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Preface

The International Workshop on Computer Algebra in Scientific Computing (CASC) is
an annual conference offering a unique opportunity for researchers and developers from
academia and industry to share ideas in the areas of computer algebra and in various
application areas that apply pioneering methods of computer algebra in sciences such
as physics, chemistry, celestial mechanics, life sciences, and engineering.

This year the 21st CASC conference was held in Moscow (Russia). The first (not
only in Russia, then in the USSR, but in the world!) results in computer algebra were
obtained in the mid-1950s by the St. Petersburg (then Leningrad) mathematician and
economist L. V. Kantorovich, who in 1975 was awarded the Nobel Prize in Economics
for his mathematical theory of optimal allocation of resources. A few years before that,
he had moved to Moscow to become one of the founders of the Department of
Mathematical Methods in Economics at Plekhanov Russian University of Economics.
In his report, prepared in collaboration with his student L. E. Petrova, and presented at
the III All-Union Congress of Mathematicians held in Moscow (June–July 1956), and
then published in the same year in the proceedings of this congress, entitled “A
Mathematical Symbolism Convenient When Computing on Machines,” the issues of
data representation, allowing one to produce on a computer analytical operations on
mathematical expressions, including differentiation, were discussed.

The rapid development of computer algebra in Moscow and the Moscow region
began in the 1970s due to the spread of the REDUCE system, performed by the Joint
Institute for Nuclear Research (JINR), the permission for which was given by the
system creator A. Hearn. Although by that time in Russia (USSR) a number of spe-
cialized systems of computer algebra were created, REDUCE, as a general purpose
system, was very popular in scientific and educational organizations of Russia. In total,
about 130 copies of the Reduce system were transferred to other organizations.

With regard to the development and application of mathematical methods, algo-
rithms, and software packages of computer algebra, JINR played a leading role in the
development of this scientific direction, which organized a series of international
conferences held in Dubna in 1980, 1983, 1985, and 1990, as well as at Moscow State
University, in which, in the 1980s, a regular, monthly seminar on computer algebra was
held, which was first arranged at the Physics Department, and then at the Faculty of
Computational Mathematics and Cybernetics and is held to date under the leadership of
S. A. Abramov. Every May for the past decade, an extended, two-day meeting of the
seminar is held in Dubna.

This background has influenced the choice of the Plekhanov Russian University of
Economics in Moscow as the venue for the CASC 2019 workshop.

This volume contains 28 full papers submitted to the workshop by the participants
and accepted by the Program Committee after a thorough reviewing process with
usually two independent referee reports. The volume also includes two invited talks.



In addition to talks about the papers in these proceedings, CASC 2019 also hosted
talks of two other submission types. There were a group of talks from authors on work
that was submitted as extended an abstract, only for distribution locally at the con-
ference. Such work was either already published or not yet ready for publication, but of
interest to the CASC audience and selected following review by the CASC Program
Committee. Another group of talks was offered from authors who have extended pieces
of work accepted or in revision for a special CASC issue of the Springer journal
Mathematics in Computer Science.

In his invited talk, Stanislav Poslavsky describes the open-source library RINGS

written in the JAVA and SCALA programming languages, which implements basic
concepts and algorithms from computational commutative algebra. The goal of the
RINGS library is to provide a high-performance implementation packed into a light-
weight library (not a full-featured CAS) with a clean application programming inter-
face (API), which meets modern standards of software development. Polynomial
arithmetic, GCDs, factorization, and Gröbner bases are implemented with the use of
fast modern algorithms. RINGS provides a simple API with a fully typed hierarchy of
algebraic structures and algorithms for commutative algebra. The use of the SCALA
language brings a rather novel powerful, strongly typed functional programming model
allowing one to write short, expressive, and fast code for applications.

The other invited talk by Chee Yap addresses the issue of correct and practical
numerical algorithms for geometric problems. Exactness in geometric problems comes
from an approach called exact geometric computation (EGC) that requires an algorithm
to compute the exact combinatorial or topological structure underlying the geometric
problem. This requires the solution of various zero problems inherent in the problem.
Such zero problems may have high complexity and are possibly undecidable. The
author aims to introduce notions of “soft-e correctness” in order to avoid these zero
problems. The talk offers a bird’s eye view of the author’s recent work with collabo-
rators in two principle areas: computing zero sets and robot path planning. They share a
common subdivision framework, resulting in algorithms with adaptive complexity, and
which are practical and effective. Here, “effective algorithm” means it is easily and
correctly implementable from standardized algorithmic components. The talk outlines
these components and suggests new components to be developed. A systematic
pathway to derive effective algorithms in the subdivision framework is discussed.

Polynomial algebra, which is at the core of computer algebra, is represented by
contributions devoted to: some new root finders for univariate polynomials, the
root-finding with implicit deflation, the application of parametric standard Gröbner
bases in catastrophe and singularity theories and automated geometric theorem dis-
covery, the use of the computer algebra system (CAS) PARI/GP for solving a quartic
diophantine equation satisfying Runge’s condition, the reduction of the black-box
multivariate polynomial interpolation to the black-box univariate polynomial interpo-
lation over any ring, the robust Schur stability of a polynomial matrix family, the
solution of polynomial systems with the aid of a reduced lexicographic Gröbner basis
and characteristic and quasi-characteristic decompositions, the theoretical investigation
of the relation between the Berlekamp–Massey algorithm from coding theory and its
generalized version—the Berlekamp–Massey–Sakata algorithm.
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Several papers deal with applications of symbolic and the symbolic-numerical
computations for: the solution of problems in nuclear physics, quantum mechanics,
symbolic-numerical solution of the incompressible Navier–Stokes equations of fluid
mechanics, the construction of a new implicit difference scheme for the 2D Boussinesq
paradigm equation, investigation of optical and electromagnetic waveguides with the
aid of the CAS MAPLE, and the computation of invariant projectors in the representation
of wreath products for quantum mechanics problems.

Four papers deal with the application of symbolic computations for investigating
and solving ordinary differential equations (ODEs): the derivation of new exponential
integrators, explicit difference schemes for autonomous systems of ODEs on manifolds,
the integrability of an autonomous planar polynomial system of ODEs with a degen-
erate singular point at the origin depending on five parameters, and a search for
symmetries of ODEs with a small parameter.

Two papers deal with applications of CASs at the investigation and solution of
celestial mechanics problems: obtaining and analysis of the necessary conditions of
stability of an orbital gyrostat with the aid of the CAS MATHEMATICA, and study of the
satellite-stabilizer dynamics under the influence of gravitational torque with the aid of
Gröbner bases and the CAS MAPLE.

Applications of CASs in mechanics, physics, and robotics are represented by the
following themes: the study of the problem of rotation of a rigid body with a fixed point
in a magnetic field with the aid of the CAS MATHEMATICA and the implementation of the
HuPf algorithm for the inverse kinematics of general 6R/P manipulators.

The remaining topics include the solution of Hadamard’s maximal determinant
problem with the aid of a periodic autocorrelation function reconstruction, the devel-
opment of a high-performance algorithm for the work with databases involving huge
amounts of data rows, the investigation of the analytic complexity of hypergeometric
functions satisfying systems with holonomic rank two, the solution of the Heilbronn
triangle problem by solving a group of non-linear optimization problems via symbolic
computation, and the use of the generalized arithmetic-geometric mean for the calcu-
lation of complete elliptic integrals.

The CASC 2019 workshop was supported financially by the Plekhanov Russian
University of Economics in Moscow. We gratefully acknowledge the research atmo-
sphere and excellent conference facilities provided by this institution.

Our particular thanks are due to the members of the CASC 2019 local Organizing
Committee at the Plekhanov Russian University of Economics, i.e., Vitaly Minashkin,
Timur Sadykov, Vitaly Krasikov, Olga Kitova, and Timur Bosenko, who ably handled
all the local arrangements in Moscow. In addition, Prof. V. P. Gerdt provided us with
the information on the computer algebra activities in Moscow and in the Moscow
region.

Furthermore, we want to thank all the members of the Program Committee for their
thorough work. We also thank the external referees who provided reviews.

We are grateful to the members of the group headed by T. Sadykov for their
technical help in the preparation of the camera-ready manuscript for this volume. We
are grateful to the CASC publicity chair, Andreas Weber (Rheinische
Friedrich-Wilhelms-Universität Bonn), and his assistant Hassan Errami for the man-
agement of the conference website: http://www.casc-conference.org. Finally, we are
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grateful to Dr. Dominik Michels (King Abdullah University, Jeddah, Saudi Arabia) for
the design of the conference poster.

June 2019 Matthew England
Wolfram Koepf

Timur M. Sadykov
Werner M. Seiler

Evgenii V. Vorozhtsov
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Rings: An Efficient JVM Library
for Commutative Algebra (Invited Talk)

Stanislav Poslavsky(B)

NRC “Kurchatov Institute” - IHEP, Nauki square 1, Protvino 142281, Russia
stvlpos@mail.ru

Abstract. Rings is an open-source library, written in Java and Scala
programming languages, which implements basic concepts and algo-
rithms from computational commutative algebra. The goal of the Rings
library is to provide a high-performance implementation packed into a
lightweight library (not a full-featured CAS) with a clean application
programming interface (API), which meets modern standards of software
development. Polynomial arithmetic, GCDs, factorization, and Gröbner
bases are implemented with the use of modern fast algorithms. Rings
provides a simple API with a fully typed hierarchy of algebraic structures
and algorithms for commutative algebra. The use of the Scala language
brings a quite novel powerful, strongly typed functional programming
model allowing to write short, expressive, and fast code for applications.

Keywords: Computer algebra software · Commutative algebra

1 Overview

Efficient implementation of polynomial rings and related concepts is crucial for
modern computational algebra. Rings [1] is an open-source library which pro-
vides a high-performance implementation of basic concepts and algorithms from
computational commutative algebra.

Java is perhaps the most widely used language in industry today and com-
bines several programming paradigms including object-oriented, generic, and
functional programming. Scala, which is fully interoperable with Java, addition-
ally implements several advanced concepts like pattern matching, an advanced
type system, and type enrichment. Use of these concepts in Rings made it pos-
sible to implement mathematics in a quite natural and expressive way directly
inside the programming environment offered by Java and Scala.

In a nutshell, Rings allows to construct different rings and perform arith-
metic in them, including both very basic math operations and advanced meth-
ods like polynomial factorization, linear systems solving, and Gröbner bases. The
built-in rings provided by the library include: integers Z, modular integers Zp,
finite fields GF(pk) (with arbitrary large p and k < 231), algebraic field exten-
sions F (α1, . . . , αs), fractions Frac(R), univariate R[x] and multivariate R[X]
polynomial rings, where R is an arbitrary ground ring (which may be either one
or any combination of the listed rings).
c© Springer Nature Switzerland AG 2019
M. England et al. (Eds.): CASC 2019, LNCS 11661, pp. 1–11, 2019.
https://doi.org/10.1007/978-3-030-26831-2_1
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2 S. Poslavsky

In further sections, we will illustrate the key features of Rings by a few exam-
ples given in Scala language. They can be evaluated directly in Rings REPL. The
source code of the library is hosted at GitHub github.com/PoslavskySV/rings.
Installation instructions and comprehensive online documentation (with both
Java and Scala examples) can be found at rings.readthedocs.io.

2 Basic Concepts

The high-level architecture of the Rings library is designed based on two key con-
cepts: the concept of mathematical ring and the concept of generic programming.
The use of generic programming allows one to systematically translate abstract
mathematical constructions into machine data structures and algorithms. At the
same time, the library remains completely type-safe due to the deep use of strong
type model of the Scala language.

In Rings, an abstract mathematical ring has parameterized type Ring[E]—a
ring of elements of abstract type E. Trait Ring[E] is a supertype for all particular
rings, for example:

Frac[C] <: Ring[Rational[C]],
UnivariateRing[C] <: Ring[UnivariatePolynomial[C]],

MultivariateRing[C] <: Ring[MultivariatePolynomial[C]],

where <: denotes the subtyping relation.
Generic programming, powered by the advanced type system of Scala

language, provides a great level of abstraction when working with different
rings. For example, consider the following generic implementation of Euclidean
algorithm:

def gcd[E](a: E, b: E)(implicit ring: Ring[E]): E =
if (b == ring(0)) a else gcd(b, a % b)

It works with elements of any (Euclidean) ring. E.g. apply it to elements of Z:

implicit val zRing = Z // ring of (arbitrary precision) integers
val i1 = zRing(16) // convert machine number to element of ring
val i2 = zRing(18)
val iGcd = gcd(i1, i2)
assert ( iGcd == zRing(2) )

E.g. apply it to elements of Q[x]:

implicit val pRing = UnivariateRing(Q, "x") // polynomials Q[x]
val p1 = pRing("1 - x^8") // parse poly from string
val p2 = pRing("1 + x^5")
val pGcd = gcd(p1, p2)
assert ( pGcd == pRing("1+x") )

Importantly, each object from the above example has complete compile-time
type, which is just omitted for shortness, but inferred automatically by the com-
piler. So in fact, the above lines are effectively expanded to:

https://github.com/PoslavskySV/rings
http://rings.readthedocs.io
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val pRing : UnivariateRing[Rational[IntZ]] = ...
val p1 : UnivariatePolynomial[Rational[IntZ]] = ...
val pGcd : UnivariatePolynomial[Rational[IntZ]] = ...
...

Another key point is the use of implicit variables in connection with the Scala
concept of “type enrichment”. In Rings , it is used to add operator overloading
for elements of arbitrary rings in an elegant way: all math operators (like modulo
operator % used in the above gcd definition) work for arbitrary type E, provided
that there is an implicit instance of Ring[E] in the scope:

implicit val ring : Ring[E] = ... // implicit ring instance
val t1 : E = ... ; val t2 : E = ... // some ring elements
t1 % t2 // compiles to ring.remainder(t1, t2)
t1 / t2 // compiles to ring.divide(t1, t2)
t1 + t2 // compiles to ring.add(t1, t2)
t1 * t2 // compiles to ring.multiply(t1, t2)
...

The following example shows how the presence of an implicit ring changes the
behaviour of math operators:

// some arbitrary precision integers
val t1 : IntZ = 12 ; val t2 : IntZ = 13
assert (t1 * t2 == Z(156)) // multiply integers
{

implicit val ring = Zp(2)
assert (t1 * t2 == ring(0)) // multiply modulo 2

}
{

implicit val ring = Zp(17)
assert (t1 * t2 == ring(3)) // multiply modulo 17

}

3 Polynomials, GCDs, and Factorization

3.1 Polynomial Types

Polynomials are the central objects in computational commutative algebra.
Rings provides separate implementations for univariate (dense) and multivari-
ate (sparse) polynomials: univariate are represented by dense arrays, while mul-
tivariate polynomials are represented by binary trees (currently Java’s built-in
red-black TreeMap is used). This way, there are univariate rings and multivariate
rings:

// univariate ring Z[t]
val uRing = UnivariateRing(Z, "t")
// multivariate ring Z[x, y, z]
val mRing = MultivariateRing(Z, Array("x", "y", "z"))
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Additionally, there are special implementations for polynomials over Zp with
p < 264 (fits in machine word). These implementations are highly optimized to
achieve the best possible performance using machine intrinsics and special CPU
instructions. For example, for univariate polynomials:

// univariate ring Z/p[t] with arbitrary large p
val mPrime = Z("2^521 - 1") // Mersenne prime
val uRingZp = UnivariateRing(Zp(mPrime), "t")
// optimized univariate ring Z/p[t] with machine p
val uRingZp64 = UnivariateRingZp64(17, "t")

Elements of these two rings have correspondingly different types:

val p1 : UnivariatePolynomial[IntZ] = uRingZp("(1 + t)^100")
val p2 : UnivariatePolynomialZp64 = uRingZp64("(1 + t)^100")

3.2 Example: Working with Polynomials

Let us proceed with an example of some particular polynomial ring. As a coeffi-
cient ring we will take the Galois field GF(173):

1 //Galois field GF(173) ("t" is the generator)
2 implicit val gf = GF(17, 3, "t")
3 val t = gf("t")
4 val t1 = 3 + t - t.pow(22)/(1 + t + t.pow(9))
5 //compute e.g. minimal polynomial of t1
6 val mpoly = gf.minimalPolynomial(t1)
7 // assert that t1 is a root of mpoly
8 assert( gf(mpoly.composition(t1)).isZero )

Elements of this Galois field are internally represented as univariate polynomials
over Z17.

Define multivariate polynomial ring over the ground ring GF(173):

9 // multivariate ring GF(173)[x, y, z]
10 implicit val ring = MultivariateRing(gf, Array("x","y","z"), LEX)

11 // construct some multivariate polynomials

12 val p1 = ring("(1 + t + x + y + z)^3 - (1 - x/t - y/t)^3")

13 val p2 = ring("(1 - x^2 - y^2 - z^2)^4 + (1 + z/t)^4 - 1")

14 val p3 = (p1 + p2).pow(2) - 1

Again the ring instance is defined implicit, so all math operations with multi-
variate polynomials, which have the type

MultivariatePolynomial[UnivariatePolynomialZp64]

will be delegated to that instance.
In line 10, we explicitly specified to use LEX monomial order for multivariate

polynomials. This choice affects some algorithms like multivariate division and
Gröbner bases. The explicit order may be omitted (GREVLEX will be used by
default).
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Polynomial greatest common divisors and polynomial factorization work for
polynomials over all available built-in rings. Now we continue our example:

15 // GCD of polynomials from GF(173)[x, y, z]
16 val gcd1 = ring.gcd(p1 * p3, p2 * p3)
17 assert ( gcd1 % p3 == ring(0) )
18 val gcd2 = ring.gcd(p1 * p3, p2 * p3 + 1)
19 assert ( gcd2.isConstant )

20 // large polynomial from GF(17, 3)[x, y, z]
21 // with more than 104 terms and total degree of 123
22 val bigPoly = p1.pow(3) * p2.pow(2) * p3
23 // factorize it
24 val factors = ring.factor(bigPoly)

One of the key features of Rings library is that it does polynomial GCD and
factorization of really huge polynomials over different ground rings robustly and
fast (see Sect. 3.4).

3.3 Example: Writing Algorithms

With the use of Scala function programming, Rings allows to write short and
expressive code. Consider the following example, which implements a solver of
Diophantine equations—a straightforward generalization of the extended GCD
on more than two arguments (algorithm from Sec. 4.5 in [2]):

25 /**

26 * Solves equation
∑

fisi = gcd(f1, . . . , fN ) for given fi
27 * @return a tuple (gcd, solution)

28 */

29 def solveDiophantine[E](fi: Seq[E])(implicit ring: Ring[E]) =

30 fi.foldLeft((ring(0), Seq.empty[E])) { case ((gcd, seq), f) =>

31 val xgcd = ring.extendedGCD(gcd, f)

32 (xgcd(0), seq.map(_ * xgcd(1)) :+ xgcd(2))

33 }

With this function, it is quite easy to implement, for example, an efficient
algorithm for partial fraction decomposition with just a few lines of code. The
resulting function will work with elements of arbitrary fields of fractions:

34 /** Computes partial fraction decomposition of given rational */

35 def apart[E](frac: Rational[E]) = {

36 implicit val ring: Ring[E] = frac.ring

37 // compute factors

38 val facs = ring.factor(frac.denominator).map {case (f,e) => f^e}

39 // compute co-factors

40 val (gcd, nums) = solveDiophantine(facs.map(frac.denominator/_))

41 val (ints, rats) = (nums zip facs)

42 .map { case (num, den) =>

43 Rational(frac.numerator * num, den * gcd)

44 }

45 .flatMap(_.normal) // extract fractions integral parts
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46 .partition(_.isIntegral) // separate integrals and fractions

47 rats :+ ints.foldLeft(Rational(ring(0)))(_ + _)

48 }

This generic function may be applied to rationals over any Euclidean rings, e.g.
to rational number:

49 // partial fraction decomposition for rational numbers
50 // gives List(184/479, (-10)/13, 1/8, (-10)/47, 1)
51 val qFracs = apart( Q("1234213 / 2341352") )

or to rational function over Zp:

52 // partial fraction decomposition for rational functions

53 val ufRing = Frac(UnivariateRingZp64(17, "x"))

54 // gives List(4/(16+x), 1/(10+x), 15/(1+x), (14*x)/(15+7*x+x^2))

55 val pFracs = apart( ufRing("1 / (3 - 3*x^2 - x^3 + x^5)") )

The input may be complicated up to any extent. Returning to our initial example
we have constructed ring GF(17, 3)[x, y, z], let us define a field of fractions over
this domain, adjoin a new variable, say W , and construct the partial fraction
decomposition in this complicated ring Frac(GF(173)[x, y, z])[W ]:

56 // partial fraction decomposition of rational functions
57 // in the ring Frac(GF(173)[x, y, z])[W ]
58 implicit val uRing = UnivariateRing(Frac(ring), "W")
59 val num = uRing("W + 1")
60 val den = uRing("(x/y + W^2) * (z/x + W^3)")
61 val fracs = apart(Rational(num, den))

The function call on the last line involves nearly all main components of the
Rings library: from very basic algebra to multivariate factorization over sophis-
ticated rings.

3.4 Benchmarks

Much attention in the library is paid to the performance of core algorithms. One
of the main goals of Rings is to provide really fast implementations of modern
algorithms.

To compare the speed of GCD with other tools, the following benchmark was
used. Polynomials a, b, and g were generated at random and time needed to com-
pute gcd(ag, bg) was measured. Each polynomial had 40 terms (so the products
ag and bg had at most 1600 terms each), and monomial exponents were gener-
ated using two strategies. In the first one (uniform), exponent of each variable in
monomial was taken uniformly in 0 ≤ exp ≤ 30. In the second strategy (sharp)
the total degree of each monomial was fixed and equal to 50 (so input polynomi-
als were homogeneous). Benchmarking was performed for different numbers of
variables. The performance of Rings (v2.3.2) was compared to Mathematica
(v11.1.1.0), Singular (v4.1.0), FORM (v4.2.0) [4] and Fermat (v6.19) [3].
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Fig. 1. Dependence of multivariate GCD performance on the number of variables. Each
problem set contains 110 problems, points correspond to the median times and the error
bands correspond to the smallest and largest execution time required to compute the
GCD within the problem set. If computation of a single GCD took more than 8 h
(timeout) it was aborted and the timeout value was adjoined to the statistics.

Figure 1 shows how the performance of different libraries behaves with the
increase of the number of variables. In all considered problems performance of
Rings was unmatched. Notably, its performance almost doesn’t depend on the
number of variables in such sparse problems.

Performance of polynomial factorization was tested using the following bench-
mark. Polynomials a, b, and c were generated at random and time needed to com-
pute factor(abc + 1) (trivial) and factor(abc) (non trivial) was measured. Each
polynomial had 20 terms (so the products abc had at most 8000 terms each). The
exponent of each variable in monomials was chosen uniformly in 0 ≤ exp ≤ 30.

Figure 2 shows how the performance of multivariate factorization depends on
the number of variables. It follows that the median time required to compute fac-
torization changes quite slowly, while some outstanding points (typically ten times
slower than median values) appear, when the number of variables becomes large.
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Fig. 2. Dependence of multivariate factorization performance on the number of vari-
ables. Each problem set contained 110 problems, points correspond to the median times
and the error bands correspond to the smallest and largest execution time required to
compute the factorization within the problem set.

The benchmarks shown above involve only sparse problems, which are more
frequent in practice (especially in physics). The full set of benchmarks, includ-
ing dense problems, can be found at https://github.com/PoslavskySV/rings.
benchmarks.

3.5 Implementation Notes

To achieve the high performance of polynomial GCD and factorization, Rings
uses different algorithms depending on the type of input.

Univariate GCD uses the Half-GCD algorithm for polynomials over finite
fields and modular algorithms in other cases (i.e., Q[x] and Q(α)[x]). Univariate
polynomial factorization is implemented with the use of the Cantor–Zassenhaus
method with optional use of Shoup’s baby-step giant-step algorithm [5] (for large
polynomials or for finite fields with large characteristic).

Multivariate GCD switches between Zippel’s sparse algorithms and Enhanced
Extended Zassenhaus algorithm (EEZ-GCD). The latter is used only on very
dense problems. Zippel’s algorithms require that the ground ring contains a
sufficient number of elements (so they will always fail in e.g. Z2[X]). When
the cardinality of a ground ring is not sufficiently large, Rings switches to a
Kaltofen–Monagan generic modular algorithm [6]. For polynomials over algebraic

https://github.com/PoslavskySV/rings.benchmarks
https://github.com/PoslavskySV/rings.benchmarks
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number fields, the modular approach with either sparse (Zippel) or dense (EEZ-
GCD) interpolation is used with further rational number reconstruction.

Multivariate factorization uses Kaltofen’s algorithm [7], with major modi-
fications due to Lee [8]. For factoring bivariate polynomials, the very efficient
Bernardin’s algorithm [9] is used. Additionally, Rings performs some fast early
checks based on Newton polygons to ensure that there is a nontrivial factoriza-
tion pattern. Multivariate Hensel lifting is done via Zippel-like sparse method:
the problem of lifting is reduced to a system of (in general non-linear) equations
which may be solved efficiently in many cases. For factorization of polynomials
over algebraic number fields Q(α), Rings uses Trager’s algorithm [10].

4 Ideals and Gröbner Bases

The concept of mathematical ideal is implemented by the Ideal class, which com-
putes corresponding Gröbner basis automatically at instantiation. The following
code snippet continues our example from the previous section with polynomial
ring GF(17, 3)[x, y, z] and illustrates the main methods provided by the Ideal

class:

62 val (x, y, z) = ring("x", "y", "z")

63 // define a set of polynomial generators

64 val (i1,i2,i3) = (x.pow(16) +y + z, x-y-z, y.pow(8) - z.pow(8))

65 // construct Ideal from a set of generators

66 // (Groebner basis with GREVLEX order will be computed)

67 val ideal = Ideal(Seq(i1, i2, i3), GREVLEX)

68 // print Groebner basis

69 println( ideal.groebnerBasis )

70 // print dimension of ideal

71 println( ideal.dimension )

72 // print degree of ideal

73 println( ideal.degree )

74 // print Hilbert series of ideal

75 println( ideal.hilbertSeries )

76 // reduce poly modulo ideal

77 val p4 = p2 %% ideal

Rings also provides built-in algorithms for manipulating ideals:

78 val othIdeal = Ideal(Seq(p1, p2), GREVLEX)
79 // union of ideals
80 val union = ideal + othIdeal
81 // product of ideals
82 val prod = ideal * othIdeal
83 // intersection of ideals
84 val in = ideal intersection othIdeal
85 // quotient of ideals
86 val quot = othIdeal :/ ideal
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4.1 Implementation and Benchmarks

Rings implements Faugere’s F4 and Buchberger’s algorithms for computing
Gröbner bases. These implementations show sufficient performance on small and
medium problems. Table 1 shows time needed to compute a Gröbner bases of
classical Katsura and cyclic systems for Rings , Mathematica and Singular.
Timings are in general comparable between Rings and Singular for polynomial
ideals over Zp while for Q Rings behaves worse. It should be noted that for very
hard problems, much more efficient dedicated tools like FGB [11] (proprietary)
or OpenF4 [12] (open source) exist.

Table 1. Time required to compute Gröbner basis in graded reverse lexicographic
order. In case of Zp coefficient ring, value of p = 1000003 was used.

Problem Ring Rings Mathematica Singular

c-7 Zp 3 s 26 s N/A

c-8 Zp 51 s 897 s 39 s

c-9 Zp 14603 s ∞ 8523 s

k-7 Zp 0.5 s 2.4 s 0.1 s

k-8 Zp 2 s 24 s 1 s

k-9 Zp 2 s 22 s 1 s

k-10 Zp 9 s 216 s 9 s

k-11 Zp 54 s 2295 s 65 s

k-12 Zp 363 s 28234 s 677 s

k-7 Q 5 s 4 s 1.2 s

k-8 Q 39 s 27 s 10 s

k-9 Q 40 s 29 s 10 s

k-10 Q 1045 s 251 s 124 s

5 Conclusion and Future Work

Rings is a high-performance and lightweight library for commutative algebra
that provides both basic methods for manipulating with polynomials and high-
level methods including polynomial GCD, factorization, and Gröbner bases over
sophisticated ground rings. Special attention in the library is paid to high perfor-
mance and a well-designed API. High performance is crucial for today’s computa-
tional problems that arise in many research areas including high-energy physics,
commutative algebra, cryptography, etc. Rings’ performance is comparable to
many advanced open-source and commercial software packages. The API pro-
vided by the library allows to write short and expressive code on top of the
library, using both object-oriented and functional programming paradigms in a
completely type-safe manner.
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Some of the planned future work for Rings includes improvement of Gröbner
bases algorithms (better implementation of “change of ordering algorithm” and
some special improvements for polynomials over Q), optimization of univari-
ate polynomials with more advanced methods for fast multiplication, specific
optimized implementation of GF(2, k) fields which are frequently arise in cryp-
tography, and better built-in support for polynomials over arbitrary-precision
real numbers (R[X]) and over 64-bit machine floating-point numbers (R64[X]).

Rings is an open-source library licensed under Apache 2.0. The source code
and comprehensive online manual can be found at http://ringsalgebra.io.

Acknowledgements. The author would like to thank the organizers of CASC 2019.
The work was supported by the Russian Science Foundation grant #18–72–00070.
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Abstract. Exact geometric computation (EGC) is a general approach
for achieving robust numerical algorithms that satisfy geometric con-
straints. At the heart of EGC are various Zero Problems, some of which
are not-known to be decidable and others have high computational com-
plexity. Our current goal is to introduce notions of “soft-ε correctness”
in order to avoid Zero Problems. We give a bird’s eye view of our recent
work with collaborators in two principle areas: computing zero sets and
robot path planning. They share a common Subdivision Framework.
Such algorithms (a) have adaptive complexity, (b) are practical, and
(c) are effective. Here, “effective algorithm” means it is easily and cor-
rectly implementable from standardized algorithmic components. Our
goals are to outline these components and to suggest new components to
be developed. We discuss a systematic pathway to go from the abstract
algorithmic description to an effective algorithm in the subdivision frame-
work.

1 Introduction

We are interested in computations involving the continuum and the reals. Most
algorithms in scientific computation and engineering are of this nature (e.g.,
[40]). In practice, they fall under the domain of numerical computing [27,48].
Numerical algorithms are expected to make errors and the question of their
correctness takes on a much more subtle meaning than the typical discrete or
algebraic algorithms. One way to avoid these errors is to reformulate these prob-
lems algebraically with exact algorithms. This is often possible but not always
desirable or practical [56]. So we aim at solutions that are fundamentally numer-
ical.

The most widely used procedure for constructing numerical algorithms is
to first construct an algorithm, say A, based on a real RAM computational
model ([50, Section 9.7] or [39]) and then implement A as an algorithm ˜A of the
Standard Model of Numerical Analysis ([21, Section 2.2] or [47]). All operations
in A are exact, but in ˜A, each numerical operation x ◦ y is replaced by an
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approximation x ◦̃ y whose relative error is at most u > 0 (the unit round-
off error). In principle, such an ˜A (unlike A) can be implemented on a Turing
machine. For simplicity, we assume no overflow in the Standard Model. In the
simplest case, ˜A is just a copy of A except for the ◦ �→ ◦̃ transformation. In
the analysis of algorithms, our first task is to prove the correctness of a given
algorithm. In the present setting, we are faced with a pair (A, ˜A) of algorithms.
The modus operandi is to (i) show correctness of A and (ii) do error analysis of
˜A. There are issues with this procedure. It is the correctness of ˜A that we need.
Correctness of A is a necessary, but not sufficient condition. The translation
A �→ ˜A hits a snag if there is branch-at-zero step in A: we must decide if
a pivot value is exactly zero. This situation arises, for instance, in Gaussian
elimination with partial pivoting (GEPP). In this paper, the problem of deciding
if a numerical value x is equal to zero will be called “the Zero Problem”. In
reality, there are various Zero Problems – see [45] for a formal definition of these
problems. When x is algebraic, the Zero Problem is decidable, but otherwise,
it is generally not-known to be decidable. Partial solutions include replacing
the standard model by arbitrary precision arithmetic (“BigNums”), or using the
modified statement: “ ˜A is correct if u is small enough.” What is the status of
˜A if u is not small enough? There is also no guarantee that such a u exists.
Basically, there are still Zero Problems lurking beneath such reformulations.

In this paper, we wish to avoid the Zero Problems by modifying the notion
of correctness of the given computational problem P : instead of seeking algo-
rithms that are (unconditionally) correct, we seek algorithms that are ε-correct
where ε > 0 is an extra input, called the resolution parameter. Let Pε denote
this modified problem. As ε → 0, then Pε converges to the original problem.
Unlike the “correct when u is small enough” criteria, we want our ε-correctness
criterion to be met for each ε > 0. What we seek is an algorithm for Pε that is
uniform in ε. In discrete optimization algorithms, this is called an “approxima-
tion scheme” [43]. The polynomial-time versions of such schemes are called PTAS
(“polynomial-time approximation schemes”). It is known that unless P = NP ,
the “hardest” problems in the complexity class APX do not have PTAS’s.
Although our continuum problems do not fall under such discrete complexity
classes, our Zero Problems represent fundamental intractability analogous to the
P = NP barrier. The difference is that discrete intractability leads to exhaustive
or exponential search, but continuum intractability leads to a halting problem.

Besides the viewpoint of combinatorial optimization, we briefly note other
ways of using ε in the literature. In numerical computation, ε is commonly inter-
preted as an a priori guaranteed upper bound on the forward and/or backwards
error of the algorithm’s output. Depending on whether the error is taken in
the absolute or relative sense of error, this gives at least 6 distinct notions of
“ε-correct”. As in the above Standard Model (with unit roundoff error u) such
interpretations do not automatically escape the Zero Problem. Such interpre-
tations of ε may be extended to geometry. For example, instead of bound on
numerical errors, we interpret ε as bound on deviations from ideal geometric
objects such as points, curves or surfaces. Suppose the output of the algorithm
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is a finite set S = {p1, . . . , pn} of points (e.g., S are the extreme points of
a convex hull), one might define S to be ε-correct if each pi ∈ Bε(p∗

i ) where
S∗ = {p∗

1, . . . , p
∗
n} is the exact solution. Here, Bε(p) denotes the ball centered at

p of radius ε. Unfortunately, such a view still encodes a (deferred) Zero Problem
because the condition pi ∈ Bε(p∗

i ) is a “hard predicate”. Intuitively, the ball
Bε(pi) has a hard boundary (this is a “hard-ε”). Our goal is to soften such
boundaries, using suitable soft-ε criteria. This will be illustrated through some
non-trivial problems.

In this paper, we give a bird’s eye view of a collection of papers over the
last decade with our collaborators, from computing zero sets to path planning
in robotics. We will attempt to put them all under a single subdivision rubric.
We are less interested in the specific results or algorithms than in the conceptual
framework they suggest.

1.1 From Zero Problems to Predicates

The “soft exact computation” in our title is an apparent oxymoron since soft-
ness suggests numerical approximation in opposition to exact computation. The
notion of “exactness” here comes from computational geometry [8] where it is
assumed that algorithms must compute geometric objects with the exact com-
binatorial or topological structure. The most successful way to achieve such
algorithms is called “Exact Geometric Computation” (EGC) [45]. In EGC, we
explicitly reduce our computation to various Zero Problems. An example of
a Zero Problem is to decide if a determinant D(x) is zero where x are the
entries of a n × n matrix. This may arise as the so-called orientation predi-
cate in which x represent n vectors of the form ai − a0 (i = 1, . . . , n) with
aj ∈ R

n (j = 0, . . . , n). For real geometry, we usually need a bit (sic) more
than just deciding zero or not-zero: we need sign(D(x)) ∈ {−1, 0,+1}. If this
sign computation is error-free, then the combinatorial structure is guaranteed
to be exact. Practitioners avoid the Zero Problem by defining an approximate
sign function, s̃ign(D(a)) ∈ {−1,˜0, 1} where the “approximate zero sign” ˜0
is determined by the condition |D(a)| < ε. This is called “ε-tweaking” (using
different multiples of ε’s in different parts of the code) to reduce the possibil-
ity of failure. This tweaking is rarely justified (presumably it introduces some
ε-correctness criteria, but what is it?).

What is the correct way to use this ε? We need a different perspective on
Zero Problems: each Zero Problem arises from the evaluation of a predicate.
We distinguish two kinds of predicates: logical predicates are 2-valued (true
or false) but geometric predicates are typically 3-valued (−1, 0,+1). Thus
we view sign(D(x)) above as a geometric predicate. Calling the sign function a
“predicate” imbues it with geometric meaning: thus when we call sign(D(x)) an
orientation predicate, we know that we are dealing with a geometrically mean-
ingful property of the n vectors arising from n + 1 points. These 3 sign values
are not fully interchangeable: we call 0 the indefinite value and the other two
values are definite values.

To continue this discussion, let us fix a geometric predicate C on R
m,

C : R
m → {−1, 0,+1} . (1)
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We assume C has1 the Bolzano property in the sense that if S is a connected
set and there exists a, b ∈ S such that C(a) = −1 and C(b) = +1 then there
exists c ∈ S such that C(c) = 0. For example, if C(a) := sign(D(a)) where
D(x) is the above determinant (with m = n2), then C has the Bolzano property.
More generally, if D(x) is any continuous function, its sign predicate is Bolzano.

Next we take a critical step by extending the predicate C on points a ∈ R
m

to sets of points S ⊆ R
m. The significance is that we have moved from algebra

to analysis: we could treat D(a) algebraically since it amounts to polynomial
evaluation, but the analytic properties come to the forefront when we consider
the set D(S). And soft-ε concepts are fundamentally analytic.

We define the set extension of C as follows: for S ⊆ R
m, define C(S) = 0

if there exists a ∈ S such that C(a) = 0; otherwise, C(S) may be defined
to be C(a) for any a ∈ S. The Bolzano property implies that C(a) is well-
defined. Thus the set extension of C is the predicate C : 2R

m → {−1, 0, 1} where
2X denotes the power set of any set X. If we are serious about computation,
we know that S must be suitably restricted to “nice” subsets of R

m. Follow-
ing the lead of interval analysis [33], we interpret “nice” to mean axes-aligned
full-dimensional boxes in R

m. Let R
m be the collection of such boxes. When

the domain of the set extension of C is restricted to such boxes, we have this
box predicate

C : R
m → {−1, 0,+1} (2)

where the symbol ‘C’ from the point predicate in (1) is reused. This reuse is
justified if we regard R

m as a subset of R
m. In other words, each element of

R
m is either a full-dimensional box or a point.
Our next goal is to approximate the box predicate C. Consider another box

predicate
˜C : R

m →
{

−1,˜0,+1
}

. (3)

Call ˜C a soft version of (2) if it is conservative and convergent: conservative
means ˜C(B) �= ˜0 implies ˜C(B) = C(B); convergent means if {Bi : i ≥ 0} is an
infinite monotone2 sequence of boxes that converges to a point a, then ˜C(Bi)
converges to C(a), i.e., ˜C(Bi) = C(a) for i large enough. We say {Bi : i ≥ 0} is
firmly convergent if there is some σ > 0 such that Bi+1 ⊆ Bi/σ for all i ≥ 0.
We say ˜C is firm relative to C if C(B) �= 0 implies ˜C(B/2) �= ˜0. The “2” in
this definition may be replaced by any firmness factor σ > 1, if desired. As
σ → 1, the computational cost of C would increases. For resolution-exact path
planning, we only need3 half of the properties of firmness, namely, C(B) = 1
implies ˜C(B/σ) = 1 [49]. But even path planning may exploit the other half of

1 After Bernard Bolzano (1817). Bolzano’s Theorem states that if a < b and
sign(f(a)f(b)) < 0 then there is some c ∈ (a, b) such that f(c) = 0. See also
[3,42] for this principle in real root isolation.

2 Monotone means Bi+1 ⊆ Bi for all i.
3 The factor σ > 1 was call the “effectivity factor” in [49]. In the present paper, we

avoid this terminology since it conflicts with our notion of “effectivity” of this paper.
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firmness (i.e., C(B) = 0 implies ˜C(B/σ) = 0) because it could lead to faster
determination of NO-PATH.

From any geometric predicate C, we derive three logical predicates C+, C−,
C0 in a natural way: C+(a) := [[C(a) > 0]]. The notation “[[S]]” denotes the
truth value of any sentence S: for instance [[1 > 2]] is equal to false but
[[1+2 = 3]] is equal to true. We call “[[S]]” a test. In general, S = S(x) depends
on variables x, and our test [[S(x)]] represents a logical function. Similarly,
C−(a) := [[C(a) < 0]] and C0(a) := [[C(a) �= 0]]. This last predicate is called
the exclusion predicate and is very important for us: it is used in all of our
algorithms. Again we extend these predicates naturally to sets or boxes as above.
In particular, we have C0(B) = [[0 /∈ C(B)]].

2 Two Illustrative Classes of Problems

We introduce two classes of geometric problems to serve as running examples:

(A) Computing a Zero Set Zero(f).
Here, f = (f1, . . . , fm), fi : R

n → R, and Zero(f) := {a ∈ R
n : fi(a) = 0,

i = 1, . . . ,m}. We can also define this problem for complex zeros, i.e.,
Zero(f) ⊆ C

n. In the case fi are integer polynomials, Zero(f) is an alge-
braic variety where an exact algebraic solution is often interpreted to mean
computing some nice representative (e.g., a Gröbner basis) of the ideal gen-
erated by f . But we are literally interested in the continuum: we seek some
“explicit” representation of Zero(f) as a subset of R

n. Invariably, “explicit”
has to be numerical, not symbolic. For example, an explicit solution to
Zero(f1) where f1(x) = x2 − 2 may be 1.4 but not the expression “

√
2”.

For our discussion, let us interpret an explicit representation to mean a
simplicial complex K [9, Chap. 7] of the same dimension as Zero(f), and
whose support K ⊆ R

n is ε-isotopic to Zero(f). This definition implies that
their Hausdorff distance satisfies dH(K, Zero(f)) < ε, but more is needed:
an ε-isotopy maps points in Zero(f) to points in K within a distance ε.
It is important that K has the same dimension as Zero(f): for instance, if
Zero(f) is a curve in R

3, we really want the output K to represent a polyg-
onal curve K. In contrast, a common output criteria asks for an ε-tubular
path containing Zero(f). Unfortunately, this allows the curve to have unex-
pected behavior within the tube (e.g., doubling back arbitrarily far on itself
within the tube). Most of the current research are aimed at cases where
Zero(f) is zero-dimensional (finite set) or co-dimension one (hypersurface).
We mostly focus on the zero-dimensional case in this survey.

(B) Robot path planning.
Suppose a robot R0 is fixed. Then the problem is: given a polyhedral obstacle
set Ω ⊆ R

k (k = 2, 3) and start α and goal β configurations, find an
Ω-avoiding path π of R0 from α to β; or declare NO-PATH if such π’s
do not exist. Let Cspace = Cspace(R0) denote the configuration space,
and Cfree = Cfree(R0, Ω) denote the Ω-free configurations in Cspace. For
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instance, if R0 is a rigid spatial robot, then configurations are elements
of SE(3) = R

3 × SO(3) where SO(3) are the orthogonal 3 × 3 matrices
representing rotations. One challenge in this area is to produce implemented
algorithms that are rigorous yet competitive with the practical approaches
based on sampling.

Both these problems have large literatures. Problem (A) is a highly classi-
cal problem in mathematics with applications in geometric, numeric and sym-
bolic computation. Problem (B) is central to robotics. In both cases, there are
many available algorithms, and thus there are high standards for any proposed
new algorithm, both theoretically and practically. In particular, they need to be
implemented and compared to existing ones: subdivision algorithms appear to
be able to meet both criteria. In robotics, to be “practical” includes an informal
requirement of being “real time” for standard size input instances. In contrast,
exact algorithms (especially for Problem (B)) are rarely implemented.

There are Zero Problems in both (A) and (B) as formulated above. For (A),
even for the case n = m = 1 (univariate roots) where the input f = (f1) is
polynomial, we face Zero Problems. These Zero Problems are not an issue when
f1 has rational coefficients; but we are interested in coefficients that are algebraic
numbers or number oracles [4,28]. For real roots, there are many complete real
RAM algorithms based on Sturm sequences, on Descartes rule of sign or on
Newton-bisection. In each case, the algorithms call for testing if f1(a) = 0 for
various points a ∈ R (we may assume a is a dyadic number, but this does
not make the test any easier when the coefficients of f1 are irrational). The very
formulation of root isolation requires the output interval to have exactly one root,
possibly a multiple root. Distinguishing between two simple roots that are close
together from a single double root is again a Zero Problem. There are difficult
Zero Problems in higher dimensional problems (even for hypersurfaces) that
remain open: most current correctness criteria is conditioned on non-singularity
of Zero(f). For Problem (B), there is also a Zero Problem corresponding to the
sharp transition from path to NO-PATH. We now introduce soft-ε criteria to
circumvent these Zero Problems:

(a) For root isolation [52], we introduce the ε-clustering problem: given a
region-of-interest B0 ∈ R

n and ε > 0, output a set Δ1, . . . ,Δk ⊆ 2B0 of
disjoint balls with radii < ε, and output multiplicities μ1, . . . , μk satisfying

μi := #f (Δi) = #f (3Δi) ≥ 1

where #f (S) is the total multiplicities of the roots in S. The union of these
balls must cover all the roots of f in B0 but they may not include any root
outside of 2B0. Each Δi represents a cluster of roots and the requirement
#f (Δi) = #f (3Δi) (which is our definition of “natural” clusters) can be
viewed as a robustness property.

(b) For path planning [49], we say that the planner is resolution-exact if it
satisfies two conditions:
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(Path) If there is a path of clearance Kε, the algorithm must return some
path π;
(Nopath) If there is no path of clearance ε/K. the algorithm must output
NO-PATH.
Here K > 1 (called the accuracy constant) depends only on the algo-
rithm and is independent of the input instance. The key is that (Path)
and (Nopath) are not exhaustive because they do not cover input instances
where the largest clearance of paths is strictly between ε/K and Kε. The
planner may output either a path or NO-PATH in such instances. Since
we require halting algorithms, the planner would produce an indetermi-
nate answer in these cases. As we will see, indeterminacy (as opposed to
determinacy) is a characteristic feature of soft-ε algorithms.

Based on criteria (a), we achieved the most general setting for root clustering
algorithms – when the polynomials have number oracles as coefficients. Based
on criteria (b), we developed and implemented path planners for various planar
robots, culminating in our planners for rods and rings in 3D [22]. This is the first
practical, non-heuristic algorithm for spatial robots with 5 degrees-of-freedom
(DOFs). We remark that although we assumed that the robot R0 is fixed, all our
subdivision path planners can uniformly treat robots from a parametric family
R0(p0, . . . , pk). For instance, if R0 is a 2-link robot, we may define R0(p0, p1, p2)
as the 2-link robot whose first two links have lengths p1 and p2, and these links
have thickness p0 (see [54]). Links are line segments, and they are thickened by
forming a Minkowski sum with a ball of radius p0. The thickness parameter is
extremely useful in practice. Treating parametric families of robots is a feat that
few exact algorithms are able to do; the only exception we know of is when R0

is a ball, and here, the exact path planners based on Voronoi diagram can allow
the radius of the ball as a parameter [34].

In general, besides the extra ε input, our subdivision algorithms also accept
an input box B0 called the region-of-interest (ROI), meaning that we wish to
restrict the solutions to B0. Specifying B0 is not generally a burden, and is
often a useful feature. In the case of root clustering, this meaning is clear – we
must account for all the roots in B0. There are Zero Problems associated with
the boundary of B0. To avoid this issue in root clustering, we allow the output
clusters to include roots outside of B0, but still within an expanded box 2B0 (or
(1 + ε)B0 if so desired).

3 Effectivity of the Subdivision Framework

We have noted that the usual pathway to a numerical algorithm ˜A is through
an intermediate real RAM algorithm A. This ˜A amounts to specifying a suitable
precision for each arithmetic operation in A. The difficulty of this pathway is
illustrated by the benchmark problem in root isolation: this is the problem
of isolating all the roots of a univariate polynomial p(x) with integer coefficients
[5]. It has been known for about 30 years that there is an explicit real RAM
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algorithm A with transformation A �→ ˜A such that ˜A is a near-optimal algorithm
for the benchmark problem. The algorithm A is from Schönhage-Pan (1981-92)
[20]. Here “near-optimal” means4 a bit complexity of ˜O(n2L) where p(x) has
degree n and L-bit coefficients. Although the construction of such an ˜A from
a real RAM A remains open, there are now several implementations of near-
optimal algorithms based on subdivision, all shortly after the appearance of the
subdivision algorithms [23]. See [51] for an account of this development (there are
two parallel accounts, for complex roots and for real roots). We may ask why?
Intuitively, it is because subdivision computation is reduced to operations on
individual boxes (i.e., locally) and we can adjust the precision to increase as the
box size decreases. In contrast, controlling the precision of arithmetic operations
in a real RAM algorithm for some target resolution in the output appears to be
hopelessly complicated at present.

There is no formal “subdivision model of computation”. We intend our algo-
rithms to be ultimately Turing-computable. So we only speak of the “subdivision
approach or paradigm”. Nevertheless, it is useful to introduce a Subdivision
Framework which can be instantiated to produce many different algorithms.

In the simplest terms, we may describe it as follows: first assume that we
are computing in R

m, where R
m is the set of full-dimensional axes-aligned

boxes. Let S be a subset of R
m. Its support is the set S :=

⋃

B∈S B. We call
S a subdivision (of its support S) if the interiors of any two boxes in S are
disjoint. The subdivision process is typically controlled by two box predicates
C0, C1 : R

m → {true, false}. Here C0 is the standard exclusion predicate,
and C1 the inclusion predicate (which varies with the application).

Our central problem is this: given a box B0, to recursively split B0 into
subboxes until each subbox B satisfies C0(B) ∨ C1(B). The recursive splitting
forms a tree T (B0) of boxes with B0 at the root, with each internal node B
failing C0(B) ∨ C1(B). We assume some scheme for splitting a box B into a
subset B1, . . . , Bk where {B1, . . . , Bk} is a subdivision of B. A simple scheme is
to let k = 2m and the Bi’s are congruent to each other. There are also various
binary schemes where k = 2. In the binary schemes, it is necessary to ensure
that the aspect ratios of the subboxes remain bounded. Assuming that k is a
constant in the splits, each internal node in T (B0) has degree k. If T (B0) is finite,
then the leaves of T (B0) form a subdivision of B0. We are mainly interested in
the subdivision S(B0), comprising those leaves that fail C0(B) (thus satisfying
C1(B)).

Let Q0, Q1 be queues of boxes, with the usual queue operations (push and
pop) for adding and removing boxes. Consider the following subroutine to com-
pute S(Q1). We may, for instance, initialize Q1 to {B0}.

4 The ˜O-notation is like the O-notation except that logarithm factors in n and in
L are ignored. In the subdivision setting, “near-optimality” may be taken to be
˜O(n2(n + L)).
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Subdivide Routine
INPUT: Q1

OUTPUT: Q2

Q2 ← ∅
While Q1 is non-empty

B ← Q1.pop()
If C0(B) fails

If C1(B) holds,
Q2.push(B) //i.e., output B

Else
Q1.push(split(B))

The main correctness question about the Subdivide routine is termination:
does Q1 eventually become empty? This is equivalent to every box B eventually
satisfying C0(B) ∨ C1(B) (if a box is split, this consideration is transferred to
its children). For instance, in real root isolation, B0 is an interval and we have
termination iff there are no multiple roots in B0. For path planning, we modify
C0(B) to C0(B) ∨ Cε(B) where Cε(B) holds if the width of B is less than ε.
Therefore, to ensure termination, we must either restrict the input (e.g., there
are no multiple roots), or introduce suitable ε-correctness concepts (such as
resolution-exactness in path planning in Sect. 2(b)).

We view Subdivide Routine as the centerpiece of our algorithm. Its out-
put is the queue Q2 containing the subdivision S(B0). For instance, the EVAL
and CEVAL algorithms in [41] are basically this subroutine. But in general, we
expect to do some post processing of Q2 to obtain the final result. For example,
we may have to construct the simplicial complex K representing the zero set
Zero(f) [30,31,38]. Likewise, we may need to do some initialization to prepare
for subdivision. For example, in path planning, we need to first ensure that the
start α and goal β configurations are free [49]. This suggests that we need an
initialization phase before the Subdivide Routine, and we need a construction
phase after. Following [30], we may assume that input and output for each phase
are appropriate queues. We are ready to present a simple form of this framework:

Simple Subdivision Framework
INPUT: B0, ε, . . .
OUTPUT: Q3

I. Initialization Phase
Q1 ← Preprocessing(B0)

II. Subdivision Phase
Q2 ← Subdivide(Q1)

III. Construction Phase
Q3 ← Construct(Q2)
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We can derive algorithms for the illustrative problems (A) and (B) using
this framework. This amounts to instantiating the routines in the three phases.
A key idea in our design of these routines is to make the subdivision phase do
most of the work, i.e., its complexity ought to dominate that of the other two
phases. This is not true for all subdivision algorithms: an example is Snyder’s
approach to isotopic curves and surfaces [46] (see [9, Chap. 5.2.3]). The plausi-
bility of our key idea comes from the fact that when subdivision is fine enough,
everything would be “as simple as possible”, modulo singularities. Singularities,
even isolated ones, can be arbitrarily complex. For example, the neighborhood
of a degenerate Voronoi vertex can have arbitrarily high degree. We may simply
exclude singularities by fiat (as in isotopic curves [30,38] or in arrangement of
curves [29]). But our ultimate goal is not to avoid singularities but to introduce
soft-ε notions (as in root isolation [4] or in Voronoi diagrams [6]). We design
the C0(B) and C1(B) to capture the non-degenerate situations outside of such
singularities. We say that output Q2 of Subdivide(Q1) is “fine enough” if the
cost of constructing the final output is O(1) per box in Q2. In the problems of iso-
topic curves and surfaces [30,31,38], the output is a planar embedded graph (for
curves) or a triangulation (for surfaces). When the subdivision is “fine enough”,
we only need to construct simple, almost-trivial, graphs or triangulations G(B)
in O(1) time for each B ∈ S(B0). The output is the union of these G(B)’s. Thus,
the global complexity of these algorithms is indeed dominated by the subdivision
process. This key idea ensures that the resulting algorithm is easy implementable
or practical. A caveat is that the complexity may become a bottle neck in higher
dimensions. Nevertheless, it ensures that we could solve such problems, at least
in small regions-of-interest.

How good is the proposed framework? For real root isolation of integer poly-
nomials, the size of the subdivision tree T (B0) is near-optimal [12,44]; the anal-
ysis can be greatly generalized [14], including accounting for bit complexity.
The complexity of the PV algorithm in higher dimensions has also been ana-
lyzed [15,16]. For top performance in univariate complex root isolation [4,5] it
is necessary to introduce Newton iteration and to maintain more complicated
data structures (“components”) in order to achieve near-optimal bounds. See
[51, §1.1] for a subdivision framework that incorporates Newton iteration. New-
ton iteration will produce non-aligned boxes, i.e., boxes that do not come from
repeated splits of B0. This is not an issue for root isolation but in geometric prob-
lems such as arrangement of curves [29] and Voronoi diagrams [6], non-aligned
boxes (called root boxes) arise where it was necessary to provide “plumbing” so
that the non-aligned boxes “conforms” with the rest of the aligned boxes.

We generally need to maintain adjacency relations among boxes in S(B0),
especially for the construction phase. Two boxes B,B′ are adjacent if B∩B′ has
codimension 1. There is a general technique to efficiently maintain such informa-
tion, namely to ensure that the subdivision S(B0) is smooth [7]. Smoothness
means that if B,B′ ∈ S(B0) are two adjacent boxes, then their depths in the tree
T (B0) differ by at most 1. This can be done systematically by (1) maintaining
“principal neighbor” pointers for each box and (2) perform smoothSplit(B)
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instead of split(B) in Subdivide(Q1). In smoothSplit(B), we split B and
recursively split any adjacent boxes necessary to maintain smoothness. Although
a single smoothSplit(B) can be linear in the size of Q1, we show in [7] that
this operation has amortized O(1) complexity, and hence does not change the
overall complexity.

So far, we have assumed subdivision in R
n. What about subdivision in non-

Euclidean spaces? Burr [14] has provided an account of subdivision in abstract
measure space, aimed at amortized complexity analysis. We take a different
approach, with an eye towards implementation rather than analysis: in path
planning, we need to perform subdivision in configuration spaces Cspace. Such
spaces are typically non-Euclidean: Cspace = R

2 × T where T is the torus [54],
Cspace = R

3 × S2 [22], and Cspace = SE(3) = R
3 × SO(3) [53]. Using the

analogy of charts and atlases in manifold theory, we define charts and atlases
for subdivision. Furthermore, we generalize boxes to general shapes called “test
cells” that include simplices or convex polytopes which have bounded aspect
ratios. Resolution-exact planners (Sect. 2(b)) can be achieved in such settings
and with an accuracy constant given by K = C0D0L0(1+σ) where C0,D0, L0, σ
are constants associated with (respectively) the atlas, subdivision scheme, a Lip-
shitz constant and effectivity factor [53]. It is also clear that we could extend
subdivision atlases to projective spaces (RP

n and CP
n).

In our abstract, we said that algorithms in the subdivision framework are
“effective” in the sense of easily and correctly implementable from standard algo-
rithmic components. The preceding outline exposes some of these algorithmic
components: queues, subdivision structures, boxes with adjacency links, union
find data structure, etc. But the critical issue of numerical approximation is
deferred to the next section.

4 Numerical Precision in Subdivision Framework

The main problem of subdivision is when to stop, and this is controlled by
predicates. In our Subdivide Subroutine, we used two logical box predicates
C0(B) and C1(B). Both are typically reduced to some form of sign computation:
in the PV algorithm [38], C0(B) is defined as [[0 /∈ f(B)]] for some continuous
function f : R

n → R. As for C1(B), we follow a nice device of [15] for describing
this predicate: first define

∇(2)f : R
n × R

n → R

where ∇(2)f(x,y) = 〈∇f(x),∇f(y)〉 and 〈·, ·〉 denotes the dot product. For
instance, for n = 2, ∇(2)f(x,y) = ∂1f(x) · ∂1f(y) + ∂2f(x) · ∂2f(y) where ∂i

denotes partial derivative with respect to xi. Then C1(B) is [[0 /∈ ∇(2)f(B,B)]].
Both C0(B) and C1(B) are mathematically exact formulations, but far from
effective.

We now sketch a 3 stage development to systematically derive an imple-
mentable form, following [51]. The outline may be illustrated by using the C0(B)
predicate: we first define an interval version of C0(B) denoted C0(B). Then we
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modify the interval version to an “effective” version denoted ˜C0(B). These
version are connected through a chain of logical implications:

˜C0(B) ⇒ C0(B) ⇒ C0(B).

Each of these predicates are, in turn, based on underlying functions on boxes:
C0(B) is [[0 /∈ f(B)]] and ˜C0(B) is [[0 /∈ ˜f(B)]]. We must now define the

functions f and ˜f for any f .
Our numerical algorithms are intended to be certified in the sense of interval

arithmetic [25,33]. But we wish to carry our subdivision algorithms in a slightly
more general setting, say in normed vector spaces X,Y . Here, we can do differ-
entiation (as in ∇(2)f) and do dilation of boxes or balls (as in B �→ 2B). Suppose
we have a function f : X → Y . Define the natural set extension of f to be

f : 2X → 2Y (4)

where f(S) := {f(x) : x ∈ S} for S ∈ 2X . We are5 “overloading” the symbol f
in (4). But if we identify the elements of X with the singletons in 2X , we see
that this extension is natural, and justifies reuse of the symbol f . Again, 2X

is too big and we restrict f to the nice subsets of X. Let X and Y be the
collection of nice subsets of X and Y . Note that even if B ⊆ X is a nice set,
f(B) need not be nice (except when Y = R). In other words, the function (4)
does not naturally induce a function of the form

F : X → Y. (5)

Thus we are obliged to explicitly define the function F in (5). What is the relation
between f and F? We call F a box form of f provided it is conservative
relative to f (i.e., f(B) ⊆ F (B)) and convergent to f (i.e., if {Bi : i ≥ 0}
converges to a point p ∈ X, then limi→0 F (Bi) = f(p)). We may write “F → f”
if F is convergent to a point function f . This parallels our definition of soft
predicates. We write “ f” for a generic box form of f . If it is necessary to
distinguish different box forms, we use subscripts such as 2f . The function
(5) is called a box function when it is the box form of some f . The interval
literature defines many box forms for f : R

n → R. For example, the mean value
form of f given by

M
f(B) := f(m(B)) + ∇f(B)T · (B − m(B)) (6)

where m(B) is the midpoint of B and ∇f = (f1, . . . , fn)T is the gradient of
f , with fi = ∂if . Our definition of mean value form invokes another box form
∇f(B) = ( f1, . . . , fn)T . Since this second box form is generic,

M
is still not

fully unspecified.
Suppose F is a box form of f . By regarding X as a subset of X, we can

view f as the restriction of F to X, i.e., f = F |X . Let Fi : X → Y (i = 1, 2)

5 Some authors introduce a new symbol, say F , to signal this change.
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be two functions (not necessarily box forms). Write F1 ⊆ F2 if for all B ∈ X,
F1(B) ⊆ F2(B). Then we have

Let F1 ⊆ F2. If F2 is a box form, then F1 is a box form.

Of course, we also have F1|X = F2|X . What we need in our application, however,
is the “converse”: if F1 ⊆ F2 and F1 is a box form, then F2 is a box form.
To motivate this application, consider the mean value form

M
: its definition (6)

calls for an exact evaluation f(m(B)), which we must approximate. In general,
for any interval form f , we need to approximate it by some function of the type
˜f : R

m → R. But how are ˜f and f related? We will say ˜f an effective
form of f provided these properties hold:

(i) (Inclusion) f ⊆ ˜f and
(ii) (Precision) q( f(B),˜f(B)) ≤ w(B) where w(B) is the width of B and

q(I, J) is the Hausdorff metric on closed intervals.
(iii) (Exactness) f is dyadically exact.

We will discuss the third property (iii) below. But first, we note that properties
(i) and (ii) ensure our desired converse:

Lemma 1. If ˜f satisfies (i) and (ii), then ˜f is a box form of f .

To compute ˜f(B), this lemma says that, provided our numerical approximation
is rounded correctly to satisfy Property (i), then we only have to ensure that the
error is bounded by the width of B as in Property (ii). Although the boxes B
are distributed over space and time, the global correctness is guaranteed by the
nature of our predicates.

We now turn to Property (iii). This requirement is connected to general
ideas about efficiency and effectivity of numerical computation. For this, we
assume that X = R

n and Y = R. In practice, real numbers are most efficiently
approximated by dyadic numbers, Z[12 ] or BigFloats (see [55]). Our definition of
˜f serves the fiction that it could accept every box in R

n. This is useful fiction
because it cleanly fits into mathematical analysis. But in implementations, these
box functions only need to accept dyadic boxes, i.e., boxes whose corners have
dyadic coordinates. We say a box function F : R

n → R is dyadically exact
if its restriction to dyadic boxes outputs dyadic intervals. This explains our
Property (iii). Evidently, it is not hard satisfy all 3 properties of effectivity.

Literate6 Algorithmic Development. In [51], we developed a subdivision
algorithm for isolating the simple real roots of a real system

f = (f1, . . . , fn) : R
n → R

n.

As a subdivision algorithm, it has several predicates: the centerpiece is the
Miranda Test MK(B) for existence of real roots in B. We have our ubiquitous
exclusion test, but defined as C0(B) := [[(∃i = 1, . . . , n)(0 /∈ fi(B))]]. We also

6 In the spirit of Knuth’s “Literate Programming”.
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need a Jacobian Test JC(B) to confirm at most one root. Each predicate C is
first defined mathematically, then as box predicates C, and finally as effective
predicates ˜C. Thus, there are three levels of description:

(A) Abstract C, f
(I) Interval C, f
(E) Effective ˜C, ˜f

As expressed by Burr et al. [15, §2.3], the goal is to delay the introduction of C
(and hence ˜C). The motivation comes from the fact that the theory is cleanest
at Level (A), and less so at later levels.

In effect, we have three algorithms:

A, A, ˜A (7)

each being an instantiation of a common algorithmic scheme by predicates and
functions of the appropriate level. This is analogous to standard construction of
numerical algorithms from A �→ ˜A (see the Introduction); the difference is that
our starting point A is in the Subdivision Framework. We then prove the algo-
rithms correct at each level. At each level, we bring in new details but are able
to rely on the properties already proved in the previous level. For instance, an
important phenomenon when we transition from A to A is the appearance of
Lipshitz constants inherent in interval methods. This approach (“AIE method-
ology”) displays a continuity of ideas and exposes the issues unique to each level.
The clarity and confidence in the correctness of ˜A are surely much better than
if we had attempted7 an ab initio correctness proof of ˜A. Quoting Knuth:

“Beware of bugs in the above code; I have only proved it correct, not tried
it.”

5 On Oracle Objects

In our Simple Subdivision Framework, we pass queues from one phase to the
next. Such queues serve to represent intermediate states of our ultimate output
(the simplex K for Problem A or the path π for Problem B). In this section, we
explore the idea of representing computational objects that encode states and
other information. The term “object” suggests connection to Object Oriented
Programming Languages (OOPL) since, in order to make our algorithms effec-
tive, it must be ultimately implemented in a programming language. See the
recent paper of Brauße et al. [10] that also brings programming semantics into
the theory of real computation.

7 It is possible that such proofs contribute to the poor reputation of error analysis as
a topic.
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5.1 Soft Tests

We begin by discussing the “ur-predicate”, the comparison of two real numbers
x, y. We may write the comparison as a logical predicate [[x < y]], using the test
notation of Sect. 1.1. If true, we branch to point A, and otherwise we branch to
point B. In exact computation, the two points A and B in the program encode
the respective assertions [x < y] and [x ≥ y], where the notation “[S]” is now an
assertion that S is true. In numerical computation, we might need point C in the
program to encode the assertion [x ? y] (don’t know). To simplify our primitives,
let us reduce this 3-valued test to a 2-valued version, denoted [(x < y)] where
point A represents the assertion [x < y] (as before) but point B asserts [x ≥?y].
But outcome “[x ≥?y]” suggests the assertion [x ≥ y] ∨ [x ? y] (we will explore
this more carefully below). In reality, we reached the point B because the test
[(x < y)] was done with limited precision p. Thus we may explicitly indicate this
precision8 by writing [(x < y)]p. We call [(x < y)]p a one-way test because the
failure to assert [x < y] does not imply the negated assertion [x ≥ y].

The 2-valued exact tests [[x < y]] and [[x ≥ y]] are equivalent in the sense
that one is obtained from the other by switching truth values. But [(x < y)]p and
[(x ≥ y)]p have no such symmetry. This suggests that we could define another
form of [(x < y)]p in which the point B encodes the assertion [x ≥ y], but point
A encodes [x <?y]. These two versions of the one-way test have their respective
uses – the first version is aimed at confirming the assertion “[x < y]”, and
the second version is aimed at falsifying it. To distinguish them, let us write
Con[x < y]p for confirmation test and Fal[x < y]p for other. Unless otherwise
stated, we continue to view the test [(x < y)] in the confirmation mode. It might
appear that we are splitting hairs by reducing a 3-way test to two 2-way tests.
But since these tests may involve heavy computations (such as testing if a robot
configuration is free), this split may be useful. Alternatively, the numbers x, y
may represent complicated expressions (see below).

To implement such one-way tests, we need to assume that x, y are number
oracles (see [28]). That means for each p ∈ Z, we can ask for a p-bit approxi-
mation of x, denoted (x)p. This9 means (x)p = x ± 2−p. We may represent (x)p

by a dyadic number with at most p bits after the binary point. For instance, we
can implement the one-way [(x < y)]p as follows:

if (x)p + 2−p < (y)p − 2−p

return [x < y]
else

return [x ≥?y]

8 We use “precision” for the a priori user-specified bound. The algorithm delivers a
value whose a posteriori error is at most this precision.

9 We write a = b± c to mean there exists a constant θ ∈ [−1, 1] such that a = b+ θ · c.
Alternatively, |a − b| ≤ |c|.
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Observe that this algorithm is indeterminate (see Sect. 2) because (x)p does not
identify a specific value, but depends on the oracle for x. The exact test [[x < y]]
can be reduced to two one-way tests as follows:

Subroutine [[x < y]]:
For p = 0, 1, . . .

if Con[x < y]p
return [x < y]

else if Fal[x < y]p
return [x ≥ y]

In the case x = y, this subroutine is non-halting. Unfortunately, this is the best
we can do without more information about x or y. It turns out that we can
modify the loop above to produce a halting subroutine. That is the Soft Zero
Test in [52] which has three outcomes: [x < y], [x > y] and [x � y]. The last
outcome is new, and is defined10 to mean

[1
2
x < y < 2x

]

∨
[1
2
x > y > 2x

]

. (8)

The first disjunct implies that x, y are both positive, and the second implies both
are negative. We denote this test by [{x : y}]. What makes this test decidable
(halting) is the introduction of the new outcome. But we also need a “mild”
assumption: either x or y is non-zero. It is assumed that both x and y are non-
negative in [52]. That is justified by the intended application where both x and y
are sums of absolute values (from the Pellet Test). Essentially, this Soft Zero Test
is at the heart of our soft-ε criteria for roots. In exact computation, comparing
two numbers x : y is equivalent to the computing the sign of the single number
x − y. The Soft Zero Test shows that you can do a bit more by keeping x and y
separate.

What is the logical status of the intuitive formula “[x >?y] = [x > y]∨[x?y]”?
The truth-values [x < y]p are parametrized by x, y and also p. It is enough to
consider the non-parametric setting where, in addition to true, false, we add
a third logical value, true (false-or-true). Then we have these truth tables:

∧ true frue false

true true frue false
frue frue frue false
false false false false

true frue false

¬ false frue true

∨ true frue false

true true true true
frue true frue frue
false true frue false

So far, we looked at point-based comparisons. We now consider interval-based
comparisons. The ur-predicate here is the Membership Test [[x ∈ I]] where I
is an interval. Here, we view I as a dyadic interval and x is the usual oracle. Let
[{x ∈ I}] denote the Soft Membership Test with two outcomes, [x ˜∈ I] and

10 Despite the appearance of asymmetry, x and y are treated symmetrically by this
definition.
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[x ˜/∈ I]. We define them as [x ∈ 2I] and [x /∈ I/2], respectively. If desired, we may
replace ‘2’ by 1 + 2−p and denote it by [{x ∈ I}]p. It is indeterminate because,
in case x ∈ 2I \ I/2, both outcomes are acceptable. This can be implemented as
the exact test

[[(x)p ∈ I]] (9)

since p = −�1 + log2(w(I))� is easily computable. Exactness of (9) follows from
the fact that I and (x)p are dyadic. If [(x)p ∈ I], we output [x ˜∈ I], and otherwise,
we output [x ˜/∈ I]. The Soft Membership Test is unconditional. These ideas can
be generalized to produced soft membership in balls or boxes: the predicates in
[5,41] are examples of such tests.

5.2 Whence Number Oracles?

Number oracles are ubiquitous in the theory of real computation [28,50]. Their
availability is largely assumed. Perhaps it is generally assumed that they come
from well-known mathematical series, and all we need to do is to evaluate such
series to enough precision. But even this problem deserves careful investigation
from the viewpoint of complexity. For instance, the family of hypergeometric
functions provide us with a rich class of series that include the elementary func-
tions and much more. But if we are given a function in terms of its hyper-
geometric parameters, there are issues of transforming them to speed up the
convergence. From the work of Richard Brent in the 1970s, it is well-known that
to evaluate such functions at a fixed point is extremely fast (basically the speed
of integer multiplication, perhaps with extra log factors). But this tells us little
about global or uniform complexity of these approximation algorithms. We refer
the interested reader to [18,19]. In algebraic computation, we do not have such
series. But it is easy to provide an oracle for any algebraic number α if we have
a defining integer polynomial, p(α) = 0 with p′(α) �= 0. If α is real, we can find
an isolating interval [a, b] for α. Thereafter, we can use bisection to produce a
convergent sequence of intervals. Following Dekker and Brent [11], we can use a
Newton-bisection iteration to speed up this process. A recent variant of Newton-
bisection from Abbot, Sagraloff and Kerber [1,26] led to the complexity analysis
of such speedups. There are analogous procedures to produce oracles for complex
α. It turns out that in geometric computations, we seldom begin with algebraic
numbers: instead we typically start with rational numbers and α is built up as
an expression using different algebraic operators to produce arbitrary algebraic
numbers. Let us briefly describe this class of oracles.

Let Ω be a set of real algebraic operators. Typically, Ω contains at least
{

±,×,÷,
√·

}

∪ Z. Assume that each operator ω ∈ Ω has an approximation
algorithm [55]. Let E(x) = E(x1, . . . , xn) be an algebraic expression over Ω ∪
{x1, . . . , xn}. E.g., E(x) =

√

x2 − 2y + 1 − 3
√

xy − y2. If a = (a1, . . . , an) is
a sequence of number oracles, then there are general mechanisms to construct
an oracle for the number E(a) (see [32,57]). Note that this description is more
general than the usual setting for EGC where the expression E is a constant; but
the extension to expressions with arguments is relatively direct straightforward.
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Zero Problems arise from the fact that some operators such as ÷,
√· or log are

partial functions, and so E(a) may be undefined. We need to detect this situation
and halt. This is a hopeless case, even for E(a) = a1 − a2, unless we have prior
information such as a1, a2 are algebraic with degree and height bounds (or some
height substitute).

5.3 Cluster Oracles

Oracles arising from algebraic expressions can be generalized to geometric
expressions in the sense of Constructive Solid Geometry (CSG) [2]. Here, the
expressions are built from primitive geometric shapes such as numbers, points,
balls and half-spaces, using boolean operators such as intersection and union.
Such expressions can be new sources for number oracles. But in this subsection,
we will focus on a recent extension of number oracles to “cluster oracles”. It
arose in our root clustering algorithms [4,5], and its extension to solving trian-
gular systems in C

n [24]. Intuitively, Cauchy sequences must be generalized to
“Cauchy trees” because clusters may split upon request for more precision.

Multisets arise naturally when we consider the zero sets of functions: let
D ⊆ C

n and f : C
n → C

n. Assume that f−1(0) ∩ D is a finite set, and for
each a ∈ f−1(0), we can assign an integer μ(a) ≥ 1 called its multiplicity. We
introduce two useful notations: let Zerof (D) := D ∩ f−1(0) and #f (D) be the
total multiplicities of the roots in Zerof (D). The pair (ZeroF (D),#F (D)) is an
example of a multiset.

In general, a multiset S is a pair (S, μ) where S is11 an ordinary set (called
the underlying set of S) and μ = μS assigns a multiplicity, a positive integer
μ(x), to each x ∈ S. Also let μ(S) :=

∑

x∈S μ(x) be the (total) multiplicity of
S, assumed to be finite. Let |S| denote the cardinality of S; so |S| ≤ μ(S). If
|S| = 1 (resp., |S| = 0) we say S is a singleton (resp., empty). We denote the
empty multiset as well (ordinary) empty set by the same symbol ∅. If T is another
multiset, we write S ⊆ T and call S a subset of T if S ⊆ T and μS(x) ≤ μT (x)
for all x ∈ S. In this paper, we assume12 equality, i.e., μS(x) = μT (x), in subset
relations. The intersection S ∩ T is the largest multiset R such that R ⊆ S and
R ⊆ T .

Our multisets interact with the world of ordinary sets: let X be an ordinary
set. Then ‘S ⊆ X’ means that S ⊆ X. Likewise ‘S ∩ X’ denotes the multiset
T ⊆ S where x ∈ T iff x ∈ X.

We are interested in the concept of a “cluster” C. Informally, a cluster C is
a multiset in a larger multiset U which is nicely separated from U \ C. Let us
formulate this concept in the context of a normed linear space X with norm ‖·‖.
Let Δ = Δ(m, r) ⊆ X denote the ball centered at m of radius r ≥ 0. For real
α > 0, let αΔ(m, r) denote the ball Δ(m,αr). Let us fix a multiset U ⊆ X. A

11 There should no confusion with the notion support of a simplicial complex K.
12 Strict inequality may arise in subsets of zero sets: if F = (F1, . . . , Fn) where Fi are

polynomials, and G = (G1, . . . , Gn) where each Gi divides Fi, then ZeroG(D) ⊆
ZeroF (D) might exhibit this phenomenon.
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cluster (of U) is a non-empty set C ⊆ U of the form C = U ∩ Δ for some ball
Δ ⊆ X. Call such a Δ an isolator of cluster C; this isolator is natural if, in
addition, C = U ∩ 3Δ. If C has a natural isolator, we call it a natural cluster.
The fundamental property of natural clusters is this:

Lemma 2. Let X be a normed linear space and U ⊆ X be a finite multiset.
Then any two natural clusters C,C ′ of U are either disjoint or have a subset
relation, i.e., either C ∩ C ′ = ∅ or C ⊆ C ′ or C ′ ⊆ C.

Basically the proof works because of the triangle inequality in X. As a corollary,
there are at most 2|U | − 1 natural clusters of U , and they can be organized into
a cluster tree: each node in the tree is a natural cluster of U and the child-
parent relation is just C ⊂ C ′. The original cluster concept in [4,52] assumes
X = C. In [24] it was extended to X = C

n, for complex roots of triangular
systems. Computing natural clusters may be regarded as the soft-ε criterion for
root isolation; as we shall see, it is effective and can completely remove the Zero
Problems associated with multiple roots.

But how do we compute such clusters? We need predicates to check if a
given Δ is an isolator and to determine its total multiplicity. For X = C

n, we
could use some multidimensional form of Pellet’s test, and for X = R

n, there are
similar tools such as multidimensional Sturm theory based on quadratic forms
[35–37]. Unfortunately, at present, these tools do not appear to be practical. In
lieu of this, we take another route in [24]: we first reduce the input system into
triangular systems using known algebraic techniques. In the triangular form, we
can compute the multivariate clusters and their multiplicities using the efficient
univariate multiplicity tests of [4,23].

The main tool in [4,23] is a test from Pellet (1881). Fix a complex polynomial
f(z) ∈ C[z]. First consider the test

Tk(f) :=
[[

|ak| >
∑

i	=k

|ai|
]]

(10)

where f(z) =
∑n

i=0 aiz
i. This test is defined for any k = 0, . . . , n. Pellet’s

theorem says that

if Tk(f) succeeds then #f (Δ(0, 1)) = k.

So this test, which is a simple application of Rouché’s Theorem, can confirm that
the total multiplicity of the complex roots of f in the unit disc Δ(0, 1) centered
at the origin is exactly k. The case k = 0 is interesting – it is an exclusion
test! It is more expensive than the standard C0 test, but we shall see that its
failure provides some partial converse information. We can confirm that the disc
Δ(0, r) of radius r > 0 has k roots by applying the Tk-test to the polynomial
f(rz) =

∑

i biz
i where bi = air

i. Similarly, we can confirm that Δ(m, 1) (the
unit disc centered at m ∈ C) has k roots by applying the Tk-test to the Taylor-
shifted polynomial f(z + m). Combining these two operations, we obtain a test
for an arbitrary disk Δ(m, r). Let Tk(f,m, r), or simply Tk, denote such a test.
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The next question is crucial: when is the success of Tk test assured? It is
shown that there are positive numbers c < 1 < C such that if

#f (c · Δ(m, r)) = #f (C · Δ(m, r))

then Tk(f,m, r) will succeed. In other words, this gives a partial converse to
Pellet’s test. Unfortunately, these numbers depend on the degree: c = Ω(1/n)
and C = O(n3). By applying Graeffe iteration 5+log log n times to f , we reduce
these numbers to c = 2

√
2/3 � 0.94 and C = 4/3. Suppose B is a subdivision

box and Δ(B) is its circumscribing disc. Let TG
k (f ;B) denote the application of

the Tk test to the Graeffe-transformed Δ-shifted polynomial f . Choose k = 0:

If TG
0 (f ;B) succeeds, #f (B) = 0.

If TG
0 (f ;B) fails, #f (2B) > 0.

We classify boxes as excluded if this test succeeds, and included otherwise.
We now have a very powerful test that is analogous to the Soft Membership Test
earlier. The remaining issues treated in the paper are:

– We need approximate versions of these tests: thus we use ˜TG
k instead of TG

k .
The Soft Zero Test is used to make numerical comparison of (10).

– We use ˜TG
0 (B) as exclusion test. We maintain the connected components of

those B’s that are included (i.e., fail the exclusion test). These components are
potentially cluster. We refine a component by splitting each of its constituent
boxes, and applying the ˜TG

0 tests again.
– To obtain near-optimal bounds, we use the Abbot form of Newton-Bisection

[1,26] on a connected component C. If C is sufficiently separated from the
other components, then we could use the ˜TG

k test to determine that #(C) = k,
and even apply the order k Newton iteration successfully.

– For complexity analysis (in the bench mark case), we need charging schemes
that charge these tests to roots of f in 2B0. It turns out that for the non-
integer polynomials, we can provide some complexity estimates based on the
root geometry.

We hope this overview may make the original papers more accessible. In [24],
we package the above structures into cluster oracles in order to compute multi-
dimensional clusters inductively. Such cluster oracles, viewed as objects in the
sense of OOPL, can provide an efficient mechanism for other similar applications.

6 Conclusion and Open Problems

The foundations of subdivision computation is a wide-open area of research, with
promises of new and effective algorithms that have mild (or no) conditions on the
input. Our illustrative examples suggest that such algorithms can be practical
and compare favorably with less-rigorous solutions or symbolic or exact solutions.

Our soft-ε criteria for two key problems seems to have achieved a satisfactory
level of completeness: (a) complex root clustering for polynomials with oracle



32 C. Yap

coefficients [4] and (b) resolution-exact path planning [49]. Of course, success
creates its own (new) set of problems: for (a), we would like to treat more
general functions such as analytic or harmonic functions. For (b), the challenge
is to design a practical nonheuristic planner for spatial robots with 6 degrees-
of-freedom. This natural but elusive quest appears to be reachable within our
framework. Finally, we pose some open problems:

1. Algorithms with soft-ε correctness is the continuous analogue of “approx-
imation schemes” in discrete optimization algorithms. Just as the barrier
to polynomial-time schemes (PTAS) are located in NP -hardness or similar
complexity classes, the barrier in the continuous case are various Zero Prob-
lems. We would like a complexity theory of such Zero Problems.
See also the recent paper [17].

2. It is generally challenging to remove all Zero Problems. A prime example
is the PV-type algorithms [38]. Such algorithms are based on the Marching
Cube paradigm, and require the exact sign evaluation of a function at the
corners of subdivision boxes. How do we soften this?

3. Interval methods are central to all our algorithms. We would like to develop
interval methods in more abstract spaces than Euclidean ones. Are normed
vector spaces or metric spaces the natural home for such extensions? As
usual, we need good problems on which to cut our teeth.

4. Path planning in very high dimensions is an open problem. An example of a
currently out-of-reach path planning problem: a planar snake with 10 joints.
The configuration space is R

2 × (S1)10. This requires new paradigms, but
we believe they can be built upon a subdivision framework.

5. Path planning is only the simplest of motion planning problems. What do
soft-ε algorithms mean in non-holonomic planning, or kino-dynamic plan-
ning? A good problem is to try subdivision in state space: imagine a point
robot in the plane amidst obstacles. Its state or coordinates are (x, y, ẋ, ẏ)
representing position and velocity. We want to plan a minimum time trajec-
tory from some start to goal states, subject to acceleration bounds.

6. The notion of natural root clusters suggests other applications and exten-
sions. How do we cluster matrix eigenvalues? It seems that other consider-
ations come into play: the invariant subspaces associated with eigenvalues
should play a role in defining “natural clusters of eigenvalues”.

7. Complexity analysis of subdivision is largely open. The case of univariate
zeros is reasonably well-understood, but there are many open problems even
for zero-dimensional problems in higher dimensions. A key tool is continu-
ous amortization [13], but recently Cucker et al. [17] initiated a Smale-type
average case analysis for subdivision algorithms.

Acknowledgements. The author is deeply grateful for the feedback and bug reports
from Michael Burr, Matthew England, Rémi Imbach, Juan Xu and Bo Huang.
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57. Yu, J., Yap, C., Du, Z., Pion, S., Brönnimann, H.: The design of core 2: a library
for exact numeric computation in geometry and algebra. In: Fukuda, K., Hoeven,
J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 121–141.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15582-6 24

https://doi.org/10.1007/978-3-642-39053-1_51
https://doi.org/10.1007/978-3-642-39053-1_51
https://doi.org/10.1007/978-3-319-19647-3_2
http://arxiv.org/abs/1704.05123
https://doi.org/10.1007/978-3-642-03456-5_26
https://doi.org/10.1007/978-3-642-15582-6_24


An Arithmetic-Geometric Mean
of a Third Kind!

Semjon Adlaj(B)

Federal Research Center “Informatics and Control”
of the Russian Academy of Sciences, Vavilov St. 44, Moscow 119333, Russia

SemjonAdlaj@gmail.com

Abstract. The concept of the generalized arithmetic-geometric mean
(GAGM) embraces both the arithmetic-geometric mean (AGM) and
the modified arithmetic-geometric mean (MAGM) as two special con-
cepts. The GAGM is applied for attaining a unifying formula for cal-
culating complete elliptic integrals (CEI), including those of the third
kind, thereby providing a conceptual basis for their exploration and exact
evaluation, bypassing typical troubles of common software in calculating
CEI. Detailed clarifying examples are provided.
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1 Introduction

The arithmetic-geometric mean (AGM) is the key for attaining a “perfect” for-
mula for calculating complete elliptic integrals (which we shall abbreviate as
CEI whether singular or plural). The first perfect formula for calculating CEI of
the first kind was obtained by Gauss. Aside from conciseness and exactness, it
gave rise to an iterative sequence of intervals, swiftly converging to their com-
mon point. A termination at any step requires no additional calculations of error
estimates, as other (imperfect) formulas usually require, since the exact value is
guaranteed to lie inside its corresponding interval. The same process, based on
Landen transformations, turned out being generalizable to calculating CEI, of
any kind, via a quadratically convergent procedure. Surprisingly, however, the
second perfect formula (possessing all the virtues of the first) for calculating CEI
of the second kind had skipped the attention of all for over two centuries after
discovering the first.1 But only a few additional years were required to attain the
third (general) perfect formula for calculating CEI of the third (or any) kind.
As was the case with the two formulas, preceding it, the general formula gives
rise to an iterative sequence of intervals, quadratically collapsing onto their com-
mon point. And, as before, aside from basic arithmetic operations, only a single
square-root operation is required at each iteration!
1 Leading some to allege (in desperation) that no simple exact formula for calculating

the perimeter of an ellipse existed. Nevertheless, one ought not overestimate the
significance of the second formula which must remain secondary to the first, without
which it could not have been conceived. The two formulas “resonate” one with other,
and the second, borrowing a word from [22], “echoes” the first.
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2 An Historical Overview of Elliptic Integrals

A dramatic struggle for efficiently calculating (complete and incomplete) elliptic
integrals emerged with their inoculation by Fagnano.2 Fagnano’s contribution
[15] to the division of elliptic arcs constitutes a most remarkable and never
fading jewel of mathematics of all time!3 But it even brighter highlighted the
necessity for efficiently calculating CEI, since it clarified how calculating incom-
plete elliptic integrals incessantly depended upon calculating CEI. A break-
through was carried out by Gauss, who recorded the discovery of his unsur-
passable arithmetic-geometric mean (AGM) method for calculating CEI of the
first kind, in his diary on May 30, 1799 [21],4 thereby laying the foundation for
a distinctly novel and superb approach for calculating CEI (of any kind). Nev-
ertheless, a formula as simple and powerful for calculating CEI of the second
kind had to await December 16, 2011 to be discovered! The modified arithmetic-
geometric mean (MAGM), being the necessary concept for attaining the second
formula, turned (moreover) being the basic concept, underlying the general-
ized arithmetic-geometric mean (GAGM), which enabled on September 2, 2015
attaining the third (general) formula for calculating CEI of third (and any)
kind. The generalization of MAGM to GAGM was preceded by constructing
the (so-called) elliptic and coelliptic polynomials for carrying out highly effi-
cient arithmetic on elliptic curves, including division. Earlier, on May 30, 2011,
a canonical fast inverse of the modular invariant was obtained [4], further unrav-
eling a tight relationship between the modular invariant and CEI. Fourteen new
special values of the modular invariant were calculated in 2014, and an infinite
family of identities, called modular polynomial symmetries, were first presented
on April 16, 2014 at the 7th PCA annual conference in St. Petersburg, Rus-
sia, and subsequently represented at a seminar at Moscow State University [6].
A crucial connection between calculating the roots of the modular equation of
level p and calculating the p-torsion points, on a corresponding elliptic curve,
must (surprisingly) be entirely attributed to Galois. Relevant details on Galois’
amazing (yet far from fully appreciated) contribution to elliptic functions (and
integrals) are given in [2,4]. Certainly, the idea, involving the action of the pro-
jective linear group in the main construction of this paper was guided by Galois,5

2 The (highly successful) term “elliptic integral” in and of itself was apparently
invented by Fagnano.

3 According to Fricke [16, Vorwort], the day December 23, 1751 when Euler acknowl-
edged the receipt of Fagnano’s two-volume work was regarded by Jacobi as “the
birthday of the theory of elliptic functions”. On January 27, 1752 Euler, crediting
Fagnano, made his first presentation (to the Berlin Academy of Sciences) on the
addition theorem for elliptic integrals.

4 Strangely, Gauss’ method remained either unknown or unappreciated, until recently,
as pointed out in [23, Appendix O: The Simple Plane Pendulum: Exact Solution]
and further explained in [5].

5 Those overly concerned that Galois’ contribution has ever been overestimated must
rest assured that it was not! Up to these days, Galois’ last letter [17], which he wrote
on the eve of his murder May 30, 1832, remains tragically untangled in spite of all
efforts of those who never underestimated it!
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whose abilities, as rightfully admitted in [18, 2.21. “L’unique” – ou le don de
solitude], far exceeded ours.

3 The Generalized Arithmetic-Geometric Mean

We shall reserve the letter n to denote a natural number, including zero.

3.1 Construction and Definition

The modified arithmetic-geometric sequence was presented in [3,7–9,24]. It is
the recursively defined triple sequence

xn+1 :=
xn + yn

2
, yn+1 := zn +

√
(xn − zn)(yn − zn),

zn+1 := zn −
√

(xn − zn)(yn − zn).

Given such a sequence {xn, yn, zn}∞
n=0, we introduce (another) recursively

defined sequence of (single-valued) parametric functions:6

un+1 = un+1(t) = un+1(t, c, x0, y0, z0) :=
cn un − yn+1 zn+1

cn + un − 2 zn
, cn := un(c),

where c is a fixed real parameter and the function u0 is (naturally) presumed
to coincide with the identity function: u0(t) = t. We proceed to defining the
functions

vn = vn(t) = vn(t, a, c, x0, y0, z0) :=
t − an

t − cn
, an := un(a),

wn = wn(t) = wn(t, b, a, c, x0, y0, z0) :=
vn(t)
vn(bn)

, bn := un(b),

where a and b are (also) fixed real parameters distinct from c and each other.
We shall refer to the sextuple sequence

{xn, yn, zn, an, bn, cn}∞
n=0

as the generalized arithmetic-geometric sequence (abbreviated as GAGS whether
singular or plural).7 The sequence {wn}∞

n=0 is thereby seen as a sequence of
linear fractional (Möbius) transformations, generated by GAGS, successively
mapping the sequence of ordered triples (an, bn, cn)∞

n=0 to the (fixed) ordered
triple (0, 1, ∞).

Define the generalized arithmetic-geometric mean (GAGM) of two (strictly)
positive numbers x and y, for a given pairwise distinct real parameters a, b and
6 The adjective “parametric” is meant to indicate that each such (single-valued) func-

tion (of the argument t) does “depend” upon the (fixed) values of its parameters.
7 Thus, the GAGS is an extended modified arithmetic-geometric sequence, with twice

as many terms.
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c, as the (common) limit of the sequence {ξn := wn(xn)}∞
n=0 and the sequence

{ηn := wn(yn)}∞
n=0 with x0 = x, y0 = y and z0 = 0.

Later on, we extend the domain of the parameters a, b and c to include the
point at (complex) infinity, so that a, b and c might be regarded as elements of
the extended real line R ∪ ∞. However, we shall always require the parameter c
to lie (strictly) outside the closed interval [x, y].8

3.2 Basic Properties

Given a linear function l(t) = λ (t − μ), {λ �= 0, μ} ⊂ R, we define an action of
the function l upon the GAGS as

l · {xn, yn, zn, an, bn, cn}∞
n=0 := {l(xn), l(yn), l(zn), l(an), l(bn), l(cn)}∞

n=0 , (1)

thereby inducing an action upon the sequence {wn}∞
n=0, which we shall denote by

l ·{wn}∞
n=0 := {l ·wn}∞

n=0, where l ·wn is the transformation mapping the ordered
triple (l(an), l(bn), l(cn)) to the ordered triple (0, 1, ∞). One might then verify
that the sequence we have defined, in (1), is indeed a GAGS!9 Furthermore,
neither the sequence {ξn}∞

n=0 nor {ηn}∞
n=0 is altered by this action, that is,

ξn = l · wn

(
l(xn)

)
= wn(xn), ηn = l · wn

(
l(yn)

)
= wn(yn),

so that the GAGM is invariant under the action of linear functions upon the GAGS,
permitting us to speak of equivalence classes ofGAGS. Sowe shall say that aGAGS
is equivalent to another if the GAGM is unaltered. In particular, The homogeneity
degree of GAGM is zero (unlike the AGM and MAGM which are homogeneous of
degree one), and we might exploit this property to extend the domain of GAGM,
for fixed parameters,10 to include (strictly) negative values of the arguments x and
y. At each iteration, we might ensure the positivity of the product (xn − zn)(yn −
zn), before taking its square root, via acting upon the GAGS (at the required step
whenever necessary) by the (constant) function −1.

We shall denote with the same letter N three functions, which we shall nev-
ertheless distinguish by the (total) number of their arguments. The invariance of
the GAGM under the action of linear functions upon the GAGS implies that four
initial arguments suffice to determine the GAGM, so we designate N(x, a, b, c)
to denote the GAGM of 1 and x for parameters a, b and c.11 Moreover, the
expression

( (b − a)N(x, a, b, c)
b − c

− 1
)
/(c − a),

8 This requirement is necessary for the GAGM to be well defined, as we shall soon
find out.

9 Being initiated by the sextuple {l(x0), l(y0), l(z0), l(a0), l(b0), l(c0)}, so (for all
indices n) we have l(x0)n = l(xn), l(y0)n = l(yn), l(z0)n = l(zn), l(a0)n =
l(an), l(b0)n = l(bn), l(c0)n = l(cn).

10 Generally speaking, the parameters might also be regarded as (special) arguments.
11 An equivalence class of any GAGS might be represented by a sequence, where the

initial values y0 and z0 are fixed at 1 and 0, respectively.
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while seemingly dependent upon four arguments x, a, b and c, has x and c
as its only “true” arguments. It actually depends neither upon a nor upon b.
Consequently, we might define a bivariate function

N(x, c) := N(x, ∞, c + 1, c),

and employ it in order to alternatively express the preceding quadrivariate func-
tion as

N(x, a, b, c) =
b − c

b − a

(
(c − a)N(x, c) + 1

)
.

The latter formula extends not only to the case c = 0 but, as well, to the
case c = ∞. In these two (dual) cases the GAGM “degenerates” to a (shifted)
MAGM:

N(x, a, b, 0) =
b

a − b

(
a N

(
1
x

)
− 1

)
, N(x, a, b,∞) =

N(x) − a

b − a
, (2)

where the (univariate) function N(x) is the modified arithmetic-geometric mean
of 1 and x.

