4j (q]a31 p3a32 ))
—I—Mcj((a,a13 - zagll))(qy 7"]%2 - q]a%)) pj(p]a%) - 7‘]”11 ))
—|—(a,a23 éll))(qj TJa22 qjagjg)) Dj (pjaé]s) - TJa21 ))
"‘(aza;(ss? - Czasll) (qJ (7’]“&]2) - q]ag%)) ;i (p; aéjia) -7 a:(ajl) ))
((A» —Cy) — M(ai — ¢3))ripi — Majc;(r; —pf)
—3w3(A; — Ci)aal] — M} (cicj(ag?ag Y +a5)af) + 31 33))
+eiaz(ayafy +aylasy) +af)agy)) - aie;(afiay + aé?azg ai3agy)
)

—ala](a%)agjl) + a23 6‘21 t+ag l) (j

—3MW(2)(CZ'Q§1) aza:(a?,))(aiagl) —|—cza§3) - ajagjl) cja%)) 0,

(Cut M) — M+ M (a$3ald + a0 + o2,

M (s 05308 + o + a2

—aicj(ayyaiy +ag)af) +afad)))d;

—Ma,a; (a}jag; + aézg)aéjz) + aégagjz))rj

—Maja; (agz) (7"] (pj a%) - Tjagjl)) — 4 (qjagjl) Py a12 ))

‘HLéz) (TJ (pj ag?,) - Tjaéjl)) —4j (qjazl Py a22 ))

+az(),2) (TJ (pj a:(a]3) - r]agjl)) — 4 (qaa:(%jl) bj a32 ))

—Majc; ((GEQ) (q] (rjag) - qjagj?,)) pj (pjagj?,) - 7“]“11 ))

a4y (a5 (r;a8y) — a;a8)) — pj (pjass) — 7‘]@21 ")

+aé2) (q] (T]agg) - q]agjs)) p] (pj a:(sjs) T a31 ))

((Bi —A;) — )pqu + Ma;cir;g;

—3wd(B: — Aiagiayy — Mwas(¢;(ai3aiy + ayjaff) + agjaiy)
+a;(af3afy + agyaf) +afaf)))

—|—3Mw§aiagi2) (aza:(;l) + clag:),) — a]agjl) — c]a%)) 0.
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Here

pi = (0 + wo)aé’f + Vi,
¢ = (a; + wo)aélz) + B siny, (3)
ry = (a; + wo)aglg) + 61 COS ;.

In the first three equations of (2), ¢ = 1 and j = 2; in the next three equations
of (2),i=2and j =1.In (3), ¢ = 1,2. In (2) and (3), the dot denotes the
differentiation with respect to time t.

3 Equilibrium Orientations of Satellite-Stabilizer System

Assuming the initial condition (o, 8;,7:) = (0 = const, B0 = const, v,0 =
const), also A; # B; # C;, and introducing the notations al(;) = a5, ag) = byj,
we obtain from (2) and (3) the equations

((C1 — B1) — Mc}))(azsass — 3aszass) — Maicy(aziass — 3asiass)
+Mecyaga(azbar + cabaz) — 3Mciasz(azbsy + cobss) = 0,

((A1 —Cy) — M(a? — C%))(a23a21 — 3agzazy) — Mclal((a§3 — a%l)
—3(a33 — azy)) — M(ciag1 — arags)(aghsr + c2bas)
+3M(craz1 — arass)(azbs1 + cabsz) =0,

((Bl —Ap) + Ma%))(amam — 3aziazz) + Maycy(azeazs — 3aszazs)
—Mayag(azba + cabas) + 3Mayaszs(azbs + c2bsz) = 0, (4)

((Cy — Ba) — Mc3)) (bagbag — 3bsabss) — Masca(ba1baz — 3b31bs2)
+Mecabyo(arazr + cragz) — 3Mcabsa(arasy + crass) =0,

(A2 — Co) — M(a3 — ¢3)) (bagbar — 3bszbs1) — Mesas((b35 — b31)
—3(b33 — b31)) — M(caba1 — agbas)(araz + crass)
+3M (cabs1 — agbss)(arasy + crass) =0,

((By — Az) + Ma3)) (barbaa — 3bs1bsa) + +Masca(bazbas — 3bsabss)
—Masbaa(araz + crazs) + 3Mazbsz(aras; + crass) = 0,

which allow us to determine the equilibrium orientation for the system of two
bodies connected by a spherical hinge in the orbital coordinate system. Taking
into account the expressions for the direction cosines from (1), system (4) can
be considered as a system of six equations with six unknowns «;, 3;, and ~;
(i=1,2).