The equivalence of the latter two equations reflects a special (limiting) case
of the relation

N(x, a, b, c) = N

(
1
x

,
1
a
,
1
b
,
1
c

)
.12 (3)

3.3 Quadratic Convergence

The difference sequence

dn := ξn − ηn = wn(xn) − wn(yn) =
vn(xn) − vn(yn)

vn(bn)
= sn(xn − yn),

sn :=
(cn − bn)(cn − an)

(bn − an)(cn − xn)(cn − yn)
,

depends upon all the (three) parameters a, b and c, while the ratio

sn+1

sn
=

cn − zn+1

cn − yn+1
=

cn − cn+1

cn+1 − yn+1
=

cn+1 − zn+1

cn − cn+1

12 This relation suggests that the defining equality of the function N(x, c) might be
substituted with the equality

N(x, c) = N

(
1

x
, 0,

1

c + 1
,

1

c

)
,

which is suitable for explicit calculation, and is extendable to the case c = 0 as

N(x, 0) = N

(
1

x

)
,

but, unlike the quadrivariate function, the bivariate function remains undefined for
c = ∞.
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depends upon c but neither upon a nor upon b.13 In order to show that the
GAGM is well-defined we must show that the sequence {dn}∞

n=0 converges to
zero. We already know that it does if c = ∞,14 no matter what a and b are,
since the GAGM for x and y would then coincide with the MAGM of x/(b − a)
and y/(b − a), up to an additive constant a/(b − a). The case when c = 0 might,
as well, be reduced to the case when c = ∞, via identity (3) or by the first of
formulas (2). The case c = z1 = −√

x y would imply (whatever a and b are) that
a1 = b1 = c1 = z1, forcing a termination of the GAGS with d1 = s1 = 0. The
GAGM of x and y would then coincide with the value

ξ1 = η1 =
1
2

(
1 +

a b − x y

(a − b)
√

x y

)
.15

The case c < 0 implies that cn < 0 and 2 cn+1 < cn (for any index n), so
∣
∣∣∣
sn+1

sn

∣
∣∣∣ <

∣
∣∣∣

cn

cn+1
− 1

∣
∣∣∣ < 1 ⇒

∣
∣∣∣
dn+1

dn

∣
∣∣∣ <

xn+1 − yn+1

xn − yn
,

and the GAGM would converge never (at any iteration) slower than the MAGM
does, although unlike either the descending sequence {xn}∞

n=1 or the ascending
sequence {yn}∞

n=1 neither the sequence {ξn}∞
n=0 nor the sequence {ηn}∞

n=0 is
monotone.

The last case, for convergence to be considered, is the case c > 0. The
sequence {cn}∞

n=1 is then descending and, for all n ≥ 1, cn > xn,16 and

dn+1

dn
=

(cn+1 − zn+1)(xn+1 − xn+2)
(cn − cn+1)(xn − xn+1)

≈ xn − xn+1

2 (cn − cn+1)
≈

(
xn−1 − xn

2 (cn−1 − cn)

)2
,

where the sign for approximate equality (≈) must be interpreted here as an
asymptotic (as n approaches infinity) equality. Consequently, the convergence is
eventually (that is, asymptotically) quadratic.17

3.4 Alternative Calculations

The enlisted properties of GAGM enable endlessly many means of calculating
it, but we shall indicate only two more. The first exploits the identity

N(x, a, b, c) = N
(
σ(x, 1), σ(x, a, c), σ(x, b, c), σ(x, c)

)
,

13 Elementary geometric constructions, involving mutually orthogonal circles as sug-
gested in [10], might facilitate deriving the preceding triple-equation.

14 We are alluding to the second formula of (2).
15 The value on the rightmost side might be obtained by applying L’Hôpital’s rule to

either “undeterminate” w1(x1) or w1(y1).
16 The condition that c lies (strictly) outside the closed interval, bounded by x and

y must not be forgotten. We need not, however, require c to lie to the left of that
interval, so c0 need not exceed x0. In other words, the inequality cn > xn need not
apply when n = 0.

17 One might note, as well, that the monotonicity of the sequences {ξn}∞
n=1 and {ηn}∞

n=1

is restored, in this (c > 0) case.
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σ(x, y) := σ(x, y, y), σ(x, y, z) :=
(
√

x + y) (
√

x + z)
2 (y + z)

√
x

,

which allows introducing an abbreviated GAGS for which yn = 1 and zn = 0, for
all n, and

{xn+1 = σ(xn, 1), an+1 = σ(xn, an, cn), bn+1 = σ(xn, bn, cn), cn+1 = σ(xn, cn)} . (4)

The second introduces a truncated GAGS
{

xn+1 = σ(xn, 1) =

(√
xn + 1

)2

4
√

xn
, cn+1 = σ(xn, cn) =

(√
xn + cn

)2

4 cn
√

xn

}

,

for which we skip calculating an and bn, but (instead) calculate the GAGM,
recursively, on the basis of the identity

N(x, c) = τ
(
x, c, N

(
σ(x, 1), σ(x, c)

))
, (5)

τ(x, y, z) :=
1

2 y

((
y√
x

−
√

x

y

)
z

4
− 1

)
.

The truncated GAGS is not suitable for calculating the GAGM in the special
case c = 0 or c = ∞ when the GAGM degenerates to MAGM, as given by
formulas (2), but the abbreviated GAGS serves without exceptions. In particular,
we readily infer from the limit formula, with c = ∞,

N(x2, a, b,∞) = N

(
(x + 1)2

4x
,

x + a

2x
,

x + b

2x
, ∞

)

a recursive formula for calculating MAGM:

N
(
x2

)
= x

(
2N

(
f(x)2

) − 1
)

= 2 fn(x)N
(
fn+1(x)2

) −
n∑

k=0

fk(x) ≈

≈ fn(x) −
n−1∑

k=0

fk(x), where

fn(x) := 2n
n∏

k=0

fk(x), fn+1(x) := f(fn(x)), f(x) :=
x + 1
2
√

x
, f0(x) = f0(x) = x.

Of course, we could have defined the GAGM via the abbreviated GAGS, as
given by (4), at the cost of obscuring the origin of GAGM in MAGM.

4 Calculating Three Kinds and Three Types of CEI

Assume, unless indicated otherwise, that β and γ are two positive numbers which
squares sum to one: β2 + γ2 = 1.
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Before we apply GAGM, to calculating CEI, we shall further extend the
domain of its parameters to include complex values, and we lift any remaining
doubt that the GAGM is actually a generalized AGM by observing the identity

N

(
β2, 1 − γ, 1 − γ2

2 + γ
, 1 + γ

)
= N

(
β2, β2 + iβγ, β, β2 − iβγ

)
= M(β), 18 (6)

where i :=
√−1 and M(x) is the AGM of 1 and x. The identity still holds if the

sign of γ, which we shall refer to as the elliptic modulus, is flipped.19

4.1 Three Formulas for Calculating Three Kinds of CEI

A CEI of the first kind I1 is defined and calculated as

I1 = I1(γ) :=
∫ 1

0

dt
√

(1 − t2) (1 − γ2 t2)
=

π

2M(β)
. (1799.05.30)

A CEI of the second kind I2 is defined and calculated as

I2 = I2(γ) :=
∫ 1

0

√
1 − γ2t2

1 − t2
=

π N(β2)
2M(β)

. (2011.12.16)

Both formulas (1799.05.30) and (2011.12.16) apply at γ = 0, with I2(0) =
I1(0) = π/2. The second applies, as well, at γ = 1, with I2(1) = 1, as clarified
in [7,8].

A CEI of the third kind I3 is defined and calculated as

I3 = I3(γ, δ) :=
∫ 1

0

dt

(t2 − δ)
√

(1 − t2) (1 − γ2 t2)
= −π γ2 N(β2, 1 − δγ2)

2M(β)
=

=
π N(β2, ∞, β2 − δγ2, 1 − δγ2)

2M(β)
, δ ∈ C\[0, 1]. (2015.09.02)

Put βn+1 :=
√

σ(β2
n, 1) with β0 = β. Thereby, the recursively defined

sequence {βn}∞
n=1 converges descendingly to one, whereas the sequence {γ2

n :=
1 − β2

n}∞
n=1 is a negative sequence, converging ascendingly to zero.20 Define,

recursively, the sequence

δn+1 :=
(1 − δn(1 + βn))2

1 − δnγ2
n

, δ0 = δ.

18 An equivalent GAGS has the initial values x0 = β, y0 = 1/β, z0 = 0, a0 = β + i γ,
b0 = 1, c0 = β − i γ. Note here that if x0 = β and y0 were the values at two (out of
three) half-period of an essential elliptic function, as shown in [10, figures], then a0,
b0 and c0 are its values at three (out of six) quarter-periods.

19 Whereas, flipping the sign of β leads to flipping the sign of M(|β|).
20 Alternatively, we might define the sequence of squares {γ2

n}∞
n=0 recursively by putting

γ2
n+1 := σ(β2

n, −1) with γ0 = γ.
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The recursive relation (5) implies a recursive relation for I3:

I3(γn, δn) = λn

(
I1(γn) +

μn√
βn

I3(γn+1, δn+1)
)

, 21

λn = λ(γn, δn), μn = μ(γn, δn),

λ(γ, δ) :=
γ2

2 (1 − δγ2)
, μ(γ, δ) :=

γ2(γ2δ2 − 2 δ + 1)
(1 − β)2(δγ2 − 1)

,

which, along with the relation
√

βn I1(γn) = I1(γn+1), implies the identity

I3(γ, δ) =
n∑

k=0

ηk I1(γ)+ηn μn I3(γn+1, δn+1)/

√√
√√

n∏

k=0

βk, (7)

ηn := λ0

n∏

k=1

μk−1 λk,

exhibiting that for infinitely many values of δ, satisfying (for any n) the relation
δn = 1/(1−βn), the integral I3 would degenerate to a multiple of I1, by the coef-
ficient

∑n
k=0 ηk, as μn vanishes. Identity (7) does not apply at δ = 1/γ2, where

I3 would degenerate to a multiple of CEI of the second kind, by a coefficient
given in the latter of formulas (10). Observe here that the equality δn = 1/γ2

n

implies that λn = μn = ∞. Moreover, the equivalence

δn =
1

1 − βn
⇔ δn+1 =

1
γ2

n+1

holds.
The relations

I3

(
γ,

±1
γ

)
=

γ

2

(
π

2 (γ ∓ 1)
∓ I1(γ)

)
, 22

I3

(
γ,

γ ± i β

γ

)
= − γ

2β

(
(γ ∓ i β)π

2
∓ i I1(γ)

)
,

stemming from (6), would imply that for infinitely many values of δ, satisfying
the relation δ = (γ ± i β)/γ or (for any n) the relation δ2n = 1/γ2

n, the integral I3

21 An analogous recursive relation for an elliptic integral of the second kind

I2(γ) = 2
√

β I2
(√

σ(β2, −1)
)

− β I1(γ)

is equivalent to formula (2011.12.16).
22 Either the upper or the lower sign must be consistently taken throughout this or

other equations in this paper.
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would degenerate to a “linear combination” of the (ubiquitous) constant π and
I1.23 Two equivalences are in order:

δ2n =
1
γ2

n

⇔ δn+1 =
γn+1 + i βn+1

γn+1
, δn =

γn ± i βn

γn
⇔ δn+1 =

γn+1 − i βn+1

γn+1
.

Put
δ±(x) :=

1

(1 − √
x )

(
1 + x ± √

x (1 + x)
) .

The preceding (primary) identities for I3 might be applied to deriving two
(secondary) identities, corresponding to δ1 = 1/(1 − β1) and δ1 = 1/γ1,24

respectively:

I3(γ, δ±(β)) =
β − 1

4
√

β3

(
(1 + β)2 ±

√
1 + β

(
1 +

√
β3

))
I1(γ),

I3(γ, δ±(−β)) = ±
√

1 − β

β

(√−β ± √
1 − β

2
(
1 ∓ √

1 − β
)

)2

(
(1 + β)

(
β + 3

√
−β3 −

(
3 (1 − β) + 4

√
−β

) (
1 ∓

√
1 − β

) )
i I1(γ)

+
(
1 +

√
−β3 ∓

√
1 − β (1 + β)

)
π

)
.

4.2 An Unifying Formula for Calculating Three Types of CEI

For a given linear fractional transformation w, determined by three parameters
a, b and c:

w(t) = w(t, a, b, c) :=
(b − c)(t − a)
(b − a) (t − c)

, {a, b, c} ⊂ C ∪ ∞, 25

we might, as well, define a proper CEI I as the integral

I = I(γ, a, b, c) :=
∫ 1

0

w
(
t2

)
dt

√
(1 − t2) (1 − γ2 t2)

, (8)

in which we shall distinguish three types. The first type would correspond to
the case when the transformation w has degenerated to a constant map, the
23 We shall avoid specifying the algebraic properties of such “linear combination”,

leaving this (significant) issue to other papers and, perhaps, other authors.
24 Note that the former value (of δ1) is negative (real) and the latter is negative

imaginary.
25 The transformation w need not necessarily be Möbius transformation, since degen-

erate transformations are not (yet) excluded. In other words, the transformation w
need not be a conformal automorphism of either the extended or unextended com-
plex plane, and its determinant (a − b)(b − c)(c − a) is allowed to vanish, be finite
or infinite.
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second type would correspond to the case when w is a linear function,26 whereas
the third type would correspond to the case when w is a linear fractional trans-
formation which does not fix the point at (complex) infinity. Note, however,
that the restriction upon c to be distinct from ∞ does not preclude a CEI from
degenerating to a CEI of the first or the second type as are the instances

I

(
γ, a, b,

1
1 − β

)
=

(1 − b (1 − β)) (1 − a (1 + β)) I1(γ)
2 (b − a)β

, (9)

I

(
γ, a, b,

1
γ2

)
=

1 − b γ2

(b − a) γ2

((
1 − a γ2

)
I2(γ)

β2
− I1(γ)

)

.

In particular, the two special values

I

(
γ, ∞,

2 − β

1 − β
,

1
1 − β

)
= −γ2 I1(γ)

2β
,

I

(
γ, ∞,

γ2 + 1
γ2

,
1
γ2

)
= −

(
γ

β

)2
I2(γ) (10)

coincide with the values of I3 if evaluated at δ = 1/(1 − β) and δ = 1/γ2,
respectively. The former of formulas (10) is, in fact, a special (first) case of
identity (7).27

Whatever the type of I, as defined in (8), we might calculate it directly as

I(γ, a, b, c) =
π N(β2, 1 − a γ2, 1 − b γ2, 1 − c γ2)

2M(β)
, 28 c ∈ C\[0, 1] (11)

so that the case where a = ∞, b = 1 + δ, c = δ is seen as the special case where
I coincided with I3. Identity (6) might now be translated to an identity for π:

I

(
γ, ± 1

γ
,

1
2 ± γ

,∓ 1
γ

)
= I

(
γ,

γ ∓ iβ

γ
,

1
1 + β

,
γ ± iβ

γ

)

= −I

(
γ,

γ ± iβ

γ
,

1
1 − β

,
γ ∓ iβ

γ

)
≡ π

2
. (12)

The identity is extendable (for all involved integrals) to the (limit) value of
the elliptic modulus γ at 0, as well as, it is extendable for the first integral taken
with upper signs to the (limit) value at γ = 1, that is,

∫ 1

0

dt√
1 − t2

=
∫ 1

0

2 dt

1 + t2
≡

∫ 1

0

(1 + γ)
(
1 − γ t2

)
dt

(1 + γ t2)
√

(1 − t2) (1 − γ2 t2)
, γ ∈ (0, 1).

26 Recall that the case c = ∞ was not excluded.
27 Yet, even this (first) special case, where I3 degenerates to (a multiple of) I1 for

δ = 1/(1 − β), seems missing from standard sources on elliptic integrals.
28 An equivalent GAGS leading to the GAGM that appears in the numerator has the

initial values x0 = 0, y0 = −1, z0 = −1/γ2, a0 = −a, b0 = −b, c0 = −c.
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However, the second and the third integrals, in identity (12), are discontin-
uous at γ = 1. The upper signs correspond to the value iπ/2, whereas the lower
signs correspond to the value −iπ/2.

We emphasize the methodological significance of a clear unifying formula
(11) for calculating CEI (of any type). “The Handbook of Mathematical Func-
tions” [1, ch. 17] fell short of accomplishing that task, as the section on “The
Process of the Arithmetic-Geometric Mean” was not extended to calculating
elliptic integrals of the third kind, which were left to appear in the next section
of the chapter on “Elliptic Integrals” by Milne-Thomson. The current version
of the latter chapter, written by Carlson [12], is amended with an expressions
for calculating CEI of the third type, via AGM, in the section on “Quadratic
Transformations”, essentially providing yet another (as perfect) alternative for
calculating the sequence ξn, converging to GAGM.29 An enlightening succinct
review of CEI is given in [20]. “Wolfram Mathematica” warns, in [25], that
“more so than for other special functions, you need to be very careful about
the arguments you give to elliptic integrals and elliptic functions” but exhibits
insufficient care in evaluating the integral (8), where non-vanishing imaginary
parts (occasionally!) appear for real parameters. A sample “notebook”, exposing
this and other typical troubles in calculating CEI, by “Mathematica 10.3”,30 is
appended to this article.

4.3 The Formula for Calculating the Complementary CEI

The complementary CEI (denote by J) might as readily be calculated:

J = J(γ, a, b, c) :=
∫ 1/γ

1

w
(
t2

)
dt

√
(t2 − 1) (1 − γ2 t2)

=
π N(1/γ2, a, b, c)

2M(γ)
, (13)

c ∈ C\[1, 1/γ].

The integral J , as was the case with I, would also degenerate to a CEI of
the first or second type if w is, respectively, constant or linear. Furthermore,

J

(
γ, a, b,− 1

γ

)
=

1
2

(
1 +

a b γ2 − 1
(a − b) γ

)
I1(β), J(γ, a, b, 0) =

b (a I2(β) − I1(β))
a − b

,

and, in particular,

29 Each sequence element ξn is represented by a partial sum, as was the case with the
(original) expression for calculating CEI of the second kind (given, as well, in the
preceding chapter by Milne-Thomson). These expressions, involving infinite sums,
do (most importantly) provide quadratically convergent procedures but, unlike the
(first) formula for calculating CEI of the first kind, they do not produce a sequence
of intervals, providing both (lower and upper) bounds.

30 That version of “Mathematica” was released on October 15, 2015.
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J

(
γ, ∞,

1
γ

,− 1
γ

)
= I1(β), 31 J(γ, ∞, 1, 0) = I2(β). (14)

We rewrite the latter special case, with c = 0, explicitly as
∫ 1/γ

1

dt

t2
√

(t2 − 1) (1 − γ2 t2)
=

π N(γ2)
2M(γ)

,

in order to emphasize that it was not excluded.32

5 Few Explicit Calculations of CEI via GAGM

Before we move on to numerical examples, we explicitly write down the iterative
step for generating a (next) sextuple of the GAGS. It must be preceded by
calculating the (temporary) values r2 = (xn − zn)(yn − zn), r1 =

√
r2, t2 =

z2n − r2, t1 = 2 zn − cn. Then

(xn+1, yn+1, zn+1, an+1, bn+1, cn+1) =

=
(

xn + yn

2
, zn + r1, zn − r1,

cn an − t2
an − t1

,
cn bn − t2
bn − t1

,
c2n − t2
cn − t1

)
.

At the terminal step, one calculates

vn(bn) =
bn − an

bn − cn
, vn(xn) =

xn − an

xn − cn
, vn(yn) =

yn − an

yn − cn
,

(ξn, ηn) =
(

vn(xn)
vn(bn)

,
vn(yn)
vn(bn)

)
.

Alternatively, one calculates the (same) values (ξn, ηn) = (wn(xn), wn(1)) as
they emerge from an equivalent abbreviated GAGS,33 as given by (4), although
(as we know) the transformation wn in and of itself is not invariant under linear
actions upon the GAGS.

Now, we shall presume that β = γ = 1/
√

2. Denote, for brevity, the values
M

(√
2

)
and N(2) by M and N , respectively, and put

L :=
π

M
≈ 2.62205755429211981046.34

31 Thus,

J

(
γ,

1

γ
,

1

2 + γ
, − 1

γ

)
= 0.

Note that the arguments of the (complementary) integral J coincide with the argu-
ments of the first integral I from identity (12), taken with the upper signs.

32 The inclusion of this case (c = 0) could not have been made possible had we chosen
the conventional definition of the CEI of the third kind.

33 Recall that for an abbreviated GAGS, yn = 1 for all n.
34 Assuming π is known with sufficient precision, the precision of the latter calculation

is attained after four iterations towards the value of the constant M .
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The constant L was referred to, in [7,8], as the lemniscate constant. It is the
semi-length of the lemniscate of Bernoulli which focal distance is

√
2.35

Firstly, we calculate the first (exceptional) case δ = 1/(1 − β) = 2 +
√

2 of
formula (2015.09.02), via applying (9) or the first of equations (10),

∫ 1

0

dt
(
t2 − 2 − √

2
) √

(1 − t2) (1 − t2/2)
= I

(
1√
2
, ∞, 3 +

√
2, 2 +

√
2
)

= −I1

(
1√
2

)
/
√

8 = −L

4
.

Secondly, we calculate two “mutually” complementary CEI, which share the
same absolute value

J

(
1√
2
, ∞, 1, 0

)
= − I

(
1√
2
, ∞, 3, 2

)
= I2

(
1√
2

)
, 36

where the first integral might be calculated via applying the second formula
of (14), while the second integral might be calculated via applying the second
formula of (10). The absolute values of both integrals turn out to coincide with
the value of CEI of the second kind, which might be further evaluated as

I2

(
1√
2

)
=

π N

2
√

2 M
=

L + M

2
√

2
≈ 1.3506438810476755025.34

In other words, the absolute value of either of the aforesaid integrals coincides
with the ratio of the semi-length of the perimeter of the self-complementary
ellipse, as defined in [7,8], to the length of its diameter (that is, its major axis).
The relationship of this ratio with the afore-defined constants M and L stems
from the (central) case of Legendre relation, which was presented by Euler to
the St. Petersburg Academy of Sciences on September 4, 1775 [14].37 Here, we

35 Such lemniscate is inscribed in a cocentered unit circle, as shown in [7,8, Fig. 2].
36 The expression on the leftmost side is attained by applying formula (13) to the

integral J and formula (11) to the integral I. Formula (2015.09.02) also applies at
(the exception case) δ = 1/γ2 = 2.

37 Another remarkable date when the first of two key ideas behind the “Gauss-Euler
algorithm” was presented. Note that the combination of these two outstanding names
is (nevertheless) as exceptionally rare as to require no further specification of the
algorithm for calculating the constant π. Strangely, a few still argue that the term
“Brent-Salamin algorithm” is preferable, being (as it seems to them) less ambiguous,
“since” both names Brent and Salamin are much less frequently heard (than either
Euler or Gauss). These few, including Brent [11], seem unaware that the frequency
with which either the name Euler or Gauss is (separately) associated with so many
methods does not imply that the two names (together) must be nearly as frequently
associated with any other (or same) methods. In fact, Gauss-Euler algorithm is never
confused with any other algorithm (whether or not related to calculating π), so there
is no ambiguity here to be lessened.
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might pause to express this beautiful relation with a marvelously simple and
powerful formula

π =
M2

N − 1
, 38

giving rise to a quadratically convergent algorithm for calculating π.39 Such
formula differs radically from power series representations of π. Combining iter-
ations we might attain convergence to an arbitrarily high order, whereas no
methods exist to accelerate a given linearly convergent algorithm to an algo-
rithm which order of convergence (strictly) exceeds one.40

Thirdly, we calculate the CEI

I3

(
1√
2
,−1

)
=

π N(2, 0, 1, 2/3)√
2 M

≈ 1.273127366749682458.

The precision of the last approximation is attained after the fifth iteration
towards N(2, 0, 1, 2/3) (assuming that π and M are known with sufficient pre-
cision). We list “chopping-off digits” approximations for the corresponding ele-
ments of GAGS:

x1 =
3
2
, y1 =

√
2, z1 = −

√
2, a1 = 3, b1 =

8
5
, c1 =

11
6

,

x2 ≈ 1.4571067811865475244008443621048490392848359,

y2 ≈ 1.4567863831370551039780621988172076268033687,

z2 ≈ −4.2852135078832452015814396472366037839427124,

a2 ≈ 1.5326295766316171593518437666622521421080396,

b2 ≈ 1.4653984421606063564190843656326729981349874,

c2 ≈ 1.4786163382163143732381813974936920788385887,

x3 ≈ 1.4569465821618013141894532804610283330441023,

y3 ≈ 1.4569465799271259366148342272973271159626949,

z3 ≈ −10.027373595693616339777713521770534683848119,

a3 ≈ 1.4570881857430571212719577244909612749313210,

b3 ≈ 1.4569624860227001384221562624104465633839000,

c3 ≈ 1.4569873148583131939298920209737533559017021,

38 This formula made its début in [8].
39 Note that evaluating the square root at each iteration is best done via the quadrati-

cally convergent (so-called) Heron’s method, which amounts to iteratively replacing
a given approximation r of a square root of s by the arithmetic mean of r and s/r.

40 For example, the Chudnovsky famously fast formula, for calculating π, converges
(still) linearly [13].



52 S. Adlaj

x4 ≈ 1.4569465810444636254021437538791777245033986, 41

y4 ≈ 1.4569465810444636253477894912161889487201529,
z4 ≈ −21.511693772431696304903216534757258316416392,
a4 ≈ 1.4569465812955909691425417509597958735013842,
b4 ≈ 1.4569465810726702938839128147996788375690002,
c4 ≈ 1.4569465811167028907128642667070835586747654,

x5 ≈ 1.4569465810444636253749666225476833366117757,

y5 ≈ 1.4569465810444636253749666225476833366117596,

z5 ≈ −44.480334125907856235181399692062199969444545,

a5 ≈ 1.4569465810444636253753615361024413575571484,

b5 ≈ 1.4569465810444636253750109793093234100922159,

c5 ≈ 1.4569465810444636253750802233393765414321542,

as well as, approximations for the corresponding elements of the difference
sequence:

d1 ≈ 0.119398062518129278742, d2 ≈ 0.007245988895557086620,

d3 ≈ 0.000026834417169799896, d4 ≈ 0.000000000368037706275,

d5 ≈ 0.000000000000000000069.

The GAGM is contained in the open interval (η5, ξ5), where

ξ5 ≈ 0.686664556900553064232, η5 ≈ 0.686664556900553064163.

The same difference sequence and the same open interval, containing GAGM,
arises had we calculated the abbreviated equivalent GAGS:

x1 =
4 + 3

√
2

8
, a1 =

2 + 3
√

2
4

, b1 =
5 + 4

√
2

10
, c1 =

12 + 11
√

2
24

,

x2 ≈ 1.0000557990344084608909536718021882886851740,

a2 ≈ 1.0132084978986451044553767711278338098480210,

b2 ≈ 1.0014998361523864412955349417792705697154935,

c2 ≈ 1.0038018034645730876221835149885411210608887,

x3 ≈ 1.0000000001945849073694805774440659743370935,

a3 ≈ 1.0000123303612025542191609858469557610928674,

b3 ≈ 1.0000013850271788806221085830365503548205435,

c3 ≈ 1.0000035470041381927545950431601339276865500,

41 The values x1 through x4 were calculated earlier (with lesser precision) in [8] as
successive approximations of N .
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x4 ≈ 1.0000000000000000000023664553855388570440700,

a4 ≈ 1.0000000000109334875695742133189157444409144,

b4 ≈ 1.0000000000012280512952458860229688472649685,

c4 ≈ 1.0000000000031451258870071434118165041864399,

x5 ≈ 1.0000000000000000000000000000000000000000003,
a5 ≈ 1.0000000000000000000000085967986933596017383,
b5 ≈ 1.0000000000000000000000009655939785168947160,

c5 ≈ 1.0000000000000000000000024729542094121398816. 42

The truncated GAGS does not require calculating an and bn. Instead, the
transformation w5 might be calculated, recursively, as

w5(t) = τ

(
x0, c0, τ

(
x1, c1, τ

(
x2, c2, τ

(
x3, c3, τ

(
x4, c4,

1
t − c5

)))))
,

and so η5 = w5(1) and ξ5 = w5(x5), where the value x5 (and the transformation
w5) is the same whether the GAGS is abbreviated or truncated.

Whatever the case, one ought not confuse the definition of GAGM with the
chosen method for calculating it. On the other hand, one must never forget that
the GAGM might be calculated “independently” of the AGM.43

6 Conclusion

The concept of MAGM enables a “perfect” formula for calculating CEI of the
second kind, as given by (2011.12.16), where a function of single variable (the
elliptic modulus) appears in its numerator. A “perfect” formula for calculating
CEI of the third kind requires constructing a bivariate function. Such function is
constructed by “extending” the concept of MAGM to GAGM, and the formula
for calculating CEI of the third kind is given by (2015.09.02). Moreover, the con-
cept of GAGM permits constructing a quadrivariate function which is necessary
for a general “perfect” formula for calculating any proper CEI, as given by (11).

Acknowledgment and Notification. The author supports an unrestricted access
to knowledge, and grants his permission for using his algorithms and formulas to
persons and non-profit-seeking organizations. Profit-seeking organizations, including
commercial software companies and their representatives, must address the author for
an explicit written permission, without which they are never permitted to use any
formulas, algorithms or methods based on the concept of MAGM or GAGM.

42 In our example, not only xn, but an, bn and cn also converge to 1.
43 So, of course, is the case with the MAGM which might be calculated, without the

AGM, as for determnining the length of a thread in a linear parallel repelling force
field [3,9].
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A Worksheet on Typical Troubles with Calculating CEI



An Arithmetic-Geometric Mean of a Third Kind! 55

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formu-
las, Graphs and Mathematical Tables. Applied Mathematics Series, vol. 55, 10th
Printing. National Bureau of Standards, Washington (1972)

2. Adlaj, S.: Galois elliptic function and its symmetries. In: Vassiliev, N.N. (ed.)
12th International Conference on Polynomial Computer Algebra, pp. 11–17. St.
Petersburg department of Steklov Institute of Mathematics (2019)

3. Adlaj, S.: Thread Equilibrium in a Linear Parallel Force Field. LAP LAMBERT,
Saarbrucken (2018). (in Russian)
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Abstract. With the help of software developed on the basis of the
“Mathematica” computer algebra system, the dynamics of a satellite-
gyrostat moving in a Newtonian central field of forces along the circular
Keplerian orbit was investigated. The linearized equations of perturbed
motion in the vicinity of the relative equilibrium of the system are con-
structed in the symbolic form on PC and the necessary conditions for
its stability are obtained. The parametric analysis of the inequalities
considers one of the cases when the vector of the gyrostatic moment of
the system is in one of the planes formed by the principal central axes
of inertia. The obtained stability regions have an analytical form or a
graphical representation in the form of 2D images.

1 Introduction

The study of stability and stabilization of nonlinear or linearized models of
mechanical systems often leads to the problem of “parametric analysis” of the
conditions (inequalities) obtained. In parametric analysis, it is important to have
a possibility to estimate the range of parameter values at which the required state
(property) of the system is provided. Naturally, it is hard to hope for obtaining
any readable analytical results for the models which have high dimensions and
contain many parameters. At this stage, one can efficiently use computer algebra
system (CAS) as well as the corresponding software elaborated on the basis of
CAS.

The rigid body with the fixed axis of a statically and dynamically balanced
flywheel rotating about that axis with a constant relative angular velocity is a
stationary gyrostat. The system moves along the circular Keplerian orbit in a
central Newtonian field of forces around the gravitational center. It is accepted
that the mutual influence of the motion of the gyrostat about its mass center and
the displacement of the latter at a constant angular velocity ω along the above
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mentioned trajectory are neglected. This is a so-called restricted formulation of
the problem of orbital motion. This problem has its prehistory (see the review [1])
and has so far attracted the attention of the researchers. The main attention of
the authors was concentrated on (i) finding the relative equilibrium positions for
various variants of positioning the flywheel’s rotation axis in the gyrostat’s shell
and (ii) obtaining sufficient conditions of Lyapunov’s stability from the analysis
of the generalized energy integral. However, the analysis of necessary conditions
of stability of the relative equilibria was carried out only for positioning of the
system’s gyrostatic moment vector along with any principal central axis of inertia
of the system (see, for example, [2]).

2 Construction of a Symbolical Model and Stability
Conditions

For the description of a motion of the system, two right rectangular Cartesian
coordinate systems with the poles in the system’s mass center O are introduced:

(1) OZ1Z2Z3 is an orbital coordinate system (OCS), where OZ3 axis is directed
by the radius-vector drawn from the attracting center into the mass center
of a gyrostat; OZ2 axis is perpendicular to the plane of the orbit.

(2) The coordinate system Oz1z2z3 rigidly connected to a body has the axes
directed along the principal central axes of inertia of a gyrostat.
A,B, and C are the moments of inertia concerning axes Oz1, Oz2 , Oz3 , and
hj are the projections (onto the corresponding axis) of a vector of gyrostatic
moment of system divided by ω . Here ω = |ω| is the module of orbital
angular velocity. For definition of a relative positioning of the OZk and Ozj
axes, the directional cosines defined by aircraft angles α , β , γ are used (see,
for example, [1]).

Consider the position of relative equilibrium ( α̇ = 0 , β̇ = 0 , γ̇ = 0 ) in
general form:

α = α0 = const , β = β0 = const , γ = γ0 = const . (1)

With the help of developed software [3], which is described in [4], the following
results in a symbolic form on PC are obtained: (a) kinetic and potential energy
of a system; (b) nonlinear equations of motion of orbital gyrostat in the form of
Lagrange of the 2nd kind; (c) existence conditions of equilibrium (1).

Let us write out the equations determining the equilibrium positions in regard
to OCS of the gyrostat (conditions (c)):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin 2α0

(
2(2A − B − C) cos2β0 − (B − C)(cos 2β0 − 3) cos 2γ0

)

+ 4 (B − C) cos 2α0 sinβ0 sin 2γ0 = 0 ,
(B + C − 2A + (B − C) cos 2γ0) sin 2β0 (5 − 3 cos 2α0)
+ 6(B − C) cosβ0 sin 2α0 sin 2γ0
+ 8 ( sinβ0 (h2 cos γ0 − h3 sin γ0) − h1 cosβ0) = 0 ,
1
2 (B − C)

(
sin 2γ0

(
3 cos2α0 + cos2β0 − 3 sin2α0 sin2β0

)

+ 3 sin 2α0 sinβ0 cos 2γ0) + cosβ0 (h2 sin γ0 + h3 cos γ0) = 0 .

(2)
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Let us present the angles α, β, and γ in the perturbed motion in the form:
α = α0 + α , β = β0 + β , γ = γ0 + γ , where α , β, and γ are small deviations
from equilibrium (1).

The linearized equations of perturbed motion in vicinity of (1) look this way:

M q̈ + G q̇ + K q = 0 , (3)

where q =
(
α , β , γ

)T
is a vector of deviations from unperturbed motion (1);

M =

⎛

⎝
M11 M12 M13

M12 M22 0
M13 0 M33

⎞

⎠ is a positive definite symmetric matrix of kinetic energy;

G =

⎛

⎝
0 G12 G13

−G12 0 G23

−G13 −G23 0

⎞

⎠ is a skew-symmetric matrix of gyroscopic forces;

K =

⎛

⎝
K11 K12 K13

K12 K22 K23

K13 K23 K33

⎞

⎠ is a symmetric matrix of potential forces.

Here

M11 = A sin2β0 + (B cos2γ0 + C sin2γ0) cos2β0 ,

M22 = B sin2γ0 + C cos2γ0 , M12 = (B − C) cosβ0 sinγ0 cosγ0 ,

M13 = A sinβ0 , M33 = A , detM = ABC cos2β0 > 0 ;
G12 = sin 2β0(A − B cos2γ0 − C sin2γ0) + h1 cosβ0

+ sinβ0(h3 sinγ0 − h2 cosγ0) ,

G13 = − cosβ0 ( cosβ0(B − C) sin 2γ0 + h2 sinγ0 + h3 cosγ0) ,

G23 = − cosβ0 ( A + (C − B) cos 2γ0) − h3 sinγ0 + h2 cosγ0 ;

K11 =
3
4

(
cos 2α0

(
(4A − 2(B + C)) cos2β0 − (B − C)(cos 2β0 − 3) cos 2γ0

))

+ 3 (C − B) sin 2α0 sinβ0 sin 2γ0 ,

K12 = 3 cosβ0

(
(B cos2γ0 + C sin2γ0 − A) sin 2α0 sinβ0

+
1
2

(B − C) cos 2α0 sin 2γ0

)

,

K13 =
3
4

(B − C) (4 cos 2α0 sinβ0 cos 2γ0 + sin 2α0(cos 2β0 − 3) sin 2γ0) ,

K22 =
1
4

( ( 2A + (C − B) cos 2γ0 − B − C )( 3 cos 2α0 − 5 ) cos 2β0

+3(C − B) sin2α0 sinβ0 sin2γ0) + h1 sinβ0 + (h2 cosγ0 − h3 sinγ0) cosβ0 ,

K23 =
1
4

(B − C) ( 6 sin 2α0 cosβ0 cos 2γ0 + (3 cos 2α0 − 5) sin 2β0 sin 2γ0)

− ( h2 sinγ0 + h3 cosγ0 ) sinβ0 ,

K33 =
1
4

(B − C)
(
cos 2γ0

(
10 cos2β0 − 3 cos 2α0 (cos 2β0 − 3)

)

− 12 sin 2α0 sinβ0 sin 2γ0) + (h2 cosγ0 − h3 sinγ0) cosβ0 .
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All derivatives in (3) are calculated by dimensionless time τ = ωt .
The characteristic equation of system (3): det

(
Mλ2 + Gλ + K

)
= v3λ

6 +
v2λ

4 + v1λ
2 + v0 = 0 contains λ only in even degrees. The stability of a trivial

solution of Eq. (3) takes place when all roots with respect to λ2, being sim-
ple, will be real negative numbers. The algebraic conditions providing specified
properties of roots (necessary conditions of stability), represent the system of
inequalities [5]:

{
v3 ≡ detM > 0 , v2 > 0 , v1 > 0 , v0 ≡ detK > 0 ,
Dis ≡ v2

2v
2
1 − 4v3

1v3 − 4v3
2v0 + 18v3v2v1v0 − 27v2

0v
2
3 > 0 .

(4)

It is worth noting that the first condition in (4) is always satisfied by virtue of
the positive definiteness of the kinetic energy matrix.

Remark 1. The cases where the characteristic equation has zero roots and/or
multiple purely imaginary roots are not analyzed here. If at least one of condi-
tions (4) is replaced by a strict contrary inequality, the system will be unstable,
according to the Lyapunov theorem on instability in the first approximation.

Emphasize that the construction of the symbolic linearized model (3)
(i.e., obtaining in the analytical form the elements of the matrices M ,G ,K),
the calculation of the coefficients vi (i = 0, 3) and the discriminant Dis from (4)
was also performed using the software [3].

3 Relative Equilibria

The analytical or numerical determination of all the equilibrium positions of a
satellite-gyrostat in regard to OCS has been described in detail in [6] for the
general case (h1 �= 0 , h2 �= 0 , h3 �= 0 , A �= B �= C ) or for the special cases in
[7]. Depending on the effect of the gyrostatic moment, a bifurcation picture of
equilibrium positions has been presented in the papers, and their number has
been found.

Let us write out some particular solutions of system (2), for which the gyro-
static moment vector lies in one of the planes formed by the satellite’s principal
central axes of inertia.

In case 1 (h1 = 0, h2 �= 0, h3 �= 0), there are the following equilibrium
positions:

{
α = α0 = 0 , β = β0 = 0 ,
γ = γ0 = const : h2 sinγ0 + cosγ0(h3 + 4(B − C) sinγ0) = 0 ; (5)

{
α = α0 = π/2 , β = β0 = 0 ,
γ = γ0 = const : h2 sinγ0 + cosγ0(h3 + (B − C) sinγ0) = 0 .

(6)

In case 2 (h3 = 0, h1 �= 0, h2 �= 0), there are the following equilibrium
positions:

{
α = α0 = 0 , γ = γ0 = 0 ,
β = β0 = const : h2 sinβ0 − cosβ0(h1 + (A − B) sinβ0) = 0 ; (7)
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{
α = α0 = π/2 , γ = γ0 = 0 ,
β = β0 = const : h2 sinβ0 − cosβ0(h1 + 4(A − B) sinβ0) = 0 .

(8)

In case 3 (h2 = 0, h1 �= 0, h3 �= 0), there are the following equilibrium
positions:

{
α = α0 = 0 , γ = γ0 = π/2 ,
β = β0 = const : h1 cosβ0 + sinβ0(h3 + (A − C) cosβ0) = 0 ; (9)

{
α = α0 = π/2 , γ = γ0 = π/2 ,
β = β0 = const : h1 cosβ0 + sinβ0(h3 + 4(A − C) cosβ0) = 0 .

(10)

The equilibrium positions (5) and (7) can be found in [1], the equilibrium
positions (6) and (8) are the classes of equilibrium orientations in the cases,
respectively, h1 = 0 , a2

31 = 1 and h3 = 0 , a33 = 0 (see [7]), the equilibrium
positions (9) and (10) belong, respectively, to the group of solutions I and III
in [8].

It has been ascertained that the conditions of positive definiteness of the
matrix of potential forces K for solutions (5) and (7) coincide with the sufficient
conditions of stability given in [1], and in case of solutions (9) and (10) – with
those obtained and studied in [8].

Obtaining and analysis of the necessary stability conditions of relative equi-
libria on the basis of equations of the first approximation were conducted by the
author earlier for the oblate [9] and prolate [10] axisymmetric orbital gyrostats,
in the case when the system’s gyrostatic moment vector lies in one of the prin-
cipal central inertia planes.

4 Parametric Analysis of Stability Conditions

For example, consider the parametric analysis of the necessary stability condi-
tions (4) in case 3: h2 = 0 , h1 �= 0 , h3 �= 0 .

Without loss of generality, let hi > 0 (i = 1, 3) and B > A > C .
Let us enter dimensionless parameters:

H1 ≡ h1

B
; H3 ≡ h3

B
; JA ≡ A

B
; JC ≡ C

B
; pc ≡ cosβ0 ; ps ≡ − sinβ0 . (11)

The values of the parameters belong to the intervals:

1
2

<JA<1 , 1 − JA< JC < JA ; −1<pc<1 ,
(
pc �= 0 , ps= ±

√
1 − p2c

)
. (12)

The restrictions on the parameters JA , JC come from the conditions B>A>C ,
B < A + C. With the values of pc = 0 (or ps = 0), from equations in (9) and
(10), it then follows that h3 = 0 (or h1 = 0), what contradicts the conditions
h1 > 0 , h3 > 0 .



62 A. V. Banshchikov

4.1 Necessary Stability Conditions of Equilibrium (10).

Let us start with the equilibrium position (10). Using (11), let us resolve the
equation from (10) with respect to the parameter H1:

H1 = ps

(

4 (JA − JC) +
H3

pc

)

. (13)

Taking into account notations (11) and expression (13), equations (3) have
matrices:

M =

⎛

⎝
JCp2c + JAp2s 0 −JAps

0 1 0
−JAps 0 JA

⎞

⎠ ;

G =

⎛

⎝
0 −2 (JC − JA) pcps 0

2 (JC − JA) pcps 0 (JC − JA − 1) pc − H3

0 H3 + (JA − JC + 1) pc 0

⎞

⎠ ;

K =

⎛

⎝
3
(
1 − JAp2c − JCp2s

)
0 −3 (1 − JC) ps

0 4 (JC − JA) p2c − H3
pc

0
−3 (1 − JC) ps 0 K33

⎞

⎠ , (14)

where K33 = (1 − JC)
(
1 − 2

(
p2c − p2s

)) − H3pc .
The parameter ps enters the coefficients of the system’s characteristic equa-

tion only in even degrees. Let us eliminate it, considering p2c + p2s = 1 . Let us
write down these coefficients depending on four parameters JA , JC , pc , H3 in
an explicit form:

v3 ≡ detM = JAJCp2c ; v2 = H2
3

(
p2c (JC − JA) + JA

)

+H3pc
(
JA (1 + 6JA − 7JC) − p2c (1 + 6JA − 2JC) (JA − JC)

)

+ p2c
(
3 (3JA − 1) J2

C + ( 3 − 2JA (1 + 9JA)) JC + 3 (1 + 3JA) J2
A

)

− p4c (JA − JC)
(
9J2

A − 6JA (JC − 1) + (JC − 1) (JC + 3)
)
;

v1 = H2
3

(
4p2c (JC − JA) + JA − 3JC + 3

)
+ H3pc (3 − 22JAJC

− 24JC + 3J2
A + 19JA + 21J2

C − p2c (6JA − 26JC + 19) (JA − JC)
)

+ p4c (JA − JC)
(
6JA (5JC − 7) + 9J2

A − 31J2
C + 34JC − 3

)

− 3p2c (JC − 1)
(
JA (3 − 18JC) + 9J2

A + JC (9JC − 2)
)
;

v0 ≡ detK = 3
(
H3 + 4p3c (JA − JC)

) × (
H3

(
p2c (JC − JA) − JC + 1

)

+pc (JC − 1)
(
JA

(
4p2c − 3

) − 4
(
p2c − 1

)
JC − 1

))
. (15)

The discriminant Dis (see (4)) of a cubic equation is an 8th degree polynomial
in regard to H3 with the coefficients depending in a complicated manner on
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the parameters JA , JC , and pc . This polynomial is not presented in an explicit
analytical form due to being immense.

According to Kelvin–Chetaev’s theorems [11], studying the questions on sta-
bility of equilibria begins with the analysis of a matrix of potential forces. With
the help of “Mathematica” function

Reduce[ { 1/2 < JA < 1 , 1 − JA < JC < JA , −1 < pc < 1 , pc �= 0 , H3 > 0 ,

1 − JAp2c − JC(1 − p2c) > 0 , 4 (JC − JA) p2c − H3/pc > 0 , detK > 0 },
{JA , JC , pc , H3 }, Reals ]

designed to find the symbolic (analytical) solution of the inequalities systems,
the conditions of positive definiteness of a matrix K from (14) are obtained.
Due to the solution bulkiness, its presentation is omitted here. An analysis of
the solution obtained allows us to conclude the following conclusion.

Proposition 1. The matrix of potential forces (14) for the equilibrium (10)
with the values of parameters from (12) can be positively determined only in the
interval −1 < pc < 0 .

It is not possible to obtain an analytical solution for the entire system of
inequalities (4) (with the coefficients vi (i = 0, 3) from (15)) because of the large
number of parameters and the complexity of the expressions being analyzed.
Therefore, to simplify the analysis, let us move on to symbolic-numerical analysis
for fixed values of some parameters.

Let us find the graphic solution of the system of inequalities (4) for two
variants of fixed parameter values:

(1) JA = 2/3 , JC = 1/2 , the conditions for the parameters pc and H3 are to
be obtained;

(2) pc = −1/
√

2 , H3 = 1, the conditions for the parameters JA and JC are to
be obtained.

Let us construct the regions of necessary conditions of stability in the param-
eter plane pc ,H3 (or JA , JC) using “Mathematica” function

RegionPlot [ −1<pc<1 ∧ pc �=0 ∧ H3> 0 ∧ v0> 0 ∧ v1> 0 ∧ v2> 0 ∧ Dis > 0 ,
{ pc ,−1 , 1 }, {H3 , 0 , 1.6 } ]

RegionPlot [ 1/2<JA<1 ∧ 1 − JA<JC <JA ∧ v0> 0 ∧ v1> 0 ∧ v2> 0 ∧ Dis > 0 ,
{JA , 1/2 , 1 }, {JC , 0, 1 } ]

designed for a graphical representation of the solution of the system of inequal-
ities. The results obtained are shown with shaded regions in Figs. 1 and 2.

The darker areas obtained in Fig. 1 (or Fig. 2) belong to the region where the
matrix K is positively definite.
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4.2 About the Gyroscopic Stabilization of the Equilibrium (9)

The equation from (9) in parameters (11) is solved for H1 as follows:

H1 = ps

(

(JA − JC) +
H3

pc

)

.

Considering last relation and notations (11), the matrix of potential forces
takes the form:

K =

⎛

⎝
3
(
JAp2c + JCp2s − 1

)
0 −3 (JC − 1) ps

0 (JC − JA) p2c − H3
pc

0
−3 (JC − 1) ps 0 K33

⎞

⎠ , (16)

where K33 = 3 (JC − 1) − pc (H3 + (1 − JC) pc) .
The coefficients of the characteristic equation (after the elimination of param-

eter ps) become:

v2 = H2
3

(
p2c (JC − JA) + JA

)
+ H3pc

(
p2c (2JC − 1) (JA − JC) − JA (JC − 1)

)

+ p2c
(
JA

(
p2c (1 − JC)JC + JC − 3

)
+ 3J2

A + JC (JC − 1)
(
p2cJC + 3

))
;

v1 = H2
3

(
2p2c (JA − JC) + JA + 3 (JC − 1)

)
+ H3pc

(
3J2

A

(
2p2c − 1

)

−JA

(
4p2c (JC + 1) + JC − 4

) − JC

(
2p2c + 3

)
(JC − 2) − 3

)

+ 3p2c (JC − 1) (3JA + JC − 3)
− p4c (JA − JC)

(
3JA (JC − 2) + 4J2

C − 10JC + 6
)
;

v3 ≡ detM = JAJCp2c ;
v0 ≡ detK = 3

(
p3c (JC − JA) − H3

) × (
H3

(
1 − JC + p2c (JC − JA)

)

−pc (JC − 1)
(
4 (1 − JA) + (JC − JA)

(
p2c − 1

)))
. (17)



Necessary Conditions of Stability of Orbital Gyrostat 65

The main diagonal first-order minor of the matrix K from (16) on intervals
(12) is negative. Therefore, matrix (16) is not positive definite and equilibrium
(9) will be unstable.

It is known that if the equilibrium position is unstable at potential forces,
Kelvin–Chetaev’s theorem [11] of influence of gyroscopic forces tells us that gyro-
scopic stabilization is possible only for systems with an even degree of instability.
The evenness (or oddness) of the degree of instability according to Poincaré is
determined by positivity (or negativity) of the determinant of the matrix of
potential forces.

Let us pose the question of the possibility of gyroscopic stabilization of unsta-
ble equilibrium (9) under condition detK > 0 . The set in the parameter space
that meets the last-mentioned inequality determines the region with an even
degree of instability:

1
2

< JA < 1 ∧ 1 − JA < JC < JA ∧ −1 < pc < 0 ∧

∧ p3c (JC − JA) < H3 <
pc (JC − 1)

(
4 (1 − JA) + (JC − JA)

(
p2c − 1

))

1 − JC + p2c (JC − JA)
.

For the detection of a property of gyroscopic stabilization, it is necessary to
find in what part of the region with an even degree of instability the remaining
inequalities from (4) are fulfilled (except for v3 ≡ detM > 0 , v0 ≡ detK > 0 ).

Instead of solving system (4), let us first consider a simpler problem. The
symbolic solution of the system of inequalities that determines the positivity
of coefficients (17) obtained with the help of the function Reduce is FALSE.
Obviously, the system of inequalities (4) will also appear to be inconsistent. As
a result of the analysis, the following proposition can be formulated.

Proposition 2. The unstable equilibrium (9) for parameters from the range
(12) cannot be stabilized by gyroscopic forces.

5 Conclusion

Based on the analogy with the parametric analysis presented above, the neces-
sary stability conditions for the equilibrium positions (5)–(8) were also investi-
gated. Note that under other conditions for the inertia moments of gyrostat, it is
possible to introduce new parameters and perform the analysis again, applying
the same functions (Reduce, RegionPlot, RegionPlot3D) of symbolic-numerical
modeling.

Generally speaking, the necessary conditions do not guarantee the Lyapunov
stability in general, but only for those parts of the stability region where the
condition of the Lagrange theorem (see, for example, [11]) holds true. In the
considered problem, these are the darker areas obtained in Figs. 1 and 2. But
obtaining the necessary stability conditions allows, for example, to consider the
possibility of gyroscopic stabilization for an unstable system under the action of
potential forces.



66 A. V. Banshchikov

Once again we emphasize that all computations on PC were carried out in the
symbolic or symbolic-numerical form and, moreover, the differential equations of
motion and coefficients of the characteristic equation in an automatic mode were
obtained with the software created on the basis of the CAS “Mathematica”.
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Abstract. This paper describes and analyses optimization approaches,
which make possible the exact calculation of millions of hierarchical count
distinct measures over hundreds of billions data rows. Described app-
roach evolved for several years, in parallel with the growth of tasks from a
fast growing internet company, and was finally implemented as a PEAPM
(Pipelined Exact Accumulation for Paralleled Measures) algorithm. Cur-
rent version of an algorithm outputs exact values (not estimates), works
in a single thread, in minutes using a general commodity hardware, and
requires volume of RAM equal to the doubled size of required measures.

Keywords: Big Data · MPP · Database · Analytics ·
Cardinality estimation · Distinct elements problem ·
Clickstream analysis · Performance

1 Introduction

Big Data analytics is rapidly becoming a commonplace task for many compa-
nies, especially for electronic (internet) commerce ones. Such companies rely on
its audience as a main asset. Electronic commerce companies with a large and
loyal audience are attractive for investors, even if their current cash flow is nega-
tive. Audience of electronic commerce service is traditionally estimated by DAU
(daily active users) and MAU metrics (monthly active users) [2]. These metrics
are essentially a count distinct aggregates over all user actions performed inside
the electronic commerce service. Avito is a Russian classified site, very big and
extremely profitable [6]. Daily volume of daily unique visitors exceeds 10 mln
[6], user actions in Avito exceeds few billions events a day, number of count dis-
tinct aggregates-per-day and -per-month exceeds few millions. Estimation and
probabilistic approaches were rejected because of multiple reasons. Engineering
team of Avito successfully implemented an efficient exact count distinct algo-
rithm, which calculates millions of count distinct aggregates over (hundreds)
billions of events in minutes (in total), using only one processor thread and
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https://doi.org/10.1007/978-3-030-26831-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26831-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-26831-2_5


68 N. Golov et al.

minimum amount of RAM. Algorithm is described, real-world data experiments
and optimization steps are listed. Link to the open-source implementation of an
algorithm is also provided.

2 Note and Issues

Internet companies collect data about user activity by recording logs of detailed
user actions, click rates, visits, and other property records of web users. Data
about user activity is usually collected inside Data Warehouse or Data Lake.
The first version of the Data Warehouse (DW) at Avito was built in 2013 using
Anchor modeling methodology [4], it contained 10 TB of data, and ran on a
Vertica cluster of 3 servers. It loaded data from two data sources: the back office
system at Avito and clickstream web logs. Since then, the DW has grown, and the
current size of the Avito data warehouse has been limited to 276 Tb for licensing
reasons (176 TB at 2018, 276 Tb at 2019). It now contains years of consistent
historical data from 40+ data sources (back office, Google DFP/AdSense, MDM
system, CRM system, RTB systems, among others), and a rolling half year of
detailed clickstream data. The cluster has been increased from 3 to 20 nodes
in order to scale up performance [5]. The sequence of pages visited by within
a particular website is known as the clickstream of the users. Clickstreams are
analyzed to understand traffic, the number of unique visitors, sessions, and page
views [3]. Clickstream is one of the biggest and most important data domains
of Avito. It is a huge sequence of events (up to few billions a day), where each
event is a vector of few dozens (hundreds) of attributes.

Clickstream data are loaded every 15 min. At the beginning of 2014, each
such batch contained 5 million rows (≈1.5 GB) and 15 million (≈5 Gb) one year
later. Avito has evolved their data model over the years. The clickstream records
originally had less than 30 attributes, while now containing more than 200.
Clickstream data has grown many times, both in terms of velocity (number of
rows per minute), volume (size), and variety (number of attributes). The growth
was successfully handled through scaling up the cluster by the addition of nodes.

At the beginning of 2019, Avito had billions of raw click stream events per
day. Those raw events are being preliminarily filtered to remove non-human
activity and combined into final, “wide” events. For example, single search
request of a user produces few raw front-end events (pixels, banners shown) and
few raw backend events (call of search engine, call of recommendations engine),
but, for analytical purpose, those events have to be combined into a single wide
search event, which contains all required fields. Each final wide event must con-
tain cookie id field (universal code of a user) and dimension attributes (example
given at Sect. 2). Preliminary filtering and combining produce hundreds of mil-
lions of final events from billions of raw events. Onward we will use the term
“event” for the final wide events, after filtering and combining.

Typical attributes are:

– cookieID - unique identifier of a user (even unlogged ones).
– eventDT - date and time of event.
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– eventType - type of action performed by a user, search, page view, contact,
banner click, starting a chat and so on.

– platform - type of device used by a user: IOS, Android, PC or tablet.
– locationID - city or region, where action was performed.
– categoryID - category, part of a site, where action is performed, such as Autos,

RealEstate, CV and so on.
– isRegisteredUser - analytical metric, which is true for a user who performed

log in.
– isNewVisitor - analytical metric, which is true for new arrivals (for freshly

issued cookies).
– ....

Above-listed basic attributes. Really some attributes are a group of
attributes. For example, locationID can be observed as a set of three attributes:
City, Region, and Country. All the same, eventType is also augmented with
secondary attributes: isContactEvent, isPageViewEvent, isPaymentEvent. Such
augmentation helps to analyze hundreds of events, thousands of categories, and
tens of thousands of locations. Typical clickstream analysis requires calculation
of count of unique users (cookies) for a given set of attributes. This calculation
can be described as a typical SQL query:

select count(distinct cookieID)
from ClickStream
where EventType=... and eventDT = ... and locationID=...

This SQL query can be processed by almost any database, with different per-
formance. In any case, database has to filter clickstream table (of billions event-
a-day) and perform count distinct aggregation over filtered values (maybe all
values, if filters are omitted and total count distinct values are required). Mod-
ern column-based database can execute such query in up to few seconds (4 s or
more [7]). But real-world analytical scenarios require not a single aggregation,
but dozens and hundreds of aggregations: for example, to illustrate the dynam-
ics of daily count distinct values through a year, or to compare cities to find
the most rapidly growing ones. Hundreds of aggregation (required for a single
analysis) will take many minutes and load database hardware a lot. If there are
dozens of analysts performing such sorts of analysis in parallel, database will
suffer. Also, if a company want to retain an ability to perform count distinct
analysis for any combination of filters, then it has to store all clickstream events
for the required period of time. For Avito it means up to 1 bln. events a day,
for 5 years, about 1.5 trln. events in total. So, if the number of parallel count
distinct based analysis is high, some pre-aggregation step sounds reasonable, it
can speed up analysis and reduce storage space requirements.

The main issue of count distinct metric is that it is non-additive one. So it
is impossible to calculate elementary values (for smallest possible combination
of attributes), and simply combine them all together to get a total value. If a
single cookie performed actions for Auto, Real Estate and General categories
(value of count distinct cookies is 1 for each category), total count distinct value
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is also 1, which can be obtained by combination by per-category values. There-
fore, to calculate all possible pre-aggregates, one has to calculate all possible
combinations of attributes using both existing values of the attributes and a
special value ANY. For example, for attributes is RegisteredUser=[True, False]
and is NewVisitor=[True, False], there are 9 possible combinations rather than 4:
{Any, Any},{Any, True},{Any, False}, {True, Any},{True, True},{True, False},
{False, Any},{False, True},{False, False}. Combination {True, Any} means that
count distinct have to be calculated with condition isRegisteredUser = True, and
without condition of isNewVisitor. Therefore, Cartesian product of just the val-
ues of attributes listed above will give us up to 100 mln. of possible combinations,
which will lead to 3 years of calculations, if each calculation is only lasting 1 s,
but has to be performed sequentially.

2.1 Methods

Direct approach to count distinct calculation described in the section above.
This approach assumes two possible scenarios:

– Scenario 1: “On demand” calculation - store all raw events, calculate met-
rics in real-time, on demand, when analysis is required. As was mentioned
above, single click-stream event contains ∼100 attributes, and, therefore, sin-
gle event requires ∼1 kb. of disc space. Therefore, 1 bln. events (average single
day traffic) require 1 Tb of disc space. 1.5 trln. events (combined 5 year traffic)
require 1.5 Pb of disc space. 1.5 Pb of disc space - it is hundreds of servers
to store. Exact numbers depend on replication factor (2 or 3), compression,
storage format, size of single server (6, 9 or 10 Tb per. server), but, either way,
the total number of servers is no less than a hundred and a half. One or two
hundred of servers is an affordable amount for a profitable internet company,
but it is extremely expensive. Contemporary Big Data databases, such as
Vertica, GreenPlum, ClickHouse or Hadoop (HDFS+Hive) can operate such
volumes of data and process given on-demand calculations in reasonable time:
few minutes [7]. But if the performance of an installation becomes insufficient
(because of quantity of parallel count distinct requests), company has to dou-
ble or triple its set of hundreds of servers. So, the scenario 1 is realistic,
it is rather simple (because of modern Big Data databases), but it
is very-very expensive.

– Scenario 2: preliminary calculations. This scenario requires storage of raw
events for ∼2 months (previous one plus current one, up to 60 Tb if single
day traffic is ∼1 Tb), and a preliminary calculation of all daily metrics (on
a daily basis) plus all monthly metrics once a month. As it was described in
the previous section, Cartesian product over all values of general attributes
of web traffic produce up to 100 mln. of possible metrics. Real cases of Avito
demonstrate that 90 percentiles of metrics are empty almost every time and
can be omitted. Next 9 percentiles are also not very high (value less than 100
for daily metrics), and can be deliberately ignored. Last percentile, 1 mln.
of the biggest metrics, cannot be further reduced. Therefore, this scenario,
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in case of maximal possible reduction of metrics, for Avito figures, means 1
mln. of daily metric calculations over 1 bln. events, plus 1 mln. of monthly
metric calculations over 30 bln. of events. Second scenario is possible, if
it is possible to calculate monthly metrics in 2.5 seconds per metric
(month is 2.5 mln s, for 1 mln. metrics), and daily metrics in 0.08
second per metric.

Let us illustrate the above-mentioned estimate of ∼100 mln. metrics as a result
of Cartesian product of all possible values of critical attributes:

(2+"ANY"=3 for isRegisteredUser)*(4+"ANY"=5 for Platform)
*(2+"ANY"=3 for isNewVisitor)*(97+"ANY"=98 for Regions)
*(300+"ANY"=301 for EventType)*(75+"ANY"=76 for CategoryID)
=100 548 000.

All figures in given formula are real for Avito, they can differ for another internet
company. They are listed in this paper only to illustrate how Cartesian product
works. How rather small numbers of unique values (less than 300) for just 6
attributes can lead to 100 mln. of combinations. Let us illustrate how figures
change, if “ANY” special value is removed from all attributes:

(2 for isRegisteredUser)*(4 for Platform)
*(2 for isNewVisitor)*(97 for Regions)
*(300 for EventType)*(75 for CategoryID)
=34 803 600.

Therefore, if it is somehow possible to make metrics additive, only lowest level
aggregates can be precalculated and stored, reducing the number of required
metric calculations several times (∼3 times for example above, better reduction
is also possible for more attributes with lower number of unique values).

Count distinct metrics can be estimated by a HyperLogLog [1] algorithm,
which is somehow additive (with some limitations). HyperLogLog makes possible
a Scenario 3.

– Scenario 3: perform aggregations only for lowest level metrics using Hyper-
LogLog algorithms, which require several times less aggregations than Sce-
nario 2. Store raw aggregation buffers (auxiliary memory filled in the first
part of HyperLogLog algorithms, [1]). In case of count distinct analysis, one
has to load elementary raw aggregation buffers (auxiliary memory blocks)
and combine them to get required aggregates, using additivity introduced
by HyperLogLog algorithm. Example: to calculate count distinct measure
for ANY isRegisteredUser;* with additivity, you can take auxiliary memory
buffers for isRegisteredUser==True;* and isRegisteredUser=False;*, combine
them using HyperLogLog and estimate total count distinct value using Hyper-
LogLog. Drawbacks of scenario 3 are as follows: existing papers recommend
to use 1.5 kb or 2 kb auxiliary memory buffers. Therefore, although Scenario
3 requires to calculate several times less metrics (only lower level ones), each
metric has to be stored not as a single value (big integer value, 8 bytes), but
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as an auxiliary memory buffer of 2 kb. Therefore, taking 1 mln. metrics from
Scenario 2 (deliberate ignoring of empty-ones), and reducing them, for exam-
ple, 3 times, one will have to store 0.6 Gb per day, or ∼1.5 Tb per 5 years,
which is cheap enough. Second drawback is caused by the probabilistic nature
of the HyperLogLog algorithm. HyperLogLog with a 1.5 kb auxiliary mem-
ory buffer gives a 2% of errors for metrics with cardinality less than 1 bln. of
unique values [1]. Tests of Avito showed that combining of auxiliary memory
buffers leads to multiplication of errors, if the total number of unique values
is less than 1 bln., and event worthier errors, if the total number of unique
values for the metric exceeds 1 bln. So, finally, Scenario 3 is few times
better in terms of the number of required preliminary aggregations,
requires more storage space (non-critical growth), but it gives not
an exact number, but an estimate with an unpredictable level of
error, which worsens with the growth of estimated values.

Three scenarios were described and estimated. First one is most convenient for
analysts, but extremely expensive in support and scaling. Third one is cheaper,
more computationally expensive, but provides approximate rather than exact
values. Second scenario is the cheapest one in terms of storage, provides exact
results, but requires a huge volume of computations. Further sections describe
an approach, which gave Avito the ability to perform all computations required
for Scenario 2, with a single thread, for 15 minutes per day.

2.2 Solution to the Problem of Fast and Efficient Count Distinct
Calculation

Let the basic terms be defined.

Definition 1. Attribute is a field of events with a fixed set of values. Examples:
isNewVisitor [True, False], platform [IOS, Android, Desktop].

Definition 2. Event is a cookie id plus Date plus list of Attributes: Event::=
[cookie id, Date, A 1, A 2,...,A N].

Definition 3. Dimension is a copy of attribute with one additional technical
value “ANY”. Attribute isNewVisitor [True, False] corresponds to Dimension
isNewVisitor [True,False, ANY], Attribute platform [IOS, Android, Desktop]
corresponds to Dimension platform [IOS, Android, Desktop, ANY].

Definition 4. Accumulator is a list of Dimensions and correspondent val-
ues. Accum::=[D 1 val, D 2 val,...,D N val]. For example, if we take attributes
isNewVisitor [True, False] and platform [IOS, Android, Desktop], there are
2*3=6 possible value combinations. The correspondent dimensions isNewVisi-
tor [True, False, ANY] and platform [IOS, Android, Desktop, ANY] produce
3*4=12 possible accumulators.

Therefore, if there are set of events E, E=[cookie id, Date, A 1, A 2,...,A N]
and one accumulator [D 1 val, D 2 val,...,D N val], then count distinct measure
value for the accumulator can be defined as follows:
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SELECT count(distinct cookie_id) from {E} e
WHERE

((e.A_1 = D_1_val) OR (D_1_val=’ANY’)) AND
...
((e.A_N = D_N_val) OR (D_N_val=’ANY’))

If events are stored on disk ordered by cookie id column, than ordering can be
utilized to calculate distinct count for a given single accumulator in a pipelined
manner:
1. result = 0, prev cookie id = NULL
2. read next event E from disc according to filters (WHERE clause in the sample above)
3. if no more event − return result
4. if E.cookie id <> prev cookie id then

prev cookie id = E.cookie id
result = result+1

5. goto 2

Listing 1.1. Basic count distinct in a pipelined manner, pseudo-code.

This algorithm is well known, it is extremely efficient in terms of memory and
speed, it reads data from a disc only once, but it calculates only one accumulator
at a time.

Section 2.1 describes business case of Avito, which requires the calculation of
hundreds of millions of accumulators. Even efficient algorithm above, repeated
hundred of millions times, becomes inefficient. Hereinafter we describe two ver-
sions of efficient algorithm, which does absolutely the same, as a hundred millions
times repetition of the simple algorithm above, but in a much more efficient and
fast way.

1. Sort all required events by a cookie\ id field (or initially store them sorted).
2. Read all unique combination of attribute values from events (A 1, A 2,...,A N). Produce unique list of

possible accumulators according to available attribute values. For each accumulator in a list (Accum,
Accum=[D 1 val, D 2 val,...,D N val]), calculate a 64 bit hash code, accum\ hash = hash64(D 1 val,
D 2 val,...,D N val]). Therefore, each accumulator can be encoded as a single BigInt rather than a full
list of dimension’s values. Therefore, (accum hash) of hundred millions of accumulators will take only
800 Mb of space. Same for feature hashes.

3. Create matrix of correspondence between hash(A 1, A 2,...,A N), or a feature hash, and a list of
accum hash. This matrix shall be like this:
CorrMatrix=(feature hash,(accum hash)).
This matrix can be rather big, up to hundred of Gb of space.

4. Create a Result data structure, which stores for each accumulator the metric counter and the last cookie:
Result=[accum hash, counter=0, prev cookie id=NULL]. For a hundred millions of accumulators, this
structure will take approximately 2.5 Gb of space.

5. Read next event E=[cookie id, Date, A 1, A 2,...,A N] from a disc according to filters (filters can also
affect features of events not used inside dimensions of accumulators, such as date of event.

6. Calculate feature hash = hash(A 1, A 2,...,A N).
7. Get a list of correspondent accumulator hashes from a CorrMatrix according to feature hash.

(accum hash) = CorrMatrix[feature hash]
8. For each accum hash in a set, compare E.cookie id with

Result[accum hash].prev cookie id. If equals −− skip, if not:
Result[accum hash].prev cookie id = cookie id
Result[accum hash].counter += 1

9. Return to step 5, if there are any other events, or output the Result data structure.

Listing 1.2. Efficient algorithm with an excessive correspondent matrix, or a proto-
PEAPM (Pipelined Exact Accumulation for Paralleled Measures).
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If all events are initially stored ordered by cookie id (they are stored this way
in a Data Warehouse of Avito, no problems caused), then the given algorithm
just reads all events twice (steps 2 and 5) and calculates all distinct counters
in a single run. There are no other operations beside reading data twice and
looking up two hash tables. This approach innovates in combining hash join
and pipelined group-by together. Main issue of an algorithm 1 is caused by the
necessity to store rather big correspondent matrix, which can be hundreds of
Gb. Second issue is the necessity to read events twice (maybe it is possible to
read them once?).

Given issues led to the creation of optimized version of an algorithm, which
does not require the correspondent matrix (CorrMatrix) and requires only a
single read of events. This optimized version was called PEAPM (Pipelined Exact
Accumulation for Paralleled Measures).

Until now, we generated hash out of event attributes using non-invertible
hash function. In order to get all combinations of attributes for given hash
we needed a specific correspondent matrix. This matrix contained for every
event feature hash=hash(A 1, A 2,...,A N) correlated accumulator hashes we
want cookie id to be counted in. So basically the correlation looks like this:

hash(A_1, A_2,...,A_N) -> [ hash(0 ,A_2,...,A_N),
hash(A_1, 0,...,A_N),
hash(0 , 0,...,A_N),
... ,
hash(0 , 0,..., 0) ]

We just put zero for subset of attributes and calculate hash.
Let us define ihash function as follows:

ihash = concat([encode(A_1),encode(A_2),...,encode(A_N)])

Now we can interpret hash value itself and there is no need for CorrMatrix
anymore as we expose parts of hash corresponding to specific event attribute.
With given hash function for each feature hash = ihash(A 1, A 2,...,A N) we can
generate correspondent accumulator hashes on the fly simply by multiplying hash
with mask of 00 and FF for each byte in a hash, so

ihash(0, A_2,...,A_N) = ihash(A_1, A_2,...,A_N) * [00,FF,...,FF]

With given hash function, the algorithm can be described as follows:
1. Sort events by a cookie id (or initially store them sorted).
2. Read next event E=[cookie id, Date, A 1, A 2,...,A N] from a disc according to filters (filters can also

affect features of events, not used inside dimensions of accumulators, such as date of event.
3. Calculate feature hash = ihash(A 1, A 2,...,A N).
4. For each mask i in a constant set of masks calculate accumulator product:

accum hash = feature hash ∗ mask i
5. For each accum hash obtained at the previous step, compare E.cookie id with

Result[accum hash].prev cookie id. If equals − skip, if not:
Result[accum hash].prev cookie id = cookie id
Result[accum hash].counter += 1

6. Return to step 2, if there are any other events, or output the Result data structure.

Listing 1.3. PEAPM (Pipelined Exact Accumulation for Paralleled Measures), efficient
algorithm without correspondent matrix, which reads events only once.
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Real life depersonalized sample given below.

User 11906745 made tree similar actions featuring combination of dimen-
sions of 0xaaab2301ff0205291c2f04f6024008b1. After exposing it to mask 0xfffffff
fffff0000ffffffff00000000 we have accumulator of 0xaaab2301ff0200001c2f04f6000
00000:

– aaab for metric contacts,
– 23 for real visitors first time identified by cookie,
– 01 for unauthorized,
– ff for undefined user segment,
– 02 for mobile site,
– 0000 for any business category,
– 1c2f for search category of toys,
– 04f6 for Moscow region,
– 0000 for any city in region,
– 0000 for any specific type of toy.

We check that the last seen id for given accumulator is not equal to 11906745
and advance counter of unique visitors at that specific combination.

2.3 Key Results

C++ implementation of PEAPM (Pipelined Exact Accumulation for Paralleled
Measures) is regularly used in Avito to calculate daily unique visitors from a
fact table of 700 millions rows. Those rows are combined into 10 million count
distinct measures. Such calculation works 15 min on a Vertica database, installed
on 20 physical servers. Result of profiling the algorithm run for few seconds is
provided below.
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Operation mics systime ops cnt

Generate accumulator products 372028 33074280

Allocate memory for new accumulator product 454383 33074280

Lookup for accumulator in a hash table 1350395 33074280

Insert new accumulator in a hash table 776984 2726355

Update old accumulator counter 105541 9360217

The most heavy operation there is to perform lookup in a hash table of
accumulators. So algorithm performance is based on performance of hash table
with short string keys (16–32 bytes long). You are lucky if your hash size is
shorter than 16 bytes so you can apply short string optimization and store just
two numbers instead of strings. If not you end up with wider hash string you can
improve performance by storing hash print generated by hash function alongside
with raw hash and reimplementing equality operation.

Comparing with naive materializing of all combinations of dimensions and
running built-in pipelined group by algorithm, we have 10+ times optimization
on disk IO (100% to around zero value) and CPU usage (20% to 2%) by throwing
away unnecessary disk operations.

Alter implementing and testing it in real life on production servers for month-
ly active users as most heavy metric we have 2.5 h versus 3.5 h on naive algorithm.
But we utilize just 1 thread on each node instead of 128 parallel executions we
used before, which generated 100% disk utilization, 4 GB RAM versus 40 GB
RAM per node. Now it is just a regular select query generating a regular load
and runs faster. If we decide to run it even faster we can scale it horizontally
by splitting data set on chunks by cookie id and running calculations in parallel
independently or by adding new nodes in a cluster. Code is publicly available at
github [8].

3 Conclusions and Future Work

Described business case of Avito, as well as observed count distinct calculation
algorithm PEAPM, both demonstrate the following conclusions. The first one,
although modern analytic databases theoretically solve Big Data tasks automati-
cally, there are still some issues, especially when the problem cannot be obviously
horizontally scaled (because of non-additive nature of count distinct metrics, for
example). In such cases, thoughtless usage of modern databases leads to tremen-
dous expenses, delays or inappropriate level of errors. Second conclusion is that
it is still profitable to rethink computational problems of computer science as
mathematical problems, because it sometimes leads to several orders of magni-
tude more efficient, fast, and accurate solution. Quantum algorithms (such as
Grover and Shor algorithms), which replace a principle of one-by-one processing
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of elements by processing everything as a whole, looks like as promising candi-
dates for expanding given approach (approach to count distinct calculation) even
further. Such research can become very useful as fast as commercially available
quantum computers become enough cheap and powerful.
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Abstract. We reformulate and extend the HuPf algorithm (see [7]),
which was originally designed for a general 6R manipulator (i.e. 6 jointed
open serial chain/robot with only rotational joints), to solve the inverse
kinematic (IK) problem of 6R/P manipulators (6-jointed open serial
robot with joints that are either rotational or prismatic/translational).
For the algorithm we identify the kinematic images of 3R/P chains with
a quasi-projective variety in P

7 via dual quaternions. More specifically,
these kinematic images are projections of the intersection of a Segre
variety with a linear 3-space to an open subset of P

7 (identified with
the special Euclidean group SE(3)). We show an easy and efficient algo-
rithm to obtain the linear varieties associated to 3R/P subchains of a
6R/P manipulator. We provide examples showing the linear spaces for
different 3R/P chains (a full list of them is available in an upcoming
paper). Accompanying the extended HuPf algorithm we provide numer-
ical examples showing real IK solutions to some 6R/P manipulators.

Keywords: Inverse kinematics · Elimination theory ·
Serial manipulator

1 Introduction

The Study quadric is given by the
∑3

i=0 xixi+4 for points

(x0 : · · · : x7) ∈ P
7(C)
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There is a bijection between the special linear group SE(3) and a quasiprojective
subset of the quadric via dual-quaternions. In this article we will give a rough
idea what this means:

Let H be the classical (Hamiltonian) skew field of quaternions. One first shows
a bijection between the quotient of multiplicative group H

∗/R∗ and the special
orthogonal group SO(3) (which is well-known, see [7,10]). The ring H[x]/〈x2〉
(indeterminate x commuting with coefficients in H) is called the ring of dual
quaternions and denoted D. The elements in D are often written as p+ εq where
ε is the equivalence class of x and p, q are quaternions in H (we compare this con-
struction to construction of dual numbers in algebraic number theory). Clearly
H is a subring of D and there is an injection from the elements of SE(3) to the
quotient of multiplicative group D

∗/R∗ and it is well-defined if we know how
pure translations and pure rotations are mapped. Pure rotations are mapped to
H which is in D. Pure translations are mapped via

t �→ 0 + ε

(
t

2

)

where t ∈ R
3\{0} is a non-zero translation vector and we regard elements in H

as 4-tuples (H is a four-dimensional R-algebra). One shows that this fully defines
a group homomorphism SE(3) → D

∗ and if we compose it with the canonical
quotient D

∗ → D
∗/R∗ we even have an injective group homomorphism. Since D

is an eight-dimensional R-algebra we can identify elements in D
∗/R∗ with points

in a subset of P7(R). In fact the image of the composed map we just described
SE(3) ↪→ D

∗/R∗ can be identified with points

{(x0 : · · · : x7) ∈ P
7(R) : x0 �= 0, . . . , x7 �= 0 and

3∑

i=0

xixi+4 = 0}

which is a quasi-projective variety in P
7(R). For more details, we refer to [7,10]

or our upcoming paper.
For engineering and applications, we deal with the real points of the Study

quadric, but we also consider complex points because we discuss finiteness and
existence of solutions to the inverse kinematic (IK) problem which involve some
basic intersection theory where an algebraic closed base field (e.g. when using
Hilbert’s Nullstellensatz) is important. This allows us to give a general state-
ment whether HuPf algorithm will work or not. We note that, we only assume
that we are solving the inverse kinematic of regular values for a general 6R/P
manipulator (finite solutions), complicated algorithms in real algebraic geometry
like cylindrical algebraic decomposition (CAD, see [3]) to solve the real solutions
is not necessary (there are at most 16 solutions, see [9]). Using CAD to describe
real higher dimensional solutions (like the inverse kinematic of a redundant, e.g.
7 jointed, robot or the solutions within a kinematic singularity) is however very
attractive but is beyond the scope of this work (we plan to investigate this in the
future). Knowing if there are real solutions is usually done in the middle of the
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HuPf algorithm e.g. when solving for the roots of a resultant to find the coordi-
nates of the middle link of a 6R/P-chain. Thus, our objective in this manuscript
is threefold:

1. We describe the algorithm to compute all the parameterized hyperplanes
needed for the HuPf algorithm for different permutations of 3R/P joint-types
and for different parameterization of joints in the 3R/P sub-chains (as
described in [7–9]).

2. We discuss efficient choice of parameterized linear spaces when computing
IK. We also discuss preprocessing (e.g. the linear spaces for the left 3-chain
can be fully preprocessed) to make real-time IK computation possible.

3. We discuss special cases, i.e. cases when, for a given 3R/P chain, all the
parameterized linear spaces defined by each of the parameterizing joints are
inside the Study quadric (i.e. the HuPf algorithm may fail because there are
infinite solution to the IK problem).

We shall use the Denavit-Hartenberg (DH) convention when describing rela-
tionship between two frames. More precisely, the transformation between the
frames (of joints) is given by the following rule:

– The z-axis of the reference frame will be the axis of rotation if the joint is
revolute or the translational direction if the joint is prismatic

– To obtain the next frame, one starts with a rotation about the z-axis of the
reference frame, called the rotation, followed by

– a translation along the z-axis of the reference frame, called the offset, followed
by

– a translation along the x-axis, called the distance, followed by
– a rotation about the x-axis, called the twist.

It is worth mentioning that, in order to solve IK from a system of polynomial
equations, all rotations are parameterized by tangent of half-angles. In short, the
transformation between frame i to frame i + 1 is given by

Rz(vi)Tz(di)Tx(ai)Rx(li)

where Rz, Tz, Tx, Rx are rotations or translations with respect to z- or x-axis
parameterized by tangent of half-angle rotation vi, offset di, distance ai and
tangent of half-angle twist li of the i-th frame (i-th joint). More thorough dis-
cussion on DH-parameters and the DH-convention is given in [11].

In the first step of the HuPf algorithm, one wants to compute a set of at least
four hyperplanes which describes a parameterized linear space whose projection
to P

7 contains the image of the kinematic map. The way to compute this for a
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6R manipulator is discussed in [9]. We give this algorithm when prismatic joints
are also involved:

Algorithm 1. Computing 3-chain hyperplane parameterized by joint
k ∈ {1, 3}
Input: DH-parameter of a 3-chain, k ∈ {1, 3}, boolean parameterized
Output: Hyperplane of 2-chains (non-parameterized) or hyperplane pencils

parameterized by joint k in P
7 (3-chain)

1 Let νi, νj , νk be the three joint parameters with i, j ∈ {1, 2, 3}
2 Compute the forward kinematic image σ = (s0 : · · · : s7) ∈ P

7 of the 2-chain not
containing k, with coordinates parameterized by νi, νj

3 Write each coordinate of σ as a 2-variate polynomial in R[νi, νj ] with
multi-degree at most (1, 1)

4 Create a 4 × 8 matrix M with l-th column having entries which are coefficients
of 1, νi, νj , νiνj respectively in sl

5 Compute the null space of the matrix M spanned by linearly independent
vectors w1, . . . , wm each of length 8

6 if not parameterized then

7 return the linear forms Hl :
7∑

n=0

wlnxn ∈ R[x0, . . . , x7], where wln is the

n-th coordinate of a representative of wl, with l = 1, . . . , m
8 end
9 else

10 if k = 1 then
11 Regard (x0 : · · · : x7) as a dual quaternion and pre-multiply it with a

dual quaternion defined by motion of ν1 to get (x′
0 : · · · : x′

7)

12 end
13 else
14 Regard (x0 : · · · : x7) as a dual quaternion and post-multiply it with a

dual quaternion defined by motion of ν3 to get (x′
0 : · · · : x′

7)

15 end

16 return the linear forms Hl :
7∑

n=0

wlnx′
n(x0, . . . , x7) ∈ R[x0, . . . , x7], with

l = 1, . . . , m
17 end



82 J. Capco and S. M. Manongsong

In Algorithm 1 (and further algorithms), the joint parameter νi is di if the
i-th joint is prismatic otherwise it is vi (i.e. if the i-th joint is revolute).

Algorithm 2. Computing 3-chain hyperplane parameterized by second
joint
Input: DH-parameter of a 3-chain
Output: Hyperplane parameterized by 2nd joint in P

7 corresponding to 3-chain
motion

1 Let ν := (ν1, ν2, ν3) be the three joint parameters
2 Compute the forward kinematic σ = (s0 : · · · : s7) ∈ P

7 of the 3-chain with
coordinates parameterized by all the joint parameters

3 Write each coordinate of σ as a 3-variate polynomial R[ν1, ν2, ν3] each of
multi-degree at most (1, 1, 1)

4 Create an empty 12 × 16 matrix M
5 Set the l ≤ 8 column of M have entries which are coefficients of να, where

α ≤ (1, 1, 2), of sl

6 Set the l > 8 columns of M have entries which are coefficients of να, where
α ≤ (1, 1, 2), of ν2sl

7 Compute the null space of the matrix M spanned by vectors w1, . . . , wm each of
length 16

8 Choose independent linear forms from the linear forms

Hl :

7∑

n=0

(wl,n + wl,n+8ν2)xn with l = 1, . . . , m

9 return these independent linear forms

To compute the special cases, i.e. case for which hyperplane parameterized
by any of the joints lie inside the Study quadric, one follows almost the same
procedure as Algorithms 1 and 2. However, since now the hyperplane may not
lie in general position (i.e. the DH-parameters may be very specific for them to
all lie in the Study quadric), care must be taken when computing the null space
of the coefficient matrices.

2 The Hyperplanes

For an efficient algorithm it is vital to choose the linear space that is described
by linear forms with least complexity. Usually the linear space parameterized by
the second joint is the most complex case. So one first computes linear space
parameterized by the first joint and look for (DH parameter) conditions for which
this linear space may lie in the Study quadric (say for RRR, this condition is
when the twist half-angle tangent satisfies l2 = 0 or the offset satisfies a2 = 0).
In the case that the linear space parameterized by ν1 (see Algorithm 1) cannot
be chosen, we look at the third joint and immediately apply the condition (so
in our example if l2 = 0 or a2 = 0 then we immediately apply this in the set
of equations), we then use Algorithm 1 to find the hyperplanes parameterized
by ν3. Finally if for this case the linear space lies in the Study quadric (in our
example, this would be either a1 = 0 or l1 = 0 with the additional condition
from the first investigation that a2 = 0 or l2 = 0), we immediately apply these
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conditions and look at Algorithm 1 to get hyperplane parameterized by ν2. To
summarize, the hyperplanes we provide cannot be used in general case but in
cases of increasing level of complexity. One should use these steps in order when
chosing the computed linear spaces in our work:

1. Check if T (ν1) is applicable (for RRR we check if a2 �= 0 and l2 �= 0)
2. If not, check if T (ν3) is applicable (for RRR, we check if (a2 = 0 ∨ l2 =

0) ∧ (a1 �= 0 ∧ l2 �= 0))
3. If not, supposing we are not in a special case (i.e. kinematic image of the 3-

chain does not describe a planar, pure translation or spherical motion) then
we use T (ν2).

Because of the level of complexity of the equations describing the general
T (ν2), inverse kinematic computation using the algorithm will be much slower.
So one tries to avoid this if either T (ν1) or T (ν3) is possible. Due to the length
of the equations, we do not show all of the simplified T (ν2) for all 3R/P chains.
But we can show for all the subcases in the 3R-chain (for T (ν1) and T (ν3) one
can look at other literatures which will have them in detail) (Table 1).

For the 3R/P chain these are the conditions to not choose T (ν1) (in Step 1.
above) respectively T (ν3) (in Step 2. above, assuming we cannot choose T (ν1)):

Table 1. DH conditions for not choosing the linear space. For a given 3R/P if the
condition in column 2 is satisfied, we have to look at column 3 and if that is also
satisfied we may possibly choose T (ν2)

3R/P ✗T (ν1) ✗T (ν3)

RRP l2 = ±1 a1 = 0 or l1 = 0

RPR l2 = ±1 l1 = ±1

RPPa All l1 = ±1

PRR a2 = 0 or l2 = 0 l1 = ±1

PRP l2 = ±1 l1 = ±1

PPRa l2 = ±1 All

RRR a2 = 0 or l2 = 0 a1 = 0 or l1 = 0
awe exclude the case that the two consuctive prismatic joints allow
movement in the same direction (i.e. twist angle is 0). This is a degen-
erate case that is not interesting and in this case a solution to the IK
problem imply infinite solutions so that classical HuPf algorithm is not
applicable.

Notice in the above table we disregarded PPP because this 3-chain describes
a purely translational motion so its kinematic image lies in a 3-space living in
the Study quadric. In fact, increasing prismatic joints should theoretically make
it easier for us to compute inverse kinematics.

Here we show simplified parameterized (by a selected joint parameter) linear
spaces of some 3R/P chains. By simplified we mean the following: the coordinates
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(x0 : · · · : y3) are given up to post- or pre- multiplication by some fixed element
in SE(3). For instance with the DH-parameter the kinematic image of an 3R
chain parameterized by v1 is given by:

Rz(v1)Tz(d1)Tx(a1)Rx(l1)M

where M is the kinematic image of a 2R-chain. But we can simply commute Rz

and Tz and consider the image of

Rz(v1)Tx(a1)Rx(l1)M

reducing the number of variables so we are able to display simpler linear forms
(the actual hyperplane can be obtained by an easy transformation, in this case
by a premultiplication of Tz(d1)). Though, in all our cases, we assume for brevity
that d1 is always 0 (otherwise another simple transformation will yield the inverse
kinematic).

Often T (ν2) is very complicated and involves many subcases (in order to
improve efficiency in the C++ implementation and the algorithm). So we will
only show this in RRR and RRP case. For RRR the linear spaces T (v1) and
T (v3) are well-studied (see [7–9]) so we will not show this.

2.1 RRR Hyperplanes, T (v2)

For T (v2) with [a1, a2] = [0, 0]:

H1 : d2l1l2v2x3 + d2l1l2x0 − d2v2x3 + d2x0 − 2l1l2v2x4 +2 l1l2x7 − 2v2x4 − 2x7

H2 : d2l1v2x2 + d2l1x1 + d2v2x2l2 − d2x1l2 − 2l1v2x5 +2 l1x6 +2 v2l2x5 +2 l2x6

H3 : − d2l1v2x1 + d2l1x2 − d2v2x1l2 − d2x2l2 − 2l1v2x6 − 2l1x5 +2 v2l2x6

− 2l2x5

H4 : − d2l1l2v2x0 + d2l1l2x3 + d2v2x0 + d2x3 − 2l1l2v2x7 − 2l1l2x4 − 2v2x7

+ 2x4

For T (v2) with [a1, l2] = [0, 0]:

H1 : a2l1v2x0 − a2l1x3 − v2x3d2 − 2v2x4 + x0d2 − 2x7

H2 : − a2v2x1 − a2x2 + v2x2d2l1 − 2v2l1x5 + x1d2l1 +2 l1x6

H3 : − a2v2x2 + a2x1 − v2x1d2l1 − 2v2l1x6 + x2d2l1 − 2l1x5

H4 : a2l1v2x3 + a2l1x0 + v2x0d2 − 2v2x7 + x3d2 +2 x4

For T (v2) with [l1, a2] = [0, 0]:

H1 : a1l2v2x0 − a1l2x3 − v2x3d2 − 2v2x4 + x0d2 − 2x7

H2 : − a1v2x1 + a1x2 − v2x2d2l2 − 2v2l2x5 + x1d2l2 − 2l2x6

H3 : − a1v2x2 − a1x1 + v2x1d2l2 − 2v2l2x6 + x2d2l2 +2 l2x5

H4 : a1l2v2x3 + a1l2x0 + v2x0d2 − 2v2x7 + x3d2 +2 x4
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For T (v2) with [l1, l2] = [0, 0]:

H1 : − x1

H2 : − x2

H3 : − d2x3 − 2x4

H4 : d2x0 − 2x7

2.2 RRP Hyperplanes

For T (v1):

H1 : l2x0 − x1

H2 : − l2x3 + x2

H3 : a2l
2
2x0 − a2x0 − 2l2x4 − 2x5

H4 : a2l
2
2x2 − a2x2 − 2l22x7 − 2l2x6

For T (d3):

H1 : a1l1x0 − 2x4

H2 : − a1x1 − 2l1x5

H3 : − a1x2 − 2l1x6

H4 : a1l1x3 − 2x7

For T (v2) with [a1, l2] = [0, 1]:

H1 : − l1v2x0 − l1v2x1 + l1x2 + l1x3 + v2x0 − v2x1 − x2 + x3

H2 : − l1v2x2 − l1v2x3 − l1x0 − l1x1 − v2x2 + v2x3 − x0 + x1

H3 : 2a2l
2
1v2x0 − 2a2l

2
1x2 − 2a2l1v2x0 + 2a2l1x2 + l31v2x2d2 + l31v2x4 − l31v2x5

+ l31d2x1 + l31x6 − l31x7 + l21v2x2d2 − l21v2x4 − l21v2x5 + 2l21x0d2 + l21d2x1

− l21x6 − l21x7 + l1v2x2d2 − l1v2x4 + l1v2x5 + 2l1x0d2 − l1d2x1 − l1x6

+ l1x7 + v2x2d2 + v2x4 + v2x5 − d2x1 + x6 + x7

H4 : 2a2l
2
1v2x2 + 2a2l

2
1x0 + 2a2l1v2x2 + 2a2l1x0 − l31v2x0d2 + l31v2x6 − l31v2x7

+ l31d2x3 − l31x4 + l31x5 + l21v2x0d2 + l21v2x6 + l21v2x7 − 2l21x2d2 − l21d2x3

− l21x4 − l21x5 − l1v2x0d2 − l1v2x6 + l1v2x7 + 2l1x2d2 − l1d2x3 + l1x4

− l1x5 + v2x0d2 − v2x6 − v2x7 + d2x3 + x4 + x5
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For T (v2) with [a1, l2] = [0,−1]:

H1 : l1v2x0 − l1v2x1 + l1x2 − l1x3 + v2x0 + v2x1 + x2 + x3

H2 : l1v2x2 − l1v2x3 − l1x0 + l1x1 − v2x2 − v2x3 + x0 + x1

H3 : − 2a2l
2
1v2x0 − 2a2l

2
1x2 − 2a2l1v2x0 − 2a2l1x2 + l31v2x2d2 − l31v2x4

− l31v2x5 + l31d2x1 + l31x6 + l31x7 − l21v2x2d2 − l21v2x4 + l21v2x5

+ 2l21x0d2 − l21d2x1 + l21x6 − l21x7 + l1v2x2d2 + l1v2x4 + l1v2x5

− 2l1x0d2 − l1d2x1 − l1x6 − l1x7 − v2x2d2 + v2x4 − v2x5 + d2x1 − x6 + x7

H4 : − 2a2l
2
1v2x2 + 2a2l

2
1x0 + 2a2l1v2x2 − 2a2l1x0 − l31v2x0d2 − l31v2x6

− l31v2x7 + l31d2x3 − l31x4 − l31x5 − l21v2x0d2 + l21v2x6 − l21v2x7

− 2l21x2d2 + l21d2x3 + l21x4 − l21x5 − l1v2x0d2 + l1v2x6 + l1v2x7

− 2l1x2d2 − l1d2x3 + l1x4 + l1x5 − v2x0d2 − v2x6 + v2x7 − d2x3 − x4 + x5

For T (v2) with [l1, l2] = [0, 1]:

H1 : x0 − x1

H2 : x2 − x3

H3 : − d2x2 − x4 − x5

H4 : d2x0 − x6 − x7

For T (v2) with [l1, l2] = [0,−1]:

H1 : − x0 − x1

H2 : − x2 − x3

H3 : − d2x2 + x4 − x5

H4 : d2x0 + x6 − x7

The other linear forms for other 3-chain joint types can be similarly com-
puted. They (esp. RPR and PRR chains) can found in [1] and in an upcoming
paper.

2.3 The Right Chain

We have so far displayed linear forms describing the linear space for the left
chain. Our point of reference is the base frame. Hyperplane from parameters of
right chain can also be computed using the following algorithm:

Due to lack of space, we will not show the linear forms for the right-chain.
This is available in the dataset [1]. In [2] we also include a Giac implementation
of the algorithms (we us the giacpy python wrapper of Giac, see [5,6]).

Clearly, in the algorithms presented the computation of resultant is the ‘bot-
tleneck’ (the resultant that one compute is that of two bivariate polynomials,
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Algorithm 3. Computing hyperplanes parameterized by a joint in the
right reversed 3-chain
Input: DH-parameter of the right 3-chain, end-effector transformation τ , T (νi)
Output: T (ν7−i) described by DH-parameter of the right-chain

1 Make the following substitutions in the equations of T (νi) (say for RRP):

[a1, a2, a3, l1, l2, l3, v1, v2, v3, d1, d2, d3] →
[−a5, −a4, 0, −l5, −l4, 0, −v6, −v5, −v4, −d6, −d5, −d4]

2 Replace σ := (x0 : · · · : x7) with τσ
3 return new linear forms describing T (ν7−i) having reversed joint-types (say for

PRR)

with maximum total degree 14). However, we do not focus on complexity anal-
ysis because neither the degree (at most 14) nor the number of variables (two)
will vary when computing the inverse kinematics of a general 6R/P manipu-
lator using the HuPf algorithm. Moreover, for the magnitude of our problem
even a naive resultant computation (e.g. using Sylvester matrix) would suffice
and be fast enough. In fact, HuPf runtime is fast. For instance, the maximum
runtime for solving one inverse kinematic query (C++ parallelized implementa-
tion) using HuPf in an Intel Core i5-6200U processor is 35ms. This is a tolerable
number even by industrial standards. However in the future, we plan to study
an extended version of HuPf algorithm devised to solve inverse kinematics of
redundant manipulators where we will need to focus on time complexity as joint
number varies.

3 The Inverse Kinematic Algorithm with an Example

Finally we can show HuPf algorithm for solving inverse kinematics of general
6R/P manipulators. We assume that the end-effector pose is reachable (i.e. the
inverse kinematics has a real solution) and that the IK solutions are finite (for
6-jointed manipulators we only want solutions of regular values).

One can show, with assumption that the input is a reachable end-effector
pose with finite IK solution, the algorithm ends successfully. This reasoning is
also used to prove that the for loop in Line 2 will break successfully with one
of the x0, x1, x3, x4 non-zero. Finally the finiteness of the IK solution will also
guarantee us that f and g in Lines 7 and 8 are not identically 0 (it is not a
constant because we have a solution to the IK problem).

We now show an example of an IK problem that we solve using Algorithm 4.
Consider a 2R2P2R manipulator (i.e. a serial manipulator consisting of first two
joints that are revloute, third and fourth joints that are prismatic and last two
joints that are revolute) with DH-parameters given in the table below.
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Algorithm 4. (HuPf) Computing IK of a general 6R/P manipulator for
a general pose
Input: A reachable end-effector pose σ ∈ SE(3) whose IK solution is finite.

Parameterized linear spaces for the left-chain (see Algorithms 1 and 2)
and right-chain (dependent on σ, see Algorithm 3) by joint-parameters
μ and ν.

Output: IK solutions to σ
1 Let L := {li}8

i=1 be the linear forms describing the two linear spaces in the input
2 for j = 1, . . . , 8 do
3 Solve for (x0 : · · · : x7) ∈ P

7(C(μ, ν)) satisfying all linear forms in L\{lj}
4 if x0 �= 0 or x1 �= 0 or x2 �= 0 or x3 �= 0 then break

5 end
6 Without loss of generality we may assume x0, . . . , x7 ∈ C[μ, ν]
7 Substitute x0, . . . , x7 into lj to obtain a polynomial f(μ, ν) ∈ C[μ, ν]\C
8 Set g :=

∑3
i=0 xixi+3 which is generally a polynomial in C[μ, ν]\C

9 Common zeros of f and g are computed via resultant and elimination theory
10 foreach common zero (μ′, ν′) of f and g do
11 Let x′

0, . . . , x
′
7 be the evaluations of x0, . . . , x7 (pose of the middle link)

12 foreach joint λ not μ and ν do
13 There is a unique solution of λ via backsubstition of x′

0, . . . , x
′
7 into a

linear form paramaterized by λ from Algorithms 1, 2 and 3

14 end

15 end
16 return all joint values

Table 2. DH parameters for a 2R2P2R manipulator in our example. Parameters involv-
ing twist or rotation are tangent of half-angles.

i vi di ai li

1 * 0 0.2 0.2035

2 * 0.3 0.2 0.2035

3 −0.4142 * 0.3 0.4142

4 0.7133 * 0.4 0.3153

5 * 0.3 0 0.1763

6 * 0 0 0

If we apply Algorithm 4 we obtain 12 solutions to the IK problem for a
generic pose of the end-effector. In our case we chose a pose given by joint values
10, 30, 0.1,−0.1, 31, 55 (revolute joint values given in degree) or 0.0875, 0.1763,
0.1,−0.1, 0.2773, 0.5206 (revolute joint values given as tangent of half-angles).
Generally only 4 of these solutions are real, the real solutions are given in the
table (Table 3) below and it is illustrated in the figure (Fig. 1) below
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Table 3. Real inverse kinematics solutions to the given 2RP3R manipulator. Revolute
joint values are given in tangent of half-angles.

Solution 1 Solution 2 Solution 3 Solution 4

v1 −0.0374 0.0875 1.2875 2.0551

v2 0.7075 0.1763 −0.6262 −0.7273

d3 −0.3786 0.1 0.0119 −0.3336

d4 0.6391 −0.1 0.5796 1.03798

v5 −1.4516 0.2773 0.0878 −0.3247

v6 −9.3357 0.5206 1.3693 5.1233

(a) Solution 1 (b) Solution 2

(c) Solution 3 (d) Solution 4

Fig. 1. Real inverse kinematic solutions to a certain end-effector pose of the 2R2P2R
chain given in Table 2. The (light-blue) lines correspond to axis of rotations of the
revolute joints and the (yellow) thick rods are the direction where the prismatic joint
translates the links. (Color figure online)
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Abstract. In this paper we proposed a new symbolic, non-standard
recursive and fast orthonormalization procedure of linearly independent
vectors but as in other approaches not orthonormal based on the Gram-
Schmidt orthonormalization algorithm. Our adaptation of the Gram-
Schmidt orthonormalization procedure provide simple analytic formulas
for the SU(3) Bargmann-Moshinsky basis orthonormalization coefficients
and do not involve any square root operation on the expressions com-
ing from the previous iterative computation steps. This distinct features
of the proposed orthonormalization algorithm may make the large scale
symbolic calculations feasible. We demonstrate efficiency of our proce-
dure by benchmark large-scale calculations of the non-canonical BM
basis with the highest weight vectors of SO(3) irreducible representa-
tions.

1 Introduction

Despite the significant number of works on the development of algorithms and
construction programs in both analytical and numerical form of the ortho-
normalized Bargman-Moshinsky basis, there are still no efficient and cost-
effective algorithms and programs for its construction and calculation with its
help, tensor operators necessary for constructing Hamiltonians by a collective of
a model of a nucleus with tetrahedral symmetry under study by modern experi-
ments [1]. Creation of such algorithms and programs is an actual problem in the
field of Computer Algebra in Scientific Computing.

In our previous papers [2,3] noted below as I and II, we started to study
optimal ways of building up fast versions of Gram-Schmidt orthonormalization
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M. England et al. (Eds.): CASC 2019, LNCS 11661, pp. 91–106, 2019.
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procedure of the non-canonical BM basis in computer algebra systems and its
application to scientific computing of a spectrum of the SU(3) collective nuclei
models [4].

In this paper we developed the new symbolic, non-standard recursive and fast
orthonormalization procedure of linearly independent vectors but as in other
approaches not orthonormal, based on the Gram-Schmidt orthonormalization
algorithm. Our adaptation of Gram-Schmidt orthonormalization procedure pro-
vide simple analytic formulas for BM basis orthonormalization coefficients and
do not involve any square root operation on expressions coming from the previous
iterative computation steps. This distinct features of the proposed orthonormal-
ization algorithm may make the large scale symbolic calculations feasible. We
demonstrate efficiency of our procedure by benchmark large-scale calculations
of the non-canonical SU(3) BM basis [5–7] with the highest weight vectors of
SO(3) irreducible representations(irreps). Note, the SU(3) irreps. presented in
the form of expansions over the BM basis [6] have a wide range of applications
in nuclei physics and quantum optics.

The structure of the paper is following. In the first section we present new
symbolic-numerical algorithm of the Gram-Schmidt orthonormalization realized
on example of non-canonical BM basis in a form of the program implemented in
the computer algebra system Wolfram Mathematica 10.1. In the second section
we present the best economical algorithm for generation of matrix of tensor
operators and algebraic eigenvalue problem using calculated orthonormal BM
basis as input and show final results of calculation of a spectrum of the SU(3)
collective nuclear models. In conclusion we give a resume and point out some
important problems for further applications of proposed algorithms.

2 Symbolic-Numerical Orthonormalization Algorithm

We start from the BM states constructed in the papers I and II:

|uα〉 ≡
∣
∣
∣
∣

(λ, μ)B

α,L, L

〉

, (1)

which are linearly independent but as in other approaches not orthonormal.
The quantum numbers λ, μ = 0, 1, 2, . . . label irreducible representations of
the SU(3) group. We assume that λ ≥ μ. The labels L,M are the quantum
numbers of angular momentum and its projection (in our case M = L); α is the
additional index required to distinguish equivalent irreducible representations of
SO(3) appearing in a given irreducible representation of SU(3), the problem is
not multiplicity free.

The orthogonalized BM states |ψα〉 may be expressed in terms of the
orthonormalized BM states |φα〉 as [7]:

|ψα〉 = −|uα〉 +
αmax∑

α′=α+1

cαα′ |φα′〉, when 0 ≤ α < αmax, (2)
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here αmax is a number of linearly independent BM states |uα〉, and cαα′ are linear
coefficients. The orthonormalization process (2) starts (somewhat deliberately)
by taking |ψαmax〉 = |uαmax〉.

The goal of this paper is to perform orthonormalization of the BM states
|uα〉:

|φi〉 =
αmax∑

α=0

Ai,α|uα〉. (3)

Here multiplicity index i is introduced to differentiate the orthonormalized BM
states and takes the same range of values as α. The symbols Ai,α denotes matrix
elements of the upper triangular matrix of the BM basis orthonormalization
coefficients. These coefficients fulfill the following condition

Ai,α = 0, if i > α. (4)

In this paper we developed an analytical orthonormalization procedure based on
the Gram-Schmidt orthonormalization algorithm (GSOA). For explicit construc-
tion of the orthonormalized BM basis let us consider step by step the symbolic
algorithm.

Step 1. First step needs to perform initial setup and check the consistency of
the input. The maximum possible value of α for a given μ is αmax. It is given by

αmax =
{ μ

2 , μ even,
μ−1
2 , μ odd.

(5)

The maximum value of L of the BM state is defined by the expression

Lmax = μ − 2α + λ − β, (6)

where

β =
{

0, λ + μ − L even,
1, λ + μ − L odd.

(7)

To have a consistent input L ≤ Lmax. From the expressions (6) and (7) it follows,
that for some L values sufficiently close to the Lmax, the α values may be less
than αmax or even not exist. So, for every particular L value the expressions (6)
and (7) allows to find the maximum value of α for which there exist the BM
state i.e. αmaxK .

At the same time there exists the lower boundary condition Lmin ≤ L that
should be evaluated for every particular value of α. If α = 0 and μ = 0 the Lmin

is defined by

Lmin =
{

0, λ even,
1, λ odd.

(8)

In case of α = 0 and μ �= 0 the minimum value of L will be Lmin = μ. When
0 < α < αmax then Lmin = μ − 2α. If α = αmax and μ is even then Lmin = 1.
Finally, when α = αmax and μ is odd the Lmin takes value given by expression
(8). There may exist only the BM states for which the condition Lmin ≤ L is



94 A. Deveikis et al.

satisfied. So, the presented Lmin calculation procedure allows to find for every
particular L the minimum value of α for which there exists the BM state i.e.
αminK . So, for actual calculations of the BM basis orthonormalization coefficients
α = αminK , αminK + 1, . . . , αmaxK . An illustrative example for calculation of
αminK and αmaxK for μ = 4 when λ = 0, . . . , 6 is presented in Table 1.

Table 1. The values of αminK and αmaxK for μ = 4 when λ = 0, . . . , 6.

L

λ α 0 1 2 3 4 5 6 7 8 9 10

0 αminK 2 1 0

αmaxK 2 1 0

1 αminK 2 1 1 0 0

αmaxK 2 1 1 0 0

2 αminK 2 0 1 1 0 0 0

αmaxK 2 1 2 1 1 0 0

3 αminK 2 1 1 0 0 0 0

αmaxK 2 1 2 1 1 0 0

4 αminK 2 1 1 0 0 0 0 0

αmaxK 2 2 1 2 1 1 0 0

5 αminK 2 1 1 0 0 0 0 0 0

αmaxK 2 1 2 1 2 1 1 0 0

6 αminK 2 0 1 1 0 0 0 0 0 0 0

αmaxK 2 1 2 1 2 1 2 1 1 0 0

For practical calculation there may be useful the condition that allows to find
such minimal value of L (Ltotal

min ) for which all the BM basis orthonormalization
coefficients that forms the matrix A and as consequence the matrix A itself do
not exist. For definition of this condition one should start with calculation of the
quantity K = μ − 2αmaxK . If K = 0 then

Ltotal
min =

{
0, λ even,
1, λ odd.

(9)

If K �= 0 then Ltotal
min = K.

Step 2. Second step needs to introduce and iteratively calculate the convenient
intermediate quantities f

(n)
α,α′ , here n = 0, 1, . . . , αmaxK − 1 indicates a number

of iteration. The iteration starts at n = 0 by calculation of all f
(0)
α,α′ that are

defined by the overlap integrals 〈uα|uα′〉 given in the paper I:

f
(0)
α,α′ = 〈uα|uα′〉, (10)

where α = αminK , αminK + 1, . . . , αmaxK − 1 and α < α′ ≤ αmaxK .
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The above overlap was applied in symbolic calculations to test our procedure
in paper I with analytical results of [7].

At the next iteration step n = 1 the calculation of f
(1)
α,α′ is defined by the

formula

f
(1)
α,α′ = −f

(0)
α,α′ +

f
(0)
α,αmaxKf

(0)
α′,αmaxK

〈uαmaxK |uαmaxK 〉 , (11)

where α = αminK , αminK + 1, . . . , αmaxK − 2 and α < α′ ≤ αmaxK − 1. For all
next iteration steps n > 1, the f

(n)
α,α′ are defined by the formula

f
(n)
α,α′ = f

(n−1)
α,α′ +

f
(n−1)
α,αmaxK−n+1f

(n−1)
α′,αmaxK−n+1

〈ψαmaxK−n+1 |ψαmaxK−n+1〉
, (12)

where α = αminK , αminK + 1, . . . , αmaxK − n − 1 and α < α′ ≤ αmaxK − n. Here
the normalization integral is defined as

〈ψα|ψα〉 = 〈uα|uα〉 −
αmax∑

α′=α+1

(

f
(αmaxK−α′)
α,α′

)2

〈ψα′ |ψα′〉 . (13)

It should be noted, that all quantities f
(n)
α,α′ at iteration step n may be calculated

solely from the quantities f
(n−1)
α,α′ and normalization integrals 〈ψα|ψα〉 obtained

at the previous iteration step n − 1. So, at the every iteration step (except
the n = 0) the corresponding quantities: f

(n)
α,α′ and the normalization integrals

〈ψα|ψα〉, are calculated and put into the storage.
For the linear storage of the quantities f

(n)
α,α′ the corresponding sequence

number s may be introduced. It depends on the quantities n, α, α′, αmax by the
formula

s =
1
6

((

2 + 6αmax + 3α2
max

)

n − 3 (1 + αmax)n2 + n3
)

+ (αmax − n) α +
1
2

(1 − α) α − α + α′.

Step 3. Finally, having calculated the quantities f
(n)
α,α′ and the normalization

integrals 〈ψα|ψα〉, one may straightforwardly compute the required orthonormal-
ization coefficients Aα,α′ of the expansion (3). In the case when α = α′ = αmaxK

the formula for calculation of Aα,α′ is

AαmaxK ,αmaxK = 〈uαmaxK |uαmaxK 〉−1/2. (14)

In case when α = α′ and α = αminK , αminK + 1, . . . , αmaxK − 1 the formula for
calculation of Aα,α′ is

Aα,α = −〈ψα|ψα〉−1/2. (15)
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Fig. 1. The CPU time versus parameter μ (a) and MaxMemoryUsed versus parameter
μ (b): maximum number of Megabytes (Mb) used to store all data for the current
Wolfram System session during the calculations of the orthogonal BM basis (circles)
consisted of calculation of the overlap integrals (10) (squares) and execution of the
othonormalization Gram–Schmidt procedure (11)–(17) (triangles).

In the case when α < α′ < αmaxK the formula for calculation of Aα,α′ is

Aα,α′ =
1

〈ψα′ |ψα′〉
α′−1∑

α′′=α

Aα,α′′f
(αmaxK−α′)
α′′,α′ . (16)

In the case when α = αminK , αminK + 1, . . . , αmaxK − 1 and α′ = αmaxK the
formula for calculation of Aα,α′ is

Aα,αmaxK = − 1
〈ψαmaxK |ψαmaxK 〉

αmaxK−1∑

α′′=α

Aα,α′′f
(0)
α′′,αmaxK

. (17)

The above algorithm was realized in the form of the program implemented in
the computer algebra system Wolfram Mathematica 10.1.

Remark 1. The two advantages of the proposed algorithm. First of all its simplic-
ity: at any iterative step n the quantities f

(n)
α,α′ are composed of fragments that

are not more complicated than that defined in the right hand side of Eq. (12) and
the normalization integrals (13). Secondly, iterative calculation of the quantities
f
(n)
α,α′ (12) and the normalization integrals (13) do not involve any square root

operation in contradistinction to the conventional one [14]. This distinct features
of the proposed orthonormalization algorithm make the large scale symbolic cal-
culations in principle feasible.

In the case of the subset of three independent BM vectors (1) indicated
by the displayed values of labels, expansion (3) demonstrated execution of the
othonormalization Gram–Schmidt procedure (OGSP) (11)–(17) takes the form
(μ = 4, λ − L even))
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∣
∣
∣
∣

(λ, μ)
f2, L, L

〉

= A
(λ,μ)
2,2 (L)

∣
∣
∣
∣

(λ, μ)B

2, L, L

〉

,

∣
∣
∣
∣

(λ, μ)
f1, L, L

〉

= A
(λ,μ)
1,1 (L)

∣
∣
∣
∣

(λ, μ)B

1, L, L

〉

+ A
(λ,μ)
1,2 (L)

∣
∣
∣
∣

(λ, μ)B

2, L, L

〉

,

∣
∣
∣
∣

(λ, μ)
f0, L, L

〉

= A
(λ,μ)
0,0 (L)

∣
∣
∣
∣

(λ, μ)B

0, L, L

〉

+ A
(λ,μ)
0,1 (L)

∣
∣
∣
∣

(λ, μ)B

1, L, L

〉

+ A
(λ,μ)
0,2 (L)

∣
∣
∣
∣

(λ, μ)B

2, L, L

〉

,

A
(λ,4)
2,2 (L) = (〈u2|u2〉)−1/2

,

A
(λ,4)
1,1 (L) = −〈ψ1|ψ1〉−1/2, A

(λ,4)
1,2 (L) = 〈ψ1|ψ1〉−1/2 〈u2|u1〉

〈u2|u2〉 ,

A
(λ,4)
0,0 (L) = −〈ψ0|ψ0〉−1/2,

A
(λ,4)
0,1 (L) = −〈ψ0|ψ0〉−1/2

〈ψ1|ψ1〉
(

−〈u1|u0〉 +
〈u2|u1〉〈u2|u0〉

〈u2|u2〉
)

,

A
(λ,4)
0,2 (L) = 〈ψ0|ψ0〉−1/2

[ 〈u2|u0〉
〈u2|u2〉

+
1

〈ψ1|ψ1〉
(

−〈u1|u0〉 +
〈u2|u1〉〈u2|u0〉

〈u2|u2〉
) 〈u2|u1〉

〈u2|u2〉
]

,

〈ψ0|ψ0〉 = 〈u0|u0〉 − 〈u2|u0〉2
〈u2|u2〉 − 1

〈ψ1|ψ1〉
(

−〈u1|u0〉 +
〈u2|u1〉〈u2|u0〉

〈u2|u2〉
)2

,

〈ψ1|ψ1〉 = 〈u1|u1〉 − 〈u2|u1〉2
〈u2|u2〉 .

As an example, in Fig. 1 we show the CPU time and MaxMemoryUsed during
of calculations of overlap integrals (13) and execution of the othonormalization
Gram–Schmidt procedure (OGSP) (11)–(17) by the above symbolic algorithm
versus parameter μ using the PC Intel Pentium CPU 1.50 GHz 4 GB 64bit Win-
dows 8. One can see that the CPU time (in double logarithmic scale) of execu-
tion of the overlap integrals is linearly growing in contradistinction to the OGSP,
whose execution time is growing faster than linearly due to manipulations with
rational expressions.

3 Benchmark for Symbolic Numerical Algorithm

Because the BM vectors |uα〉 are linearly independent, one can require the
orthonormalization properties for the vectors |φi〉

〈φi|φj〉 = δij . (18)

From Eq. (18) there may be derived the orthonormalization property of the
orthonormalization coefficients Aα,α′ matrix A

A UÃ = I. (19)



98 A. Deveikis et al.

Fig. 2. The CPU time versus parameter μ for calculations of the A matrix with λ = 119
for L = 3, 35, 70, 107.

Here matrices A, U and I have dimension αmax+1. The matrix Ã is transposed
of A. In general case, when αmaxK < αmax and αminK > 0, these matrices have
the following block structure

A =

⎛

⎝

0 0 0
0 A 0
0 0 0

⎞

⎠ , U =

⎛

⎝

0 0 0
0 U 0
0 0 0

⎞

⎠ , I =

⎛

⎝

0 0 0
0 I 0
0 0 0

⎞

⎠ .

Here the matrices A, U and I have the dimension αmaxK − αminK + 1. The
zeroes represents the sub-blocks with the appropriate dimensions that are filled
with zeroes. The I is the unity matrix.

Let as display a structure of indices of the matrix A

A =

⎛

⎜
⎝

AαminK ,αminK
. . . AαminK ,αmaxK

...
. . .

...
AαmaxK ,αminK

. . . AαmaxK ,αmaxK

⎞

⎟
⎠ . (20)

Finally, the entries of the matrix U are the overlap integrals 〈uα|uα′〉

U =

⎛

⎜
⎝

〈uαminK
|uαminK

〉 . . . 〈uαminK
|uαmaxK 〉

...
. . .

...
〈uαmaxK |uαminK

〉 . . . 〈uαmaxK |uαmaxK 〉

⎞

⎟
⎠ . (21)

The Eq. (19) may be used for control of consistency and accuracy of calculations.
The efficiency of A matrix calculations for different values of the quantum

number L is illustrated in Fig. 2. The computations were evaluated numerically
to 150-digit precision. Such high precision was taken in order to compare these
calculations with fuhrer calculations of q

(λμ)
ijk (L) presented in Sect. 4.

Remark 2. From a conventional point of view the proposed symbolic orthonor-
malisation algorithm can be called as a non-standard recursive, or actually iter-
ative, since it traverses the computation graph not from top to bottom, but from
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bottom to top. It has been organized in such a way, to have one to one correspon-
dence of obtained results with definition of the orthonormalisation coefficients
A assumed in Ref. [7]. This algorithm allows one to find the analytical expres-
sions of the orthonormalized basis, if it is implemented in any computer algebra
system, in particular, Wolfram Mathematica 10.1. It is given in the present
paper and tested in the paper I with analytical results at small values λ and μ
obtained in [7]. However, to perform the really fast large scale calculations with
characteristics of computer time shown in Fig. 2, it has been implemented in the
multi-precision arithmetics as a symbolic-numerical algorithm.

Table 2. The values of (αminK , αmaxK)dim(A) and αmax for μ = 60, 85, 100, 115 and
λ = 120, 125 when L = 2, 31, 70, 120, 180.

L

μ λ αmax 2 31 70 120 180

60 120 30 (29,30)2 (15,29)15 (0,30)31 (0,30)31 (0,0)1

125 (29,29)1 (15,30)16 (0,29)30 (0,29)30 (0,2)3

85 120 42 (42,42)1 (27,42)16 (8,42)35 (0,42)43 (0,12)13

125 (42,42)1 (27,42)16 (8,42)35 (0,42)43 (0,15)16

100 120 50 (49,50)2 (35,49)15 (15,50)36 (0,50)51 (0,20)21

125 (49,49)1 (35,50)16 (15,49)35 (0,49)50 (0,22)23

115 120 57 (57,57)1 (42,57)16 (23,57)35 (0,57)58 (0,27)28

125 (57,57)1 (42,57)16 (23,57)35 (0,57)58 (0,30)31

In numerical benchmark calculations given below we will demonstrate also
the results of execution of the same OGSP (11)–(17) but with the normalized
nonorthogonal eigenvectors |ǔα〉 = N−1

αα |uα〉 and normalized overlap 〈ǔα|ǔα′〉 =
〈uα|N−1

αα N−1
α′α′ |uα′〉, Nαα = (〈uα|uα〉)1/2, respectively, i.e. 〈ǔα|ǔα〉 = 1.

The examples of the output (αminK, αmaxK, dim(A)) of the program
Abound.nb for some values of μ, λ, and L are presented in Table 2.

The orthonormalization of the BM basis, i.e. the calculation of the matrix
A for given values of μ, λ, L and precision is provided by the program
BMOrthonorm.nb. The calculation of the orthonormalized BM basis is based
on the overlap integrals 〈uα|uα′〉. In case if that quantities are needed one may
call the function overlapIntegral[μ, α, α′, L, λ]. As an example, we con-
sider a case with μ = 10, λ = 11 and L = 6 for α = 2 and α′ = 3. In
this case calling the function overlapIntegral produces the output 〈uα|uα′〉
= 59566465014885384192000000, i.e. the function overlapIntegral computes
the exact numerical value of the overlap integral 〈uα|uα′〉.

Let us consider an example of the orthonormalization of the BM basis and
take for it a case with μ = 10, λ = 11 and L = 6. In this case αmax = 5,
αminK = 2, αmaxK = 4, and precision was taken to be equal to prec= 15. For
calculation of A matrix one may call the function Amatrix[μ, L, λ, prec].
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In this case the matrix A acting on unnormalized vector u prints as

Aμλ(L) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 −5.268 × 10−14 4.324 × 10−14 −5.671 × 10−15 0
0 0 0 −1.271 × 10−13 4.782 × 10−14 0
0 0 0 0 9.304 × 10−14 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

while Ǎ = AN acting on normalized vector ǔ prints as

Ǎμλ
(L) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1.06241748771592 0.382535950822453 −0.060953283607289 0
0 0 0 −1.12436060747693 0.513991026814558 0
0 0 0 0 1.00000000000000 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The accuracy of calculations of the matrix A may be evaluated by the func-
tion TestOrthonormalization[μ, L, λ, base, prec] that use for this pur-
pose the orthonormalization property Eq. (19). At first, the function TestOrtho-
normalization[μ, L, λ, base, prec] calculates the left hand side of the
Eq. (19), i.e. the product of three matices A UÃ. The result may be printed
as the matrix test to ensure that its diagonal elements in the submatrix
αminK . . . αmaxK are actually equal to one and other elements are equal to zero.
Finally this submatrix is taken off (as matrix testK), printed and used to eval-
uate the accuracy of orthonormalization coefficients using the condition:

|10−prec − ‖testK − I‖| < base−prec, (22)

here the norm ‖...‖ is defined as giving the maximum singular value of a matrix,
and parameter base defines the accuracy of calculations of the matrix Aμλ(L)
- in this case base is taken equal to 9.5. In the case under consideration the
function TestOrthonormalization[μ, L, λ, base, prec] prints the follow-
ing matrix for unnormalized Uμλ(L):

Uμλ(L) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 4.068 × 1026 5.957 × 1025 2.325 × 1025 0
0 0 5.957 × 1025 7.826 × 1025 4.347 × 1025 0
0 0 2.325 × 1025 4.347 × 1025 1.155 × 1026 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

while for normalized Ǔμλ
(L)

Ǔμλ
(L) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1.00000000000000 0.333834605013026 0.107226660720115 0
0 0 0.333834605013026 1.00000000000000 0.457140728158342 0
0 0 0.107226660720115 0.457140728158342 1.00000000000000 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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In this case the matrix product A UÃ will be printed as the matrix test:
for the unnormalized overlap U

(

A UÃ
)μλ

(L) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1.0000000000 1. × 10−15 1. × 10−16 0
0 0 1. × 10−15 1.0000000000 1. × 10−15 0
0 0 1. × 10−15 1. × 10−15 1.0000000000 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and the matrix product Ǎ Ǔ ˜̌A for the normalized overlap Ǔ

(

Ǎ Ǔ ˜̌A
)μλ

(L) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1.0000000000 1. × 10−15 1. × 10−15 0
0 0 1. × 10−15 1.0000000000 1. × 10−15 0
0 0 1. × 10−15 1. × 10−15 1.0000000000 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

here for saving the space we do not present last 4 zeroes after the decimal point
for the diagonal matrix elements.

The efficiency of A matrix calculations for different values of parameter L
is illustrated in Fig. 2. The computations were evaluated numerically to 15-digit
precision. It should be pointed out that the CPU time for calculations of the A
matrix less depend on the values of λ, L and the taken precision but more on the
dimension of the matrix A. The apparent dependency of CPU time on the value
of L reflects actually the changing of dimension of the matrix A depending on
the value of L but not the change of the time for calculation of overlap integrals.

Remark 3. As shown by our benchmark calculation it would be appropriate in
the future numerical calculation to provide scaling: the use of non-orthogonal
normalized basis similar to Ref. [13] and the corresponding input matrix ele-
ments of scalar products – overlap integrals and intermediate output coefficients
of orthogonalization and intermediate input matrix elements of tensor operators.
Naturally, with such scaling, the result of calculating the orthonormal basis and
the final values of the matrix elements of the tensor operators do not change.
In this case, the desired numerical values coincide with the analytical values,
but the intermediate values will remain within 16 significant figures, which cor-
responds to the accepted accuracy of the final results of 2 · 10−16. Meanwhile,
the principal problem of calculation exact numerical value of overlap integral in
nonnormalized nonorthogonal BM basis at extremely large value of λ and μ will
be solved using Wolfram Mathematica. The corresponding study of an efficiency
of such adaptation of our code implemented in Wolfram Mathematica 10.1 and
comparison with code implemented in Fortran are subject of a separate paper
published elsewhere.
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Fig. 3. The CPU time versus parameter μ for calculations of the q
(λμ)
ijk (L) with λ = 119

and L = 107 for k = 0, 1, 2.

4 Generation and Solution of SU(3) algebraic problem

The Casimir operator of SO(3) irreducible representations corresponding to the
group chain SU(3) ⊃ O(3) ⊃ O(2) have the form:

C2(SU(3)) = Q · Q + 3L · L = 4(λ2 + μ2 + λμ + 3λ + 3μ). (23)

The dimension of the subspace for given λ, μ can be calculated by using the
following formula:

Dλμ =
1
2
(λ + 1)(μ + 1)(λ + μ + 2). (24)

As a benchmark example we consider a perturbation operator announced in
Ref. [4]

H ′′
4Q =

√

14
5

(Q̄ ⊗ Q̄)40 + (Q̄ ⊗ Q̄)4−4 + (Q̄ ⊗ Q̄)44, (25)

where (Tλ′ ⊗ Tλ)L
M denotes the tensor product of two spherical tensors [8]. The

matrix elements of the Hamiltonian (25) can be calculated by using the following
formula:

(H ′′
4Q)(λμ)

αLM,α′L′M ′ =
1

√

(2L + 1)

L′+2∑

L′′=|L′−2|

1
√

(2L′′ + 1)

αmax∑

α′′=0

L′′
∑

M ′′=−L′′

(

H ′′(1)
LL′L′′M ′′ + H ′′(2)

LL′L′′M ′′

)

R
(λμ)
αL,α′′L′′R

(λμ)
α′′L′′,α′L′ . (26)

Matrix elements H ′′(1)
LL′L′′M ′′ and H ′′(2)

LL′L′′M ′′ read as

H ′′(1)
LL′L′′M ′′ =

√

14
5

2∑

η=−2

[
2 2 4
η −η 0

] [
L′′ 2 L
M ′′ η M

] [
L′ 2 L′′

M ′ −η M ′′

]

, (27)
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Table 3. The example of spectrum E of Hamiltonian (32) for γ = 1.5 and h4Q =
10. The pair (λ, μ) labels the irreducible representations of the group SU(3) and the
label ν denote degeneration of eigenvalues due to the intrinsic tetrahedral/octahedral
symmetry.

(λ, μ) Dλμ γC2(SU(3)) E ν CPU time, s.

(0, 0) 1 0 0 1 0.016

(1, 0) 3 24 24 3 0.656

(2, 0) 6 60 61.44 2 3.547

60 1

59.04 3

(2, 1) 15 96 98.5042 3 28.531

97.6949 3

96.96 1

95.52 2

93.9758 3

93.8251 3

H ′′(2)
LL′L′′M ′′ =

[
L′′ 2 L
M ′′ −2 M

] [
L′ 2 L′′

M ′ −2 M ′′

]

+
[

L′′ 2 L
M ′′ 2 M

] [
L′ 2 L′′

M ′ 2 M ′′

]

. (28)

Here the notation of the Clebsh-Gordan coefficients [8] by the square brackets is
introduced. The reduced matrix elements of the quadrupole operator have the
form

R
(λμ)
αL,α′L′ =

√
2L′ + 1

[
L 2 L′

−L′ 0 −L′

](−1)

q
(λμ)
αα′(L−L′)(L). (29)

If L < L′ then primed parameters should be interchanged with not primed
parameters on the right hand side of the formula (29) and the overall sign should
be changed as well if the L − L′ is the odd number. Matrix elements q

(λμ)
ijk (L)

read as
q
(λμ)
ijk (L) =

∑

α=0,...,αmax
s=0,±1

A
(λμ)
i,α (L)a(k)

s Ã
(λμ)
j,(α+s)(L + k), (30)

where coefficients a
(k)
s are given in II: and Ã

(λ,μ)
i,α (L) are elements of the inverse

and the transpose of the matrix A

Ã
(λ,μ)
i,α (L) = (A−1)

(λ,μ)

α,i (L). (31)

The above formula was applied in symbolic calculations to test our procedure in
paper II with analytical results of [9]. In present paper the efficiency of q

(λμ)
ijk (L)

calculations for different values of parameter k is illustrated in Fig. 3. The com-
putations were evaluated numerically to 150-digit precision. Such high precision
is necessary for accurate calculation of inverse matrix A−1.
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Remark 4. If we wish to calculate q
(λμ)
ijk (L) with help of the normalized matrix

Ǎ then we will scale matrix a by such a way ǎ = N−1aN which corresponds to
action of ǎ on normalized vector ǔ.

Let us calculate for example the low lying energy levels En ≡ Eλ,μ,ν of the
Hamiltonian:

H ≡ H/h4Q = γC2(SU(3)) + H ′′
4Q/h4Q, H|λ, μ, ν >= En|λ, μ, ν > . (32)

The computational results for an example of spectrum of the Hamiltonian (32)
are presented in Table 3. The columns of the table are: (λ, μ) labels the irre-
ducible representations of the group SU(3); Dλμ is the dimension of the (λ, μ)
irrep from Eq. (24) determining a complexity of the above algorithm; C2(SU(3))
marks the eigenvalues of the second order Casimir operator (23); E presents the
energy levels that results after diagonalization of the Hamiltonian (32); ν is the
degeneration of the corresponding energy spectrum E; CPU time is the H4Q

matrix calculation time in seconds. The computations were evaluated numeri-
cally to 10-digit precision.

The computations was performed on Intel i7-3630QM 2.40 GHz CPU with
8 GB RAM running 64-bit Windows 8.

5 Conclusion

We present the effective and fast symbolic algorithm for constructing of the
non-canonical Bargmann–Moshinsky (BM) basis with the highest weight vec-
tors of SO(3) irreps which can be implemented in any computer algebra sys-
tem. This kind of basis is widely used for calculating spectra and electromag-
netic transitions in molecular and nuclear physics. The new symbolic algorithm
for orthonormalisation of the obtained BM basis based on the Gram-Schmidt
orthonormalisation procedure is developed.

To avoid misunderstanding we recall that from a conventional view point the
proposed symbolic orthonormalisation algorithm can be called as a non-standard
recursive, or ’actually iterative’, since it traverses the computation graph not
from top to bottom, but from bottom to top. It has been organized in such a
way, to have one to one correspondence of obtained results with definition of the
orthonormalisation coefficients of matrix A from Eqs. (3) and (20) assumed in
Ref. [7].

This algorithm allows one to find the analytical expressions of the orthonor-
malized basis, if it is implemented in any computer algebra system, in particular,
Wolfram Mathematica 10.1. It has been given in the present paper and tested
explicitly on analytical results at small values λ and μ Refs. [7,9] in our previous
papers I and II. However, to realized the really fast large scale calculations with
characteristics of computer time shown in Figs. 2 and 3, it has been implemented
in the multi-precision arithmetics as a symbolic-numerical algorithm. It can be
also implemented in Fortran to apply in the fast large scale calculations like in
Ref. [10].
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The distinct advantage of this method is that it does not involve any square
root operation on the expressions coming from the previous steps for compu-
tation of the orthonormalisation coefficients for this basis. This makes the pro-
posed method very suitable for calculations on computer algebra systems. The
symbolic nature of the developed algorithms allows one to avoid the numeri-
cal round-off errors in calculation of spectral characteristics (especially close to
resonances) of quantum systems under consideration and to study their ana-
lytical properties for understanding the dominant symmetries [4]. The program
in the Mathematica language for orthonormalisation of the non-canonical BM
basis using the overlap integrals in Eq. (21) given by the analytical formula [2,7]
is now prepared and will be published as an open code elsewhere. The great
advantage of the program is the possibility to specify an arbitrary precision of
calculations which is especially important for large scale calculations of physical
quantities that involve procedures of matrices inversion. The high efficiency of
the developed program was illustrated by orthonormalisation of BM basis up to
extremely high quantum numbers (λ, μ), which is not given by other symbolic
algorithms known in the literature [11,12].
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Abstract. Computational problems of electrodynamics require an
approximate solution of the system of Maxwell’s vector equations for
regions with different geometries. The main methods for solving prob-
lems with the Maxwell equations are either finite difference methods
or methods based on the Galerkin and Kantorovich expansions, or the
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1 Introduction

Over the past 50–70 years, a tremendous development of numerical methods and
computational capacities has occurred, which today allow solving the tasks of
huge computation volume. Computational problems of electrodynamics require
an approximate solution of the system of Maxwell vector equations for regions
that differ in both linear dimensions and geometry. The approach to solving vec-
tor problems with the Maxwell equations, based on modern numerical methods,
requires either the introduction of grids to construct difference schemes in the
space or space-time domains, or the series expansion of solutions in some com-
plete systems of functions. The series are further truncated to partial sums and
Galerkin and Kantorovich methods [2,3] are used for the final formulation of the
computational problem. However, there are also methods that occupy an inter-
mediate place between grid and projection methods, namely, the finite element
method [4,6–11].

In the authors’ opinion, the methods for solving problems with the Maxwell
equations mentioned above possess a high degree of arbitrariness in setting the
parameters of the objects under consideration. As a payment for this arbitrari-
ness all the described methods suffer from the corresponding main drawback:
the solutions obtained are partially or completely specified as grid functions, for
which the analysis at the symbolic level is inconvenient and sometimes impossi-
ble. Note also that for vector problems, the conditions at the interface of dielec-
tric media that join the components of the electromagnetic field must also be sat-
isfied. Such boundary conditions, as a rule, can be presented only approximately
within the framework of the described methods, which is also a disadvantage in
the case of applying these methods to waveguide problems.

For the physical interpretation of the solutions obtained, especially for vec-
tor problems, in which the desired quantities are vector fields, it is much more
convenient to have a basic symbolic form of solution, only some selected char-
acteristics of which will be found in numerical form. Moreover, according to
the authors’ idea, the form of solution should essentially reproduce the physical
features of the waveguide propagation, the conditions at the interfaces between
dielectric media, asymptotic conditions at infinity, and at the same time be a
vector field at the symbolic level. At least the validity of the divergent equations
should follow automatically from the validity of Maxwell equations. The price
for the required characteristics will be the reduced universality of the structures
considered within the framework of the method, namely, we will further consider
a narrower class of waveguide structures for which the form of the solution is
specified more precisely.

As an alternative to the numerical methods described in the introduction,
it is proposed to introduce a physically more understandable type of solution,
liked by physicists because of the possibility of constructing several approxima-
tions that specify the solution, namely, an asymptotic expansion. A limitation
of the validity of such a decomposition is the presence of a small parameter, the
smallness of which will determine the class of waveguide structures suitable for
consideration in the framework of the method and the range of electromagnetic
radiation.
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In this paper, we have obtained for the first time the representation of the
waveguide mode in a symbolic form (using computer algebra system), which is
universal for all adiabatic waveguide structures in the zero approximation. Using
this representation, it is possible to approximately calculate the waveguide modes
of arbitrary layered waveguide structures.

2 Setting of the Problem

In this paper, the waveguide mode of propagation of monochromatic electromag-
netic radiation in an integrated optical structure is considered [12–14]. In this
case, the integrated optical structure itself, as a rule, is formed by applying addi-
tional dielectric layers on the waveguide base. A regular planar waveguide, e.g.,
a three-layer one, is often used as such a base. Suppose in this case that the coor-
dinate system is set in such a way that the planes separating the dielectric layers
of a three-layer waveguide are parallel to the plane (yOz). With this method of
specifying the coordinate system, the wave vector of electromagnetic radiation
propagation will also lie in the plane (yOz). The key role in obtaining integrated
optical effects in the propagation of electromagnetic radiation is played by the
profiles of additional dielectric layers, which will generally be specified through
the equations of the surfaces Fj (x, y, z) = x − hj(y, z). Given that the dielec-
tric layers are isotropic, the distributions of the permittivity and permeability
parameters are real functions of the coordinates ε = ε (x; y, z), μ = μ (x; y, z)
and for each fixed point (y∗, z∗) these functions will be piecewise constant. Note
that the paper considers the material medium consisting of dielectric subdo-
mains, filling together the entire three-dimensional space. Important parameters
for specifying the waveguide propagation of electromagnetic radiation are the
phase distribution ϕ (y, z) and the distribution of the effective refractive index
neff (y, z). The phase velocity of the waveguide propagation of electromagnetic
radiation is given by the following expression:

v =
c

neff (y, z)
. (1)

Solving the problem of waveguide propagation of electromagnetic radiation
for Maxwell equations without additional assumptions is an extremely difficult
task. In our case, we limit the scope of the study to smoothly irregular integrated
optical structures that satisfy the following constraints:

∥
∥
∥
∥

∂h

∂y

∥
∥
∥
∥

,

∥
∥
∥
∥

∂h

∂y

∥
∥
∥
∥

� hk0
2π

=
h

λ
,

∥
∥
∥
∥

Δϕ

∇ϕ

∥
∥
∥
∥

� k0. (2)

From the description of the class of integrated optical structures under con-
sideration, it follows that in the absence of external currents and charges, the
induced currents and charges are zero. In this case, the material coupling equa-
tions are assumed to be linear. Thus, the electromagnetic field in a space filled
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with dielectrics in the Gaussian system of units in the Cartesian coordinate
system is described by the equations [12–14]:

∂Hz

∂y
− ∂Hy

∂z
=

ε

c

∂Ex

∂t
,

∂Ez

∂y
− ∂Ey

∂z
= −μ

c

∂Hx

∂t
,

∂Hx

∂z
− ∂Hz

∂x
=

ε

c

∂Ey

∂t
,

∂Ex

∂z
− ∂Ez

∂x
= −μ

c

∂Hy

∂t
,

∂Hy

∂x
− ∂Hx

∂y
=

ε

c

∂Ez

∂t
,

∂Ey

∂x
− ∂Ex

∂y
= −μ

c

∂Hz

∂t
.

(3)

Here E = (Ex, Ey, Ez)
T and H = (Hx,Hy,Hz)

T are the vectors of electric
and magnetic fields, and c is the speed of light in vacuum. At the interface
between dielectric media, the following conditions are satisfied [12–14]:

[

n × H1
]∣
∣
x=h(y,z)

=
[

n × H2
]∣
∣
x=h(y,z)

,
[

n × E1
]∣
∣
x=h(y,z)

=
[

n × E2
]∣
∣
x=h(y,z)

.
(4)

Here n is the normal vector to the interface between the first and the second
dielectric medium, E1, E2, H1, and H2 are the vectors of the electric and mag-
netic field strength in the first and the second medium, respectively. Since an
open integrated optical dielectric structure is considered, it is necessary to specify
asymptotic boundary conditions at infinity for guided waveguide modes [12–14]:

‖E‖ −−−−−→
x→±∞ 0, ‖H‖ −−−−−→

x→±∞ 0 . (5)

In weakly inhomogeneous three-dimensional media, the propagation of elec-
tromagnetic radiation is described using locally plane waves or adiabatic approx-
imations of the Maxwell equations obtained by the asymptotic method [1]. The
propagation of electromagnetic radiation in the integrated optical structures can
be described using the model of adiabatic waveguide modes (AWM).

3 Asymptotic Method for the Derivation of AWM
Equations in Symbolic Form

To formulate the model of adiabatic waveguide modes, we will use the asymptotic
expansions of the electric and magnetic field strength vectors. We will investigate
asymptotic expansions, particularly used in the study of semiclassical approx-
imations, in symbolic form involving no numerical methods. To construct the
AWM model [5], we use the asymptotic method [1], in which the desired solu-
tions of Maxwell equations (3) are presented in the form:

E (x, y, z, t) =
∞∑

s=0

Es (x; y, z)
(−iω)γ+s exp {iωt − ik0ϕ (y, z)} , (6)
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H (x, y, z, t) =
∞∑

s=0

Hs (x; y, z)
(−iω)γ+s exp {iωt − ik0ϕ (y, z)} . (7)

In this representation, the following notation and variables are used: ω is the
angular frequency of the propagating monochromatic electromagnetic radiation,
s is the asymptotic expansion index, Es, Hs are the corresponding electric and
magnetic strength vectors for the asymptotic expansion term of the order s, k0
is the wave number, ϕ (y, z) is the phase distribution. In this case, the angular
frequency of propagating electromagnetic radiation should be large enough, so
that the value 1

ω is a small parameter of the asymptotic expansion (6)–(7) in the
optical range of electromagnetic radiation.

In the notation Es (x; y, z) , Hs (x; y, z), the semicolon separator for x means
the following assumption: ∂Es/∂y, ∂Es/∂z, ∂Hs/∂y, and ∂Hs/∂z are small
quantities, therefore, the following expressions for the derivatives of E and H
are valid:

∂E

∂y
= −ik0

∂ϕ

∂y
E,

∂E

∂z
= −ik0

∂ϕ

∂z
E , (8)

∂H

∂y
= −ik0

∂ϕ

∂y
H,

∂H

∂z
= −ik0

∂ϕ

∂z
H. (9)

Let us substitute the expressions (6)–(7) into the system of Eqs. (3) and
equate the coefficients for the same powers of 1

ω . As a result, in the zero approx-
imation of the method, taking Eqs. (8) and (9) into account, we arrive at the
system of homogeneous equations:

− ik0
∂ϕ

∂y
Hz

0 + ik0
∂ϕ

∂z
Hy

0 = ik0εE
x
0 , (10)

− ik0
∂ϕ

∂z
Hx

0 − ∂Hz
0

∂x
= ik0εE

y
0 , (11)

∂Hy
0

∂x
+ ik0

∂ϕ

∂y
Hx

0 = ik0εE
z
0 , (12)

− ik0
∂ϕ

∂y
Ez

0 + ik0
∂ϕ

∂z
Ey

0 = −ik0μHx
0 , (13)

− ik0
∂ϕ

∂z
Ex

0 − ∂Ez
0

∂x
= −ik0μHy

0 , (14)

∂Ey
0

∂x
+ ik0

∂ϕ

∂y
Ex

0 = −ik0μHz
0 . (15)

Comment. It is important to note that as a result of applying the asymptotic
expansions (6)–(7), Maxwell’s equations reduce to two algebraic equations and
four first-order differential equations. The algebraic equations

Ex
0 =

1
ε

(
∂ϕ

∂z
Hy

0 − ∂ϕ

∂y
Hz

0

)

, (16)
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Hx
0 =

1
μ

(
∂ϕ

∂y
Ez

0 − ∂ϕ

∂z
Ey

0

)

(17)

will be used below to formulate the model under study.
Substituting algebraic equations (16) and (17) into differential equations (11),

(12), (14) and (15), we obtain a system of first-order differential equations; here-
inafter, we will deal with the zero approximation of the asymptotic expansion
for a small parameter, so the index of the approximation order is no longer
preserved:

∂Hz

∂x
+

ik0
μ

∂ϕ

∂z

(
∂ϕ

∂y
Ez − ∂ϕ

∂z
Ey

)

+ ik0εE
y = 0 , (18)

∂Hy

∂x
+

ik0
μ

∂ϕ

∂y

(
∂ϕ

∂y
Ez − ∂ϕ

∂z
Ey

)

− ik0εE
z = 0 , (19)

∂Ez

∂x
+

ik0
ε

∂ϕ

∂z

(
∂ϕ

∂z
Hy − ∂ϕ

∂y
Hz

)

− ik0μHy = 0 , (20)

∂Ey

∂x
+

ik0
ε

∂ϕ

∂y

(
∂ϕ

∂z
Hy − ∂ϕ

∂y
Hz

)

+ ik0μHz = 0 . (21)

4 Construction of Fundamental System of Solutions
(FSS) for the System of Ordinary Differential
Equations (SODE) in Symbolic Form

We consider the problem of finding eigenvectors (guided modes) and eigenval-
ues using the model of adiabatic waveguide modes within the framework of the
zero approximation of the asymptotic expansion for a planar regular three-layer
optical waveguide. In this case, the problem will be solved at a fixed point
(y, z). Allowing for the fact that permittivity and permeability coefficients are
piecewise-constant functions, we solve the problem in each subdomain with con-
stant values of ε, μ, and then join the solutions at the interface between dielectric
media. In this case, in each layer ε, μ are fixed constants and ∂ϕ

∂y , ∂ϕ
∂z are real

numbers at fixed (y, z). To construct the total fields E, H it is necessary to set
and solve the problem of determining ϕ (y, z), which is left beyond the scope of
the present paper.

Thus, in each subdomain with constant values ε and μ, we obtain a system
of ordinary differential equations (SODE) with constant coefficients of the first
order having the form:

u′ = Au, (22)

where the vector of the desired quantities u = u (x; y, z) and the matrix of
coefficients A = A (y, z) are defined as follows:

u =

⎛

⎜
⎜
⎝

Hz (x; y, z)
Ez (x; y, z)
Hy (x; y, z)
Ey (x; y, z)

⎞

⎟
⎟
⎠

, (23)
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A =

⎡

⎢
⎢
⎣

0 ik0
μ ϕyϕz 0 − ik0

μ ϕz
2 + ik0ε

− ik0
ε ϕyϕz 0 ik0

ε ϕz
2 − ik0μ 0

0 ik0
μ ϕy

2 − ik0ε 0 − ik0
μ

− ik0
ε ϕy

2 + ik0μ 0 ik0
ε ϕyϕz 0

⎤

⎥
⎥
⎦

, (24)

where ϕy = ∂ϕ
∂y , ϕz = ∂ϕ

∂z .
It is important to note that the matrix of the system under consideration is

sparse; in fact, half of the elements of the matrix are zero. In order to build a
fundamental system of solutions (FSS) [17–19] for Eq. (22) in symbolic form, it
is necessary to derive symbolic expressions for the eigenvalues and eigenvectors
of the matrix A. Moreover, for efficient qualitative analysis of the solutions of the
system, symbolic expressions of eigenvalues and eigenvectors must be compact
and applicable for such an analysis.

Using the Maple computer algebra system [20], we calculate eigenvalues γj

and eigenvectors ξj , j = 1, 4 of the matrix A in a symbolic form. Let us denote
by γ and X the vector composed of eigenvalues and the matrix of eigenvectors
[15,16], respectively:

γ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k0

√

−εμ +
(

∂ϕ
∂y

)2

+
(

∂ϕ
∂z

)2

−k0

√

−εμ +
(

∂ϕ
∂y

)2

+
(

∂ϕ
∂z

)2

k0

√

−εμ +
(

∂ϕ
∂y

)2

+
(

∂ϕ
∂z

)2

−k0

√

−εμ +
(

∂ϕ
∂y

)2

+
(

∂ϕ
∂z

)2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (25)

As seen from the symbolic expressions for eigenvalues (25), there are two

eigenvalues γ± = ±k0

√

−εμ +
(

∂ϕ
∂y

)2

+
(

∂ϕ
∂z

)2

, each having a multiplicity of 2,

which may complicate the form of the FSS of the system under study. Using the
computer algebra system, we obtain the matrix of eigenvectors X:
⎡

⎢
⎢
⎢
⎢
⎣

−εμ+ϕy
2

ϕyϕz
− iμ

√
−εμ+ϕy

2+ϕz
2

ϕyϕz

−εμ+ϕy
2

ϕyϕz

iμ
√

−εμ+ϕy
2+ϕz

2

ϕyϕz

− iε
√

−εμ+ϕy
2+ϕz

2

ϕyϕz

−εμ+ϕz
2

ϕyϕz

iε
√

−εμ+ϕy
2+ϕz

2 −εμ+ϕz
2

ϕyϕz

0 1 0 1
1 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦

.

From the form of the matrix X, it can be noted that despite the presence
of multiple eigenvalues, the eigenvectors are linearly independent. Therefore,
the matrix A can be diagonalised, which can be illustrated by constructing the
Jordan form J of the matrix A using the Maple computer algebra system:

J =

⎡

⎢
⎢
⎣

γ+ 0 0 0
0 γ− 0 0
0 0 γ+ 0
0 0 0 γ−

⎤

⎥
⎥
⎦

.
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Using the obtained symbolic expressions for eigenvalues and eigenvectors, we
construct the FSS for SODE (22):

U (x; y, z) = C1ξ1e
γ+x + C2ξ2e

γ−x + C3ξ3e
γ+x + C4ξ4e

γ−x (26)

The behaviour of the solution of the system under study substantially

depends on the sign of the radicand
(

∂ϕ
∂y

)2

+
(

∂ϕ
∂z

)2

−εμ. If
(

∂ϕ
∂y

)2

+
(

∂ϕ
∂z

)2

≥ εμ,
then the solution of the system under study is a sum of the decreasing and
increasing exponentials. Otherwise, the solution is a sum of the oscillating func-
tions. The described properties of the solutions will be used below in setting the
problem in terms of the formulation of asymptotic conditions.

Taking into account the fact that the FSS is known in symbolic form and is
amenable to qualitative analysis, we will use it to state the problems of finding
the modes of multilayer dielectric waveguides.

5 Statement of the Problem of Finding Guided Modes in
a Symbolic Form

The configuration of an open multilayer planar isotropic waveguide is shown in
Fig. 1.

In this configuration, there are always two cladding layers of semi-infinite
thickness (x > h1 (y, z) and x < hN (y, z)). Between these layers, there is a finite
number of layers of varying thickness. In this case, the interfaces between dielec-
tric media can be arbitrary smooth surfaces. Thus, having FSS for each layer
(26), the problem of finding guided modes of the waveguide structure is reduced

Fig. 1. Plot of a few smooth boundaries multilayered waveguide
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to the following operations: (1) for layers of semi-infinite thickness, solutions
are selected that satisfy the asymptotic conditions (5), i.e., the coefficients at
increasing exponentials that enter the solution are set to be zero; (2) solutions
for each layer are substituted into the boundary conditions. As a result of the
substitution of solutions in the boundary conditions, we obtain a homogeneous
system of linear algebraic equations with respect to the unknown coefficients,
which determine the expansion of the solution in FSS for each layer. Note that
the condition of solvability of a homogeneous system of linear algebraic equations
is the equality to zero of the determinant of the matrix of its coefficients.

Fig. 2. Plot of a smooth boundary multilayered waveguide

With the above considerations taken into account, let us proceed to the
formulation of two types of conditions in symbolic form.

Asymptotic conditions are imposed on solutions in semi-infinite layers, while
relying on the analysis of FSSs, it is obvious that for the existence of a nontrivial

solution, it is necessary that
(

∂ϕ
∂y

)2

+
(

∂ϕ
∂z

)2

≥ εμ, and that the coefficients of
the growing exponents are zero. Consider conditions on an arbitrary smooth
interface between two dielectric media given by F (x, y, z) = x − h (y, z) = 0
(Fig. 2).

[n × H] =

⎛

⎝

Hy
∂h
∂z − Hz

∂h
∂y

−Hz − Hx
∂h
∂z

Hy − Hx
∂h
∂y

⎞

⎠ . (27)

When writing (27), the denominator

√

1 +
(

∂h
∂y

)2

+
(

∂h
∂z

)2
in the expression

for the normal was omitted, since it does not vanish and coincides for both sides
of (4). It should be noted that only two of the three components of the obtained
vector (27) are linearly independent. Thus, to write the boundary conditions we
will use the following expressions:

(

A1
z + A1

x

∂h

∂z

)∣
∣
∣
∣
x=h(y,z)

=
(

A2
z + A2

x

∂h

∂z

)∣
∣
∣
∣
x=h(y,z)

, (28)
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(

A1
y − A1

x

∂h

∂y

)∣
∣
∣
∣
x=h(y,z)

=
(

A2
y − A2

x

∂h

∂y

)∣
∣
∣
∣
x=h(y,z)

, (29)

where A = {E,H}. In addition, for the case of a flat boundary F (x, y, z) =
x − const, these expressions are simplified to the following form:

A1
y

∣
∣
x=const

= A2
y

∣
∣
x=const , (30)

A1
z

∣
∣
x=const

= A2
z

∣
∣
x=constconst

. (31)

Summarising the intermediate results, we resume that a complete set of tools
is obtained for the formulation of the problem of finding the guided modes of
arbitrary multilayer waveguides in a symbolic form. Namely, we constructed an
algorithm for generating asymptotic conditions at infinity and boundary condi-
tions for arbitrary smooth interfaces between dielectric media, which together
form a homogeneous system of linear algebraic equations for the FSS coefficients
for all media of the considered integrated optical planar waveguide structure.

6 Numerical Calculation of Guided Modes of a Planar
Open Three-Layer Waveguide

As an example, consider an open three-layer regular planar dielectric waveguide
schematically presented below (Fig. 3). Note that such planar structures are
well described in the framework of the scalar model, therefore, for verification,
we compare the phase constants obtained in the model of adiabatic waveguide
modes with appropriate coefficients obtained in the scalar model [21,22].

Fig. 3. Open regular planar three-layer waveguide

The described structure occupies the entire space, the covering layer occupies
a semi-infinite region x > h and is characterised by a refractive index nc, the
substrate occupies a semi-infinite region x < 0 and is characterised by a refractive
index ns. The waveguide layer is enclosed in the region 0 < x < h, has a finite
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thickness h and a refractive index nf . Note that the refractive indices in the
framework of the model under consideration are real values. We will consider
electromagnetic radiation propagating along the axis Oz. In this case, the phase
ϕ (y, z) varies only along the axis Oz, and ∂ϕ/∂y = 0. Below we present the
formulation of the problem of finding guided waveguide modes of the structure
described above in symbolic form.

7 Symbolic Formulation of the Problem with Symbolic
Generation of System of Linear Algebraic Equations
(SLAE)

Let us construct a fundamental system of solutions of SODE (22) for each of
the layers in the case ∂ϕ/∂y = 0 in the Maple computer algebra system by
analogy with the more general case discussed in the above section “Asymptotic
method for the derivation of AWM equations in symbolic form.” The eigenval-
ues for each of the layers for the case ∂ϕ/∂y = 0 are simplified to the form

γα
± = ±k0

√

−εαμα + (∂ϕ/∂z)2, where the index α = {c, f, s} indicates the cor-
responding dielectric layer, and the corresponding matrix of eigenvectors Xα

takes the following form:
⎡

⎢
⎢
⎢
⎣

0 −iμα√
−εaμa+(∂ϕ/∂z)2

0 iμa√
−εaμa+(∂ϕ/∂z)2

0 1 0 1
iεa√

−εaμa+(∂ϕ/∂z)2
0 −iεa√

−εaμa+(∂ϕ/∂z)2
0

1 0 1 0

⎤

⎥
⎥
⎥
⎦

.

In this particular case, for each of the three layers considered (α = {c, f, s}),
the fundamental system of solutions takes the following form:

Uα (x; y, z) =

⎡

⎢
⎢
⎢
⎢
⎣

− iAα
2 μα√

−εaμα+(∂ϕ/∂z)2
eγα

+x + iAα
4 μα√

−εaμα+(∂ϕ/∂z)2
eγα

−x

Aα
2 eγα

+x + Aα
4 eγα

−x

iAα
1 εα√

−εaμα+(∂ϕ/∂z)2
eγα

+x − iAα
3 εα√

−εaμα+(∂ϕ/∂z)2
eγα

−x

Aα
1 eγα

+x + Aα
3 eγα

−x

⎤

⎥
⎥
⎥
⎥
⎦

.

Comment. Note also that for each of the semi-infinite layers corresponding
to the substrate and the covering layer, the pair of coefficients with increasing
exponentials is zero: for the covering layer Ac

1 = Ac
2 = 0, for the substrate

As
3 = As

4 = 0.
We now write the boundary conditions for x = 0, x = h and obtain a homo-

geneous system of linear algebraic equations (SLAE) for the vector of unknown

quantities A =
(

Ac
3, A

c
4, A

f
1 , Af

2 , Af
3 , Af

4 , As
1, A

s
2

)T

. The structure of the resulting
matrix is as follows (Fig. 4):

The matrix is seen to be sparse and has a checkerboard-like structure of
blocks. In this case, the determinant of the matrix can be obtained in symbolic
form; however, we do not present this cumbersome expression here for brevity.
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Fig. 4. The structure of the resulting matrix

A homogeneous system of linear algebraic equations has a non-zero solution
if and only if the determinant of the matrix of its coefficients is zero. From this
property, we obtain an equation for finding the phase constant, for which we

introduce the following definition β2 =
(

∂ϕ
∂z

)2

, where β is determined from the
equation det (M (β)) = 0.

8 Numerical Calculations

Now let us proceed to numerical calculations. For this purpose we specify the
required values as follows:

λ = 0.55; k0 =
2π

λ
; nc = 1.0; nf = 1.565; ns = 1.47; h = 2λ. (32)

For the given parameters, the plot of the real part of the determinant is as
follows (Fig. 5):

The real part of the determinant shows four roots, while the imaginary part
of the determinant is computer zero. Next, we will numerically find the zeros
of the determinant of the matrix by bisectional search with a given accuracy.
First, we localise the segments, at the ends of which the determinant changes
sign and then in each such segment we apply the method of bisectional search to
refine the root. The described algorithm is implemented in the Maple computer
algebra system and used below to verify the formulated method.

9 Verification

To verify the described method, we compare the calculated phase constants
with those obtained within the scalar model [21,22]. The phase constants in
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Fig. 5. Plot of the real part of the determinant

the framework of the described method are denoted by βvector, and the phase
constants obtained in the scalar model are denoted by βscalar. In the framework
of the algorithm described above, we will find the phase constants (the zeros
of the determinant function) with the accuracy ε = 4.44 × 10−18; with the
same accuracy, we calculate the phase constants using the scalar model. Let
us compare the calculated phase constants and determine the absolute δabs =
∣
∣βscalar − βvector

∣
∣ and relative δrel =

∣
∣βscalar − βvector

∣
∣ /

∣
∣βscalar

∣
∣ errors. The

verification results are presented in the table below.

βscalar βvector δabs δrel

1.5514927380692901290 1.5514927380692901222 6.8 × 10−18 4.38 × 10−18

1.5501811158901042864 1.5501811158901042882 1.8 × 10−18 2.38 × 10−18

1.5117506145374407068 1.5117506145374407104 3.6 × 10−18 1.16 × 10−18

1.5072749512764207624 1.5072749512764207660 3.6 × 10−18 2.39 × 10−18

Given the magnitude of the error ε = 4.44 × 10−18, we can conclude that
the absolute error δabs has the order of the error of calculations, and the relative
error does not exceed the error of the calculations. From the numerical results, it
follows that the phase constants calculated in the framework of the method under
study and in the framework of the scalar model coincide within the accuracy of
the calculations performed.

10 Conclusion

In the paper, the vector problem of finding the guided modes of an open dielectric
waveguide with an arbitrary number of dielectric layers having smooth bound-
aries is posed in symbolic form. The formulation of the problem is preceded
by the symbolic derivation of a system of differential equations and its general
solution, which is also studied in symbolic form. Thanks to the combination of
symbolic transformations, it is possible to formulate a computational problem of
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finding non-trivial solutions of a homogeneous system of linear algebraic equa-
tions, in which the unknown quantities are the coefficients of expansion of a
general solution in a fundamental system of solutions.

Thanks to the model of adiabatic waveguide modes, it is possible to obtain
rather simple symbolic expressions when formulating the problem of find-
ing guided modes, which radically distinguishes the model used from other
approaches to the modelling of smoothly irregular integrated optical structures.
A symbolic-numerical method for the approximate solution of the problem is
developed. The method is implemented in the Maple computer algebra sys-
tem. Verification was performed by comparing the phase constants calculated in
the framework of the method under study with those obtained using the scalar
model. The results coincide with an accuracy close to the accuracy of calcula-
tions, which demonstrates the consistency of the developed method.

In this paper, we obtained for the first time the representation of the waveg-
uide mode in a symbolic form (using computer algebra system), which is univer-
sal for all adiabatic waveguide structures in the zero approximation. Using this
representation, it is possible to approximately calculate the waveguide modes of
arbitrary layered waveguide structures.

All results were obtained in the Maple computer algebra system using the
LinearAlgebra and ArrayTools packages.
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Abstract. In this paper, the concepts of quasi-characteristic pair
and quasi-characteristic decomposition are introduced. The former is
a pair (G, C) of a reduced lexicographic Gröbner basis G and the
W-characteristic set C which is regular and extracted from G; the lat-
ter is the decomposition of a polynomial set into finitely many quasi-
characteristic pairs with associated zero relations. We show that the
quasi-characteristic decomposition of any polynomial set can be obtained
algorithmically regardless of the variable ordering condition. A new algo-
rithm is presented for computing characteristic decomposition when the
variable ordering condition is always satisfied, otherwise it degenerates
to compute the quasi one. Some properties of quasi-characteristic pairs
and decomposition are proved, and examples are given to illustrate the
algorithm.

Keywords: Quasi-characteristic decomposition ·
Quasi-characteristic pair · W-characteristic set · Regular set ·
Gröbner basis

1 Introduction

Solving polynomial system is a fundamental problem in many areas of science
and engineering such as commutative algebra [11], algebraic geometry [10,12],
geometric reasoning [33], algebraic cryptanalysis [16], and biological analysis
[5,31]. Compared with numeric methods such as homotopy continuation [26]
for solving polynomial systems, symbolic methods produce rigorous and reli-
able solutions which are convenient for later manipulations. There are two main
symbolic methods based respectively on triangular sets [24,28,33] and Gröbner
bases [7,11] for solving polynomial systems, and both of them can be considered
as polynomial generalizations of Gaussian elimination for linear systems.
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Triangular decomposition decomposes an arbitrary polynomial set into trian-
gular sets which are special polynomial sets with a certain triangular structure,
such that the zeros of the polynomial set is equal to the union of those of the tri-
angular sets. By means of triangular decomposition one can effectively study the
algebraic varieties defined by polynomial sets. Along with continuous research
and development on its theory, methods, and algorithms, triangular decompo-
sition has become a standard approach to polynomial elimination and polyno-
mial system solving. Currently effective algorithms are available for decomposing
polynomial sets into different kinds of triangular sets [8,9,18,21,28], e.g., char-
acteristic sets, regular sets and normal sets.

The Gröbner basis is an important tool in computational ideal theory, in
particular for polynomial system solving. For a given ideal and a term ordering,
the Gröbner basis of this ideal is a set of special generators with good properties,
such that this ideal could be handled algorithmically via these generators. Since
its introduction by Buchberger in his Ph.D. thesis [6], Gröbner basis has gained
extensive study [4,15,17,19,25,32], which makes it a powerful tool for compu-
tational commutative algebra and algebraic geometry. In particular, Gröbner
bases with respect to the lexicographic term ordering (LEX) have rich proper-
ties, for example the elimination property for elimination ideals, such that they
are convenient for polynomial system solving.

The structures of LEX Gröbner bases were studied first for bivariate ideals
[20] and then extended to general zero-dimensional polynomial ideals [13,22].
For the case of arbitrary dimensions, the connections between Ritt characteris-
tic sets and LEX Gröbner bases are exploited in [1,29] by extracting triangular
sets from the LEX Gröbner bases. In particular, the W-characteristic sets which
are the smallest triangular sets contained in the reduced LEX Gröbner bases are
used to study the relationships between normal triangular sets and reduced LEX
Gröbner bases in [29], and it is also shown there that when the W-characteristic
set is abnormal and satisfies the variable ordering condition, there exist some
pseudo-divisibility relationships among certain polynomials in it. By using such
relationships, an algorithm is proposed in [30] for characteristic decomposition
which decomposes an arbitrary polynomial set simultaneously into reduced LEX
Gröbner bases and normal sets. In [14], the failure of the assumption on the
variable ordering for the pseudo-divisibility to occur is further handled by tem-
porarily changing the variable orderings.

In this paper, we introduce the concepts of quasi-characteristic pair and
quasi-characteristic decomposition. The former is a pair (G, C) of reduced LEX
Gröbner basis G and the W-characteristic set C which is regular and extracted
from G; the latter is the decomposition of a polynomial set into finitely many
quasi-characteristic pairs with associated zero relations. We present a split-
ting strategy based on the properties of regularity without the assumption
on the variable ordering. With this splitting strategy, we propose a new algo-
rithm for computing characteristic decomposition of an arbitrary polynomial set
when the variable ordering condition is always satisfied. When the condition is
not always satisfied, instead of temporarily changing the variable orderings to
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handle the failure of the assumption on variable ordering as in [14], the proposed
algorithm degenerates to compute quasi-characteristic decomposition. Our main
contributions include: (1) the concepts of the quasi-characteristic pair and quasi-
characteristic decomposition are introduced with some properties proved, (2) a
new algorithm, which does not depend on pseudo-divisibility between polynomi-
als ensured by satisfaction of the variable ordering condition as previous existing
algorithms in [14,30] do, is proposed for computing (quasi-) characteristic decom-
position of an arbitrary polynomial set, and (3) experimental results with our
implementation are presented.

After a brief review of Gröbner bases, triangular decomposition and charac-
teristic decomposition in Sect. 2, we present a new splitting strategy and another
algorithm for characteristic decomposition in detail in Sect. 3. Then we define the
quasi-characteristic pair and quasi-characteristic decomposition and prove some
of their properties in Sect. 4, followed by two illustrative examples in Sect. 5.
Then the experimental results with our implementation for (quasi-) characteris-
tic decomposition are reported in Sect. 6.

2 Preliminaries

In this section some basic notions and notations used in the sequel are recalled.
The reader is referred to [1,3,11,28] and the references therein for more details
on the theories of Gröbner bases and triangular sets and to [30] for the definitions
and properties of characteristic decomposition.

2.1 Gröbner Basis, Triangular Set and Triangular Decomposition

Let K be a field and K[x1, . . . , xn] be the ring of polynomials in n ordered vari-
ables x1 < · · · < xn with coefficients in K. In this paper, we write K[x1, . . . , xn]
as K[x] for simplicity. With a fixed term ordering < which is a total and well
ordering on all the terms in K[x], the greatest term in a polynomial F ∈ K[x]
with respect to < is called the leading term of F and denoted by lt(F ).

Here in this paper the LEX term ordering <LEX is of our main concerns.
For two different terms xα and xβ in K[x] with α = (α1, . . . , αn) and β =
(β1, . . . , βn), we say that xα <LEX xβ if there exists an integer i (1 ≤ i ≤ n)
such that αi < βi and for j = i + 1, . . . , n, αj = βj .

Definition 1. Let I ⊆ K[x] be an ideal and < be a term ordering. Denote by
〈lt(I)〉 the ideal generated by the leading terms of all the polynomials in I. A
finite set {G1, . . . , Gs} of polynomials in I is called a Gröbner basis of I with
respect to < if 〈lt(G1), . . . , lt(Gs)〉 = 〈lt(I)〉.

Let G = {G1, . . . , Gs} be a Gröbner basis of an ideal I ⊆ K[x] with respect
to a fixed term ordering <. For an arbitrary polynomial F ∈ K[x], there exists
a unique polynomial R ∈ K[x] corresponding to F such that F − R ∈ I and no
term of R is divisible by any of {lt(G1), . . . , lt(Gs)}. F is said to be B-reduced
with respect to G if F = R. The Gröbner basis G is said to be reduced if each
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Gi is monic and no term of Gi is divisible by any of {lt(Gj) | j �= i} for all
i = 1, . . . , s. The reduced Gröbner basis with respect to a fixed term ordering is
unique.

Let F be a polynomial in K[x]\K. With respect to the variable ordering, the
greatest variable appearing in F is called the leading variable of F and denoted
by lv(F ). Let lv(F ) = xi. Then F can be written as F = Ixk

i + R, where
I ∈ K[x1, . . . , xi−1], R ∈ K[x1, . . . , xi], and deg(R, xi) < k = deg(F, xi). The
polynomial I is called the initial of F , denoted by ini(F ). For any polynomial
set F ⊆ K[x], ini(F) denotes the set {ini(F ) | F ∈ F}.

Definition 2. A finite, nonempty, ordered set T = [T1, . . . , Tr] of polynomials
in K[x] \ K is called a triangular set if lv(T1) < · · · < lv(Tr).

We denote by prem(P,Q) the pseudo-reminder of P ∈ K[x] with respect to
Q ∈ K[x] \ K in lv(Q), and for any triangular set T = [T1, . . . , Tr] ⊆ K[x], the
pseudo-reminder of P with respect to T is defined as

prem(P, T ) := prem(· · · prem(prem(P, Tr), Tr−1), . . . , T1).

For any two polynomial sets F ,G ⊂ K[x], Z(F/G) denotes the set

Z(F/G) := {x̄ ∈ K̄
n | F (x̄) = 0, G(x̄) �= 0, for any F ∈ F , G ∈ G},

where K̄ is the algebraic closure of K. In particular, Z(F) := Z(F/{ }).

Definition 3. Let F ⊂ K[x] be a polynomial set. A triangular decomposition
of F is a finite number of triangular sets T1, T2, . . . , Tt ⊂ K[x] such that Z(F) =⋃t

i=1 Z(Ti/ ini(Ti)).

Let F ⊆ K[x] be a polynomial set. We denote by 〈F〉 the ideal of K[x]
generated by F and by

√
〈F〉 the radical of 〈F〉. For H ∈ K[x] we use 〈F〉 : H

to denote the ideal quotient of 〈F〉 by H, which is the set of the polynomials
P ∈ K[x] such that PH ∈ 〈F〉. The saturated ideal of a triangular set T =
[T1, . . . , Tr] is defined as sat(T ) := {P ∈ K[x] | ∃ i ≥ 0 such that PJ i ∈ 〈T 〉},
where J = ini(T1) · · · ini(Tr).

Definition 4. Let I be an ideal of a polynomial ring R
′ ⊆ R ⊆ K[x]. An

element P ∈ R is said to be zero (or a zero-divisor) modulo I if P is zero (or
a zero-divisor respectively) in R/IR, where IR denotes the ideal generated by I
in R. Furthermore, we say that P is regular modulo I if it is neither zero nor a
zero-divisor modulo I.

Definition 5. Let T = [T1, . . . , Tr] be a triangular set in K[x] and xpi
= lv(Ti)

for i = 1, . . . , r. Then T is said to be regular (or called a regular set) if
for i = 2, . . . , r, we have ini(Ti) ∈ K[x1, . . . , xpi−1] to be regular modulo
sat(Ti−1)K[x1,...,xpi−1 ]

.
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Regular sets [27] or regular chains [1] are one of the most commonly used
triangular sets. It is proved in [27,28] that a triangular set T is regular if and
only if sat(T ) = {P ∈ K[x] | prem(P, T ) = 0}.

Let T ⊂ K[x] be a triangular set. The variables in {x1, . . . , xn}\{lv(T1), . . . ,
lv(Tr)} are called its parameters, and T is said to be normal (or called a normal
set) if ini(T ) involves only the parameters of T . By definition any normal set
is obviously regular. T is called an ascending set if r = 1 and T1 ∈ K\{0}, or
deg(Tj , lv(Ti)) < deg(Ti, lv(Ti)) for every pair 0 < i < j ≤ r.

Definition 6. Let P be a polynomial set in K[x]. An ascending set C ⊆ K[x]
is called a Ritt characteristic set of the ideal 〈P〉 if C ⊆ 〈P〉 and prem(P, C) = 0
for any P ∈ 〈P〉.

The concepts of median set (see [1, Def. 3.4]) and W-characteristic set
(see Definition 7 below) are introduced and applied to compute Ritt charac-
teristic sets of given polynomial ideals.

2.2 W-Characteristic Set, Characteristic Pair and Characteristic
Decomposition

For any polynomial ideal there exists a reduced Gröbner basis which is unique
with respect to a fixed term ordering. In particular, from the reduced LEX
Gröbner basis of an ideal, one can extract the W-characteristic set of this ideal
as defined below.

Definition 7 ([29, Def. 3.1]). Let P be a polynomial set in K[x] and G be the
reduced LEX Gröbner basis of the ideal 〈P〉. Denote G(i) := {G ∈ G | lv(G) =
xi}. Then the ordered set of all the smallest polynomials with respect to <LEX

in every set G(i) for i = 1, . . . , n is called the W-characteristic set of 〈P〉 (or
of P).

Given a minimal LEX Gröbner basis G which is not necessarily reduced, the
minimal triangular set TG [1, Notation 3.3] extracted from G in the same way as
in Definition 7 is investigated in [1], with its basic properties proved when 〈G〉 is a
prime ideal. Note that the W-characteristic set is extracted from a reduced LEX
Gröbner basis, and thus it is uniquely defined with respect to the polynomial
ideal and may possess stronger properties.

Proposition 1 ([29, Prop. 3.1]). Let C be the W-characteristic set of 〈P〉 ⊆
K[x]. Then

(a) For any P ∈ 〈P〉, prem(P, C) = 0;
(b) 〈C〉 ⊆ 〈P〉 ⊆ sat(C);
(c) Z(C/ ini(C)) ⊆ Z(P) ⊆ Z(C).

Note that the W-characteristic set C of 〈P〉 is extracted from the LEX
Gröbner basis G of 〈P〉, thus C ⊆ 〈G〉 = 〈P〉. By Proposition 1(a) we also have
prem(P, C) = 0 for any polynomial P ∈ 〈P〉. Therefore, the W-characteristic set
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C is quite close to the Ritt characteristic set of 〈P〉 by Definition 6. While for
an arbitrary polynomial ideal, the W-characteristic set and Ritt characteristic
set are not necessarily the same, since a W-characteristic set may not be an
ascending set.

Let P ⊆ K[x] be a polynomial set and C be the W-characteristic set of 〈P〉.
For a fixed variable ordering <, we say that the variable ordering condition is
satisfied for C if all the parameters of C are ordered before the leading variables
of polynomials in C with respect to <. When the variable ordering condition
is satisfied for a W-characteristic set C, we have the following property on the
regularity and normality of C.

Theorem 1 ([29, Thm. 3.9]). Let C = [C1, . . . , Cr] be the W-characteristic
set of 〈P〉 ⊆ K[x]. If the variable ordering condition is satisfied for C and C is
not normal, then there exists an integer k (1 ≤ k < r) such that [C1, . . . , Ck] is
normal and [C1, . . . , Ck+1] is not regular.

Remark 1. When the variable ordering condition is not satisfied for the W-
characteristic set, Theorem 1 does not hold in general. See [29, Ex. 3.1(b)] for
an example where the W-characteristic set is not normal but regular.

There are more pseudo-divisibility relationships between polynomials in
W-characteristic sets proved in [29]. Based on those relationships, Proposition 1,
and Theorem 1, an effective algorithm for normal triangular decomposition of
polynomial sets is proposed in [30].

Definition 8 ([30, Def. 3.1]). A pair (G, C) of polynomial sets G, C ⊆ K[x]
is called a characteristic pair if G is a reduced LEX Gröbner basis, C is the
W-characteristic set of 〈G〉, and C is normal.

For any polynomial set F ⊆ K[x], A finite number of characteristic pairs
(G1, C1), . . . , (Gt, Ct) is said to be a characteristic decomposition of F if the fol-
lowing zero relationship holds.

Z(F) =
t⋃

i=1

Z(Gi) =
t⋃

i=1

Z(Ci/ ini(Ci)) =
t⋃

i=1

Z(sat(Ci)). (1)

As can be seen from the definition of characteristic decomposition above, from a
characteristic decomposition (G1, C1), . . . , (Gt, Ct) of a polynomial set F one can
easily extract a normal decomposition C1, . . . , Ct of F .

Definition 9 ([30, Def. 3.8]). A reduced LEX Gröbner basis G is said to be
characterizable if 〈G〉 = sat(C), where C is the W-characteristic set of G.

Obviously, the W-characteristic set is uniquely extracted from the reduced
LEX Gröbner basis. Furthermore, it is proved that the W-characteristic set
of a characterizable Gröbner basis is also normal [30, Prop. 3.9], and thus a
characterizable Gröbner basis and its W-characteristic set can determine each
other.
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3 A New Algorithm for Characteristic Decomposition

In this section we first propose a new algorithm for characteristic decomposition
under the assumption on the variable ordering. It is also the base of the algorithm
for quasi-characteristic decomposition presented in Sect. 4.

By Theorem 1 we know that for the W-characteristic set C of any polynomial
set P, if the variable ordering condition is satisfied, the regularity and normality
of C are equivalent. The property of irregularity allows us to split the Gröbner
basis G of 〈P〉 to compute a regular decomposition which is nicely also a normal
decomposition. We assume here that the variables are properly ordered such
that the variable ordering condition is always satisfied. Next let us explain the
splitting process.

Let Φ be a set of polynomial sets, initialized as {F} with F being the input
polynomial set in K[x] for characteristic decomposition, and Ψ be a set which
contains the characteristic pairs already computed. Now we pick a polynomial
set P and remove it from Φ, compute the reduced LEX Gröbner basis G of the
ideal 〈P〉, and extract the W-characteristic set C = [C1, . . . , Cr] of 〈P〉 from G.
Let Ii = ini(Ci) for i = 1, . . . , r.

(1) If C is normal, then from Proposition 1 we know that

Z(C/ ini(C)) ⊆ Z(P) ⊆ Z(C). (2)

In view of this zero relation, we put the characteristic pair (G, C) into Ψ and
adjoin the polynomial sets G ∪{I1}, . . . ,G ∪{Ir} to Φ for further processing.

(2) If C is not normal, let k > 1 be the smallest integer such that Ck =
[C1, . . . , Ck] is abnormal. Then by Theorem1 we know that [C1, . . . , Ck−1]
is regular.

(a) If Ik is zero modulo sat(Ck−1) which means Ik ∈ sat(Ck−1), then one can
see that (I1 · · · Ik−1)

q
Ik ∈ 〈Ck−1〉 ⊂ 〈G〉 for some integer q ≥ 0. Note that

I1, . . . , Ik are all B-reduced with respect to G. In this case, we adjoin the
polynomial sets G ∪ {I1}, . . . ,G ∪ {Ik} to Φ.

(b) Otherwise Ik is a zero divisor modulo sat(Ck−1). Then there exists a
polynomial F in the Gröbner basis of (sat(Ck−1) : Ik) and F /∈ sat(Ck−1),
meaning FIk ∈ sat(Ck−1) and F /∈ sat(Ck−1). It follows that

(Ik · · · Ik−1)
q̄
FIk ∈ 〈Ck−1〉 ⊂ 〈G〉

for some integer q̄ ≥ 0. Since F /∈ 〈G〉 (the reason will be detailed in the
proof of Theorem2), we adjoin G ∪ {I1}, . . . ,G ∪ {Ik},G ∪ {F} to Φ.

After the splitting of G, we continue picking another polynomial set P ′ (and
meanwhile remove it) from Φ, and split the Gröbner basis G′ of P ′ with the same
strategy above. In any case above, the new polynomial set P ′ after the splitting
is obtained by adjoining a polynomial which does not belong to 〈G〉. Hence 〈G〉 �

〈G′〉. Then we could consider further the reduced LEX Gröbner basis and the
W-characteristic set of each 〈P ′〉 and continue the splitting process. This process
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is repeated until Φ becomes empty. In view of the Ascending Chain Condition
of polynomial ideals, this process must terminate in a finite number of steps.
Finally, we shall obtain finitely many reduced LEX Gröbner bases G1, . . . ,Gs such
that Z(P) = Z(G1) ∪ · · · ∪ Z(Gs), or equivalently

√
〈P〉 =

√
〈G1〉 ∩ · · · ∩

√
〈Gs〉,

and the W-characteristic set Ci of each 〈Gi〉 is normal for i = 1, . . . , s. This
method for characteristic decomposition, whose main steps are outlined above,
is described formally as Algorithm 1. Note that F /∈ sat(Ck−1) in Line 19 can be
effectively tested with prem(F, Ck−1) �= 0, since Ck−1 is normal and thus regular.

Algorithm 1. Ψ := CharDec(F , <) (algorithm for characteristic decompo-
sition)
Input: a finite, nonempty set F of nonzero polynomials in K[x].
Output: a characteristic decomposition Ψ of F such that

Z(F) =
⋃

(G,C)∈Ψ Z(G) =
⋃

(G,C)∈Ψ Z(C/ ini(C)) if the variable ordering
condition is satisfied; “Fail” otherwise.

1 Ψ := ∅, Φ := {F};
2 while Φ �= ∅ do
3 Choose P from Φ and set Φ := Φ \ {P};
4 G := reduced LEX Gröbner basis of 〈P〉;
5 if G �= {1} then
6 Extract the W-characteristic set C of 〈P〉 from G;
7 if The variable ordering condition is not satisfied for C then
8 return “Fail”;

9 if C is normal then
10 Ψ := Ψ ∪ {(G, C)};
11 Φ := Φ ∪ {G ∪ {ini(C)} | ini(C) �∈ K, C ∈ C};

12 else
13 Let Ck be the first polynomial such that Ck is abnormal;
14 Ik := ini(Ck);
15 R := prem(Ik, Ck−1);
16 if R = 0 then
17 Φ := Φ ∪ {G ∪ {ini(Cj)} | j ≤ k};
18 else
19 F := any polynomial in Gröbner basis of (sat(Ck−1) : Ik) such

that F /∈ sat(Ck−1);
20 Φ := Φ ∪ {G ∪ {ini(Cj)} | j ≤ k} ∪ {G ∪ {F}};

21 return Ψ

Theorem 2. If the variable ordering condition is always satisfied, then Algo-
rithm1 terminates in a finite number of steps with correct output.

Proof. (Termination) We can see that every time a polynomial set P is picked
from Φ, splitting occurs only in Lines 11, 17 and 20. To prove the termination of
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Algorithm 1, we only need to show that for all the three splitting cases, each poly-
nomial set G′ = G ∪{H} adjoined to Φ generates a polynomial ideal 〈G′〉 strictly
larger than 〈G〉. Let C = [C1, . . . , Cr] be the W-characteristic set extracted from
G with xpi

= lv(Ci) and Ii = ini(Ci) for i = 1, . . . , r. One can see that Ii is
B-reduced with respect to G, for otherwise it contradicts with the fact that G is
the reduced LEX Gröbner basis of 〈P〉. Then Ii /∈ 〈G〉 and thus 〈G∪Ii〉 is strictly
larger than 〈G〉. To complete the proof of termination, it remains to show that
F in Line 20 is not in 〈G〉. Suppose that F ∈ 〈G〉. Since lv(F ) < lv(Ck) = xpk

,
by Proposition 1(b) we have F ∈ 〈G〉 ∩ K[x1, . . . , xpk−1] = 〈Gk−1〉 ⊆ sat(Ck−1),
which leads to a contradiction.

(Correctness) When Z(F) = ∅, G = {1} in Line 5 and Ψ = ∅ is returned.
Therefore, we need to show that when Ψ �= ∅ and the variable ordering condition
is always satisfied, all the pairs (G, C) ∈ Ψ are characteristic pairs and the zero
relation (1) holds. The property that (G, C) are all characteristic pairs is obvious,
for only in Line 10 an element, which is a characteristic pair, is adjoined to Ψ .
Next we prove the zero relation (1).

(1) When the W-characteristic set C in Line 6 is normal, let J = I1 · · · Ir.
Then Z(P) = (Z(P)\Z(J))∪Z(P ∪{J}). By Theorem 1(c) we know that Z(P)\
Z(J) = Z(C/ ini(C)). Moreover,

Z(P ∪ {J}) =
r⋃

i=1

Z(P ∪ {Ii}) =
r⋃

i=1

Z(G ∪ {Ii}).

Therefore,

Z(P) = Z(C/ ini(C)) ∪
r⋃

i=1

Z(G ∪ {Ii}). (3)

(2) When C is abnormal. (a) If Ik in Line 14 is zero modulo sat(Ck−1), then by
Theorem 1 we have prem(Ik, Ck−1) = 0. Then there exist Q1, . . . , Qk−1 ∈ K[x]
and q1, . . . , qk−1 ∈ Z≥0 such that Iq1

1 . . . I
qk−1
k−1 Ik = Q1C1 + · · · + Qk−1Ck−1 ∈

〈Ck−1〉 ⊆ 〈G〉. Therefore,

Z(P) = Z(G) = Z(G ∪ {Iq1
1 . . . I

qk−1
k−1 Ik}) =

k⋃

i=1

Z(G ∪ {Ii}). (4)

(b) Otherwise Ik is a zero-divisor modulo sat(Ck−1), and thus prem(Ik, Ck−1) �=
0. Then there exists F ∈ K[x] such that FIk ∈ sat(Ck−1), and it follows that
there exist q1, . . . , qk−1 ∈ Z≥0 such that Iq1

1 . . . I
qk−1
k−1 FIk ∈ 〈Ck−1〉 ⊆ 〈G〉, and

therefore

Z(P) = Z(G) = Z(G ∪ {Iq1
1 . . . I

qk−1
k−1 FIk}) =

k⋃

i=1

Z(G ∪ {Ii}) ∪ Z(G ∪ {F}). (5)

The zero relations in (3), (4) and (5) show that for each polynomial set
P ∈ Φ, any zero of P is either in Z(C/ ini(C)) if the W-characteristic set C of
〈P〉 is normal or in Z(P ′), where P ′ is a new polynomial set adjoined to Φ for
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later computation. This proves the zero relation Z(F) =
⋃

(G,C)∈Ψ Z(C/ ini(C)),
for Algorithm 1 terminates when Φ becomes empty.

On one hand, by the zero relation (2), we have

Z(F) =
⋃

(G,C)∈Ψ

Z(C/ ini(C)) ⊆
⋃

(G,C)∈Ψ

Z(G).

On the other hand, Z(G) ⊆ Z(F) holds for all (G, C) ∈ Ψ according to the zero
relations (3), (4) and (5) for the splitting. This proves the equality Z(F) =⋃

(G,C)∈Ψ Z(G). For each (G, C) ∈ Ψ , we have Z(C/ ini(C)) ⊆ Z(sat(C)) ⊆ Z(G),
and thus

Z(F) =
⋃

(G,C)∈Ψ

Z(C/ ini(C)) ⊆
⋃

(G,C)∈Ψ

Z(sat(C)) ⊆
⋃

(G,C)∈Ψ

Z(G) = Z(F).

This completes the proof of the zero relation (1).

For an arbitrary polynomial set, if the variable ordering condition is always
satisfied, the output of Algorithm1 is definitely a characteristic decomposition.
Otherwise, “Fail” will be returned. It needs to be emphasized that the satisfac-
tion of the variable ordering condition is only sufficient for characteristic decom-
position here, but not necessary. In fact, we can carry out splitting in the algo-
rithm regardless of the assumption on the variable ordering. In Sect. 4, instead of
simply returning “Fail” in the algorithm, we propose quasi-characteristic decom-
position to handle the case where the variable ordering condition is not always
satisfied.

4 Decomposition into Quasi-characteristic Pairs

In this section we discuss the decomposition of an arbitrary polynomial set into
quasi-characteristic pairs with associated zero relations and prove some proper-
ties about the decomposition. A decomposition algorithm is also presented.

To get rid of the assumption on the variable ordering, we first introduce
the concept of quasi-characteristic pair which is close to but weaker than the
characteristic pair.

Definition 10. A pair (G, C) with G, C ⊆ K[x] is called a quasi-characteristic
pair if G is a reduced LEX Gröbner basis, C is the W-characteristic set of 〈G〉,
and C is regular.

By definition any characteristic pair is obviously a quasi one, but a quasi-
characteristic pair is not necessarily a characteristic pair. They are equivalent
when the variable ordering condition is satisfied for the W-characteristic set in
the pair. The following results exhibit some of the nice properties of character-
istic pairs which the quasi ones also possess.

Proposition 2. Let C be the regular W-characteristic set of 〈P〉 ⊆ K[x]. If
sat(C) = 〈C〉, then sat(C) = 〈P〉.
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Proof. The proposition follows immediately from 〈C〉 ⊆ 〈P〉 ⊆ sat(C).

Proposition 3. The W-characteristic set of any characterizable Gröbner basis
is regular.

Proof. Let G be any characterizable Gröbner basis and C = [C1, . . . , Cr] be the
W-characteristic set of 〈G〉. Denote p-sat(C) := {P ∈ K[x] | prem(P, C) = 0}. On
one hand, for any P ∈ p-sat(C), we have prem(P, C) = 0, and thus there exist
q1, . . . , qr ∈ Z≥0 and Q1, . . . , Qr ∈ K[x] such that ini(C1)q1 · · · ini(Cr)qrP =∑r

i=1 QiCi ∈ 〈C〉. It follows that P ∈ sat(C), which means p-sat(C) ⊆ sat(C).
On the other hand, for any P ∈ sat(C), we have P ∈ 〈G〉 since 〈G〉 = sat(C).
By Proposition 1(a) one can see that prem(P, C) = 0, which means sat(C) ⊆
p-sat(C). Hence sat(C) = p-sat(C), and by [1, Thm. 6.1] C is regular.

Remark 2. Proposition 3 above holds regardless of the assumption on the vari-
able ordering. Under this additional assumption, [30, Prop. 3.9] shows that the
W-characteristic set C extracted from any characterizable Gröbner basis G is nor-
mal. In fact, the proof of [30, Prop. 3.9] also implicitly depends on the assump-
tion on the variable ordering, which makes the pseudo-divisibility relationships
among the polynomials in C happen. Our proof of Proposition 3, however, does
not require this assumption and is much simpler. Furthermore, when the variable
ordering condition is satisfied for C, one can also see that C is normal due to the
equivalence of regularity and normality of C.

Let F be a finite, nonempty set of polynomials in K[x]. We call a finite
number of quasi-characteristic pairs (G1, C1), . . . , (Gt, Ct) a quasi-characteristic
decomposition of F if the zero relation (1) holds. From any quasi-characteristic
decomposition of F , one can extract a regular decomposition C1, . . . , Ct of F
such that Z(F) =

⋃t
i=1 Z(Ci/ ini(Ci)).