Another way of closing Eq. (4) is to add six orthogonality conditions for the
direction cosines:

2 2 2
ay; + az +ay —1=0,

2 2 2
az; +azy +az —1=0,
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(21031 + a22a32 + aszazz = 0, (5)
b3 + by + by — 1 =0,
b3, + b3y + b33 — 1 =0,
ba1aszy + bazbsa + bazbzz = 0.

For this system, the following problem is formulated: for given 11 parame-
ters, determine all twelve direction cosines. The other six direction cosines
(a11,a12,a13 and b11, b12, b13) can be obtained from the orthogonality conditions.

The system of Egs. (4) and (5) was solved only for the following case: by =
bs = 0, ¢c; = ¢ = 0. Equilibrium solutions in this case for the system of two
bodies in the orbital plane for 8;p = ;0 = 0 and a;p # 0 were considered in [2,3].
In [3], planar oscillations of the two-body system were analyzed, all equilibrium
orientations were determined, and sufficient conditions for the stability of the
equilibrium orientations were obtained using the energy integral as a Lyapunov
function. In [5], for this case the system of 12 algebraic Egs. (4) and (5) was
decomposed using linear algebra methods and algorithms for the Grobner basis
construction. Some classes of spatial equilibrium solutions were obtained from
algebraic equations included in the Grébner basis. The parameter values that
cause the change in the number of equilibrium orientations for the satellite—
stabilizer system were found.

Construction of the Grébner basis for the system (4) and (5) of 12 second-
order algebraic equations, whose coefficients depend on 11 parameters, is a
very complicated algorithmic problem. In general case, the system of algebraic
Egs. (4) and (5) cannot be solved by direct application of the Grébner basis con-
struction methods. We will solve system (4) and (5) in the special case, when all
equilibrium configurations of the two—body system are located in the plane of
the circular orbit. In that case, (1o 7é 0 and Q20 7é 0, ﬂ10 = 620 = Y10 = VY20 = 0.

Substituting the expressions for the direction cosines from (1) in terms of the
aircraft angles into Eq. (4) and taking into account the condition (19 = fB20 =
Y10 = Y20 = 0, we obtain two equations with two unknowns a;g9 and asg

dy sin a1 cos aqg + aicr(cos a%o — sin a%o) + ajas cos aqg sin agg
—a1 €9 COS (1 COS (igg + A2Cy SiN (g Sin g — ¢3¢ sin aigg cos aigg = 0, (6)
da sin aigg oS aigg + asca(cos a%o — sin a%o) + a1as CoS (g sin avig

—@a9C1 COS (ig COS (v + @1Co Sin (ugq Sin (g — €1¢2 Sin g cos aiyg = 0.

Equations (6) form a closed system of two equations with respect to the two
aircraft angles ajg and agg, that determines the flat satellite—stabilizer equi-
librium orientations. In (6), we introduce the following designations: d; =
(A1 = C1) = M(ai — 1)) /M, dy = (A2 — C2) — M(a3 — ¢3)) /M.

Trigonometric system (6) in the ;g and ag angles cannot be solved directly.
Therefore, for this system, we used the universal change of sines and cosines
through the half-angle tangent

2tan(%2) 2t; 1 — tan?( %) 11— t?

2
= , COSQyg = =~ — ,
1+ tan?(%2) — 1+¢2 O T tan?(2) 1412

sin ;0 =

(7)
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where ¢; = tan(%2).
Substituting expressions (7) in terms of half-angle tangent into Eqgs. (6) we
obtain two algebraic equations with two unknowns ¢; and ¢

aoti1 + altzl)’ + agtf +as =0,
bot? + bity + by = 0, (8)

where

ap = a1(c1 — c2)th — 2ayasts + ay(c1 + c2)),

a1 = 2(cico — dy)t3 + dageity — 2(cico + dy),

ay = —6aici (1 +13),

ay = a1(cy + c2)t2 + 2a1asts + ay(cy — c3)),

bo = (1 —t3)(azea(l — 13) + ager (1 + t3) + 2dats)
+2¢1coto(1 4 t2) — dageat?,

by = 2a1 (1 + t2)(ag(1 — t2) 4 2cts),

by = (1 — t3)(azca(1 — 13) — ager (1 +13) + 2dats)
—2c1cata(1 + 12) — dagcot?.