According to [2, Prop. 4.1.3], we know that sat(T ) is purely equidimensional
for any regular set T ⊆ K[x]. It follows that for any quasi-characteristic pair
(G, C) in the quasi-characteristic decomposition of F , by Proposition 2 〈G〉 is
purely equidimensional if sat(C) = 〈C〉 is verified, and thus we have the following.

Proposition 4. Let Φ be a quasi-characteristic decomposition of F ⊆ K[x] and
assume that sat(C) = 〈C〉 for every quasi-characteristic pair (G, C) ∈ Ψ . Then√

〈F〉 =
⋂

(G,C)∈Ψ

√
〈G〉 and each 〈G〉 is purely equidimensional.

Proposition 5. Let C = [C1, . . . , Cr] be the W-characteristic set of 〈P〉 ⊆ K[x]
and

C∗ = [C1,prem(C2, [C1]), . . . ,prem(Cr, [C1, . . . , Cr−1])]. (6)

If C is regular, then

(1) C∗ is regular,
(2) C∗ is a Ritt characteristic set of 〈P〉,
(3) Z(C∗/ ini(C∗)) = Z(C/ ini(C)).
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Proof. (1–2) According to [29, Thm. 3.4], C∗ is regular and C∗ is a Ritt charac-
teristic set of 〈P〉. (3) This can be easily obtained from [30, Thm. 3.14].

Let Ψ be a quasi-characteristic decomposition of F ⊆ K[x] and C∗ be com-
puted from C according to (6) for each quasi-characteristic pair (G, C) ∈ Ψ . Then
obviously we have

Z(F) =
⋃

(G,C)∈Ψ

Z(C∗/ ini(C∗)) =
⋃

(G,C)∈Ψ

Z(sat(C∗)), (7)

and C∗ is the Ritt characteristic set of 〈G〉 for each (G, C) ∈ Ψ .

Theorem 3. From any finite, nonempty polynomial set F ⊆ K[x], one can
compute a quasi-characteristic decomposition of F in a finite number of steps.

To give an algorithm for computing the quasi-characteristic decomposition,
we just need to change the condition of normality in Line 9 of Algorithm1
to regularity, and the algorithm for quasi-characteristic decomposition will be
embedded in Algorithm 2 as one degenerate case. The proof of Theorem 3 is very
similar to that of Theorem 2.

Next Algorithm 2 is proposed for computing a characteristic decomposition
of a polynomial set when the variable ordering condition is always satisfied,
and a quasi-characteristic decomposition if not. Obviously, the correctness and
termination of Algorithm 2 could be proved by Theorems 2 and 3. Note that
regularity of the W-characteristic set C in Line 7 of Algorithm2 can be effectively
tested with iterated resultant [28, Lem. 4.3.2].

Remark 3. Based on the pseudo-divisibility relationships among polynomials in
the reduced LEX Gröbner basis G proved in [29], an algorithm for computing
characteristic decomposition is proposed in [30, Sec. 4], where the assumption
on variable ordering is necessary for splitting G. Otherwise the algorithm may
fail to properly split in the decomposition process. It worths mentioning that
Algorithm 2 can always correctly split G without the assumption on the vari-
able ordering, and the output is either a characteristic decomposition or a quasi
one in the worse case, where the variable ordering condition is not always sat-
isfied. Actually, even in the worse case, the quasi-characteristic decomposition
computed with Algorithm2 is still possibly a characteristic decomposition (see
Sect. 5 for some examples).

5 Two Illustrative Examples

5.1 Characteristic Decomposition

Consider F = {ay − x − 1,−xyz + az, xz2 − az + y} ⊆ K[a, x, y, z] with a <
x < y < z. The procedure to compute a characteristic decomposition of F using
Algorithm 1 is illustrated below.
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Algorithm 2. Ψ := QCharDec(F , <) (algorithm for (quasi-) characteristic
decomposition)
Input: a finite, nonempty set F of nonzero polynomials in K[x].
Output: either a characteristic decomposition (if output flag = 1) or a

quasi-characteristic decomposition (if output flag = 2) Ψ of F such
that Z(F) =

⋃
(G,C)∈Ψ Z(G) =

⋃
(G,C)∈Ψ Z(C/ ini(C)), and the type flag

of decomposition.

1 Ψ := ∅, Φ := {F}, flag := 1;
2 while Φ �= ∅ do
3 Choose P from Φ and set Φ := Φ \ {P};
4 G := reduced LEX Gröbner basis of 〈P〉;
5 if G �= {1} then
6 C := W-characteristic set of 〈G〉;
7 if C is regular then
8 if the variable ordering condition is not satisfied for C then
9 flag := 2;

10 Ψ := Ψ ∪ {(G, C)};
11 Φ := Φ ∪ {G ∪ {ini(C)} | ini(C) �∈ K, C ∈ C};

12 else
13 if the variable ordering condition is not satisfied for C then
14 Ck := the first polynomial that makes Ck irregular;
15 else
16 Ck := the first polynomial that makes Ck abnormal;

17 Ik := ini(Ck);
18 R := prem(Ik, Ck);
19 if R = 0 then
20 Φ := Φ ∪ {G ∪ {ini(Cj)} | j ≤ k};
21 else
22 F := any polynomial in Gröbner basis of (sat(Ck−1) : Ik) such

that F /∈ sat(Ck−1);
23 Φ := Φ ∪ {G ∪ {ini(Cj)} | j ≤ k} ∪ {G ∪ {F}};

24 return Ψ, flag

With the reduced LEX Gröbner basis of 〈F〉 computed as

G = [−a2x + x3 − a2 + 2x2 + x, ay − x − 1, x2y − ax + xy − a, xy2 − x − 1,

− a2z + x2z + xz, xyz − az, y3 − yz + z2 − y],

and the W-characteristic set as C = [−a2x + x3 − a2 + 2x2 + x, ay − x −
1,−a2z + x2z + xz], one can check that the W-characteristic set C is abnor-
mal, and it satisfies the variable ordering condition. One can also check that
prem(ini(C3), C2) = −a2 + x2 + x, which means ini(C3) /∈ sat(C2). Then we can
find a polynomial F = x + 1 /∈ sat(C2) but F · ini(C3) ∈ sat(C2), which leads the
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splitting in Line 20: F1 := G∪{a}, F2 := G∪{−a2+x2+x}, and F3 := G∪{x+1}
are adjoined to Φ for further computation.

For F1 ∈ Φ, by computing the reduced LEX Gröbner basis G1 = {a, x +
1, y2, yz, z2 −y} of 〈F1〉 and the W-characteristic set C1 = [a, x+1, y2, yz] of G1,
one finds that C1 is abnormal, then some quick calculation leads the splitting in
Line 20: F4 := G1 ∪ {y} is adjoined to Φ.

For F2 ∈ Φ, after the computation of the reduced LEX Gröbner basis G2 =
{x + 1, ay, y2, a2z, az + yz, az + z2 − y} of 〈F2〉 and the W-characteristic set
C2 = [x + 1, ay, a2z] of G2, one finds that C2 is normal and thus (G2, C2) is one
characteristic pair. Meanwhile, F5 := G2 ∪ {a} is adjoined to Φ.

For F3 ∈ Φ, the reduced LEX Gröbner basis of F3 is computed as G3 =
{−a2 +x2 +x, ay −x− 1, xy2 −x− 1, xyz −az, y3 − yz + z2 − y} and from it the
W-characteristic set C3 = [−a2 + x2 + x, ay − x − 1, xyz − az] of G3 is extracted.
Clearly C3 is abnormal, then some quick calculation leads the splitting in Line
17: F6 := G3 ∪ {a} and F7 := G3 ∪ {xy − a} are adjoined to Φ.

Then F4,F6 ∈ Φ furnish two characteristic pairs (G4, C4) = ({a, x + 1, y, z2},
[a, x + 1, y, z2]) and (G6, C6) = ({−a2 + x2 + x, ay − x − 1, xy − a, y3 − yz + z2 −
y}, [−a2 + x2 + x, ay − x − 1, y3 − yz + z2 − y]), and only F8 := G6 ∪ {a} is
adjoined to Φ. After handling F7 and F8, no more new characteristic pairs are

Table 1. Illustration for Algorithm 2

i Φ P Gi Ci VOC Line Ψ

1 {F} F {G1, G2, G3,
G4, G5, G6,
G7, G8}

[G1, G2, G5] Yes 11 {(G1, C1)}

2 {F1, F2} F1 {y, x2, tx, t2z,
G6, G7, G8}

[y, x2, tx, t2z, G6] Yes 23 {(G1, C1)}

3 {F2, F3} F2 {z, y2, xy,
x2, G3, ry,
rx, G7, r

2}

[z, y2, xy, G3, ry] Yes 20 {(G1, C1)}

4 {F3, F4} F3 {y, x, tz, rt, G8} [y, x, tz, rt] Yes 20 {(G1, C1)}
5 {F4, F5, F6} F4 {z, y, x2, tx,

rx, G7, r
2}

[z, y, x2, tx, rx] Yes 23 {(G1, C1)}

6 {F5, F6, F7} F5 {y, x, t, G8} [y, x, t, G8] Yes 11 {(G1, C1),
(G6, C6)}

7 {F6, F7} F6(F7) {z, y, x, rt, r2} [z, y, x, rt] No 11 {(G1, C1),
(G6, C6),
(G7, C7)}

8 {F8} F8 {z, y, x, t, r2} [z, y, x, t, r2] Yes 11 {(G1, C1),
(G6, C6),
(G7, C7),
(G8, C8)}
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computed and Φ becomes empty. The computation in Algorithm 1 ends, and the
characteristic decomposition of F is output as (G2, C2), (G4, C4), (G6, C6).

5.2 Quasi-characteristic Decomposition

Consider F = {−rt + x,−rt2 + y,−r2 + z} ⊆ K[z, y, x, t, r] with z < y < x <
t < r. The procedure to compute a quasi-characteristic decomposition of F
using Algorithm 2 is shown in Table 1, where Gi is the computed reduced LEX
Gröbner basis and Ci is its W-characteristic set in the ith loop. “VOC” records
if the variable ordering condition is satisfied for Ci, “Line” records the splitting
case by the number of line in Algorithm2.

The polynomial sets Fi and polynomials Gj in Table 1 are listed below:

F1 = G1 ∪ {y}, F2 = G1 ∪ {y}, F3 = G2 ∪ {x}, F4 = G3 ∪ {y},
F5 = G4 ∪ {t}, F6 = G4 ∪ {z}, F7 = G5 ∪ {x}, F8 = G7 ∪ {t};
G1 = x4 − y2z, G2 = tyz − x3, G3 = tx − y, G4 = t2z − x2,
G5 = ry − x2, G6 = rx − tz, G7 = rt − x, G8 = r2 − z.

Table 2. Timings for (quasi-) characteristic decomposition (in second)

Ex Label Var Eqs Deg Type GB SAT Total Branches

1 E1 10 10 9 char 0.608 0.001 0.651 5

2 E5† 15 17 3 quasi 2.645 0.001 2.976 7

3 E23† 9 5 2 quasi 0.119 0 0.239 11

4 E32† 8 6 3 quasi 0.077 0.001 0.112 3

5 E33† 13 11 4 quasi 14.335 0 14.678 6

6 E35† 8 8 4 quasi 0.265 0.001 0.324 11

7 S8 4 3 12 char 0.015 0 0.020 2

8 S12 8 4 2 char 0.088 0 0.093 1

9 S13† 5 2 4 quasi 0.104 0 0.139 13

10 Maclane† 10 6 2 quasi 155.682 0.117 165.686 345

11 Leykin 1† 8 6 4 quasi 385.091 1.139 392.746 128

12 F663† 10 9 2 quasi 1.536 0 1.624 5

13 Wang16 4 4 4 char 0.049 0 0.051 1

14 Cyclic5 5 5 5 char 0.208 0.002 0.305 11

15 Filter9 9 9 5 char 0.585 0 0.593 1

16 Cyclic6 6 6 6 char 2.948 0.004 3.234 25

17 N16 5 5 13 char 76.975 0 76.977 1

18 4-body-homog 3 3 8 char 1.258 0 1.530 5

19 Circles 2 2 10 char 3.753 0 3.754 1

20 Katsura-4 5 5 2 char 184.373 0 184.376 1
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The output quasi-characteristic decomposition of P, as shown in Table 1, is
(G1, C1), (G6, C6), (G7, C7), (G8, C8). One can check that it is indeed also a charac-
teristic decomposition.

6 Implementation and Experimental Results

We have implemented Algorithms 1 and 2 in Maple 18 and carried out exper-
iments with the implementation on an Intel(R) Core(TM) i5-4210U CPU at
1.70 GHz×4 with 7.7 GB RAM under Ubuntu 16.04 LTS. The implementation
is based on the functions for Gröbner basis computation available in the FGb
library and Maple’s built-in packages. Selected results of the experiments on
the benchmark polynomial sets are presented in Table 2: Ex 1–6 are taken from
the Epsilon package, Ex 7–9 from [23], Ex 10–11 from [8], Ex 12–16 from the
FGb library, Ex 17 from [28], and Ex 18–20 can be found with this link1.

In Table 2, “Label” indicates the label in the above-cited references, “Var”,
“Eqs” and “Deg” indicate the number of variables, the number of polynomials,
and the maximal degree of the polynomials in the examples respectively. “Type”
indicates the output is a characteristic decomposition (char) or quasi one (quasi).
“GB” and “SAT” record the time for computing all the reduced LEX Gröbner
bases and saturated ideals, respectively, and “Total” records the total time for
(quasi-) characteristic decomposition using Algorithm 2, and “Branches” indi-
cates the number of the (quasi-) characteristic pairs computed.

The variable ordering condition is not always satisfied for 9 of the test exam-
ples (marked with † in Table 2). Quasi-characteristic decompositions of them
are computed by Algorithm 2, but in fact 7 of the computed quasi-characteristic
decompositions are also characteristic ones. This verifies that the variable order-
ing condition is only a sufficient condition for computing characteristic decom-
position but not a necessary one.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their detailed and helpful comments on an earlier version of this paper.
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cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45146-4 3

17. Gao, S., Volny, F., Wang, M.: A new framework for computing Gröbner bases.
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32. Weispfenning, V.: Comprehensive Gröbner bases. J. Symbolic Comput. 14(1), 1–29
(1992)

33. Wu, W.T.: Basic principles of mechanical theorem proving in elementary geome-
tries. J. Automated Reasoning 2(3), 221–252 (1986)

https://doi.org/10.1007/978-3-540-87827-8_20
https://doi.org/10.1007/978-3-7091-6202-6
https://doi.org/10.1007/978-3-7091-6202-6
http://arxiv.org/abs/1702.08664
https://doi.org/10.1007/s11538-010-9618-0
https://doi.org/10.1007/s11538-010-9618-0


About Integrability of the Degenerate
System

Victor F. Edneral1,2(B)

1 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,
Leninskie Gory 1(2), Moscow 119991, Russian Federation

edneral@theory.sinp.msu.ru
2 Peoples’ Friendship University of Russia (RUDN University),
6 Miklukho-Maklaya street, Moscow 117198, Russian Federation

edneral-vf@rudn.ru

Abstract. We study integrability of an autonomous planar polynomial
system of ODEs with a degenerate singular point at the origin depend-
ing on five parameters. By mean of the Power Geometry Method, this
degenerated system is reduced to a non-degenerate form by the blow-up
process. After, we search for the necessary conditions of local integrability
by the normal form method. We look for the set of necessary conditions
on parameters under which the original system is locally integrable near
the degenerate stationary point. We found seven two-parametric families
in the five-parameter space. Then first integrals of motion were found for
six families. For the seventh family, we found the formal first integral.
So, at least six of these families in parameters space are manifolds where
the global integrability of the original system takes place.

Keywords: Ordinary differential equations · Integrability ·
Resonant normal form · Power geometry · Computer algebra

1 Introduction

At the investigation of nonlinear ODEs systems, it is very important to find
the exact solutions of such systems. If such solutions are opened, it is possible
to study the system near such an exact solution and to create approximate
solutions in these domains. Unfortunately, most systems of ODEs cannot be
solved exactly. But sometimes the systems depend on parameters and we may
try to find families of the values of the parameters at which such a system has
an exact solution. Here we propose and check a new approach for searching such
families.

For this checking, we consider a degenerate planar system of autonomous
ordinary differential equations resolved with respect to derivatives and with a
polynomial right-hand side of the fifth order. The system depends on five free
parameters.
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Choosing this model system was defined by several factors. First, it belongs
to the ODEs class with a non-nilpotent matrix of the linear part which almost
was not investigated before. Second, this system has many domains for an inves-
tigation and all of them do via studying nilpotent systems, so we check our
approach for nilpotent systems also. This is a very rich system.

This paper closes the series of papers [9–13]. Here we study the case of a last
non-studied domain in the parametrical space. This task was very hard from the
computational side. We opened a new family of parameters at which we have
integrability and calculated the corresponding first integral of motion. So we
have 7 domains of integrability and seven corresponding integrals.

The structure of the actual paper reflects the steps of the discussed approach.
First, we transfer the original degenerate system to the nilpotent form [5,9,12].

Then, we split investigation in two cases with respect to the value of the
parameter b. Postponing the case of the again degenerate system we apply the
normal form method for the nilpotent case. This method allows for creating
a necessary and sufficient condition for local integrability for each stationary
point of the system. For each such point, the condition A is an infinite set of
algebraic equations in system parameters. A solution of a finite subset of these
equations which includes equations from each stationary point is a necessary
condition of local integrability of the original degenerate system. Such subsets
can be calculated by the computer algebra program. For the first case above, we
found four two-dimensional families in the parameter space [9].

After that, we transfer the new degenerated system to the nilpotent form
by power transformation and split it into two subcases. The first one leads to a
couple new two dimension families in the parameter space [7,11,12]. So, we get
six families. This paper studies the last subcase. Here we calculate the seventh
family.

Finally, we have obtained seven two-dimensional families in the parameter
space which give the necessary condition of local integrability. We do not pretend
that we have found all such families. But for each such family, we have calculated
the corresponding first integral of motion. So, we got families parameters along
which we have global integrability [14].

2 The Model System

We consider an autonomous system of ordinary differential equations of the form

dx/dt = −y3 − b x3y + a0 x5 + a1 x2y2,
dy/dt = (1/b)x2y2 + x5 + b0 x4y + b1 x y3.

(1)

Thus, we consider the system with five arbitrary parameters ai, bi, (i = 0, 1) and
b. The coefficient 1/b provides the integrability of the first quasi-homogeneous
approximation of the system [9]. A similar system was originally studied in [1].



142 V. F. Edneral

3 Transferring the System to Non-degenerate Form

It can be done using the power transformation by blow-up process (see Chap. 1,
Par. 1.8 in [4,13])

x = u v2, y = u v3 (2)

with the time rescaling u2v7dt = dτ . As the result, we obtain system (1) in the
form

du/dτ = −3u − [3 b + (2/b)]u2 − 2u3 + (3 a1 − 2 b1)u2v+
(3 a0 − 2 b0)u3v,

dv/dτ = v + [b + (1/b)]u v + u2v + (b1 − a1)u v2 + (b0 − a0)u2v2.
(3)

We should study this system along the invariant lines u = 0, v = 0. More about
this transformation see [13].

4 About the Normal Form and the Condition A

The formal pseudo-identical change of coordinates

Y = Z + Ξ(Z), (4)

where Ξ = (ξ1, . . . , ξn) and ξj(Z) are formal power series, transforms a system
with diagonal matrix of linear part to the normal form [3,4,9]

żj = zjgi(Z) = zj

∑
gjQZQ over Q ∈ Nj , j = 1, . . . , n, (5)

where Q = (q1, . . . , qn), ZQ = zq1
1 . . . zqn

n ,

Nj = {Q : Q ∈ Z
n, Q + Ej ≥ 0}, j = 1, . . . , n,

Ej means the unit vector. Denote

N = N1 ∪ . . . ∪ Nn. (6)

The diagonal Λ = (λ1, . . . , λn) of J consists of eigenvalues of the matrix A.
System (5) is called the resonant normal form if:
(a) J is the Jordan matrix,
(b) in writing (5), there are only the resonant terms, for which the scalar

product
〈Q,Λ〉 def= q1λ1 + . . . + qnλn = 0. (7)

Theorem 1. ([3]) There exists a formal change (4) reducing a system to its
normal form (5).
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In [3,4], condition A was formulated on the coefficients of normal form (5), which
guarantees the convergence of the normalizing transformation (4).

Condition A. In the normal form (5)

gj = λjα(Z) + λ̄jβ(Z), j = 1, . . . , n, (8)

where α(Z) and β(Z) are some power series.
Let

ωk = min |〈Q,Λ〉| over Q ∈ N, 〈Q,Λ〉 �= 0,
n∑

j=1

qj < 2k, k = 1, 2, . . . .

There is also the condition on small divisors ωk. It is satisfied in the planar case.
Let us see the condition A in a two-dimensional case in more detail. Let

λ1

λ2
= −m

n
or nλ1 = −mλ2, (9)

where m and n are natural numbers. With respect of (5) and (9), we can write
the condition A as a system

nd log(z1)
dt = n(λ1 · α(Z) + λ̄1 · β(Z))

md log(z2)
dt = m(λ2 · α(Z) + λ̄2 · β(Z)).

(10)

Summing these two equalities with respect of (9) we have

d log(zn
1 zm

2 )
dt

= 0 or zn
1 zm

2 = const(t). (11)

So, zn
1 zm

2 is the first integral of motion. It corresponds to the local integrability
of the original system because the condition A is enough for convergence of the
normalizing transformation near the stationary point. If some λi = 0 then the
condition A has the form gi(Z) = 0 and z1 is the first integral of motion.

5 Necessary Condition of Local Integrability

The satisfaction of the condition A is the necessary and sufficient condition
for local integrability of a planar system near an elementary stationary point
[3,4,9]. The condition A is a strong algebraic condition on coefficients of the
normal form. For local integrability of original system (1) near a degenerate
(non-elementary) stationary point, it is necessary to have local integrability near
each of elementary stationary points, which are produced by the blowing up
process described above. The condition A is usually an infinite series of algebraic
equations. Each of them will be an equation on parameters of the original system
and each of these equations gives a necessary condition of local integrability of
the system near the corresponding stationary point. So, the necessary condition
will be a satisfaction of some equations from infinite sets of (8) at the same values
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of the system parameters at all stationary points of the system simultaneously.
Let us demonstrate the satisfaction of this condition for system (1).

Under the power transformation (2), the point x = y = 0 blows up into two
straight invariant lines u = 0 and v = 0. Along the line u = 0, system (3) has a
single stationary point u = v = 0. Along the second line v = 0, this system has
four elementary stationary points

u = 0, u = −1
b
, u = −3b

2
, u = ∞. (12)

So, the necessary condition of local integrability of system (1) near the point x =
y = 0 is local integrability near all stationary points of system (3) simultaneously.

Lemma 1. ([9,11]). Near the points u = v = 0 and u = ∞, v = 0, system (3)
is locally integrable.

Let us consider two other stationary points. Firstly we restrict ourselves to
the case b �= 0, b2 �= 2/3 when the linear part of system (3) has non-vanishing
eigenvalues after the both shifts u = w − 1/b and u = w − 3/b. At b2 = 2/3,
the matrix of the linear part of the shifted system (14) is degenerate again. This
case is studied by means of one more power transformation in Sect. 7.

The algorithm for calculating the normal form and the normalizing transfor-
mation together with the corresponding computer program is described in [6,8].
We calculated the lowest orders of the condition A with these programs. There
are four of two sets of parameters (in a1 and b) that satisfy these conditions
for b �= 0 [11]. They correspond to simultaneous satisfaction of A at stationary
points u = −1 b/2, v = 0 and u = −3 b/2, v = 0

1) a0 = a1 b, b0 = b1 b, b2 �= 2/3,
2) b1 = −2 a1, a0 = a1b, b0 = b1b, b2 �= 2/3,
3) b1 = (3/2) a1, a0 = a1b, b0 = b1b, b2 �= 2/3,
4) b1 = (8/3) a1, a0 = a1b, b0 = b1b, b2 �= 2/3.

(13)

Thus, we have proved

Theorem 2. ([9,11]) Conditions (13) form the set of necessary conditions of
local integrability of system (3) near all its stationary points and the local inte-
grability of system (1) at the stationary point x = y = 0.

6 Sufficient Conditions of Integrability

The conditions presented in Theorem 2 as the necessary conditions for the local
integrability of system (1) at the stationary point at the origin can be considered
as good candidates for sufficient conditions of global integrability. However, it is
necessary to prove the sufficiency of these conditions by independent methods. It
is necessary to do it for each of four conditions (13) at each of stationary points
u = −3b/2, v = 0 and u = −1/b, v = 0, for b2 �= 2/3.



Degenerate System 145

In [7], we found first integrals of system (3) for all cases (13) (mainly by the
Darboux method, see e.g. [16]).

We found four families of such solutions which exhausted all cases mentioned
above:

1. At a0 = 0, a1 = −b0 b, b1 = 0

I1uv = u2(3 b + 2u)v6,
I1xy = 2x3 + 3 b y2.

2. At b1 = −2a1, a0 = a1b, b0 = b1b

I2uv = u2 v6 (3 b + u (2 − 6 a1 b v)),
I2xy = 2x3 − 6 a1 b x2 y + 3 b y2.

3. At b1 = 3a1/2, a0 = a1b, b0 = b1b

I3uv = [4 − 4a1 u v + 35/6a1 × 2F1 (2/3, 1/6; 5/3;−2u/(3b)) ×
u v (3 + 2u/b)1/6]/[u1/3v (3b + 2u)1/6],

I3xy = [a1x
2(−4 + 35/6

2F1

(
2/3, 1/6; 5/3;−2x3/(3 b y2)

) ×
(3 + 2x3/(b y2))1/6) + 4y]/[y4/3(3 b + 2x3/y2)1/6],

4. At b1 = 8a1/3, a0 = a1b, b0 = b1b

I4u,v = [u (3 + 2 a2
1bu) + 6 a1 b v]/

[3u [u3(6 + a2
1b u) + 6 a2

1b u2v + 9 b v2]1/6]−
8 a1

√−b/35/3B
6+a1

√−6 b u+3 v
√

−6 b/u3(5/6, 5/6),

where Bt(a, b) is the incomplete beta function and 2F1(a, b; c; z) is the hyperge-
ometric function [2].

The first integrals and solutions do not have any singularities for the values
b2 = 2/3, but the approach using which these solutions were found, has the
limitation b2 �= 2/3, so there are possible additional integrals at this values.
Thus, we need to study the case b2 = 2/3 separately.

7 Case b2 = 2/3

Remark that a choice of b sign does not matter because of linear automorphism
{x, y, b, a0, a1, b0, b1} → {−x,−y,−b, a0,−a1, b0,−b1} of system (1). We suppose
below b = +

√
2/3.

7.1 Subcase 3a0 − 2b0 = b(3a1 − 2b1)

This subcase is an extension of conditions a0 = a1b, b0 = b1b from (13). Let
us consider the case b =

√
2/3. At these values of b, both stationary points
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u = −3b/2, v = 0 and u = −1/b, v = 0 are collapsing and after the shift
u → w − 1/b we have instead of (3) the degenerate system

dw
dτ = v(− 9

2

√
3
2 a0 + 9

2 a1 + 3
√

3
2 b0 − 3 b1)+

wv( 272 a0 − 3
√

6 a1 − 9 b0 + 2
√

6 b1)+√
6 w2 + w2v(−9

√
3
2 a0 + 3 a1 + 3

√
6 b0 − 2 b1)−

2w3 + w3v(3 a0 − 2 b0),
dv
dτ = −

√
6
6 wv + v2(− 3

2 a0 +
√

3
2 a1 + 3

2 b0 −
√

3
2 b1)+

w2v + wv2(
√

6 a0 − a1 − √
6 b0 + b1)+

+w2v2(−a0 + b0).

(14)

This system has zero eigenvalues at the stationary point w = v = 0, so we should
apply a power transformation once again.

If b2 = 2/3, Eq. (14) can be rewritten as

dw
dτ = −3v/(2b)[(3a0 − 2b0) − b(3a1 − 2b1)]+
wv( 272 a0 − 3

√
6 a1 − 9 b0 + 2

√
6 b1)+√

6 w2 + w2v(−9
√

3
2 a0 + 3 a1 + 3

√
6 b0 − 2 b1)−

2w3 + w3v(3 a0 − 2 b0),
dv
dτ = −

√
6
6 wv + v2(− 3

2 a0 +
√

3
2 a1 + 3

2 b0 −
√

3
2 b1)+

w2v + wv2(
√

6 a0 − a1 − √
6 b0 + b1)+

+w2v2(−a0 + b0).

(15)

We see that in systems (14) and (15), the coefficient of v in the linear part of the
first equation is zero if 3a0 − 2b0 = b(3a1 − 2b1). So we have the special subcase
[11]. For this subcase, we use the transformation

u → w − 1/b, v → rw, v̇ → ṙw + rẇ, (16)

with the time scaling by division of the equations by w/
√

6, so τ̃ = wτ/
√

6.
Then, from (3) we have

dw
dτ̃ = 6w + 3(3a1 − 2b1)rw − 2

√
6w2 − 2

√
6(3a1 − 2b1)rw2+

2(3a1 − 2b1)rw3,
dr
dτ̃ = −7r − (9a1 −

√
3
2b0 − 5b1)r2 + 3

√
6rw+

(7
√

6a1 − 2b0 − 13
√

2
3b1)r2w − (8a1 −

√
3
2b0 − 16

3 b1)r2w2.

(17)

This is a three-parameter system with the resonance of the 13th order at the
stationary point w = 0, r = 0 on the invariant line w = 0. Along this line,
there is also another stationary point. It is possible to prove integrability of the
system there and this point does not supply any additional restriction on the
parameters.

We calculated the normal form for (17) till the 26th order and got two equa-
tions for the condition A. They are A13 = 0 and A26 = 0 where A13 and A26
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are given in [17]. Each of these equations is homogeneous in parameters a1, b0,
and b1 of system (1) of sixth and twelfth orders. Both A13 and A26 are equal to
zero under conditions (13).

Homogeneous algebraic equations in three variables can be rewritten as non-
homogeneous equations in two variables. If we suppose that a1 = 0 we get only
one- and zero-dimensional solutions in the parameter space. In general case,
a1 �= 0. In this case, we substitute b0 = c0 a1, b1 = c1 a1 and obtain the system of
two equations in two variables A13(c0, c1) = 0, A26(c0, c1) = 0. The resultant
of two corresponding polynomials in each of two variables is identically equal to
zero. So it is enough to solve only equation A13(c0, c1) = 0. This equation can
be factorized as the product of four factors including a6

1:

A13 = 48(c1 − 3/2)×
(c0 − 1/12

√
6c1 + 1/2

√
6)2×

[409790784c30 − 104
√

6c20(−9152256 + 3385633c1)−
208c0(−10917702 + c1(−360720 + 3319927c1))+√

6(−718439040 + c1(2461047528+
c1(−1944898681 + 441207868c1)))]×
a6
1.

(18)

From the first two factors, we get a couple of two-parametric solutions c1 =
3/2 and c1 = 6 + 2

√
6c0 or

5) b1 = 3a1/2, a0 = (2b0 + b(3a1 − 2b1))/3, b =
√

2/3,

6) b1 = 6a1 + 2
√

6b0, a0 = (2b0 + b(3a1 − 2b1))/3, b =
√

2/3.
(19)

For solutions (19) we calculate the normal form of (17) till the 36th order and
obtain that for each solution, it is a diagonal linear system. So, it is integrable.

The use of general roots of the polynomial, which is a cubic factor in (18),
is out of our consideration. We restrict possible sets of parameters by a two-
dimensional case with coefficients over algebraic extension of rational numbers
with the algebraic number

√
6. The last factor of (18) has no such roots.

For each set of parameters (19), one can find the Darboux integrating factor
[7,11,16].

A couple of the first integrals of (17) with respect to found parameters (19)
is

I5rw = w−7/6(1 −
√

2
3w)−1/3[−9a1 + 3

√
6b0 − 42

r − 6(
√

6a1 + 5b0)w +
2(9a1 + 4

√
6b0)w2 − 21/6(9

√
2a1 + 8

√
3b0)w5/3(−√

6 + 2w)1/3×
2F1(−1/2, 1/3; 1/2;

√
2/3/w)],

I6rw = r
3

3a1
3a1+

√
6b0 · w

7/3+
7b0

3
√

6a1+6b0 · (1 − √
2/3w)

−a1
3a1+

√
6b0 ×

{ −6+2
√
6w

6a1+3
√
6b0

+ r[3 + 2w(−√
6 + w)]}.

(20)
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In the original variables x, y of Eq. (1), these integrals up to a numeric factor
have the form

I5xy = (y/x2)(
√

6 + 2x3/y2)−7/6(x3/y2)2/3 · {42
√

6+
1/(xy3)[−36a1x

6 − 16
√

6b0x
6 + 84x4y24

√
6a1x

3y2 −
36b0x

3y2 + 21/3(x3/y2)1/3y2(
√

6 + (x3/y2)2/3×
(2(9a1 + 4

√
6b0)x3 + 3(3

√
6a1 + 8b0)y2) ×

2F1(−1/2, 1/3; 1/2; 3y2

3y2+
√
6x3 )]},

I6xy = y(
√

2/3 + x3/y2)−1/2+
a1

−6a1−2
√

6b0 (x2/y)− a1
3a1+

√
6b0 ×

{3 + (x2/y2)[
√

6x + 3(2a1 +
√

6b0)y]}.

(21)

In the case of b = −√
2/3, we obtain an analogous formula. It seems that cases

(3) and (5) above are the same but they are defined in different manifolds of
parameters.

Analytical properties of first integrals in cases (1)–(6) were discussed in [7,12].

7.2 Subcase 3a0 − 2b0 �= b(3a1 − 2b1)

If we use the transformation

u → w − 1/b, v → w2p, v̇ → 2ẇwp + w2ṗ and τ̃ = wτ/
√

6, (22)

then at b2 = 2/3 we get from (14) the systems

dp
dτ̃ = −13p − 7

√
6a0p

2w3 + 60a0p
2w2 − 57

√
3
2a0p

2w

+ 27a0p
2 − 7

√
6a1p

2w2 + 39a1p
2w − 9

√
6a1p

2 + 5
√

6b0p
2w3

− 42b0p
2w2 + 39

√
3
2b0p

2w − 18b0p
2 + 5

√
6b1p

2w2 − 27b1p
2w

+ 6
√

6b1p
2 + 5

√
6pw,

dw
dτ̃ = + 6w + 3

√
6a0pw4 − 27a0pw3 + 27

√
3
2a0pw2 − 27

2 a0pw

+ 3
√

6a1pw3 − 18a1pw2 + 9
√

3
2a1pw − 2

√
6b0pw4

+ 18b0pw3 − 9
√

6b0pw2 + 9b0pw − 2
√

6b1pw3

+ 12b1pw2 − 3
√

6b1pw − 2
√

6w2.

(23)

Along the invariant line w = 0, this system has two stationary points

(w = 0, p = 0) and (w = 0, p =
13

3(9a0 − 3
√

6a1 − 6b0 + 2
√

6b1)
). (24)

At the origin, it has a resonance of the 19th order and at the second stationary
point, we have equation with the resonance of the 27th order.

The denominator in the coordinates of the second point is non-zero because
of 3a0 − 2b0 �= b(3a1 − 2b1). At the 19th order resonance, the condition A is
satisfied at zeroing a homogeneous polynomial in 4 parameters of 6th order over
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algebraic extension of integer numbers [18]. It consists of 84 terms and it can
be factorized by system MATHEMATICA over an algebraic extension with the
number

√
6 into two factors. The first factor is linear

20a0 + 2
√

6a1 + 4b0 + 3
√

6b1. (25)

The second factor is a homogeneous polynomial of the 5th order. It includes
5th order of each of the parameters in isolation and its roots can be calculated
in elliptic functions only. So, a usable solution of the condition A is a root of
polynomial (25).

At the second stationary point, we have a resonance of the 27th order. So, we
should compute series in 6 variables p,w, a0, a1, b0, b1 till this order with rational
coefficients. Non-numeric denominators arise from the rational shift in (24). This
is a very hard task. For simplification, we use the solution of condition A for
the 19th order, i.e., equality of (25) to zero. Thus, we put a0 → 1

20 (−2
√

6a1 −
4b0−3

√
6b1) and we get 3 parameters system in rational functions with non-zero

denominators. For simplification, we introduce a new parameter r = 6
√

6a1 +
12b0 − √

6b1, which is the denominator of the shift 13
3(9a0−3

√
6a1−6b0+2

√
6b1)

at

corresponding a0 and put b0 → 1
12 (−6

√
6a1 +

√
6b1 + r). After that we should

diagonalize the linear part matrix at the second stationary point. During this
process, we get one more denominator which we denote as h = 130a1 − 75b1 −
9
√

6r. We put b1 → 26a1/15 − h/75 − 3
√

6r/25. First, we suppose that h �= 0.
Then we calculated the normal form till the 27th order (all smaller orders are
zero in definition of the resonance normal form) in 3 parameters r, h, and a1 [19].
It took with MATHEMATICA-11 about 700000 seconds or 8 days at a scalar
3.60 GHz processor. The MATHEMATICA used only a half GBt of RAM for this
calculation. We get 8248088 terms of the normalizing transformation and 754
terms of the normal form. The numerator of this normal form is a homogeneous
polynomial of the 54th order in 3 parameters. Coefficients of this polynomial
have more than hundred digits. This polynomial can be factorized. Numerator
consists of non-zero factor r27, homogeneous factor of the 24th order, and a
square of a linear polynomial 2a1 + 3b1. Before we calculate this result, we try
to use lazy calculations, modular arithmetic etc.

So the last 7th candidate for integrability is

a1 = −3/2b1, b =
√

2/3, 20a0 + 2
√

6a1 + 4b0 + 3
√

6b1 = 0,
3a0 − 2b0 �= b(3a1 − 2b1).

(26)

The case of h = 0 is simpler for calculation and it gives a condition

a1 = − 3
2b1, b =

√
2/3, 20a0 + 2

√
6a1 + 4b0 + 3

√
6b1 = 0,

b0 = − 5a1

3
√
6
.

(27)

This is a particular case of (26).
The seventh condition looks like cases (3) and (5) above, but a location of

its parameters is not intersecting with any of cases (1)–(6). We calculated the
corresponding formal first integral for the 7th case
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I7pw = (77760(5
√

6a1 + 9b1)2×
(−12 log(4(−5 + (5

√
6a1 + 9b1)w))−

log(85648566083353260956143230910464b131 (3(50
√

6a2
1 + 180a1b1+

27
√

6b21)w − 12b1p
3(−5 + (5

√
6a1 + 9b1)w)−

2p(300a2
1w + 25

√
6a1(−1 + 9b1w) + 9b1(−10 + 27b1w))

+2p2(50
√

6a2
1w + 9

√
6b1(−5 + 9b1w) + 10a1(−5 + 36b1w))))

−((26 log(
√

6 − 2p) − 26 log(p) − 29 log(1/29(−√
6 + 2p)))

(
√

6 − 2p)(−50a2
1(39

√
6 + p(−165 + 29

√
6p))w+

3b1(−351
√

6b1w + p(−780 + 2187b1w + 2p(−42
√

6 + 29p)
(−5 + 9b1w))) + 10a1(−702b1w + p(

√
6(−65 + 612b1w)+

p(145 + 3b1(−339 + 29
√

6p)w)))))/
((13

√
6 − 29p)(50a2

1(3
√

6 + 2p(−6 +
√

6p))w+
3b1(27

√
6b1w + p(60 − 162b1w + 2(3

√
6 − 2p)p(−5 + 9b1w)))

−10a1(−54b1w + p(5
√

6(−1 + 9b1w)+
2p(5 + 3b1(−12 +

√
6p)w)))))))/(16000

√
6a3

1 + 2400a2
1(1 + 36b1)+

60a1(−27 +
√

6 + 24
√

6b1(1 + 18b1)) + 9(1 + 12b1(1 − 9
√

6+
12b1(1 + 12b1)))).

We believe that it can be rewritten in analytic form. Existence of this integral
is very important.

8 Conclusions

For a five-parameter non-Hamiltonian degenerate planar system (1), we have
studied possible necessary conditions of integrability. We found 7 families in
parameter space which satisfy these conditions. These families were found as two-
dimension manifolds in the five parameter space. For six from seven of them, we
have calculated the analytic first integrals of motion that is the original system
is globally integrable at these values of parameters. For the seventh case, we
calculated the formal first integral.

Acknowledgements. The author is very grateful to Profs. A.D. Bruno, V.G.
Romanovski, and A.B. Batkhin for important advices, discussions, and assistance.
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Abstract. Given an orthogonal and uniform solution grid with equal
spatial grid sizes, we construct a new second-order implicit conservative
finite difference scheme for the fourth-order 2D Boussinesq paradigm
equation with quadratic nonlinear part. We apply the algebraic app-
roach to the construction of difference schemes suggested by the first
two authors and based on a combination of the finite volume method,
difference elimination, and numerical integration. For the difference elim-
ination, we make use of the techniques of Gröbner bases; in so doing, we
introduce an extra difference indeterminate to reduce the nonlinear elim-
ination problem to the pure linear one. It allows us to apply the Gröbner
bases algorithm and software designed for linear generating sets of differ-
ence polynomials. Additionally, for the obtained difference scheme and
also for another scheme known in the literature, we compute the modified
differential equations and compare them.

Keywords: Computer algebra · Difference elimination ·
Finite difference approximation · Gröbner basis · Modified equation ·
Consistency · Conservativity

1 Introduction

The aim of this paper is to apply the algebraic approach devised in [1] to the gen-
eration of a finite difference scheme for the two-dimensional Boussinesq Paradigm
Equation (BPE) [2] with the quadratic nonlinearity

utt = Δ [u − αf(u) + β1utt − β2Δu] , f(u) := u2 , (1)

where u = u(t, x, y) is the surface elevation of the wave, α > 0 is an amplitude
parameter, β1, β2 > 0 are two dispersion coefficients (parameters) and Δ :=
∂xx + ∂yy is the Laplace operator.
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For the numerical solution of the fourth-order Eq. (1), it is convenient to
rewrite it [3] as the system of two second-order partial differential equations
(PDE)

⎧
⎨

⎩

v − u + β1�u = 0,

vtt − β2

β1
�v − β1 − β2

β2
1

(u − v) + ΔF = 0 , F := α u2,
(2)

consisting of the elliptic equation in u and the hyperbolic equation in v.
Equations (1) with various nonlinear parts f(u) and their numerical solutions

were intensively studied in the literature (see book [4], Ch. 1 and references
therein). In doing so, the most of numerical results were obtained by means of
finite difference methods applied to system (2).

In the present paper, we construct a new implicit difference scheme for the
governing Eqs. (2) by the method proposed in paper [1] and based on combi-
nation of the finite volume method, numerical integration, and difference elim-
ination. Taking into account the symmetry of Eqs. (2) under the permutation
x ↔ y of the spatial variables, we choose a uniform and orthogonal solution grid
with equal grid spacings in x and y. Such choice is natural for preservation of the
permutational symmetry at the discrete level. As shown by the research results
presented in [5], mimetic discretizations, i.e., such discrete approximations to
PDE that mimic their basic algebraic properties, are more likely to produce
highly accurate and stable numerical results.

In addition to the permutational symmetry, among the algebraic proper-
ties of the Eqs. (2) to be preserved at the discrete level, we make sure of the
conservativity and strong consistency or s-consistency of the discretization. Con-
servativity means inheritance at the discrete level of the underlying conservation
laws of Eqs. (2). The conventional notion of consistency (cf. [6], Ch. 7) provides
reduction of the finite difference approximation (FDA) to the original PDE when
the grid spacings tend to zero. In other words, a consistent discretization is a
FDA to PDE. Strong consistency is the novel concept introduced in [7,8]. For
Eqs. (2), such consistency means approximation of elements in the differential
ideal generated by the polynomials in Eqs. (2) by elements in the difference ideal
(cf. [9], Ch. 2) generated by the polynomials in the FDA to Eqs. (2).

Generally, non-linearity of differential equations is a major obstacle for
their discretization by the method of paper [1] and also for the verification of
s-consistency, since a difference Gröbner basis algorithm providing the elimina-
tion of grid functions for partial derivatives in constructing of a difference scheme
may not terminate in view of non-Noetherianity of difference polynomial rings
[9,10]. Moreover, even though the algorithm terminates, no software implement-
ing non-linear difference Gröbner basis algorithms exists. However, for Eqs. (2),
one can “hide” the nonlinear terms into an extra difference indeterminate F , as
we have done in the lower equation of (2), and use a linear difference Gröbner
basis algorithm if no nonlinear terms occur among the leaders of intermediate
polynomials. We exploit this fact in our construction of difference scheme for
Eqs. (2), and perform computations with implementation [11] in Python of the
difference version of the classical Buchberger’s algorithm [12].
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For the constructed difference scheme and for the scheme devised in [3],
under the assumption of equal spatial grid spacings, we compute their modified
equations and compare the both schemes via these equations. Nowadays, the
method of modified equations suggested in [16] is widely used (see [17], Ch. 8 and
[18], Sect. 5.5) in studying difference schemes. This method provides a natural
and unified platform to study such basic properties of the scheme as order of
approximation, consistency, stability, convergence, dissipativity, dispersion, and
invariance.

The present paper is organized as follows. In Sect. 2, we generate for Eqs. (2)
a difference scheme by applying the approach of paper [1]. The consistency and
conservativity analysis of the constructed scheme is done in Sect. 3. Computation
of modified equation for our scheme and for the scheme of paper [3] is presented
in Sect. 4. Some concluding remarks are given in Sect. 5.

2 Generation of a Difference Scheme for BPE

We consider the orthogonal and uniform solution grid with the spacing h for the
spatial independent variables x, y and with the time spacing τ . Then we apply
the approach of paper [1] to generation of a difference scheme for Eqs. (2).

Step 1. Completion to involution (we refer to [19] and to the references
therein for the theory of involution). It is easy to see that system (2) is involutive.

Remark 1. For the lexicographical orderly ranking such that

t � x � y and v � F � u ,

the differential polynomials occurring in the left-hand sides of (2) form a Gröbner
basis of the differential ideal they generate in the ring R := Q(α, β1, β2){u, v}
of differential polynomials over the field Q(α, β1, β2) of rational functions in
parameters α, β1, β2.

Step 2. Conversion into the integral form. To provide conservativity of the
scheme to be generated, we choose a rectangular parallelepiped as a “control
volume” (stencil) shown in Fig. 1. Then we can rewrite equations differential
system (2) into the following equivalent integral conservation (balance) law form

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

¨
Ω

(v − u) dxdy + β1

˛
∂Ω

−uy dx + ux dy = 0 ,

¨
Ω

vt dxdy

∣
∣
∣
∣

(n+2)τ

nτ

−
ˆ (n+2)τ

nτ

(
β2

β1

˛
∂Ω

−vy dx + vx dy +

β1 − β2

β2
1

ˆ
Ω

(u − v) dxdy −
˛

∂Ω

−Fy dx + Fx dy

)

dt = 0 .

(3)

Here Ω is the square domain jh ≤ x ≤ (j + 2)h, kh ≤ y ≤ (k + 2)h and ∂Ω is
the boundary of Ω.
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j

j + 1

j + 2 k
k + 1

k + 2

n

n + 1

n + 2

x

y

t

Fig. 1. Stencil 3 × 3 × 3.

Step 3. Addition of integral relations for derivatives. We add to system
(3) the exact integral relations between the partial derivatives of the independent
variables occurring in (3) and the dependent variables themselves:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

´ xj+1

xj
ux

n
j kdx = un

j+1 k − un
j k,

´ yk+1

yk
uy

n
j kdy = un

j k+1 − un
j k,´ xj+1

xj
vx

n
j kdx = vn

j+1 k − vn
j k,

´ yk+1

yk
vy

n
j kdy = vn

j k+1 − vn
j k,´ xj+1

xj
Fx

n
j kdx = Fn

j+1 k − Fn
j k,

´ yk+1

yk
Fy

n
j kdy = Fn

j k+1 − Fn
j k,´ tn+1

tn
vt

n
j kdt = vn+1

j k − vn
j k.

(4)

Step 4. Numerical evaluation of integrals. We apply the Simpson’s rule
to the integrals in Eqs. (3) and the trapezoidal rule to the integrals in Eqs. (4).
These rules are given in the table:

Trapezoidal rule Simpson’s rule

Tx(fn
j k) =

fn
j k + fn

j+1 k

2
h

Ty(f
n
j k) =

fn
j k + fn

j k+1

2
h

Sx(fn
j k) =

fn
j−1 k + 4fn

j k + fn
j+1 k

3
h −−−→

h→0
2hf(t, x, y)

Sy(f
n
j k) =

fn
j k−1 + 4fn

j k + fn
j k+1

3
h −−−→

h→0
2hf(t, x, y)

St(f
n
j k) =

fn−1
j k + 4fn

j k + fn+1
j k

3
τ −−−→

h→0
2τf(t, x, y)

As a result, we obtain the system (2) of difference equations for the grid func-
tions un

j, k ≈ u(nτ, jh, kh) , vn
j, k ≈ v(nτ, jh, kh) , Fn

j, k ≈ F (nτ, jh, kh) , approx-
imating functions u(t, x, y), v(t, x, y), F (t, x, y), and the grid functions approxi-
mating partial derivatives at the grid nodes
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⎧
⎨

⎩

ux
n
j, k ≈ ux(nτ, jh, kh) , uy

n
j, k ≈ uy(nτ, jh, kh) ,

vx
n
j, k ≈ vx(nτ, jh, kh) , vy

n
j, k ≈ vy(nτ, jh, kh) , vt

n
j, k ≈ vt(nτ, jh, kh) ,

Fx
n
j, k ≈ Fx(nτ, jh, kh) , Fy

n
j, k ≈ Fy(nτ, jh, kh) ,

where j, k, n ∈ Z.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SxSy(vn
j k − un

j k) + β1

(
Sx(uy

n
j k+2 − uy

n
j k) + Sy(ux

n
j+2 k − ux

n
j k)

)
= 0 ,

SxSy(vt
n+2
j k − vt

n
j k) − St

(
β2
β1

Sx(vy
n
j k+2 − vy

n
j k) + β2

β1
Sy(vx

n
j+2 k − vx

n
j k) −

β1−β2
β2
1

SxSy(un
j k − vn

j k) + Sx(Fy
n
j k+2 − Fy

n
j k) + Sy(Fx

n
j+2 k − Fx

n
j k)

)
= 0 ,

Tx(ux
n
j k) − un

j+1 k + un
j k = 0 , Ty(uy

n
j k) − un

j k+1 + un
j k = 0 ,

Tx(vx
n
j k) − vn

j+1 k + vn
j k = 0 , Ty(vy

n
j k) − vn

j k+1 + vn
j k = 0 ,

Tx(Fx
n
j k) − Fn

j+1 k + Fn
j k = 0, Ty(Fy

n
j k) − Fn

j k+1 + Fn
j k = 0 ,

Tt(vt
n
j k) − vn+1

j k + vn
j k = 0 .

Step 5. Difference elimination of derivatives. To eliminate the grid func-
tions of the partial derivatives,

vt , vx , vy , ux , uy , Fx , Fy , (5)

we construct a difference Gröbner basis form of the set of difference polyno-
mials in the left-hand sides of (2) with the Python package [11] and for the
lexicographic POT (Position Over Term) ranking (cf. [13], Def. 3.5.3) such that:

n � j � k , vt � vx � vy � Fx � Fy � ux � uy � v � F � u . (6)

The output Gröbner basis includes two difference polynomials not containing
the grid functions (5). These polynomials comprise the difference scheme:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
4h2

SxSy(vn
j k − un

j k) +
1
2h

β1

(
DxxSy(un

j k) + DyySx(un
j k)

)
= 0,

1
4h2

DttSxSy(vn
j k) − 1

4τh

β2

β1
St

(
DxxSy(vn

j k) + DyySx(vn
j k)

) −
β1 − β2

8τh2β2
1

StSxSy(un
j k − vn

j k) +
1

4τh
St

(
DxxSy(Fn

j k) + DyySx(Fn
j k)

)
= 0 ,

(7)

where

Dxx(fn
j k) =

fn
j−1 k − 2fn

j k + fn
j+1 k

h2
−−−→
h→0

fxx ,

Dyy(fn
j k) =

fn
j k−1 − 2fn

j k + fn
j k+1

h2
−−−→
h→0

fyy ,

Dtt(fn
j k) =

fn−1
j k − 2fn+1

j k + fn+1
j k

τ2
−−−→
τ→0

ftt .

(8)

3 Consistency and Conservativity

In Remark 1, we introduced the ring of differential polynomials

R := Q(α, β1, β2){u, v}
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over the field of rational functions in parameters α, β1, β2, with derivations
∂t, ∂x, ∂y and with differential indeterminates u, v.

In a similar manner, we consider the difference polynomial ring

R̃ := Q(α, β1, β2, τ, h){un
j k, vn

j k}
over the extended coefficient field, with the grid functions un

j k, vn
j k as indeter-

minates and the right-shift operators σt, σx and σy acting as translations, for
example,

σt(vn
j, k) = vn+1

j, k , σx(vn
j, k) = vn

j+1, k , σy(vn
j, k) = vn

j, k+1 .

We denote by I ⊂ R the differential ideal generated by the polynomials
in left-hand sides in (2) and by Ĩ ⊂ R̃ the difference ideal generated by the
left-hand sides of scheme (7). The elements in I vanish on solutions of (2) and
those in Ĩ vanish on solutions of (7). We refer to an element in I (respectively,
in Ĩ) as to a consequence of the governing Eqs. (2) (respectively, of Eqs. (7)).
Apparently, the both ideals are radical. Among consequences of Eqs. (2), there
are the following ones (cf. [15]).

Definition 1. A consequence of Eqs. (2) of the form

f = 0 , f := pt + qx + ry + s ∈ I , p, q, r, s ∈ R, (9)

is called conservation law in the differential form with density p, fluxes q, r and
source s.

The difference polynomials in Eqs. (7) approximate those in Eqs. (2). It
follows from the Taylor expansion about a grid point t = nh, x = jh, y = kh of
the difference operators shown in the above table and in formulae (8). Hence,
scheme (7) is consistent with Eqs. (2). If one denotes by g1 and g2 the left-hand
side of elliptic and hyperbolic equation in (2), respectively, and denote by g̃1 and
g̃2 the discrete version of these polynomials from Eqs. (7), then the consistency
conditions read

g̃1 −−−−→
τ,h→0

g1 + O(τ, h) , g̃2 −−−−→
τ,h→0

g2 + O(τ, h) , (10)

where O(τ, h) denotes terms that reduce to zero when τ, h → 0.

Proposition 1. For each differential polynomial p ∈ I, there is a difference
polynomial p̃ ∈ Ĩ approximating p, i.e.,

p̃ −−−−→
τ,h→0

p + O(τ, h) . (11)

Proof. Since {g1, g2} is a Gröbner basis of I, the polynomial p can be represented
as (cf. [14], Eq. (2.44))

p =
2∑

i=1

⎛

⎝

kj∑

j=1

ci,jΘi,j

⎞

⎠ gi , Θi,j ∈ Mon(∂) , ci,j ∈ R , kj ∈ N>0 ,



158 Y. A. Blinkov et al.

where
Mon(∂) := {∂i1

t ∂i2
x ∂i2

y | i1, i2, i3 ∈ N≥0} . (12)

We approximate the first-order partial derivatives occurring in p by the central
differences

Dt =
σt − σ−1

t

2τ
, Dx =

σx − σ−1
x

2h
, Dy =

σy − σ−1
y

2h
. (13)

Accordingly, we approximate the derivation operators (12) as

∂i1
t ∂i2

x ∂i2
y =⇒ Di1

t Di2
x Di2

y .

Then the polynomial p̃ given by

p̃ :=
2∑

i=1

⎛

⎝

kj∑

j=1

c̃i,jD̃i,j

⎞

⎠ g̃i , D̃i,j ∈ Mon(D) , c̃i,j ∈ R̃ , kj ∈ N>0 , (14)

where
Mon(D) := {Di1

t Di2
x Di2

y | i1, i2, i3 ∈ N≥0} .

satisfies (11). �

Remark 2. The consistency conditions (10) imply the strong consistency or
s-consistency of {g̃1, g̃2} with {g1, g2} (see [8], Thr. 3). In the proof of Proposition
1, we explicitly demonstrate how to construct a difference consequence of scheme
(7) which approximates a given consequence of the differential system (2).

Corollary 1. For a conservation law of the form (9), there is a consequence of
scheme (7) which approximates that law.

By the construction of the difference scheme (7) as a discrete version of the
integral conservation law form (3) and by Corollary 1, the smooth solutions of
Eqs. (7) in the limit τ, h −→ 0 satisfy all the polynomial conservation laws (9).
Thus, the scheme is conservative.

4 Modified Equation

Given a finite difference scheme, the main idea of modified equation method (see
[16] and its bibliography) is to construct another PDE which is approximated
better by the difference scheme. In the case of Boussinesq Paradigm Equation
(BPE) (2) and its finite difference approximation (FDA) (7), the modified equa-
tion method (cf. [18], Sect. 5.5) is based on the consideration of a solution to
(7) as a set of smooth functions {u, v} whose values at the grid points satisfy
the difference scheme (7). Since the difference equations (7) describe BPE only
approximately, one cannot expect that a solution interpolating the grid values
exactly satisfies BPE. In fact, it satisfies another set of differential equations
which we shall call the modified BPE.
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To obtain a modified BPE, the shift operators occurring in (7) are replaced
by their Taylor expansions about a grid point

σt =
∑

k≥0

τk

k!
∂k

t , σx =
∑

k≥0

hk

k!
∂k

x , σy =
∑

k≥0

hk

k!
∂k

y .

This replacement converts the difference equations comprising the scheme into
infinite order differential equations of the following form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1(uxx + uyy) + v − u + h2
(

β1
12 (uxxxx + 4uxxyy + uyyyy)

−uxx+uyy

6 + vxx+vyy

6

)
+ O(h4) = 0 ,

vtt − β2
β1

(vxx + vyy) − β1−β2
β2
1

(u − v) − (Fxx + Fyy)

+ τ2
(

Fttxx−Fttyy

6 + vtttt

12 − β2
6β1

(vttxx + vttyy)

−β1−β2
3β2

1
(utt − vtt)

)
+ h2

(
Fxxxx+4Fxxyy+Fyyyy

12

− vttxx+vttyy

6 − β2
12β1

(vxxxx + 4vxxyy + vyyyy)

− β1−β2
3β2

1
(uxx + uyy) + β1−β2

3β2
1

(vxx + vyy)
)

+ O(τ4, τ2h2, h4) = 0.

(15)

where the terms of order τ2 and h2 are written explicitly. We underlined the
highest ranked terms (leaders) in BPE (2) for ranking (4). The calculation of
the right-hand sides in Eq. (15) as well as the computation of the expressions
given below was done with the use of freely available Python library [11].

Remark 3. The Taylor expansions of the s-consistent difference scheme (7) over
the chosen grid points contain only the even powers of h. It follows immedi-
ately from the fact that all the finite differences occurring in the equations of
both schemes are the central difference approximations of the partial derivatives
occurring in (2).

Furthermore, we substitute F → αu2 and reduce the terms of order τ2 and
h2 in (15) modulo their left-hand sides which form the differential Gröbner basis
(2) for the lexicographic orderly ranking

t � x � y , v � u .

This reduction will give us a canonical form of the second order modified flow,
since given a Gröbner basis, the normal form of a polynomial modulo this basis
is uniquely defined (cf. [13], Sect. 2.1). Moreover, since FDA (7) does not have
S-polynomials, it is sufficient to perform autoreduction of (15).

Thus, after the Taylor expansion of FDA (scheme) and its autoreduction
yields the modified BPE:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1(uxx + uyy) + (v − u) + h2

(
β1uyyyy

6
− 2uyy + vxx − vyy

12
− v − u

12β1

)

+ O(h4) = 0,

vtt − β2

β1
(vxx + vyy) − β1 − β2

β2
1

(u − v) + 2α

(

u2
x + u2

y +
u2 − uv

β1

)

+ τ2

(
αuttxux

3
+

αuttyuy

3
+

αu2
tx

3
+

αu2
ty

3
+

2αβ2u
2
xy

3β1
+

2αβ2u
2
yy

3β1
+

αuutt

3β1

− αuvtt
6β1

− αuttv

6β1
+

αu2
t

3β1
− αutvt

3β1
+

αu2
x

2β1
+

αu2
y

2β1
+

2αβ2uuyy

3β2
1

− αβ2uvxx
6β2

1

− αβ2uvyy
6β2

1

+
7αβ2u

2
x

6β2
1

− 2αβ2uxvx
3β2

1

+
2αβ2uyyv

3β2
1

+
7αβ2u

2
y

6β2
1

− 2αβ2uyvy
3β2

1

− αu2

2β2
1

+
αuv

2β2
1

+
7αβ2u

2

6β3
1

− 5αβ2uv

3β3
1

+
αβ2v

2

2β3
1

− utt

4β1
− β2

2vxxxx
12β2

1

− β2
2vxxyy
6β2

1

− β2
2vyyyy
12β2

1

+
β2utt

4β2
1

+
β2vxx
3β2

1

+
β2vyy
3β2

1

+
u

4β2
1

− v

4β2
1

− β2
2vxx
3β3

1

− β2
2vyy
3β3

1

− 7β2u

12β3
1

+
7β2v

12β3
1

+ −β2
2u

3β4
1

− β2
2v

3β4
1

)

+ h2

(
2αuxyyux

3
− 2αuyyyuy

3

− αu2
yy +

αuuyy

β1
− 2αu2

x

3β1
+

2αuxvx
3β1

− αuyyv

β1
− αu2

2β2
1

+
αuv

β2
1

− αv2

2β2
1

+
β2vxxxx

12β1
+

β2vyyyy
12β1

+
vxx
6β1

+
vyy
6β1

− β2vxx
6β2

1

− β2vyy
6β2

1

− u

6β2
1

+
v

6β2
1

+
β2u

6β3
1

− β2v

6β3
1

)

+ O(τ4, τ2h2, h4) = 0.

(16)

Formulae (16) show that the scheme (7) has the second-order of accuracy in
the grid spacings τ and h. Being implicit, the scheme is unconditionally stable.
Therefore, in accordance to the Lax-Richtmyer equivalence theorem (see [6],
Thm. 1.5.1) proved for linear scalar PDE and initial - value problem, it has been
accepted that the convergence is ensured if a given FDA to the PDE is consistent
and stable.

In paper [3], another finite difference scheme was designed. That scheme is
implicit, unconditionally stable, also has the second-order of accuracy, and for
the case of equal spacial grid spacings this scheme reads

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(vn+1
j k − un+1

j k ) + β1

(
Dxx(un+1

j k ) + Dyy(un+1
j k )

)
= 0 ,

Dtt(vn
j k) − β2

2β1
D2

(
vn+1

j k + vn−1
j k

)
− β1 − β2

2β2
1

(un+1
j k + un−1

j k )+

β1 − β2

2β2
1

(vn+1
j k + vn−1

j k ) − β1

3
D2

(
un+1

j k

2
+ un+1

j k un−1
j k + un−1

j k

2
)

= 0 ,

(17)

where
D2 := Dxx + Dyy
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approximates the Laplace operator. The Taylor expansion of Eqs. (17) and
autoreduction yield the following modified BPE

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1(uxx + uyy) + (v − u) + h2

(
β1uyyyy

6
− 2uyy + vxx − vyy

12
− v − u

12β1

)

+ O(h4) = 0

vtt − β2

β1
(vxx + vyy) − β1 − β2

β2
1

(u − v) + 2α

(

u2
x + u2

y +
u2 − uv

β1

)

+

τ2

(

αuuttyy − αuutt

6
+ 2αuttxux + 2αuttyuy +

2αu2
tx

3
+

2αutyyut

3
+

2αu2
ty

3

− αu2
t

6
− αv2

t

6
− αvvtt

6
+

5αβ2u
2
x

6β1
+

5αβ2u
2
y

6β1
+

5αβ2vxxv

6β1
+

5αβ2v
2
x

6β1

+
5αβ2vyyv

6β1
+

5αβ2v
2
y

6β1
+

αuutt

β1
+

11αuuyy

6β1
− αuttv

β1
− 11αu2

x

6β1

− 11αvxxv

6β1
− 11αv2

x

6β1
+

5αβ2u
2

6β2
1

− 11αβ2uuyy

6β2
1

− 5αβ2uv

6β2
1

+
11αβ2u

2
x

6β2
1

+
11αβ2vxxv

6β2
1

+
11αβ2v

2
x

6β2
1

− 11αu2

6β2
1

+
11αuv

6β2
1

+
11αβ2u

2

6β3
1

− 11αβ2uv

6β3
1

+
11utt

12β1
− 5β2

2vxxxx
12β2

1

− 5β2
2vxxyy
6β2

1

− 5β2
2vyyyy
12β2

1

+
11β2utt

12β2
1

+
4β2vxx

3β2
1

+
4β2vyy

3β2
1

+
11u

12β2
1

− 11v

12β2
1

− 4β2
2vxx

3β3
1

− 4β2
2vyy

3β3
1

− 9β2u

4β3
1

+
9β2v

4β3
1

+
4β2

2u

3β4
1

−4β2
2v

3β4
1

)

+ h2

(
αuuyyyy

6
+

2αuyyyuy

3
+ αu2

yy − αuuyy

β1
+

αuyyv

β1
+

αu2

2β2
1

− αuv

β2
1

+
αv2

2β2
1

− β2vxxxx
12β1

− β2vyyyy
12β1

)

+ O(τ4, τ2h2, h4) = 0 .

(18)

We see that in the order h2, the first equation in (18) coincides with that in
(16) whereas the second equations of the schemes differ in the terms of order τ2

and h2. Thus, schemes (7) and (17) differ from each other.

5 Conclusion

We applied our computer algebra - aided approach [1] to the fourth order Boussi-
nesq paradigm equation (1), rewritten in the form of two second order equations
(2), and derived the finite difference scheme (7) defined on the uniform and
orthogonal grid with spacings τ and h. Due to the use of integral conservation
law form (3) for Eqs. (2), the obtained scheme is conservative. By its construc-
tion, scheme (7) approximates the differential system (2) (cf. (10)) and, hence,
is consistent.

Furthermore, since the differential polynomials in the left-hand side of (2) and
the difference polynomials in the left-hand side of (7) form a differential Gröbner
basis and a difference Gröbner basis, respectively, of the ideal they generate, the
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consistency of (7) with (2) implies the s-consistency (cf. Remark 2). Therefore,
any differential consequence of Eqs. (2) is approximated by a consequence of
Eqs. (7) (Proposition 1). In particular, any smooth solution to Eqs. (7) in the
limit τ, h −→ 0 satisfies to all conservation law of the form (9) (Corollary 1),
i.e., scheme (7) is conservative.

For scheme (7), we computed its modified equation (16) with accuracy
O(τ2, h2). It is the differential system (16), such that a smooth solution to the
scheme satisfies this system. The canonical form of modified equation given by
formulae (16) is obtained by the reduction of terms order τ2 and h2 modulo
the ideal generated by the set of differential polynomials in the left-hand side of
Eqs. (2). For the ranking (4) this set is a Gröbner basis.

Given two difference schemes for a PDE, one can compare them by computing
their modified equations. In our case, we confront the scheme (7) with another
scheme taken from [3]. The both schemes have the same order O(τ2, h2) of
accuracy and their first equations approximating v − u + β1�u = 0 coincide if
the terms of order O(τ4, τ2h2, h4) are neglected. But the second equations of the
schemes which approximate

vtt − β2

β1
�v − β1 − β2

β2
1

(u − v) + ΔF = 0 , F := α u2,

are significantly distinct. In our further comparative analysis of the schemes, we
plan to confront them on numerical simulation.

In this paper, we use the Python-based library [11], as a tool for doing all
computations with differential and difference polynomials we needed including
construction of Gröbner bases and Taylor expansions. The denotation αu2 −→
F reduces the nonlinear problem (1) to the linear one, and allows to apply
the software packages oriented to computation of Gröbner bases. For example,
to compute linear differential Gröbner bases one can apply the Maple package
Janet [20], and to compute linear difference Gröbner bases one can apply the
Maple package LDA [21].

Acknowledgements. This work has been partially supported by the Russian Founda-
tion for Basic Research (grant No. 18-51-18005) and by the RUDN University Program
(5-100).
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in Mathematics, vol. 3. American Mathematical Society (1994)

14. Robertz, D.: Formal Algorithmic Elimination for PDEs. LNM, vol. 2121. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11445-3

15. Chertock, A., Christov, C.I., Kurganov, A: Central-upwind schemes for Boussinesq
paradigm equations. In: Krause, E., Shokin, Yu., Resch, M., Kröner, D., Shokina,
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Abstract. The dynamics of the system of two bodies, connected by
a spherical hinge, that moves along a circular orbit under the action
of gravitational torque is investigated. Computer algebra method based
on the resultant approach was applied to reduce the satellite stationary
motion system of algebraic equations to a single algebraic equation in
one variable that determines all planar equilibrium configurations of the
two–body system. Classification of domains with equal numbers of equi-
librium solutions is carried out using algebraic methods for constructing
discriminant hypersurfaces. Bifurcation curves in the space of system
parameters that determine boundaries of domains with a fixed number
of equilibria of the two–body system were obtained symbolically. Depend-
ing on the parameters of the problem, the number of equilibria was found
by analyzing the real roots of the algebraic equations.

Keywords: Satellite-stabilizer system · Gravitational torque ·
Circular orbit · Lagrange equations · Algebraic equations ·
Equilibrium orientation · Computer algebra ·
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1 Introduction

In this work, we investigate the dynamics of a system of two bodies (satellite
and stabilizer) connected by a spherical hinge that moves in a central Newtonian
force field on a circular orbit using computer algebra methods.

Determining the equilibria for the system of connected bodies on a circular
orbit is of practical interest for designing composite gravitational orientation
systems of satellites that can stay on the orbit for a long time without energy
consumption. The dynamics of various composite schemes for satellite–stabilizer
gravitational orientation systems was discussed in detail in [1].
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The study of the satellite–stabilizer dynamics under the influence of gravita-
tional torque is an important topic for the practical implementation of attitude
control systems of the artificial satellites. The dynamics of a satellite–stabilizer
subjected to gravitational torque was considered in many papers indicated in [1].
In [2] and [3], planar equilibrium orientations were found in special cases, when
the spherical hinge is located at the intersection of the satellite and stabilizer
principal central axis of inertia. In [4], all equilibrium orientations were found
in the case of axisymmetric satellite and stabilizer. In paper [5], some classes of
spatial equilibrium orientations of the satellite–stabilizer system in the orbital
coordinate system were analyzed, using computer algebra methods.

In this paper, we consider the planar equilibria (equilibrium orientations)
of the satellite–stabilizer system in the orbital coordinate frame for certain val-
ues of the principal central moments of inertia of the bodies when the spherical
hinge is located at the intersection of the satellite and stabilizer principal central
planes of inertia. The action of the stabilizer on the satellite provides new equi-
librium orientations for the two-body system, as well as introduces dissipation
into the system. The investigation of satellite equilibria was performed by using
the Computer Algebra resultant method. The regions with an equal number of
equilibria were specified by using the Meiman theorem [13] for the construction
of discriminant hypersurfaces.

The algebraic methods for determining the equilibrium orientations of the
two-body system described in this work were successfully used to analyze the
dynamics of a satellite–gyrostat system [6,7] as well as the dynamics of a satellite
with an aerodynamic orientation system [8,9].

In mechanics, computer algebra is widely employed to analyze polynomial
systems with the use of symbolic computations. Some computer algebra algo-
rithms for solving these problems were described in [11,12,15]. The question
of finding regions of parameter space with certain equilibria properties also
occurred in relevance to a biology problem was presented at the CASC 2017
Workshop [16].

2 Equations of Motion

Let us consider the system of two bodies connected by a spherical hinge that
moves along a circular orbit [1]. To write equations of motion for two bodies, we
introduce the following right-handed Cartesian coordinate systems (Fig. 1). The
absolute coordinate system CXaYaZa with the origin at the Earth’s center of
mass C. The plane CXaYa coincides with the equatorial plane and the CZa axis
coincides with the Earth axis of rotation, and OXY Z is the orbital coordinate
system. The OZ axis is directed along the radius vector that connects the Earth
center of mass C with the center of mass of the two–body system O, the OX
axis is directed along the linear velocity vector of the center of mass O. Then,
the OY axis is directed along the normal to the orbital plane. The coordinate
system for the ith body (i = 1, 2) is Oxiyizi, where Oxi, Oyi, and Ozi are the
principal central axes of inertia for the ith body. The orientation of the coordi-
nate system Oxiyizi with respect to the orbital coordinate system is determined
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using the pitch (αi), yaw (βi), and roll (γi) angles, and the direction cosines in
the transformation matrix between the orbital coordinate system OXY Z and
Oxiyizi are expressed in terms of aircraft angles using the relations [1]:

a
(i)
11 = cos αi cos βi,

a
(i)
12 = sinαi sin γi − cos αi sin βi cos γi,

a
(i)
13 = sinαi cos γi + cos αi sin βi sin γi,

a
(i)
21 = sinβi, a

(i)
22 = cos βi cos γi, (1)

a
(i)
23 = − cos βi sin γi, a

(i)
31 = − sin αi cos βi,

a
(i)
32 = cos αi sin γi + sinαi sin βi cos γi,

a
(i)
33 = cos αi cos βi − sinαi sin βi sin γi.

Suppose that (ai, bi, ci) are the coordinates of the spherical hinge P in the
body coordinate system Oxiyizi, Ai, Bi, Ci are the principal central moments
of inertia; M = M1M2/(M1 + M2); Mi is the mass of the ith body; pi, qi, and
ri are the projections of the absolute angular velocity of the ith body onto the
axes Oxi, Oyi, and Ozi; and ω0 is the angular velocity for the center of mass
of the two-body system moving along a circular orbit. Then, using expressions
for kinetic energy and force function, which determines the effect of the Earth
gravitational field on the system of two bodies connected by a hinge [1], the
equations of motion for this system can be written as Lagrange equations of
the second kind by symbolic differentiation in the Maple system [10] in the case
when b1 = b2 = 0:

(Ai + Mc2i )ṗi − Maiciṙi − Mcicj(a
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Here

pi = (α̇i + ω0)a
(i)
21 + γ̇i,

qi = (α̇i + ω0)a
(i)
22 + β̇i sin γi, (3)

ri = (α̇i + ω0)a
(i)
23 + β̇i cos γi.

In the first three equations of (2), i = 1 and j = 2; in the next three equations
of (2), i = 2 and j = 1. In (3), i = 1, 2. In (2) and (3), the dot denotes the
differentiation with respect to time t.

3 Equilibrium Orientations of Satellite-Stabilizer System

Assuming the initial condition (αi, βi, γi) = (αi0 = const, βi0 = const, γi0 =
const), also Ai �= Bi �= Ci, and introducing the notations a

(1)
ij = aij , a

(2)
ij = bij ,

we obtain from (2) and (3) the equations
(
(C1 − B1) − Mc21)

)
(a22a23 − 3a32a33) − Ma1c1(a21a22 − 3a31a32)

+Mc1a22(a2b21 + c2b23) − 3Mc1a32(a2b31 + c2b33) = 0,
(
(A1 − C1) − M(a2

1 − c21)
)
(a23a21 − 3a33a31) − Mc1a1((a2

23 − a2
21)

−3(a2
33 − a2

31)) − M(c1a21 − a1a23)(a2b21 + c2b23)
+3M(c1a31 − a1a33)(a2b31 + c2b33) = 0,

(
(B1 − A1) + Ma2

1)
)
(a21a22 − 3a31a32) + Ma1c1(a22a23 − 3a32a33)

−Ma1a22(a2b21 + c2b23) + 3Ma1a32(a2b31 + c2b33) = 0, (4)
(
(C2 − B2) − Mc22)

)
(b22b23 − 3b32b33) − Ma2c2(b21b22 − 3b31b32)

+Mc2b22(a1a21 + c1a23) − 3Mc2b32(a1a31 + c1a33) = 0,
(
(A2 − C2) − M(a2

2 − c22)
)
(b23b21 − 3b33b31) − Mc2a2((b223 − b221)

−3(b233 − b231)) − M(c2b21 − a2b23)(a1a21 + c1a23)
+3M(c2b31 − a2b33)(a1a31 + c1a33) = 0,

(
(B2 − A2) + Ma2

2)
)
(b21b22 − 3b31b32) + +Ma2c2(b22b23 − 3b32b33)

−Ma2b22(a1a21 + c1a23) + 3Ma2b32(a1a31 + c1a33) = 0,

which allow us to determine the equilibrium orientation for the system of two
bodies connected by a spherical hinge in the orbital coordinate system. Taking
into account the expressions for the direction cosines from (1), system (4) can
be considered as a system of six equations with six unknowns αi, βi, and γi

(i = 1, 2).
Another way of closing Eq. (4) is to add six orthogonality conditions for the

direction cosines:

a2
21 + a2

22 + a2
23 − 1 = 0,

a2
31 + a2

32 + a2
33 − 1 = 0,
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a21a31 + a22a32 + a23a33 = 0, (5)
b221 + b222 + b223 − 1 = 0,

b231 + b232 + b233 − 1 = 0,

b21a31 + b22b32 + b23b33 = 0.

For this system, the following problem is formulated: for given 11 parame-
ters, determine all twelve direction cosines. The other six direction cosines
(a11, a12, a13 and b11, b12, b13) can be obtained from the orthogonality conditions.

The system of Eqs. (4) and (5) was solved only for the following case: b1 =
b2 = 0, c1 = c2 = 0. Equilibrium solutions in this case for the system of two
bodies in the orbital plane for βi0 = γi0 = 0 and αi0 �= 0 were considered in [2,3].
In [3], planar oscillations of the two-body system were analyzed, all equilibrium
orientations were determined, and sufficient conditions for the stability of the
equilibrium orientations were obtained using the energy integral as a Lyapunov
function. In [5], for this case the system of 12 algebraic Eqs. (4) and (5) was
decomposed using linear algebra methods and algorithms for the Gröbner basis
construction. Some classes of spatial equilibrium solutions were obtained from
algebraic equations included in the Gröbner basis. The parameter values that
cause the change in the number of equilibrium orientations for the satellite–
stabilizer system were found.

Construction of the Gröbner basis for the system (4) and (5) of 12 second-
order algebraic equations, whose coefficients depend on 11 parameters, is a
very complicated algorithmic problem. In general case, the system of algebraic
Eqs. (4) and (5) cannot be solved by direct application of the Gröbner basis con-
struction methods. We will solve system (4) and (5) in the special case, when all
equilibrium configurations of the two–body system are located in the plane of
the circular orbit. In that case, α10 �= 0 and α20 �= 0, β10 = β20 = γ10 = γ20 = 0.

Substituting the expressions for the direction cosines from (1) in terms of the
aircraft angles into Eq. (4) and taking into account the condition β10 = β20 =
γ10 = γ20 = 0, we obtain two equations with two unknowns α10 and α20

d1 sin α10 cos α10 + a1c1(cos α2
10 − sin α2

10) + a1a2 cos α10 sin α20

−a1c2 cos α10 cos α20 + a2c1 sin α10 sin α20 − c1c2 sinα10 cos α20 = 0, (6)
d2 sin α20 cos α20 + a2c2(cos α2

20 − sin α2
20) + a1a2 cos α20 sin α10

−a2c1 cos α20 cos α10 + a1c2 sin α20 sin α10 − c1c2 sinα20 cos α10 = 0.

Equations (6) form a closed system of two equations with respect to the two
aircraft angles α10 and α20, that determines the flat satellite–stabilizer equi-
librium orientations. In (6), we introduce the following designations: d1 =(
(A1 − C1) − M(a2

1 − c21)
)
/M , d2 =

(
(A2 − C2) − M(a2

2 − c22)
)
/M .

Trigonometric system (6) in the α10 and α20 angles cannot be solved directly.
Therefore, for this system, we used the universal change of sines and cosines
through the half-angle tangent

sinαi0 =
2 tan(αi0

2 )
1 + tan2(αi0

2 )
=

2ti
1 + t2i

, cos αi0 =
1 − tan2(αi0

2 )
1 + tan2(αi0

2 )
=

1 − t2i
1 + t2i

, (7)
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where ti = tan(αi0
2 ).

Substituting expressions (7) in terms of half-angle tangent into Eqs. (6) we
obtain two algebraic equations with two unknowns t1 and t2

a0t
4
1 + a1t

3
1 + a2t

2
1 + a4 = 0,

b0t
2
1 + b1t1 + b2 = 0, (8)

where

a0 = a1(c1 − c2)t22 − 2a1a2t2 + a1(c1 + c2)),
a1 = 2(c1c2 − d1)t22 + 4a2c1t2 − 2(c1c2 + d1),
a2 = −6a1c1(1 + t22),
a4 = a1(c1 + c2)t22 + 2a1a2t2 + a1(c1 − c2)),
b0 = (1 − t22)(a2c2(1 − t22) + a2c1(1 + t22) + 2d2t2)

+2c1c2t2(1 + t22) − 4a2c2t
2
2,

b1 = 2a1(1 + t22)(a2(1 − t22) + 2c2t2),
b2 = (1 − t22)(a2c2(1 − t22) − a2c1(1 + t22) + 2d2t2)

−2c1c2t2(1 + t22) − 4a2c2t
2
2.

Using the resultant concept we eliminate the variable t1 from Eq. (8). Expanding
the determinant of resultant matrix of Eq. (8) with the help of Maple symbolic
matrix function, we obtain the 16th order algebraic equation in t2 variable

p0t
16
2 +p1t

15
2 + p2t

14
2 + p3t

13
2 + p4t

12
2 + p5t

11
2 + p6t

10
2 + p7t

9
2 + p8t

8
2

+p9t
7
2 + p10t

6
2 + p11t

5
2 + p12t

4
2 + p13t

3
2 + p14t

2
2 + p15t2 + p16 = 0, (9)

the coefficients of which depend on the parameters a1, a2, c1, c2, d1, d2 in the
form

p0 = p16 = a4
2(a

2
1 − c22)(c

2
1 − c22)(a

2
1 − c21 + d1)2,

p1 = −p15 = −4a3
2c2(a

2
1 − c21 + d1)

(
a4
1(a

2
2 + 2(c21 − c22))

+ a2
1(2c21(d1 − c21) + (c22 − d1)(c22 + d2) − a2

2c
2
2) + a2

2c
2
1(c

2
2 − c21)

+ c21c
2
2(2c21 − c22 − d1 − d2) + d1d2(c21 + 2c22)

)
,

p2 = p14 = −4a2
2

(
a6
1(a

4
2 − 9a2

2c
2
2 − 6c21c

2
2 + 6c42)

+ a4
1

(
12c41c

2
2 + a4

2(3c21 − c22) − c22(c
4
2 + d2(d2 − 6d1) + 2c22(2d2

− 3d1)) − 2c21(c
4
2 − 2d22 + 2c22(3d1 + 2d2)

)
+ a2

2(8c42 − 2d1d2

+ 2c22(2d2 − 5d1) + c21(c
2
2 + 8d2))

)
+,

+ a2
1

(
a4
2c

2
1(3c21 − 2c22) − 6c61c

2
2 − 2c21c

2
2(c

4
2 + 3d21 − 8c22d2 + d22)

+ d1(c42(d1 − 6d2) + 2c22d2(2d1 − 3d2) + d1d
2
2)

− 2c41(c
4
2 − 2d22 + 2c22(2d2 − 3d1)) + a2

2(3c22d1(4c22 − d1 + 2d2)
+ c41(c

2
2 + 8d2) − 8c21(c

4
2 + 2c22d2))

)
+ 6c61c

4
2 − c41c

6
2 + a4

2(c
6
1 − c41c

2
2)
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− 6c41c
4
2d1 + c21c

4
2d

2
1 − 4c41c

4
2d2 − 6c41c

2
2d1d2 + 6c21c

4
2d1d2

+ 4c21c
2
2d

2
1d2 − c41c

2
2d

2
2 + 6c21c

2
2d1d

2
2 + c21d

2
1d

2
2 − 6c22d

2
1d

2
2

+ a2
2(6c42d

2
1 − 9c61c

2
2 − 3c21c

2
2d1(4c22 + d1 + 2d2)

+ 2c41(4c42 + d1d2 + c22(5d1 + 2d2))
))

, (10)

p3 = −p13 = 4a2c2
(
a6
1(11a4

2 − 8c21c
2
2 + 8c42 − 2a2

2(c
2
1 + 15c22))

+ a4
1(a

4
2(5c21 − 19c22 + 7d1 − 4d2) + a2

2(4c41 + 19c42

− 2c21(c
2
2 + 2(d1 − 8d2)) + d2(4d2 − 15d1) + 3c22(9d2 − 11d1))

+ 4(4c41c
2
2 + c22(c

2
2(d1 − d2) + d2(3d1 − d2)) + 2c21(c

4
2 + 2d22

− 2c22(d1 + 2d2)))) + a2
1(a

4
2(5c41 − 19c22d1 + c21(38c22 − 8d2))

− a2
2(2c61 + d1(c22(11d1 − 57d2) + (7d1 − 12d2)d2) − 19c42

+ 2c21(19c42 + d21 + 11c22d2 + 20d22) + 2c41(c
2
2 − 2(d1 + 8d2)))

− 4(2c61c
2
2 − 2c41(c

4
2 + 2c22(d1 − 2d2) + 2d22)

+ d1d2(d2(d2 − d1) − c22(d1 − 3d2)) + 2c21(c
4
2d2 + 2d32

+ c22(d
2
1 − 5d22)))) + a4

2(11c61 + 19c21c
2
2d1 − c41(19c22 + 7d1 + 4d2))

+ 4(2c61c
4
2 − 2d21d

3
2 − c41c

2
2(c

2
2(d1 + d2) + d2(3d1 + d2))

+ c21d1d2(d2(d1 + d2) + c22(d1 + 3d2))) + a2
2(38c22d

2
1d2 − 30c61c

2
2

+ c41(19c42 + d2(15d1 + 4d2) + 3c22(11d1 + 9d2))
− c12d1(19c42 + d2(7d1 + 12d2) + c22(11d1 + 57d2)))

)
,

p4 = p12 = 4
(
a6
1(2a6

2 + 4c42(c
2
1 − c22) − a4

2(c
2
1 + 41c22)

+ 4a2
2(3c21c

2
2 + 11c42)) + a4

1(2a6
2(3c21 − 7c22) + a4

2(2c41 + 83c42

+ 4d2(d2 − d1) + c21(9c22 − 2d1 + 16d2) + 14c22(4d2 − 3d1))
− 4(2c41c

4
2 + c42(2d1 − d2)d2 + c21(3c62 + 4c22d

2
2 − 2c42(d1 + 4d2)))

− 2a2
2(12c41c

2
2 + 2c21(c

4
2 − 6c22(d1 − 2d2) − 2d22)

+ c22(7c42 + d2(11d2 − 18d1) + 2c22(14d2 − 11d1))))
+ a2

1(a
6
2(6c41 − 28c21c

2
2) − a4

2(c
6
1 + c22d1(9d1 − 110c22 − 84d2)

− c41(9c22 + 2d1 + 16d2) + c21(54c42 + d21 + 224c22d2 − 8d22))
+ 4(c61c

4
2 − c22d1(d1 − 2d2)d22 − c41(3c62 + 2c42(d1 − 4d2) + 4c22d

2
2)

+ c21(4d42 − 8c22d
3
2 + c42(d

2
1 + 2d22)))2a

2
2(6c61c

2
2 + d1(c42(5d1 − 42d2)

+ 6c22(2d1 − 7d2)d2 + (d1 − 4d2)d22) − 2c41(c
4
2 − 2d22

+ 6c22(d1 + 2d2)) − 2c21(7c62 − 56c42d2 − 8d32 + c22(11d22 − 3d21))))
+ 2a6

2c
4
1(c

2
1 − 7c22) − 4(c21c

2
2 − d1d2)2(c21c

2
2 − d22)

+ a4
2(55c42d

2
1 − 41c61c

2
2 − c21c

2
2d1(110c22 + 9d1 + 84d2)

+ c41(83c42 + 4d2(d1 + d2) + 14c22(3d1 + 4d2))) + 2a2
2(22c61c

4
2

− 42c22d
2
1d

2
2 − c41c

2
2(7c42 + d2(18d1 + 11d2) + 2c22(11d1 + 14d2))

+ c21d1(d
2
2(d1 + 4d2) + 6c22d2(2d1 + 7d2) + c42(5d1 + 42d2)))

)
,
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p5 = −p11 = −4a2c2
(
a6
1(9a4

2 + 24c22(c
2
1 + c22) − 2a2

2(3c21 + 29c22))

+ a4
1(a

4
2(7c21 − 129c22 + 5d1 − 36d2) + a2

2(12c41 + 129c42

+ 2c21(13c22 − 6d1 + 16d2) + d2(36d2 − 13d1) + c22(201d2 − 75d1))
− 4(12c41c

2
2 + 2c21(c

4
2 − 2d22 + 2c22(2d2 − 3d1))

+ c22(d2(9d2 − 7d1) + c22(9d2 − 5d1))))
+ a2

1(a
4
2(7c41 − 129c22d1 + 6c21(43c22 − 12d2))

+ a2
2(2c41(13c22 + 6d1 + 16d2) − 6c61 − 6c21(43c42 + d21 + 19c22d2

+ 60d22) + d1(129c42 + d2(108d2 − 5d1) + c22(387d2 − 25d1)))
+ 4(6c61c

2
2 + d1d2(c22(5d1 − 27d2) + d2(d1 − 9d2))

− 2c41(c
4
2 − 2d22 + c22(6d1 + 4d2)) − 6c21(3c42d2 + 6d32

− c22(d
2
1 + 15d22)))) + a4

2(9c61 + 129c21c
2
2d1

− c41(129c22 + 5d1 + 36d2)) + 4(6c61c
4
2 − 18d21d

3
2

− c41c
2
2(c

2
2(5d1 + 9d2) + d2(7d1 + 9d2))

+ c21d1d2(d2(d1 + 9d2) + c22(5d1 + 27d2)))
+ a2

2(258c22d
2
1d2 − 58c61c

2
2 + c41(129c42 + d2(13d1 + 36d2)

+ 3c22(25d1 + 67d2)) − c21d1(129c42 + d2(5d1 + 108d2)
+ c22(25d1 + 387d2)))

)
,

p6 = p10 = 4
(
a6
1(a

6
2 − 9a4

2c
2
2 + 16c21c

4
2 − 2a2

2(3c21c
2
2 + 5c42))

+ a4
1(3a6

2(c
2
1 + 21c22) − 16c42(2c41 − 2c21d1 + d22) + a4

2(c
2
1(c

2
2 + 8d2)

− 2(180c42 + d2(d1 + 8d2) + c22(5d1 + 126d2)))
+ a2

2(12c41c
2
2 + 2c21(7c42 + 2d22 − 2c22(3d1 + 2d2))

+ c22(63c42 + d2(6d1 + 95d2) + c22(252d2 − 26d1))))
+ a2

1(3a6
2(c

4
1 + 42c21c

2
2) + a4

2(c
4
1(c

2
2 + 8d2) − 3c22d1(156c22 + d1

+ 126d2) + 8c21(27c42 + 126c22d2 − 4d22)) + 16(c61c
4
2 − 2c41c

4
2d1

− 2c22d1d
3
2 + c21(8c22d

3
2 − 4d42 + c42(d

2
1 − 2d22)))

+ a2
2(2c41(7c42 + c22(6d1 − 4d2) + 2d22) − 6c61c

2
2

+ d1(d22(d1 + 32d2) + 2c22d2(2d1 + 189d2) + c42(378d2 − 15d1))
+ 2c21(63c62 − 504c42d2 − 64d32 + c22(95d22 − 3d21))))
+ a6

2c
4
1(c

2
1 + 63c22) − 16d22(c

2
1c

2
2 − d1d2)2

− a4
2(9c61c

2
2 + 234c42d

2
1 + 3c21c

2
2d1(d1 − 156c22 − 26d2)

+ 2c41(180c42 + d2(8d2 − d1) + c22(126d2 − 5d1)))
+ a2

2(378c22d
2
1d

2
2 − 10c61c

4
2 + c21d1(2c22(2d1 − 189d2)d2

+ (d1 − 32d2)d22 − 3c42(5d1 + 126d2))
+ c41c

2
2(63c42 + d2(95d2 − 6d1) + 2c22(13d1 + 126d2)))

)
,

p7 = −p9 = −4a2c2
(
a6
1(21a4

2 + 16c22(c
2
1 + 2c22) − 6a2

2(c
2
1 + 15c22))

+ a4
1(a

4
2(11c21 + 363c22 + 13d1 + 88d2)

+ a2
2(12c41 − 363c42 + 2c21(13c22 − 6d1 + 32d2)
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− d2(29d1 + 88d2) − c22(111d1 + 539d2)) + 8(4c21(c
2
2(d1 − 2d2)

+ d22) − 4c41c
2
2 + c22(c

2
2(3d1 + 11d2) + d2(5d1 + 11d2))))

+ a2
1(11a4

2(c
4
1 + 33c22d1 + c21(16d2 − 66c22))

+ a2
2(2c41(13c22 + 6d1 + 32d2) − 6c61

+ c21(726c42 − 6d21 + 374c22d2 + 880d22)
− d1(363c42 + d2(13d1 + 264d2) + c22(37d1 + 1089d2)))
+ 8(2c61c

2
2 + d1d2(3c22 + d2)(d1 + 11d2) − 4c41(c

2
2(d1 + 2d2)

− d22) + 2c21(11c42d2 + 22d32 + c22(d
2
1 − 55d22))))

+ a4
2(21c61 − 363c21c

2
2d1 + c41(363c22 − 13d1 + 88d2))

+ 8(4c61c
4
2 + 22d21d

3
2 + c21d1(d1 − 11d2)d2(3c22 + d2)

+ c41c
2
2(d2(11d2 − 5d1) + c22(11d2 − 3d1)))

− a2
2(90c61c

2
2 + 726c22d

2
1d2 + c21d1(c

2
2(37d1 − 1089d2)

+ d2(13d1 − 264d2) − 363c42)
+ c41(363c42 + d2(88d2 − 29d1) + c22(539d2 − 111d1)))

)
,

p8 = −2
(
a6
1(8a6

2 + 48a2
2c

2
2(c

2
1 + 5c22) − 3a4

2(c
2
1 + 55c22)

− 16(3c21c
4
2 + c62)) + a4

1(8a6
2(3c21 + 25c22) + a4

2(6c41 − 1267c42

− 16d2(d1 + 3d2) + c21(37c22 − 6d1 + 64d2)
− 10c22(17d1 + 80d2)) + 16(6c41c

4
2 − c42d2(2d1 + 3d2)

− c21(3c62 + c42(6d1 − 8d2) + 4c22d
2
2))

− 8a2
2(12c41c

2
2 + 2c21(5c42 − 6c22(d1 − 2d2) − 2d22)

− c22(25c42 + d2(18d1 + 37d2) + 2c22(19d1 + 50d2))))
+ a2

1(8a6
2(3c41 + 50c21c

2
2) + a4

2(c
4
1(37c22 + 6d1 + 64d2)

− 3c61 − c22d1(1734c22 + 37d1 + 1200d2)
+ c21(934c42 − 3d21 + 3200c22d2 − 96d22))
− 16(3c61c

4
2 + c22d1d

2
2(d1 + 6d2)c41(3c62 + 4c22d

2
2

− 2c42(3d1 + 4d2)) + 3c21(4d42 − 8c22d
3
2 + c42(d

2
1 + 2d22)))

+ 8a2
2(6c61c

2
2 − 2c41(5c42 − 2d22 + 6c22(d1 + 2d2))

+ d1(d22(d1 + 12d2) + 6c22d2(2d1 + 25d2)
+ c42(13d1 + 150d2)) + c21(50c62 − 400c42d2 − 48d32

+ c22(6d21 + 74d22)))) + 8a6
2(c

6
1 + 25c41c

2
2)

− 16(c21c
2
2 − d1d2)2(c21c

2
2 + 3d22) + 8a2

2(30c61c
4
2

+ 150c22d
2
1d

2
2 + c21d1(c

4
2(13d1 − 150d2) + 6c22(2d1 − 25d2)d2

+ (d1 − 12d2)d22) + c41c
2
2(25c42 + d2(37d2 − 18d1)

+ c22(100d2 − 38d1))) − a4
2(165c61c

2
2 + 867c42d

2
1

+ c21c
2
2d1(37d1 − 1734c22 − 1200d2)

+ c41(1267c42 + 16d2(3d2 − d1) + c22(800d2 − 170d1)))
)
.
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By the definition of resultant, to every root t2 of Eq. (9) there corresponds a
common root t1 of system (8). It can easily be shown that to every real root
t2 of Eq. (9), there corresponds one equilibrium solution of the original system
(6). Since the number of real roots of Eq. (9) does not exceed 16, the two bodies
system satellite–stabilizer in the plane of a circular orbit can have at most 16
equilibrium configurations in the orbital coordinate system.