Using the resultant concept we eliminate the variable ¢, from Eq. (8). Expanding
the determinant of resultant matrix of Eq. (8) with the help of Maple symbolic
matrix function, we obtain the 16th order algebraic equation in ¢y variable

pots’ +pity® + patyt + psty® + patd® + psty + pety’ + prts + psth
+poth + piot + prith + piats + pists + prats + pista +pis =0, (9)

the coefficients of which depend on the parameters aq, as, c¢1, 2, di, do in the
form

po = pis = az(ai — c3)(cf — &3)(af — f +di)?,

p1 = —p1s = —4ajea(ai — & + da)(ai(a3 +2(¢] — 3))
+af(2¢](di — ) + (c3 — di)(c3 + d2) — a3c3) + ajzei(c3 — cf)
+2c2(2¢2 — 2 —dy — dy) + dyda(3 + 203)),

P2 = pi1a = —4a’ (a(f(a;l —9a2c2 — 6c3c3 + 6c3)
+ af(12¢]c3 + a3(3c] — 3) — c3(ch + da(da — 6dy) + 2¢5(2ds
— 3dy)) — 2¢3(c3 — 2d3 + 2¢5(3dy + 2d)) + a3(8¢; — 2d1ds
+ 2¢3(2dy — 5dy) + 3(c3 + 8da))) +,
+a? (a%c%(i’)c% —2¢2) — 6c8¢3 — 2¢3c2(cy + 3d3 — 8cidy + d2)
+ dy(c3(dy — 6d2) + 2¢3da(2dy — 3dy) + dyd3)
— 2¢1(c3 — 2d3 + 2¢3(2dy — 3dy)) + a3 (3cady (4¢3 — dy + 2dy)

+ c%(c% + 8dy) — 8¢5 (c5 + 2636[2))) +6c8¢; — c‘llcg + aé(c‘f — c%c%)
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— 6cicady + cyd? — Acicady — 6¢icadid2 + 6¢3cadydy
+4cicid3dy — cicad3 + 6cicadyda + 2d3dE — 6¢3d3 d>

+ a3 (6c5d? — 9cSca — 3cicady (4c + dy + 2dy)

+ 2c1 (4¢3 + dida + c3(5d1 + 2d3)))),

= —p13 = dascs(af(11a3 — 8cic3 + 8¢5 — 2a3(ci + 15¢3))

+ ai(a3(5¢3 — 19¢3 + 7dy — 4dy) + a3(4c] + 19¢5

— 2c3(c3 +2(dy — 8dy)) + da(4dy — 15dy) + 3c3(9ds — 11d,))
+ 4(4cfcs + c3(c3(dy — d2) + da(3dy — da)) + 2¢3(c3 + 2d3

— 2¢3(dy +2d3)))) + a2 (a5(5ct — 19c3dy + 3 (38¢5 — 8dy))

— a3(2¢% + dy(c3(11dy — 57da) + (Tdy — 12d5)ds) — 19¢5
+2¢3(19¢5 + di + 11c3dy + 20d3) + 2¢1(c5 — 2(dy + 8dz)))

— 4(2¢5¢3 — 2¢1(c3 + 2¢3(dy — 2d2) + 2d3)

+ dyda(da(dy — dy) — c3(dy — 3dy)) + 2¢3(chdy + 2d3

+ A(d? — 5d2)))) + a5 (11c8 + 192 2dy — (1962 + 7dy + 4dy))
+ 4(2c8¢5 — 2d3d3 — cci(ca(dy + do) + da(3dy + d))

+ idida(da(dy + d2) + c3(dy + 3d2))) + a3(38c3dTda — 30cic3
+ ¢1(19¢5 + do(15d; + 4ds) + 3c3(11dy + 9d2))