From the form of the coefficients of the algebraic Eq. (9), it follows that this
equation is recurrent. Then dividing Eq. (9) by t82 we will get the equation

p0(t82 +
1
t82

) + p1(t72 − 1
t72

) + p2(t62 +
1
t62

) + p3(t52 − 1
t52

) + p4(t42 +
1
t42

)

+p5(t32 − 1
t32

) + p6(t22 +
1
t22

) + p7(t2 − 1
t2

) + p8 = 0. (11)

After replacing in (11) x = (t2 − 1
t2

) = (2/ tan αi0), (t22 + 1
t22

) = x2 + 2,

(t32 − 1
t32

) = x3 + 3x and so on, we will get the equation of the 8th degree

P (x) = p̄0x
8 + p̄1x

7 + p̄2x
6 + p̄3x

5 + p̄4x
4p̄5x

3 + p̄6x
2 + p̄7x + p̄8 = 0. (12)

Here

p̄0 = p0, p̄1 = p1,

p̄2 = p2 + 8p0, p̄3 = p3 + 7p1,

p̄4 = p4 + 20p0 + 6p2,

p̄5 = p5 + 14p1 + 5p3,

p̄6 = p6 + 16p0 + 9p2 + 4p4,

p̄7 = p7 + 7p1 + 5p3 + 3p5,

p̄8 = p8 + 2(p0 + p2 + p4 + p6).

Using Eqs. (12) and (8), for each set of the system parameters, we can deter-
mine numerically the angles α20 and α10, that is, all the planar equilibrium
orientations of the satellite–stabilizer system.

4 Investigation of Equilibria

Equations (8) and (12) make it possible to determine all the plane equilibrium
configurations of the satellite–stabilizer, due to the action of the gravity torque
for the given values of system parameters a1, a2, c1, c2, and d1, d2 of the problem.

In studying the two–body system equilibrium orientations, we determine the
domains with an equal number of real roots of Eq. (12) in the space of 6 param-
eters. To identify these domains, we use the Meiman theorem [13], which yields
that the decomposition of the space of parameters into domains with an equal
number of real roots is determined by the discriminant hypersurface. It is also
possible to calculate the number of real roots of a polynomial by means of ith
subdiscriminants using Jacobi theorem [14,15].
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In our case, the discriminant hypersurface is given by the discriminant of
polynomial (12). This hypersurface contains a component of codimension 1,
which is the boundary of domains with an equal number of real roots. The set
of singular points of the discriminant hypersurface in the space of parameters
a1, a2, c1, c2, and d1, d2 is given by the following system of algebraic equations:

P (x) = 0, P ′(x) = 0. (13)

Here the symbol “prime” denotes differentiation with respect to x.
We can eliminate the variable x from system (13) by calculating the deter-

minant of the resultant matrix of Eq. (13) with the help of symbolic matrix
functions in Maple. The form of the discriminant of the polynomial P (x) is a
very cumbersome expression.

Let us consider a simpler case when a1 = a2 = c1 = c2 = a. Then introducing
the new parameters in (6) d01 = (A1 − C1))/Ma2, d02 = (A2 − C2)/Ma2, we
obtain from (9) a simpler algebraic equation of the 8th degree, whose coefficients
depend only on two parameters d01 and d02

p00t
8
2 + p01t

7
2 + p02t

6
2 + p03t

5
2 + p04t

4
2 + p05t

3
2 + p06t

2
2 + p07t2 + p08 = 0, (14)

where

p00 = p08 = d201(d
2
02 − 1)2 − d202,

p01 = −p07 = 2(d02 − 2)
(
d201(d

2
02 + d02 − 2) + 2d202

)
,

p02 = p06 = d201(d
4
02 − 20d202 + 8d02 + 20) + 4d202(d

2
02 − 5),

p03 = −p05 = 2
(
d201(7d302 + d202 − 28d02 − 4) + 2d202(7d02 + 2)

)
,

p04 = −2
(
d201(d

4
02 − 27d202 − 10d02 + 13) + 4d402 − 13d202

)
.

After replacing in (14) x = (t2 − 1
t2

), we will obtain the equation of the 4th
degree

P1(x) = p00x
4 + p01x

3 + (p02 + 4p00)x2

+(p03 + 3p01)x + p04 + 2(p02 + p00) = 0. (15)

Now we determine the conditions for the existence of real roots of Eq. (15).
To identify these conditions, we use the Meiman theorem [13]. In our case, the
discriminant hypersurface is given by the discriminant of polynomial P1(x). The
boundary of domains with the equal number of real roots on the plane of param-
eters d01 and d02 is given by the following system of algebraic equations:

P1(x) = 0, P ′
1(x) = 0. (16)
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We eliminate the variable x from system (16) by calculating the determinant
of the resultant matrix of Eqs. (16) and obtain an algebraic equation of the
discriminant hypersurface as

P2(d01, d02) = 256d1202P3(d01, d02)P4(d01, d02)P5(d01, d02) = 0. (17)

Here

P3(d01, d02) =
(
d201(d02 − 1)2 − d202

)
,

P4(d01, d02) =
(
d401(d

2
02 + 8)2 + 16d201d

2
02(d

2
02 + 10) + 64d402 − 6912

)
,

P5(d01, d02) =
(
(4d201 + d201d

2
02 + 4d202)

2 − 64d201d
2
02

)
.

Now we should check the change in the number of equilibria when the curve
(17) is intersected. This can be done numerically by determining the number of
equilibria at a single point of each domain at the plane (d01, d02). This analysis
showed that only the curve P4(d01, d02) = 0 separates the domains with different
number of equilibria.

Figure 2 presents an example of the properties and form of the discriminant
hypersurface P2(d01, d02) = 0, which are the set of curves on the plane (d01, d02).
Fig. 2 shows the distributions of domains with equal number of real roots of
Eq. (17) and indicates the domains where four and two real solutions exist (8 and
4 equilibrium orientations). In Fig. 2, four branches of two hyperbolas indicate
the boundaries P3(d01, d02) = 0, where the number of real roots of Eq. (17) does
not change. Therefore, in the case when a1 = a2 = c1 = c2 = a, there exist only
8 and 4 planar equilibrium orientations for the satellite–stabilizer system.

Fig. 1. Basic coordinate systems



Symbolic Investigation of the Two Bodies Dynamics 177

Fig. 2. The regions with the fixed number of equilibria

5 Conclusion

In this paper, we present the study of the dynamics of the rotational motion of
the satellite–stabilizer system subject to the gravitational torque in the plane
of the orbit. The computer algebra method (based on the resultant approach)
of determining all equilibrium orientations of the satellite–stabilizer system in
the orbital coordinate system in the plane of a circular orbit was presented. The
conditions for the existence of these equilibria were obtained.

We have made an analysis of the evolution of domains of existence of equilib-
rium orientations in the plane of system parameters d01 and d02 for the special
case when the coordinates of the spherical hinge in the satellite body coordinate
system Ox1y1z1 and stabilizer body coordinate system Ox2y2z2 are equal. For
this case, we have indicated the analytic equation of the discriminant hypersur-
faces that limits regions with different number of equilibrium configurations of
the satellite–stabilizer system. The hypersurface equation was computed sym-
bolically using the resultant approach.

The obtained results can be used to design gravitational attitude control
systems for the artificial Earth satellites.
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Abstract. In this paper, by stating a local variant of stability criteria
due to Kalkbrener [25] and based on the Kapur et al. algorithm [30] for
computing comprehensive Gröbner systems, we present an algorithm for
the computation of comprehensive standard systems. Although our algo-
rithm is a straightforward extension of the mentioned algorithm, however
the effectiveness of our approach can be seen in its applications. To this
end, we study some applications of parametric standard bases in catas-
trophe and singularity theories as well as in automated geometric theorem
discovery. In particular, in the last application, it is demonstrated that
for a given geometric theorem (which is not always true), our algorithm
is able to construct all possible conditions under which the geometric
conclusion remains locally true.

1 Introduction

Gröbner bases, along with an algorithm for their computation, were introduced
by Buchberger in his PhD thesis [6]. He then proposed two criteria to enhance
the efficiency of his algorithm [5]. Relying on linear algebra techniques and Buch-
berger’s ideas, Lazard [33] developed a computationally more efficient algorithm
for this task. By exploiting syzygy methods and substituting Buchberger’s Spoly-
nomial test/completion with the test/completion based on Möller’s lifting theo-
rem [38], Gebauer and Möller [18] provided a variant of Buchberger’s algorithm
by applying Buchberger’s criteria in a more efficient way. Finally, Faugère pre-
sented his F4 and F5 algorithms [15,16] to compute effectively Gröbner bases.

Standard bases, which are known as a local variant of Gröbner bases, origi-
nated in the works of Gordan [21]. The notion of standard bases was introduced
by Hironaka [24] and Grauert (for special cases of local orderings) [22]. Standard
bases have many applications in commutative algebra and algebraic geometry
including geometry theorem proving, computing the multiplicity of points in the
variety associated to a zero-dimensional ideal, and deriving Milnor/Tjurina num-
bers of an isolated singular point of a hypersurface. We refer the reader to [12]
for more information on these topics. In addition to these applications, standard
bases have been recently considered as a core routine in many of the algorithms
implemented within the Singularity library [17] to analyze local bifurcations
of a given scalar singularity.
c© Springer Nature Switzerland AG 2019
M. England et al. (Eds.): CASC 2019, LNCS 11661, pp. 179–196, 2019.
https://doi.org/10.1007/978-3-030-26831-2_13
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Another important topic considered in this paper is Comprehensive Gröbner
bases (CGB) which was first presented and computed through an algorithm by
Weispfenning [49]. A CGB forms a finite parametric basis for a given parametric
polynomial ideal such that for any specialization of parameters, the specialization
of the basis, leads to a Gröbner basis for the specialization of the parametric
ideal.

Comprehensive Gröbner system (CGS) is encoded by a finite set of triples,
called branches, where each triple contains null/non-null condition sets along
with a finite set of parametric polynomials. For any specialization of parameters,
there exists a branch corresponding to the specialization so that the null/non-
null condition sets are satisfied and the corresponding set gives a Gröbner basis
for the parametric ideal. Solving parametric polynomial systems was discussed
through different approaches by Sit [44] and Kapur [27]. Afterwards, Montes
[40] proposed a more efficient algorithm, so-called DISPGB, in order to compute
CGS’s. References related to the works on canonical CGB, improvement of CGB
and minimal canonical CGS are given in [34,35,50], respectively. A significant
improvement on computing CGB’s and CGS’s is due to Suzuki and Sato [46]
by recursively computing reduced Gröbner bases. Combining the Suzuki-Sato
and Weispfenning algorithms, Kapur et al. achieved an efficient algorithm for
deriving CGS’s [28,30]. The GröbnerCover algorithm described by Montes
and Wibmer [42] decomposes the parameter space into locally closed subsets
together with polynomial data from which the reduced Gröbner basis for each
parameter point is determined. Finally, an algorithm for computing simultane-
ously CGB and CGS was proposed by Kapur et al. [29–31].

In this paper, we are interested in computing a comprehensive standard sys-
tems (CSS) for a given parametric polynomial ideal. To the best of our knowl-
edge, this topic has been studied only in [1] where an approach close to the one
presented by Montes [40] was developed to compute a CSS to study the local
Hilbert-Samuel functions. Based on a local variant of stability criteria due to
Kalkbrener [25] and the Kapur et al. algorithm [30], we propose an algorithm to
compute a CSS for a given parametric ideal. Therefore our new algorithm may
be simpler and more efficient than the one given in [1]. Furthermore, we study
several applications of this algorithm in catastrophe and singularity theories and
automated geometric theorem discovery. In the latter application, our aim here
is to propose an effective approach using CSS’s to fully analyze the correctness
of a geometric statement. It is worth noting that automated theorem proving
deals with the development of computer programs to decide whether or not a
(geometrical) claim is a logical consequence of a set of hypotheses. This concept
has been treated first by Gelernter et al. [19], Tarski [47], Seidenberg [43], and
Collins [10]. Thereafter, two different yet essential approaches based on Wu’s
and Gröbner bases methods were proposed for this task, see e.g. [9,26,32].

The rest of this paper is organized as follows. In Sect. 2, we review some
preliminaries about standard bases and discuss different existing methods for
computing them. Section 3 deals with the local analogue of Kalkbrener’s stability
criteria to describe a new algorithm for computing CSS’s. Section 4 is devoted to
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a discussion on some applications of our approach via three examples. Finally,
in Sect. 5, we make some concluding remarks.

2 Standard Bases Computation

Throughout this paper, we let R = K[x]〈x〉 be the local ring in terms of the
variables x = x1, . . . , xn over the field K, whose maximal ideal is generated by
〈x〉. Recall that a semigroup ordering on R is a total order ≺ on the set of
monomials in R such that for each two monomials m,m′ if m′ ≺ m then m′u ≺
mu for every monomial u. Notice that ≺ is not necessarily well-ordering on the set
of all monomials of R. A semigroup ordering is called local if for every monomial
m we have m � 1. As a well-known example of local monomial orderings that we
use in this paper, we mention the degree-anticompatible lexicographic ordering
(or simply alex(x)): For two given monomials m,m′ ∈ R we write m′ ≺alex m
if either deg(m) < deg(m′) or deg(m) = deg(m′) and m′ ≺lex m. Suppose
that f ∈ R is a polynomial, and let ≺ be a semigroup ordering on the set
of all monomials in R. The leading monomial of f , denoted by LM(f), is the
greatest monomial with respect to ≺ in f and its coefficient, denoted by LC(f),
is called the leading coefficient of f . The leading term of f is defined to be
LT(f) = LC(f)LM(f). Let I ⊂ R be an ideal. A finite subset {g1, . . . , gs} of I
is called a standard basis for I with respect to ≺ if LT(I) = 〈LT(g1), . . . ,LT(gs)〉.
For more details we refer the reader to [12]. Standard bases can be computed
via a variant o Buchberger’s algorithm relying on Mora normal form algorithm
as follows in which ecart(g) stands for deg(g) − deg(LT(g)).

Algorithm 1. MoraNormalForm

1: Input: A polynomial f ∈ R, a set of polynomials G ⊂ R and a semigroup ordering
≺

2: Output: A Mora normal form of f w.r.t. G
3: h := f
4: T := G
5: while (h �= 0 and Th := {g ∈ T | LM(g) | LM(h)} �= ∅) do
6: choose g ∈ Th with minimal ecart(g) w.r.t. ≺
7: if ecart(g) > ecart(h) then
8: T := T ∪ {h}
9: end if

10: h := h − LT(h)
LT(g)

g
11: end while
12: return(h)

Remark 2.1. An important issue with this algorithm is the discussion of its
arithmetic complexity. For example, dividing zxy3−yz4−y3+x3z2y+y2z4 by {y−
xy3−yz3, x2z+yz2+x2yz2, y2−x3z2−yz4+z} by using the above algorithm, does
not terminate after 72 h (the experimental results in this paper have been obtained
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on a Ubuntu desktop 2.2GHz AMD Opteron, 96GB). This simple observation
illustrates that the computation of standard bases is an established hard problem
in practice.

Note that the classical approaches to compute Gröbner bases are applicable
directly to compute standard bases. On the other hand, to the best of our
knowledge, efficient computation of standard bases has not been addressed in the
literature. For this purpose, we took into account the local version of Update
algorithm [2], MMT algorithm [39] and the recent BerkeSchreyer algorithm
due to Berkesch and Schreyer [3] which have been applied widely to compute
Gröbner bases. We have implemented five algorithms, namely Update, Update-
Minimal, Update+MMT, Update-Minimal+MMT and BerkeSchreyer
in the local setting. The second algorithm is referred to as the Update algo-
rithm without performing the final minimalization process. By the minimaliza-
tion process we mean that in each iteration of computing standard basis, if in
the computed basis, the leading term of a polynomial divides the leading term
of another polynomial then the latter is removed. The next two are targeted
the installation of the Update structure on MMT algorithm with/without the
minimalization process. Finally, the last one is based on the procedure proposed
in [3]. Our experimental comparison of these algorithms on more than 50 bench-
mark polynomial systems shows that Update-Minimal+MMT outperforms
the others in terms of running time and used memory (see the following figure);
thus, we use it in the rest of the paper to calculate standard bases. For the sake
of shortness, the comparison results are not included in this paper. The Maple
code of our implementations, together with the list of examples, are available at
http://amirhashemi.iut.ac.ir/softwares.

3 Comprehensive Standard Systems

In this section, we adapt the concept of CGS’s to the local setting. For this
purpose, after discussing a local variant of stability criteria of Kalkbrener [25],
we give a local variant of the Kapur et al. algorithm [30] to compute CSS’s.

http://amirhashemi.iut.ac.ir/softwares
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Consider F = {f1, . . . , fl} ⊂ S = K[a][x]〈x〉 where a represents a sequence
a1, . . . , am of parameters such that {x}∩{a} = ∅. Let ≺x be a semigroup ordering
on the variables and ≺a be a monomial ordering on the parameters. In order to
define a CSS we shall need the following definitions:

– The block ordering ≺x,a= (≺x,≺a) on the monomials in terms of a and x is
defined as follows: We write xαaβ ≺x,a xα′

aβ′
if either xα ≺x xα′

or xα = xα′

and aβ ≺a aβ′
.

– Let L be the algebraic closure of K. A morphism σ : K[a] → L is called a
specialization of parameters. For each f ∈ S we define σ(f) = f |a=t1,...,tm

where σ(ai) = ti for each i.
– For a finite set A ⊂ K[a] the variety of A, denoted by V(A), is the set of all

common zeros of A.
– Given a pair (N,W ) ⊂ K[a] × K[a], we say that a specialization σ satis-

fies (N,W ) when σ(p) = 0 and σ(q) �= 0 are valid for all p ∈ N and for
some q ∈ W , respectively. In other words, a specialization σ corresponding to
(t1, . . . , tm) ∈ Lm satisfies (N,W ) when (t1, . . . , tm) ∈ V(N) \ V(W ). More-
over, the pair (N,W ) is said to be inconsistent whenever V(N) \ V(W ) = ∅.
Here, (N,W ) is referred to as a condition sets containing null-condition set
N and non-null condition set W .

Definition 3.1. Let F, Si ⊂ S and (Ni,Wi) ⊂ K[a] × K[a] for i = 1, . . . , �. The
triple set G = {(Ni,Wi, Si)}�

i=1 is called a CSS for 〈F 〉 w.r.t. ≺x,a over V ⊂ Lm

if for any i the following conditions hold.

(a) For any specialization σ : K[a] → L satisfying (Ni,Wi), σ(Si) ⊂ R is a
standard basis for 〈σ(F )〉 w.r.t. ≺x.

(b) V ⊆ ⋃�
i=1 V(Ni) \ V(Wi).

The set G is called a CSS for 〈F 〉, if it is a CSS for 〈F 〉 over whole Lm.

It should be noted that the Kapur et al. algorithm [30] is based on several basic
properties of Gröbner bases. All these properties are held in local setting; for
instance, the local analogue of the elimination theorem is given by [12, Theorem
5.4, Page 184]. For some other useful properties of standard bases, we refer to
[14, Theorem 1.7.3, Pages 54–55]. In particular, we shall need the local version
of stability criteria of Kalkbrener [25, Theorem 3.1] and minimal Dickson basis
[30] that will be restated here for the convenience of the reader. We give the
proof of the first result by adapting the proof of the original result to the local
setting.

Theorem 3.2. Let K be a Noetherian commutative ring with identity and
σ : K → K be a ring homomorphism which is naturally extended to the homomor-
phism K[x] → R. Let I be an ideal in K[x] and S = {g1, . . . , gr, gr+1, . . . , gs} be
a standard basis for I with respect to ≺x. Further, suppose that σ(LC(gi)) �= 0
for i ≤ r and σ(LC(gi)) = 0 for i > r. Let Sr = {g1, . . . , gr}. Then the following
statements are equivalent.
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(a) 〈σ(LT(I))〉 = LT(〈σ(I)〉).
(b) σ(Sr) is a standard basis for 〈σ(I)〉 ⊂ R with respect to ≺x.
(c) For each i ∈ {r + 1, . . . , s}, σ(gi) is reduced to zero modulo σ(Sr).

Proof. For the sake of simplicity, for an ideal J , we denote 〈σ(J )〉 by σ(J ).
(a) ⇒ (b) From assumption, we have obviously σ(LT(I)) = LT(σ(I)). Since

σ(LC(gi)) = 0 for each i ∈ {r + 1, . . . , s}, we can then write

LT(σ(I)) = σ(LT(I)) = 〈σ(LT(gi)), i = 1, . . . , r〉. (1)

Now assume that f ∈ σ(I) with f �= 0. Thus, LT(f) ∈ LT(σ(I)) and in turn
LT(f) ∈ σ(LT(I)). Therefore, there exists gi ∈ S such that σ(LT(gi)) | LT(f).
From assumption, we have i ≤ r and in consequence σ(Sr) is a standard basis
for σ(I) with respect to ≺x.

(b) ⇒ (a) Since σ(Sr) is a standard basis for σ(I) with respect to ≺x, for
each σ(f) ∈ σ(I), there exists i ∈ {1, . . . , r} such that LT(σ(gi)) | LT(σ(f)).
The same holds when we take f ∈ {gr+1, . . . , gs}. It follows that

LT(σ(I)) = 〈LT(σ(g1)), . . . ,LT(σ(gr))〉
= 〈σ(LT(g1)), . . . , σ(LT(gr))〉
= 〈σ(LT(S))〉 = σ(〈LT(S)〉) = σ(LT(I)).

(b) ⇒ (c) This part is concluded by [14, Pages 54–55] and the fact that
σ(gi) ∈ σ(I) for each gi ∈ S.

(c) ⇒ (b) The hypothesis of part (c) implies that σ(S \ Sr) ⊆ 〈σ(Sr)〉 and
thus σ(S) ⊆ 〈σ(Sr)〉. Therefore, σ(Sr) generates 〈σ(S)〉 and it suffices to show
that σ(Sr) is a standard basis for this ideal. For this purpose, and using the local
variant of Buchberger’s criterion [14, Theorem 1.7.3, Pages 54–55] (see also [2]),
we must show that for each i, j ∈ {1, . . . , r}, spoly(σ(gi), σ(gj)) reduces to zero
modulo σ(Sr). Since σ(LC(gi)) �= 0 for each i ∈ {1, . . . , r}, then we have

spoly(σ(gi), σ(gj)) = cijσ(spoly(gi, gj)), (2)

where cij ∈ K is a non-zero constant. Furthermore, since S is a standard basis
and spoly(gi, gj) ∈ 〈S〉, by [14, Theorem 1.7.3, Pages 54–55], spoly(gi, gj) =
∑s

l=1 aij
l gl where aij

l ∈ K and

LM(gl) �x LM(spoly(gi, gj)) ≺x lcm(LM(gi),LM(gj)). (3)

Substituting the last equality into Equality (2) gives rise to

spoly(σ(gi), σ(gj)) = cij
s∑

l=1

σ(aij
l )σ(gl),

Note that from assumption we conclude that for each l ∈ {r + 1, . . . , s}, if
σ(gl) appears in this expression, then we can replace it by a combination of the
elements of σ(Sr). Hence, spoly(σ(gi), σ(gj)) can be written as a combination of
σ(g1), . . . , σ(gr) and in turn σ(Sr) is a standard basis for the ideal it generates,
completing the proof. ��
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Definition 3.3. Let F ⊂ S and ≺x,a be the block ordering of ≺x and ≺a. A
subset F ′ ⊂ F is called a minimal Dickson basis for F if

– 〈LM≺x(F ′)〉 = 〈LM≺x(F )〉,
– For any two distinct elements f1, f2 ∈ F ′ we have LM≺x(f1) � LM≺x(f2).

Definition 3.4. Let F = {f1, . . . , fk} ⊂ R and ≺ be a semigroup ordering on
R. We say that a polynomial f ∈ R has a standard representation w.r.t. F if f
can be written as f = q1f1 + · · · + qkfk with LM(qifi) � LM(f).

In [14, Theorem 1.7.3, Pages 54–55], it was shown that a finite set S of poly-
nomials in R forms a standard basis iff every polynomial in the ideal generated
by S has a standard representation w.r.t. S. In addition, it was proved that this
is equivalent to the fact that the Spolynomial of any pair of polynomials in S
has a standard representation w.r.t. S. We use the following local variant of [30,
Lemma 4.5] to prove Theorem 3.6.

Lemma 3.5. Let I ⊂ S be an ideal and S a standard basis for I w.r.t. the
block ordering of the semigroup ordering ≺x and the monomial ordering ≺a. Let
S1 = {g1, . . . , gs} ⊂ S and σ be a specialization from K[a] to L ⊃ K so that
σ(LCx(gi)) �= 0 for each i. In addition, assume that for every f ∈ S \ S1, σ(f)
has a standard representation w.r.t. σ(S1). Then σ(S1) standard basis for σ(I)
w.r.t. ≺x.

Proof. Since S is a standard basis for I and for every f ∈ S \ S1, σ(f) has
a standard representation w.r.t. σ(S1) then σ(S1) generates σ(I). Now, by
applying the local variant of Buchberger’s criterion [12, Theorem 4.3, Page
175], we shall show that for each i, j, spoly(σ(gi), σ(gj)) has a standard rep-
resentation w.r.t. σ(S1). Since S is a standard basis for I, then we know
that spoly(gi, gj) = q1g1 + · · · + q�g� where S \ S1 = {gs+1, . . . , g�} and
LM(qigi) � LM(spoly(gi, gj)). From σ(LCx(gi)) �= 0 for each i = 1, . . . , s we
obtain spoly(σ(gi), σ(gj)) = cσ(spoly(gi, gj)) where 0 �= c ∈ L. It follows that

spoly(σ(gi), σ(gj)) = c(σ(q1)σ(g1) + · · · + σ(q�)σ(g�)).

On the other hand, σ(gi) for i = s+1, . . . , � has a standard representation w.r.t.
σ(S1), and this shows that spoly(σ(gi), σ(gj)) has a standard representation
w.r.t. σ(S1), completing the proof. ��
Theorem 3.6. Let I ⊂ S be an ideal and S a standard basis for I w.r.t. the
block ordering of the semigroup ordering ≺x and the monomial ordering ≺a. Let
Sr = S∩K[a] and Sm = MinimalDicksonBasis(S\Sr). Let σ be a specialization
from K[a] to L ⊃ K so that σ(f) = 0 for f ∈ Sr and σ(h) �= 0 with h =∏

f∈Sm
LCx(f). Then, σ(Sm) is a minimal standard basis for σ(I) w.r.t. ≺x.

Proof. We follow the proof of [30, Theorem 4.3]. Assume that f ∈ S \ (Sr ∪Sm).
We know that LM≺x(f) is divisible by LM≺x(g) for some g ∈ Sm. Thus, applying
the Mora normal form algorithm [12, Page 170], we can write

LC≺x(g1) · · · LC≺x(gs)uf = q1g1 + · · · + qsgs + p



186 A. Hashemi and M. Kazemi

where gi ∈ Sm, qi, p ∈ K[a,x], u is a unit in S and the leading monomial of
p w.r.t. x can not be divisible by LM≺x(g) for some g ∈ Sm. In addition, we
have LM≺x(qigi) � LM≺x(f) for each i. It is clear that p ∈ I. Since S is a
standard basis for I then p reduces to zero on division by S. From the above
construction and assumptions, it follows that p reduces to zero by Sr and in turn
σ(p) = 0. Thus, applying σ on the both side of the above equality, we derive
that σ(f) reduces to zero by σ(Sm) using the Mora normal form algorithm. This
proves that for every f ∈ S \(Sr ∪Sm), σ(f) has a standard representation w.r.t.
σ(Sm). From Lemma 3.5, it follows that σ(Sm) is a minimal standard basis for
σ(I) w.r.t. ≺x. ��
Based on Theorem 3.6, we are now able to present a variant of the Kapur et al.
algorithm [30] to compute CSS’s. In the next algorithm, we assume that C is a
global variable which is initially assumed to be the empty list [ ].

Algorithm 2. CSSMain

1: Input: A finite set F ⊂ S, two finite sets N,W ⊂ K[a] and orderings ≺x and ≺a

2: Output: A CSS for 〈F 〉 over V(N) \ V(W )
3: if (N,W ) is inconsistent then
4: return(∅)
5: end if
6: S := StandardBasis(F ∪ N,≺x,a)
7: if 1 ∈ S then
8: return{(N,W, {1})}
9: end if

10: Sr := S ∩ K[a]
11: if (Sr,W ) is inconsistent then
12: return(C)
13: else
14: Sm := MinimalDicksonBasis(S \ Sr)
15: h = lcm(h1, . . . , hk) with hi = LC≺x(gi) for each gi ∈ Sm = {g1, . . . , gk}
16: if (Sr,W × {h}) is consistent then
17: C := C ∪ {Sr,W × {h}, Sm}
18: end if
19: return(C∪⋃k

i=1CSSMain(Sr ∪ hi,W × {h1 . . . hi−1}, S \ Sr) ∪ { (Other cases,
{1})})

20: end if

Remark 3.7. Algorithm2 can be extended when K[x]〈x〉 is replaced with K[[x]]
or En(see Subsect. 4.2). To do so, the applied division algorithm should be replace
by the corresponding division algorithm, see [2, Pages 251–252] and [17, Defi-
nition 2.3], respectively. This plays a key role in the development of Paramet-
ricSingularities module of the Singularity library, see [17].
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4 Applications

This section is devoted to some applications of the CSSMain to compute com-
prehensive Milnor systems, comprehensive determinacy systems and automated
geometric theorem discovery.

4.1 Comprehensive Milnor Systems

The Milnor number, amongst the most important concepts in the study of com-
plex singularities, was developed by John Milnor as an invariant of a singular
function [37]. Keeping the notations of the previous section, let us continue with
the following definition where K = C or R and dimK(A) denotes the dimension
of A as a K-vector space.

Definition 4.1. Suppose f ∈ R has an isolated singularity at the origin and
J(f) = 〈 ∂f

∂x1
, . . . , ∂f

∂xn
〉. The Milnor number of f at the origin is defined by

μ = dimK(
R

J(f)
).

We refer the reader to [12, Page 155] for more details on Milnor number. One
interesting application of CSS’s arises in the study of the Milnor number of a
given parametric polynomial, see the next example.

Example 4.2. Let f = ax4 + bxz3 + cy2 + xy2 + z2 ∈ K[a, b, c][x, y, z]〈x,y,z〉.
Table 1 illustrates the results obtained for the Milnor number of f through apply-
ing CSSMain to J(f) = 〈4ax3 + bz3 + y2, 2cy + 2xy, 3bxz2 + 2z〉 w.r.t. the block
ordering of the monomial orderings alex(x, y, z) and lex(a, b, c) to compute a CSS
for J(f). Note that in each branch, from the computed standard basis, one is able
to compute easily the dimension of the corresponding factor ring as a K-vector
space (see the local variant of Macaulay’s theorem [12, Theorem 4.3, Page 177]).

Table 1. A comprehensive Milnor system for a paramtric polynomial

Null set Non-null set Standard basis Milnor number

{} {ac} { ∂f
∂z

, ∂f
∂y

,−8acx3 − 2bcz3 + 2xy2} 3

{a} {c} { ∂f
∂z

, ∂f
∂y

} infinite

{c} {a} { ∂f
∂z

, ∂f
∂x

,−2xy, 8ax4 + 2bxz3} 5

{a, c} {} { ∂f
∂z

, ∂f
∂x

,−2xy} infinite
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4.2 Comprehensive Determinacy Systems

Let us first give some background on determinacy. Two smooth functions are
equivalent as germ when they are identical in the vicinity of the origin. The space
of all n-variate smooth germs is denoted by En which is a local ring with the
unique maximal ideal M = 〈x1, . . . , xn〉; see [20, Page 56]. Developed by René
Thom using the ideas in differential topology and dynamical system theory [48],
catastrophe theory studies the local structure of critical points of real-valued
smooth functions in En. As this theory is a local one, the elements of En are
considered as of their germ equivalent class. Due to the important applications
in science and engineering, catastrophe theory has come to the attention of
many researchers for decades [23,45]. In this subsection, we are concerned with
one of the fundamental concepts involved in this theory, namely determinacy.
We say that two smooth germs f and g are right-equivalent if there exists a
diffeomorphism mapping from f to g. The germ f is called k-determined if for
any germ g which is equal to f modulo degree k+1, f and g are right-equivalent.
It is proved that f is k-determined if

Mk+1 ⊂ M2J(f), (4)

where Mk = 〈xα : |α| = k〉; see [20, Page 101]. We remark that, En, containing
flat germs and/or germs with infinite Taylor series, is a computationally expen-
sive ring. Thus, we propose the following theorem (see [17, Theorem 2.16(1)]) so
that computations are converted to the smaller ring R.

Theorem 4.3. Let f ∈ R ⊂ En. Then, Mk+1
En

⊂ M2
En

J(f)En
iff Mk+1

R ⊂
M2

RJ(f)R.

In order to determine the value of k satisfying inclusion (4), we apply the
Hilbert series methods [11] and propose a new and more efficient procedure
(compared to the one given in [36]). Let us briefly review the notion of Hilbert
series. Assume that I is a homogeneous ideal in the ordinary polynomial ring
K[x]. For a subset A ⊂ K[x], let Ai be the set of all homogeneous polynomials
of A of total degree i. The Hilbert series of I is defined by

HSI(t) = Σ∞
i=0HFI(i)ti,

where HFI(i) = dimK(K[x]i
Ii

) is the Hilbert function of I. One sees readily that
the Hilbert series of Mk is equal to the polynomial 1 + 2t + . . . +

(
n+k−2

k−1

)
tk−1

and, in turn, the value of k for which inclusion (4) is satisfied equals to the
Hilbert series degree of M2J(f). It is worth noting that, in the case of isolated
singularities, the procedure in [36] runs a for-loop until k is found. The pseudo-
code for our approach is stated in Algorithm3. Note that we utilize the Maple’s
built-in command HilbertSeries for computing the Hilbert series of an ideal.
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Algorithm 3. Determinacy

1: Input: A germ f ∈ En

2: Output: Determinacy of f
3: I := LT(S) where S is a standard basis for M2J(f)
4: h :=HilbertSeries(I)
5: k := deg(h)
6: return(k)

Example 4.4. In this example, we discuss the determinacy of the polynomial f
given in Example 4.2 for all possible values of parameters. Applying CSSMain
to M2J(f) we get Table 2. Then, the next step consists of computing the leading
term ideal for each branch and then the corresponding Hilbert series to get the
desired determinacy. Here, we restrict our considerations only to the first and
the third branches. Thus, we get

I1 = 〈x2z, x2y, y2z, xy2, y3, z3, xyz, xz2, yz2, x5〉,
I3 = 〈x2z, y2x2, y2z, y4, z3, xyz, y3x, xz2, yz2, x5, x3y〉,

with HSI1(t) = t4+ t3+6t2+3t+1 and HSI3(t) := t4+4t3+6t2+3t+1, respec-
tively. The degrees of these Hilbert series are the corresponding determinacies.

Table 2. A comprehensive determinacy system for a parametric polynomial

Null set Non-null set Standard basis Determinacy

{} {ac} {x2 ∂f
∂z

, x2 ∂f
∂y

, y2 ∂f
∂z

, y2 ∂f
∂y

, z2 ∂f
∂z

, xy ∂f
∂z

, xy ∂f
∂y

, xz ∂f
∂z

,

yz ∂f
∂z

,−8acx5 − 2bcx2z3 + 2x3y2}
4

{a} {c} {x2 ∂f
∂z

, x2 ∂f
∂y

, y2 ∂f
∂z

, y2 ∂f
∂y

, z2 ∂f
∂z

, xy ∂f
∂z

, xy ∂f
∂y

, xz ∂f
∂z

,

yz ∂f
∂z

}
0

{c} {a} {x2 ∂f
∂z

, x2 ∂f
∂x

, y2 ∂f
∂z

, y2 ∂f
∂x

, z2 ∂f
∂z

, xy ∂f
∂z

, xy ∂f
∂x

, xz ∂f
∂z

,

yz ∂f
∂z

,−2x3y, 8ax5 + 2bx2z3}
4

{a, c} {} {x2 ∂f
∂z

, x2 ∂f
∂x

, y2 ∂f
∂z

, y2 ∂f
∂x

, z2 ∂f
∂z

, xy ∂f
∂z

, xy ∂f
∂x

, xz ∂f
∂z

,

yz ∂f
∂z

,−2x3y}
0

4.3 Automated Geometric Theorem Discovery

Automated geometric theorem discovery, which has been investigated using alge-
braic geometric tools for decades, aims at detecting complementary conditions
under which a given geometric statement is true; see [4,7,8,13,26,41,51,52]. Sup-
pose that a given theorem can be described through the polynomial hypotheses
{f1, . . . , fk} and the conclusion statement g. Indeed, to describe an admissible
geometric theorem, we shall need a number of arbitrary coordinates (param-
eters), namely u1, . . . , um and a number of dependent coordinates (variables),
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namely x1, . . . , xn. Therefore, f1, . . . , fk, g ∈ K[u1, . . . , um, x1, . . . , xn]. Let us
first discuss three different types of correctness of a geometric theorem. The
conclusion g follows strictly from the hypotheses {f1, . . . , fk} if it vanishes on
V(f1, . . . , fk). We know that if g ∈ √〈f1, . . . , fk〉 then g results strictly from the
hypotheses, see e.g. [11, Proposition 5, Page 325]. In addition, the conclusion g
follows generically from the hypotheses f1, . . . , fk if it vanishes on the variety
of the fi’s as polynomials in K(u1, . . . , um)[x1, . . . , xn]. From [11, Corollary 9,
Page 301], it follows that g results generically from {f1, . . . , fk} provided that
1 ∈ I = 〈f1, . . . , fk, 1 − yg〉 ⊂ K(u1, . . . , um)[x1, . . . , xn]. Now, assume that the
triple set G = {(Ni,Wi, Gi)}�

i=1 is a CGS for I. Applying the Kapur et al. algo-
rithm [30] on I, we obtain a finite number of branches through which one can
determine whether or not the theorem holds. It should be noted that the validity
of 1 ∈ I is equivalent to the fact that the Gröbner basis of the generic branch of
G is {1}, i.e. for the branch (Ni,Wi, Gi) with Ni = {} we have Gi = {1}. More
generally, any branch (Ni,Wi, Gi) with Gi = {1} provides the conditions for the
correctness of the theorem, see [52] for more details on this approach. In this
case, we say that the conclusion g is generically true. For other branches, let us
say (Ni,Wi, Gi) with Gi �= {1}, the theorem is not generically true, however it
might be valid on some components. In [52], the authors propose a method to
decide whether g is generically true on some components. This method uses a
parametric radical membership which may be, in practice, a computational bot-
tleneck. On the other hand, in order to avoid applying the radical computation,
one can use standard bases to decide the validity of a statement. For this, we
will apply the next proposition from [12, Proposition 5.2, Page 183].

Proposition 4.5. Keeping the above notations, assume that the origin is con-
tained in an irreducible component W of V(f1, . . . , fk). Then g holds over W if
the remainder on the division of g by a standard basis of 〈f1, . . . , fk〉 is zero.

In this case, we say that the conclusion g is generically true on components or
equivalently locally true; that is g vanishes on some but not all non-degenerate
components of V(f1, . . . , fk). Using CSS’s we derive necessary and sufficient con-
ditions on the parameters under which the conclusion is true on components. Let
us consider a CGS containing a branch (Ni,Wi, Gi) with Gi �= {1}. Following
the idea of [12, Page 182], we first apply the change of coordinates ui �→ Ui + ai

leading to f̃1, . . . , f̃k, g̃ ∈ S = K[a1, . . . , am][U1, . . . , Um]〈U1,...,Um〉[x1, . . . , xn]
which translates (a1, . . . , am) to the origin. Passing {f̃1, . . . , f̃k} together with
the condition sets {Ni,Wi} to the procedure CSSMain, produces a num-
ber of branches with this property so that for each branch if the remainder
of g̃ by the corresponding standard basis using the Mora normal form algo-
rithm is zero then the theorem is locally true, and incorrect otherwise. Let
us introduce two notations that we use in the next theorem. Assume that
V ⊂ K

n is a variety, i.e. there exist a finite sequence f1, . . . , fk ∈ K[x] so that
V = V(f1, . . . , fk). Then, the ideal of V , denoted by I(V ), is defined to be the
ideal {f ∈ K[x] | f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V }. Also, the sequence
U1, . . . , Um is denoted by U.
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Theorem 4.6. With the above notations, suppose that (t1, . . . , tm) ∈ K
m. Then,

the conclusion g is locally true at this point iff there exists a branch {N,W,S} in a
CSS of Ĩ = 〈f̃1, . . . , f̃k〉 so that (t1, . . . , tm) ∈ V(N)\V(W ) and the Mora normal
form of g̃ by S considering the condition sets (N,W ) is zero. In particular, a
CSS of Ĩ determines all the conditions (on the parameters) under which g is
locally true.

Proof. Assume that the Mora normal form of g̃ by S is zero. Then, by replacing
the values of parameters by t1, . . . , tm in this division, we can see easily that there
exists u ∈ K[U,x] so that u ∈ K[U,x] is a unit in K[U]〈U〉 and ug̃ = h1f̃1 +
· · ·+hkf̃k where hi ∈ K[U,x], see [12, Corollary 3.13, Page 170]. Note that since
all the polynomials have been translated to the origin by the map ui �→ Ui + ti,
we then have u(0) �= 0. Now, assume that V ′ be an irreducible component
of V(f1, . . . , fk) contaning (t1, . . . , tm). Then, Ṽ ′ is an irreducible component of
V(f̃1, . . . , f̃k) contaning the origin and ug̃ ∈ I(V(f̃1, . . . , f̃k)) ⊂ I(Ṽ ′). Since I(Ṽ ′)
is a prime ideal and u is unit then g̃ ∈ I(Ṽ ′) and this shows that g ∈ I(V ′), i.e.
g is locally true at (t1, . . . , tm). This proof was inspired by [12, Proposition 5.2,
Page 183]. Conversely, suppose that g is locally true at (t1, . . . , tm). It follows
that g ∈ I(V ′) where V ′ is an irreducible component of V(f1, . . . , fk) contaning
(t1, . . . , tm). Then, applying the map ui �→ Ui + ti, we may assume that Ṽ ′ is
an irreducible component of V(f̃1, . . . , f̃k) contaning the origin and g̃ ∈ I(Ṽ ′).
On the other hand, if G is a CSS for Ĩ then there exists a branch (N,W,S) in
G so that (t1, . . . , tm) ∈ V(N) \ V(W ). This yields that S is a standard basis
for the ideal I when we remove the components not containing the origin. From
g̃ ∈ I(Ṽ ′), we can conclude that the Mora normal form of g̃ by S is zero. ��

The next example (from [12, Page 181]) illustrates how the methods devel-
oped in this paper can be applied to discuss the validity of a geometric theorem.

Example 4.7. Let A = (0, 0), B = (u1, 0), C = (u2, u3),D = (x1, x2) and N =
(x3, x4). For the parallelogram below, under which circumstances AN = DN
holds?, cf. [12, Pages 181–182].

A B

DC

N
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The hypotheses f1, f2, f3, f4 and the conclusion g are stated by the following
equations

f1 = x2 − u3 = 0
f2 = (x1 − u1)u3 − x2u2 = 0
f3 = x1x4 − x3x2 = 0
f4 = x4(u2 − u1) − (x3 − u1)u3 = 0
g = x2

1 − 2x1x3 − 2x2x4 + x2
2 = 0.

We can check readily that g /∈ √〈f1, . . . , fk〉 and this shows that g does not
generically holds. Now, applying the Singular function cgsdr to compute a
CGS of the ideal generated by {f1, f2, f3, f4, 1−yg} with u1, u2, u3 as parameters
and x1, x2, x3, x4, y as variables gives rise to eight branches among which only
one branch has Gröbner basis equals to one. Here, we focus on the following
branches with not-equal-to-one Gröbner basis.

(a) N1 = {}, W1 = {u2
1u3 + u1u2u3}, Gröbner Basis= {2u3

1u3y + 4u2
1u2u3y +

2u1u
2
2u3y−u1u3, 2u1x4 −u1u3, 2u3x3 −2u2x4 −u1u3, x2 −u3, u3x1 −u1u3 −

u2u3},
(b) N2 = {u3, u1+u2}, W2 = {u2}, Gröbner Basis= {x4, x2, x

2
1y+2x1x3y−1}.

This confirms that even using the concept of CGS’s, we are not able to show
that when the desired conclusion holds. Applying ui �→ Ui + ai for i = 1, 2, 3 on
hypotheses and conclusion polynomials, we get the new polynomials

f̃1 = x2 − U3 − a3 = 0
f̃2 = (x1 − U1 − a1)(U3 + a3) − x2(U2 + a2) = 0
f̃3 = x1x4 − x3x2 = 0
f̃4 = x4(U2 + a2 − U1 − a1) − (x3 − U1 − a1)(U3 + a3) = 0
g̃ = x2

1 − 2x1x3 − 2x2x4 + x2
2 = 0,

where g̃, f̃i ∈ K[a1, a2, a3][U1, U2, U3]〈U1,U2,U3〉[x1, x2, x3, x4] for i = 1, 2, 3, 4.
Now, by applying the algorithm CSSMain, we compute a CSS for the ideal
I = 〈f̃1, f̃2, f̃3, f̃4〉. We shall note that the semigroup ordering that we use is the
block ordering of lex(x1, x2, x3, x4), alex(U1, U2, U3) and we use also the mono-
mial ordering lex(a1, a2, a3) on the parameters. One of the branches in this CSS
is the following branch

– N1 = {a2
1 − a1a2}, W1 = {a3

3a1}, Standard Basis= {x2 − U3 − a3,−U1U3 −
U1a3−U2x2−U3a1+U3x1−a1a3−a2x2+a3x1, U1U

2
3 +2U1U3a3−2U1U3x4+

U1a
2
3−2U1a3x4+U2

3 a1+2U3a1a3−2U3a1x4+a1a
2
3−2a1a3x4, U1U3+U1a3−

U1x4 + U2x4 + U3a1 − U3x3 + a1a3 − a1x4 + a2x4 − a3x3}.
One can observe that the Mora normal form of the conclusion polyno-

mial g̃ w.r.t. the corresponding standard basis at any point satisfying N1 and
W1 is zero. For example, the special case (a1, a2, a3) = (1, 1, 1) considered in
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[12, Page 181] satisfies the condition sets (N1,W1) and this shows that for this
case the assertion is true. In addition, for any other values of a1, a2, a3 satisfying
the condition sets (N1,W1), the conclusion remains true. Finally, if we consider
the assertion CN = NB, the corresponding conclusion polynomial would be g̃′ =
2x3(U1+a1)−2x3(U2+a2)−2x4(U3+a3)−(U1+a1)2+(U2+a2)2+(U3+a3)2 = 0
and since the Mora normal form of this polynomial w.r.t. the corresponding stan-
dard basis at any point satisfying N1 and W1 is zero then we can conclude that
this assertion is locally true at any point satisfying N1 and W1.

Remark 4.8. Keeping the above notations, assume that G = {(Ni,Wi, Gi)}�
i=1

is a CGS for I = 〈f1, . . . , fk〉. For a branch (Ni,Wi, Gi) ∈ G let A = V(Ni) \
V(Wi). In [52, Theorem 4.3], it is shown that

“If g is a zero divisor in K[u1, . . . , um, x1, . . . , xn]/
√

Ĩ, then the geometric
statement is true on components under A, where Ĩ = 〈f1, . . . , fk, N〉”.

However, the proof of this result is based on the property that “If g is a zero
divisor in the quotient ring K[u1, . . . , um, x1, . . . , xn]/

√
Ĩ then σ(g) is a zero

divisor in K[x1, . . . , xn]/〈σ(f1), . . . , σ(fk)〉 where σ is a specialization satisfy-
ing A” which does not hold in general. For example, let f1 = x2 + u2, f2 =
(u1x1 − u2)(u1x2 + u2) and N = {}. Then, it is clear that g = u1x1 − u2

is a zero divisor in K[u1, u2, x1, x2]/〈f1, f2〉 however it is not a zero divisor in
K[x1, x2]/〈σ(f1), σ(f2)〉 with σ(u1) = 1 and σ(u2) = 1.

5 Conclusions

In this paper we introduced the concept of comprehensive standard systems
(CSS’s) and showed that a straightforward local variant of the Kapur et al.
algorithm is applied to compute a CSS. In the second part of the paper, we
studied some applications of CSS’s in different areas of Mathematics. In partic-
ular, we showed how we can use them for detecting all conditions under which
a given geometric statement is locally true.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their helpful and constructive comments.
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Abstract. This paper discusses an efficient implementation of the gen-
eration of order conditions for the construction of exponential integra-
tors like exponential splitting and Magnus-type methods in the computer
algebra system Maple. At the core of this implementation is a new algo-
rithm for the computation of coefficients of words in the formal expan-
sion of the local error of the integrator. The underlying theoretical back-
ground including an analysis of the structure of the local error is briefly
reviewed. As an application the coefficients of all 8th order self-adjoint
commutator-free Magnus-type integrators involving the minimum
number of 8 exponentials are computed.

Keywords: Splitting methods · Magnus-type integrators ·
Local error · Order conditions · Computer algebra

1 Introduction

In the construction of integration schemes for the numerical solution of evolution
equations the coefficients of the schemes are usually determined as solutions
of certain systems of polynomial equations. The obvious requirement that all
terms up to a certain order O(τp) in the Taylor expansion of the local error
with respect to the step-size τ vanish, usually leads, if applied in a naive way, to
a far over-determined system of equations. In some cases, however, due to the
special structure of the local error, the fact that a small subset of terms vanishes
already implies that all terms up to order O(τp) in the Taylor expansion vanish.
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This leads to a minimal, non-redundant system of equations, the so-called order
conditions, see for instance [2].

As it turns out, this is in particular the case for (generalized) exponential
splitting methods for the numerical solution of evolution equations of the form1

∂tu(t) = Au(t) + Bu(t), t ≥ t0, u(t0) = u0, A,B ∈ C
d×d

(and also for Magnus-type integrators considered below). Here one step un+1 =
S(τ)un with step-size τ is specified by an approximation S(τ) = SJ(τ) · · · S1(τ)
of the exact solution operator E(τ) = eτ(A+B), where the factors Sj(τ) are
exponentials whose applications Sj(τ)y to vectors y ∈ C

d can be effectively com-
puted. Prototypical examples are for instance the classical second order Strang
splitting

S(τ) = e
1
2 τB eτA e

1
2 τB, (1)

or the 4th order generalized splitting

S(τ) = e
1
6 τB e

1
2 τA e

2
3 τB+ 1

72 τ3[B,[A,B]] e
1
2 τA e

1
6 τB (2)

proposed in [5,13].
The analysis of the structure of the local error

L(τ) = S(τ) − E(τ) = SJ (τ) · · · S1(τ) − eτ(A+B)

and the resulting derivation of order conditions is advantageously carried out in
a purely formal way by introducing non-commutative symbols A, B representing
respectively τA, τB, and considering the formal expression corresponding to
L(τ) with τA, τB substituted by A, B. Thus, with a slight generalization antici-
pating an application to Magnus-type integrators, we study expressions of the
form

X = eΦJ · · · eΦ1 − eΩ , (3)

where Φ1, . . . , ΦJ , and Ω are linear combinations of non-commutative symbols
and commutators thereof. In particular, in Theorem 2 of Sect. 3 the structure
of the leading term in the formal series expansion of such expressions is charac-
terized, which leads to the derivation of order conditions in Theorem 3. These
theoretical considerations of Sect. 3 are essentially a review of the theory devel-
oped in [9, Section 2], which extends and generalizes results from [2].

The main focus of the present paper is on a concrete implementation of
the generation of order conditions according to Theorem 3 in the computer
algebra system Maple2. This can be realized in a very efficient way, utilizing a
new algorithm derived in [9] for the computation of coefficients of words (i.e.,
finite products of non-commutative symbols) in expressions like (3) involving

1 For our considerations, it is sufficient to discuss linear problems. The algebraic struc-
ture underlying method construction is the same for nonlinear problems due to the
calculus of Lie derivatives [8, Section III.5.1].

2 We have used Maple 18, Maple is a trademark of Waterloo Maple Inc.
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exponentials, whose concise Maple implementation is reproduced in its entirety
in Sect. 2.3 Our approach is thus a relevant contribution compared to previous
work on the generation of order conditions, see, e.g., [8, Section III.5] or [3].

Finally in Sect. 4, after a brief review of material from [1,9] on Magnus-type
integrators for the numerical solution of non-autonomous evolution equations of
the form

∂tu(t) = A(t)u(t), t ≥ t0, u(t0) = u0, A(t) ∈ C
d×d,

we consider a non-trivial application of the theory of Sect. 3: We compute in
a systematic way the coefficients of all 8th order commutator-free self-adjoint
Magnus-type methods involving the minimum number of 8 exponentials.

2 Coefficients of Words in Expressions Involving
Exponentials

Let A denote a fixed set of non-commutative variables. Given an expression X
in these variables involving exponentials like (3) we want to calculate real or
complex coefficients

cw = coeff(w,X), w ∈ A∗

in the formal expansion

X =
∑

w∈A∗
cww ∈ C〈〈A〉〉.

X is thus represented as an element of C〈〈A〉〉, the algebra of formal power series
in the non-commutative variables in A. Here, A∗ denotes the set of all words over
the alphabet A, i.e., the set of all finite products (including the empty product
Id) of elements of A.

2.1 A Family of Homomorphisms

In [9] an efficient algorithm for the computation of coeff(w,X) was derived, which
is based on a suitably constructed family of maps {ϕw : w ∈ A∗}, where for each
word w = w1 · · · w�(w) ∈ A∗ of length �(w) ≥ 1, ϕw(X) is an upper triangular
matrix in C

(�(w)+1)×(�(w)+1) whose entries are coefficients of subwords of w in
X,

ϕw(X)i,j =

⎧
⎨

⎩

coeff(wi:j−1,X), if i < j,
coeff(Id,X), if i = j,
0, if i > j.

(4)

Here wi:j−1 = wiwi+1 · · · wj−1 denotes the subword of w of length j − i, starting
at position i and ending at position j − 1.
3 All Maple code discussed in this paper is also provided by the package Expocon

available at [7]. Additionally, this package includes routines for the generation of
Lyndon words and Lyndon bases. For simplicity, such words and bases have always
been hardcoded whenever needed in the code examples of this paper.
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Theorem 1 ([9, Theorem 2.4]). The map ϕw defined by (4) is an algebra homo-
morphism

C〈〈A〉〉 → C
(�(w)+1)×(�(w)+1),

i.e.,

(i) ϕw is linear,

ϕw(αX + βY ) = αϕw(X) + βϕw(Y ), X, Y ∈ C〈〈A〉〉, α, β ∈ C;

(ii) ϕw preserves the multiplicative structure,

ϕw(X · Y ) = ϕw(X) · ϕw(Y ), X, Y ∈ C〈〈A〉〉.

Furthermore, if coeff(Id,X) = 0, then

ϕw(exp X) = expϕw(X),

where the exponential of the strictly upper triangular and thus nilpotent matrix
ϕw(X) is exactly computable in a finite number of steps.

2.2 Maple Implementation of the Algorithm

It follows that for a given expression X, a recursive application of ϕw (the
recursion terminates with well-defined values ϕw(a) for the “atoms” a ∈ A)
yields ϕw(X), from which one can read off coeff(w,X) as the element at the
upper right corner,

coeff(w,X) = ϕw(X)1,�(w)+1,

cf. (4). By organizing this calculation in a more efficient way, the function phiv
defined in the Maple code displayed below computes

phiv(w,X, v) = ϕw(X) · v

for a vector v ∈ C
�(w)+1 without explicitly generating the matrix ϕw(X). It

recursively traverses the expression tree representing the expression X. At each
node of the tree the evaluation branches out depending on whether the current
node represents

– a non-commutative symbol (the atomic case which terminates the recursion),
– a sum of subexpressions,
– a product of subexpressions,
– a power of a subexpression,
– a commutator of subexpressions, or
– an exponential of a subexpression.
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Finally, the function wcoeff4 computes coeff(w,X) via

coeff(w,X) = first component of phiv(w,X, (0, . . . , 0, 1)T ).

The elements of the alphabet A are represented within Maple as non-commu-
tative symbols, which are provided by the package Physics. Note that except
for providing such non-commutative symbols (and the type Commutator) we do
not need or use any further feature of the package Physics. Words w ∈ A∗ are
represented as lists of non-commutative symbols.

> with(Physics):
> phiv := proc (w, X, v)

local i, v1, v2, f, zero;
if type(X, name) and type(X, noncommutative) then

return [seq(‘if‘(op(i,w)=X, v[i+1], 0), i=1..nops(w)), 0]
elif type(X, ‘+‘) then

return add(phiv(w, op(i, X), v), i=1..nops(X))
elif type(X, ‘*‘) then

v1 := v; zero := [0$nops(w)+1];
for i from nops(X) to 1 by -1 do

v1 := phiv(w, op(i, X), v1);
if v1=zero then return zero end if;

end do;
return v1

elif type(X, anything^integer) then
v1 := v; zero := [0$nops(w)+1];
for i from 1 to op(2, X) do

v1 := phiv(w, op(1, X), v1);
if v1=zero then return zero end if;

end do;
return v1

elif (type(X, function) and
op(0, X) = Physics[Commutator]) then

return phiv(w, op(1, X), phiv(w, op(2, X), v))
- phiv(w, op(2, X), phiv(w, op(1, X), v))

elif type(X, exp(anything)) then
v1 := v; v2 := v; zero := [0$nops(w)+1]; f := 1;
for i from 1 to nops(w) do

f := f*i; v1 := phiv(w, op(X), v1);
if v1=zero then return v2 end if;
v2 := v2 + v1/f;

end do;
return v2

end if;
return [seq(X*x, x=v)]

4 The function was called wcoeff because coeff is already defined in Maple.
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end proc:
> wcoeff := proc (w, X)

return phiv(w, X, [0$nops(w), 1])[1]
end proc:

3 Order Conditions for Exponential Integrators

In this section we review the theory developed in [9, Section 2], which extends
and generalizes results from [2]. We consider expressions of the form (3),

X = eΦJ · · · eΦ1 − eΩ , (5)

where the exponents Φ1, . . . , ΦJ , and Ω are linear combinations of non-
commutative symbols and commutators thereof, i.e., elements of [C〈A〉], the
free Lie algebra generated by the non-commutative symbols of a given alphabet
A, which in a natural way is embedded in the algebra C〈〈A〉〉 of formal power
series in these symbols.

In the applications we are interested in, S = eΦJ · · · eΦ1 represents an expo-
nential integrator for the numerical solution of an evolution equation, and
E = eΩ represents the exact local solution operator for this equation. We can
interpret (5) as the error of the approximation S of E, i.e., X represents the
local error of the exponential integrator S.

3.1 Grading of Words and Homogeneous Lie Elements

We consider a grading function on the alphabet A,

grade(a) ∈ {1, 2, . . . }, a ∈ A, (6)

and extend it to words w = w1 . . . w�(w) ∈ A∗ by

grade(w) =
�(w)∑

j=1

grade(wj).

We call Ψ ∈ [C〈A〉] a homogeneous Lie element of grade q if it can be expanded
in C〈〈A〉〉 to a linear combination of words all of the same grade q. The decom-
position

[C〈A〉] =
∞⊕

q=1

gq, gq = {homogeneous Lie elements of grade q} (7)

into a direct sum of subspaces makes [C〈A〉] a graded Lie algebra, cf. [12].
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Remark 1. In the applications we are interested in, the symbols a ∈ A represent
objects which depend on a (small) parameter τ > 0 (for instance, a time incre-
ment). The grading (6) is chosen such that it reflects the order of magnitude of
the represented objects,

a � O(τgrade(a)), a ∈ A.

For example, in the case of an application to splitting methods with step-size τ ,

A = {A, B}, A � τA = O(τ), B � τB = O(τ) ⇒ grade(A) = grade(B) = 1,

cf. Sect. 1.

3.2 Leading Error Term

The following theorem states that the leading error term Θ of the approximation
eΦJ · · · eΦ1 of eΩ is a homogeneous Lie element of some grade q.

Theorem 2 ([9, Theorem 2.1]). If for Φ1, . . . , ΦJ , Ω ∈ [C〈A〉] the expression
eΦJ · · · eΦ1 − eΩ is expanded in C〈〈A〉〉 as

eΦJ · · · eΦ1 − eΩ =
∑

w∈A∗
cww = Θ + R,

where

Θ =
∑

grade(w)=qmin

cww, qmin = min{grade(w) : w ∈ A∗, cw 	= 0} (8)

(and the remainder R contains the terms of grade > qmin), then Θ can be rep-
resented as a linear combination of commutators, i.e., Θ is a homogeneous Lie
element of grade qmin.

To illustrate Theorem 2 we consider as an example

X = e
1
2 BeAe

1
2 B − eA+B, A = {A, B}, grade(A) = grade(B) = 1,

cf. (1). The following Maple code computes the coefficients of all words of length
≤ 3 (i.e., of all words w with grade(w) ≤ 3) in X.

> Physics[Setup](noncommutativeprefix = {A, B}):
> X := exp((1/2)*B)*exp(A)*exp((1/2)*B)-exp(A+B):
> W := [[A], [B], [A, A], [A, B], [B, A], [B, B],

[A, A, A], [A, A, B], [A, B, A], [A, B, B],
[B, A, A], [B, A, B], [B, B, A], [B, B, B]]:

> seq(wcoeff(w, X), w in W);
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0, 0, 0, 0, 0, 0, 0,
1
12

,
−1
6

,
−1
24

,
1
12

,
1
12

,
−1
24

, 0

It follows

e
1
2 BeAe

1
2 B − eA+B = 1

12AAB − 1
6ABA − 1

24ABB + 1
12BAA + 1

12BAB − 1
24BBA + . . .

= 1
12 [A, [A, B]] − 1

24 [[A, B], B] + . . . .

Here the leading error term is indeed a homogeneous Lie element of grade 3.

3.3 Symmetry

A product of exponentials S = eΦJ · · · eΦ1 , Φj ∈ [C〈A〉] is called self-adjoint or
symmetric,5 if

ΦJ−j+1 =
∑

k

(−1)k+1Xj,k, j = 1, . . . , J

holds, where the Xj,k ∈ gk are the components of Φj =
∑

k Xj,k with respect
to the decomposition (7). It follows that a single exponential eΦ is self-adjoint,
if and only if Φ is a sum of homogeneous Lie elements of odd grade, Φ = X1 +
X3 + . . . , Xk ∈ gk. It was proved in [9, Theorem 2.2] that in (8) the grade
qmin of the homogeneous Lie element Θ is necessarily odd if eΦJ · · · eΦ1 and eΩ

are both self-adjoint.

3.4 Lyndon Words and Lyndon Bases

For a homogeneous Lie element Θ of grade q like the one given in (8) let

Θ =
∑

b∈Bq

cb b (9)

be its representation in a basis Bq of the subspace gq of (7). Furthermore, let
Wq ⊂ A∗ be a set of words of grade q such that the matrix

Tq = (coeff(w, q))w∈Wq,b∈Bq
(10)

is invertible. Then it follows from cw = coeff(w,Θ) =
∑

b∈Bq
cb coeff(w, b) for

w ∈ Wq, and thus (cw)w∈Wq
= Tq · (cb)b∈Bq

, that the coefficients cb in (9) can
be computed as

(cb)b∈Bq
= T−1

q · (cw)w∈Wq
. (11)

Suitable choices for such a set Wq and basis Bq are respectively the set of Lyndon
words of grade q and the corresponding Lyndon basis [6,11], see Tables 1 and 2.
5 For an exponential integrator represented by S this definition conforms with the

usual definition of a self-adjoint integrator, e.g., S(−τ)S(τ) = Id for a generalized
splitting method where S(τ) is S with τA, τB substituted for A, B.
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Table 1. Lyndon words Wq of grade q and Lyndon basis Bq of gq for A = {A, B} and
grade(A) = grade(B) = 1.

q Lyndon words Lyndon basis

1 A, B A, B

2 AB [A, B]

3 AAB, ABB [A, [A, B]], [[A, B], B]

4 AAAB, AABB, ABBB [A, [A, [A, B]]], [A, [[A, B], B]], [[[A, B], B], B]

5 AAAAB, AAABB, AABAB, [A, [A, [A, [A, B]]]], [A, [A, [[A, B], B]]], [[A, [A, B]], [A, B]],

AABBB, ABABB, ABBBB [A, [[[A, B], B], B]], [[A, B], [[A, B], B]], [[[[A, B], B], B], B]

3.5 Order Conditions

The following main result of this section is an easy consequence of the previous
considerations.

Theorem 3 ([9, Theorem 2.3]). If for Φ1, . . . , ΦJ , Ω ∈ [C〈A〉] the order condi-
tions

cw = coeff(w, eΦJ · · · eΦ1 − eΩ) = 0, w ∈
p⋃

q=1

Wq (12)

are satisfied for all Lyndon words of grade q ≤ p, then

cw = coeff(w, eΦJ · · · eΦ1 − eΩ) = 0, w ∈ A∗, grade(w) ≤ p, (13)

and thus qmin ≥ p + 1 in (8).
If eΦJ · · · eΦ1 and eΩ are both self-adjoint, then we may assume that p is

even, and (13) holds already if the order conditions (12) are satisfied only for all
Lyndon words of odd grade q ≤ p.

In view of Remark 1 in Subsection 3.1 we can interpret (13) as the statement

eΦJ · · · eΦ1 − eΩ � O(τp+1),

i.e., eΦJ · · · eΦ1 is an approximation of eΩ of order p + 1.

Table 2. Lyndon words Wq of grade q and Lyndon basis Bq of gq for A = {A1, . . . , Aq}
and grade(Ak) = k.

q Lyndon words Lyndon basis

1 A1 A1

2 A2 A2

3 A1A2, A3 [A1, A2], A3

4 A1A1A2, A1A3, A4 [A1, [A1, A2]], [A1, A3], A4

5 A1A1A1A2, A1A1A3, A1A2A2, [A1, [A1, [A1, A2]]], [A1, [A1, A3]], [[A1, A2], A2],

A1A4, A2A3, A5 [A1, A4], [A2, A3], A5
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3.6 Example

For A = {A, B} with grade(A) = grade(B) = 1 we want to determine the parame-
ters a, b, c, d ∈ R such that S = ebBeaAecB+d[B,[A,B]]eaAebB is a 5th order approxima-
tion of E = eA+B. Since the ansatz S and the expression E are both self-adjoint
in the sense of Subsection 3.3, we only have to consider Lyndon words of odd
grade ≤ 4 (i.e., of odd length ≤ 4 for grade(A) = grade(B) = 1),

W = W1 ∪ W3 = {A, B, AAB, ABB},

cf. Table 1. The order conditions (12) lead to 4 polynomial equations in 4 vari-
ables a, b, c, d, for which the following Maple code computes a unique solution
corresponding to

S = e
1
6 Be

1
2 Ae

2
3 B+

1
72 [B,[A,B]]e

1
2 Ae

1
6 B,

cf. (2).

> Physics[Setup](noncommutativeprefix = {A, B}):
> C := Physics[Commutator]:
> X := exp(b*B)*exp(a*A)*exp(c*B+d*C(B, C(A, B)))*

exp(a*A)*exp(b*B) - exp(A+B):
> W := [[A], [B], [A, A, B], [A, B, B]]:
> eqs := [seq(simplify(wcoeff(w, X)), w in W)];

eqs :=
[
−1 + 2a,−1 + 2b + c,−1

6
+ 2a2b +

1
2
a2c,−1

6
+

1
2
ac2 + acb + ab2 − d

]

> sol := solve(eqs);

sol :=
{

a =
1
2
, b =

1
6
, c =

2
3
, d =

1
72

}

Next we compute the leading error term Θ of the approximation S of E = eA+B ,
cf. (8). To this end we take W5 and B5 from Table 1 and compute T5, (cw)w∈W5 ,
and (cb)b∈B5 according to (10), (11):

> W5 := [[A, A, A, A, B], [A, A, A, B, B], [A, A, B, A, B],
[A, A, B, B, B], [A, B, A, B, B], [A, B, B, B, B]]:

> B5 := [C(A, C(A, C(A, C(A, B)))), C(A, C(A, C(C(A, B), B))),
C(C(A, C(A, B)), C(A, B)), C(A, C(C(C(A, B), B), B)),
C(C(A, B), C(C(A, B), B)), C(C(C(C(A, B), B), B), B)]:

> T5 := Matrix([seq([seq(wcoeff(w, b), b in B5)], w in W5)]);
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T5 :=

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 −2 1 0 0 0
0 0 0 1 0 0
0 0 0 −3 1 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦

> c_w := [seq(wcoeff(w, subs(sol, X)), w in W5)];

c w :=
[

1
2880

,
−7

8640
,

1
480

,
7

12960
,

−1
720

,
−41

155520

]

> c_b := evalm(LinearAlgebra[MatrixInverse](T5) &* c_w);

c b :=
[

1
2880

,
−7

8640
,

1
2160

,
7

12960
,

1
4320

,
−41

155520

]

Altogether, we obtain a representation of the leading error term,

e
1
6 Be

1
2 Ae

2
3 B+

1
72 [B,[A,B]]e

1
2 Ae

1
6 B − eA+B = Θ + . . .

= 1
2880 [A, [A, [A, [A, B]]]] − 7

8640 [A, [A, [[A, B], B]]] + 1
2160 [[A, [A, B]], [A, B]]

+ 7
12960 [A, [[[A, B], B], B]] + 1

4320 [[A, B], [[A, B], B]] − 41
155520 [[[[A, B], B], B], B] + . . . .

Here, the dots represent terms of grade higher than five.

4 Magnus-Type Integrators

In this section we apply the theory of Sect. 3 with the aim of constructing
Magnus-type integrators for the numerical solution of non-autonomous evolu-
tion equations

∂tu(t) = A(t)u(t), t ≥ t0, u(t0) = u0, A(t) ∈ C
d×d.

One step (tn, un) → (tn+1, un+1) of step-size τ of such an integrator is given by

tn+1 = tn + τ, un+1 = S(τ, tn)un, (14)

where S(τ, tn) ≈ E(τ, tn) approximates the exact local solution operator

E(τ, tn) = eΩ(τ,tn) (15)

given by the Magnus series Ω = Ω(τ, tn), see [8, Section IV.7].
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4.1 Legendre Expansions

To construct S(τ, tn) we expand A(tn + t) on the interval [tn, tn +τ ] into a series
of shifted Legendre polynomials,

A(tn + t) = A1P̃0(t) + A2P̃1(t) + A3P̃2(t) + . . . , t ∈ [0, τ ]

with

P̃k(t) =
1
τ

Pk

(
t

τ

)
, Pk(x) = (−1)k

k∑

j=0

(
k

j

)(
k + j

j

)
(−1)jxj ,

see [1, Section 3.1]. The matrix-valued coefficients Ak given by

Ak = (2k − 1)τ
∫ 1

0

Pk−1(x)A(tn + τx) dx (16)

depend on both tn and τ and satisfy

Ak = O(τk). (17)

In terms of these coefficients the Magnus series in (15) is given by

Ω = A1 − 1
6 [A1, A2] + 1

60 [A1, [A1, A3]] − 1
60 [A2, [A1, A2]]

+ 1
360 [A1, [A1, [A1, A2]]] − 1

30 [A2, A3] + . . . . (18)

see [1, Section 3.2].

4.2 Order Conditions for Magnus-Type Integrators

We consider Magnus-type integrators (14) of the form

S(τ, tn) = e˜ΦJ (τ,tn) · · · e˜Φ1(τ,tn), (19)

where the Φ̃j are linear combinations of (commutators of) approximations Ãk ≈
Ak obtained by applying a suitable quadrature formula to (16). To apply the
theory of Sect. 3 to such integrators, we note that (19) formally corresponds to
an expression

S = eΦJ · · · eΦ1

with Lie elements Φj ∈ [C〈A〉] over an alphabet A = {A1, A2, . . . } with symbols
Ak representing Ãk ≈ Ak, and with a grading

grade(Ak) = k

corresponding to (17), cf. Remark 1 in Subsection 3.1.
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To set up order conditions according to Theorem 3 we need the Lyndon words
from Table 2, and, furthermore, we have to consider eΩ with Ω from (18), which
is self-adjoint in the sense of Subsection 3.3. For coefficients of words w ∈ A∗ in
eΩ (which in principle could be calculated with the algorithm of Sect. 2) we use
the explicit formula

coeff(Ad1 · · · Ad�
, eΩ) =

∑

(k1,...,k�)
1≤kl≤dl

�∏

j=1

(−1)dj+kj
(
dj−1
kj−1

)(
dj+kj−2

kj−1

)

∑�
i=j ki

(20)

proven in [9, Theorem 4.1].

4.3 8th Order Commutator-Free Magnus-Type Integrators

In this section we construct 8th order self-adjoint commutator-free integrators
involving a minimum number of exponentials. In an ansatz for such a scheme
only the generators A1, A2, A3, A4 have to be considered, because it can be shown
that coeff(w, eΩ) = 0 for all words w of grade(w) ≤ 8 containing Ak with k ≥ 5,
see [1, Section 3.3]6. Corresponding to 22 Lyndon words of odd grade ≤ 8 over
the alphabet A = {A1, A2, A3, A4} there are 22 order-conditions to be consid-
ered, see Theorem 3. This implies an ansatz involving 11 exponentials and 22
parameters to be determined; an 8th order scheme of this form was derived in [1,
Section 4.4]. Also with this approach we found in [9, Section 4.4] a scheme where
some exponentials commute, which can thus be joined together, resulting in an
8th order scheme involving only 8 exponentials. These schemes were found by a
rather brute force computation. In contrast, using the following Maple code we
are able to compute the coefficients of all 8th order self-adjoint schemes with 8
exponentials in a more systematic and efficient7 way.

First, we define the self-adjoint ansatz for a scheme involving 8 exponentials.

> Physics[Setup](noncommutativeprefix = {A}):
> S := exp(f11*A1-f12*A2+f13*A3-f14*A4)*

exp(f21*A1-f22*A2+f23*A3-f24*A4)*
exp(f31*A1-f32*A2+f33*A3-f34*A4)*
exp(f41*A1-f42*A2+f43*A3-f44*A4)*
exp(f41*A1+f42*A2+f43*A3+f44*A4)*
exp(f31*A1+f32*A2+f33*A3+f34*A4)*
exp(f21*A1+f22*A2+f23*A3+f24*A4)*
exp(f11*A1+f12*A2+f13*A3+f14*A4):

Next we set up the 8 equations corresponding to the 8 Lyndon words of odd
grade ≤ 8 involving only the generators A1, A2. The right-hand sides of these
equations were computed using (20) and are hardcoded here for simplicity.

6 Of course, this follows also from (20) by a direct computation.
7 Compared with the effort indicated in [1, Section 4.4].
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> W12 := [[A1], [A1, A2], [A1, A1, A1, A2], [A1, A2, A2],
[A1, A1, A1, A1, A1, A2], [A1, A1, A1, A2, A2],
[A1, A1, A2, A1, A2], [A1, A2, A2, A2]]:

> rhs12 := [1, -1/6, -1/40, 1/60, -1/1008, 1/420, 1/2520, -1/840]:
> vars12 := [f11, f21, f31, f41, f12, f22, f32, f42]:
> eqs12 := [seq(expand(wcoeff(w, S)), w in W12)] - rhs12:

We now try to solve this system of equations. After a few minutes of computing
time on a standard desktop PC, Maple finds a symbolic representation (involving
RootOfs, which are Maple representations for roots of polynomial equations) of
the general solution of the system, for which we compute all possible values
in numerical form. It turns out that this computation (which again takes a
few minutes) has to be done with very high precision, otherwise the results do
not represent reasonable solutions with small residuals if substituted into the
equations.

> sols12 := solve(eqs12, vars12):
> Digits := 200:
> FF := seq(evalf(allvalues(sol)), sol in sols12):

We obtain 99 solutions altogether, 17 real solutions, and modulo complex con-
jugation 41 different complex solutions. Each solution determines 8 parameters
of the ansatz S. There remain 8 parameters to be determined compared with
14 order conditions corresponding to the 14 = 22 − 8 remaining Lyndon words
over A = {A1, A2, A3, A4} of odd grade ≤ 8. It is remarkable that the resulting
over-determined system of equations always has a solution. To find a theoretical
explanation for this fact is the topic of current investigations. Here, however, it
is verified by a direct computation.

We select8 one of the previously obtained 99 sets of 8 parameters, substitute
it into the ansatz S, and set up 4 equations corresponding to 4 (out of 9) selected
Lyndon words over A of odd grade ≤ 8 involving A3 but not A4. The resulting
system of equation is linear and readily solved. That this solution solves also
the equations corresponding to the 5 = 9 − 4 not selected Lyndon words will be
verified below.

> F12 := FF[78]:
> W3 := [[A3], [A1, A1, A3], [A2, A3], [A1, A1, A1, A1, A3],

[A1, A1, A2, A3], [A1, A1, A3, A2], [A1, A2, A1, A3],
[A1, A3, A3], [A2, A2, A3]]:

> rhs3 := [0, 1/60, -1/30, 1/420, -1/168, 1/280, -1/840,
1/420, -1/210]:

> vars3 := [f13, f23, f33, f43]:
> eqs3 := [seq(expand(wcoeff(w, subs(F12, S))), w in W3[2 .. 5])]

8 This is done for the purpose of presentation, the following considerations apply to
each of the 99 parameter sets. The solution selected for this presentation leads to a
particularly small local error. Note that the selected index 78 may belong to different
parameter sets in different runs of the code.
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- rhs3[2 .. 5]:
> F3 := op(solve(eqs3, vars3)):

Analogously as before, we substitute the 12 already obtained parameters into
the ansatz S, set up 4 equations corresponding to 4 (out of 5) selected Lyndon
words over A of odd grade ≤ 8 involving A4, and solve the resulting linear system
of equations. That the obtained solution solves also the equation corresponding
to the not selected Lyndon word will again be verified below.

> W4 := [[A1, A4], [A1, A1, A1, A4], [A1, A2, A4],
[A1, A4, A2], [A3, A4]]:

> rhs4 := [0, -1/840, 1/210, -1/140, -1/70]:
> vars4 := [f14, f24, f34, f44]:
> eqs4 := [seq(expand(wcoeff(w, subs(F12, F3, S))),

w in W4[1 .. 4])] - rhs4[1 .. 4]:
> F4 := op(solve(eqs4, vars4)):

Finally we print the calculated solution representing the 16 parameters fj,k of
the ansatz S and compute its residual with respect to the order conditions cor-
responding to all Lyndon words over A of odd grade ≤ 8 (including those not
previously selected). The tiny residual confirms that the obtained scheme indeed
satisfies the order conditions for order p = 8 of Theorem 3.

> for y in [op(F12), op(F3), op(F4)] do
lprint(evalf(y, 50))

end do:
f11 = -1.1210783473381738227756934594506597445892745485109
f21 = 1.3210319274244662988569102191161576010502669814859
f31 = -.11488794115695215928140654449977903918312514606917
f41 = .41493436107065968320018978483428118272213271309425
f12 = 1.0089705126043564404981241135055937701303470936598
f22 = -1.1889339712738696420578749909323697235681087890036
f32 = 0.44866039420480983666929215062389499923245100101695e-1
f42 = -.13197275582656085011222031954705867101347489961070
f13 = -.78475484313672167594298542161546182121249218395766
f23 = .92477328275109744272940525314314765421496759253486
f33 = 0.24950727790821017623386132247659342458740875944374e-1
f43 = -.16496916740519678440980596377534517546121628452158
f14 = .44843133893526952911027738378026389783570981940438
f24 = -.52881775248948867348601923353730351864984279845615
f34 = -0.24298790613584639672784191664606712944260031094723e-1
f44 = .19795913373984127516833047932058800652021234941605

> W := [op(W12), op(W3), op(W4)]:
> RHS := [op(rhs12), op(rhs3), op(rhs4)]:
> printf("%.5e", max(map(abs, [seq(wcoeff(w,

subs(F12, F3, F4, S)), w in W)]-RHS))):
8.82689e-143
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In the scheme

S =
∏

j=8,...,1

exp

(
4∑

k=1

fj,kAk

)
(21)

with parameters fj,k calculated by the above Maple code, the Ak represent Legen-
dre expansion coefficients defined by integrals (16). To obtain an effective numer-
ical method we have to approximate these integrals using a suitable quadrature
formula. Therefore we substitute

Ak → (2k − 1)τ
K∑

l=1

wkPk−1(xl)A(tn + τxl)

in (21) with Gaussian nodes and weights of order eight,

(xk) =
(

1
2 −

√
15+2

√
30

140 , 1
2 −

√
15−2

√
30

140 , 1
2 +

√
15−2

√
30

140 , 1
2 +

√
15+2

√
30

140

)
,

(wk) =
(

1
4 −

√
30
72 , 1

4 +
√
30
72 , 1

4 +
√
30
72 , 1

4 −
√
30
72

)
,

which corresponds to an application of Gaussian quadrature to (16). For the set
of parameters {fj,k} displayed in the above Maple code we obtain the integrator
(cf. (14), (19))

S(tn, τ) =
∏

j=8,...,1

exp

(
τ

4∑

k=1

aj,kA(tn + τxk)

)
(22)

with coefficients aj,k given in Table 3. For these coefficients the positivity
condition

Table 3. Coefficients aj,k for an 8th order commutator-free Magnus-type integrator
(22).

k = 1 k = 2 k = 3 k = 4

-1.232611007291861933e+0 1.381999278877963415e-1 -3.352921035850962622e-2 6.861942424401394962e-3

1.452637092757343214e+0 -1.632549976033022450e-1 3.986114827352239259e-2 -8.211316003097062961e-3

-1.783965547974815151e-2 -8.850494961553933912e-2 -1.299159096777419811e-2 4.448254906109529464e-3

-2.982838328015747208e-2 4.530735723950198008e-1 -6.781322579940055086e-3 -1.529505464262590422e-3

-1.529505464262590422e-3 -6.781322579940055086e-3 4.530735723950198008e-1 -2.982838328015747208e-2

4.448254906109529464e-3 -1.299159096777419811e-2 -8.850494961553933912e-2 -1.783965547974815151e-2

-8.211316003097062961e-3 3.986114827352239259e-2 -1.632549976033022450e-1 1.452637092757343214e+0

6.861942424401394962e-3 -3.352921035850962622e-2 1.381999278877963415e-1 -1.232611007291861933e+0

Refj,1 = Re
4∑

k=1

aj,k > 0, j = 1, . . . , 8, (23)

is not satisfied, in agreement with the fact that this cannot be the case for real
coefficients, see [10]. For some applications, however, it is essential for stability
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reasons that this condition is satisfied. This suggests to consider schemes with
complex coefficients, see [4]. As was mentioned above, of the 99 parameter sets
{fj,k} which can be computed by the above Maple code, 82 = 41 × 2 involve
complex numbers. One of these parameter sets leads to the scheme (22) with
coefficients given in Table 4, for which (23) is satisfied.

Table 4. Real (top) and imaginary (bottom) parts of coefficients aj,k for an 8th order
commutator-free Magnus-type integrator (22) satisfying the positivity condition (23).

k = 1 k = 2 k = 3 k = 4

5.162172083124911076e-2 -5.787809823308952456e-3 1.404202563971892685e-3 -2.873779919999358082e-4

1.129000600487386325e-1 -1.811008163470541820e-2 8.982553129811831365e-3 -2.544930699554437791e-3

2.631601314221973826e-2 1.983998701294184106e-1 -4.965939955061425298e-2 1.197843408520720342e-2

-1.592059248033346570e-2 1.424220211513735403e-1 4.842122146532602005e-2 -1.013590436679991693e-2

-1.013590436679991693e-2 4.842122146532602005e-2 1.424220211513735403e-1 -1.592059248033346570e-2

1.197843408520720342e-2 -4.965939955061425298e-2 1.983998701294184106e-1 2.631601314221973826e-2

-2.544930699554437791e-3 8.982553129811831365e-3 -1.811008163470541820e-2 1.129000600487386325e-1

-2.873779919999358082e-4 1.404202563971892685e-3 -5.787809823308952456e-3 5.162172083124911076e-2

-1.187198036084005914e-1 1.331082409655082917e-2 -3.229389682031679030e-3 6.609128526175740449e-4

1.359790143178213473e-1 3.226637801235380303e-3 -5.647440118497178834e-3 1.831962429052182520e-3

-1.952925932474600076e-2 4.339859420803126316e-2 4.884840043796339250e-3 -1.849278537972746835e-3

3.513884130112852023e-3 -7.185755041597012718e-2 1.591348406688517315e-2 -1.887432258484616938e-3

-1.887432258484616938e-3 1.591348406688517315e-2 -7.185755041597012718e-2 3.513884130112852023e-3

-1.849278537972746835e-3 4.884840043796339250e-3 4.339859420803126316e-2 -1.952925932474600076e-2

1.831962429052182520e-3 -5.647440118497178834e-3 3.226637801235380303e-3 1.359790143178213473e-1

6.609128526175740449e-4 -3.229389682031679030e-3 1.331082409655082917e-2 -1.187198036084005914e-1
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Abstract. In this paper, a new reduction based interpolation algorithm
for general black-box multivariate polynomials over finite fields is given.
The method is based on two main ingredients. A new Monte Carlo
method is given to reduce the black-box multivariate polynomial inter-
polation problem to the black-box univariate polynomial interpolation
problem over any ring. The reduction algorithm leads to multivariate
interpolation algorithms with better or the same complexities in most
cases when combining with various univariate interpolation algorithms.
A modified univariate Ben-Or and Tiwari algorithm over the finite field
is proposed, which has better total complexity than the Lagrange inter-
polation algorithm. Combining our reduction method and the modified
univariate Ben-Or and Tiwari algorithm, we give a Monte Carlo mul-
tivariate interpolation algorithm, which has better total complexity in
most cases for sparse interpolation of black-box polynomial over finite
fields.

Keywords: Randomized Kronecker substitution ·
Sparse polynomial interpolation · Black-box · Finite field ·
Monte Carlo algorithm

1 Introduction

The interpolation for a sparse multivariate polynomial

f = c1m1 + c2m2 + · · · + ctmt ∈ R[x1, . . . , xn] (1)

given as a black-box is a basic computational problem, where R is a ring. Here,
the challenge is that both the monomials mi and the coefficients ci are unknown
and the algorithm needs to take advantage of the sparse structure of f .
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In [1], Zippel gave a probabilistic algorithm which needs an upper bound for
the number of terms of f and an upper bound for the degree of f in each variable.
In [2], Ben-Or and Tiwari gave a deterministic algorithm over the field of complex
numbers, which needs an upper bound for the number of terms in f . After
these work, many interesting algorithms were given, such as the computational
complexity enhancement [3,4], the interpolation with nonstandard bases [5], the
interpolation over finite fields [6–10], the early termination algorithm [11,12], the
hybrid interpolation algorithm [13–15], the interpolation for modular black-box
polynomials [16,17], and the reduction based methods for black-box and SLP
polynomials [8,18–23].

The sparse interpolation algorithms can be roughly divided into two types:
(1) the direct methods, such as the Ben-Or and Tiwari algorithm, which find
the monomials mi directly and then find the coefficients; (2) the reduction based
methods, such as Zippel’s algorithm, which reduce the multivariate interpolation
problem into the univariate interpolation problem.

The size of an n-variate polynomial f with a degree bound D, a term bound
T , and coefficients ci is O(nT log D +T log c), where c = maxt

i=1 |ci|. The sparse
interpolation algorithms can also be roughly divided into two types according to
the complexity in D: (1) the supersparse algorithm whose complexity is polyno-
mial in log D; (2) the exponential algorithm whose complexity is polynomial in
D. All algorithms have complexity polynomial in n, T .

Since the value of a polynomial of degree D at any point other than 0,±1 will
have D bits or more, any algorithm whose complexity is proportional to log D
cannot perform such an evaluation over Q or Z. Even for polynomials over the
general finite field Fq, there is no supersparse interpolation algorithms for the
standard black-box model. On the other hand, supersparse algorithms do exist
for the following special models.

The first model is the straight-line program model [8,18,19,21–24], which
uses the arithmetic operations in the R[x1, . . . , xn] to replace the black-box
evaluation.

The second model is the modular black-box model [16,17], which works for
the polynomials in Q[x1, . . . , xn]. Given a prime p and an element θ in Fp, the
model computes f(θ) over the field Fp. The cost of the evaluation depends on
the size of p.

The third model is the precision accuracy black-box model [13,15,25,26],
which allows for evaluations on the unit circle in some representation of a subfield
of C or returns only a limited number of bits of precision for an evaluation.

In this paper, we focus on reduction based methods for general black-box
models. Our main contribution is to give a new Monte Carlo reduction method,
which leads to multivariate interpolation algorithms with better or the same
complexities in most cases comparing to existing reduction based methods. We
also propose a modified univariate Ben-Or and Tiwari algorithm over the finite
field Fq costing O∼(D log q + TB) bit operations, where B is the cost of one
query of the black-box and is a function of T,D, q. Note that the Lagrange
interpolation algorithm costs O∼(D log q + DB) bit operations, which is larger
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since T ≤ D. Let f be an n-variate polynomial with a degree bound D and a term
bound T . Combining our reduction method and the modified univariate Ben-Or
and Tiwari algorithm, we give a multivariate interpolation algorithm whose bit
complexity is O∼(nTD log q + nTBf ), where Bf is the cost of evaluating the
black-box that gives f and is a function of n, T,D, q.

1.1 Comparing with Other Reduction Based Methods

Our reduction depends on the following Kronecker type substitutions:

f(xs) = f(xs1 , xs2 , . . . , xsn) (2)
f(xs+pIk) = f(xs1 , xs2 , . . . , xsk+p, . . . , xsn) (3)

where p is a prime and s = (s1, . . . , sn) ∈ INn is a vector of random integers. The
substitution (2) introduced in [20] is called randomized Kronecker substitution.
(3) was introduced in [27]. Our method builds on the work [20,27]. To compare
with [20,27], we first explain how these algorithms work. The algorithm in [20]
has three main steps. 1. Randomly choose O(n+log T ) substitutions si. 2: Find a
diversifying set of terms of f such that a diversifying term has the same coefficient
after all substitutions. 3: For each term, solve a linear system to obtain its
exponents. The algorithm in [27] also has three main steps. 1: Randomly choose
log T substitutions si. 2: Find the f(xsu) with the maximal number of terms.
3: Find a prime p such that #f(xsu) mod (xp − 1) = #f(xsu) and half of the
terms of f can be recovered from f(xsu) and f(xsu+pIk), k = 1, 2, . . . , n.

Our algorithm works as follows. 1: Randomly choose log T primes pi

of size O∼(T log D) and substitutions si ∈ Z
n
pi

. 2: Find a u such that
#f(xsu) mod (xpu − 1) has the maximal number of terms. 3: Prove that half of
the terms of f can be recovered from f(xsu) and f(xsu+puIk), k = 1, 2, . . . , n.

Our method is different from that in [20,27] in the following aspects. Com-
paring to [20], we do not need to solve linear systems, so our algorithm is linear
in n while theirs are linear in nω. Also, our algorithm does not need to find the
diversifying set, so it works for more general rings. Comparing to [27], our algo-
rithm chooses a prime pi first and then chooses the substitutions si ∈ Z

n
pi

, while
in [27], the prime is fixed. As a consequence, the univariate polynomials in our
algorithm have degrees O∼(TD), while the degrees of the univariate polynomials
in [27] contain either T 2 or D2.

In Table 1, we list some existing reduction methods, where “#Reductions(N)”
is the number of univariate interpolations, “Degree( ˜D)” is the degree bound of
the univariate polynomials, “Extra bit complexity(η)” is the additional com-
plexities needed besides the univariate interpolations. “Type” means whether
the algorithm is deterministic (Det), Monte Carlo (MC), or Las Vegas (LV).

We now compare the complexities of multivariate polynomial interpolation
algorithms using the reductions given in Table 1. The complexity of the ran-
domized Kronecker substitution algorithm in [20] already can be improved by
removing the O(nωT ) term in the complexity, by using structured linear algebra.
This is an idea attributed to Pernet in [27], see Lemma 5.7.2. We do not list it
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Table 1. Reduction of multivariate polynomial interpolations to univariate ones

#Reductions(N) Degree ( ˜D) Extra bit cost(η) Type

Kronecker 1 Dn nT logD Det

Zippel [1] nT D ≥ nT logD MC

Klivans-Spielman [6] n nT 2D nTDO(1) MC

Arnold [27] n log T
+
log2 T

TD
+
TD +DT min(D, T log(TD))

nT logD MC

Arnold-Roche [20] n + log T TD nωT + nT logD MC

Huang-Gao [22] n log T nTD nT logD MC

This paper (Cor. 1) n log T + log2 T TD nT logD MC

in Table 1 because the result is spelled out for extended-black-box polynomial.
According to our analysis, if using this method to general black-box polynomials,
N will be increased to at least O(n log T (log D +log T )) and ˜D will be increased
to O(nTD). So its cost is more than the algorithm in [22].

Two cases are considered according to the complexity of the univariate inter-
polation algorithm to be used.

First, assume a univariate interpolation algorithm is supersparse with com-
plexity SLin(Tα, logβ D), where SLin(a, b, . . . ) means the complexity is soft-
linear in a, b, . . . . For simplicity of analysis, we assume SLin(a, b, . . . ) is the
product of a, b, . . . . Since log D is the factor of the size of f , β ≥ 1. Then the com-
plexity of the multivariate interpolation algorithm is SLin(NTα, N logβ

˜D) + η,
where N , ˜D, and η are from Table 1. We list these complexities in Table 2. From
the table, we can see that, for the supersparse algorithms, our reduction method
is not worse than the methods in [22,27] and the Kronecker substitution, and is
better than others.

Table 2. Complexity for supersparse multivariate interpolation algorithms based on
reductions

Complexity type

Kronecker SLin(nβ , Tα, logβ D) Det

Zippel [1] SLin(n, Tα+1, logβ D) MC

Klivans-Spielman [6] SLin(n, Tα, logβ D) + nTDO(1) MC

Arnold [27] SLin(n, Tα, logβ D) MC

Arnold-Roche [20] SLin(n, Tα, logβ D,nωT ) MC

Huang-Gao [22] SLin(n, Tα, logβ D) MC

This paper (Cor. 1) SLin(n, Tα, logβ D) MC
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Second, assume a univariate algorithm is exponential and its complexity is
SLin(Tα,Dβ). Then the complexities of the multivariate interpolation algo-
rithms are SLin(NTα, N( ˜D)β) + η, which are listed in Table 3. From the table,
we can see that, for the exponential algorithms, the complexity of our algorithm
is better than all the existed Kronecker-type substitutions [6,20,22,27]. Compar-
ing to Zippel’s reduction [1], our method has better, equal, or worse complexities
according to 0 < β < 1, β = 1, or β > 1, respectively.