— c12d1(19¢5 + d2(7dy + 12ds) + c3(11dy + 57dy)))),

= p12 = 4(af (205 + 4c3(c] — 3) — az(cf +41c3)

+ 4a3(3cic2 4 11¢)) + a}(2aS(3¢2 — 7c3) + a3(2¢] + 83ch

+ 4do(dy — dy) + c2(9c3 — 2dy + 16ds) + 14c3(4dy — 3dy))

— 4(2¢]cy + 5(2dy — do)do + 3 (3¢5 + 4cads — 2¢5(dy + 4dy)))
— 2a2(12¢1c2 + 2¢3(c5 — 6¢3(dy — 2dg) — 2d2)

+ c3(7¢5 + da(11dy — 18dy) + 2c3(14dy — 11d,))))

+ a?(aS(6¢t — 28¢3c2) — ay(c8 + c3d1(9dy — 110c3 — 84ds)

— ¢1(9¢3 + 2dy + 16ds) + 3 (54c3 + d2 + 224c5dy — 8d3))
+4(cSc; — 2d1(d1 — 2dy)d3 — ¢}(3¢5 + 2¢3(dy — 4do) + 4c2d32)
+ c2(4dy — 8cads + c3(d3 4 2d3)))2a3(6¢5¢3 + di (c3(5dy — 42dy)
+ 6¢3(2dy — Tdo)dg + (dy — 4ds)d3) — 21 (c5 — 2d5

+ 6¢2(dy + 2da)) — 2¢3(TcS — 56c3da — 8d5 + c3(11d3 — 3d?))))
+ 20561 (¢ — T¢3) — A(cic3 — dida)?(cics — d3)

+ a3(55c5d? — 41c8c3 — c?c3d1 (1103 + 9dy + 84ds)

+ ¢1(83c3 + 4dy(dy + do) + 14c3(3dy + 4dy))) + 2a3(22c5¢)

— 42¢3d2d% — cic2(Tcy + do(18dy + 11dy) + 2¢3(11d, + 14dy))
+ cfdi (d3(dy + 4ds) + 6c3da(2d1 + Tda) + c3(5dy + 42dy)))),

171
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ps = —p11 = —4ascy (a?(Qa% + 2403 (cf + cg) - 2a§ (30? + 290%))
+ aj(a3(7¢3 — 129¢3 + 5dy — 36dy) + a2(12¢] + 129¢5

+ 2¢2(13¢2 — 6dy + 16dy) + d2(36dy — 13d1) + c3(201dy — 75d1))