Table 3. Complexity for exponential multivariate interpolation algorithms based on
reductions

Complexity type

Kronecker SLin(Tα, Dnβ) + nT logD Det

Zippel [1] SLin(n, Tα+1, Dβ) MC

Klivans-Spielman [6] SLin(nβ+1, Tα+2β , Dβ) + nTDO(1) MC

Arnold [27] SLin(n, Tα+β , D2β) or SLin(n, Tα+2β , Dβ) MC

Arnold-Roche [20] SLin(n, Tα+β , Dβ) + nωT MC

Huang-Gao [22] SLin(nβ+1, Tα+β , Dβ) MC

This paper (Cor. 1) SLin(n, Tα+β , Dβ) MC

Table 4 is a summary of the comparisons, where “
√

”, “ = ”, “×” means that
our reduction method has better, the same, or worse complexity, respectively.
We can see that our reduction method achieves better or the same complexities,
except one case: exponential algorithms with β > 1. Since D is the main factor
in the complexity, algorithms with high complexities in D are generally not used.

Table 4. Compare to other reduction based interpolation methods

Kronecker Zippel [1] Klivans-

Spielman [6]

Arnold [27] Arnold-

Roche [20]

Huang-

Gao(MC) [22]

Supersparse β = 1 =
√ √

=
√

=

β > 1
√ √ √

=
√

=

Exponential 0 ≤ β < 1
√ √ √ √ √ √

β = 1
√

=
√ √ √ √

β > 1
√ × √ √ √ √

Finally, we remark that for exponential algorithms, the cases β > 1 and
β < 1 do exist. The original Ben-Or and Tiwari algorithm works for univari-
ate polynomials over the finite field Fq and costs O∼(T 1.5

√
D log q + T log2 q)

bit operations (Refer to Remark 2), where β = 0.5. The bit complexity of the
Lagrange interpolation algorithm over Q is O∼(D2).
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1.2 Comparing with Interpolation Algorithms over Finite Fields

In order to obtain a reduction based multivariate interpolation algorithm, we
need univariate interpolation algorithms with best complexities.

Let h be a black-box univariate polynomial in Fq[x] with a degree bound
D and a term bound T . Let Bh be the cost of one query of the black-box. In
this paper, we give a modified univariate Ben-Or and Tiwari algorithm which
costs O∼(D log q) bit operations and O(T ) evaluations of h, so the total cost is
O∼(D log q +TBh). The Lagrange interpolation algorithm costs O∼(D log q) bit
operations and O(D) evaluations of h and the total complexity is O(D log q +
DBh). So, the modified univariate Ben-Or and Tiwari algorithm has lower total
complexities than the Lagrange algorithm, since T ≤ D.

A univariate Ben-Or and Tiwari algorithm over the finite filed was given in
[24], whose complexity includes the parameter q. Also, the multivariate Ben-Or
and Tiwari algorithm was extended to finite fields [9,10], whose complexities are
high (see Table 5).

Combining the modified univariate Ben-Or and Tiwari algorithm and our
reduction method, we give a new multivariate interpolation algorithm. Table 5
is a comparison with interpolation algorithms over finite fields. “Probes” is the
number of evaluations for the polynomials, “Bit complexity” is the complexity
besides the probes, and “Size of Fq” means that the algorithm can work for
the finite field whose size satisfies this condition, and in the contrary case, the
algorithm need to take values in a proper extension field of Fq.

Table 5. “Soft-Oh” comparison of interpolation algorithms over finite field Fq

Probes (ρ) Bit complexity (Θ) Size of Fq type

Grigoriev-Karpinski-
Singer [7]

n2T 6 log2(ntq) +
q2.5 log2 q

Det

Huang-Rao [9] T 2D (TD)8((TD)5 +
log q) log2 q +
nTD log q

q ≥ O(T 2D2) LV

Javadi and Monagan [10] nT T 2(log q+nD) log q φ(q − 1) ≥
O(nD2T 2)

MC

Klivans-Spielman [6] nT n2T 2D log q q ≥ O(nT 2D) MC

Arnold-Roche [20] nT nTD log q + nωT q ≥ O(TD) MC

Huang-Gao [22] nT n2TD log q q ≥ O∼(nDT ) MC

Zippel [1,10] nTD nTD log q q ≥ O(nD2T 2) MC

This paper (Them. 9) nT nTD log q q ≥ O∼(TD) MC

This paper (Rem. 2) nT nT 1.5
√

D log q +
nT log2 q

q ≥ O∼(TD) MC

The total complexity of an algorithm is O∼(Θ + ρB), where Θ and ρ are
from Table 5 and B is the cost of probing the black-box. The bit complexities of
the algorithms given in [7,9] are much higher than other algorithms, so we will
not compare with them below.
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We can see that our algorithm (Theorem 9) has better total complexity
than all other methods in [1,6,10,20,22]. Comparing to Zippel’s algorithm, our
algorithm has the same bit complexity but needs less evaluations and works for
a smaller field. Actually, our algorithm is the only one which achieves the best
current bounds in all three parameters in Table 5.

The algorithm given in Remark 2 uses the original Ben-Or and Tiwari algo-
rithm for univariate polynomials over the finite field Fq, which costs O∼(nT 1.5√

D log q +nT log2 q) bit operations. By Table 4, if using this univariate interpo-
lation algorithm, our reduction method gives a multivariate interpolation algo-
rithm with lowest complexity in D, which can be seen from Table 5.

2 Reduction Based on Randomized Kronecker
Substitution

In this section, we give a new Monte Carlo algorithm which reduces multivari-
ate polynomial interpolation to univariate polynomial interpolation based on
randomized Kronecker substitutions over any commutative ring with identity.

2.1 Find an “ok” Random Kronecker Substitution

Let f ∈ R[X], where R is commutative ring with identity and X =
{

x1,

x2, . . . , xn

}

is a set of n indeterminates. Denote #f and deg f to be the number
of terms in f and the total degree of f , respectively. For s = (s1, s2, . . . , sn) ∈ INn

and a new indeterminate x, let

f(xs) = f(xs1 , xs2 , . . . , xsn) (4)
fmod
(p) (xs) = f(xs1 , xs2 , . . . , xsn)mod (xp − 1). (5)

For s = (s1, s2, . . . , sn) ∈ INn, a term cm1 of f is said to collide in f(xs)
(or fmod

(p) (xs)) if f has another term em2 such that m1 �= m2 and m1(xs) =
m2(xs)(or mmod

1(p) (xs) = mmod
2(p) (xs)).

When s = (s1, s2, . . . , sn) is chosen randomly, the substitution xi = xsi , i =
1, 2, . . . , n is called a randomized Kronecker substitution. For a prime p, a sub-
stitution s is called “ok” with respect to p, if a majority, say 5

8 , of the terms of
f do not collide in fmod

(p) (xs).
We need the following Hoeffding’s inequility for Bernoulli random variables.

Lemma 1. [28] Let X =
∑n

i=1 Xi, where Xi,i = 1, 2, . . . , n, are independently
distributed in [0, 1]. Then for all ε > 0, Pr[X > E[X] + ε] ≤ e−2ε2/n and
Pr[X < E[X] − ε] ≤ e−2ε2/n, where E[X] is the expected value of X.

We have the following key lemma.

Lemma 2. Let f =
∑t

i=1 cimi ∈ R[X], T ≥ #f , D ≥ deg f , and N =
max{31�(T − 1) log2 D�, 1}. Let p1, p2, . . . , pN be N different primes which sat-
isfy pi ≥ 32(T − 1). If we randomly choose a prime p in {p1, p2, . . . , pN} and
choose s ∈ Z

n
p uniformly at random, where Zp = {0, 1, . . . , p−1}. Then any fixed

term of f collides in fmod
(p) (xs) with probability ≤ 1

16 .
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Proof. If t = 1 or D = 1, then the proof is obvious. So assume T ≥ t ≥ 2 and D ≥
2. In this case, N = 31	(T − 1) log2 D
. Assume mi = x

ei,1
1 · · · xei,n

n ,i = 1, . . . , t.
Without loss of generality, we consider the first term c1m1. Let h(s1, . . . , sn) =
∏t

i=2[(ei,1 − e1,1)s1 + · · ·+(ei,n − e1,n)sn] which is a polynomial in Z[s1, . . . , sn]
with degree no more than T − 1. Assume the variables are ordered as s1 ≺ · · · ≺
sn and ki is the largest number such that ei,ki

− e1,ki
�= 0. Then

∏t
i=2[ei,ki

−
e1,ki

]ski
is the leading term. Let C =

∏t
i=2[ei,ki

− e1,ki
] and let � be the number

of different prime factors of C. Since |ei,ki
− e1,ki

| ≤ D, we have 2� ≤ C and
hence C has at most �(T − 1) log2 D� different prime factors. So if we randomly
choose a prime p in {p1, . . . , pN}, with probability at least 1− �(T−1) log2 D�

N = 30
31 ,

∏t
i=2[ei,ki

− e1,ki
] mod p �= 0. In this case, h(s1, . . . , sn) mod p is a non-zero

polynomial in Fp[s1, . . . , sn]. If h(s1, . . . , sn) mod p �= 0, then by Zippel’s lemma
[1], if we choose s ∈ Z

n
p uniformly at random, then h(s) mod p �= 0 with

probability at least 1 − T−1
p ≥ 1 − T−1

32(T−1) = 31
32 . So if we randomly choose

a prime p in {p1, . . . , pN} and then choose s ∈ Z
n
p uniformly at random, with

probability at least 30
31 · 31

32 = 15
16 , h(s) mod p �= 0. Now it suffices to show that

when h(s) mod p �= 0, c1m1 does not collide in fmod
(p) (xs). Since h(s) mod p �= 0,

(ei,1−e1,1)s1+ · · ·+(ei,n −e1,n)sn �= 0 mod p. So (ei,1s1+ · · ·+ei,nsn) mod p �=
(e1,1s1 + · · ·+e1,nsn) mod p, which means that cimi does not collide with c1m1

in fmod
(p) (xs). �

Lemma 3. Let Bj , j = 1, 2, . . . , s be nonempty sets of integers and ai, i =
1, 2, . . . , t all the different elements in ∪s

j=1Bj. Let c be the number of ai satisfy-
ing ai ∈ Bj and #Bj ≥ 2 for some j. Then t − c ≤ s and for s1 ∈ [t − c, s] ∩ IN,
we have (t − s1) ≤ c ≤ 2(t − s1).

Proof. Bj is called a single point set if #Bj = 1, and a collision set if #Bj ≥ 2.
Since t − c is the number of ai contained in all single point sets, there exist t − c
single point sets. So t − c ≤ s. Since t − c ≤ s1 ≤ s, we have (t − s1) ≤ c. Let k1
be the number of collision sets. We have k1 + t − c = s. So c = k1 + t − s. Since
every collision set contains at least two elements, k1 ≤ 1

2c. So c ≤ 1
2c + t − s,

which is 1
2c ≤ t − s ≤ t − s1. So c ≤ 2(t − s1). �

For p ∈ Z>0 and u ∈ INn, let Cf (p,u) be the number of terms of f which
collide in fmod

(p) (xu). We have

Lemma 4. Let pu, pv ∈ Z>0 and u,v ∈ Z
n
>0 such that

#[fmod
(pu)

(xu)] ≥ #[fmod
(pv)

(xv)].

Then Cf (pu,u) ≤ 2Cf (pv,v).

Proof. Assume #[fmod
(pu)

(xu)] = k0,#[fmod
(pv)

(xv)] = k and fmod
(pu)

(xu) = a1x
d1 +

· · ·+ak0x
dk0 , di �= dj , when i �= j. Let f = f1+· · ·+fk0 +g, where (fi)mod

(pu)
(xu) =

aix
di , i = 1, . . . , k0 and gmod

(pu)
(xu) = 0. Let Bi, i = 1, . . . , k0 be the set of terms in

fi and B0 be the set of terms in g. By Lemma 3, we have (t − k0) < Cf (pu,u) ≤
2(t − k0). By the same reason, we have (t − k) ≤ Cf (pv,v) ≤ 2(t − k). Now
Cf (pu,u) ≤ 2(t − k0) ≤ 2(t − k) ≤ 2Cf (pv,v). �
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The following theorem gives a method to compute an “ok” substitution,
which is similar to [27, Prop.5.4.2] and has two differences. (1). For each substi-
tution, we choose a random prime, while in [27], the prime is fixed. (2). We choose
the substitution s such that #fmod

(p) (xs) has the maximal number of terms, while
in [27], they choose the one such that #f(xs) has the maximal number of terms.

Theorem 1. Let f(X) ∈ R[X], T ≥ #f , D ≥ deg f , N = max{31	(T −
1) log2 D
, 1} and p1, . . . , pN be N different primes which satisfy pi ≥ 32(T −1).
Let μ ∈ (0, 1) and � ≥ 	32 ln(Tμ−1)
. For i = 1, . . . , �, we randomly choose
a prime pαi

in {p1, . . . , pN} and then choose si ∈ Z
n
pαi

uniformly at random.
Let (p, s) be the vector in {(pα1 , s1), . . . , (pα�

, s�)} such that #[fmod
(p) (xs)] =

max�
i=1 #[fmod

(pαi
)(x

si)]. Then at least 5
8#f terms of f do not collide in fmod

(p) (xs)
with probability at least 1 − μ.

Proof. First we consider a fixed term cimi and let fj(x) = fmod
(pαj

)(x
sj ). By Lemma

2, the probability of cimi colliding in fj(x) is no more than 1
16 . Define Xj = 1

to be the event that cimi collides in fj(x) and Xj = 0 to be the event that cimi

does not collide in fj(x) for some j. Define X =
∑�

j=1 Xj , then E[X] ≤ 1
16�. By

Hoeffiding’s inequality, we have Pr(X > 1
16�+ε) ≤ Pr(X > E[X]+ε) ≤ e−2ε2/�.

Let ε = 1
8�, then Pr(X > 3

16�) ≤ e−�/32 ≤ eln(μ/T ) = μ
T . So at probability ≤ 1−μ,

for all term cimi of f , cimi collides in at most 3
16� of fj(x), j = 1, . . . , �. In other

words, with probability ≥ 1 − μ, at leat 13
16�#f terms in fmod

(pαj
)(x

sj ), j = 1, . . . , �

do not collide. We claim that at least one of fj(x) has at least 13
16#f non-

colliding terms. We prove the claim by contradiction. Assume that each fj(x)
has < 13

16#f non-colliding terms. Then there exist < 13
16#f� non-colliding terms

in fj(x), j = 1, . . . , �, which contradicts to the fact that these fj(x) have ≥ 13
16�#f

non-colliding terms. So there must exist one (pαj
, sj) for which at most 3

16 of
the terms of f collide. By Lemma 4, the polynomial with maximum #fj(x) has
at least 5

8#f non-colliding terms. �

2.2 Recover Non-colliding Terms

For s = (s1, s2, . . . , sn) ∈ INn and p ∈ IN>0, let

f(xs+pIk) = f(xs1 , . . . , xsk+p, . . . , xsn) (6)

to be the univariate polynomial obtained with the substitution: xi = xsi , i =
1, 2, . . . , n, i �= k, xk = xsk+p, where Ik ∈ Z

n
≥0 is the k-th unit vector.

In this section, we show how to recover the non-colliding terms of f ∈ R[X]
from fmod

(p) (xs), f(xs), and f(xs+pIk). Let

fmod
(p) (xs) = a1x

d1 + · · · + arx
dr (7)
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Since fmod
(p) (xs) = fmod

(p) (xs+pIk), for k = 1, 2, . . . , n, we can write

f(xs) = f1 + f2 + · · · + fr + g (8)
f(xs+pIk) = fk,1 + fk,2 + · · · + fk,r + gk

where fi mod (xp − 1) = fk,i mod (xp − 1) = aix
di , g mod (xp − 1) = gk

mod (xp − 1) = 0. We define the following key notation

TS(f,p,s,D) = {aix
ei,1
1 · · · xei,n

n |ai is from (7), and

T1 : fi = aix
ui , fk,i = aix

bk,i , k = 1, 2, . . . , n. (9)

T2 : ei,k =
bk,i − ui

p
∈ IN, k = 1, 2, . . . , n.

T3 : ui = ei,1s1 + ei,2s2 + · · · + ei,nsn.

T4 :
n

∑

j=1

ei,j ≤ D.}

Lemma 5. Let f =
∑t

i=1 cimi ∈ R[X] and D ≥ deg f . If cm does not collide
in fmod

(p) (xs), then cm ∈ TS(f,p,s,D).

Proof. It suffices to show that cm satisfies the conditions of the definition of
TS(f,p,s,D). Assume m = xe1

1 · · · xen
n . Since cm is not a collision in fmod

(p) (xs),
without loss of generality, assume cm(xs) mod (xp − 1) = a1x

d1 , where a1x
d1 is

defined in (7). It is easy to show that cm is also not a collision in f(xs) and in
f(xs+pIk). Hence, f1 = a1x

u1 for u1 =
∑n

i=1 eisi; bk,1 = u1 + pek. Clearly, T1,
T2 and T3 are correct. Since deg m =

∑n
j=1 ej ≤ D, T4 is correct. �

Now we give the algorithm to compute TS(f,p,s,D).

Algorithm 2 (TSTerms).

Input:
• Univariate polynomials fmod

(p) (xs), f(xs), f(xs+pIk), where k = 1, 2, . . . , n.
• A prime p.
• A vector s = (s1, s2, . . . , sn) ∈ Z

n
≥0.

• Degree bound D ≥ deg f .
Output: TS(f,p,s,D).

Step 1: Write fmod
(p) (xs), f(xs), and f(xs+pIk) in the following form

fmod
(p) (xs) = a1x

d1 + a2x
d2 + · · · + arx

dr

f(xs) = a1x
u1 + · · · + aγxuγ + f1

f(xs+pIk) = a1x
bk,1 + · · · + aγxbk,γ + fk,2

where i = 1, 2, . . . , γ, k = 1, . . . , n, aix
ui , aix

bk,i are all the terms satisfying:
xbk,i is the unique term in f(xs+pIk) such that mod(bk,i, p) = di and xui is
the unique term in f(xs) such that mod(ui, p) = di.
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Step 2: Let S = {}.
Step 3: For i = 1, 2, . . . , γ

a: For k = 1, 2, . . . , n, Let ei,k = bk,i−ui

p . If ei,k /∈ IN, then break.
b: If ui �= ei,1s1 + ei,2s2 + · · · + ei,nsn, then break;
c: If

∑n
j=1 ei,j > D, then break;

d: Let S = S
⋃{aix

ei,1
1 · · · xei,n

n }.
Step 4: Return S.

Lemma 6. Algorithm 2 needs O(nT ) ring operations in R and O∼(nT ·
log(smaxD + pD)) bit operations, where smax = max{s1, s2, . . . , sn}.
Proof. In Step 1, in order to match the terms of fmod

(p) (xs), f(xs), and f(xs+pIk),
it needs O∼(nT log(smaxD + pD)) bit operations and O(nT ) ring operations in
R. In Step 3, a, b and c need O(nT ) arithmetic operations in Z. Since the data
is O(smaxD + pD), the complexity is O(nT log(smaxD + pD)) bit operations. �

2.3 Algorithms

We will give the reduction algorithm for f ∈ R[X], which works as follows. We
first find an “ok” random Kronecker substitution s based on Theorem 1, then
obtain half of the terms of f by applying Algorithm 2, and finally repeat the
procedure for at most log(#f) times to find f . We assume an interpolation
algorithm for univariate polynomials is given in advance.

We first give an algorithm to obtain the polynomials g(xs+pIk), k = 1, . . . , n
from g(X).

Algorithm 3 (PolySubs).

Input: • A polynomial g ∈ R[X].
• A vector s = (s1, s2, . . . , sn) ∈ Z

n
≥0.

• A prime p.
Output: g(xs+pIk), k = 1, 2, . . . , n.

Step 1: Assume g = c1m1 + · · · + ctmt, where mi = x
ei,1
1 · · · xei,n

n , i = 1, . . . , t.
Step 2: For i = 1, 2, . . . , n, let hi = 0;
Step 3: For i = 1, 2, . . . , t do

a: Let d = 0.
b: For k = 1, 2, . . . , n, let d = d + ei,ksk.
c: For k = 1, 2, . . . , n, let hk := hk + cix

d+ei,kp.
Step 4: Return hi, i = 1, 2, . . . , n;

Lemma 7. The complexity of Algorithm 3 is O∼(nt log(p+smax)+nt log deg f)
bit operations and O(nt) ring operations in R, where smax = max{s1, . . . , sn}.
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Proof. In b of Step 3, d is the degree of mi(xs). In c, since deg(mi(xs+pIk)) =
deg(mi(xs)) + pei,k, hk is f(xs+pIk) after finishing Step 3. So the correctness is
proved. Now we analyse the complexity. In b of Step 3, it needs O(nt) arith-
metic operations in Z. Since deg(mi(xs)) is O(smax deg f), the bit operation is
O(nt log(smax deg f)). In c, it needs O∼(nt log(p deg f + smax deg f)) bit opera-
tions and at most O(nt) arithmetic operations in R. �

Now we give an algorithm which interpolates at least half of the terms.

Algorithm 4 (HalfPoly).

Input: • A black-box procedure Bf that computes f ∈ R[x1, . . . , xn].
• An approximation polynomial f∗ ∈ R[x1, . . . , xn] to f .
• Term bounds T ≥ max(#f,#f1), T1 ≥ #(f − f∗) and T ≥ T1.
• Degree bound D ≥ max(deg f,deg f∗).
• A tolerance ν such that 0 < ν < 1.

Output: With probability ≥ 1−ν, return a polynomial h such that #(f − f∗ −
h) ≤ �T1

2 �.

Step 1: Let � = 	32 ln(T1ν
−1)
, N = max{31�(T1−1) log2 D�, 1}. Find the first

N primes {p1, p2, . . . , pN} such that pi ≥ 32(T1 − 1).
Step 2: For i = 1, . . . , �, randomly choose pαi

in {p1, . . . , pN}, then choose
si ∈ Z

n
pαi

uniformly at random. Deleting the repeated numbers, we still denote
these vectors as (pα1 , s1), (pα2 , s2), . . . , (pα�

, s�).
Step 3: For i = 1, 2, . . . , �, compute f(xsi) from Bf by a given univariate

interpolation algorithm with degree bound ‖si‖∞D and term bound T . Let
fi = f(xsi) − f∗(xsi) and fmod

i = fi mod (xpαi − 1).
Step 4: Find j0 such that #fmod

j0
= max{#fmod

i |i = 1, 2, . . . , �}.
If #fmod

j0
≥ T1, return failure.

Step 5: For k = 1, 2, . . . , n, find f(xsj0+pαj0
Ik) from Bf by the given univariate

interpolation algorithm with degree bound ‖sj0 +pαj0
Ik‖∞D and term bound

T . Let {f∗
1 , f∗

2 , . . . , f∗
n} = PolySubs(f∗, sj0 , pαj0

).
Let gk = f(xsj0+pαj0

Ik) − f∗
k .

Step 6: Let TS = TSTerms(fmod
j0

, fj0 , g1, g2, . . . , gn, pαj0
, sj0 ,D).

Step 7: Return h =
∑

b∈TS b.

Lemma 8. Algorithm 4 computes h such that #(f − f∗ − h) ≤ �T1
2 � with prob-

ability ≥ 1 − ν. The algorithm needs

• O(n+log T+log 1
ν ) interpolations of univariate polynomials of degree O∼(TD)

and sparseness ≤ T .
• O∼(nT log 1

ν ) additional ring operations and O∼(nT log D log 1
ν ) additional

bit operations.

Proof. We first show that Algorithm 4 returns the polynomial h such that #(f −
f∗−h) ≤ �T1

2 � with probability 1−ν. In Step 1, Step 2 and Step 4, by Theorem 1,
with probability 1−ν, Cf−f∗(pαj0

, sj0) ≤ � 3
8T1�. If j0 satisfies Cf−f∗(pαj0

, sj0) ≤



Revisit Sparse Polynomial Interpolation 227

� 3
8T1�, then by Lemma 5, there are at most � 3

8T1� terms in f − f∗ but not
in h. Since the terms of h which are not in f − f∗ come from at least three
terms in f − f∗, then there are at most 1

3� 3
8T1� terms of h not in f − f∗. So

#(f − f∗ − h) ≤ � 3
8T1� + 1

3� 3
8T1� ≤ 1

2T1. So we have #(f − f∗ − h) ≤ � 1
2T1�.

The first part is proved.
Now we analyse the complexity. In Step 1, use the sieve of Eratosthenes

[29, Them.18.10], the cost of finding the N primes bigger than 32(T1 − 1) is
O∼(T1 log D) bit operations.

In Step 2, since probabilistic machines flip coins to decide binary digits,
each of these random choices can be simulated with a machine with complexity
O(n log(T1 log D)). So the complexity of Step 2 is O(n log2 T1 + n log T1 log 1

ν +
n log T1 log log D + n log log D log 1

ν ) bit operations.
In Step 3, since pαi

is O∼(T1 log D), the degree of f(xsi) is O∼(‖si‖∞D) =
O∼(T1 D). So in Step 3, we query O(log T1 + log 1

ν ) polynomials of degree
O∼(T1 D). In order to obtain f∗(xsi), it needs O(�nT ) ring operations and
O∼(�nT log D) bit operations. In order to obtain fi, it needs O(�T ) ring oper-
ations in R and O∼(�T log D) bit operations. In order to obtain the fmod

i , it
needs O∼(�T1 log D) bit operations and O(�T1) ring operations.

So it still needs O∼(nT log 1
ν + T1 log 1

ν ) ring operations and
O∼(nT log D log 1

ν + T1 log D log 1
ν ) bit operations.

In Step 4, we find the integer j0. Since #fmod
i ≤ T1, it needs at most

O∼(T1 log T1
ν ) bit operations to compute all #fmod

i , i = 1, 2, . . . , �. Find j0 needs
O∼(� log T1) bit operations. So the bit complexity of Step 4 is O∼(T1 log 1

ν ).
In Step 5, since the degree of f(xsj0+pαj0

Ik) is O∼(T1D), it queries O(n) poly-
nomials of degrees O∼(T1D). By Lemma 7, it needs O∼(nT log D) bit operations
and O(nT ) arithmetic operations in R to obtain {f∗

1 , f∗
2 , . . . , f∗

n}.
In Step 6, by Lemma 6, the complexity is O(nT1) ring operations in R and

O∼(nT1 log D) bit operations. Since T ≥ T1, the lemma is proved. �
We now give the complete interpolation algorithm.

Algorithm 5 (MulPolySI).

Input: A Black-box procedure Bf that computes f ∈ R[X], T ≥ #f , D ≥ deg f ,
and μ ∈ (0, 1).
Output: Return f with probability ≥ 1 − μ, or failure.

Step 1: Let h = 0, T1 = T, ν = μ
	log2 T
+1 .

Step 2: While T1 > 0 do
a: Let g = HalfPoly(Bf , h, T, T1,D, ν).
b: Let h = h + g, T1 = �T1

2 �.
Step 3: Return h.

Theorem 6. Algorithm 5 computes f with probability ≥ 1 − μ. The algorithm
needs
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• O(n log T +log2 T +log T log 1
μ ) interpolations of univariate polynomials with

degree O∼(TD) and sparseness ≤ T .
• O∼(nT log 1

μ ) additional ring operations and O∼(nT log D log 1
μ ) additional

bit operations.

Proof. In a of Step 2, since #(f − h) ≤ T1, by Lemma 8, #(f − h − g) ≤ �T1
2 �

with probability ≥ 1 − ν. Then, Step 2 will run at most k = 	log2 T 
 + 1 times
and return the correct f with probability ≥ (1 − ν)k ≥ 1 − μ. The first part is
proved.

Now we analyse the complexity. It is easy to see that the complexity is
dominated by Step 2. In Step 2, we call at most O(log T ) times Algorithm 4.
Since the terms and degrees of f − h are respectively bounded by T and D, by
Lemma 8, it needs O(n log T + log2 T + log T log 1

ν ) queries of degree O∼(TD),
O∼(nT log 1

ν ) additional ring operations and O∼(nT log D log 1
ν ) additional bit

operations.
Since ν = μ

	log2 T
+1 , we have proved the theorem. �

Corollary 1. Set μ = 1/4. Then Algorithm 5 computes f with probability at
lest 3

4 . The algorithm needs

• O(n log T + log2 T ) queries of univariate polynomials with degree O∼(TD)
and sparseness ≤ T .

• O∼(nT ) additional ring operations and O∼(nT log D) additional bit opera-
tions.

3 Sparse Interpolation over Finite Fields

In this section, we give a sparse interpolation algorithm for black-box multivari-
ate polynomials over general finite fields. We first give a univariate Ben-Or and
Tiwari algorithm over finite fields and then combine with Algorithm 5 to give a
multivariate interpolation algorithm.

3.1 The Ben-Or and Tiwari Sparse Interpolation Algorithm

Following [3], we give a brief introduction to the multivariate Ben-Or and Tiwari
sparse interpolation algorithm over C.

Let f(x1, . . . , xn) = c1m1 + · · · + ctmt ∈ C[X] be the polynomial to be
interpolated, where mi = x

ei,1
1 . . . x

ei,n
n are distinct monomials, ci are non-zero

coefficients, and t = #f is the number of terms in f . We assume that f is a black-
box, which means, for ∀ (q1, . . . , qn) ∈ C

n, we can obtain the value f(q1, . . . , qn).
Note that ci,mi, t are not known. In order to determine f uniquely, the algorithm
needs as input an upper bound τ + 1 ≥ t on the number of terms in f .

The algorithm proceeds in two stages. The monomials mi are determined
first using an auxiliary polynomial ζ(z). Once the mi are known, the coefficients
ci can be obtained easily.
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We first determine mi. Let vi = p
ei,1
1 . . . p

ei,n
n denote the value of the

monomial mi at (p1, . . . , pn), where pi is the i-th prime number. Clearly,
different monomials evaluate to different values under this evaluation. Let
a0, a1, . . . , a2τ+1 be the values of f at the 2(τ + 1) points pi = (pi

1, . . . , p
i
n), i =

0, 1, . . . , 2τ + 1, that is, ai =
∑t

j=1 cjv
i
j .

The auxiliary polynomial ζ(z) is defined as follows.

ζ(z) =
t

∏

i=1

(z − vi) = zt + ζt−1z
t−1 + · · · + ζ1z + ζ0. (10)

Consider the sum
∑t

i=1 civ
j
i ζ(vi) =

∑t−1
k=0 ζk(c1v

k+j
1 +c2v

k+j
2 +· · ·+ctv

k+j
t )+

(c1v
t+j
1 + c2v

t+j
2 + · · · + ctv

t+j
t ) = ajζ0 + aj+1ζ1 + · · · + aj+t−1ζt−1 + aj+t for

j = 0, . . . , t − 1. Since ζ(vi) = 0, for 0 ≤ j ≤ t − 1, we have

ajζ0 + aj+1ζ1 + · · · + aj+t−1ζt−1 + aj+t = 0. (11)

This is a Toeplitz system Tt−1,t−1ζ̂t−1 = t̂2t−1,t−1 where

Tu,v =

⎛

⎜

⎜

⎜

⎝

au au+1 · · · au+v

au−1 au · · · au+v−1

...
...

. . .
...

au−v au−v+1 · · · au

⎞

⎟

⎟

⎟

⎠

ζ̂v = (ζ0, ζ1, . . . , ζv)τ , t̂u,v = −(au, au−1, . . . , au−v)τ . This system is non-singular
as can be seen from the factorization.

Tt−1,t−1 =

⎛

⎜

⎜

⎜

⎝

1 1 · · · 1
v1 v2 · · · vt

...
...

. . .
...

vt−1
1 vt−1

2 · · · vt−1
t

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

c1 0 · · · 0
0 c2 · · · 0
...

...
. . .

...
0 0 · · · ct

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1 v1 · · · vt−1
1

1 v2 · · · vt−1
2

...
...

. . .
...

1 vt · · · vt−1
t

⎞

⎟

⎟

⎟

⎠

(12)

Since the vi are distinct, the two Vandermonde matrices are nonsingular and
as no ci is zero, the diagonal matrix is nonsingular, too. If the input value of the
upper bound τ + 1 is greater than t, then the coefficients ck, for k > t, can be
regarded as zero and the resulting system Tτ,τ would be singular.

Lemma 9. [3] If t is the exact number of terms in f , then

a) Ti,t−1is non-singular for all i ≥ t − 1.
b) Ti,t+j is singular for all i ≥ t − 1, j ≥ 0.

By Lemma 9, when considering 2τ + 2 values a0, . . . , a2τ+1 of f , the coeffi-
cients of ζ(z) can be uniquely recovered from the system Tτ,τ ζ̂τ = t̂2τ+1,τ . By
finding the roots vi = p

ei,1
1 . . . p

ei,n
n of ζ(z), the monomials mi can be recovered.

By choosing the first t evaluations a0, . . . , at−1 of f , we obtain the following
transposed Vandermonde system Aĉ = â for the coefficients of f , where
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A =

⎛
⎜⎜⎜⎝

1 1 · · · 1
v1 v2 · · · vt

...
...

. . .
...

vt−1
1 vt−1

2 · · · vt−1
t

⎞
⎟⎟⎟⎠ , ĉ =

⎛
⎜⎜⎜⎝

c1
c2
...

ct

⎞
⎟⎟⎟⎠ , â =

⎛
⎜⎜⎜⎝

a0

a1

...
at−1

⎞
⎟⎟⎟⎠ (13)

The deterministic Ben-Or and Tiwari’s algorithm over Z needs O(T ) evalu-
ations of f plus O(nT 2d) Z-operations and the height of the data is O(Td) [3],
where d = deg f .

If the coefficients of the polynomials are from a finite field, then it is difficult
to find the exponents from vi = p

ei,1
1 . . . p

ei,n
n , which is a multi-variate discrete

logarithm problem.

3.2 Univariate Ben-Or and Tiwari Algorithm over Finite Field

In this section, we give a modified univariate Ben-Or and Tiwari algorithm over
the finite field Fq. Assume f(x) =

∑t
i=1 cimi ∈ Fq[x],D ≥ deg f . Since f(x) is

univariate, #f ≤ D. We consider two cases: q > D or q ≤ D.
First, consider the case q > D. Let ω be a primitive element of Fq. Assume

mi = xdi and denote vi = ωdi . Let ai =
∑t

j=1 cjv
i
j , i = 0, 1, . . . , 2τ + 1. Tt−1,t−1

still can be factored as (12). Since ω is a primitive element of Fq and q > D,
vi �= vj when i �= j. So the two Vandermonde matrices in (12) are nonsingular
and Lemma 9 is still correct. Now we can give the algorithm.

Algorithm 7 (UniBoTFq).

Input: A black-box procedure Bf to compute f(x) ∈ Fq[x], τ + 1 ≥ #f , and
D ≥ deg f .
Output: The polynomial f =

∑t
i=1 cimi.

Step 1: Let ω be a primitive element of Fq. Evaluate f at the 2(τ + 1) points
ωi, i = 0, . . . , 2τ + 1. Let ai, i = 0, . . . , 2τ + 1 be the corresponding values.

Step 2: Solve the Toeplitz system Tτ,τ ζ̂τ = t̂2τ+1,τ (or the largest non-singular
subsystem Tj,2τ−j

̂ζ2τ−j = t̂2τ+1,2τ−j of Tτ,τ , where j is the smallest positive
integer that makes Tj,2τ−j non-singular) to obtain the polynomial ζ(z) =
∑t

i=0 ζiz
i.

Step 3: Find the monomial set M of f . M = ∅. For i = 0, 1, . . . ,D, compute
ωi and if ζ(ωi) = 0 then let M = {xi} ∪ M .

Step 4: Find the coefficients ci by solving the transposed Vandermonde system
Aĉ = â in (13).

Lemma 10. If q > D, Algorithm 7 is correct and it needs 2(τ + 1) evaluations
of f plus O∼(D log q) bit operations.

Proof. The correctness comes from Lemma 9. Now we analyse the complexity.
Due to the fast integer and polynomial multiplication algorithms [29], one can
perform an arithmetic operation in Fq in O∼(log q) bit operations. In Step 1, it
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needs O(τ log q) bit operations to obtain ωi, i = 1, 2, . . . , 2τ + 1. In Step 2, it
needs O(M(τ) log τ log q) bit operations, where M(τ) = τ log(τ) log log(τ) [3].

In Step 3, computing ωi, i = 0, 1, . . . ,D needs O(D log q) bit operations. Then
we evaluate ζ(ωi), i = 0, 1, . . . ,D, by fast multi-point evaluation method [29,
Them.10.6], which needs O(D

T M(T ) log T log q) = O∼(D log T log q) bit opera-
tions, where T = τ + 1.

In Step 4, it needs O(M(t) log t log q) bit operations [3]. So the complexity of
the total algorithm is O∼(D log T log q + T log q) = O∼(D log q) bit operations,
since #f ≤ D. �

Second, consider the case q < D. We need evaluate the polynomial in an
extended field of Fq. We extends Fq into Fqm such that qm ≥ D + 1, where m =
	 log(D+1)

log q 
. Due to the fast integer and polynomial multiplication algorithms [29],
one can perform an arithmetic operation in Fqm in O∼(m log q) = O∼(log D) bit
operations, since m = 	 log(D+1)

log q 
.
Now we can extend Algorithm 7 into the case q ≤ D. The only change

is to replace the primitive element of Fq by a primitive element of Fqm in
Step 1. Similar to the proof of Lemma 10, the complexity of the algorithm is
O∼(D log Tm log q+Tm log q), which is O∼(D log T +T log D) = O∼(D log D) =
O∼(D) bit operations. We thus have

Lemma 11. If q ≤ D, Algorithm 7 needs 2(τ + 1) evaluations of f plus O∼(D)
bit operations.

Following Lemmas 10 and 11, we have

Theorem 8. Let f be a black-box univariate polynomial in Fq[x] with T ≥ #f
and D ≥ deg f . We can compute f with O(T ) evaluations of f plus O∼(D log q)
bit operations.

Remark 1. In Step 3 of Algorithm 7, we may follow the original Ben-Or and
Tiwari algorithm to find the exponents. First, find the roots vi of ζ(z) = 0,
which costs O∼(t log2 q) bit operations [29] for t = #f . Second, solve the
discrete logarithm problem vi = ωei to find the exponents ei, which costs
O∼(

√
D log q) bit operations [30]. Therefore, the total complexity of the algo-

rithm is O∼(T log2 q + T
√

D log q) bit operations plus O(T ) evaluations.

3.3 Multivariate Polynomial Interpolation over Finite Fields

Combing the reduction algorithm given in Sect. 2 and the univariate interpola-
tion given in Sect. 3.2, we give a multivariate interpolation algorithm over finite
fields.

Theorem 9. Let f ∈ Fq[X] be a black-box polynomial. Given T ≥ #f and
D ≥ deg f , with probability greater than 3

4 , one can find f using O∼(nTD log q)
bit operations plus O∼(nT ) evaluations of f .
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Proof. We use the Algorithm 5 to compute f and use Algorithm 7 for univariate
polynomial interpolation in Step 3 and Step 5 of Algorithm 4.

The complexity consists of two parts. By Corollary 1, we needs O(n log T +
log2 T ) queries of univariate polynomials with degree O∼(TD) and sparseness ≤
T . Then by Theorem 8, we need O∼((n log T +log2 T )T ) = O∼(nT ) evaluations
of f and O∼((n log T + log2 T )(TD log q)) = O∼(nTD log q) bit operations to
query these univariate polynomials.

By Corollary 1, we needs additional O∼(nT ) operations in Fq if q > D (or
in Fqm if q < D for m = 	 log(D+1)

log q 
) and O∼(nT log D) bit operations. O∼(nT )
operations in Fq costs O∼(nT log q) bit operations. O∼(nT ) operations in Fqm

costs O∼(nT log D) bit operations. Therefore, the query of f is the dominating
step and the bit complexity of the algorithm is O∼(nTD log q). �
Remark 2. If using the original Ben-Or and Tiwari algorithm mentioned in
Remark 1 to interpolation the univariate polynomials, the total complexity of
our algorithm is O∼(nT 1.5

√
D log q + nT log2 q) bit operations.

Remark 3. Let f ∈ Fq[X] be a black-box polynomial and q a prime. If quantum
algorithms can be used, the quantum complexity of finding f is O∼(nT log2 q)
plus O∼(nT ) evaluations of f and O∼(nT ) black-box evaluations for solving the
discrete logarithm problem.

We need to change Step 3 of Algorithm 7 as follows:

(1) Find the roots vi of ζ(z), which costs an expected O∼(T log2 q) bit operations
[29, p.368].

(2) Solve the discrete logarithm problem vi = ωei mod q to find ei using Shor’s
quantum algorithm, which costs O∼(T max{log2 D, log2 q}) plus T black-
box evaluations [31, p.238].

By Corollary 1, the total complexity is O∼(nT max{log2 D, log2 q}).

4 Experimental Results

In this section, practical performances of the interpolation algorithm over finite
fields given in Remark 2 will be reported. The algorithm uses Algorithm 5 to
reduce multivariate interpolation to univariate interpolation and uses Algorithm
7 for univariate polynomial interpolation. In Algorithm 7, we use the Berlekamp-
Massey algorithm to solve the Toeplitz systems, use the command Roots in
Maple to find the roots, and use the command mlog in Maple to solve the
discrete logarithm problem.

The data are collected on a desktop with Windows system, 3.60 GHz Core
i7-4790 CPU, and 8GB RAM memory. The implementations in Maple can be
found in

http://www.mmrc.iss.ac.cn/~xgao/software/rkron.zip
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Fig. 1. Average times with varying T

Fig. 2. Average times with varying n

Fig. 3. Average times with varying d
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We randomly construct five polynomials over the finite field Fq, then regard
them as black-box polynomials and reconstruct them with the algorithm. The
actual size and degree of the polynomials are used as the term bound and degree
bound, respectively. The average times are collected. In our testing, we fix q =
30000000001 and use the primitive element 29 of Fq.

The results are shown in Figs. 1, 2, 3. In each figure, two of the parameters
n, T,D are fixed and one of them is variant. These data are basically in accor-
dance with the complexity O∼(nT 1.5

√
D log q + nT log2 q) of the algorithm.
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1 Introduction

Univariate polynomial root-finding, that is, approximation of the roots x1, . . . ,
xd of a polynomial equation

p(x) = 0 for p(x) =
d∑

j=0

pjx
j = pd

d∏

i=1

(x − xi), pd �= 0, (1)

has been the central problem of Mathematics for four millennia, since the Sume-
rian times, is still involved in various areas of modern computation, and is the
subject of intensive research worldwide. The user’s choice since 2000 has been the
package MPSolve (cf. [3,4]), which implements Ehrlich’s functional iterations, but
other functional iterations such as Newton’s and Weierstrass’s are also highly pop-
ular. Ehrlich’s and Weierstrass’s iterations converge simultaneously to all complex
roots of a polynomial. Newton’s iterations converge to a single root, but can be
extended to approximation of all roots or the roots in a fixed domain.

Usually root-finding iterations approximate some roots sooner than the other
ones; e.g., MPSolve tends to approximate the well-conditioned roots much faster
than the ill-conditioned ones (see [3,4]), and then one can deflate an input poly-
nomial and keep updating approximations to the remaining roots.

Efficient methods for explicit deflation can be found in [19,33,35], and refer-
ences therein. Here we study alternative techniques of implicit deflation, which
enable us to exploit the sparseness of an input and to avoid numerical stabil-
ity problems caused by the coefficient growth in factorization of a polynomial.
We enhance the power of implicit deflation by combining it with mapping the
variable and reversion of an input polynomial.

In Sect. 8 we point out another promising direction to enhancing the power
of root-finding iterations, namely by means of incorporation of superfast multi-
point polynomial evaluation and Fast Multipole Method. We demonstrate high
promise of this approach by showing that it yields dramatic increase of local
efficiency of root-finding iterations.

Otherwise we organize our paper as follows. In the next section we recall some
popular functional iterations for polynomial root-finding. In Sect. 3 we comment
on partitioning polynomial roots into tame ones (already approximated) and wild
ones. In Sect. 4 we compare explicit and implicit deflation and specify implicit
deflation for Newton’s iterations. We combine implicit deflation with linear maps
of the variable and reversion of a polynomial in Sect. 5 and with squaring the
variable in Sect. 6, followed by some brief comments on the implementation and
potential research impact of implicit deflation in Sect. 7.

2 Some Efficient Functional Iterations for Root-Finding

Among hundreds if not thousands known polynomial root-finders (see up to
date coverage in [22,25,33], and the bibliography therein) consider the class of
functional iterations. For a fixed set of functions

f1(z), . . . , fm(x), 1 ≤ m ≤ d,
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these iterations recursively refine current approximations z
(k)
1 , . . . , z

(k)
m to m roots

x1, . . . xm of p(x) according to the expressions

zi ← fi(zi), i = 1, . . . , m. (2)

In the case where m = 1 write f(z) = f1(z) and

z ← f(z). (3)

These iterations include various interpolation methods, which use no derivatives
of p(x) and are recalled in [25, Section 7], for example, Muller’s method (see
[25, Section 7.4]); methods involving derivative such as Newton’s iterations [22,
Section 5], and methods involving higher order derivatives [25, Section 7]. We
exemplify our study with Newton’s iterations (where m = 1):

z ← z − Np(z), (4)

Np(x) = p(x)/p′(x), (5)

which have efficient extensions to the solution of polynomial systems of equations
[2] and to root-finding for various smooth functional equations and systems of
equations [10]; Weierstrass’s iterations of [38] (rediscovered by Durand in [7] and
Kerner in [18]), in which case m = d :

zi ← zi − Wp,l(zi), i = 1, . . . , d, (6)

Wp,l(x) =
p(x)

pnl′(x)
, (7)

l(x) =
d∏

i=1

(x − zi), (8)

and Ehrlich’s iterations of [9] (rediscovered by Aberth in [1]), where again m = d:

zi ← zi − Ep,i(zi), (9)

Ep,i(x) = 0 if p(x) = 0;
1

Ep,i(x)
=

1
Np(x)

−
d∑

j=1,j �=i

1
x − zj

otherwise, (10)

i = 1, . . . , d, and Np(x) is defined by (5).

Remark 1. The above root-finders are readily extended to any function s(x)
sharing its root set with the polynomial p(x). For example, deduce from the
Lagrange interpolation formula that

p(x) = l(x)s(x),

s(x) = pn +
d∑

i=1

Wp,l(zi)
x − zi

for any set of d distinct nodes z1, . . . , zd. Apply selected iterations to the above
secular rational function s(x) or the polynomial l(x)s(x). Bini and Robol in [4]
show substantial benefits of that application of Ehrlich’s iterations to l(x)s(x)
rather than p(x), both for convergence acceleration and error estimation.
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3 The Problem of Taming Wild Roots

Now suppose that we have applied a fixed functional iteration (2) and have
approximated m roots of a polynomial p(x) for m < d (we call them tame); next
we discuss efficient approximation of the remaining roots; we call them wild and
call their approximation taming.

For example, we face taming problem where functional iterations have
approximated a single root of a polynomial p(x) and we seek the other roots.

For another example, Weierstrass’s, Ehrlich’s, and various other iterations
tend to approximate at first the better conditioned roots (that is, the roots
stronger isolated from the other roots of p(x)); then one can fix these approxi-
mations and keep updating the approximations to the remaining wild roots by
applying the same iterations (see [3] and [4]).

Likewise Newton’s and many other iterations seeking a single root can be
applied at a number of initial points in order to approximate all roots, and then
some roots can escape from this process. In particular in the paper [36] Newton’s
iterations initialized at a universal set of O(d) points1 approximate t = d − w
roots of p(x) but leave out a narrow set of w wild roots where w < 0.001 d for
d < 217 and w < 0.01 d for d < 220. (The paper [36] continued long study traced
back to [20] and [16].)

Finally the subdivision root-finding iterations of [5] extend the earlier
study in [14,15,28,34,39], where such iterations are called Quad-tree algorithm.
Recently been implemented in [17], it first approximates some sets of tame roots
of p(x) in certain domains on the complex plane well-isolated from the other roots
and then approximates the remaining wild roots, in particular by combining the
subdivision process with complex extension of Abbott’s real QIR iterations.

4 Taming Wild Roots by Means of Deflation

An obvious recipe is to tame the wild roots by means of deflation, that is, by
applying a selected root-finder to the polynomial

q(x) =
w∑

i=0

qix
i = pd

w∏

j=1

(x − xj), pd �= 0. (11)

In explicit deflation we first compute the coefficients of q(x). If the roots of
the quotient q(x) are well isolated from the other roots of p(x), we can apply
the efficient method of Delves and Lyness [8]. The root-finders of [35] and [19]
incorporate its advanced versions; [33] presents them in a concise form.

Bini and Fiorentino argue in [3] that explicit deflation of a polynomial p(x)
does not preserve its sparseness and in some cases can be numerically unstable,
for instance, in the case of a polynomial p(x) = xd ± 1 of a large degree d.
1 This set is universal for all polynomials p(x) that have all roots lying in the unit disc
D(0, 1) = {z : |z| = 1}. Given any polynomial p(x) one can move all its roots into
this disc by means of first readily computing a reasonably close upper bound on the
absolute values of all roots and then properly shifting and scaling the variable x.
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These potential problems somewhat limit the value of explicit deflation, par-
ticularly where a polynomial q(x) has large degree w. We can completely
avoid these problems by applying implicit deflation, that is, applying func-
tional iterations that evaluate q(x) at a point x as the ratio p(x)/t(x) for
t(x) = pd

∏d
j=1+w(x − xj).

We can readily implement this recipe in the case of functional interpolation
iterations of [25, Section 7]. Moreover Wp(x) = Wq(x), as we can readily verify
by combining Eqs. (1) and (6), and so for Weierstrass’s and Ehrlich’s iterations
(6) implicit deflation amounts to their usual recursive application restricted just
to w approximations of the w wild roots.

Let us specify implicit deflation when we apply Newton’s iterations and rely
on the following well-known identity (cf. [21]),

1/Np(x) =
n∑

j=1

1
x − xj

. (12)

Algorithm 1. Implicit Deflation with Newton’s iterations

Input: A polynomial p(x) of (1), a set of its tame roots xw+1, . . . , xd, an initial
approximation z to a wild root of p(x), a Stopping Criterion (see, e.g., [3,4]),
and a black-box program EVALp that evaluates the ratio 1

Np(z)
= p′(z)

p(z) for a
polynomial p(x) of (1) and a complex point z.

Output: The updated approximation z − Np(z) to a root of p(x) (see (4)).
Computations: Apply Newton’s iteration (4) to the polynomial q(x) defined

implicitly, that is, successively compute the values:
1. r = p′(z)/p(z) ← 1/Np(z),
2. s ← ∑d

j=w+1
1

z−xj
,

3. Nq(z) = q(z)
q′(z) ← 1

r−s .
4. Compute zk −Np(zk). If the fixed Stopping Criterion is met, output z and

stop. Otherwise go to stage 1.

Dario A. Bini (private communication) proposed to improve numerical sta-
bility of this algorithm by means of scaling as follows:

Nq(zk) =
1/rk

1 − sk/rk
.

Complexity of Algorithm 1
Stage 1 amounts to mw invocations of the program EVALp.
At Stage 2 we perform (d−mw)mw divisions and (2d−2mw−1)mw additions

and subtractions.
At Stages 3 and 4 together we perform 2mw subtractions and mw divisions.
We can readily extend implicit deflation to various other root-finders involv-

ing Newton’s ratio Np(x), for example, to Ehrlich’s iterations of (9) because (12)
implies that Ep,j(x) = Eq,j(x) for q(x) of (11) and Ep,j(x) of (10).
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5 Taming Wild Roots by Means of Mapping the Variable
with Linear Maps and Reversion

Generally the set of tame roots output by functional iterations varies when an
input polynomial p(x) varies. This suggests that we can approximate many or
all wild roots if we reapply the same iterations to the polynomials

v(z) = va,b,c(z) = (z + c)dp
(
a +

b

z + c

)
(13)

for various triples of complex scalars a, b �= 0, and c. We must limit the overall
number of the triples in order to control the overall computational cost.

The following equations map the roots xj of p(x) to the roots zj of v(x) and
vice versa,

xj = a +
b

zj + c
, zj =

b

xj − a
− c. (14)

Let us specify this recipe for the algorithm of [36], cited in Sect. 3.

Algorithm 2

Initialization: Define a polynomial v(z) = va,b,c(z) by choosing the parameters
a, b, and c such that all roots of the polynomial v(z) lie in the unit disc
D(0, 1) = {z : |z| = 1}, but do not actually compute the coefficients of this
polynomial.

Computations: 1. Apply Newton’s iteration (4) to the polynomial v(z) by using
initialization at the universal set of [36] and by expressing the Newton’s ratios
Nv(z) = v(z)/v′(z) (cf. (4)) via the following equations:

1
Nv(z)

=
d

z + c
− b

(z + c)2N(x)
for v(z) of (13) and x of (14). (15)

2. Having approximated a root zj of v(z) for any j, readily recover the root
xj of p(x) from Eq. (14).

In the particular case where a = c = 0 and b = 1, the above expressions are
simplified: z = 1/x; v(z) turns into the reverse polynomial of p(x),

v(z) = prev(z) =
d∑

i=0

pd−iz
i = zdp(1/z),

1
Nv(z)

=
v′(z)
v(z)

=
d

z
− 1

z2Np(1/z)
,

and prev(x) = p0
∏d

j=1(x − 1/xj) if p0 �= 0.
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6 Taming Wild Roots by Means of Squaring the Variable

One can hope to obtain all roots of p(x) by applying Newton’s iterations to the
polynomials v(z) = va,b,c(z) for a reasonable number of triples of a, b, and c, but
one can also extend this approach by using more general rational maps y = r(x)
(cf., e.g., [24]).

For a simple example, consider the Dandelin’s root-squaring map of 1826,
rediscovered by Lobachevsky in 1834 and then by Gräffe in 1837 (see [13]):

u(y) = (−1)dp(
√

y)p(−√
y) =

d∏

j=1

(y − x2
j ). (16)

In this case one should make a polynomial p(x) of (1) monic by scaling the
variable x and then express the Newton’s ratio Nu(y) = u(y)/u′(y) as follows:

1
Nu(y)

= 0.5
( 1

Np(
√

y)
− 1

Np(
√−y)

)
y−1/2.

Notice that under map (16) the roots lying in the unit disc D(0, 1) stay in it.
Having approximated the n roots y1, . . . , yn of the polynomial u(y), we read-

ily recover the n roots x1, . . . , xn of the polynomial p(x) by selecting them from
the 2n values ±√

yj , j = 1, . . . , n.
We can combine the above maps recursively (a limited number of times, in

order to control the overall computational cost); then we can recover the roots
from their images in these rational maps by extending the lifting/descending
techniques of [27,30].

7 Two Remarks

Remark 2. For various selected polynomials p(x), u(y), and v(z), one can imple-
ment the functional iterations of the previous two sections concurrently, with
minimal need for processor communication and synchronization.

Remark 3. The Weierstrass’s, Ehrlich’s, and some other functional iterations,
e.g., the Gauss-Seidel’s and Werner’s accelerated variations of the Ehrlich’s and
Weierstrass’s iterations (cf. [4] and [40]), converge very fast empirically, but
formal support of this empirical observation is a well-known challenge. Can we
facilitate obtaining such a support if we allow random maps of the variable x, e.g.,
if we apply these iterations to the polynomials va,b,c(z) of (13) for random choice
of the parameters a, b, and c? For example, initialization of Newton’s iterations
at a set of points {c + r exp(φji), j = 1, . . . , s, of a circle {x : |x − c| = r} on
the complex plane can be equivalently interpreted as the application of these
iterations at a single point y = c to a set of polynomials pj(y) obtained from
p(x) via the linear maps y ← x − r exp(φji), j = 1, . . . , s.
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8 Efficiency of Root-Finding Iterations

Since Ostrowski’s paper [26], it is customary to measure local efficiency of func-
tional root-finding iterations by the quantity eff = q1/α or sometimes log10(eff) =
(1/α) log10 q where q denotes the convergence order (rate) and α is the number
of function evaluations per iteration and per root. In particular q = 2, α = 2, and
eff =

√
2 ≈ 1.414 for Newton’s and Weierstrass’s iterations while q = 3, α = 3,

and eff =31/3 ≈ 1.442 for Ehrlich’s iterations where we assign the same cost to
the evaluation of the functions

∑d
j=1,j �=i

1
x−zj

, p(x), p′(x), and l′(x) at x = zi,

noting that l′(zi) =
∏d

j=1,j �=i(zi − zj).
Actually the cost of function evaluation requires further elaboration. Exact

evaluation of the values
∑d

i=1,i �=j
1

z
(k)
j −z

(k)
i

for j = 1, . . . , d is Trummer’s cele-

brated problem, whose solution, like exact evaluation of a polynomial p(x) of (1)
at d points, involves O(d log2(d)) arithmetic operations [29, Section 3.1], [11,23].

Both of these superfast algorithms – for polynomial evaluation and the Trum-
mer’s problem – are numerically unstable for d > 50, but one can use numerically
stable superfast alternatives based on the Fast Multipole Method [6]. Its appli-
cation to Trummer’s problem is well-known [12], but in the case of multipoint
polynomial evaluation is more recent and more involved [31] and [32].

Using superfast algorithms for both problems decreases α to the order of
O(log2(d)/d). Hence local efficiency of Weierstrass’s and Ehrlich’s iterations
grows to the infinity as d → ∞, and similarly for Newton’s iterations initial-
ized and applied simultaneously at the order of d points.

The above formal analysis applies locally, where the convergence to the roots
becomes superlinear, while the overall computational cost is usually dominant at
the previous initial stage, for which only limited formal results are available (see
also Remark 3). These limited results favor Ehrlich’s iterations, which empirically
have milder sufficient conditions for superlinear convergence than both Newton’s
and Weierstrass’s iterations [37].
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Abstract. Differential equations describing the rotation of a rigid body
with a fixed point under the influence of forces generated by the Barnett–
London effect are analyzed. They are a multiparametric system of equa-
tions. A technique for finding their linear invariant manifolds is proposed.
With this technique, we find the linear invariant manifolds of codimen-
sion 1 and use them in the qualitative analysis of the equations. Com-
puter algebra tools are applied to obtain the invariant manifolds and to
analyze the equations. These tools proved to be essential.

1 Introduction

The problem of rotation of a rigid body with a fixed point in a magnetic field is
considered, taking into account the Barnett–London effect [1,2] and the moment
of potential forces. As is well known, a rotating “neutral” ferromagnetic is mag-
netized along its axis of rotation (the Barnett effect). A similar phenomenon
occurs when a superconducting body rotates (the London effect). The magnetic
moment B is related to the angular velocity ω as follows: B = Bω (B is a linear
symmetric operator).

There are a lot of works studying the influence of the Barnett–London effect
on the motion of the body in various aspects. Similar problems arise in many
applications, e.g., in space dynamics [3], in designing instruments having a con-
tactless suspension system [4]. Our interest is in the works related to the quali-
tative analysis of the equations of motion of the top, e.g., [5]–[7]. In [5] and [6],
the integrable cases of the equations have been presented, and an analysis of the
problem in these cases has been done. The linear invariant manifold (IM) like
the Hess manifold [8] has been found in [7].

In the present work, we study the equations of motion of the top resting
on methods and tools of computer algebra. Using the method of undetermined
coefficients in combination with computer algebra methods, we find both the
existence conditions of linear IMs of codimension 1 and the IMs themselves,
and conduct the qualitative analysis of the equations having such solutions. The
cases when the system under study is dissipative and when it is conservative
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are considered. In the latter case, the IMs in question are the first integrals of
the problem and they are used to obtain stationary solutions and IMs in the
sense of [9] by the Routh–Lyapunov method [10]. All the principal computa-
tions concerned with this work have been done with computer algebra system
“Mathematica” and the software package developed on its base [11]. The pack-
age is intended for the qualitative analysis of dynamical systems possessing first
integrals. It is applied as an auxiliary tool when stationary solutions and IMs
are investigated on the base of the Routh–Lyapunov method and the Lyapunov
stability theorems for linear approximation [12]. Some description of the possi-
bilities of the package is given in [9].

The paper is organized as follows. In Sect. 2, we study the case when the
system under consideration is dissipative. We find linear IMs for the equations
of motion of the body and conduct the qualitative analysis of the equations
having such solutions. In Sect. 3, the same problem is solved when the system
is conservative. Finally, we discuss the obtained results and give a conclusion in
Sect. 4.

2 On Linear IMs of the Dissipative System

2.1 Formulation of the Problem

The equations of motion of the top in a magnetic field, taking into account the
Barnett–London effect and the moment of potential forces, can be written as [7]

Aω̇ = Aω × ω + Bω × γ + γ × (Cγ − s), γ̇ = γ × ω. (1)

Equation (1) admit the following first integrals:

V1 = Aω · γ = κ, V2 = γ · γ = 1. (2)

Here ω = (ω1, ω2, ω3) is the angular velocity of the body, γ = (γ1, γ2, γ3) is the
direction vector of the magnetic field, s = (s1, s2, s3) is the vector of the center
of mass, A = diag(A1, A2, A3) is the inertia tensor, B = diag(B1, B2, B3) is the
matrix characterizing the magnetic moment of the body, C = diag(C1, C2, C3)
is the matrix characterizing the influence of potential forces on the body, κ is
the constant of the integral V1.

When Ci = μAi (i = 1, 2, 3), where μ is some constant, differential Eq. (1)
describe the motion of the top under the influence of magnetic and Newtonian
fields.

Let us consider the following problem for Eq. (1). Find the IM of the type:

F (ω1, ω2, ω3, γ1, γ2, γ3) = f1ω1 + f2ω2 + f3ω3 + f4γ1 + f5γ2 + f6γ3 + f0= 0, (3)

where fi (i = 0, . . . , 6) are constant parameters to be determined.
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2.2 Finding the Linear IMs

Let Eq. (3) determine the desired IM for differential Eq. (1). Then, according
to IM definition, the derivative of expression (3) calculated by virtue of Eq. (1)
must vanish on the given expression.

The derivative of expression (3) calculated by virtue of Eq. (1) is some poly-
nomial P =P (ωj , γj) (j = 1, 2, 3). Using the built-in function Polynomial-Reduce
as below

PolynomialReduce[P, {F}, {ω3}],

where ω3 is the main variable, we can represent the polynomial P as follows:

P = QF + R. (4)

Here Q = Q(ω1, ω2, γj), R = R(ω1, ω2, γj) are some polynomials.
Equating the coefficients of similar terms of the polynomial R to zero, we

obtain the system of polynomial equations with respect to fi (i = 0, . . . , 6):

h1 = h2 = . . . = h19 = 0, (5)

where

h1 = A2A3(A3 − A2)f0f1, h2 = A1A3(A1 − A3)f0f2,
h3 = A1A3(A1 − A3)f1f2, h4 = A2A3(A3 − A2)f1f2,
h5 = A2A3(A3 − A2)f2

1 + A1A3(A1 − A3)f2
2 + A1A2(A1 − A2),

h6 = A1A3 [(A1 − A3)f2f4 + (A2f5 − B3f2) f1],
h7 = A2A3 [(B3f1 − A1f4) f2 + (A3 − A2)f1f5],
h8 = A2A3 (B3f1 − A1f4) f5, h9 = A1A3 (A2f5 − B3f2) f4,
h10 = A2A3 (B3f1 − A1f4) f4 + A1A3 (A2f5 − B3f2) f5 + A1A2 (C2 − C1),
h11 = A2A3 (B3f1 − A1f4) f1 + A1A3 [(A1 − A3)f2f5 − A2f6] + A1A2B1,
h12 = A1A3 (A2f5 − B3f2) f2 + A2A3 [(A3 − A2)f1f4 + A1f6] − A1A2B2,
h13 = A2A3 [B2f1 − A1f4 + (A3 − A2) f1f6],
h14 = A1A3 [A2f5 − B1f2 + (A1 − A3) f2f6],
h15 = A2A3 [(C3 − C2)f1 + (B3f1 − A1f4) f6],
h16 = A1A3 [(C1 − C3)f2 + (A2f5 − B3f2) f6], h17 = A3 (A2s2f1 − A1s1f2),
h18 = A2 [A3 (B3f1 − A1f4) f0 − A2 (A3s3f1 − A1s1)],
h19 = A1 [A3 (A2f5 − B3f2) f0 + A1 (A3s3f2 − A2s2)].

Without loss of generality, we take f3 = 1 in (5).
So, the problem of finding the linear IMs of differential Eq. (1) is reduced to

solving the above system of quadratic algebraic equations.
System (5) is compatible under some constraints on the parameters of the prob-

lem. The latter can be found by constructing a Gröbner basis for the polynomials
of the system. In particular, it has a non-empty set of solutions with respect to
B1, B2, B3, C1, s1, s2, s3, f0, f1, f2, f4, f5, f6. These solutions are given below:
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I. B1 =
(A2 − A1)(C2 − C3)

(A2 − A3)f6
+ A3f6, B2 =

A2(A1 − A2 + A3)f6
2A1 − A2

,

B3 =
C2 − C3

f6
− A1(A2 − 2A3)f6

2A1 − A2
,

C1 =
A2(A1 − A3)C2 + (A1 − A2)(A2 − 2A3)C3

(2A1 − A2)(A2 − A3)
,

s1 = ±
√

(A2 − A1)A3 s3√
A1 (A3 − A2)

, s2 = 0, (6)

f0 = 0, f1 = ±
√

A1 (A2 − A1)√
(A3 − A2)A3

, f2 = 0,

f4 = ±
√

A1 (A2 − A1)(A2 − 2A3)f6
(A2 − 2A1)

√
(A3 − A2)A3

, f5 = 0. (7)

II. B1 =
A1(A1 − A2 − A3)f6

A1 − 2A2
,

B2 = − (A1 − 2A2)(A1 − A2)(C2 − C3)
A1(A2 − A3)f6

+ A3f6,

B3 = − (A1 − 2A2)(A1 − A3)(C2 − C3)
A1(A2 − A3)f6

+
A2(A1 − 2A3)f6

A1 − 2A2
,

C1 =
(A1 − A2)(A1 − 2A3)C3 − (A1 − 2A2)(A1 − A3)C2

A1(A2 − A3)
, s1 = 0,

s2 = ±
√

(A2 − A1)A3 s3√
A2 (A1 − A3)

, (8)

f0 = 0, f1 = 0, f2 = ±
√

A2 (A2 − A1)√
(A1 − A3)A3

, f4 = 0,

f5 = ±
√

A2 (A2 − A1) (A1 − 2A3)f6
(A1 − 2A2)

√
(A1 − A3)A3

. (9)

Substituting (7) into (3), we obtain:

±
√

A1 (A2 − A1)√
A3 (A3 − A2)

ω1 + ω3 ±
√

A1 (A2 − A1) (A2 − 2A3)f6√
A3 (A3 − A2) (A2 − 2A1)

γ1 + f6γ3 = 0. (10)

Relations (10) define two families of IMs of codimension 1 for differential Eq. (1)
under constraints (6). Here f6 is the parameter of the families.

It should be noted that after substitution (6) into (1), we obtain a family of
the systems under study which has solutions (10).

When (9) is substituted into (3), we have the equations of two other families
of IMs:

±
√

A2 (A2 − A1)√
A3 (A1 − A3)

ω2 + ω3 ±
√

A2 (A2 − A1) (A1 − 2A3)f6√
A3 (A1 − A3) (A1 − 2A2)

γ2 + f6γ3 = 0. (11)
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Expressions (8) are the existence conditions of these families.
Let us repeat the above calculations. To represent the polynomial P in form

(4), take ω1 as the main variable:

PolynomialReduce[P, {F}, {ω1}].

As a result, we have yet the two families of IMs of codimension 1 for differential
Eq. (1), which differ from families (10) and (11):

ω1 ±
√

A2 (A3 − A2)√
A1 (A1 − A3)

ω2 ±
√

A1 (A1 − A3) (A3 − 2A2)f5√
A2 (A3 − A2) (A3 − 2A1)

γ1 + f5γ2 = 0, (12)

f5 is the parameter of the families.
The use of the rest of the variables as main ones to obtain the representation

of the polynomial P in form (4) did not give new IMs.

2.3 On Linear IMs of 2nd-Level and Higher

Taking the IMs of Eq. (1) as 1st-level IMs, let us consider the problem of finding
the linear IMs of codimension 1 for differential equations on the IMs obtained
in Sect. 2.2. Such IMs we call 2nd-level IMs.

The differential equations on the elements of the family of IMs, e.g.,
√

A1 (A2 − A1)√
A3 (A3 − A2)

ω1 + ω3 +

√
A1 (A2 − A1) (A2 − 2A3)f6√
A3 (A3 − A2) (A2 − 2A1)

γ1 + f6γ3 = 0, (13)

can be written as:

A1ω̇1 = (A2 − A3)ω2ω̄3 + B2ω2γ3 − B3ω̄3γ2 + (C3 − C2)γ2γ3 − s3γ2,

A2ω̇2 = (A3 − A1)ω1ω̄3 + B3ω̄3γ1 − B1ω1γ3 + (C1 − C3)γ1γ3 − s1γ3 + s3γ1,

γ̇1 = γ2ω̄3 − γ3ω2, γ̇2 = γ3ω1 − γ1ω̄3, γ̇3 = γ1ω2 − γ2ω1. (14)

The equations have been derived from the initial ones by eliminating the variable
ω3 from them with (13). Here the following denotations are used:

ω̄3 = −
(√

A1 (A2 − A1)√
A3 (A3 − A2)

ω1 +

√
A1 (A2 − A1)(A2 − 2A3)f6

(A2 − 2A1)
√

(A3 − A2)A3

γ1 + f6γ3

)
,

B1, B2, B3, C1, s1, s2 correspond to expressions (6).
The first integrals of Eq. (14):

V̄1 = A1ω1 + A2ω2 + A3ω̄3 = κ̄, V2 = γ2
1 + γ2

2 + γ2
3 = 1. (15)

They have been obtained from integrals (2) by eliminating the variable ω3 from
them with (13).
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For differential Eq. (14) by the technique applied in Sect. 2.2, under the con-
dition s3 = 0, we have found the following family of linear IMs:

ω1 − (A2 − 2A3)f6
2A1 − A2

γ1 = 0, (16)

f6 is the parameter of the family. It is the family of 2nd-level IMs on 1st-level
IMs (13).

The differential equations on the elements of family (16) have the form

ω̇2 =
2(A2 − 2A3)(A3 − A1)f2

6

A2(A2 − 2A1)
γ1γ3, γ̇1 = −(ω2 + f6γ2) γ3,

γ̇2 =
2(A1 − A3)f6

2A1 − A2
γ1γ3, γ̇3 = γ1

(
ω2 − (A2 − 2A3)f6

(2A1 − A2)
γ2

)
(17)

and admit the first integral

V = ω2 + f6

(2A3

A2
− 1

)
γ2 = c (18)

which is directly derived from the equations themselves.
Expression (18) can also be considered as the equation of IMs family, where

c is the parameter of the family. It is the family of 3rd-level IMs on 2nd-level
IMs (16).

Besides integral (18), Eq. (17) possess the following two integrals:

Ṽ1=
A1 (A2 − 2A3)f6

2A1 − A2
γ2
1 + A2γ2ω2 − A3f6γ

2
3 = κ̃, V2=γ2

1 + γ2
2 + γ2

3 = 1. (19)

They are derived from relations (15) by eliminating the variable ω1 from them
with (16).

So, system (17) is completely integrable. Let us find its stationary solutions
and IMs with the Routh–Lyapunov method.

2.4 Finding Stationary Solutions and IMs

According to the above-mentioned method, the stationary solutions and IMs of
differential Eq. (17) can be found from necessary extremum conditions for the
first integrals of these equations. Take, e.g., the linear combination of integrals
(18) and (19):

2K = 2λ0Ṽ1 − λ1V2 − λ2V, (20)

where λ0, λ1, and λ2 are some constants, and write the stationary conditions for
the integral K with respect to the phase variables:

∂K

∂ω2
= 0,

∂K

∂γi
= 0 (i = 1, 2, 3). (21)
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These are a system of linear algebraic equations with respect to ω2, γ1, γ2, γ3
with the parameters A1, A2, A3, f6, λ0, λ1, λ2. Add relation V2 = 1 (19) to them
and construct a lexicographical Gröbner basis with respect to γ1 > γ2 > γ3 >
ω2 > λ1 for the polynomials of a resulting system, using the built-in function
GroebnerBasis. As a result, the system is transformed to a form which enables
us to decompose it into the three subsystems:

(I) 2A3f6λ0 + λ1 = 0,
ω2 = 0, γ3 ± 1 = 0, γ1 = 0, γ2 = 0; (22)

(II) 2A1(A2 − 2A3)f6λ0 + (A2 − 2A1)λ1 = 0,
ω2 = 0, γ3 = 0, γ2 = 0, γ1 ± 1 = 0; (23)

(III) [A2
2λ0 + 2(A2 − 2A3)f6λ2]λ0 − λ1λ2 = 0,

A2
2λ0 + (A2 − 2A3)f6λ2 ± A2λ2ω2 = 0, γ3 = 0,

[A2
2λ0 + (A2 − 2A3)f6λ2] γ2 − A2λ2ω2 = 0, γ1 = 0.

(24)

Consider system (22). The latter four equations of this system define the
following solutions of differential Eq. 17):

γ1 = γ2 = ω2 = 0, γ3 = ±1. (25)

Substitute the expression

λ1 = −2A3f6λ0 (26)

found from the 1st equation of (22) into K (20). We thereby obtain the family
of integrals: 2K1 = λ0Ṽ1 + 2A3f6λ0V2 − λ2V . Its elements assume a stationary
value on solutions (25). It is easy to verify by direct substitution of solutions
(25) into the stationary equations for the integral K1.

Similarly, the latter four equations of each of systems (23) and (24) define,
respectively, the solutions

γ2 = γ3 = ω2 = 0, γ1 = ±1 (27)

and the families of solutions

γ1 = γ3 = 0, γ2 = ±1, ω2 = ±
[(

1 − 2A3

A2

)
f6 +

A2λ0

λ2

]
(28)

for differential Eq. (17). Here λ0, λ2, and f6 are the parameters of the families.
The elements of the families of integrals

K2 = λ0Ṽ1 − 2A1(A2 − 2A3)f6λ0

2A1 − A2
V2 − λ2V
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and

K3 = λ0Ṽ1 − λ0

(
2(A2 − 2A3) f6 +

A2
2λ0

λ2

)
V2 − λ2V

take a stationary value on solutions (27) and (28), respectively.
Now, let us find the stationary IMs which solutions (25), (27), and (28) belong

to.
First, we solve this problem for solutions (25). For this purpose, substitute

λ1 (26) into Eq. (21) and construct a lexicographical Gröbner basis with respect
to γ1, ω2, λ2 for the polynomials of a resulting system. As a result, we have:

− (A2 − 2A3)
A2

2

[A2
2λ0 + 2(A2 − A3)f6λ2] = 0, (29)

ω2 + f6γ2 = 0, γ1 = 0. (30)

Equation (30) together with relation V2 = 1 (19) determine the family of
one-dimensional IMs of differential Eq. (17). It is easy to verify by IM definition.
Here f6 is the parameter of the family.

Substituting

λ2 = − A2
2λ0

2(A2 − A3) f6
(31)

found from (29) into K1, we obtain the family of integrals: 2K̄1 = Ṽ1+2A3f6V2+
A2

2/(2(A2 − A3) f6) V . Its elements take a stationary value on the elements of
IMs family (30).

When solutions (25) are substituted into Eq. (30), these turn into identity.
Whence it follows that solutions (25) belong to the given family of IMs.

Substituting λ2 (31) into (28) gives the two subfamilies of these families:

γ1 = γ3 = 0, γ2 = ±1, ω2 = ±f6. (32)

It is not difficult to show that they also belong to the family of IMs (30).
In the same way, we have found the family of one-dimensional IMs which

solutions (27) belong to. Its equations can be written as

(2A1 − A2)ω2 − (A2 − 2A3)f6γ2 = 0, γ3 = 0, (33)

f6 is the parameter of the family.
When λ2 = A2

2(A2 − 2A1)λ0/(2 (A1 −A2)(A2 − 2A3)f6), the elements of the
family of integrals K2 take a stationary value on the elements of the given family
of IMs.

All the solutions found in this Section can be “lifted up” into the original
phase space. For this purpose, in the case of IMs, it is sufficient to add Eqs. (13)
and (16) to the above-obtained equations of IMs. As to stationary solutions, the
values of the variables ω1, ω2, which were derived from Eqs. (13) and (16) under
the corresponding values of the rest of the variables, should be added to the
expressions for the stationary solutions. So, the following families of solutions

ω1 = ω2 = 0, ω3 = ±f6, γ1 = γ2 = 0, γ3 = ∓1; (34)
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ω1 = ± (A2 − 2A3) f6
2A1 − A2

, ω2 = ω3 = 0, γ1 = ±1, γ2 = γ3 = 0; (35)

ω1 = 0, ω2 = ±f6, ω3 = 0, γ1 = 0, γ2 = ∓1, γ3 = 0 (36)

correspond to stationary solutions (25), (27), and (32) in the original phase space,
f6 is the parameter of the families. These are the solutions of differential Eq. (1)
in which B1, B2, B3, C1 correspond to expressions (6) and s1 = s2 = s3 = 0.

>From a mechanical viewpoint, the elements of the families of solutions (34)–
(36) correspond to permanent rotations of the top around one of its principal
axes.

2.5 On Stability of the Stationary Solutions and IMs

The integrals and their families which take a stationary value on the above-found
solutions are used to investigate the stability of these solutions by the Routh–
Lyapunov method. In this case, the problem is to analyze the sign-definiteness
conditions for the 2nd variation of the corresponding family of integrals derived
in the vicinity of the solution under study on a linear manifold.

Let us investigate the stability of solutions (25), using the integral K1.
The 2nd variation of the integral K1 in the vicinity of the solution under

study is

2ΔK1 =
2A2 (A1 − A3)f6λ0

2A1 − A2
y2
1 +

(
A3f6λ0 − (A2 − 2A3)2f2

6λ2

A2
2

)
y2
2

+ 2
(
A2λ0 + f6λ2 − 2A3f6λ2

A2

)
y2y4 − λ2 y2

4 .

Here y1 = γ1, y2 = γ2, y3 = γ3 ∓ 1, y4 = ω2 are the deviations from the unper-
turbed solution.

We consider the restriction of ΔK1 to the set defined by the first variations
of “conditional” integrals:

δV2 = ±2y3 = 0, δV =
(2A3

A2
− 1

)
f6y2 + y4 = 0.

On this set, ΔK1 takes the form:

ΔK̃1 = f6λ0

[A2(A1 − A3)
2A1 − A2

y2
1 + (A2 − A3) y2

2

]
.

The conditions

f6 �= 0, λ0 �= 0,
A2(A1 − A3)

2A1 − A2
> 0, A2 − A3 > 0 (37)

for the quadratic form ΔK̃1 to be positive definite are sufficient for the stability
of the solutions under study.

¿From now on, we apply the built-in function Reduce to solve the systems of
inequalities and to test their solutions found by hand.
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Inequalities (37) are compatible when the following conditions

f6 �= 0, λ0 �= 0 and
[(

A3 < A2 < 2A3 and (2A1 < A2 or A1 > A3)
)

or
(
A2 = 2A3 and (A1 < A3 or A1 > A3)

)

or
(
A2 > 2A3 and (A1 < A3 or 2A1 > A2)

)]

hold.
Next, we investigate the stability of the family of IMs (30), which solutions

(25) belong to. The integral K̄1 is used here.
For the equations of perturbed motion, the integral K̄1 in the vicinity of the

elements of the family of IMs (30) on the linear manifold δV = y2 = 0 is

ΔK̄1 =
A2(A1 − A3)f6

2A1 − A2
y2
1 ,

where y1 = γ1, y2 = ω2+f6γ2 are the deviations from the elements of the family
under study.

Since the quadratic form ΔK̄1 is positive definite when the following condi-
tions

(
A1 < A3 and ((A2 < 2A1 and f6 < 0) or (A2 > 2A1 and f6 > 0))

)

or
(
A1 > A3 and ((A2 < 2A1 and f6 > 0) or (A2 > 2A1 and f6 < 0))

)

hold, then these are sufficient for the stability of the elements of the family of
IMs (30).

The same technique was applied to investigate the stability of solutions (27),
the families of solutions (28) and (32) as well as the IMs which they belong
to. The sufficient conditions of stability for these solutions have been obtained,
including stability with respect to part of the variables.

Now, we analyze the stability of the families of solutions (34) which corre-
spond to solutions (25) in the original phase space. Their stability conditions
can be derived on the base of the Lyapunov theorems for linear approximation.

The equations of 1st approximation in the case under consideration can be
written as

ẏ1 = ±(f6y2 + y5), ẏ2 = ∓(f6y1 + y4), ẏ3 = 0,

ẏ4 = ± (A2 − 2A3)f6
2A1 − A2

[f6y2 + y5],

ẏ5 = ∓ (A2 − 2A3) [(A2 − A1)(C2 − C3) + A1(A2 − A3) f2
6 ]

A2 (2A1 − A2)(A2 − A3)
y1

+
1

A2f6

[ (A2 − A1)(C2 − C3)
A2 − A3

∓ (A1 − 2A3)f2
6

]
y4, ẏ6 = 0. (38)

Here y1 = γ1, y2 = γ2, y3 = γ3 ± 1, y4 = ω1, y5 = ω2, y6 = ω3 ∓ f6 are the
deviations from the elements of the family under study.
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The characteristic equation of system (38)

λ4
[
λ2 +

4(A1 − A3)(A2 − A3) f2
6

A2 (2A1 − A2)

]
= 0

has 4 zero roots.
The matrix of system (38) can be transformed to the Jordan form

J =

⎛

⎜⎜⎜⎜
⎜⎜
⎝

0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 z 0
0 0 0 0 0 −z

⎞

⎟⎟⎟⎟
⎟⎟
⎠

with the built-in function JordanDecomposition.
Here z = 2i

√
(A1 − A3)(A2 − A3) f6/

√
A2 (2A1 − A2).

As one can see from the structure of the Jordan matrix J, the following
Jordan block

(
0 1
0 0

)

corresponds to one pair of the zero roots. The latter means that the general
solution of system (38) has linear terms with respect to t. So, the elements of
the families under consideration are unstable. A similar result has been derived
for the families of solutions (35) and (36).

3 On Linear IMs of the Conservative System

Let us consider system (1) when B1 = B2 = B3 = α = const [6]. Under these
conditions, the system becomes conservative and possesses the energy integral

H = Aω · ω − 2(s · γ) + Cγ · γ = h (39)

along with integrals V1, V2 (2).
We were solving the same problem for this conservative system as for the dis-

sipative one: finding the IMs of type (3). By the technique applied in Sect. 2.2,
under the corresponding constraints on the parameters of the problem, the fol-
lowing relations have been obtained:

(I) ω1 + α
A1

γ1 + f0 = 0 when A3 = A2, C3 = C2, s2 = s3 = 0; (40)
(II) ω2 + α

A2
γ2 + f0 = 0 when A3 = A1, C1 = C3, s1 = s3 = 0; (41)

(III) ω3 + α
A3

γ3 + f0 = 0 when A1 = A2, C1 = C2, s1 = s2 = 0. (42)

These are the first integrals of the system in question under the above constraints.
It is easy to verify by the definition of first integral.

Integral (42) was previously found [5] in the absence of the moment of poten-
tial forces.

Further, one of the systems having integrals (40)–(42) is studied. We find its
stationary solutions and IMs and investigate their stability.
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3.1 Finding Stationary Solutions and IMs

Let us analyze, e.g., the differential equations possessing integral (42):

A2ω̇1 = −[(A3 − A2)ω2ω3 + (C2 − C3)γ2γ3 + α (γ2ω3 − γ3ω2) + s3γ2],
A2ω̇2 = (A3 − A2)ω1ω3 + (C2 − C3)γ1γ3 + α (γ1ω3 − γ3ω1) + s3γ1,

A3ω̇3 = α(γ2ω1 − γ1ω2),
γ̇1 = γ2ω3 − γ3ω2, γ̇2 = γ3ω1 − γ1ω3, γ̇3 = γ1ω2 − γ2ω1. (43)

These have been derived from Eq. (1), taking into account relations (42) and
Bi = α (i = 1, 2, 3).

The first integrals of Eq. (43):

H = A2(ω2
1 + ω2

2) + A3ω
2
3 + C2(γ2

1 + γ2
2) + C3γ

2
3 − 2s3γ3 = h,

V1 = A2(γ1ω1 + γ2ω2) + A3γ3ω3 = κ,

V2 = γ2
1 + γ2

2 + γ2
3 = 1, V3 = ω3 +

α

A3
γ3 = −f0. (44)

The system in question is completely integrable. In order to find its stationary
solutions and IMs by the Routh–Lyapunov method, the following combination
of the first integrals

K = λ0H − λ1V1 − λ2V2 − λ3V
2
3 . (45)

is used, λi (i = 0, . . . , 3) are some constants.
As in Sect. 2.4, we write the stationary conditions of the integral K with

respect to the phase variables:

∂K

∂ωi
= 0,

∂K

∂γi
= 0 (i = 1, 2, 3). (46)

These are a system of linear algebraic equations with respect to ωi, γi (i = 1, 2, 3)
with the parameters A2, A3, C2, C3, α, λ0, λ1, λ2, λ3.

Next, we add relation V2 = 1 (44) to Eq. (46) and compute a lexicographical
basis with respect to ω3 > ω2 > ω1 > γ3 > γ2 > γ1 > λ3 for the polynomials
of a resulting system, using the built-in function GroebnerBasis. The result is a
system which can be split up into two subsystems. From the equations of the
subsystems, we have found both the families of solutions for differential Eq. (43)
and the values of λ3 under which integral K (45) takes a stationary value on the
elements of these families.

The two found families of solutions for differential Eq. (43) are written as

ω1 = ω2 = 0, ω3 = ±αλ1 − 2λ2 + 2λ0(C3 ∓ s3)
2αλ0 + A3λ1

, γ1 = γ2 = 0, γ3 = ±1, (47)

where λ0, λ1, and λ2 are the parameters of the families. From a mechanical view
point, the elements of these families correspond to permanent rotations of the
body around the Oz axis.
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The values of λ3:

λ31,2 =
A2

3 [4(C3 ∓ s3)λ2
0 − A3λ

2
1 − 4λ0λ2]

4[(α2 + A3(C3 ∓ s3))λ0 + αA3λ1 − A3λ2]
. (48)

Now, let us find the stationary IMs which the elements of families (47) belong
to. For this purpose, we substitute the values of λ31 (λ32) into Eq. (46) and
construct a lexicographical basis with respect to ω3 > ω1 > γ3 > γ2 > λ2 for
the polynomials of a resulting system. The basis has the form:

4λ0 (C2λ0 − λ2) − A2λ
2
1 = 0, (49)

λ1γ2 − 2λ0ω2 = 0, 1 ∓ γ3 = 0, 2λ0ω1 − λ1γ1 = 0,

±2λ0 (2αλ0 + A3λ1)ω3 + 2λ0 [ 2λ0(C2 − C3 ± s3) − αλ1] − A2λ
2
1 = 0. (50)

Equations (50) together with V2 = 1 (44) determine the two families of one-
dimensional IMs for differential Eq. (43). It is easy to verify by IM definition.
Here λ0 and λ1 are the parameters of the families.

Substituting the values of λ31,2 and

λ2 = C2λ0 − A2λ
2
1

4λ0
(51)

found from (49) into (45), we obtain the two families of integrals:

K1,2 = λ0H − λ1V1 −
(
C2λ0 − A2λ

2
1

4λ0

)
V2 − λ̄31,2V

2
3 , (52)

where λ̄31,2 are the expressions for λ31,2 into which λ2 (51) was substituted. The
integrals take a stationary value on the elements of the corresponding families
of IMs (50).

When λ2 (51) is substituted into (47), we have the two subfamilies

ω1 = ω2 = 0, ω3 = ±2λ0 [αλ1 + 2λ0(C3 − C2 ∓ s3)] + A2λ
2
1

2λ0 (2αλ0 + A3λ1)
,

γ1 = γ2 = 0, γ3 = ±1 (53)

of the families of solutions (47). The elements of these subfamilies belong to the
corresponding families of IMs (50).

Further, we investigate the stability for the elements of families (50) and (53).

3.2 On Stability of the Stationary Solutions and IMs

We use the families of integrals K1,2 (52) to analyze the stability of the elements
of the families of solutions (53).

Introduce the deviations from the elements of one of the families:

y1 = ω1 − ω0
1 , y2 = ω2 − ω0

2 , y3 = ω3 − ω0
3 , y4 = γ1 − γ0

1 , y5 = γ2 − γ0
2 ,

y6 = γ3 − γ0
3 .
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Here ω0
i and γ0

i (i = 1, 2, 3) are the values of the variables in unperturbed motion
(53).

The variation of the integral K1 (K2) in the vicinity of the elements of the
family under consideration in the deviations yj (j = 1, . . . , 6) on the linear
manifold δV2 = ±2y6 = 0, δV3 = A3y3 + αy6 = 0 is written as

4λ0ΔK1,2 = A2 [ζ21 + ζ22 ], (54)

where ζ1 = λ1y4 − 2λ0y1, ζ2 = λ1y5 − 2λ0y2.
As one can see from (54), the quadratic form ΔK1,2 is sign-definite with

respect to the variables ζ1 and ζ2 when λ0 �= 0. Whence it follows the stability
of the elements of the families under study with respect to the variables ζ1 =
λ1γ1 − 2λ0ω1, ζ2 = λ1γ2 − 2λ0ω2.

Using the same families of the integrals, we investigated the stability of the
elements of the families of IMs (50) which solutions (53) belong to.

For the equations of perturbed motion, the integral K1 (K2) in the vicinity
of the elements of the family under study on the linear manifold δV3 = y2 +
αy4/A3 = 0 has the form:

ΔK1,2 = λ0

(
A2y

2
1 +

1
4
A2λ̄

2 y2
3 +

[
C3 − C2 +

α2

A3
+ αλ̄ +

1
4
A2λ̄

2
]
y2
4

)
,

where y1, y2, y3, y4 are the deviations from the elements of the family under
consideration, λ̄ = λ1/λ0.

The full list of the conditions for the quadratic form ΔK1,2 to be positive
definite, which was derived with the use of the built-in function Reduce, is rather
bulky. Some of the conditions are given below:

λ0 > 0, C2 > 0, C3 > 0 and
[(

C3 > C2 and [α < 0 and (0 < λ1 ≤ λ0

α
(C2 − C3) or λ1 < 0) ]

or [α > 0 and (
λ0

α
(C2 − C3) ≤ λ1 < 0 or λ1 > 0) ]

)

or
(
C3 = C2 and [ (α < 0 and λ1 < 0) or (α > 0 and λ1 > 0) ]

)

or
(
C3 < C2, A2 > 0, 0 < A3 <

α2

C2 − C3
and

[ (λ1 > 0 and α < 0 and λ0 ≥ D) or

(λ1 < 0 and α > 0 and λ0 ≥ D) ]
)]

, D =
αA3λ1

A3(C2 − C3) − α2
.

These are sufficient for the stability of the elements of the families of IMs (50).
Note that the constraints on the parameters λ0 and λ1 separate the subfamilies
from the families of integrals K1,2, which enable us to obtain these sufficient
conditions.
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4 Conclusion

In this work, differential equations describing the rotation of a rigid body with
a fixed point in a magnetic field, taking into account the Barnett–London effect
and the moment of potential forces, were analyzed. The equations contain 12
parameters. Two cases, when the system under study is dissipative and when it
is conservative, were considered. A technique for finding the linear IMs of the
equations was proposed. It is based on a combination of undetermined coeffi-
cients method with computer algebra methods. In the dissipative case, using
this technique, the linear IMs of codimension 1 have been obtained. Most of
them are previously unknown. The qualitative analysis of the equations having
such solutions was carried out. For this purpose, the reduction of these equations
to corresponding equations on the IMs was done. The stationary solutions and
IMs of the reduced system have been found and the sufficient conditions of their
stability in the Lyapunov sense have been derived. Solutions corresponding to
the above solutions in the original phase space were presented and the stability
of some of them was investigated.

In the conservative case, the first integrals of the system under study have
been obtained. The qualitative analysis of the equations possessing these inte-
grals was performed.

The research technique applied in the present work as well as the obtained
results may be of interest in the qualitative analysis of similar multiparametric
systems.
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8. Hess, W.: Über die Euler’schen Bewegungsgleichungen und über eine neue par-
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Abstract. The problem of robust Schur stability of a polynomial matrix
family is considered as that of discovering the structure of the stability
domain in parameter space. The algorithms are proposed for establishing
whether or not any given box in the parameter space belongs to this
domain, and for finding the distance to instability from any internal point
of the domain to its boundary. The treatment is performed in the ideology
of analytical algorithm for elimination of variables and localization of
zeros of algebraic systems. Some examples are given.

Keywords: Matrix polynomials · Robust schur stability ·
Parameters · Discriminant

1 Introduction

For a polynomial f(z) ∈ C[z], its Schur stability (or D-stability) property is
defined as that of location of all its zeros inside the unit disc of the complex
plane:

D = {z ∈ C | |z| < 1} . (1)

The same definition relates to the matrix M ∈ C
n×n with numerical entries if the

whole spectrum lies inside D. The D-stability property is of an importance for
estimating the behavior of solutions to difference equation systems [11]. There
exist several criteria for establishing the Schur stability of a polynomial in terms
of its coefficients, for instance the Schur – Cohn or Jury’s criteria [17,20,25].

The counterpart of the problem for matrices with entries depending on
parameters varying within some set B is sometimes referred to as the robust
Schur stability problem with the meaning that all the matrices of this fam-
ily should be D-stable. This property is of vital importance for the parameter
synthesis in Control Theory. In digital signal processing applications such as
sampling rate conversion, echo cancellation, phased-array antenna systems, time
delay estimation, timing adjustment in all-digital receivers, modelling of music
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instruments, and speech coding and synthesis, there is a need to design a digital
filter with predicted characteristics [4,28,34]. Therefore, the tolerances are to be
estimated for the permissible parameter variations.

In the present paper, we will tackle the D-stability problem for the matrix
family {

M(μ) = [mjk(μ)]nj,k=1 | μ = (μ1, μ2, . . . , μk) ∈ B
}

. (2)

Here {mjk(μ)}n
j,k=1 are real polynomials in μ while B is a box:

B =
{
μ−
1 ≤ μ1 ≤ μ+

1 , μ−
2 ≤ μ2 ≤ μ+

2 , . . . , μ−
k ≤ μk ≤ μ+

k

} ⊂ IRk . (3)

For the case of symmetric matrices, the robust Schur stability problem is
treated in recent book [26]. In [7,15], necessary and sufficient conditions for the
zeros of arbitrary polynomial matrix to belong to a given region D of the complex
plane as a linear matrix inequality (LMI) feasibility problem are formulated. To
solve this problem, interior-point methods are used. In [8], analysis and synthesis
techniques for quadratic stability in LMI regions that embrace most practically
useful stability regions are discussed.

In [6], robust Schur stability of a polynomial matrix family is reduced to the
positivity of multivariate polynomials, and the Bernstein expansion method [19]
is applied to test positivity of the obtained polynomials.

In Sect. 3, we first detail the structure of the boundary of the set of Schur
stable matrices M(μ) in the parameter space. Then we propose an algebraical
approach to the problem of testing the stability of family (2). The algorithm
is based on the Le Verrier method for the computation of the characteristic
polynomial of a matrix [33] and algebraic procedures for checking the positivity
property of multivariate polynomials in the given domain [18]. Another problem
dealt with in Sect. 3 is that of finding the distance to instability in the
parameter space, i.e., the Euclidean distance d∗(μ(0)) from a given point μ(0) ∈
R

k corresponding to a stable matrix M(μ(0)) to the nearest point μ∗ ∈ R
k at the

boundary of domain of stable matrices [26]. This notion should be distinguished
from the one related to the distance to instability in the matrix space or stability
radius. The latter is defined for a stable matrix A ∈ R

n×n as the Frobenius norm
of the matrix E ∈ R

n×n such that the matrix A+E is the nearest to A unstable
matrix [1]. This definition can be treated as a particular case of the first one for
the matrix set

{
A + [μj�]

n
j,�=1

}
.

In Sect. 4, some numerical examples are presented illuminating the efficiency
of the suggested algorithms.

Hereinafter the word stability should be understood in the meaning Schur
stability (D-stability).

2 Algebraic Preliminaries

Here we give some auxiliary results regarding the properties of the zero sets of
polynomials.
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2.1 Newton Sums of a Polynomial

Consider a polynomial

f(z) = a0z
n + a1z

n−1 + a2z
n−2 + . . . + an, {a0 �= 0, a1, . . . , an} ⊂ IR, (4)

and denote {α1, α2, . . . , αn} ⊂ C its zeros counted with their multiplicities.
The Newton sums of the polynomial f(z) are formally defined as

s0 = n; sk =
n∑

j=1

αk
j for k ∈ IN,

while the Newton identities [14]

s0 = n; s1 = −a1/a0;

sk =
{−(a1sk−1 + a2sk−2 + . . . + ak−1s1 + kak)/a0if k ∈ {2, . . . , n},

−(a1sk−1 + a2sk−2 + . . . + ansk−n)/a0 if k > n.
(5)

allow one to compute recursively these sums as rational functions (polynomials
if a0 = 1) of the coefficients of f(z).

Conversely, if for some reason, the canonical representation (4) of a normal-
ized polynomial is not granted but we are able to compute somehow its Newton
sums, the following inversions of the Newton identities

a1 = −s1; a2 = −(s2 + a1s1)/2;
ak = −(sk + a1sk−1 + a2sk−2 + . . . + ak−1s1)/k, if k ∈ {3, . . . , n} (6)

allow one to restore the coefficients of f(z). This opportunity gives rise to the
Le Verrier method [12,14] for computation of the characteristic polynomial of a
matrix A ∈ Cn×n. Indeed, the Newton sums of this polynomial can be evaluated
via computation of the traces of powers of the matrix A:

sk = Tr(Ak) for k ∈ IN . (7)

It turns out that with the aid of the sequence of Newton sums of a polynomial,
one can express some symmetric function of the pairs of zeros of this polynomial.
We will utilize further two such functions.

Theorem 1. Set the Newton sums of the polynomial with zeros α�αk of degree
n(n − 1)/2

Sj :=
∑

1≤�<k≤n

αj
�α

j
k for j ∈ N .

Then
Sj = (s2j − s2j)/2 . (8)

Proof. One has

s2j =

(
n∑

k=1

αk

)2

=
n∑

k=1

α2
k + 2

∑

1≤�<k≤n

αj
�α

j
k = s2j + 2Sj . �
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The second symmetric function of the zeros of the polynomial f(z) is formally
defined as

D(f(z)) := a2n−2
0

∏

1≤�<k≤n

(α� − αk)2

and is known as the discriminant of the polynomial f(z). It vanishes iff the
polynomial f(z) possesses a multiple zero (or, equivalently, iff f(z) possesses a
common zero with f ′(z)). For the aim of expressing D(f(z)) via the Newton
sums of f(z), we introduce the Hankel determinant

Hk := det[sj+�]k−1
j,�=0 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

s0 s1 s2 . . . sk−1

s1 s2 s3 . . . sk

...
...

...
...

sk−1 sk sk+1 . . . s2k−2

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (9)

Theorem 2. The following equality is valid:

D(f(z)) = a2n−2
0 Hn . (10)

It turns out that the sequence of Hankel determinants {Hk}n
k=1 introduced

by (9) permits one to establish the exact numbers of real zeros for the polyno-
mial f(z). Moreover, a slight modification of these determinants allows one to
construct a sequence of polynomials that localize all its real zeros. For this aim,
introduce the parameter dependent determinant

Hk(z) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s0 s1 s2 . . . sk

s1 s2 s3 . . . sk+1

...
...

...
...

sk−1 sk sk+1 . . . s2k−1

1 z z2 . . . zk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (11)

Its expansion by the last row yields the polynomial in z

Hk(z) ≡
k∑

j=0

hkjz
k−j ,

which is sometimes called the kth Hankel polynomial generated by the
sequence {sj}. It is evident that hk0 = Hk.

Theorem 3 (Jacobi, Joachimsthal [16,20,27]).
Let Hn = 0, . . . , Hr+1 = 0,Hr �= 0, . . . , H1 �= 0. Then

(i) The number of distinct zeros of f(z) equals r;
(ii) The number of distinct real zeros of f(z) equals

P(1,H1, . . . , Hr) − V(1,H1, . . . , Hr) ;

(iii) The number of distinct real zeros of f(z) lying in the interval [a, b], a < b
equals

V(1,H1(a), . . . ,Hr(a)) − V(1,H1(b), . . . ,Hr(b)) .
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Here P (or V) stands for the number of permanences (variations) of sign for the
given sequences1.

Corollary 1. The following identity is valid:

Hn(z) ≡ Hnf(z)/a0 .

Remark. One may notice an evident relationship of the part (iii) of Theorem 3
to the algorithm of localization of zeros of the polynomial f(z) based on the
Sturm – Habicht sequence construction [2]. The principal distinction in the two
procedures is that the Sturm – Habicht algorithm constructs the sequence of
polynomials with decreasing degrees starting with the polynomial f(z), whilst
the Jacobi – Joachimsthal sequence is composed of polynomials with increasing
degrees, with the final one coinciding with f(z). This distinction is of importance
for the class of problems where the polynomial f(z) is not a priory represented
in canonical form like the above mentioned problem related to characteristic
polynomial of a matrix. With Newton sums evaluated via (7), computation of
sequence H1(z), . . . ,Hn(z) results in this polynomial and furnishes, free of an
additional charge, an opportunity to locate its real zeros.

Corollary 2. [29]. If Hn = 0,Hn−1 �= 0, then the polynomial f(z) possesses a
single multiple zero with its multiplicity equal to 2. This zero can be expressed
via the two coefficients of the polynomial Hn−1(z):

α = s1 + hn−1,1/Hn−1 . (12)

If Hn = Hn−1 = . . . = Hn−k+1 = 0,Hn−k �= 0, k > 1, then gcd(f(z), f ′(z)) is of
the order k and can be expressed with the aid of the kth order minors of Hn.

Computation of the sequence of Hankel polynomials in part (iii) of Theorem 3
can be optimized with the following result.

Theorem 4 (Jacobi, Joachimsthal [16,30]). Let k ∈ {3, . . . , n}. If Hk−1 �=
0,Hk �= 0, then the following identity is valid:

Hk

Hk−1
Hk−2(z) −

(
z − hk−1,1

Hk−1
+

hk1

Hk

)
Hk−1(z) +

Hk−1

Hk
Hk(z) ≡ 0. (13)

Formula (13) permits one to compute the sequence of polynomials
{Hk(z)}n

k=1 recursively with every polynomial computed as linear combination
of two preceding ones and with the two constants involved also evaluated via
the coefficients of these polynomials (v. [30]):

{
Hk = sk−1hk−1,k−1 + skhk−1,k−2 + . . . + s2k−2hk−1,0,
hk1 = −(skhk−1,k−1 + sk+1hk−1,k−2 + . . . + s2k−1hk−1,0).

(14)

1 P(A1, . . . , AK) :=
∑K−1

j=1 P(Aj , Aj+1) where P(Aj , Aj+1) := 1 if AjAj+1 > 0
and P(Aj , Aj+1) := 0 if AjAj+1 < 0. V(A1, . . . , AK) is defined similarly with
V(Aj , Aj+1) := 1 − P(Aj , Aj+1).
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Given polynomial (4) and a polynomial

g(z) = b0z
m + b1z

m−1 + · · · + bm−1z + bm ∈ C[z], b0 �= 0

with zeros β1, . . . , βm, the resultant of these polynomials is formally defined by
the formula

R(f, g) = am
0 bn

0

n∏

�=1

m∏

j=1

(α� − βj), (15)

while practically can be expressed as a polynomial in the coefficients of f(z)
and g(z) using several determinantal representations. The mostly known is the
Sylvester representation

R(f, g) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a0 a1 a2 . . . an 0 0 . . . 0
0 a0 a1 . . . an 0 . . . 0

. . .
0 0 0 . . . a0 a1 a2 . . . an

b0 b1 . . . bm 0 . . . 0
0 b0 b1 . . . bm 0 0 . . . 0

. . .
0 0 0 . . . b0 b1 b2 . . . bm

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

⎫
⎪⎪⎬

⎪⎪⎭
m rows

⎫
⎪⎪⎬

⎪⎪⎭
n rows

.

Obviously, polynomials f(z) and g(z) have a common zero iff R(f, g) = 0.

Remark. In some further formulas involving discriminant or resultant, we will
occasionally specify the variable of the considered polynomials with subscripts
like Dz or Rz.

2.2 Positivity of a Multivariate Polynomial

We present here a multidimensional counterpart for Theorem 3. We wish to
establish the relative position of the manifold given implicitly in R

k, k ≥ 2 by
an algebraic equation to a specified box

B =
{
x−
1 ≤ x1 ≤ x+

1 , x−
2 ≤ x2 ≤ x+

2 , . . . , x−
k ≤ xk ≤ x+

k

}
(16)

in this space. For the proof of the following result, we refer to [18].

Theorem 5 Consider a multivariate polynomial

G(X) ∈ R[X],X := (x1, . . . , xk) ∈ C
k, k ≥ 2,deg G = N ≥ 1

and expand it in powers of one of the variables, say x1:

G(X) ≡ a0(x2, . . . , xk)xN
1 + . . . + aN (x2, . . . , xk) .

Let a0(x2, . . . , xk) �= 0 in the box

B1 =
{
x−
2 ≤ x2 ≤ x+

2 , . . . , x−
k ≤ xk ≤ x+

k

}
.
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Polynomial G(X) does not vanish in the box (16) iff the following conditions
hold:

(i) For any j ∈ {2, 3, . . . , k}, the polynomials

G−
j := G(x1, . . . , xj−1, x

−
j , xj+1, . . . , xk)

and
G+

j := G(x1, . . . , xj−1, x
+
j , xj+1, . . . , xk)

do not vanish in the box

Bj =
{
μ−
1 ≤ μ1 ≤ μ+

1 , . . . , μ−
j−1 ≤ μj−1 ≤ μ+

j−1,

μ−
j+1 ≤ μj+1 ≤ μ+

j+1, . . . , μ−
k ≤ μk ≤ μ+

k

}
.

(ii) The system of equations

G(X) = 0, ∂G(X)
/
∂x2 = 0, . . . , ∂G(X)

/
∂xk = 0 (17)

does not have real zeros in the box (16).

For the case of a bivariate polynomial G(x, y), the condition of the part (ii)
of the above theorem can be immediately verified via application of Theorem 3.
As for the condition (ii), system (17) takes then the form

G(x, y) = 0, ∂G(x, y)
/
∂y = 0 . (18)

One can eliminate the variable y from this system using the discriminant
technique introduced in Sect. 2.1. Assuming that this discriminant F1(x) :=
Dy(G(x, y)) is not identically zero (i.e., the set of zeros of (18) is zero-dimensio-
nal), it is a univariate polynomial. Under additional assumption of the absence
of multiple zeros for F1(x), its real zeros yield the x-component of the real zeros
of system (18). To establish the (non)existence of the latter in the box

B =
{
a− ≤ x ≤ a+, b− ≤ y ≤ b+

}

one can first verify, via Theorem 3, if the polynomial F1(x) does not have real
zeros in [a−, a+]. If it does, then any such a zero can be localized with the aid
of the mentioned theorem within an arbitrary prescribed accuracy. Application
of the result of Corollary 2 permits one to evaluate y-component of the corre-
sponding zero of system (18) and to verify if it does not lie in [b−, b+].

Remark. The suggested approach has an evident relationship to a real quantifier
elimination (QE) problem [3,24].

The just outlined scheme for checking the conditions of Theorem 5 for the
bivariate case can be extended for the general case of a multivariate polyno-
mial. It is connected with one notion that is introduced at the end of the next
subsection.
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2.3 Distance from a Point to an Algebraic Manifold

We treat here the problem of Euclidean distance evaluation from a point X0 to
the algebraic manifold defined implicitly by the equation

G(X) = 0 (19)

in R
k, k ∈ {2, 3},deg G > 1. For this aim, we utilize the construction of the so-

called distance equation, i.e., the algebraic univariate equation whose zero set
coincides with that of the critical values of the squared distance function from
the point to the manifold [31].

Theorem 6. Let G(0, 0) �= 0, and G(x, y) be an even polynomial in y. Expand
G in powers of y2 and denote G̃(x, y2) ≡ G(x, y). Equation G(x, y) = 0 does not
define a real curve if

(i) equation G(x, 0) = 0 does not have real zeros and
(ii) distance equation

F(z) := Dx(G̃(x, z − x2)) = 0 (20)

does not possess positive zeros. If any of these conditions fails, then the distance
from X0 = (0, 0) to the curve G(x, y) = 0 equals the minimal of the two values:

1. the minimal absolute value of real zeros of the equation G(x, 0) = 0,
2. the square root of the minimal positive zero of Eq. (20) provided that this

zero is not a multiple one.

Remark. The condition of simplicity of the minimal positive zero of the distance
equation appeared in theorems of the present subsection is essential since in some
(fortunately exceptional) cases, this zero is generated by a pair of imaginary
points in the manifold [32].

The generalization of this result to the case of an arbitrary polynomial
G(x, y), not necessarily even in any of its variables, can be performed by reduc-
tion to the just treated one via artificial evenization of the problem. Unfor-
tunately, this causes the appearance of an extraneous factor in the distance
equation.

Theorem 7. Let G(0, 0) �= 0, and G(x, y) be not an even polynomial in y. Split
G into the sum of even and odd terms in this variable:

G(x, y) ≡ G1(x, y2) + yG2(x, y2), {G1, G2} ⊂ R[x, y2] .

Let
G̃(x, y2) := G(x, y)G(x,−y) ≡ G2

1(x, y2) − y2G2
2(x, y2)

and compute the polynomial F(z) via (20). The latter is reducible over R:

F(z) ≡ F1(z)F2
2 (z) with F2(z) := Rx(G1(x, z − x2), G2(x, z − x2)) .
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Equation G(x, y) = 0 does not define a real curve if
(i) equation G(x, 0) = 0 does not possess real zeros and
(ii) distance equation

F1(z) = 0 (21)

does not possess positive zeros.
If any of these conditions fails, then the distance from X0 = (0, 0) to the

curve G(x, y) = 0 equals the minimal of the two values:
1. the minimal absolute value of real zeros of the equation G(x, 0) = 0,
2. the square root of the minimal positive zero of the Eq. (21) provided that

this zero is not a multiple one.

Conditions (i) and (ii) of Theorems 6 and 7 can be verified using symbolic
algebraic algorithms from Theorem 3. Equations (20) and (21) are the distance
equations for the point X0 = (0, 0) and the curve G(x, y) = 0. For arbitrary
point X0 = (x0, y0), this equation can be extracted from the corresponding
theorem via shifting the origin: Ĝ(x, y) := G(x + x0, y + y0). Generically, one
gets deg F1(z) = (deg G)2 for (21).

The treatment of the problem for the case of surfaces in R
3 can be organized

in a similar manner. Consider, for instance, a polynomial that is even in one of
its variables, say G(x1, x2, x

2
3). The distance equation for the point (0, 0, 0) and

the surface G = 0 can be obtained as a result of elimination of the variables
x1, x2 from the system of equations

G̃ = 0, ∂G̃/∂x1 = 0, ∂G̃/∂x2 = 0 for G̃(x1, x2, z) := G(x1, x2, z − x2
1 − x2

2) .

One may notice the similarity of the obtained system with system (17). The
common underlying notion is known as the multivariate discriminant, i.e., an
algebraic function of the coefficients of a multivariate polynomial G(x1, . . . , xn)
responsible for the existence of a multiple zero for this polynomial, i.e., zero for
the system

G = 0, ∂G/∂x1 = 0, . . . , ∂G/∂xn = 0 .

There are different approaches for constructive computation of this object with
the universal one based on the Gröbner basis construction. For computations in
Example 3 considered further, we utilize the procedure of the multivariate poly-
nomial resultant computation based on a certain determinantal representation
via its coefficients [5].

3 Stability Domain in the Parameter Space

3.1 Structure of the Boundary

Theorem 8. For matrix (2), consider the characteristic polynomial and its
reciprocal:

f(z;μ) := det(zI − M(μ)) and f∗(z;μ) ≡ znf(1/z;μ) .
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Assume that matrix (2) is nonsingular for μ in B with the probable exception of
manifold of codimension 1. Family (2) is stable iff its arbitrary member is stable
and the polynomial

Φ(μ) := Rz(f(z;μ), f∗(z;μ)) (22)

is positive for μ ∈ B.

Proof. If we denote by α1(μ), . . . , αn(μ) the zeros of

f(z;μ) = zn + a1(μ)zn−1 + · · · + an−1(μ)z + an(μ),

then those of f∗(z;μ) are 1/α1(μ), . . . , 1/αn(μ). Due to the definition of resul-
tant (15), one obtains

Φ(μ) = Rz(f(z;μ), f∗(z;μ)) = an
n(μ)

n∏

j,k=1

(αj(μ) − 1/αk(μ))

=
(−1)n2

an
n(μ)

∏n
j=1 αn

j (μ)

n∏

j,k=1

(1 − αj(μ)αk(μ)) =
n∏

j,k=1

(1 − αj(μ)αk(μ))

=
n∏

j=1

(1 − αj(μ))
n∏

j=1

(1 + αj(μ))
∏

1≤j<k≤n

(1 − αj(μ)αk(μ))2 . (23)

If the matrix M(μ) is stable for some specialization of parameter μ = μ0 ∈ B,
then Φ(μ0) > 0. When the parameter μ varies continuously within the (simply
connected domain) B starting from this value, the eigenvalues {αj(μ)}n

j=1 of
the matrix drift continuously within disk (1). The inequality Φ(μ) > 0 keeps
to be valid until either any real eigenvalue αj reaches ±1, or a pair of complex
conjugate eigenvalues {αj(μ), αk(μ) = αj(μ)} reaches the unit circle. Therefore,
the condition Φ(μ) > 0 prevents the spectrum of the matrix to leave disc (1). �

Thus, the boundary of the set of stable matrices M(μ) in the parameter space
R

k is given by the equation
Φ(μ) = 0 .

Next we determine the structure of this manifold.

Theorem 9. Under conditions and in notation of Theorem 8, one has

Φ(μ) ≡ det f∗(M(μ);μ)

= det(I + a1(μ)M(μ) + · · · + an−1(μ)Mn−1(μ) + an(μ)Mn(μ)) . (24)

Proof. It follows from the more general result [14]. For any polynomial g(z) =
b0z

m + · · · + bm ∈ C[z] and any matrix A ∈ C
n×n, the following equality is valid

det g(A) = Rz(det(zI − A), g(z)) .

�
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For low order matrices M(μ), computation of Φ(μ) via formula (24) does not
cause troubles. However, for higher orders, any simplification of computations is
valuable. One of the opportunities for such a potential simplification is provided
by representation (23).

Corollary 3. Polynomial (22) is reducible over R:

Φ(μ) ≡ f(1;μ)f(−1;μ)Φ2
1(1;μ) . (25)

Here
Φ1(z;μ) ≡

∏

1≤j<k≤n

(z − αj(μ)αk(μ)) . (26)

Being symmetric functions of the zeros of the polynomial f(z;μ), the coeffi-
cients of Φ1(z;μ) can be expressed as polynomials over Z in the coefficients of
f(z;μ).

Corollary 4. Family (2) is stable iff M(μ(0)) is stable for a particular special-
ization of the parameter μ = μ(0) in (3) and polynomials

f(1;μ), f(−1;μ), Φ1(1;μ) (27)

are positive in (3). Equations

f(1;μ) = 0, f(−1;μ) = 0, Φ1(1;μ) = 0 (28)

define implicit manifolds in R
k that form the boundary for the stability domain

in the parameter space, i.e., of parameter specializations responsible for stability
of the matrix M(μ).

Example 1. In terms of the coefficients of the characteristic polynomial f(z) :=
zn +

∑n
j=1 ajz

n−j , one has

Φ1(1; a1, a2, a3) ≡ −a2
3 + a3a1 − a2 + 1 for n = 3,

Φ1(1; a1, a2, a3, a4) ≡ (a4 − 1)2(1 − a2 + a4) + (a1a4 − a3)(a3 − a1)
for n = 4 .

From (26) and Viète formulas, one can notice that the degree of Φ1(1; a1, . . . , an),
treated as a polynomial in all the coefficients of f(z), equals n−1, and it contains
the term (−1)n(n−1)/2an−1

n . �

To obtain the general expression for Φ1(1;μ) for any n via factorization of
polynomial (24), looks like a nontrivial task even if we know two its factors from
identity (25). There exist several approaches to factoring polynomials (see [22]
and references therein). All the known algorithms run in polynomial time or are
conjectured so (using randomization and for dense polynomials). Their running
time bounds, however, seem to have high exponents [23] (Theorem 3.12). An
alternative procedure for the construction of the polynomial Φ1(1;μ) can be
suggested on the base of Theorem 1. We describe it in the next section.
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3.2 The Algorithm

To check the robust stability of family (2), perform the following steps

0. Take arbitrary point μ(0) in B. If M(μ(0)) is not stable, then the claim is
wrong. Otherwise
1. Calculate the powers of matrix M and their traces: sk = Tr(Mk) for k ∈
{1, 2, . . . , n(n − 1)}.
2. By (6), calculate the coefficients of f(z;μ) := det(zI − M(μ)).
3. By formulae (8), calculate the Newton sums Sk for k ∈ {1, 2, . . . , n(n−1)/2}.
4. By (6), calculate the coefficients of polynomial Φ1(z;μ) defined by (26).
5. By Theorem 5, verify that polynomials f(1;μ), f(−1;μ) and Φ1(1;μ) do not
have real zeros in the box B.

First, consider the computational complexity of the first 4 steps of the algorithm.
Here, matrix multiplication is the most expensive operation. The square matrix
multiplication has an asymptotic complexity of O(n3), if carried out naively,
and the complexity of O(nlog2 7) ≈ O(n2.807) if utilized Strassen’s algorithm.
The exponent appearing in the complexity of matrix multiplication has been
improved several times, and a final (up to date) complexity of O(n2.3728639)
has the Le Gall algorithm that generalizes the Coppersmith – Winograd
algorithm [9].

To compute Mk for k ∈ {0, 1, 2, . . . , n2 − n}, we have to perform n2 − n − 1
matrix multiplications, so totally we have O(n5) operations. Then we find traces
of matrices Mk for k ∈ {0, 1, 2, . . . , n2 − n} and coefficients of (27). This yields
≈ O(n4) operations in total. Hence, there are O(n5) operations, if we do not
take into account operations for testing positiveness of polynomials (27) in the
box B.

For the same computations, the most expensive operation in the algorithm
described in [6] is calculation of the determinant of matrix I − M(μ) · M(μ),
where bialternate product is defined as

M · M := [nij,k�] where nij,k� :=
∣
∣
∣
∣
mik mi�

mjk mj�

∣
∣
∣
∣

for the indices ordered lexicographically. Hence, the matrix M ·M is of the order
(n2 − n)/2, and one needs O(n6) operations to compute its determinant.

Therefore, the algorithm presented here is more efficient in its first part, i.e.,
for computation of polynomials (27).

Now consider the last step of the algorithm. To test the positivity of the
obtained polynomials in [6] numerical procedures based on Bernstein expansion
method [10,13] are used. Even applied for the order 3 matrices with only two
parameters (with a sample one considered in the next section), they require more
than 100 iterations [6].

The algebraic approach that we propose allows one to find all the required
values with arbitrary precision.
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4 Numerical Examples

Example 2. It is shown in [6] that the family

M(μ1, μ2) =

⎡

⎣
−0.14 0.235 0.29
−0.94 −0.811 1.246
−0.22 −0.35 0.95

⎤

⎦ + μ1

⎡

⎣
−0.3 0.15 0.275

−0.275 −0.3 0.55
−0.35 −0.25 0.625

⎤

⎦

+μ2

⎡

⎣
0.4 −0.1 −0.4

−0.6 −0.325 0.225
0.725 0.225 −0.45

⎤

⎦

is stable for (μ1, μ2) ∈ [−1, 1] × [−1, 1]. We will demonstrate that it is stable in
the larger box B := [−2.8, 1] × [−1.03, 1.1] and find the distance to instability
from μ(0) = (0, 0).

Solution. It can be verified that the matrix M(0, 0) is stable. To check the
other conditions of Corollary 4, we compute the traces of powers of the matrix2

M(μ1, μ2)

s1 =
1
40

μ1 − 3
8
μ2 − 1

1000
;

s2 =
297

20000
μ1 +

9317
20000

μ2 +
33

1600
μ2
1 +

13
160

μ1μ2 +
7
64

μ2
2 +

138221
1000000

;
. . .

s6 = − 487405339
2048000000

μ3
1μ

3
2 +

519633
204800000

μ5
1μ2 +

526764063
4096000000

μ2
1μ

4
2

+
85443417

2048000000
μ1μ

5
2 +

81273
4096000000

μ6
1 − 1399171

2048000000
μ6
2 + . . .

+
167430804832241561
1000000000000000000

and then restore by (6) the coefficients of its characteristic polynomial f(z;μ):

a1 = −s1;

a2 = − 1
100

μ2
1 − 1

20
μ1μ2 +

1
64

μ2
2 − 149

20000
μ1 − 4651

20000
μ2 − 6911

100000
;

a3 = − 31
16000

μ3
1 − 2249

12800
μ2
1μ2 +

13131
64000

μ1μ
2
2 − 139

16000
μ3
2 + . . . − 117957

500000
.

Then compute the sums S1, S2, S3 by (8):

S1 = a2;

S2 =
1

2560000
(124μ4

1−8340μ4
2+9385μ3

1μ2−181806μ2
1μ

2
2+197521μ1μ

3
2)+ . . .

S3 =
54880506251
256000000000

μ3
1μ2 +

19234505889
2560000000000

μ2
1μ

2
2 − 255226105707

3200000000000
μ3
1

+
171599531007
1600000000000

μ3
2 + . . .

2 We treat the matrix entries as rational fractions.
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and coefficients A1, A2, A3 of polynomial Φ1(z;μ):

A1 = −S1;

A2 =
1

2560000
(124μ4

1−8340μ4
2+9385μ3

1μ2−181806μ2
1μ

2
2+197521μ1μ

3
2)+ . . .

A3 = − 961
256000000

μ6
1−

19321
256000000

μ6
2−

123193537
4096000000

μ4
1μ

2
2+

147589151
2048000000

μ3
1μ

3
2

− 69719
102400000

μ5
1μ2 − 184927601

4096000000
μ2
1μ

4
2 +

1825209
512000000

μ1μ
5
2 + . . .

Next we get polynomials (27)

f(1;μ) = 1 + a1 + a2 + a3

=
1

2956
( − 15500μ3

1 − 1405625μ2
1μ2 + 1641375μ1μ

2
2 − 69500μ3

2

− 1013085μ2
1 − 3658925μ1μ2 + 3113455μ2

2 − 2963542μ1 − 52708μ2

+ 5567808
)
;

f(−1;μ) = 1 − a1 + a2 − a3 = . . .

Φ1(1;μ) = − 1
155002

[
(−15500μ3

1 − 1405625μ2
1μ2 + 1641375μ1μ

2
2 − 69500μ3

2

−933085μ2
1 − 3258925μ1μ2 + 2988455μ2

2 − 2603942μ1

−2692308μ2 − 1891312)2 − 16000000(40625μ2
1 + 181250μ1μ2

+78125μ2
2 + 29750μ1 + 930950μ2 + 4276441)

]
.

To verify that these polynomials do not possess real zeros in the box B, we
utilize the algorithm from Theorem 5. For our particular example, system (17)
takes the form

G(μ1, μ2) = 0, ∂G(μ1, μ2)
/
∂μ2 = 0 .

Using discriminant (10), the first component of any zero to this system satisfies
the univariate equation Dμ2(G) = 0. For G(μ) := f(1;μ), this equation, up to a
numerical factor, is as follows

191212466544777822265625μ6
1 + 2329084130401050056250000μ5

1

+11209700007594350089281250μ4
1 + 23296298499543138006825000μ3

1

+11685796422886314151153325μ2
1 − 24715629423274671343748560μ1

−27001282400664725495388016 = 0.

From part (iii) of Theorem 3, it follows that in [−2.8, 1], it has a single real zero.
We can improve its approximation like, for instance, μ

(1)
1 = −2.121108 ± 10−6.

For this value, the polynomial G(μ(1)
1 , μ2) in μ2 has a multiple zero. It can be

evaluated via (12) as μ
(1)
2 = −4.888746 ± 10−6. The point (μ(1)

1 , μ
(1)
2 ) does not

belong to the box B. Therefore, the conditions (ii) of Theorem 5 are satisfied.
The absence of real zeros for boundary univariate polynomials G(μ1,−1.03),

G(μ1, 1.1), G(−2.8, μ2), and G(1, μ2) in the corresponding intervals composing
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the box B can be established via application of part (iii) of Theorem 3. Hence,
the polynomial f(1;μ) does not possess zeros in B.

Analogously, it can be verified that polynomials f(−1;μ) and Φ1(1;μ) do not
have real zeros in the box B.

For the curve G(μ1, μ2) := f(1;μ1, μ2) = 0 and the point (μ1, μ2) = (0, 0),
distance equation (21) is as follows:

F1(z) := 165643792778924667630255762867071800204733014106750488281250 z9 + . . .

− 1418671204757960500059517541617921148525764211238280835065504137216 = 0 .

According to Theorem 3, it has 3 real (and positive) zeros with the minimal
one equal to z∗ = 1.225741 ± 10−6. Distance to this curve equals d∗ =

√
z∗ =

1.107132±10−6 and is achieved at (μ∗
1, μ

∗
2) = (1.055645±10−6, 0.333698±10−6).

Minimal positive zero of the distance equation constructed for the curve
f(−1;μ1, μ2) = 0 equals 1.524132 ± 10−6. For the curve Φ1(1;μ1, μ2) = 0, dis-
tance equation is of the order 24, and it possesses 6 real (and positive) zeros with
the minimal one equal to 1.509424 ± 10−6. Therefore, the distance to instability
from (μ1, μ2) = (0, 0) equals d∗ (Fig. 1).

Fig. 1. Example 2. Plots of f(1; μ) = 0 (green); f(−1; μ) = 0 (blue); Φ1(1; μ) = 0 (red)
(Color figure online)
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One can notice that the asymptotes for the three drawn curves look identical.
This is indeed the case. It is known [21] that the asymptotes for an algebraic
curve G(x, y) = 0,deg G := N > 1 are determined by the coefficients of the two
highest order forms in expansion of G(x, y) in the decreasing powers of variables:

G(x, y) ≡ GN (x, y) + GN−1(x, y) + . . .

If for (x0, y0) ∈ R
2, (x0, y0) �= (0, 0), the following conditions hold

GN (x0, y0) = 0, (∂GN (x0, y0)/∂x)2 + (∂GN (x0, y0)/∂y)2 �= 0,

then the equation

x∂GN (x0, y0)/∂x + y∂GN (x0, y0)/∂y + GN−1(x0, y0) = 0

gives an asymptote for the curve. Generically, the degree of the polynomial
an(μ1, μ2) ≡ (−1)n det M(μ1, μ2) is much higher than those of the other coef-
ficients of f(z;μ1, μ2). Its forms of the two highest orders coincide with those
of the polynomials f(±1;μ1, μ2). According to the remark in Example 1, the
two highest order forms of Φ1(1;μ1, μ2) coincide up to a sign with those of
an−1

n (μ1, μ2). �
The complexity of computations increases drastically with the number of

parameters and degrees of the matrix entries.

Example 3. For the matrix family

M(μ1, μ2, μ3) =

⎡

⎣
−0.3 −0.1 0

0.2 0.3 0.3
−0.1 0 0.3

⎤

⎦ + μ3

⎡

⎣
0.1 −0.2 −0.3
0.3 0.1 0.2
0.1 0.3 0.2

⎤

⎦

+μ2

⎡

⎣
−0.2 0 0.1
−0.3 0.1 −0.3
−0.1 0.1 −0.3

⎤

⎦ + μ2μ3

⎡

⎣
0.2 0.3 0.1
0 0.1 0.2

0.1 0 0

⎤

⎦

+μ2
1

⎡

⎣
0.1 −0.2 0
0.3 0.3 0.1
0 0 −0.2

⎤

⎦ ,

find the distance to instability from μ(0) = (0, 0, 0).

Solution. Here the matrix entries are even polynomials in μ1, and the distance
equations can be constructed using the approach outlined in Sect. 2.3. These
equations are polynomials over Z with the magnitude of some of their coefficients
exceeding 10500.

Surface distance achieved at distance
(±10−6) (±10−6) equation degree

f(1, μ) = 0 3.775852 (±2.062413, 0.572611,−3.110566) 51
f(−1;μ) = 0 2.322106 (±2.322106, 0.6986351,−0.305716) 51
Φ1(1;μ) = 0 1.749203 (±1.620479,−0.450343, 0.480575) 162

The distance to instability from μ(0) = (0, 0, 0) equals 1.749203 ± 10−6. �
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5 Conclusions

We have investigated Schur stability property for the matrices with the entries
polynomially depending on parameters. The first task has been stated as that
of the description of the domain of stability in the parameter space, i.e., finding
its boundaries. The second task has been aimed at the estimation of possible
tolerances for the parameter specializations that would not disturb the stability
property of a particular matrix. In this paper, the purely algebraic procedures
based on symbolic algorithms for the elimination of variables and localization
of the real zeros for algebraic equation systems have been suggested for solving
the stated problems. This provides one with precise information on the obtained
solution, i.e., the results do not depend on the precision of calculations and
round-off errors (which are known to make a tight bottleneck for any numerical
algorithm relating the problems solved). For further investigation, it remains the
optimization of computational efficiency of developed algorithms.

Acknowledgments. The authors are grateful to Prof Evgenii Vorozhtzov and to the
anonimous referees for valuable suggestions that helped to improve the quality of the
paper.
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Abstract. Two programs for computer algebra systems are described
that deal with Lie algebras of generators admitted by systems of ordi-
nary differential equations (ODEs). The first one allows to find the gen-
erators of admitted transformations in the specified form. This program
is written in Python and based on SciPy library. It does not require
solving partial differential equations symbolically and can also analyze
equations with Riemann–Liouville fractional derivatives and find approx-
imate symmetries for systems of equations with a small parameter. The
second program written as a package for Maple computes the operator
of invariant differentiation in special form for given Lie algebra of gener-
ators. This operator is used for order reduction of given ODE systems.
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1 Introduction

Group analysis of differential equations (see, e.g., [1–4]) provides efficient ana-
lytical methods for studying and solving differential equations, which arise in
different areas of science.

In this paper, we consider the systems of ordinary differential equations
(ODEs), focusing on nonlinear ones. The Lie symmetry method for solving non-
linear ODE is one of the most universal methods because it can work for equa-
tions not matching any particular form. Each symmetry of equation (or system
of equations) describes the one-parametric group of point transformations that
leaves the equation (or system) invariant. When the Lie algebra of symmetry
generators is found, it can be used to reduce the order of the given equation
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or system. The order reduction algorithm for single equation is well-known and
Lie method is implemented and often used by default for solving ODEs in com-
puter algebra software like Maple and SymPy Python library.

However, the modifications of order reduction algorithm for systems of ODEs
(see, e.g., [5,6]) are not universal. Recently, a new order reduction algorithm was
proposed in [7,8]. It uses the operator of invariant differentiation (OID) with
multiplier of special type. In [9], a modification of this algorithm is proposed for
application to systems of ODEs with a small parameter that admit approximate
Lie algebras of generators (theory of approximate Lie groups is introduced in
[4]). To simplify the calculations, a program for constructing an OID with a
multiplier of a special type was developed in Maple computer algebra system
(Maple was chosen because it has a powerful solver module for partial differential
equations). In Sect. 3.2, we describe this program and illustrate its usage with
some examples.

Methods based on symmetries have been recently applied to classes of equa-
tions with fractional derivatives [10–12]. Systems of ordinary fractional differen-
tial equations (FDEs) are often considered in modern control system theory and
mathematical models of different processes. Such systems are also considered
when finding particular solutions of fractional partial differential equations by
invariant subspace method [13–15]. Known symmetries allow one to construct
invariant solutions of the considered systems. However, there are only few works
on symmetries of ordinary FDEs and systems, for example [16,17], there are
many technical difficulties and limitations because the fractional derivatives are
non-local integro-differential operators. For FDEs, the current method of con-
structing symmetries is restricting the form of operators and the resulting Lie
algebra is usually formed by combinations of some standard generators (usually
corresponding to translation, scaling, rotation and projective transformations).

Constructing symmetries for the considered systems requires a lot of calcu-
lations. To find the symmetries of equation or a system, one needs to solve the
so-called determining equations, which are the linear first-order partial differen-
tial equations (PDEs) [1–4,11]. There are multiple existing packages for finding
Lie symmetries of different types [18–20] (some of them support finding approx-
imate symmetries), and one for equations with fractional derivatives [21]. They
are usually based on powerful first-order PDE solvers but there is no guarantee
that the symmetry generators can be found in closed form for arbitrary form of
system, for example, including functions of derivatives.

The program described in Sect. 3.1 of this paper uses a semi-numerical app-
roach for finding symmetries. Symmetry generators are found as linear com-
binations of given basis operators Xi. This approach is usually implemented
for polynomial form of coefficients. For example, it is available inside Maple
PDEtools package and in SymPy library for single equation. Recent applica-
tion for dynamical systems is also described in [22]. However, in this work, we
do not restrict coefficients to have polynomial form. The numerical algorithms
like SVD decomposition are used to find the space of solutions for automati-
cally constructed determining equations. This approach allows to work with very
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complicated forms of nonlinear systems. Symbolic calculations are only used to
differentiate equation one time, substitute the coefficients of given operators Xi

into prolongation formula and collect the terms in linear expressions, the final
steps of computation are numerical.

Another advantage of using the fixed-form representations of symmetry gen-
erator is the possibility to analyze symmetries of the first-order differential
equations that are used in many mathematical models. Finding the symmetries
analytically in this case is a complicated task because the space of symmetry
generators is usually infinite-dimensional. Restricting the form of infinitesimal
generator (for example, by assuming polynomial coefficients) allows one to con-
struct solutions or conservation laws even without finding the complete set of
symmetries.

2 Theoretical Section

2.1 Point Symmetries of Differential Equations

Let us consider the system of ordinary differential equations

u(p)(t) = f
(
t, u(t), . . . , u(p−1)(t)

)
, (1)

where u = u(t) is a vector of m unknown functions u1(t), . . . , um(t), f is a vector
function with components fμ and u(k) is a vector of kth derivatives of u by t.

To define the symmetry of (1), the local Lie group of point transformations
Ta with parameter a is also considered:

Ta : (t, u) → (t̃, ũ), t̃ = ϕ(t, u; a), ũ = ψ(t, u; a), Ta+b = TaTb. (2)

The group of transformations can be defined by its generator

X = ξ(t, u)
∂

∂t
+ η(t, u)

∂

∂u
, (3)

where functions ξ(t, u) =
∂ϕ

∂a

∣∣∣∣
a=0

and η(t, u) =
∂ψ

∂a

∣∣∣∣
a=0

are the coordinates of

the tangent vector field. To study the symmetry properties of system (1), we
find the prolonged group acting in space, where the coordinates of some point
are t, u and all derivatives of u up to the pth order. This group is defined by
prolonged generator which has the form

X(p) = ξ(t, u)
∂

∂t
+

m∑
μ=1

ημ(t, u)
∂

∂uμ
+

m∑
μ=1

p∑
k=1

ζμ
k (t, u, . . . , u(k))

∂

∂u
(k)
μ

, (4)

where the coefficients ζμ
k are given by the prolongation formula

ζμ
k = Dk

t

(
η − ξu′

μ

)
+ ξu(k+1)

μ . (5)
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The coefficients ζμ
k describe the infinitesimal transformations of derivatives:

ũ(k)
μ (t̃) = u(k)

μ (t) + aζμ
k + o(a).

Here Dt is the total derivative operator:

Dt =
∂

∂t
+

p∑
k=0

m∑
μ=1

u(k+1)
μ (t)

∂

∂u
(k)
μ

.

The transformation group (2) is called point symmetry of system (1) if the
system is transformed to itself. The group generator is said to be admitted by
system (1). It is known [1–3] that ODE (1) admits generator (3), if and only if

X(p)
(
u(p)

μ − fμ

(
t, u, . . . , u(p−1)

))∣∣∣
(1)

= 0, μ = 1, . . . , m. (6)

From equation (6), after splitting with respect to powers of the derivatives,
one can obtain a system of determining equations. It is a linear overdetermined
system of partial differential equations for ξ, η coefficients. The solution of this
system gives a complete set of generators (3) admitted by equation (1).

The set of generators of the form (3) together with operation of commutation

[X1, X2] = X1(X2) − X2(X1) (7)

forms a Lie algebra of generators if it is a vector space and the commutator
of every two operators belongs to the same space. The conditions of bilinearity
antisymmetry and Jacobi identity are satisfied (see e.g. [3]). It is known that
generators admitted by an equation or a system always form a Lie algebra.

In this work we consider the ODE systems, which order is equal to dimension
of admitting Lie algebra Lr of generators, i.e., r = mp.

2.2 Invariant Representation of Differential Equations

Some function J (k) = J(t, u, . . . , u(k)), J (k) �= const, is kth-order differential
invariant of r-dimensional Lie algebra of generators Lr, if

X
(k)
j

(
J (k)

)
= 0, j = 1, . . . , r. (8)

We can rewrite system (1) by differential invariants of admitted Lie algebra
Lr, if and only if

rank
(
ξj ηj . . . ζ

(p)
j

)∣∣∣
(1)

= r, j = 1, . . . , r,

i.e., the general rank of the matrix formed by the coordinates of the prolonged
generators does not change on the manifold defined by system (1) (see e.g. [2]).
The system can then be rewritten so that every equation has the form

J (p) = F
(
J (q)

)
(9)

with some function F , here J (p) and J (q) are some pth-order and qth-order
differential invariants of Lr, q < p.
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2.3 Order Reduction for Differential Equations

For order reduction, in [7,8] authors suggested to seek auxiliary function Φ �=
const and construct the operator of invariant differentiation (OID) (see [2]) in
the form

1
DtΦ

Dt. (10)

The function Φ is obtained as any particular solution of system

Dt

(
X

(p−1)
j (Φ)

)
= 0, (11)

or
X

(p−1)
j (Φ) = Cj , j = 1, . . . , r, (12)

where constants Cj satisfy the relations

r∑
l=1

al
ijCl = 0,

and al
ij are structural constants of Lie algebra Lr (see [1–3]).

Then by using this OID, one obtains

1
DtΦ

Dt

(
J (q)

)∣∣∣∣
(9)

≡ Ψ
(
J (q), J (p)

)∣∣∣
(9)

= H
(
J (q)

)
.

The last expression can be rewritten as a first-order ODE

dJ (q)

dΦ
= H

(
J (q)

)
.

General solution of this equation is also the first integral of ODE (1).
A similar method can also be used to reduce the order and integrate the

systems of ODEs [7,8].

2.4 Symmetries, Invariants, and OID for Equations with a Small
Parameter

Studying equations with a small parameter, i.e., ODEs of the form

u(p) = f0(t, u, . . . , u(p−1)) + εf1(t, u, . . . , u(p−1)), (13)

we can use the theory of approximate transformation groups (see e.g. [4]). We
consider only the case of linearity on ε.

Such equations admit the generators of two types:

X(0) + εX(1), εY(0).

They can be obtained by solving Eq. (6) after neglecting ε2 terms and splitting
by ε together with derivatives. The generators form approximate Lie algebra
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[4]. We assume that system (13) has r0 operators of the first type, and r − r0
operators of the second type.

Invariants of the approximate Lie algebra can also have two forms [24]:

J
(k)
(0) + εJ

(k)
(1) , εJ

(n)
(0) ,

where the term J
(s)
(0) satisfies the equations

X
(s)
i,(0)J

(s)
(0) = 0, i = 1, . . . , r0,

Y
(s)
j,(0)J

(s)
(0) = 0, j = 1, . . . , r − r0,

and J
(s)
(1) satisfies equations

X
(s)
i,(0)J

(s)
(1) + X

(s)
i,(1)J

(s)
(0) ≈ 0.

In the work [9], the OID for the approximate Lie algebra was introduced. It
is shown that it can be obtained in the form

DtΦ0 − εDtΦ1

(DtΦ0)2
Dt,

where the functions Φ0 and Φ1 are particular solutions of systems

X
(p−1)
i,(0) Φ0 = Ci,(0), Y

(p−1)
j,(0) Φ0 = Cj,(0)

and
X

(p−1)
i,(0) Φ1 + X

(p−1)
i,(1) Φ0 ≈ Ci,(1),

respectively.

2.5 Symmetries of Equations with Fractional Derivatives

In the last decade, Lie group analysis methods were applied to the specific case of
integro-differential equations – equations with fractional derivatives. The survey
of proposed techniques and results may be found, for example, in [11,12].

The Riemann–Liouville fractional derivative is a nonlocal operator defined as

Dα
t u(t, x) =

1
Γ (n − α)

(
∂

∂t

)n ∫ t

0

u(z, x)
(t − z)α−n+1

dz, n − 1 ≤ α < n. (14)

Here x can be a vector of all other independent variables, n is a natural number.
Let the generator of point transformation group have the form

X = ξ0(t, x, u)
∂

∂t
+

n∑
i=1

ξi(t, x, u)
∂

∂xi
+

m∑
μ=1

ημ(t, x, u)
∂

∂uμ
. (15)
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The infinitesimal transformation of fractional derivative Dα
t u can be written as

Dα
t̃ ũμ = Dα

t uμ + aζα
μ + o(a).

The prolongation formula for the fractional derivative has the general form

ζμ
α = Dα

t

(
η − ∂uμ

∂t
ξ0 −

n∑
i=1

∂uμ

∂xi
ξi

)
+ ξ0Dα+1

t uμ +
n∑

i=1

ξiDα
t

∂uμ

∂xi
. (16)

with the restrictions ξ0|t=0 = 0.
The main problem here is that ζα

μ does not depend on finite set of differential
variables like it was for operator (4). To propose constructive algorithm for
finding symmetries, we have to restrict generator coefficients, considering the
linearly autonomous class of symmetries with

ξ0 = ξ0(x), ημ =
m∑

ν=1

pμ,ν(t, x)uν + qμ(t, x). (17)

Then the prolongation formula (16) can be written in the form

ζμ
α = Dα

t qμ +
m∑

ν=1

∞∑
k=0

(
α
k

)(
Dk

t pμ,ν + δμ
ν

k − α

k + 1
Dk+1

t ξ0
)

Dα−k
t uν +

+
n∑

i=1

∞∑
k=1

(
α
k

)(
Dk

t ξi
)
Dα−k

t

∂uμ

∂xi
. (18)

When only one independent variable t is considered, the last term in prolongation
formula vanishes.

After writing the invariance criterion like (6), we consider all integer deriva-
tives u

(k)
μ and fractional derivatives or integrals D

(α−k)
t uμ to be independent

variables, m of them are to be substituted from the given system. This is another
assumption that allows constructive symmetry finding.

The resulting system of determining equations is now infinite-dimensional.
Usually, but not always, it becomes finite after finding that ξ0 is a polynomial
function of t.

3 Algorithms and Computer Algebra Modules

3.1 Determining Lie Symmetries

To simplify the procedure of calculating symmetries, the computer algebra sys-
tems are often used.

There are many programs for calculating symmetry generators for equations
and systems developed using Maple, Mathematica, Reduce, and Maxima com-
puter algebra systems, see, for example, [18]. Modern examples of such packages
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implemented in Maple are GeM [19] and DESOLVEII [20]. The package FracSym
[21] also supports fractional differential equations.

Here we describe a new package for finding symmetries based on free and open
source Python SymPy library [25]. It is not based on any of the existing modules,
only SymPy differentiation, substitution, and singular value decomposition from
Numpy are used.

The program part that constructs the determining equation is analogous to
other packages but includes specific modifications for using prolongation formu-
las suitable for fractional derivatives (18). Working with approximate symmetries
[4] is also supported by automatic collecting powers of ε and eliminating terms
with ε2.

Note that SymPy does not seem to have built-in “jet notation” for derivatives,
so it was implemented manually. For example, the symbol u_tttt describes
the derivative u(4)(t). The notation for fractional differential variable was also
introduced. SymPy symbols and expressions can be used in given system.

While constructing the determining equations, the program also detects
fractional derivatives in original system and restricts generators to be linearly
autonomous. For each fractional derivative, some unknown coefficient ημ is
replaced by its form (17) and the number of independent variables in corre-
sponding coefficient ξi is reduced.

The determining equations for system F = 0 are constructed in general form
(
X̃[ξ, η, t, u]Fμ

)∣∣∣
F=0

= 0, μ = 1, . . . , m, (19)

Here X̃[ξ, η, t, u] is the prolonged generator given by (4) including prolonga-
tions to derivatives of fractional order. It depends on functions ξ, η linearly but
contains the arbitrary combinations of u and its derivatives with respect to inde-
pendent variables t. SymPy built-in PDE solver is not powerful enough to solve
this overdetermined linear system automatically, but this is not a problem for
proposed approach. Instead of splitting the determining equations and solving
them symbolically, we use semi-numerical method described below.

We search for the generator as a combination of given basis operators:

X =
N∑

i=1

CiXi.

This idea is commonly used for polynomial coefficients of symmetry genera-
tors implemented for single ODE in sympy.solvers.ode.lie heuristic bivariate, for
example. Maple package PDETools also contains an option for polynomial sym-
metries finding. Similar method is described in the work [22]. However, here we
do not require coefficients ξi, ηi of Xi to be polynomial. Arbitrary known terms
can be included in the form of generator, which is a more universal way.

Introducing the notation Ψμ[ξ, η, t, u] = (X̃Fμ)|F=0, one can rewrite Eq. (19)
as a linear equation for C1, . . . , CN :

N∑
i=1

CiΨμ[ξi, ηi, t, u] = 0. (20)
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For each μ and i, Ψμ,i[t, u] = Ψμ[ξi, ηi, t, u] is a function of independent variables
t, dependent variables u and their derivatives (integer or fractional).

The program substitutes each ξi, ηi (or ξi, pi, and qi for linearly autonomous
symmetry) into the determining equation symbolically and builds the list of
functions Ψμ,i for each number of dependent variable μ.

The most general way of reducing (20) to algebraic system is using multi-
variate Taylor series expansion of Ψμ,i[t, u] with respect to all of its independent
variables. However, to speed up calculations, the program can also substitute
random arguments into (20) enough times to get overdetermined linear system
for Ci. This substitution can be done numerically by using the fast NumPy
library, all constants and arbitrary functions should be specified exactly at this
stage. As a result, rectangular matrix M with R rows and N columns is obtained.

To solve the overdetermined system MC = 0 numerically, it is convenient to
use singular value decomposition procedure. After using np.linalg.svd function
to compute the decomposition of the form

M = UΣV, Σ = diag{σ1, ..., σr, 0, . . . , 0}
with orthogonal matrices U, V and r non-zero singular values σ1, ..., σr, the fun-
damental set of solutions C is given by last rows of matrix V (with numbers
starting from r + 1), see [23].

Every found vector C describes the symmetry generator, but to present the
symmetries in convenient form, the matrix formed by coefficients Ci is trans-
formed to reduced row echelon form. The basis columns are chosen automatically
to maximize the number of coefficients close to zero. SymPy function nsimplify
is then called to guess rational fractions like 1/7 and roots like

√
2 from the cor-

responding numerical values.
Hereafter we assume that our module and SymPy are imported as follows:

> import symmetries as s
> from sympy import *

All commands entered by user are marked by starting > sign, lines after code
without the sign shows its output converted to LATEX. The superscript with
dependent variable symbol is used in the program instead of dependent variable
number, for example, ξt = ξ0, ηu = η1, puv = p1,2 in (15) and (17).

The process of calculating symmetries contains several steps described below.

1. Procedure LieSymmSetup(indepsList, depsList) is used to define the lists
of independent and dependent variables. For example, to study the ODE
systems with u(t) and v(t), one should call

> s.LieSymmSetup(indepsList=[’t’], depsList=[’u’,’v’])

2. Then the user defines the form of the system. The system can be presented
directly as Python dictionary with strings or SymPy objects for left-hand side
and right-hand side of equations, for example,

> sys={’u_t’: ’v_xx-u’, ’v_t’: ’u_xx-v’}
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3. The function detPDES is used to compose the determining Eq. (19). For exam-
ple, determining equation for u′′(t) = u′(t) is calculated as
(ζ2 − ζ1)|u′′=u′ :

> s.LieSymmSetup(indepsList=[’t’], depsList=[’u’])
> XFS=s.detPDES({’u_tt’:’u_t’},UseJetVars2=True)

ηu
t − ηu

tt − 2ηu
tuut − ηu

uuu2
t + u3

t ξ
t
uu + 2u2

t ξ
t
tu + 2u2

t ξ
t
u + utξ

t
t + utξ

t
tt

To find approximate symmetries, one should call the function detPDE_Approx.
When the equation contains fractional derivatives, the function prolongUn
that implements prolongation formula (18) is used internally. The named
parameter UseJetVars2=True is used here to show result in the short form
and should not be used for further calculations.

4. The list BaseOps of basis operators Xi is constructed to specify the chosen
form of symmetry generator. Operators can be manually added to BaseOps
list or chosen in multivariate polynomial form by AddPolynomialBasis func-
tion as shown in the examples.

5. The build_C_Coeffs(XFS) substitutes all basis operators into constructed
determining Eq. (19) and calculates coefficients XFS_C_coeffs of system (20)
in symbolic form.

6. Using the procedure solveNumeric, overdetermined algebraic system for coef-
ficients Ci is constructed from (20) and solved numerically. The best combi-
nations of basis operators are chosen and stored as BestForm matrix. To view
the symmetries in convenient form looking like differential operators, one calls
the function getAdmittedOperators.

Example 1. Let us consider the system of fractional differential equations

Dα
t u = uv, Dα

t v = v2.

According to [17], any symmetry of (1) is a combination of basis operators

X1 = u∂u, X2 = v∂u, X3 = u∂v, X4 = v∂v, X5 = t∂t, X6 = t2∂t.

To construct the determining equations (steps 1–3), we use the code

> s.LieSymmSetup(indepsList=[’t’], depsList=[’u’,’v’])
> alpha=sympify(’1/5’);
> dau = s.fracD(’u’,’t’,alpha); dav = s.fracD(’v’,’t’,alpha)
> XFS=s.detPDES({dau: ’u*v’,dav: ’v*v’},sumN=2)

The function s.fracD(’u’,’t’,alpha) gives Dat[u](1/5), which is the rep-
resentation of D

1/5
t u (differential variable in the code). The determining equa-

tions stored in XFS contain multiple terms, one of them is calculated internally
as fractional prolongation by calling s.prolongUn(’u’,’t’,alpha,sumN=2)

puuDat[u]
(

1
5

)
+

puu
t

5
Dat[u]

(
−4

5

)
− 2puu

tt

25
Dat[u]

(
−9

5

)
+
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puvDat[v]
(

1
5

)
+

puv
t

5
Dat[v]

(
−4

5

)
− 2puv

tt

25
Dat[v]

(
−9

5

)
− ξt

t

5
Dat[u]

(
1
5

)
+

2ξt
tt

25
Dat[u]

(
−4

5

)
− 6ξt

ttt

125
Dat[u]

(
−9

5

)
+ Dat[qu]

(
1
5

)

with substituted Dat[u] = uv,Dat[v] = v2. The parameter sumN restricts the
number of considered terms in prolongation formula (18). Note that no simpli-
fications are done automatically to speed up calculations. During the following
steps, t, u, and v and all other remaining fractional derivatives and integrals of
u and v are considered as independent variables, see [11].

Using the code with provided basis operators

> s.BaseOps=[’u*D_u’,’v*D_u’,’u*D_v’,’v*D_v’,’t*D_t’,’t**2*D_t’]
> s.build_C_Coeffs(XFS)
> display(s.XFS_C_coeffs)

one gets the lists of Ψμ,i stored as XFS_C_coeffs that define pairs of equations∑
CiΨ1,i = 0,

∑
CiΨ2,i = 0 for Ci:

[[
0, 0, u2, uv,

uv

5
,

2t

5
uv − 4

25
Dat[u]

(
−4

5

)]
,

[
0, 0, uv, v2,

v2

5
,

2t

5
v2 − 4

25
Dat[v]

(
−4

5

)]]
.

Zeros in the first and second columns mean that C1 and C2 can be arbitrary con-
stants and X1, X2 are symmetry generators. All combinations of basis operators
that form symmetries are found by constructing and solving the overdetermined
algebraic system (step 6):

> s.solveNumeric()
> display(s.getAdmittedOperators())

9.977099577364706
Shape of matrix of overdetermined system for finding C_k:

(22, 6), doing SVD decomposition
Singular values:
[ 3.36e+00 1.07e+00 3.50e-01 3.41e-17 9.30e-18 -0.00e+00]
Finding best combinations of 3 basis operators...OK

The resulting 3 operators are found correctly, the code prints

[uDu, vDu, −5tDt + vDv] .

Example 2. Let us consider equation from [16] that contains fractional deriva-
tives of different orders:

Dα+1
x y = −α + 1

x
Dα

x y + y

(
Dα

x y

y

)α+1
α

.



Symbolic and Numerical Methods for Searching Symmetries of ODE Systems 291

> s.LieSymmSetup(indepsList=[’x’], depsList=[’y’])
> x,y = symbols(’x y’); alpha = sympify(’1/3’)
> s.BaseOps=[]; s.AddPolynomialBasis(3)
> DAy = s.fracD(’y’,’x’,alpha); DAy1 = s.fracD(’y’,’x’,alpha+1)
> XFS = s.detPDES({ DAy1 : -(alpha+1)*DAy/x +

y*(DAy/y)**((alpha+1)/alpha)})
> s.build_C_Coeffs(XFS);s.solveNumeric();s.getAdmittedOperators()

All 3 admitted operators are found correctly:
[
xDx, x2Dx − 2x

3
yDy, yDy

]
.

Note that although the right-hand side depends on fractional derivative, it causes
no problems for the code because we do not solve partial differential equations
analytically. �	
Example 3. The method also works when operators contain non-polynomial
terms. For equation

Dα
x y = x−1−αeyx1−α

the symmetries are found correctly and include the term xα−1∂y:

> s.LieSymmSetup(indepsList=[’x’], depsList=[’y’])
> x,y = symbols(’x y’); alpha = sympify(’1/3’)
> s.BaseOps=[]; s.AddPolynomialBasis(2)
> s.BaseOps.append(’x**(1/3-1)*D_y’);
> s.BaseOps.append(’x**(1/3)*D_y’); DAy = s.fracD(’y’,’x’,alpha)
> XFS = s.detPDES({DAy: x**(-1-alpha)* exp(y*x**(1-alpha))})
> s.build_C_Coeffs(XFS);s.solveNumeric();s.getAdmittedOperators()

[
x2Dx − 2x

3
yDy, 3xDx +

(
−2y +

1
x

2
3

)
Dy

]
.

Note that the program should be able to automatically calculate Dαq for given
functions q(t) by using its internal fractional.D_RL function. �	
Example 4. In the work [15], the system of fractional differential equations

Dα
t a = μb2/2, Dα

t b = 2μbc, Dα
t c = 2μc2

is considered. It is obtained when searching for exact solutions of the time frac-
tional Korteweg–de Vries equation

Dα
t u =

μ

2

(
∂u

∂x

)2

+
∂3u

∂x3

by invariant subspace method [13], using the form of solution

u(t, x) = a(t) + b(t)x + c(t)x2.

The program successfully finds 3 symmetries for arbitrary order α and 4 sym-
metries for order α = 1/3:
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> t,a,b,c = symbols(’t a b c’)
> alpha = sympify(’1/3’); mu = sympify(’7/8’);
> s.LieSymmSetup(indepsList=[’t’], depsList=[’a’,’b’,’c’])
> dax = s.fracD(’a’,’t’,alpha); day = s.fracD(’b’,’t’,alpha);
> daz = s.fracD(’c’,’t’,alpha);
> XFS = s.detPDES({dax: mu*b*b/2,day: mu*2*b*c, daz: mu*2*c**2 })
> s.BaseOps = []; s.AddPolynomialBasis(2); s.build_C_Coeffs(XFS)
> s.solveNumeric()); display(s.getAdmittedOperators())

The displayed symmetries are

[bDa + 2cDb, aDa − cDc + 3tDt,

atDa + btDb + ctDc − 3t2

2
Dt, bDb + 2cDc − 6tDt

]
.

It can be shown similarly to [17] that all of the linearly autonomous symmetry
generators have polynomial coefficients, so the complete Lie algebra is obtained.
These symmetries are found for the first time and allow one to construct more
invariant solutions of the considered system. �	
Example 5. To calculate approximate symmetries for ODEs with a small param-
eter ε, one needs to add the terms with ε into basis operators Xi. The determining
equations are automatically split with respect to ε and the number of equations
doubles. For example, consider equation from [9]

x′′ = F0(x′) + ε (F1(x′) − F0(x′)(3xx′ − t) + F ′
0(x

′)x′(xx′ − t))

constructed from approximate differential invariants. It has four approximate
symmetries for arbitrary functions F0(x′), F1(x′). For example, let us test the
procedure for specific functions F0 = sinx′, F1 = (x′)2:

> s.LieSymmSetup(indepsList=[’t’], depsList=[’x’])
> dx = Symbol(’x_t’); d2x = Symbol(’x_tt’)
> f0 = sin(dx); f01 = cos(dx); f1 = dx**2
> sys = {d2x: f0+ s.e*(f1-f0*(3*x*dx-t)+f01*dx*(x*dx-t))}
> XFS = s.detPDE_Approx(sys)
> s.BaseOps=[]; s.AddPolynomialBasis(3,approx=True)
> s.build_C_Coeffs_Approx(XFS); s.solveNumeric()
> display(s.getAdmittedOperators())

[εxDx + Dt, εxDt + Dx, εDt, εDx]

The found operators are correct. The procedure gives the same result for any
other forms of F0, F1, even very complicated.

Here BaseOps includes operators like εx2t3∂t and XFS contains ε0 and ε1

terms (ε2 are treated like zeros in this theory [4]). �	
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Example 6. Let us check the program on a more complex system composed of
some differential invariants (the functions F0, G0, F1, and G1 are arbitrary):

⎧
⎨
⎩

ẍ = ẋ2

x F0(ẏ) + ε
(

ẋ2(tẏ−y)
x F ′

0(ẏ) + ẋ2

x F1(ẏ, x) − ẋ3
)

,

ÿ = ẋ
xG0(ẏ) − ε

(
tẋ
x G0(ẏ) − ẋ(tẏ−y)

x G′
0(ẏ) + ẋ

xG1(ẏ, x)
)

,
(21)

> s.LieSymmSetup(indepsList=[’t’], depsList=[’x’,’y’])
> F0=sympify(’z’); G0=sympify(’z**3’)
> F0y=F0.subs({’z’:’y_t’}); DF0y=F0.diff(’z’).subs({’z’:’y_t’})
> G0y=G0.subs({’z’:’y_t’}); DG0y=G0.diff(’z’).subs({’z’:’y_t’})
> dx = Symbol(’x_t’); dy = Symbol(’y_t’)
> F1=sympify(’sin(x*y_t)’); G1=sympify(’y_t**3-x’)
> RS1=dx**2/x*F0y + s.e*(dx*dx*(t*dy-y)/x*DF0y+ dx*dx/x * F1-2*dx)
> RS2=dx/x*G0y - s.e*(t*dx/x * G0y- dx*(t*dy-y)/x*DG0y+dx/x*G1)
> XFS=s.detPDE_Approx({’x_tt’:RS1,’y_tt’:RS2})
> s.BaseOps=[]; s.AddPolynomialBasis(2, approx=True)
> s.build_C_Coeffs_Approx(XFS); s.solveNumeric()
> display(s.getAdmittedOperators())

The following admitted operators are found:
[−εyDy + Dt,

(
t2ε + t

)
Dt + (tεy + y) Dy,

(tε + 1) Dy, εDt, tεDt + εyDy, εxDx, εDy] .

Combinations of 162 basis operators were considered. The calculations took
about 15 s on a laptop with Intel Core i7-4500U. �	

The obvious limitation of the method is in suggesting the fixed form of oper-
ator. It is not possible to include all terms like xβ∂u or sin(ωt)∂u with unknown
β or ω. Therefore, if the equations admit such specific form of generators, this
approach can be used only to check the symmetries (helping to avoid mistakes in
calculations). However, most of nonlinear, approximate, and fractional differen-
tial equations have rather simple form of symmetries. For fractional differential
equations, the fixed form of symmetry generator is the most common case [11].

The main advantage of the approach is that it works for a very wide class of
equations including ones with nonlinear functions of derivatives. The program
can easily be modified to compute different kinds of symmetries. It makes the
described package a suitable tool for express-analysis. It also works when the
group is infinite-dimensional, for example, if the first-order equations are consid-
ered, when constructing full symmetry algebra analytically is a very complicated
problem.

3.2 Computing the Operator of Invariant Differentiation in the
Specified Form

The algorithm for constructing the differential invariants and the OID for an
approximate Lie algebra of operators is realized in Maple system as the program
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“PR-OID: construction of differential invariants and an operator of invariant
differentiation for an approximate Lie algebra of operators”, which is registered
by Rospatent ([26]).

The program is a set of procedures. In this work, we present it with some
modifications.

The procedure commut(S1,S2,DepVars) takes two vectors with coordinates
of the corresponding infinitesimal generators (for example, the vectors [τ1(t, x, y),
ξ1(t, x, y), η1(t, x, y)] and [τ2(t, x, y), ξ2(t, x, y), η2(t, x, y)] and a list of dependent
variables (for example, [x(t), y(t)]). The procedure calculates the commutator of
given generators by formula (7) and returns the coordinate vector of the resulting
generator.

The procedure is_algebra(S,DepVars) takes a set of coordinate vectors of
infinitesimal generators and a list of dependent variables. The procedure checks
that every commutator of given generators belongs to the same vector space.
After calculations, the procedure returns the string “It is a Lie algebra”, if the
operators generate an Lie algebra, and “It is not a Lie algebra” otherwise.

The procedure prolong(S,DepVars,n) takes the vector of coordinates of the
infinitesimal generator, the list of dependent variables and the order of deriva-
tives, to which the generator must be continued. The procedure calculates the
coordinates of the prolonged generator using standard prolongation formulas (4)
and returns the vector of coordinates for the prolonged generator.

The procedure acting(S,f,DepVars,n) is auxiliary. It takes the vector of
coordinates of the infinitesimal operator, the tested function, the list of depen-
dent variables and the order of the highest derivative in f. The procedure returns
the result of the action of the prolonged generator on the given function.

The procedure approx_invariants(S,DepVars,n,eps) takes a set of coor-
dinate vectors of generators, a list of dependent variables, the required order of
differential invariants and indicator of case (exact or approximate). The proce-
dure returns a set of all independent invariants up to the n-th order.

The procedure approx_OID(S,DepVars,eps) takes a set of coordinate vec-
tors for infinitesimal generators, a list of dependent variables and indicator of
case (exact or approximate). The procedure returns the multiplier for the OID,
the function Φ used to construct this OID, as well as the result of the action of
given generators on the obtained function Φ.

Example 7. Let us consider the generators

X1 = (1 + εt)
∂

∂t
, X2 = εx

∂

∂x
, X3 = (1 + εt)

∂

∂y
,

X4 = (t + εt2)
∂

∂t
+ (y + εty)

∂

∂y

(22)

and write them in a Maple worksheet:

> S:=[[1+epsilon*t,0,0],[0,epsilon*x,0],[0,0,1+epsilon*t],
[t+epsilon*t^2,0,y+epsilon*t*y]];
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S := [[εt + 1, 0, 0], [0, εx, 0], [0, 0, εt + 1], [εt + t, 0, εty + y]]

If we check them with procedure

> is_algebra(S,[x,y](t));

we obtain the following structural constants of a certain Lie algebra:

[“It is a Lie algebra”], [{a1,2,1 = 0, a1,2,2 = 0, a1,2,3 = 0, a1,2,4 = 0},

{a1,3,1 = 0, a1,3,2 = 0, a1,3,3 = ε, a1,3,4 = 0},

{a1,4,1 = 1, a1,4,2 = 0, a1,4,3 = 0, a1,4,4 = ε},

{a2,3,1 = 0, a2,3,2 = 0, a2,3,3 = 0, a2,3,4 = 0},

{a2,4,1 = 0, a2,4,2 = 0, a2,4,3 = 0, a2,4,4 = 0},

{a3,4,1 = 0, a3,4,2 = 0, a3,4,3 = 1, a3,4,4 = 0}]

Note that each constant ai,j,k is a sum ai,j,k,(0) + εai,j,k,(1), i.e., if we obtain
a1,3,3 = ε, it means that a1,3,3,(0) = 0, a1,3,3,(1) = 1, and if we obtain a3,4,3 = 1, it
means a3,4,3,(0) = 1, a3,4,3,(1) = 0. So, the basis of Lie algebra is six-dimensional
and consists of the following generators:

X1, X2, X3, X4, εX3, εX4.

For obtaining the differential invariants up to the second order, we use

>approx_invariants(S,[x,y](t),2,1);

Its result is four invariants

yt + ε (tyt − y) ,
xt,tx

x2
t

+
2εx

xt
,

yt,tx

xt
+

εyt,ttx

xt
, εx.

The OID for approximate Lie algebra generated by six operators can be obtained
by the expression

>approx_OID(S,[x,y](t),1);

which returns the multiplier for OID, the function Φ and the result of acting
generators on Φ : [

x

xt

]
, [ln(x)] , [0, ε, 0, 0] .

Let us consider the system of ODEs (21), which admits the given generators.
Using obtained invariants, we can rewrite this system in the form

J
(2)
1 ≈ F0(J (1)) + εF1(J

(1)
(0) , J

(0)
(0) ), J

(2)
1 ≈ G0(J (1)) + εG1(J

(1)
(0) , J

(0)
(0) ).
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Applying OID to invariants J (1) and J (0), we get
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x

ẋ
Dt(ẏ) = H0(ẏ),

x

ẋ
Dt(tẏ − y) = H0(ẏ)

x

tẋ
+ H ′

0(ẏ) · (tẏ − y) + H1(ẏ, x),

x

ẋ
Dt(x) = x.

General solution of these equations is the approximate first integral of considered
system. Thus, we obtain the reducing system

J (1) ≈ W0(Φ) + εW1(Φ0), J (2) ≈ F̂0(Φ) + εF̂1(Φ0),

which admits generators X1, X3, and X4. Repeating the procedure, we can
obtain the approximate solution of given system. �	

The program can also be used to study the exact Lie algebra and construct
its differential invariants and the invariant differentiation operator.

Example 8. Let us consider the generators

X1 = x
∂

∂t
, X2 = x

∂

∂x
, X3 = y

∂

∂t
, X4 = y

∂

∂y
(23)

and write them in Maple worksheet:

> S:=[[x,0,0],[0,x,0],[y,0,0],[0,0,y]];

If we check them with procedure

> is_algebra(S,[x,y](t));

we obtain the following structural constants of a certain Lie algebra:

[“It is a Lie algebra”], [{a1,2,1 = −1, a1,2,2 = 0, a1,2,3 = 0, a1,2,4 = 0},

{a1,3,1 = 0, a1,3,2 = 0, a1,3,3 = 0, a1,3,4 = 0},

{a1,4,1 = 0, a1,4,2 = 0, a1,4,3 = 0, a1,4,4 = 0},

{a2,3,1 = 0, a2,3,2 = 0, a2,3,3 = 0, a2,3,4 = 0},

{a2,4,1 = 0, a2,4,2 = 0, a2,4,3 = 0, a2,4,4 = 0},

{a3,4,1 = 0, a3,4,2 = 0, a3,4,3 = −1, a3,4,4 = 0}]

The first- and second-order differential invariants of this Lie algebra are
obtained by

>approx_invariants(S,[x,y](t),2,0);

and they have the form

xyt

xty
,

(xtyt,t − xt,tyt) x2

x3
t y

,
xt,t (−tyt + y) + yt,t (txt − x)

xtyt,t − xt,tyt
.

The OID for Lie algebra generated by given operators can be found by
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>approx_OID(S,[x,y](t),0);

which returns the multiplier for OID, the function Φ, and the result of acting
generators on Φ : [

x

C2xt

]
, [C2 ln(x)] , [0, C2, 0, 0]

with arbitrary nonzero constant C2. Let C2 = 1.
Applying OID to the first-order invariant, we obtain

x

ẋ
Dt

(
xẏ

ẋy

)
=

xẏ

ẋy
−

(
xẏ

ẋy

)2

+
(ẋÿ − ẏẍ)x2

ẋ3y
.

So, for the system of ODEs
⎧
⎪⎪⎨
⎪⎪⎩

ẍ =
xẏ + tẋ2ẏ2 − xẋẏ2

x (ẏ(y − tẏ) + ẋ(x − tẋ))
,

ÿ =
yẋẏ2 − tẋẏ3 − xẋ

x (ẏ(y − tẏ) + ẋ(x − tẋ))
,

which admits these generators, one obtains

dJ (1)

dΦ
= 2J (1) − (J (1))2, J (1) =

xẏ

ẋy
.

And the first integral of given system is

Φ =
1
2

ln
∣∣∣∣

J (1)

J (1) − 2

∣∣∣∣ − 1
2

ln C1.

The reduced system is
⎧
⎪⎪⎨
⎪⎪⎩

ẋ =
C1x

2ẏ − y

2C1xy
,

ÿ =
yẋẏ2 − tẋẏ3 − xẋ

x (ẏ(y − tẏ) + ẋ(x − tẋ))
.

These equations admit 3 generators: x
∂

∂t
, y

∂

∂t
, y

∂

∂y
. The order reduction pro-

cedure can be repeated. �	

4 Conclusion

In this work, we have presented two programs for automatic symmetry cal-
culation and constructing OID for ODE system order reduction by Lie group
methods.

The procedure of finding symmetries is realized semi-numerically. It allows
one to compute symmetries of equations of any complex form. Another feature
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of the program is that it can be used for finding the symmetries of ODEs with
small parameter and fractional ODEs and their systems. The form of symmetry
generator is chosen by the user, it can contain non-polynomial terms. No analyt-
ical solving of PDE systems is required. The examples show the correct behavior
of the program for FDEs and ODEs with a small parameter for equations with
known symmetries. In example 4, new symmetries are found for FDE system
which were not published before.

The second program implements the recently developed algorithm of OID
construction. It is the first realization of this algorithm. The program can be
used for constructing OIDs of Lie algebras of generators, which are admitted
by standard ODE systems as well as systems of ODEs with a small parameter.
In the second case, the OID is constructed for corresponding approximate Lie
algebra of generators.

In the future, we plan to combine described programs on one platform (maybe
using SAGE as it has interfaces to other systems) and automate the algorithm
for order reduction of the ODE system with and without small parameter.

Acknowledgments. We are grateful to Prof. R.K. Gazizov and Prof. S.Yu.
Lukashchuk for constructive discussion. Also we thank the referees whose comments
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Abstract. We describe an algorithm for computing the complete set
of primitive orthogonal idempotents in the centralizer ring of the per-
mutation representation of a wreath product. This set of idempotents
determines the decomposition of the representation into irreducible com-
ponents. In the formalism of quantum mechanics, these idempotents are
projection operators into irreducible invariant subspaces of the Hilbert
space of a multipartite quantum system. The C implementation of the
algorithm constructs irreducible decompositions of high-dimensional rep-
resentations of wreath products. Examples of computations are given.

Keywords: Wreath product · Irreducible decomposition ·
Invariant projectors · Multipartite quantum system

1 Introduction

A typical description of a physical system usually includes a space X, on which
a group of spatial symmetries G = G (X) acts, and a set of local states V with
a group of local (or internal) symmetries F = F (V ). The sets X and V and
the group F can be thought of, respectively, as the base, the typical fiber and
the structure group of a fiber bundle. The sections of the bundle are the set of
functions from X to V , denoted by V X . The set V X describes the whole states of
the physical system. A natural symmetry group that acts on V X and preserves
the structure of the fiber bundle is the wreath product [1,2] of F and G

˜W = F � G ∼= FX
� G .

The primitive1 action of ˜W on V X is described by the rule

v (x) (f (x) , g) = v
(

xg−1
)

f
(

xg−1
)

, (1)

1 Another canonical action of the wreath product, the imprimitive action, acts on the
fibers, i.e., on the set V ×X. We will not consider this action here.
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where v ∈ V X , f ∈ FX , g ∈ G; the right-action convention is used for all group
actions.

The wreath product is an important mathematical construct. In particular,
the universal embedding theorem (also known as the Kaloujnine-Krasner theo-
rem) states that any extension of group A by group B is isomorphic to a subgroup
of A � B, i.e., the wreath product is a universal object containing all extensions.
Wreath products play an important role [3] in the influential O’Nan-Scott the-
orem, which classifies maximal subgroups of the symmetric group, yet another
universal object. The wreath product Sm � Sn is the automorphism group of the
hypercubic graph or Hamming scheme H (n,m) in coding theory [4].

A quantum description of a physical system is obtained by introducing a
Hilbert space H spanned by the “classical” states of the system. Accordingly,
the action of the symmetry group on classical states goes over to the unitary
representation of the group in the Hilbert space H. The next important and
natural step in the study of the quantum system is the decomposition of the
representation into irreducible components.

Among the problems of quantum mechanics, the study of multipartite quan-
tum systems is of particular interest because they manifest such phenomena
as entanglement and non-local correlations. In particular, the very possibility
of quantum computing is based on these phenomena. The Hilbert space of a
multipartite system consisting of N identical constituents has the form

˜H = H⊗N , (2)

where H is the Hilbert space of a single constituent. Assuming that the local
group F acts through a representation in H, and the group G ≤ SN permutes
the constituents, we come to the representation of the wreath product F � G in
the space ˜H.

In [5], we proposed an algorithm for decomposing representations of finite
groups into irreducible subrepresentations. The algorithm computes a complete
set of mutually orthogonal irreducible invariant projectors. In fact, this is a spe-
cial case of a general construction — a Peirce decomposition of a ring with respect
to an orthogonal system of idempotents (see [6,7] for more details). Invariant
projection operators are important in problems of quantum physics, since they
define invariant inner products in invariant subspaces of a Hilbert space. Com-
puter implementation of the approach has proved to be very effective in many
cases. For example, the program coped with many high dimensional represen-
tations of simple groups and their “small” extensions, presented in the Atlas
[8], in the computationally difficult case of characteristic zero. The algorithm in
[5] uses polynomial algebra methods, which by their nature are algorithmically
hard. The number of polynomial variables is equal to the rank – defined as the
dimension of the centralizer ring – of the representation to be split. Represen-
tations of simple (or “close” to simple) groups usually have low ranks, and in
such cases the algorithm works well. However, wreath products, which contain
all possible extensions, are far from simple groups and have high ranks. There-
fore, the approach from [5] is not applicable in the case of wreath products.
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In this paper, we propose an algorithm for calculating irreducible invariant pro-
jectors in the representation of a wreath product in the form of tensor product
polynomials with the projectors of a local group representation as variables. We
will consider here permutation representations – the most fundamental type of
representations.

2 Irreducible Invariant Projectors of Wreath Product

Let X ∼= {1, . . . , N} and V ∼= {1, . . . , M}. This implies that G (X) ≤ SN and
F (V ) ≤ SM . The functions v ∈ V X and f ∈ FX can be thought as arrays
(ordered lists) [v1, . . . , vN ] and [f1, . . . , fN ], respectively. Accordingly, the wreath
product element w̃ ∈ ˜W can be written as the pair

(

[f1, . . . , fN ] ; g
)

, where g ∈ G.
The action (1) takes the form

[v1, . . . , vN ]

(

[f1,...,fN ]; g
)

−−−−−−−−−→ [

v1g−1f1g−1 , . . . , vNg−1fNg−1

]

.

The permutation representation ˜P of the wreath product is a representation of
˜W by (0, 1)-matrices of the size MN × MN that have the form

˜P (w̃)u,v = δuw̃,v, where w̃ ∈ ˜W ; u, v ∈ V X ; δ is the Kronecker delta. (3)

We assume that the representation space is an MN -dimensional Hilbert space ˜H
over some abelian extension of the field Q. This extension F is a splitting field
of the local group F .

2.1 Centralizer Ring of Wreath Product

Let
˜A1, . . . , ˜A

˜R (4)

be the basis elements of the centralizer ring of the representation (3), ˜R denotes
the rank of the representation. The basis elements (4) are solutions of the system
of equations (invariance condition)

˜P
(

w̃−1
)

˜A ˜P (w̃) = ˜A, w̃ ∈ ˜W . (5)

A more detailed analysis of (5) shows that the elements (4) are in one-to-one
correspondence with the orbits of ˜W on the Cartesian square V X × V X . Such
orbits are called orbitals.

Let us present the Cartesian square in the form (V × V )X , i.e., as the array

[(V × V )1 , . . . , (V × V )N ] . (6)

To construct orbitals, consider the structure of the group ˜W = F � G in more
detail. Its subgroup

˜FX =
(

FX ; 1G

) ∼= FX (7)
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is called the base group of the wreath product. The group ˜FX is a normal (or
invariant) subgroup of ˜W . This means that w̃−1˜FXw̃ = ˜FX for any w̃ ∈ ˜W ,
and this is denoted by ˜FX � ˜W . The subgroup

˜G =
(

1F
X ; G

) ∼= G (8)

is a complement of ˜FX in ˜W , i.e.,

˜W = ˜FX · ˜G and ˜FX ∩ ˜G = 1
˜W

≡ (

1F
X ; 1G

)

.

Thus, we can construct the orbits on the set (V × V )X acting first by the
elements of the base group (7), and then by the elements of the complement
(8). Further, we note that FX being the direct product of N copies of F ,
FX = F1 × · · · × FN , can be applied to the array (6) component wise inde-
pendently. The action of the local group F splits the set V × V into R disjoint
subsets

Δ1, . . . ,ΔR,

which we will call local orbitals. Calculating local orbitals is a simple task,
since the local group is exponentially smaller than the wreath product. Let
R = {1, . . . , R} and R

X
be the set of all mappings from X into R. We define

the action of g ∈ G on the mapping r ∈ R
X

by rg = [r1g, . . . , rNg]. This action
decomposes the set R

X
into orbits, and we can write the orbital of the wreath

product as
˜Δr =

⊔

q∈rG

Δq1 × · · · × ΔqN ,

where rG denotes the orbit of the mapping r. To translate from the language of
sets to the language of matrices, we must replace the orbitals with the basis ele-
ments of the local centralizer ring, union by summation, and Cartesian products
by the tensor products. Thus, we obtain the expression for the basis element of
the centralizer ring of the wreath product

˜Ar =
∑

q∈rG

Aq1 ⊗ · · · ⊗ AqN , (9)

where A1, . . . , AR are basis elements of the local centralizer ring. It is easy to
show that the basis elements (9) form a complete system, i.e.,

˜R
∑

i=1

˜Ar(i) = JMN ,

where JMN is the MN × MN all-ones matrix, and r(i) denotes some numbering
of the orbits of G on R

X
.
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2.2 Complete Set of Irreducible Invariant Projectors

The complete set of irreducible invariant projectors is a subset of the centralizer
ring, specified by the conditions of idempotency and mutual orthogonality. A
similar construction in ring theory is called a complete set of primitive orthogonal
idempotents. An arbitrary ring with a complete set of orthogonal idempotents
can be represented as a direct sum of indecomposable rings. This is called a
Peirce decomposition [6,7].

Before constructing the complete set of primitive orthogonal idempotents for
the centralizer ring of the permutation representation of the wreath product, we
recall some properties of the tensor (Kronecker) product [9]:

1. (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C),
2. (A + B) ⊗ (C + D) = A ⊗ C + A ⊗ D + B ⊗ C + B ⊗ D,
3. (αA) ⊗ B = A ⊗ (αB) = α (A ⊗ B),
4. (A ⊗ B) (C ⊗ D) = (AC) ⊗ (BD) ,

5. (S ⊗ T )−1 = S−1 ⊗ T−1,

where A, B, C and D are matrices, S and T are invertible matrices and α is a
scalar. It follows immediately from these properties that

1. if A and B are both invariant, then A ⊗ B is invariant;
2. if A and B are both idempotents, then A ⊗ B is idempotent;
3. if A′ = S−1AS and B′ = T−1BT , then

A′ ⊗ B′ = (S ⊗ T )−1 (A ⊗ B) (S ⊗ T ) ≡ (A ⊗ B)′
.

This relation means that we can freely change the bases in the factors of the
tensor product to more convenient ones.

Using the above relations, their consequences and some additional technical con-
siderations allows us to come to the main result of this section.

Let B1, . . . , BK be the complete set of irreducible invariant projectors of the
permutation representation of the local group F . Let K = {1, . . . ,K} and K

X

be the set of all mappings from X into K. The action of g ∈ G on the mapping
k ∈ K

X
is defined as kg = [k1g, . . . , kNg]. Then we have

Proposition 1. An irreducible invariant projector in the permutation represen-
tation of the wreath product takes the form

˜Bk =
∑

�∈kG

B�1 ⊗ · · · ⊗ B�N , (10)

where kG denotes the G-orbit of the mapping k on the set K
X
.

The easily verifiable completeness condition
˜K

∑

i=1

˜Bk(i) = 1lMN holds. Here ˜K is

the number of irreducible components of the wreath product representation, 1lMN
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is the identity matrix in the representation space, k(i) denotes some numbering
of the orbits of G on K

X
.

To calculate the basis elements (9) of the centralizer ring and irreducible
invariant projectors (10), we wrote a program in C. The input data for the
program are the generators of the spatial and local groups, and the complete
set of irreducible invariant projectors of the local group (obtained, for example,
using the program described in [5]).

3 Calculation Example: S4 (octahedron) � A5 (icosahedron)

We give here the calculation of the centralizer ring and invariant projectors for
the permutation representation of the wreath product of the rotational symmetry
groups of the octahedron and icosahedron. This representation has dimension
MN = 2176 782 336 and rank ˜R = 122 776 .

3.1 Space Group

In our example, the space X is represented by the icosahedron, see Fig. 1. The
full symmetry group of the icosahedron is the product A5 × C2. As a group of
spatial symmetries we take the orientation-preserving factor A5, which describes
the rotational (or chiral) symmetries of the icosahedron. The order of A5 is
equal to 60. The points of the space X are the vertices of the icosahedron:
X ∼= {1, . . . , 12}. The space symmetry group G (X) can be generated by two
permutations. For example, for the vertex numbering as in Fig. 1, we may use
the following presentation

G (X) =
〈

(1, 7)(2, 8)(3, 12)(4, 11)(5, 10)(6, 9), (2, 3, 4, 5, 6)(8, 9, 10, 11, 12)
〉 ∼= A5

1

5

11

7

6

10

4

12

9

2

8

3

Fig. 1. Icosahedron.
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3.2 Local Group

The set of local states is represented by the vertices of the octahedron (Fig. 2):
V ∼= {1, . . . , 6}. The full octahedral symmetry group is isomorphic to S4 × C2.
Note that the full octahedral group itself is a wreath product, namely, S2 � S3.

1

2

3
4

5

6

Fig. 2. Octahedron.

The group of rotational symmetries of the octahedron is S4. The order of S4 is
equal to 24. For the vertex numbering of Fig. 2, the local symmetry group F (V )
has the following presentation by two generators

F (V ) =
〈

(1, 3, 5) (2, 4, 6) , (1, 2, 4, 5)
〉 ∼= S4.

The six-dimensional permutation representation 6 of F (V ) has rank 3, and the
basis of the centralizer ring is

A1 = 1l6, A2 =
(

03 1l3
1l3 03

)

, A3 =
(

Y Y
Y Y

)

, where Y =

⎛

⎝

0 1 1
1 0 1
1 1 0

⎞

⎠ . (11)

The irreducible decomposition of this representation has the form 6 = 1⊕2⊕3.
The complete set of irreducible invariant projectors for representation 6,
expressed in the basis (11) of the centralizer ring, is as follows

B1 =
1
6

(A1 + A2 + A3) , B2 =
1
3

(

A1 + A2 − 1
2
A3

)

, B3 =
1
2

(A1 − A2) . (12)

3.3 Applying C Program

Below we present the output of the program, accompanying parts of the output
with comments. An example with a larger dimension of representation is given
in Appendix A. Both calculations were performed on PC with 3.30 GHz CPU
and 16 GB RAM.
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Part 1. The program reads the generators of the spatial and local groups and
prints related information: ‘Name’ is the name of the file containing the gener-
ators, ‘Number of points’ is the dimension of the permutation representation,
etc.

Space G(X) group:
Name = "A5_on_icosahedron"
Number of points = 12
Comment = "Action of A_5 on 12 vertices of icosahedron"
Size = "60"
Number of generators = 2

Local F(V) group:
Name = "S4_on_octahedron"
Number of points = 6
Comment = "Action of S_4 on 6 vertices of octahedron"
Size = "24"
Number of generators = 2

Part 2. The program constructs the wreath product generators from the gener-
ators of the constituent groups and creates a file for the constructed generators.
This part of the calculation is optional and can be disabled.

Whole F(V).wr.G(X) group:
Name = "S4_on_octahedron_wr_A5_on_icosahedron"
Number of points V^X = 2176782336
Size = "24^12*60"
Number of generators = 4

Part 3. The program prints a common header (in LATEX):
Wreath product S4 (octahedron) � A5 (icosahedron)
Representation dimension: 2176782336

Part 4. The program computes the basis elements of the centralizer ring of the
wreath product. This optional computation can be skipped. If it is enabled, the
following items are calculated:

1. Rank of the representation (dimension of the centralizer ring).
2. The set of suborbit lengths. For a permutation group, suborbits are the orbits

of the stabilizer of a single point of the permutation domain [3]. The sizes
of orbitals are equal to the suborbit lengths multiplied by the representation
dimension. The sum of suborbit length is equal to the representation dimen-
sion — we use this fact to verify calculation by displaying ‘Checksum’. The
multiplicities of the suborbit lengths are shown as superscripts.

3. The basis elements of the centralizer ring for the wreath product representa-
tion. We display here only a few elements of the large array. The expressions
for the basis elements are tensor product polynomials in the matrices A1, A2

and A3, shown explicitly in (11).
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Rank: 122776
Number of different suborbit lengths: 46
Wreath suborbit lengths:

135, 2249, 311, 4258, 516, 6403, 81442, 161890, 242418, 323943, 4843, 645082, 8051, 966482,
1286629, 2568858, 38410735, 5127237, 76867, 10249901, 128058, 153612006, 20485611,
40968209, 61449603, 81923093, 1228839, 163844795, 2048046, 245765558, 327681225,
655362171, 983042389, 131072310, 19660815, 262144674, 32768014, 393216743,
52428877, 1048576146, 1572864177, 209715218, 419430416, 52428802, 629145624,
167772167

Checksum = 2176782336 Maximum multiplicity = 12006

Wreath invariant basis forms:

˜A1 = A⊗12
1

˜A2 = A⊗5
1 ⊗ A2 ⊗ A⊗2

1 ⊗ A2 ⊗ A⊗3
1

˜A3 = A⊗4
1 ⊗ A⊗2

2 ⊗ A⊗2
1 ⊗ A⊗2

2 ⊗ A⊗2
1

...
˜A61387 = A⊗3

2 ⊗ A1 ⊗ A3 ⊗ A⊗2
1 ⊗ A⊗2

3 ⊗ A⊗2
2 ⊗ A3

+ A2 ⊗ A1 ⊗ A⊗2
2 ⊗ A1 ⊗ A3 ⊗ A1 ⊗ A2 ⊗ A⊗3

3 ⊗ A2

+ A1 ⊗ A⊗2
2 ⊗ A⊗3

3 ⊗ A2 ⊗ A1 ⊗ A3 ⊗ A1 ⊗ A⊗2
2

+ A1 ⊗ A⊗2
3 ⊗ A⊗2

2 ⊗ A3 ⊗ A⊗2
2 ⊗ A1 ⊗ A3 ⊗ A1 ⊗ A2

˜A61388 = A2 ⊗ A1 ⊗ A⊗2
2 ⊗ A1 ⊗ A3 ⊗ A1 ⊗ A⊗2

2 ⊗ A⊗3
3

+ A⊗2
2 ⊗ A3 ⊗ A1 ⊗ A2 ⊗ A⊗2

1 ⊗ A⊗2
3 ⊗ A⊗2

2 ⊗ A3

+ A1 ⊗ A⊗2
3 ⊗ A⊗2

2 ⊗ A3 ⊗ A⊗2
2 ⊗ A1 ⊗ A2 ⊗ A1 ⊗ A3

+ A1 ⊗ A2 ⊗ A⊗3
3 ⊗ A⊗2

2 ⊗ A1 ⊗ A3 ⊗ A1 ⊗ A⊗2
2

˜A61389 = A2 ⊗ A1 ⊗ A⊗2
2 ⊗ A1 ⊗ A3 ⊗ A⊗3

2 ⊗ A⊗3
3

+ A⊗2
2 ⊗ A3 ⊗ A⊗2

2 ⊗ A⊗2
1 ⊗ A⊗2

3 ⊗ A⊗2
2 ⊗ A3

+ A1 ⊗ A⊗2
3 ⊗ A⊗2

2 ⊗ A3 ⊗ A⊗2
2 ⊗ A1 ⊗ A⊗2

2 ⊗ A3

+ A⊗2
2 ⊗ A⊗3

3 ⊗ A⊗2
2 ⊗ A1 ⊗ A3 ⊗ A1 ⊗ A⊗2

2

...
˜A122774 = A⊗2

3 ⊗ A2 ⊗ A⊗9
3 + A⊗3

3 ⊗ A2 ⊗ A⊗8
3 + A⊗10

3 ⊗ A2 ⊗ A3 + A⊗11
3 ⊗ A2

˜A122775 = A⊗4
3 ⊗ A2 ⊗ A⊗7

3 + A⊗5
3 ⊗ A2 ⊗ A⊗6

3 + A⊗8
3 ⊗ A2 ⊗ A⊗3

3

+ A⊗9
3 ⊗ A2 ⊗ A⊗2

3

˜A122776 = A2 ⊗ A⊗11
3 + A3 ⊗ A2 ⊗ A⊗10

3 + A⊗6
3 ⊗ A2 ⊗ A⊗5

3 + A⊗7
3 ⊗ A2 ⊗ A⊗4

3
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Part 5. This main part of the program computes the complete set of irreducible
invariant projectors (10). The output below contains

1. Information on whether the irreducible decomposition is multiplicity free or
contains subrepresentations with nontrivial multiplicity.