— 4(12¢1c3 + 2¢3(cy — 2d5 4 2¢3(2dy — 3d,))
+ 3(d2(9dy — Tdy) + 3(9d2 — 5d1))))
+ a3 (ay(Tc} — 129¢3dy + 6¢2 (43¢5 — 12dy))
+ a2(2¢H(13¢2 4 6dy + 16dy) — 6¢5 — 6¢2(43¢3 + d2 + 19¢2d,
+ 60d3) + dy(129¢5 + do(108dy — 5d1) + c3(387dy — 25d1)))
+ 4(6¢8¢3 + dyda(c3(5dy — 27da) + da(dy — 9da))
— 2¢1(ch — 2d3 + c3(6dy + 4ds)) — 6¢3(3cydy + 6d3
— E(d? +15d32)))) + a3(9¢8 + 129¢2¢2d,
— ¢1(129¢3 + 5dy + 36ds)) + 4(6c5cy — 18d3ds
— (3 (5dy + 9dy) + da(7dy + 9dy))
+ Adydy(da(dy + 9ds) + 3(5dy + 27dy)))
+ a3(258c3d3dy — 58¢5c3 + 1 (129¢5 + da(13d; + 36ds)
+ 3¢2(25d1 + 67dy)) — c2dy1(129¢5 + do(5dy + 108dy)
+ c3(25d; + 387dy)))),
P = P1o = 4(a?(ag — 9a3c2 + 16c3c; — 2a3(3¢2c3 + 5c3))
+ aj(3aS(cd 4 21c3) — 16¢5(2¢] — 2c3dy + d3) + aj(ci(c2 + 8dy)
— 2(180¢3 + do(dy + 8da) + 2(5dy + 126d3)))
+ a3(12cics 4 2¢3(Tcy + 2d5 — 2¢3(3dy + 2dy))
+ c2(63c3 + d2(6dy + 95ds) + c3(252ds — 26d1))))
+ a?(3aS(ct + 42¢3¢2) + az(ct(c2 + 8dy) — 3cad1(156¢2 + dy
+ 126ds) + 8¢2(27¢5 + 126¢2dy — 4d2)) + 16(cSch — 2¢icady
— 2c3dyd3 + A(8c2d3 — 4d; + c3(d? — 2d3)))
+ a3(2c}(7cy + c3(6dy — 4da) + 2d3) — 6c5ca
+ dy (d3(dy + 32d3) + 2¢3do(2dy + 189dy) + c3(378ds — 15d,))
+ 2¢2(63¢5 — 504chdy — 64ds + c2(95d% — 3d?))))
+ aSc} (2 4+ 63c3) — 16d3(c?c3 — dydy)?
— a5(9c8c3 + 234c5d3 + 3cicidy (dy — 156¢2% — 26d2)
+ 2¢1(180¢5 + do(8dy — dy) + 2(126dy — 5d1)))
+ a3(378c3d3d5 — 10cSch + cidy (2¢3(2dy — 189dy)ds
+ (d1 — 32ds)d3 — 3c3(5dy + 126ds))
+ c1c3(63¢5 + da(95ds — 6d1) + 2c5(13d; + 126d2)))),
p7r = —pg = —4ascsy (c11(21c12 + 1602(01 + 202) - 6aQ(c1 + 1503))
+ aj(a3(11c? + 363c3 + 13d; + 88dy)
+ a2(12¢} — 363¢3 + 2¢2(13¢2 — 6dy + 32ds)



ps

Symbolic Investigation of the Two Bodies Dynamics

— do(29d; + 88dy) — c3(111d; + 539dy)) + 8(4c(c3(dy — 2dz)
+ d2) — 4cick + cA(c3(3dy + 11dy) + do(5dy + 11dy))))
+ a3(11aj(c] + 33cady + c3(16dy — 66¢3))
+ a3(2¢1 (13¢3 + 6dy + 32d3) — 65
+ c3(726¢5 — 6d3 + 374c3dy + 880d3)
— dy(363c3 + do(13dy + 264d3) + c3(37dy + 1089ds)))
+ 8(2¢8¢3 + dyda(3¢3 + do)(dy + 11da) — 4c](c3(dy + 2d3)
— d2) + 2c2(11chdy + 22d3 + c3(d? — 55d3))))
+ a5(21¢§ — 363cicady + c1(363c3 — 13d; + 88dy))
+ 8(4cScy + 22d3d3 + cidy (dy — 11dg)d2 (3¢ + da)
+ i3 (do(11dy — 5dy) + c2(11dy — 3dy)))
— a3(90c8c3 + 726c3d3ds + cidy (c3(37d; — 1089dy)
+ do(13d; — 264ds) — 363c3)
+ ¢1(363c5 + d2(88ds — 29d1) + ¢3(539d> — 111d4)))),
= —2(af(8a$ + 48a3c3(c] + 5c3) — 3aj(ci + 55c3)
—16(3c?cy +¢5)) + ai(8aS (3¢t + 25¢3) + a3 (6¢] — 1267¢)
— 16dy(dy + 3d2) + c3(37¢3 — 6dy + 64do)
— 10c2(17d; + 80dy)) 4 16(6¢1cs — cada(2dy + 3dy)
— (3¢5 + c3(6dy — 8dy) + 4cad3))
— 8a2(12¢1c3 + 2¢3(5¢5 — 6¢3(dy — 2dy) — 2d3)
— 2(25¢5 + da(18dy + 37ds) + 2¢2(19d; + 50ds))))
+ a2(8aS(3¢] + 50c3c3) + a3 (c}(37¢3 + 6d; + 64ds)
— 368 — 3dy (1734c¢3 + 37d; + 1200d>)
+ ¢3(934c5 — 3d3 + 3200c3dy — 96d3))
— 16(3cSch + cidyd3(dy + 6d2)c1 (3¢5 + 4cad;
— 2¢5(3dy + 4ds)) + 3c3 (4dy — 8cads + c5(d3 + 2d3)))
+ 8a3(6c5c3 — 2¢1 (5cy — 2d5 + 6¢3(dy + 2dz))
+ dy (d3(dy + 12d3) + 6¢2do(2d; + 25ds)
+ ¢3(13dy 4 150d3)) + c2(50c5 — 400c3d2 — 48d3
+ ¢3(6d7 + 74d3)))) + 8ag(cf + 25¢1¢3)
—16(cici — dydy)?(cics + 3d3) + 8a3(30c8 ¢y
+ 150c3d3d3 + c3dy (c3(13dy — 150ds) + 6¢3(2d; — 25d2)da
+ (d1 — 12d2)d3) + c}c2(25¢5 4 da(37dy — 18d,)
+ ¢3(100dy — 38d1))) — a5(165c8c3 + 867c3ds
+ c3c2dy (37dy — 1734¢3 — 1200dy)
+ ¢1(1267¢5 + 16ds(3d> — di) + c22(800dy — 170d,)))).
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By the definition of resultant, to every root to of Eq.(9) there corresponds a
common root ¢; of system (8). It can easily be shown that to every real root
to of Eq.(9), there corresponds one equilibrium solution of the original system
(6). Since the number of real roots of Eq. (9) does not exceed 16, the two bodies
system satellite—stabilizer in the plane of a circular orbit can have at most 16
equilibrium configurations in the orbital coordinate system.

From the form of the coefficients of the algebraic Eq. (9), it follows that this
equation is recurrent. Then dividing Eq. (9) by t§ we will get the equation

1 1 1 1 1
po(ts + t*g) +p1(t] — t?) + p2(t5 + LTG) + p3(t] — t?,) + pa(ts + LT4)
2 2 2 2 2

1 1 1
+P5(t§—tﬁ)+p6(t§+tj)+P7(t2— ?)+P8 =0. (11)
5 5 2

After replacing in (11) z = (ts — ) = (2/tanai), (13 + 35) = 2° + 2,
2

(t3 — t%) = 22 + 32 and so on, we will get the equation of the 8th degree
2
P(z) = poz® + pra” + paa® + psa”® + paz’Psa® + poa® + pra +ps = 0. (12)
Here

Do =po, P1=D1,

D2 =p2 +8po, Ps=ps+ Tp1,
Da = pa + 20pg + Gpa,

D5 = ps + 14p1 + 5ps,

D6 = pe + 16po + Ip2 + 4pa,

P7 = pr + Tp1 + 5p3 + 3ps,

Ps = ps + 2(po + p2 + pa + pe)-

Using Egs. (12) and (8), for each set of the system parameters, we can deter-
mine numerically the angles asy and «qg, that is, all the planar equilibrium
orientations of the satellite—stabilizer system.

4 Investigation of Equilibria

Equations (8) and (12) make it possible to determine all the plane equilibrium
configurations of the satellite—stabilizer, due to the action of the gravity torque
for the given values of system parameters a1, as, ¢1, co, and dy, do of the problem.

In studying the two—body system equilibrium orientations, we determine the
domains with an equal number of real roots of Eq. (12) in the space of 6 param-
eters. To identify these domains, we use the Meiman theorem [13], which yields
that the decomposition of the space of parameters into domains with an equal
number of real roots is determined by the discriminant hypersurface. It is also
possible to calculate the number of real roots of a polynomial by means of ith
subdiscriminants using Jacobi theorem [14,15].
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In our case, the discriminant hypersurface is given by the discriminant of
polynomial (12). This hypersurface contains a component of codimension 1,
which is the boundary of domains with an equal number of real roots. The set
of singular points of the discriminant hypersurface in the space of parameters
a1, asz,c1,Co, and dyi, ds is given by the following system of algebraic equations:

P(x)=0, P'(z)=0. (13)

Here the symbol “prime” denotes differentiation with respect to x.

We can eliminate the variable  from system (13) by calculating the deter-
minant of the resultant matrix of Eq.(13) with the help of symbolic matrix
functions in Maple. The form of the discriminant of the polynomial P(x) is a
very cumbersome expression.

Let us consider a simpler case when a; = a2 = ¢; = ¢ = a. Then introducing
the new parameters in (6) do1 = (A1 — C1))/Ma?, doa = (A2 — C3)/Ma?, we
obtain from (9) a simpler algebraic equation of the 8th degree, whose coefficients
depend only on two parameters dp; and dys

Poots + ports + pozts + posts + poats + posts + posts + porta + pos = 0, (14)

where

Poo = Pos = d (doz - 1) d(2)27

po1 = —por = 2(doz — 2)(dg; (d3y + doz — 2) + 2d5,),

Do2 = Pog = d01(d32 20d02 + 8dog + 20) + 4dg, (dgy — 5),
pos = —pos = 2(d5, (Tdgy + diy — 28doz — 4) + 2d3,(Tdoz + 2)),
poa = —2(dgy (dgy — 27d —10dg2 + 13) + 4dg, — 13d3,).

After replacing in (14) z = (t2 — %), we will obtain the equation of the 4th
degree

Pi(z) = pooz” + porz® + (po2 + 4poo) 2>
+(pos + 3po1)x + poa + 2(po2 + poo) = 0. (15)

Now we determine the conditions for the existence of real roots of Eq. (15).
To identify these conditions, we use the Meiman theorem [13]. In our case, the
discriminant hypersurface is given by the discriminant of polynomial P; (x). The
boundary of domains with the equal number of real roots on the plane of param-
eters dg; and dps is given by the following system of algebraic equations:

Pi(x) =0, P/(zx)=0. (16)
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We eliminate the variable x from system (16) by calculating the determinant
of the resultant matrix of Egs.(16) and obtain an algebraic equation of the
discriminant hypersurface as

Py(do1, do2) = 256d35 P3(do1, do2) Pa(dor, doz) Ps(dot, do2) = 0. (17)
Here

Ps(doy, doz) = (dg, (doz — 1)* — dgy),
Py(dot, do2) = (dgy (d5, + 8)* + 16d5, gy (dgy + 10) + 64dy, — 6912),
P5(dor, do2) = ((4dgy + dgydy + 4d3,)? — 64d3,d3,).

Now we should check the change in the number of equilibria when the curve
(17) is intersected. This can be done numerically by determining the number of
equilibria at a single point of each domain at the plane (do1,dp2). This analysis
showed that only the curve Py(dp1,dp2) = 0 separates the domains with different
number of equilibria.

Figure 2 presents an example of the properties and form of the discriminant
hypersurface Py (dp1, do2) = 0, which are the set of curves on the plane (do1, do2)-
Fig. 2 shows the distributions of domains with equal number of real roots of
Eq. (17) and indicates the domains where four and two real solutions exist (8 and
4 equilibrium orientations). In Fig. 2, four branches of two hyperbolas indicate
the boundaries P3(dp1, dp2) = 0, where the number of real roots of Eq. (17) does
not change. Therefore, in the case when a1 = as = ¢; = ¢3 = a, there exist only
8 and 4 planar equilibrium orientations for the satellite-stabilizer system.

X,

0

Y

Fig. 1. Basic coordinate systems
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Fig. 2. The regions with the fixed number of equilibria

5 Conclusion

In this paper, we present the study of the dynamics of the rotational motion of
the satellite—stabilizer system subject to the gravitational torque in the plane
of the orbit. The computer algebra method (based on the resultant approach)
of determining all equilibrium orientations of the satellite-stabilizer system in
the orbital coordinate system in the plane of a circular orbit was presented. The
conditions for the existence of these equilibria were obtained.

We have made an analysis of the evolution of domains of existence of equilib-
rium orientations in the plane of system parameters dp; and dgo for the special
case when the coordinates of the spherical hinge in the satellite body coordinate
system Ox1y;21 and stabilizer body coordinate system Oxsyszo are equal. For
this case, we have indicated the analytic equation of the discriminant hypersur-
faces that limits regions with different number of equilibrium configurations of
the satellite—stabilizer system. The hypersurface equation was computed sym-
bolically using the resultant approach.

The obtained results can be used to design gravitational attitude control
systems for the artificial Earth satellites.
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