2. The total number of the irreducible invariant projectors.
3. The number of different dimensions.
4. Complete list of irreducible dimensions. The superscripts represent the num-

bers of irreducible projectors of respective dimensions. The total sum of
dimensions must be equal to the dimension of the wreath product repre-
sentation, and this is verified by the direct calculation of ‘Checksum’.

5. A few expressions for irreducible invariant projectors, which are tensor prod-
uct polynomials in matrices of local projectors (12).

Wreath product decomposition is multiplicity free
Number of irreducible components: 122 776
Number of different dimensions: 134
Irreducible dimensions:
1, 46, 63, 86, 93, 1215, 1632, 187, 20, 2470, 3241, 3686, 45, 48191, 5426, 6484, 72298,
804, 817, 96412, 108223, 128114, 144913, 16254, 1808, 192704, 216926, 2434, 256104,
2881804, 3207, 324504, 384772, 4054, 4322517, 48699, 51276, 5762508, 6481909, 72017,
7299, 768705, 8644303, 972818, 102451, 11522562, 12803, 12964455, 1458141, 1536479,
162016, 17285322, 19442712, 204820, 21874, 23041935, 25926708, 288014, 2916961,
3072223, 34564575, 36457, 38885495, 40964, 4374136, 46081004, 5120, 51846924,
58322754, 614459, 648018, 65619, 69122719, 77766966, 81923, 8748822, 9216329,
103684760, 1152010, 116644695, 1228819, 1312298, 138241011, 1458013, 155525781,
174961999, 1843283, 196833, 207362085, 233284826, 2592016, 26244511, 27648260,
311042964, 328053, 349922775, 368645, 3936655, 41472534, 46080, 466563012,
524881023, 5529615, 5832019, 590495, 62208877, 699842173, 78732242, 8294448,
933121038, 1036804, 1049761079, 11809827, 124416102, 1312208, 139968905,
157464355, 186624130, 209952568, 2332807, 23619684, 279936148, 295245,
314928254, 3542946, 419904116, 47239279, 5248803, 531441, 62985662, 70858815,
94478426, 1180980,14171769

Checksum = 2176782336 Maximum number of equal dimensions = 6966

Wreath irreducible projectors:

˜B1 = B⊗12
1

˜B2 = B⊗3
1 ⊗ B2 ⊗ B⊗6

1 ⊗ B2 ⊗ B1

˜B3 = B⊗9
1 ⊗ B2 ⊗ B⊗2

1 + B⊗4
1 ⊗ B2 ⊗ B⊗7

1

...
˜B61387 = B2 ⊗ B3 ⊗ B1 ⊗ B⊗2

2 ⊗ B⊗3
1 ⊗ B⊗2

3 ⊗ B2 ⊗ B3

+ B3 ⊗ B2 ⊗ B1 ⊗ B2 ⊗ B1 ⊗ B3 ⊗ B1 ⊗ B2 ⊗ B3 ⊗ B1 ⊗ B3 ⊗ B2
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+ B⊗2
1 ⊗ B3 ⊗ B2 ⊗ B⊗2

3 ⊗ B2 ⊗ B3 ⊗ B1 ⊗ B⊗2
2 ⊗ B1

+ B1 ⊗ B⊗2
2 ⊗ B3 ⊗ B1 ⊗ B⊗2

3 ⊗ B2 ⊗ B3 ⊗ B1 ⊗ B2 ⊗ B1

˜B61388 = B⊗2
2 ⊗ B3 ⊗ B⊗2

1 ⊗ B3 ⊗ B1 ⊗ B2 ⊗ B3 ⊗ B⊗2
2 ⊗ B3

+ B1 ⊗ B2 ⊗ B3 ⊗ B⊗2
2 ⊗ B3 ⊗ B⊗2

2 ⊗ B3 ⊗ B⊗2
1 ⊗ B3

˜B61389 = B⊗2
1 ⊗ B⊗3

2 ⊗ B1 ⊗ B2 ⊗ B3 ⊗ B2 ⊗ B1 ⊗ B⊗2
3

+ B2 ⊗ B1 ⊗ B2 ⊗ B3 ⊗ B2 ⊗ B1 ⊗ B3 ⊗ B2 ⊗ B⊗2
1 ⊗ B2 ⊗ B3

+ B1 ⊗ B3 ⊗ B2 ⊗ B⊗3
1 ⊗ B3 ⊗ B⊗3

2 ⊗ B3 ⊗ B2

+ B3 ⊗ B2 ⊗ B3 ⊗ B2 ⊗ B⊗2
1 ⊗ B2 ⊗ B⊗2

1 ⊗ B2 ⊗ B3 ⊗ B2

+ B2 ⊗ B⊗3
3 ⊗ B1 ⊗ B2 ⊗ B⊗3

1 ⊗ B⊗3
2

+ B3 ⊗ B⊗2
2 ⊗ B3 ⊗ B⊗2

2 ⊗ B1 ⊗ B3 ⊗ B⊗3
1 ⊗ B2

...
˜B122774 = B⊗2

3 ⊗ B2 ⊗ B⊗9
3 + B⊗3

3 ⊗ B2 ⊗ B⊗8
3 + B⊗10

3 ⊗ B2 ⊗ B3 + B⊗11
3 ⊗ B2

˜B122775 = B⊗2
3 ⊗ B2 ⊗ B3 ⊗ B2 ⊗ B⊗7

3 + B⊗2
3 ⊗ B2 ⊗ B⊗2

3 ⊗ B2 ⊗ B⊗6
3

+ B⊗3
3 ⊗ B2 ⊗ B⊗4

3 ⊗ B2 ⊗ B⊗3
3 + B⊗5

3 ⊗ B2 ⊗ B⊗4
3 ⊗ B2 ⊗ B3

+ B⊗8
3 ⊗ B2 ⊗ B⊗2

3 ⊗ B2 + B⊗9
3 ⊗ B2 ⊗ B3 ⊗ B2

˜B122776 = B⊗3
3 ⊗ B⊗2

2 ⊗ B⊗7
3 + B2 ⊗ B⊗4

3 ⊗ B2 ⊗ B⊗6
3

+ B3 ⊗ B2 ⊗ B⊗3
3 ⊗ B2 ⊗ B⊗6

3 + B⊗6
3 ⊗ B2 ⊗ B3 ⊗ B2 ⊗ B⊗3

3

+ B⊗7
3 ⊗ B⊗2

2 ⊗ B⊗3
3 + B⊗9

3 ⊗ B⊗2
2 ⊗ B3

Time: 0.58 s
Maximum number of tensor monomials: 531441

4 Application Remarks

One of the main goals of the work was to develop a tool for the study of models
of multipartite quantum systems. The projection operators obtained by the pro-
gram are supposed to be used to calculate quantum correlations in such models.
These operators are matrices of huge dimension (for example, about ten trillion
for projectors in AppendixA). Obviously, the explicit calculation of such matri-
ces is impossible. However, the expression of projectors for wreath products in
the form of tensor polynomials makes it possible to reduce the computation
of quantum correlations to a sequence of computations with small matrices of
local projectors. To demonstrate this, recall that the computation of quantum
correlations is ultimately reduced to the computation of scalar products. Let
˜Φ =

∑

m∈V X

ϕm |em1〉⊗ · · ·⊗ |emN
〉 ∈ ˜H and ˜Ψ =

∑

m∈V X

ψn |en1〉⊗ · · ·⊗ |enN
〉 ∈ ˜H

be vectors of the Hilbert space (2), where |e1〉 , . . . , |eM 〉 is a basis in the local
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Hilbert space H, ϕm and ψn are arbitrary scalars from the base field F . Then
we can calculate the scalar product of these vectors in the invariant subspace
defined by the projector (10) as follows

〈

˜Φ
∣

∣

∣

˜Bk

∣

∣

∣

˜Ψ
〉

=
∑

m∈V X

n∈V X

�∈kG

ϕmψn 〈em1 | ⊗ · · · ⊗ 〈emN
| B�1 ⊗ · · · ⊗ B�N |en1〉 ⊗ · · · ⊗ |enN

〉

=
∑

m∈V X

n∈V X

�∈kG

ϕmψn 〈em1 | B�1 |en1〉 · · · 〈emN
| B�N |enN

〉 .
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A Computing Invariant Projectors for
A5 (icosahedron) � A5 (icosahedron)

The representation 12 of A5 on the icosahedron has rank 4, and the basis of the
centralizer ring is

A1 = 1l12, A2 =
(

06 1l6
1l6 06

)

, A3 =
(

Y Z
Z Y

)

, A4 =
(

Z Y
Y Z

)

, (13)

where Y =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 1 1 1 1
1 0 1 0 0 1
1 1 0 1 0 0
1 0 1 0 1 0
1 0 0 1 0 1
1 1 0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, Z =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 1 0 0 0 1
0 1 1 0 0 0
0 0 1 1 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. The irreducible decompo-

sition of this representation has the form 12 = 1⊕3⊕3′ ⊕5. The complete set
of irreducible invariant projectors for representation 12, expressed in the basis
(13) of the centralizer ring, is as follows

B1 =
1
12

(A1 + A2 + A3 + A4) ,

B3 =
1
4

(

A1 − A2 +
1√
5
A3 − 1√

5
A4

)

,

B3′ =
1
4

(

A1 − A2 − 1√
5
A3 +

1√
5
A4

)

,

B5 =
1
12

(5A1 + 5A2 − A3 − A4.)
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Local F(V) group:
Name = "A5_on_icosahedron"
Number of points = 12
Comment = "Action of A_5 on 12 vertices of icosahedron"
Number of generators = 2

Space G(X) group:
Name = "A5_on_icosahedron"
Number of points = 12
Comment = "Action of A_5 on 12 vertices of icosahedron"
Number of generators = 2

Whole group F(V).wr.G(X)
Number of points V^X = 8916100448256

Wreath product A5 (icosahedron) � A5 (icosahedron)
Representation dimension: 8916100448256
Rank: 3875157
Wreath product decomposition is multiplicity free
Number of irreducible components: 3 875 157
Number of different dimensions: 261
Irreducible dimensions:
1, 66, 96, 103, 1828, 253, 3029, 3616, 452, 506, 54176, 6016, 8129, 90248, 1004, 10881,
125, 125, 150115, 162715, 180122, 22530, 24315, 25021, 2701361, 30062, 324475, 40516,
450941, 4862401, 50010, 5401005, 6257, 67514, 72971, 750293, 8105584, 900743, 9721791,
112516, 125031, 13505254, 14586178, 1500246, 16204615, 18754, 2025111, 218742,
22502441, 243017059, 250025, 27004607, 29164071, 31254, 364547, 3750547, 405019890,
437411761, 45002254, 486012862, 562554, 607563, 625050, 6561128, 675012386,
729037925, 7500546, 810016086, 87487733, 1012566, 112504247, 1215052986, 1250053,
1312216751, 1350010685, 1458027576, 156259, 1687534, 18225259, 18750786, 1968361,
2025040875, 2187062340, 225003861, 2430041325, 2624410200, 2812532, 3125061,
3280551, 3375018678, 36450101494, 37500742, 3936617904, 4050034194, 4374041406,
468754, 50625187, 54675118, 562505024, 5904991, 6075093760, 6250050,
6561074687, 6750016874, 7290071901, 781257, 787329419, 91125103, 93750731,
10125053180, 109350138609, 1125004992, 11809813935, 12150071716, 13122042937,
14062564, 151875101, 15625045, 164025227, 16875018946, 17714746, 182250148591,
187500814, 19683064140, 20250044570, 21870085846, 2361965558, 25312572,
2812504058, 29524555, 303750100768, 31250057, 328050132909, 33750017918,
3542947569, 364500100099, 3906259, 39366028803, 42187530, 455625223, 468750487,
492075117, 50625044563, 53144135, 546750162353, 5625004467, 59049038051,
60750075302, 65610064773, 70312526, 7085882079, 78125019, 820125136,
84375012709, 911250127883, 937500642, 98415087505, 101250037970, 10628822545,
109350086513, 11718753, 118098011554, 1265625103, 1366875136, 14062502224,
147622594, 151875067801, 156250037, 159432311, 1640250120077, 168750012838,
177147014025, 182250076014, 19531253, 196830028555, 2125764258, 2278125121,
2343750212, 253125024163, 265720516, 2733750108068, 28125002782, 295245035413,
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303750046259, 3188646403, 328050042505, 351562526, 35429401796, 379687571,
39062509, 4100625115, 42187505748, 442867543, 455625066794, 4687500346,
492075053856, 506250019542, 53144102418, 546750042675, 59049005082, 632812566,
7031250839, 738112551, 759375028831, 781250016, 820125054394, 84375005668,
88573506482, 911250030331, 97656255, 98415008743, 1054687518, 1139062575,
1171875083, 1230187567, 126562508656, 1366875038539, 140625001040,
1476225010735, 1518750015435, 164025009901, 1757812516, 195312504, 2050312558,
210937501717, 2278125019527, 23437500102, 2460375012006, 253125005605,
273375008134, 3164062531, 3417187539, 35156250245, 379687507111, 390625003,
410062509603, 421875001419, 455625004795, 48828125, 5695312546, 5859375026,
632812501800, 683437505558, 70312500215, 759375002140, 8789062510, 9492187515,
105468750336, 1139062502389, 11718750020, 126562500674, 15820312514,
17578125042, 189843750743, 1953125003, 210937500136, 244140625, 316406250177,
35156250016, 4394531252, 52734375024,5859375006

Checksum = 8916100448256 Maximum number of equal dimensions = 162353

Wreath irreducible projectors:

˜B1 = B⊗12
1

˜B2 = B⊗11
1 ⊗ B3′ + B⊗2

1 ⊗ B3′ ⊗ B⊗9
1

˜B3 = B⊗9
1 ⊗ B3′ ⊗ B⊗2

1 + B⊗4
1 ⊗ B3′ ⊗ B⊗7

1

...
˜B1937578 = B5 ⊗ B⊗2

3′ ⊗ B⊗2
3 ⊗ B⊗3

1 ⊗ B5 ⊗ B3′ ⊗ B3 ⊗ B5

+ B3′ ⊗ B1 ⊗ B3 ⊗ B3′ ⊗ B1 ⊗ B5 ⊗ B3 ⊗ B5 ⊗ B3

⊗ B1 ⊗ B5 ⊗ B3′

+ B⊗2
1 ⊗ B5 ⊗ B3 ⊗ B3′ ⊗ B⊗2

5 ⊗ B3′ ⊗ B1 ⊗ B⊗2
3 ⊗ B3′

+ B3 ⊗ B5 ⊗ B3′ ⊗ B5 ⊗ B1 ⊗ B3 ⊗ B3′ ⊗ B1 ⊗ B5

⊗ B1 ⊗ B3′ ⊗ B3

˜B1937579 = B5 ⊗ B3 ⊗ B1 ⊗ B3′ ⊗ B⊗2
5 ⊗ B3 ⊗ B1 ⊗ B⊗2

3 ⊗ B1 ⊗ B3′

+ B3 ⊗ B1 ⊗ B3′ ⊗ B1 ⊗ B⊗2
3 ⊗ B5 ⊗ B3 ⊗ B⊗2

5 ⊗ B3′ ⊗ B1

+ B⊗2
3 ⊗ B1 ⊗ B3 ⊗ B5 ⊗ B3 ⊗ B3′ ⊗ B⊗2

5 ⊗ B1 ⊗ B3′ ⊗ B1

+ B3′ ⊗ B5 ⊗ B1 ⊗ B3′ ⊗ B1 ⊗ B5 ⊗ B⊗3
3 ⊗ B5 ⊗ B3 ⊗ B1

˜B1937580 = B3 ⊗ B⊗2
3′ ⊗ B3 ⊗ B⊗2

5 ⊗ B⊗3
1 ⊗ B⊗2

3′ ⊗ B5

+ B3′ ⊗ B1 ⊗ B⊗2
3′ ⊗ B5 ⊗ B1 ⊗ B⊗2

3 ⊗ B5 ⊗ B1 ⊗ B5 ⊗ B3′

+ B⊗2
3 ⊗ B3′ ⊗ B5 ⊗ B1 ⊗ B5 ⊗ B3′ ⊗ B⊗2

1 ⊗ B5 ⊗ B⊗2
3′

+ B⊗2
1 ⊗ B5 ⊗ B⊗2

3′ ⊗ B1 ⊗ B3 ⊗ B3′ ⊗ B⊗2
5 ⊗ B3 ⊗ B3′

...
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˜B3875155 = B3 ⊗ B⊗11
5 + B5 ⊗ B3 ⊗ B⊗10

5 + B⊗6
5 ⊗ B3 ⊗ B⊗5

5 + B⊗7
5

⊗ B3 ⊗ B⊗4
5

˜B3875156 = B⊗4
5 ⊗ B3′ ⊗ B⊗7

5 + B⊗5
5 ⊗ B3′ ⊗ B⊗6

5 + B⊗8
5 ⊗ B3′ ⊗ B⊗3

5

+ B⊗9
5 ⊗ B3′ ⊗ B⊗2

5

˜B3875157 = B⊗4
5 ⊗ B3 ⊗ B⊗7

5 + B⊗5
5 ⊗ B3 ⊗ B⊗6

5 + B⊗8
5 ⊗ B3 ⊗ B⊗3

5

+ B⊗9
5 ⊗ B3 ⊗ B⊗2

5

Time: 7.35 s
Maximum number of tensor monomials: 16777216
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Abstract. The maximal determinant problem for −1/+1 matrices has
been studied extensively and upper bounds for the determinant are
known for various classes of matrices. These upper bounds are attained
by specific kinds of combinatorial matrices and D-optimal matrices are
one such case. One of the key issues in the search for D-optimal matrices
is to reconstruct a −1/+1 sequence of length n from a given sequence of
periodic autocorrelation function (PAF) values. In turn, this is reduced
to solving a quadratic system with �n/2� equations over {−1,+1}n.
In this paper, a method for reconstructing a special class of −1/+1
sequences is proposed by making use of some combinatorial properties
of PAF values and the orbits method based on group actions. Further-
more, we apply additional filtering criteria to enhance the effectiveness
of the method. Experiments show that the new approach can solve rela-
tively large-scale problems and can help to generate solutions for many
D-optimal problems.

Keywords: Periodic autocorrelation function · D-optimal design ·
Orbits method

1 Introduction

Hadamard’s maximal determinant problem, which was first posed by J. Hada-
mard in his 1893 paper [8], asks for the largest possible determinant of any
N ×N matrix with entries equal to −1 or +1. Despite being extensively studied
in the past century, Hadamard’s maximal determinant problem remains an open
problem till today.

There are various known bounds on maximal determinants (see [1,3,4,17]).
Another aspect of the maximal determinant problem is how to construct a matrix
that attains the upper bound. D-optimal matrices are one such case where N ≡ 2
mod 4, i.e., there exist an odd n such that N = 2n. For the remainder of the
paper, we assume n is an odd number. The construction of D-optimal matrices of

c© Springer Nature Switzerland AG 2019
M. England et al. (Eds.): CASC 2019, LNCS 11661, pp. 315–329, 2019.
https://doi.org/10.1007/978-3-030-26831-2_21
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this type was first given by Ehlich in [3]. He proved that if A and B are circulant
−1/ + 1 matrices of order n such that

AAT + BBT = 2 (n − 1)In + 2Jn (1)

where In is the identity matrix of order n and Jn is a matrix of order n with
entries equal to 1, then the following matrix

H =
(

A B
−BT AT

)
(2)

has maximal determinant. We say the matrix H constructed in this way is of
circulant type. It is clear that in order to construct a circulant-type D-optimal
matrix, one has to find two sequences a and b such that the circulant matrices
A and B whose first rows are given by these two sequences, satisfy (1). Then
one can generate the other rows via making a right cyclic shift by one of the
previous row. Let a and b be the first rows of A and B, respectively. One may
easily derive from (1) that |a|2 + |b|2 = 4n − 2 where |a| and |b| are the sums
of elements in a and b, respectively. By solving the Diophantine equation, one
may obtain a necessary condition under which a circulant-type matrix H of the
form (2) exists. A comprehensive table of all odd n < 200 for which D-optimal
matrices of order 2n are known can be found in [15]. The lowest outstanding
order is currently N = 198 (i.e., n = 99). In addition, there are two infinite
classes of D-optimal matrices of orders n = q2 + q + 1 and n = 2 q2 + 2 q + 1
(see [15] for more details). When n > 100, only a few circulant-type D-optimal
matrices are known and the corresponding values of n are 103, 113, 121, 131,
145, 157, 181 and 241 (see [2,5–7,9,14–16]).

The main difficulty for constructing D-optimal matrices lies in the exponen-
tial size of the search space in terms of N where N is the order of the desired
D-optimal matrices. In priori, the search space consists of 2N2

possibilities. Some
strategies for constructing D-optimal matrices use several combinatorial prop-
erties of the aforementioned sequences a and b, in order to significantly reduce
the search space. One such property is related with the periodic autocorrelation
function (PAF) that we explain below.

Let a = [a0, . . . , an−1] and b = [b0, . . . , bn−1] be the first rows of A and B.
Then (1) is equivalent to{ |a|2 + |b|2 = 4n − 2,

PAF(a, k) + PAF(b, k) = 2, k = 1, . . . , �n/2�, (3)

where |a| =
∑n−1

i=0 ai, |b| =
∑n−1

i=0 bi, and PAF(a, k) (or PAF(b, k)) is called the
periodic autocorrelation function of a (or b) and is defined as

PAF(a, k) =
n−1∑
i=0

aiai+k, for k = 0, 1, . . . , �n/2�

(where i + k is taken modulo n when i + k ≥ n). The resulting algorithm to
construct circulant-type D-optimal matrices H is to search for −1/+1 sequences
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a and b such that (3) holds, where one of the key steps is to reconstruct a −1/+1
sequence of length n from a sequence of PAF values. In turn, this is reduced to
solving a quadratic system with �n/2� equations over {−1,+1}n. More explicitly,
we will consider the following problem:

PAF Profile Problem (PPP). For a specific length n and element sum |a|,
given a specific sequence of numbers, P = [p0, p1, . . . , p�n/2�],1 is there a binary
{−1,+1} sequence of length n, with a constant sum of elements, whose PAF
profile is equal to P?

For example, let n = 9, |a| = −1 and P = [−3, 1,−3, 1]. We are looking for
a = [a0, . . . , an−1] ∈ {−1,+1}n which satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|a| = a0 + a1 + · · · + a7 + a8 = −1
PAF(a, 1) = a0a1 + a1a2 + · · · + a8a0 = −3,
PAF(a, 2) = a0a2 + a1a3 + · · · + a8a1 = 1,
PAF(a, 3) = a0a3 + a1a4 + · · · + a8a2 = −3,
PAF(a, 4) = a0a4 + a1a5 + · · · + a8a3 = 1.

The PAF profile problem was first investigated in [10] where the authors
encoded a −1/+1 sequence into a partition of n via the concept of runs and
identified some combinatorial features the partition possesses from the given
PAF values. However, this method can only solve relatively small-scale systems
of equations, say n < 50. In order to solve large-scale systems, we will adopt the
orbits method based on group actions to reconstruct −1/+1 sequences which are
generated by using the orbits method from a set of PAF values. Furthermore,
we apply the power spectral density (PSD) test and ranking/unranking tech-
nique to enhance the effectiveness of the method. Experiments show that the
new approach can solve relatively large-scale problems and can help to generate
solutions for many D-optimal problems.

This paper is structured as follows. In Sect. 2, we recall some combinatorial
concepts and prove a new combinatorial property of the PAF sequences which is
used to shrink the search space of solutions to the PAF profile problem. In Sect. 3,
the orbits method and several practical techniques related to it are reviewed. In
Sect. 4, an algorithm is presented to solve a special class of PPP and an example
is given to illustrate how the algorithm works. It is followed by benchmark exper-
iments in Sect. 5 to show the efficiency of the proposed algorithm. The paper is
concluded in Sect. 6.

2 Combinatorial Concepts and Properties

In this section, we first recall some combinatorial concepts and some nice prop-
erties related to PAF values and −1/+1 sequences, which may help reduce the
size of search space when solving a PPP.

Suppose a = [a0, . . . , an−1]. Clearly, PAF(a, k) = PAF(a′, k) where a′ is a
rotation or reverse rotation of a, i.e., the PAF values remain unchanged under
1 Obviously, p0 = n. It is omitted unless it is used.
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rotations and reverse rotations of the sequence. In this case, we say a and a′ are
equivalent sequences. Therefore, without loss of generality, we assume a starts
with +1 and ends with −1.

In coding theory, −1/+1 sequences are described using the concept of a
run, see [12]. A run of a −1/+1 sequence is defined as a fragment of the
sequence such that: (a) its elements are all +1’s or all −1’s; (b) the last ele-
ment before the fragment and the first element after the fragment are both with
the opposite sign to the elements in the fragment. If the length of a run is k,
we call it a k-run. For example, a = [1,−1,−1, 1, 1,−1,−1] has four runs, i.e.,
[1], [−1,−1], [1, 1], [−1,−1], among which [1] is the only 1-run in a. In general,
every −1/+1 sequence of length n can be encoded into an ordered partition of
n by describing each run with the number of elements therein; and vice versa.
For example, a = [1,−1,−1, 1, 1,−1,−1] can be encoded into [1, 2, 2, 2] which
is a partition of 7; given a partition [1, 2, 1, 3] of 7, one can decode it into a
−1/+1 sequence [1,−1,−1, 1,−1,−1,−1]. Therefore, finding a −1/+1 sequence
of length n for a PAF profile problem is equivalent to finding an ordered par-
tition of n such that its decoded sequence has the given PAF profile. Due to
the assumption that a starts with +1 and ends with −1, the partition obtained
from encoding a always has even length. The following theorem [10] gives more
features of the partition which generates a solution of the given PPP.

Theorem 1. Let a be a −1/+1 sequence of length n and pk = PAF(a, k). Then

– PAF(a, k) ≡ n mod 4, for k = 1, . . . , �n/2�;
– the number of runs in a is (p0 − p1)/2;
– the number of 1-runs in a is (p0 + p2 − 2 p1)/4.

Example 1. Let n = 9 and a = (1, 1,−1, 1,−1, 1,−1,−1, −1). By calculation,
P = (−3, 1,−3, 1). Moreover, it can be verified that

– PAF(a, 1) = PAF(a, 3) = −3 ≡ 9 mod 4;
PAF(a, 2) = PAF(a, 4) = 1 ≡ 9 mod 4;

– the number of runs in a is (p0 − p1)/2 = 6;
– the number of 1-runs in a is (p0 + p2 − 2p1)/4 = 4.

Given an ordered partition δ = (n1, . . . , nt) of even length, we may find
fragments of the form (2) or (1, k) (k ≥ 2) in δ. The following theorem reveals
the relationship between the number of such fragments and the PAF sequences
of the decoded −1/+1 sequence from δ.

Theorem 2. Let δ = (n1, . . . , nt) be an ordered partition of n with even number
of elements and #2, #1k denote the numbers of fragments of the form (2) and
(1, k) (k ≥ 2) in δ, respectively.2 Let a be the decoded −1/+1 sequence from δ
and pi = PAF(a, i). Then #2 + #1k = (p0 − p1 − p2 + p3)/4.

2 If n1 > 1 and nt = 1, (nt, n1) is regarded as a fragment of the form (1, k).
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For proving this property, we introduce two new sequences, i.e., b =
[b0, . . . , bn−1] associated to a with bi = (ai + 1)/2 and c = [c0, . . . , cn−1] associ-
ated to b with ci = 1 − bi. Then

bi =
{

0, if ai = −1;
1, if ai = 1; ci =

{
1, if bi = 0;
0, if bi = 1.

Let pk = PAF(a, k). We have

qk :=
n−1∑
i=0

bibi+k = (pk − 2|a| + n)/4, (4)

q′
k :=

n−1∑
i=0

cici+k = (pk − 2|a| + n)/4. (5)

where k = 0, . . . , �n/2�. Now we are ready to prove Theorem 2 with the help of
b and c.

Proof. Let b and c be defined as above. Obviously, the encoded partitions of
b and c have the same numbers of fragments of the form (2) and (1, k) with
the encoded partition of a. Noting (4) and (5), we only need to show that s :=
#2 + #1k = q0 − q1 − q2 + q3 or #2 + #1k = q′

0 − q′
1 − q′

2 + q′
3, which can be

proved by induction on s.
Case 1. s = 0. Obviously, ni ≥ 3. By calculation, we have

q1 = q0 − t, q2 = q0 − 2 t, q3 = q0 − 3 t.

Thus q0 − q1 − q2 + q3 = 0, which is equal to s.
Case 2. Suppose the conclusion holds for s′ < s. We prove it is also true

for s.
If δ only contains the fragments of the form (2), then at least one of the

following fragments appears in b.

(2.1) 0, 0, 0, 1, 1, 0, 0, 0 (2.2) 0, 0, 0, 1, 1, 0, 0, 1

(2.3) 1, 0, 0, 1, 1, 0, 0, 0 (2.4) 1, 0, 0, 1, 1, 0, 0, 1

(2.5) 0, 1, 1, 0, 0, 1, 1, 0 (2.6) 0, 1, 1, 0, 0, 1, 1, 1

(2.7) 1, 1, 1, 0, 0, 1, 1, 0 (2.8) 1, 1, 1, 0, 0, 1, 1, 1

In what follows, we only show that the conclusion holds for Cases (2.1)–(2.4).
Similar strategies can be used to prove Cases (2.5)–(2.8) with the help of c.
First we choose one such fragment in b and replace 1 with 0. Denote the new
sequence with b̄. In the encoded partition of b̄, assume s′ = #2 + #1k (k ≥ 2).
Let q̄k =

∑n−1
i=0 b̄ib̄i+k. Further calculation leads to

Taking the hypothesis q̄0 − q̄1 − q̄2 + q̄3 = s′(< s) into account, one can imme-
diately verify that q0 − q1 − q2 + q3 = s for Cases (2.1)–(2.4).
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Case s q0 q1 q2 q3

(2.1) s′ + 1 q̄0 + 2 q̄1 + 1 q̄2 q̄3

(2.2) s′ + 2 q̄0 + 2 q̄1 + 1 q̄2 q̄3 + 1

(2.3) s′ + 2 q̄0 + 2 q̄1 + 1 q̄2 q̄3 + 1

(2.4) s′ + 3 q̄0 + 2 q̄1 + 1 q̄2 q̄3 + 2

If δ has one or more fragments of the form (1, k), then at least one of the
following fragments appears in b. In what follows, we only show that the conclu-
sion holds for Cases (2.9)–(2.12). Similar strategies can be used to prove Cases
(2.13)–(2.16) with the help of c.

(2.9) 0, 0, 0, 1, 0, 0, 1 (2.10) 0, 1, 0, 1, 0, 0, 1

(2.11) 1, 0, 0, 1, 0, 0, 1 (2.12) 1, 1, 0, 1, 0, 0, 1

(2.13) 0, 0, 1, 0, 1, 1, 0 (2.14) 0, 1, 1, 0, 1, 1, 0

(2.15) 1, 0, 1, 0, 1, 1, 0 (2.16) 1, 1, 1, 0, 1, 1, 0

Again we choose one such fragment in b and replace 1 with 0. Denote the new
sequence with b̄. In the encoded partition of b̄, assume s′ = #2 + #1k (k ≥ 2).
Let q̄k =

∑n−1
i=0 b̄ib̄i+k. Further calculation results in

Case s q0 q1 q2 q3

(2.9) s′ + 2 q̄0 + 1 q̄1 q̄2 q̄3 + 1

(2.10) s′ + 1 q̄0 + 1 q̄1 q̄2 + 1 q̄3 + 1

(2.11) s′ + 3 q̄0 + 1 q̄1 q̄2 q̄3 + 2

(2.12) s′ + 2 q̄0 + 1 q̄1 q̄2 + 1 q̄3 + 2

Combining the induction q̄0 − q̄1 − q̄2 + q̄3 = s′(< s), one can immediately verify
that q0 − q1 − q2 + q3 = s for Cases (2.9)-(2.12).

Example 2. Consider the sequence a in Example 1. Recall P = (−3, 1,−3, 1).
Thus (p0 − p1 − p2 + p3)/4 = 2, which is equal to the total number of 2-runs and
1-runs followed by a k-run (k ≥ 2) in a.

3 Technical Details

In this section, we first review the orbits method which is used to formulate a
new PPP solving algorithm. The algorithm is specially designed for reconstruct-
ing a −1/+1 sequence which is obtained by the orbits method. We will detail
the sequence generation and then reconstruct it from its PAF values using its
special properties. The PSD test and the ranking/unranking technique are also
introduced to further enhance the effectiveness of the algorithm.
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3.1 The Orbits Method

Let Zn be the ring of integers mod n, i.e., Zn = {0, . . . , n − 1}. Let Z
∗
n bet the

group of all invertible elements in Zn, i.e., Z∗
n = {k : 1 ≤ k ≤ n, gcd(k, n) = 1}.

For the sake of simplicity, we use k instead of k for elements of Zn. It is well-
known that the number of elements in Z

∗
n is equal to φ(n) where φ denotes the

Euler function. Let H be a subgroup of Z∗
n. Then H acting on Zn produces a

series of orbits denoted by

O1 = {0},O2, . . . ,Om

and the disjoint union of Oi’s (1 ≤ i ≤ m) is equal to Zn. The orbits method
is frequently used for constructing D-optimal matrices [5–7,13,14,16]. This is
because sometimes, the two sequences a and b can be expressed as the unions of
some orbits associated to a proper subgroup of Z∗

n. More explicitly, the indices
appearing in such a union indicate the position of −1’s and the remaining posi-
tions are for +1’s.

Example 3. Consider the case when n = 13, |a| = 1, |b| = 7 and H = {1, 3, 9} �
Z

∗
13. We compute the orbits of H acting on Z13 and obtain

O1 = {0}, O2 = {1, 3, 9}, O3 = {2, 5, 6}, O4 = {4, 10, 12}, O5 = {7, 8, 11}.

Note that the number of −1’s in a is (n− |a|)/2 = 6 = 3 · 2. Thus we choose two
3-orbits (e.g., O2 and O3) and form a set

Ia = O2 ∪ O3 = {1, 2, 3, 5, 6, 9},

which indicates that

a1 = a2 = a3 = a5 = a6 = a9 = −1.

Therefore, a = [1,−1,−1,−1, 1,−1,−1, 1, 1,−1, 1, 1, 1]. Similarly, b can be con-
structed in the same manner.

When n is given, |a| and |b| are obtained by solving the Diophantine equation
|a|2 + |b|2 = 4n− 2. Let k be a divisor of φ(n). One can construct a subgroup of
Z

∗
n which has k elements, and a number of a’s and b’s from the orbits obtained by

the subgroup acting on Zn. To find a pair of a and b which can be used to form
a D-optimal matrix, one needs to check the condition PAF(a, k)+PAF(b, k) = 2
(1 ≤ k ≤ �n/2�) for all possible pairs of a and b.

In general, the above approach for generating a’s and b’s via the orbits meth-
ods produces an enormous amount of data. For n > 50, it is computationally
infeasible to detect sequences that satisfy the PAF conditions using only the
computer memory as the storage device. Therefore, for n > 50, it is preferable
to write the candidate PAF sequences for a and b in two distinct result files and
subsequently execute a matching algorithm which will find any pairs of sequences
whose PAF values sum to 2, if they exist. It should be pointed out that the PAF
sequences stored in the file of b’s are subtracted by 2. Then one may sort the
files and find the matching PAF sequences in linear time. For each sequence, we
may recover the sequences a and b by using the algorithm PPPsolving in Sect. 4
and construct a circulant-type D-optimal matrix from a and b.
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3.2 PSD Test

The special construction of a and b implies some nice properties of the power
spectral densities of the two sequences. Now we first recall the definition of the
power spectral density (PSD) of a complex sequence x = [x0, . . . , xn−1]. Let
ω = e2πi/n denote the primitive n-th root of unity. Then the discrete Fourier
transformation of x is defined as

DFT(x, k) =
n−1∑
i=0

xiω
ik, k = 0, . . . , n − 1

and the power spectral density value PSD(x, k) (0 ≤ k ≤ n) is defined as

PSD(x, k) = |DFT(x, k)|2 = DFT(x, k) · DFT(x, k),

which indicates its nonnegativity. Furthermore,we have the following theorem [16].

Theorem 3. Let k and k′ be chosen from the same orbit Or ∈ Zn and sequences
a and b are constructed by the orbits method. Then

(i) PSD(a, k) + PSD(b, k) = 2n − 2 (1 ≤ k ≤ n − 1) if a and b are solutions
for constructing the D-optimal matrix;

(ii) PSD(a, k) = PSD(a, k′).

One may derive PSD(a, k) ≤ 2n−2 from (i) in Theorem 3 because PSD(b, k) ≥ 0.
Similarly, PSD(b, k) ≤ 2n−2. Experiments show that this filtering criterion helps
to discard about 95% sequences generated by the orbits method. However, the
cost for computing the PSD values is very expensive and (ii) plays an important
role in reducing the time cost. In particular, one only needs to compute one PSD
value for all indices in each orbit.

3.3 Ranking/Unranking Technique

During the process of solving a PPP, the ranking/unranking technique is adopted
when the numbers of a’s and b’s are too big (e.g., hundreds of millions). In such
circumstance, it is impossible to store the combinatorial sets which indicate how
to choose a group of orbits in the computer memory. Therefore, we resort to the
ranking/unranking technique in [11, Chapter 2.3] to generate the index set for
choosing the orbits one by one.

A ranking algorithm determines the position (or rank) of a combinatorial
object among all the objects (with respect to a given order) while an unranking
algorithm finds the object having a specified rank. Ranking and unranking can
be considered as inverse operations. Suppose that S is a finite set and N = #S.
A ranking function is a bijection rank : S → {0, . . . , N−1}. In what follows, we
use a simple example to illustrate how the ranking/unranking technique works.
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Example 4. Consider Example 3. For generating a, we need to choose two orbits
from four 3-orbits. It is easy to calculate

(
4
2

)
= 6 and the ranking algorithm will

give the six choices different ranks, i.e.,

rank(1, 2) = 1, rank(1, 3) = 2, rank(2, 3) = 3,
rank(1, 4) = 4, rank(2, 4) = 5, rank(3, 4) = 6.

When one needs to restore a choice from a given rank (e.g., rank = 4), we can
call the unranking algorithm and get the index set {1, 4}.

The ranking/unranking technique helps to resolve the problem of memory
overflow and can be used for any m where m is the number of orbits no matter
how big it is.

4 Algorithm and Example

In this section, we adopt the techniques described above to design an orbit-based
algorithm for solving a special class of PPP. In the input of the algorithm, the
PAF sequence should be associated to a −1/+1 sequence a which is obtained by
the orbits method. Otherwise, the algorithm fails and returns {}.

Algorithm 1. (PPPsolving).

Input: n, a natural number;
r, an integer which indicates the number of −1’s in a;
p = [p1, . . . , p�n/2�], a sequence of integers;
H, a subset of Z∗

n used to generate the orbits.

Output: a, a solution to the PPP determined by n, r, p and which can be gen-
erated by the orbits of H acting on Zn, if it exists; {}, otherwise.

1. t ← (n − p1)/2, /* Check the number of runs
N1 ← (n − 2 p1 + p2)/4, /* Check the number of 1-runs
s ← (n − p1 − p2 + p3)/4. /* Check the number #2 + #1k

2. If one of the following occurs, return {}.

(a) t is fractional/odd/negative;

(b) N1 is fractional/negative;

(c) s is fractional/negative.

3. Compute the orbits of H acting on Zn, denoted by O1 = {0},O2, . . . ,Om.

4. For every combination C of {1, . . . , m} such that
# (∪c∈COc) = r, execute the following procedure.

4.1 Restore a candidate sequence a from C.

4.2 If a doesn’t have the combinatorial features t, N1 and s, go to next
loop.
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4.3 Carry out the PSD test for a on each orbit; if the test fails, go to next
loop.

4.4 Check whether a satisfies PAF(a, k) = pk for k = 4, . . . , �n/2�; if the
test is passed, return a.

5. Return {}.

In the above algorithm, Step 4.3 can be neglected if the comparison is carried
out in memory instead of writing the candidate sequences as well as their PAF
values into a file. In this case, we may also use the ranking/unranking technique
to generate the combination C in Step 4.

Example 5. Reconsider Example 3. Given n = 13, r = 6, p = [1,−3, 1, 1,−3,−3]
and a is obtained by using the orbits method where H = {1, 3, 9}. We will
reconstruct a with the above algorithm.

1. By calculation, t = 6, N1 = 2, s = 4.
2. Since t, N1 and s are all positive integers, we go to Step 3.
3. Compute the orbits of H acting on Z13 and get

O1 = {0}, O2 = {1, 3, 9}, O3 = {2, 5, 6}, O4 = {4, 10, 12}, O5 = {7, 8, 11}.

4. Note that the number of −1’s in a is 6 = 3 · 2. Thus we will consider all the
possibilities of two 3-orbits, i.e., C is chosen from

{(2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}.

– For C = (2, 3),

a = [1,−1,−1,−1, 1,−1,−1, 1, 1,−1, 1, 1, 1]

and a has 6 runs, which passes the combinatorial feature test. We calcu-
late the PSD values of a and get PSD(a, 1) .= 21.20, PSD(a, 2) .= 6.79,
PSD(a, 4) .= 21.2, which also succeeds in the PSD test. It can be further
verified that a also passes the PAF test.

– When C = (2, 4),

a = [1,−1, 1,−1,−1, 1, 1, 1, 1,−1,−1, 1,−1]

and it fails the combinatorial feature test.
– For C = (2, 5),

a = [1,−1, 1,−1, 1, 1, 1,−1,−1,−1, 1,−1, 1]

and it fails the combinatorial feature test.
– For C = (3, 4),

a = [1, 1,−1, 1,−1,−1,−1, 1, 1, 1,−1, 1,−1]

and it fails the combinatorial feature test.
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– For C = (3, 5),

a = [1, 1,−1, 1, 1,−1,−1,−1,−1, 1, 1,−1, 1].

a passes all the three test.
– For C = (4, 5),

a = [1, 1, 1, 1,−1, 1, 1,−1,−1, 1,−1,−1,−1].

a passes all the three tests. It turns out that a constructed from C = (4, 5)
is the reverse rotation of a constructed from C = (2, 3), which implies
their equivalence.

To sum up, we find two non-equivalent solutions for the given PPP. One is

[1,−1,−1,−1, 1,−1,−1, 1, 1,−1, 1, 1, 1]

and the other is

[1, 1,−1, 1, 1,−1,−1,−1,−1, 1, 1,−1, 1].

5 Experiments: -Doković’s D-optimal Solutions

In this section, we invoke the PPPsolving algorithm for some large-scale bench-
mark problems chosen from [14,16] to test the effectiveness and efficiency of
the algorithm. The algorithm is implemented in C and the experiments are per-
formed on a Linux Box with an Intel(R) Core(TM) i7-6700U CPU @3.40 GHz
and 8 GB RAM. The examples presented here cannot be solved within acceptable
time by using the algorithm in [10].

5.1 n = 73

We are given (|a|, |b|) = (1, 17) which is a solution of the Diophantine equation
|a|2 + |b|2 = 290 = 4 · 73 − 2 and whose PAF sequences are

PAFa = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1,−7, 1,−7, 1,−7, 1, 1, 1, 1, 1,

− 7,−7, 1, 1, 1,−7, 1, 1,−7,−7,−7, 1, 1, 1, 1, 1]

and

PAFb = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 9, 1, 9, 1, 1, 1, 1, 1, 9, 9,

1, 1, 1, 9, 1, 1, 9, 9, 9, 1, 1, 1, 1, 1].

Each of PAFa and PAFb contains (73 − 1)/2 = 36 PAF values. From |a| and
|b|, we immediately know that the numbers of −1’s in a and b are ra = 36 and
rb = 28. Furthermore, it is also known that a and b are obtained from the orbits
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method with H = {1, 8, 64}. By calling the algorithm, we first get all the cosets
of H acting on Z73 below.

H · 0 = {0}, H · 1 = {1, 8, 64}, H · 2 = {2, 16, 55},
H · 3 = {3, 24, 46}, H · 4 = {4, 32, 37}, H · 5 = {5, 28, 40},
H · 6 = {6, 19, 48}, H · 7 = {7, 10, 56}, H · 9 = {9, 65, 72},
H · 11 = {11, 15, 47}, H · 12 = {12, 23, 38}, H · 13 = {13, 29, 31},
H · 14 = {14, 20, 39}, H · 17 = {17, 63, 66}, H · 18 = {18, 57, 71},
H · 21 = {21, 22, 30}, H · 25 = {25, 54, 67}, H · 26 = {26, 58, 62},
H · 27 = {27, 49, 70}, H · 33 = {33, 45, 68}, H · 34 = {34, 53, 59},
H · 35 = {35, 50, 61}, H · 36 = {36, 41, 69}, H · 42 = {42, 44, 60},
H · 43 = {43, 51, 52}.

The output of the algorithm for a gives two nonequivalent solutions with the
positions of −1’s determined by the union of some sets chosen from the above
cosets whose indices are given by:

J1 = {1, 2, 4, 5, 7, 9, 11, 14, 18, 21, 36, 42},

J2 = {3, 5, 6, 7, 11, 12, 14, 17, 21, 33, 34, 42}

while the output for b can be reduced to only one non-equivalent solution where
positions of −1’s are given by the union of some cosets of H chosen with the
following indices

K = {0, 3, 5, 6, 7, 12, 14, 25, 27, 35}.

Since a and b satisfy (3), they can be used to construct circulant-type D-optimal
matrices of order 146.

The total numbers of the tested sequences for computing a and b are about
2.70 millon and 1.31 million, and the time costs for computing a and b are 3.603
s and 1.591 s, respectively.

5.2 n = 79

We are given (|a|, |b|) = (5, 17) which is a solution of the Diophantine equation
|a|2 + |b|2 = 314 = 4 · 79 − 2 and whose PAF sequences are

PAFa = [11, 11, 7, 3,−1,−5, 7, 7,−1, 7, 7,−5, 3,−5, 7, 7, 3,−1,−1,−5,−1,

− 5, 11, 11,−5, 7, 7,−5, 7,−1, 11,−5, 11, 7, 7,−1,−1,−1,−5]

and

PAFb = [−9,−9,−5,−1, 3, 7,−5,−5, 3,−5,−5, 7,−1, 7,−5,−5,−1, 3, 3, 7,

3, 7,−9,−9, 7,−5,−5, 7,−5, 3,−9, 7,−9,−5,−5, 3, 3, 3, 7]

Each of PAFa and PAFb contains (79 − 1)/2 = 39 PAF values. From |a| and |b|,
we can calculate the numbers of −1’s in a and b which are ra = 48 and rb = 42.
Furthermore, a and b are obtained from the orbits method with H = {1, 23, 55}.
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By calling the PPPsolving algorithm, we first get all the cosets of H acting on
Z79 below.

H · 0 = {0}, H · 1 = {1, 23, 55}, H · 2 = {2, 31, 46},
H · 3 = {3, 7, 69}, H · 4 = {4, 13, 62}, H · 5 = {5, 36, 38},
H · 6 = {6, 14, 59}, H · 8 = {8, 26, 45}, H · 9 = {9, 21, 49},
H · 10 = {10, 72, 76}, H · 11 = {11, 16, 52}, H · 12 = {12, 28, 39},
H · 15 = {15, 29, 35}, H · 17 = {17, 66, 75}, H · 18 = {18, 19, 42},
H · 20 = {20, 65, 73}, H · 22 = {22, 25, 32}, H · 24 = {24, 56, 78},
H · 27 = {27, 63, 68}, H · 30 = {30, 58, 70}, H · 33 = {33, 48, 77},
H · 34 = {34, 53, 71}, H · 37 = {37, 60, 61}, H · 40 = {40, 51, 67},
H · 41 = {41, 43, 74}, H · 44 = {44, 50, 64}, H · 47 = {47, 54, 57}.

The output of the algorithm can be reduced to a non-equivalent solution of a
which is constructed from the following index set of the cosets for indicating the
positions of −1’s:

J = {2, 4, 5, 6, 9, 11, 12, 15, 18, 20, 30, 33, 37, 41, 44, 47}.

Other solutions output by the algorithm are equivalent to it. The output of the
algorithm for b can also be reduced to one single solution where positions of −1’s
are given by the union of the above cosets chosen with the following indices

K = {1, 2, 4, 5, 8, 10, 11, 15, 22, 27, 30, 40, 41, 44}.

The total numbers of the tested sequences for computing a and b are about 5.31
million and 9.66 million, and the time costs for computing a and b are 9.266 sec
and 13.509 sec.

5.3 n = 93

We are given (|a|, |b|) = (3, 19) which is a solution of the Diophantine equation
|a|2 + |b|2 = 370 = 4 · 93 − 2 and whose PAF sequences are

PAFa = [13, 1,−3,−11,−7, 1,−11,−3, 1, 5,−11,−3,−3,−3,−3,−3,

− 3,−3, 5, 1,−3,−3,−3,−7, 13, 13,−7,−3, 5, 1, 21,−7,−3,

− 3, 1, 1,−7, 1, 1,−3, 1,−7, 1,−3, 1,−3]

and

PAFb = [−11, 1, 5, 13, 9, 1, 13, 5, 1,−3, 13, 5, 5, 5, 5, 5, 5, 5,−3,

1, 5, 5, 5, 9,−11,−11, 9, 5,−3, 1,−19, 9, 5, 5, 1, 1, 9, 1,

1, 5, 1, 9, 1, 5, 1, 5].

Each of PAFa and PAFb contains (93 − 1)/2 = 46 PAF values. We start with
calculating the numbers of −1’s in a and b from |a| and |b|, which results in
ra = 45 and rb = 37. Furthermore, it is known that a and b are obtained from
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the orbits method with H = {1, 25, 67}. By calling the PPPsolving algorithm,
we get all the cosets of H acting on Z93 below.

H · 0 = {0}, H · 1 = {1, 25, 67}, H · 2 = {2, 41, 50},
H · 3 = {3, 15, 75}, H · 4 = {4, 7, 82}, H · 5 = {5, 32, 56},
H · 6 = {6, 30, 57}, H · 8 = {8, 14, 71}, H · 9 = {9, 39, 45},
H · 10 = {10, 19, 64}, H · 11 = {11, 86, 89}, H · 12 = {12, 21, 60},
H · 13 = {13, 34, 46}, H · 16 = {16, 28, 49}, H · 17 = {17, 23, 53},
H · 18 = {18, 78, 90}, H · 20 = {20, 35, 38}, H · 22 = {22, 79, 85},
H · 24 = {24, 27, 42}, H · 26 = {26, 68, 92}, H · 29 = {29, 74, 83},
H · 31 = {31}, H · 33 = {33, 72, 81}, H · 36 = {36, 63, 87},
H · 37 = {37, 61, 88}, H · 40 = {40, 70, 76}, H · 43 = {43, 52, 91},
H · 44 = {44, 65, 77}, H · 47 = {47, 59, 80}, H · 48 = {48, 54, 84},
H · 51 = {51, 66, 69}, H · 55 = {55, 58, 73}, H · 62 = {62}.

There is only one non-equivalent solution for a and the indices of the cosets for
indicating the positions of −1’s in a are

J = {0, 1, 3, 9, 13, 16, 17, 22, 24, 26, 29, 31, 44, 47, 48, 55, 62}.

The output of the algorithm for b is also reduced to one single solution where
positions of −1’s are given by the union of some cosets of H chosen with the
following index set

K = {0, 2, 3, 6, 8, 20, 24, 37, 43, 47, 48, 51, 55}.

The total numbers of the tested sequences for computing a and b are about
300.54 million and 259.48 million, and the time costs for computing a and b are
488.686 sec and 356.803 sec, respectively.

6 Conclusion

In this paper, we continue to explore combinatorial properties of PAF sequences.
By making use of such properties and the orbits method based on group actions,
we propose an algorithm for solving PAF profile problems, which is also stated
as reconstructing −1/+1 sequences from a given PAF sequence. In addition,
the PSD test and the ranking/unranking technique are employed to further
enhance the effectiveness and efficiency of the algorithm, especially for nontrivial
large problems. It is shown that the PPPsolving algorithm based on the orbits
method is able to solve highly non-trivial problems and can be used to construct
D-optimal matrices of high order.
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Abstract. We investigate the analytic complexity of solutions to holo-
nomic bivariate hypergeometric systems of the Horn type by means of
a Mathematica package. We classify hypergeometric systems with holo-
nomic rank two by the polygons of the Ore–Sato coefficients up to trans-
formations of the defining matrices which do not affect the analytic com-
plexity of solutions. We establish an upper bound for the analytic com-
plexity of solutions to bivariate hypergeometric systems with holonomic
rank two.

Keywords: Hypergeometric systems of partial differential equations ·
Holonomic rank · Analytic complexity · Differential polynomial ·
Hypergeometry package

1 Introduction

The notion of the analytic complexity of a bivariate holomorphic function has
been introduced by V.K. Beloshapka in [2]. It stems from the 13th Hilbert prob-
lem on the representation of continuous (originally algebraic) functions as super-
positions of finitely many continuous functions of two variables [16]. Hilbert’s
13th problem was solved in 1957 by V.I. Arnold and A.N. Kolmogorov in a pos-
itive way – they proved that every continuous function can be represented as a
composition of finitely many univariate functions and a single bivariate function
which can be chosen to be the addition [1]. It is well known that for analytic
functions, this statement is false [16]. The reason for this is that the space of ana-
lytic functions in k variables is not vast enough for their finite superpositions to
comprise the space of analytic functions in k +1 variables [16, Section 4]. A con-

crete example is given by the function ξ(x, y) =
∞∑

n=1

xn

ny (see [9]). For the analytic

functions that admit such a representation, the analytic complexity reflects the
number of summations and univariate functions in this representation.

A computation of the analytic complexity for an arbitrary analytic function
is, in general, a very difficult problem [15]. For every function that belongs to the
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classes of finite analytic complexity, there exists a differential polynomial which
annihilates it. However, a computation of such polynomials can already be a chal-
lenge for functions with very few summations [3]. Symmetries in the functions
of finite analytic complexity admit the existence of corresponding Lie symmetry
groups for the differential equations which define these functions, though the
computation of such groups is another non-trivial problem.

In this article, we calculate the analytic complexity of the solutions to hyper-
geometric systems with a small holonomic rank. Systems under consideration in
this article are hypergeometric systems in the sense of Horn [7,11]. This choice
of the class of functions under consideration is due to the importance of hyper-
geometric functions in mathematical physics and its applications. Furthermore,
both the functions of the finite analytic complexity and the hypergeometric func-
tions are differentially algebraic, although the systems of differential polynomials
annihilating them may differ a lot.

Numerous theoretical results [5,6] and extensive computer experiments [8]
suggest that the analytic complexity of solutions to any bivariate hypergeometric
system of partial differential equations is finite.

It has been conjectured in [14] that the holonomic rank of a hypergeometric
system is closely related to the analytic complexity of the holomorphic solutions
of this system. In this article, we describe all bivariate hypergeometric systems
with the holonomic rank two. We prove that for these systems, the analytic
complexity of their solutions (possibly, after a certain uniformization) cannot
exceed two.

2 Notation and Definitions

We choose a matrix A ∈ Z
m×n = (Aij |i = 1, . . . ,m, j = 1, . . . , n) and a vector

of parameters c = (c1, c2, . . . , cm) ∈ C
m. Let us denote the rows of this matrix

by Ai, i = 1, . . . ,m.

Definition 1. The Horn system Horn(A, c) is the following system of partial
differential equations:

xjPj(θ)f(x) = Qj(θ)f(x), j = 1, . . . , n, (1)

where

Pj(s) =
∏

i:Aij>0

Aij−1∏

l
(i)
j =0

(
〈Ai, s〉 + ci + l

(i)
j

)
,

Qj(s) =
∏

i:Aij<0

|Aij |−1∏

l
(i)
j =0

(
〈Ai, s〉 + ci + l

(i)
j

)
,

and θ = (θ1, . . . , θn), θj = xj
∂

∂xj
.
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This system is a far-going generalization of the classical systems of partial dif-
ferential equations investigated in [7].

Definition 2. The system of equations Horn(A, c) is called nonconfluent if
m∑

i=1

Ai = 0.

Let D be the Weyl algebra C 〈x1, . . . , xn, ∂x1 , . . . , ∂xn
〉 of linear partial differ-

ential operators with polynomial coefficients in the variables (x1, . . . , xn) ∈ C
n.

Definition 3. For a left ideal J ⊂ D, the holonomic rank of J is the dimension
of the K = C vector space K 〈∂x1 , . . . , ∂xn

〉 /K 〈∂x1 , . . . , ∂xn
〉 J. The holonomic

rank of the ideal J is denoted by rank(J). It coincides with the dimension of
the space of holomorphic solutions to the associated system of linear partial
differential equations at a generic point.

Definition 4. Let li denote a generator of the sublattice {s ∈ Z
n : 〈Ai, s〉 = 0}

and let ki be the number of elements in the set {A1, . . . ,Am}, which coincide
with Ai. The polygon of the Ore–Sato coefficient (see [13]) is defined to be the
integer convex polygon whose sides are translations of the vectors kili, the vectors
A1, . . . ,Am being the outer normals to its sides. The nonconfluency condition
implies that there exists the unique polygon (up to a translation) with these
properties.

In this article, we only consider the case of bivariate systems that is, n = 2.
The main tool for the calculation of the holonomic rank of bivariate hyper-

geometric systems is Theorem 2.5 in [4] which states that

rank(Horn(A, c)) = d1d2 −
∑

Ai,Aj lin. dependent

νij .

Here dj =
m∑

i=1

max(Aij , 0), j = 1, 2 and

νij =
{

min(|Ai1Aj2|, |Aj1Ai2|), if Ai,Aj are in opposite open quadrants of Z2,
0, otherwise.

Recall that a zonotope is the Minkowski sum of segments. In the case when
the polygon of the Ore–Sato coefficient for the system is a zonotope, we can
compute its rank by a generalization of the formula in [11, Section 6].

Proposition 1. Let A be the matrix for the Horn system Horn(A, c) and the
polygon of the Ore–Sato coefficient for Horn(A, c) is a zonotope. We divide the

matrix A into blocks of the form Ai =

⎛

⎝
αi

1ai αi
1bi

. . . . . .
αi

pi
ai αi

pi
bi

⎞

⎠ , ai > 0, αi
j ∈ Z,

pi∑

j=1

αi
j = 0, each block having rank 1. Let l be the number of different blocks,

then
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rank(Horn(A, c)) =
l∑

i, j = 1
i �= j

ai|bj |
pi∑

q = 1
αi

q > 0

pj∑

r = 1
αj

r > 0

αi
qα

j
r. (2)

Proof. Each of the matrices Ai contributes to the holonomic rank formula in
the both parts: the product d1d2 includes the sum of αi

qai > 0 multiplied by
αj

rbj > 0 from all Aj , j = 1, . . . , l, and linearly dependent vectors from the block
contribute to the sum

∑
νij .

Denote by

C+(Ai, Aj) =
∑

αi
q>0

αi
qai

∑

αj
rbj>0

αj
rbj =

∑

αi
q > 0

αj
rbj > 0

αi
qα

j
raibj

the function of the positive contribution, by C−(Ai) =
∑

αi
q > 0

αi
rbi < 0

αi
qai|αi

rbi| the

function of the negative contribution. Note that C+(Ai, Ai) = C−(Ai) for all
i = 1, . . . , l. Indeed, due to the nonconfluency condition,

∑

αi
q>0

αi
q =

∑

αi
r<0

|αi
r|,

that is,
∑

αi
q>0

αi
q|bi| =

∑

αi
r<0

|αi
rbi|.

The nonconfluency condition furthermore implies that

C+(Ai, Aj) =
∑

αi
q > 0

αj
rbj > 0

αi
qα

j
raibj =

∑

αi
q > 0

αj
r > 0

αi
qα

j
rai|bj |,

since for bj < 0, the sum by αr
j < 0 coincides with the sum by αr

j > 0.

Hence rank(Horn(A, c)) =
l∑

i,j=1

C+(Ai, Aj) −
l∑

i=1

C−(Ai) =
l∑

i, j = 1
i �= j

C+(Ai, Aj).

Substituting the formula for C+(Ai, Aj) into the right-hand side of the above
equation, we arrive at (2). �

In Sect. 4, we compute the analytic complexity of holomorphic solutions to
bivariate hypergeometric systems with the holonomic rank two. Let us recall the
main definitions of the analytic complexity theory.

Definition 5 (See [2]). The class Cl0 of functions of the analytic complexity
zero is defined to comprise the functions that depend on at most one of the
variables. A function f(x, y) is said to belong to the class Cln of functions
with the analytic complexity n > 0 if there exists a point (x0, y0) ∈ C

2 and
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a germ f(x, y) ∈ O(U(x0, y0)) of this function holomorphic at (x0, y0) such
that f(x, y) = c(a(x, y) + b(x, y)) for some germs of holomorphic functions
a, b ∈ Cln−1 and c ∈ Cl0. If there is no such representation for any finite n,
then the function f is said to be of the infinite analytic complexity.

Example 1. A generic element of the first complexity class Cl1 is a function of
the form f3(f1(x) + f2(y)). A function in Cl2 can be represented in the form
f7 (f5(f1(x) + f2(y)) + f6(f3(x) + f4(y))) , where fi(·) are univariate holomor-
phic functions, i = 1, . . . , 7.

Definition 6. We will call a holomorphic function the function of analytic com-
plexity n, if it belongs to Cln, but does not belong to Cln−1.

3 Hypergeometric Systems of Holonomic Rank Two

Let us describe the set of matrices which define hypergeometric systems with
the holonomic rank two and analyze its structure.

Consider some elementary transformations of matrices of hypergeometric sys-
tems that do not make a significant impact on solutions, in particular, do not
change their analytic complexity. Further, we do not distinguish the matrices
obtained from each other by means of any composition of such transformations.

I. A transposition of columns. In terms of the hypergeometric Eq. (1), a trans-
position of columns of the matrix corresponds to a transposition of variables,
which does not affect the analytic complexity of solutions. The polygon of
the Ore–Sato coefficient under this transformation is reflected with respect
to the bisector of the first quadrant of the integer lattice.

II. A transposition of rows. It corresponds to a transposition of elements in the
vector of parameters c, which leads to a transposition of these parameters in
the formula of the solution at a generic point. The polygon of the Ore–Sato
coefficient does not change under this transformation.

III. A multiplication of ith column by −1. It corresponds to the monomial change
of variables xi �→ 1

xi
in the solution. The polygon of the Ore–Sato coefficient

under this transformation is reflected with respect to the vertical axis if i = 1
and with respect to the horizontal axis if i = 2.

IV. An addition of proportional rows with the coefficient of proportionality
greater than zero. This transformation decreases the size of the matrix but
does not affect the polygon of the Ore–Sato coefficient. Furthermore, the
difference between the maximal and the minimal value of the analytic com-
plexity for the set of solutions to the systems obtained one from another
with this transformation does not exceed 1. In the case, when the analytic
complexity changes this way, we consider its minimal value.

Analyzing the polygons of the Ore–Sato coefficients of the matrices we con-
clude that there are two different kinds of polygons of the Ore–Sato coefficients
for the systems of rank two. First, we consider the polygons defined in the sense
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Fig. 1. The polygons of the Ore–Sato coefficients for the systems defined by the matri-
ces A�1 , A�2 , A�3 , A�1 , A�2 , A�3

of Definition 4 by the matrices whose elements have absolute values at most 2
(see Fig. 1). The matrices that correspond to these configurations are as follows:

A�1 =

⎛

⎝
−2 0

0 −1
2 1

⎞

⎠ , A�2 =

⎛

⎝
−1 0
−1 1

2 −1

⎞

⎠ , A�3 =

⎛

⎝
−2 0

1 −1
1 1

⎞

⎠ .

A�1 =

⎛

⎜
⎜
⎝

−1 −1
−1 1

1 −1
1 1

⎞

⎟
⎟
⎠ , A�2 =

⎛

⎜
⎜
⎝

−2 0
0 −1
1 0
1 1

⎞

⎟
⎟
⎠ , A�3 =

⎛

⎜
⎜
⎝

−1 0
−1 −1

0 −1
2 2

⎞

⎟
⎟
⎠ .

Second, there are families of the matrices with a parameter:

⎛

⎜
⎜
⎝

a 1
2 0

−2 0
−a −1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

a 2
1 0

−1 0
−a −2

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎜
⎜
⎝

a 1
2 0

−1 0
−1 0
−a −1

⎞

⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a 1
1 0
1 0

−1 0
−1 0
−a −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a 1
a 1
1 0

−1 0
−a −1
−a −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, a ∈ Z.
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All of these matrix families represent only two families of the polygons of

the Ore–Sato coefficients (see Fig. 2). Let us denote A1
a =

⎛

⎜
⎜
⎝

a 1
2 0

−2 0
−a −1

⎞

⎟
⎟
⎠ , a ∈ Z,

equivalent to

⎛

⎜
⎜
⎜
⎜
⎝

a 1
2 0

−1 0
−1 0
−a −1

⎞

⎟
⎟
⎟
⎟
⎠

and

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a 1
1 0
1 0

−1 0
−1 0
−a −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

up to the transformation IV.

A2
a =

⎛

⎜
⎜
⎝

a 2
1 0

−1 0
−a −2

⎞

⎟
⎟
⎠ , a ∈ Z, equivalent to

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a 1
a 1
1 0

−1 0
−a −1
−a −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

up to the transforma-

tion IV.

0 1

1

2

. . .

a

1 + a

2 + a

0 1 2

1

2

. . .

a

1 + a

Fig. 2. The polygons of the Ore–Sato coefficients for the hypergeometric systems
defined by the matrices A1

a and A2
a

Theorem 1. There are no other matrices for the systems of the holonomic rank
two, except for A�i

, A�i
, i = 1, 2, 3 and A1

a, A2
a, a ∈ Z.

Proof. Consider the matrices without pairs of linearly dependent rows. The for-
mula of the holonomic rank for such matrices does not include νij , then from
rank(Horn(A, c)) = 2 follows that d1d2 = 2, and this is possible only if d1 ≤ 2,
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d2 ≤ 1 (a transposition of rows has no impact on the solutions). This condition
generates a finite number of matrices, and we distinguish only three of them
keeping in mind equivalent transformations: A�1 , A�2 , A�3 . The only matrix
(up to the transformations I-IV) which defines a system of the holonomic rank

one without pairs of linearly dependent rows is

⎛

⎝
1 0
0 1

−1 −1

⎞

⎠ .

Note that adding a nonconfluent block of the form Ai from Proposition 1
can only result in increasing the holonomic rank of the system. It follows from
the same idea, that was used in the proof of Proposition 1, that every block
contributes to d1d2 more than to the sum of νij . This statement is also correct for
the nonconfluent blocks containing rows, which are pairwise linearly dependent
with one of the rows of the initial matrix. Hence we cannot build matrices with
the holonomic rank two including pairs of linearly dependent rows by adding
such blocks.

Then the only way of adding pairs of linearly dependent rows is to replace
a row of the initial matrix with two rows from its sum representation. By doing
so and excluding matrices equivalent to each other up to the transformation IV,
we obtain the matrices A�2 , A�3 .

In the case when the polygon of the Ore–Sato coefficient is a zonotope, we use

the representation rank(Horn(A, c)) =
l∑

i, j = 1
i �= j

C+(Ai, Aj) from Proposition 1.

It follows directly from it that matrices for the systems of the holonomic rank two
cannot consist of more than two blocks, since the holonomic rank formula for the

three blocks matrices includes six summands:
3∑

i, j = 1
j > i

C+(Ai, Aj) + C+(Aj , Ai),

only three of them can be simultaneously equal to zero (the case when the first
column in one of the blocks and the second one in another block contains only
zeros), which means that the minimal rank in this case equals three.

When the matrix consists of two blocks (the polygon of the Ore–Sato coef-
ficient is a parallelogram), the holonomic rank formula contains only two sum-
mands: Horn(A, c)) = C+(A1, A2) + C+(A2, A1). Note that there are only three
decompositions of 2 into the sum of two natural numbers: 2 = 2+0 = 1+1 = 0+2.

The decomposition 2 = 1 + 1 gives the matrix A�1 with C+(A1, A2) =
1 ·1 = 1, C+(A2, A1) = 1 ·1 = 1 and the decompositions 2 = 0+2 = 2+0 lead us
to the matrices A1

a and A2
a with C+(A1, A2) = a·0 = 0, C+(A2, A1) = 2·1 = 2. �

The dependence of the holonomic rank on the absolute values of the elements
of the matrix A can be expressed in the following way. If we consider a matrix
defining the holonomic rank of a system as a function of two variables by choosing
two elements as parameters, counting other elements of the matrix constant, this
function is convex and under certain circumstances even piecewise quadratic.
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For example, consider the matrix

M(a, b) =

⎛

⎜
⎜
⎝

10 a
b 4

−2 3
−b − 8 −a − 7

⎞

⎟
⎟
⎠ . (3)

The last row contains parameters a, b to satisfy the nonconfluency condition.
The holonomic rank function for the hypergeometric system defined by the
matrix M(a, b) is shown in Fig. 3.

Fig. 3. The holonomic rank function of the hypergeometric system defined by
matrix (3)

4 Analytic Complexity of Solutions to Systems of
Holonomic Rank Two

To solve the systems above, we use the Wolfram Mathematica package
HyperGeometry for solving hypergeometric systems. The package is avail-
able for free public use at https://www.researchgate.net/publication/318986894
HyperGeometry, the description of available functions is given in [12]. A com-
putation of the analytic complexity of a function is, in general, a very difficult
task [10, Chapter 3]. However, for the first class of the analytic complexity Cl1,
there exists the membership criterion defined by the differential polynomial

Δ1 = f ′
x1

(f ′
x2

)2f ′′′
x1x1x2

− (f ′
x1

)2f ′
x2

f ′′′
x1x2x2

+ f ′′
x1x2

(f ′
x1

)2f ′′
x2x2

− f ′′
x1x2

(f ′
x2

)2f ′′
x1x1

.

That is the differential polynomial Δ1 vanishes on a bivariate function f(x1, x2)
if and only if f(x1, x2) ∈ Cl1 (see [2] and the references therein).

https://www.researchgate.net/publication/318986894_HyperGeometry
https://www.researchgate.net/publication/318986894_HyperGeometry
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The systems (
1), (
2), (
3) represent the simplicial configurations (see
Proposition 4.4 in [11]), so the solutions to these systems can be found by means
of formula (4.2) in [11]:

x− ˜A−1c
(
1 + x− ˜A−1e1 + x− ˜A−1e2

)−|c|
,

where e1 = (1, 0), e2 = (0, 1), Ã is the 2 × 2 matrix consisting of first two rows
of the matrix which defines the hypergeometric system.

The solutions to the systems (
1), (
2), (
3) are given by x
c1
2

1 xc2
2 (1+

√
x1 +

x2)−c1−c2−c3 , xc1
1 xc1−c2

2 (1 + 1
x2

+ x2)−c1−c2−c3 , and x
c1
2

1 x
c1
2 +c2

2 (1 +
√

x1x2 +
x2)−c1−c2−c3 , respectively. All of these functions belong to Cl2. For example, the

(
1) solution is the product of Cl1 functions x
c1
2

1 xc2
2 and (1+

√
x1+x2)−c1−c2−c3 ,

and the product function in the terms of the analytic complexity classes is equiv-
alent to the addition (see [2]). Similar statements are true for other solutions.
The correct choice of parameters ci can put these functions into Cl1.

The basis in the space of holomorphic solutions to the system (�1) (see [12])
is given by the Puiseux polynomials −4+ 1

x1
+ 1

x2
+x1 +x2,

(x1−1)(x2−1)√
x1x2

. Both
of these functions have analytic complexity 1. For an arbitrary parameter vector
c = (c1, c2, c3, c4), the solution to the system (�1) is given by

x
c1
2 +

c2
2

1 x
c1
2 − c2

2
2

(

1 +
√

x1√
x2

)−c2−c4

(1 +
√

x1
√

x2)−c1−c3 .

This function belongs to Cl2 for any parameter values as the product of the Cl1
function (x1x2)

c1
2 (1 +

√
x1x2)−c1−c3 of the argument x1x2 and the Cl1 function

(
x1
x2

) c2
2

(
1 +

√
x1
x2

)−c2−c4
of the argument x1

x2
.

Example 2. Let us compute the analytic complexity of the solutions to the sys-
tem (�2). Using the HyperGeometry package, we conclude that the solution to
(�2) is given by 1

2 + x1
2 +x2 + x1x2

2 + x2
2
2 . According to the definition of the holo-

nomic rank, a basis in the solution space to this system consists of two elements.
To find the second solution we write the system (�2) explicitly:

{
(x3

1 − 4x2
1)f

′′
x1x1

+ x2
1x2f

′′
x1x2

− (2x2
1 + 2x1)f ′

x1
− x1x2f

′
x2

+ 2x1f = 0,
x1x2f

′
x1

+ (x2
2 + x2)f ′

x2
− 2x2f = 0.

The solution to the second equation is f(x1, x2) = x2
1φ( 1+x2

x1
), where φ(·) is any

differentiable function. Substituting it into the first equation in (�2), we obtain
the ordinary differential equation for the function φ(t)

(t − 4t2)φ′′ + 10tφ′ − 12φ = 0.

The basis in the linear space of its solutions is given by

φ1(t) = t(1 + t), φ2 = 24t(t + 1)arctg
√

4t − 1 − (26t + 1)
√

4t − 1.
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After the substitution t = 1+x2
x1

we see that x2
1φ1( 1+x2

x1
) is the solution we have

already found by means of the HyperGeometry package, and hence the second
element of the basis is x2

1φ2( 1+x2
x1

). It follows directly from the definition of the
analytic complexity classes that the analytic complexity of the both functions
does not exceed 2.

Example 3. Consider the matrix Ã�3 =

⎛

⎜
⎜
⎜
⎜
⎝

−1 0
0 −1

−1 −1
1 1
1 1

⎞

⎟
⎟
⎟
⎟
⎠

which is equivalent to A�3

up to transformation IV. Using the HyperGeometry package we conclude that
the first element of the basis of the solution space to the system defined by the
matrix Ã�3 and the parameter vector (0, 0, 1,−2,−2) is given by x1 +x2 + x2

1
2 +

x1x2 + x2
2
2 . Note that it belongs to the first complexity class Cl1 since it admits

the representation (x1 + x2) + (x1+x2)
2

2 . Varying the parameter vector, for its
value c̃ = (0, 0, 3,−1,−4) we obtain the system with the polynomial basis in its
solution space (see Fig. 4). The big circles in Fig. 4 represent the support of the
first solution x1 + x2 − 1

2 , while the small circles correspond to the support of

the second solution x3
1
3 + x2

1x2 + x1x
2
2 + x3

2
3 − x4

1
6 − 2x3

1x2
3 − 2x1x3

2
3 − x4

2
6 . Both of

these functions depend on the sum of variables x1 + x2, and hence the whole
solution space of the hypergeometric system Horn(Ã�3 , c̃) consists of functions
whose analytic complexity is at most 1. The sum of the corresponding series with
the parameter vector (0, 0, c3, c4, c5) is given by Γ(c4)Γ(c5)

Γ(c3) 2F1(c5, c4, c3, x1 +x2).

0 1 2 3 4

1

2

3

4

Fig. 4. The polygon of the Ore–Sato coefficients for the system defined by the
matrix ˜A�3
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The sets of systems defined by the matrices A1
a and A2

a are the paral-
lelepipedal configurations, so we use formula (4.7) in [11] to solve them:

x− ˜A−1(c1,c2)
(
1 + x− ˜A−1e1

)−c1−c3 (
1 + x− ˜A−1e2

)−c2−c4
.

The solutions to the systems defined by the matrices A1
a are given by

x
c4
2

1 x
−c1+

ac2
2

2

(

1 +
1
x2

)−c1−c3 (√
x1 + x

a/2
2

)−c2−c4
,

and the solutions to the systems defined by the matrices A2
a are given by

xc4
1 x

− c1
2 +

ac2
2

2

(

1 +
1√
x2

)−c1−c3 (
x1 + x

a/2
2

)−c2−c4
.

The both sets of solutions contain only functions from Cl2 since the solutions

to A1
a are the products of the Cl1 functions x

c4
2

1 x
−c1+

ac2
2

2

(
1 + 1

x2

)−c1−c3
and

(√
x1 + x

a/2
2

)−c2−c4
, and the solutions to A2

a are the products of the Cl1 func-

tions xc4
1 x

− c1
2 +

ac2
2

2

(
1 + 1√

x2

)−c1−c3
and

(
x1 + x

a/2
2

)−c2−c4
. The differential

polynomial Δ1 vanishes on these solutions only with the particular set of the
parameter values (for example, a = 0 or c2 = c4 = 0), and only for these values,
solutions to A1

a and A2
a are the Cl1 functions. Summarizing all the computa-

tions, we conclude that for any system in the set of the hypergeometric systems
A�i

, A�i
, A1

a, A2
a, i = 1, 2, 3, a ∈ Z, there exists a basis in the space of holomor-

phic solutions to this system consisting only of functions which belong to the
analytic complexity class Cl2.

Proposition 2. The analytic complexity of any analytic solution to a hyperge-
ometric system Horn(Â, ĉ) with the holonomic rank two does not exceed four.

Proof. By Theorem 1, the matrix Â is equivalent up to the transformations I–
IV to one of the matrices from the set {A�i

, A�i
, i = 1, 2, 3} ∪ {A1

a, A2
a, a ∈ Z}.

Let {f1(x, y), f2(x, y)} be the basis in the space of holomorphic solutions to
Horn(Â, ĉ), where fi(x, y) ∈ Cl2. Then any analytic solution to Horn(Â, ĉ) at
a generic point (x, y) can be represented as a linear combination αf1(x, y) +
βf2(x, y), α, β ∈ C up to multiplication of fi(x, y) by a monomial xliymi ,
li,mi ∈ Z. From the equivalence of the addition and the product in the defi-
nition of the analytic complexity classes, it follows that the analytic complex-
ity of a function xliymifi(x, y), i = 1, 2 does not exceed three. By the defi-
nition of the analytic complexity classes, the analytic complexity of the func-
tion αxl1ym1f1(x, y) + βxl2ym2f2(x, y) does not exceed four. �
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Abstract. The problem of the existence of explicit and at the same
time conservative finite difference schemes that approximate a system
of ordinary differential equations is investigated. An autonomous system
of nonlinear ordinary differential equations on an algebraic manifold V
is considered. A difference scheme for solving this system is called con-
servative, if the calculations of this scheme do not go beyond V , i.e.,
preserve it exactly. An explicit scheme is understood as such a difference
scheme in which a system of linear equations is required to proceed to
the next layer. We formulate the problem of constructing an explicit con-
servative scheme approximating a given autonomous system on a given
manifold. For the case of 1-manifold, a solution to this problem is given
and geometric obstacles to the existence of such difference schemes are
indicated. Namely, it is proved that the scheme exists only if the genus
of the integral curve is 1 or 0.

Keywords: Finite difference method · Elliptic and Abelian functions ·
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1 Introduction

One of the most common and relevant mathematical models is the Cauchy prob-
lem for an autonomous system of ordinary differential equations. Analytical
methods allow one to find algebraic integrals of motion [1] for such systems,
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and numerical methods provide approximate plotting of particular solutions [2].
Analytical and numerical methods are not always consistent with each other. It
often turns out that the algebraic integral of motion is known, but a difference
scheme is used which does not preserve this integral. It is particularly annoying
when such a quantity is the total mechanical energy, the variation of which is a
property not inherent in the original physical model.

In this paper, we investigate the question of what hinders the construction
of difference schemes that preserve precisely defined integral manifolds. In order
to avoid excessive abstraction, we will illustrate the presentation with examples
from the theory of motion of a rigid body with one fixed point.

2 Autonomous Systems on Manifolds

Consider an autonomous system of differential equations in an affine space of
dimension r

dx

dt
= f(x). (1)

Here x = (x1, . . . , xr) is a point of an affine space, f = (f1, . . . , fr) is a set of
rational functions from Q(x). Such systems often possess algebraic integrals of
motion, or at least Darboux polynomials [1].

Definition 1. An algebraic manifold V will be called integral for system (1) if
every integral curve of this system that has at least one common point with the
manifold V belongs to this manifold entirely.

Example 1. By definition, the Darboux polynomial for system (1) is a polyno-
mial g, for which it is possible to specify a polynomial h, such that

r∑

i=1

fi
∂g

∂xi
= hg.

If x(t) is a particular solution of system (1), then

dg(x(t))
dt

=
r∑

i=1

∂g

∂xi
fi = h(x(t)) · g(x(t))

and, therefore, turning of g(x(t)) into zero at a certain value of t leads to turning
of this expression into zero at all admissible values of t. Therefore, the hyper-
surface g(x) = 0 in the affine space is an integral manifold for system (1).

The search for the solutions of system (1) belonging to a known integral
manifold will be referred to as a problem of autonomous system integration on
the manifold. A perfect example of such a problem is the problem of top rotation.

Example 2. The motion of a top is described by six variables: three components
of the angular velocity vector p, q, and r with respect to the principal axes with
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the origin at the fixed point of the top, and three direction cosines of one of
the principal axes γ, γ′, γ′′. These variables satisfy a system of six autonomous
equations with quadratic right-hand side, which has three classical integrals of
motions. By analogy with the Bruns theorem, in the beginning of the last century
it was proved that the fourth algebraic integral exists only in three particular
cases [3]. Therefore, generally this system of differential equations should be
considered not in the entire six-dimensional space, but in a three-dimensional
manifold embedded in it.

3 Numerical Integration and Conservation Laws

A standard numerical method of solving systems of ordinary differential equa-
tions is the finite difference method. Within this method, a system of differential
equations is replaced with a system of equations that describe a transition from
the value x of the solution of Eq. (1) at a certain moment of time t to the approx-
imate value x̂ of the solution at the moment of time t+Δt. Below we consider x
and x̂ as points of two adjacent layers, and the difference scheme as a system of
equations specifying the transition from one layer to another. For example, the
explicit Euler scheme

x̂ − x = f(x)Δt

describes such a transition and yields for x(t + Δt) the approximate value x̂.
Discussing the difference scheme for Eq. (1) firstly implies that this scheme

approximates a differential equation. No matter how sophisticated the equations
describing the transition from layer to layer are, in the vicinity of the general
point x and Δt = 0, these equations must have solutions that can be expanded
into a series in powers of Δt:

x̂ = x + g1(x)Δt + g2(x)Δt2 + . . .

The exact solution can also be expanded in a series of the same form

x(t + Δt) = x(t) + f(x(t))Δt + . . . .

If in these series the terms with Δt coincide, then the difference scheme is
said to approximate the differential equation. If the first s terms coincide, the
approximation is said to have an order of s [4, Definition 1.2]. For example, the
Euler scheme approximates the initial equation, and the order of approximation
equals 1.

Note 1. Usually these power series are considered as convergent in the C topol-
ogy, but further calculations can be preserved without change, if these series
are considered as formal. The choice of topology is essential in the study of the
convergence of the numerical method.

Traditionally, the main attention is paid to the problem of increasing the
order of approximation and the accumulation of round-off error. In contrast
with this tradition, we address the issue of using known integral manifolds.
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Like many other popular difference schemes, the Euler scheme does not con-
serve integral manifolds. This fact means that from x ∈ V it does not follow that
x̂ ∈ V . Since for the exact solution x(t + Δt) ∈ V , the deviation of the points
of an approximate solution from the manifold V can be used as an estimate for
the error of the numerical method. In problems of mechanics, e.g., the problem
of top rotation (Example 2), this means considerable violation of fundamental
laws of mechanics, e.g., introduces “numerical” dissipation into a dissipation-free
system. It is particularly annoying when the geometric constraints are affected,
e.g., a sum of direction cosine squares becomes not equal to 1. The interpretation
of this result is not understandable.

The idea of using conservation laws when creating numerical methods arose in
the middle of the last century, and the corresponding methods were called conser-
vative. The first successes were achieved in solving partial differential equations.
As for ordinary differential equations, it was noted only in the late 1980s that
in some cases, it is possible to construct difference schemes that preserve alge-
braic integral manifolds exactly. So, for example, according to Cooper’s theorem
[2, Theorem 2.2], the midpoint scheme

x̂ − x = f

(
x̂ + x

2

)
Δt (2)

for system (1) preserves all integrals of motion for this system expressed by
quadratic forms.

Example 3. The Jacobi elliptic functions

p = sn t, q = cn t, r = dn t

are the solutions of the nonlinear system

ṗ = qr, q̇ = −pr, ṙ = −k2pq (3)

with initial conditions
p = 0, q = r = 1at t = 0.

The elliptic modulus k will be fixed below and, thus, the second argument of
Jacobi functions will not be indicated. This autonomous system possesses two
quadratic integrals of motion

p2 + q2 = const and k2p2 + r2 = const. (4)

From an analytical point of view, this system is remarkable for the property that
any of its particular solutions can be represented as a ratio of two everywhere
convergent series in powers of t [5]. From the point of view of the finite difference
method, this system is remarkable because it can be approximated by a difference
scheme (namely, the midpoint scheme (2)) that conserves these integrals exactly.
We made a series of numerical experiments in Sage and were convinced that even
for extremely large values of t, the amplitude of oscillations does not fall [6].
The comparison of standard solvers for the solution of the system (3) in terms of
preservation of integrals of the motion is presented in the talk of Yu. A. Blinkov
and V.P. Gerdt at PCA’2019 [7].
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Example 4. In the problem of top rotation (Example 2), there are three quad-
ratic integrals. In this case, it is particularly good that the law

γ2 + γ′2 + γ′′2 = 1

is preserved, so that γ, γ′, and γ′′ can still be interpreted as direction cosines. In
the Euler–Poinsot case, the following system is separated from the initial system
of 6 equations:

Aṗ + (B − C)qr = 0, Bq̇ + (A − C)rp = 0, Cṙ + (B − A)pq = 0, (5)

where A,B, and C are the moments of inertia with respect to the principal axes.
This system possesses two quadratic integrals

Ap2 + Bq2 + Cq2 = Const, A2p2 + B2q2 + C2q2 = Const. (6)

In classical courses of mechanics, it is noted that in the domain of variation of
the variables p, q, and r, these two integrals define an integral curve, on which
system (5) is reduced to the quadrature

A

C − B

∫
dp

qr
= t + Const,

where q and r are considered as algebraic functions of p. As is known, in this
case, an elliptic integral of the first kind is obtained, the inversion of which leads
to the Jacobi elliptic functions. From a point of view of the finite difference
method, the midpoint scheme allows exact conservation of both these integrals.

The top rotation problem in the Euler–Poinsot case will be referred to as
conservative in the sense of the following definition.

Definition 2. A difference scheme for system (2) on the manifold V is called
conservative, if it assigns to a general point x ∈ V a point x̂ that also belongs
to this manifold. In this case, we will speak that the difference scheme conserves
the manifold V exactly.

Note 2. In this definition, we mean a general point x rather than any one, since
as it often happens in algebraic geometry, one should eliminate singular values
at which the system of equations that specify the difference scheme can become
degenerate.

One can expect that conservative schemes would allow studying not only
quantitative but also qualitative properties of the solutions of system (1). For
instance, in Example 4, the verbal description of the exact solution and the
approximate one found in this way will be identical: the angular velocity vector
ω = (p, q, r) periodically oscillates with constant amplitude; two conservation
laws are valid for the energy and the angular momentum. It is difficult, if possible
at all, to detect qualitative differences between the obtained solutions, and only
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quantitative discrepancies due to the precision of the period calculation are seen
at large values of t.

Within the framework of mathematical modelling, the importance of find-
ing conservative schemes is much higher. This is because the laws of classical
mechanics are formulated for infinitely small dt, although in reality this quan-
tity should be rather large to neglect quantum mechanical effects. This idea can
be traced both in Lesage and in Feynman. The problem is that the transition
from a continuous equation of motion to a finite-difference one using the Euler
method leads to the violation of fundamental laws of nature, including the energy
conservation law. However, the use of conservative difference schemes instead of
the Euler scheme will make it possible to write a difference analog of Newton’s
equations, for which all classical conservation laws are exactly fulfilled. Thus, not
only the continuous model, but also this discrete model can be used to describe
the qualitative properties of motion with equal success. Since the limit transi-
tion dt → 0 in Newton’s equations is an idealization, we can raise a question
about which of the models is better. From this point of view, the question of the
convergence of the numerical method fades into the background, together with
the physically excessive reduction of the time step.

4 Explicit and Implicit Difference Schemes

Wanting to use conservative schemes in real calculations, we must not only
learn how to build such schemes, but also take into account the complexity
of their application. For linear differential equations, the midpoint scheme (2)
is described by a system of linear algebraic equations for x̂ and therefore, it is
easy to organize the transition from layer to layer. On the contrary, in the case
of nonlinear equations, this scheme is described by a system of nonlinear equa-
tions, the solution of which is the main difficulty in practical application of such
schemes.

Recall that the numerical solution of systems of nonlinear equations is always
associated with a number of complexities, therefore, there is no universal numer-
ical method for solving such systems [8]. The standard way suggests using itera-
tive methods to go from layer to layer. Of the many roots of this system, a root
is chosen that is close to x for small Δt. The solution of this system is obtained
numerically, usually by means of some iterative method, taking the value of x
for the first approximation. At the same time, it is not possible to control the
error of the iterative method due to the extreme cumbersomeness of the known
estimates, and instead, the number of iterations is simply fixed.

Definition 3. A difference scheme describing the transition from layer to layer
by a system of linear algebraic equations for x̂ is called explicit.

Note 3. The concept of explicit and implicit schemes has developed historically
and initially the question was at what point the right-hand side of the differential
equation is taken. However, the schemes of interest to us are organized in a
considerably more complex way, so transferring the notion of explicitness to
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them requires grasping the main feature that makes explicit schemes convenient
for computations. Of course, from the point of view of this definition, the implicit
Euler scheme for a linear differential equation is explicit, and for a nonlinear one,
it is implicit. In the following, we consider nonlinear equations, so this difference
is not fundamental.

Before we accept the necessity to solve a system of nonlinear equations for
the transition from layer to layer, we will try to clarify what is an obstacle for
combining explicitness with conservatism.

5 Explicit Conservative Difference Schemes

It is a priori unclear whether there are nonlinear systems on manifolds, for which
explicit schemes can be constructed. Let us formulate this question as a problem.

Problem 1. Given an autonomous system (1) and its integral manifold V , clarify
whether an explicit difference scheme exists that approximates this system and
exactly preserves the integral manifold. If the answer is positive, present such a
difference scheme.

First, Problem 1 assumes that the integral manifold is given. The task of
finding all algebraic integrals of a given system of differential equations was
formulated at the dawn of differential calculus in the correspondence between
Descartes and Florimond de Beaune [10], which outstanding mathematicians of
the 19th and early 20th centuries tried to solve. For modern computer algebra
systems, there are several packages for finding algebraic integrals [11,12], but
they all require that the user should specify an upper limit for the order of the
integrals in question. It is likely that this problem is algorithmically unsolvable.

Second, the formulation of Problem 1 allows the possibility that the desired
difference scheme does not exist for a given system of differential equations and
a given integral manifold. Any numerical method at the dawn of its occurrence
claimed that with its help it is possible to solve equally well all the problems
from the subject area for which it was created. At the time of Euler, the power
series method was perceived as a universal method for solving ordinary differen-
tial equations, and only in the 1860s, Lazarus Fuchs posed the problem of finding
those differential equations whose general solution is representable as the ratio
of two everywhere convergent power series [5]. Therefore, the modern analytic
theory of differential equations studies special differential equations whose solu-
tions are particularly well represented by power series [1]. Our formulation of
Problem 1 is made by analogy with the formulation of the Fuchs problem.

6 Algebraic Background

The solution to Problem 1 is closely related to algebraic geometry. To define a
difference scheme for system (1) means to specify a system of equations describ-
ing the transition from one layer to another. In the case of single-stage difference
schemes, this system consists of r equations
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gi(x, x̂,Δt) = 0, i = 1, 2, . . . , r,

the left-hand sides of which belong to Q[x, x̂,Δt]. For example, the explicit Euler
scheme is given by the equations

x̂i − xi − fi(x1, . . . , xr)Δt = 0, i = 1, 2, . . . , r.

From a geometric point of view, these equations define an algebraic correspon-
dence between the layers, or, more precisely, a one-parameter family of such
correspondences, and Δt acts as a parameter.

Definition 4. Let V and V̂ be affine manifolds, embedded in Ar, ξ = (ξ1, . . . , ξr)
and ξ̂ = (ξ̂1, . . . , ξ̂r) being two tuples, each with r symbolic variables. Let the
system of algebraic equations

g1(ξ, ξ̂) = 0, . . . (7)

possess the following two properties:

– if ξ is chosen as coordinates of a general point x of the manifold V , then the
system

g1(x, ξ̂) = 0, . . . (8)

with respect to ξ̂ has n̂ different roots, lying on the manifold V̂ and changing
under variation of x,

– if ξ̂ is taken to be coordinates of a general point x̂ of the manifold V̂ , then the
system

g1(ξ, x̂) = 0, . . . (9)

with respect to ξ possesses n different roots, lying on the manifold V and
changing under variation of x̂.

In this case the system of algebraic Eq. (7) is said to specify an algebraic corre-
spondence of the (n, n̂) type between the manifolds V and V̂ . The roots of system
(8) are considered as the mapping of the point x on V̂ , and the roots of (9) as
the mapping of the point x̂ on V . The correspondences on the (n, 1) type are
referred to as rational, and the corresponcences of the (1, 1) type as birational.

Note 4. For particular positions of the point x, system (8) can have a smaller
number of roots. Basing on the continuity principle, in this case, it is possible to
say that the roots merge or escape to infinity, which implies a projective closure
of the considered manifolds.

Algebraic correspondences between curves have been a subject of investiga-
tions in algebraic geometry in the middle of the XIX century. Modern authors
usually consider only birational correspondences, for which the theory con-
structed is much simpler thanks to the remarkable results obtained by Hurwitz
[14]. Therefore, we present here a brief background on the theory of algebraic
correspondence.
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In algebraic geometry, curves are characterized by an integer non-negative
number called the genus. Modern computer algebra systems, including Maple
and Sage, can calculate this number for a given curve.

Let there be an algebraic correspondence between the curves V and V̂ of
type (n, n̂). Let ρ be the genus of the first curve, and ρ̂ be the genus of the
second one. According to the Zeuthen formula, [13, n. 65, (12)], these numbers
are related as

η̂ − η = 2n(ρ̂ − 1) − 2n̂(ρ − 1). (10)

Here η and η̂ are non-negative integers introduced in the following way.

– A general point x on the curve V corresponds to n̂ moving points on V̂ , and,
generally speaking, there are such particular positions of the point x at which
two of these points merge into one. We denote the number of such merged
points on V̂ as η̂; of course, we should consider the positions at which several
points merge simultaneously, as multiple ones. If n̂ = 1, then there are no
such singular points, and η̂ = 0.

– Similarly, the point x̂ on the curve V̂ corresponds to n moving points on V ,
and there are special positions of the point x̂ at which two of these points
merge into one. The number of such merged points on V is denoted as η. If
n = 1, then such singular points do not exist and η = 0.

For birational correspondence (n = n̂ = 1 and, thus, η = η̂ = 0) due to
Zeuthen formula, we have

ρ̂ = ρ,

that is the genus is an invariant of birational transformations. In particular the
genus of the straight line is equal to zero thus any curve which is birational
equivalent to the straight line has zero genus. Fairly stronger statement: a curve
admits a rational parametrization iff its genus is equal to zero. This is conse-
quence from Lüroth’s theorem [15].

Further development of the theory is connected with the use of Abelian inte-
grals [15,16]. At the end of XIX century the group of birational morphisms of a
curve was investigated, in particular Picard proved that this group is finite for
any curve of the genus ρ > 1, Hurwitz estimated the order of this group [14].
The investigation uses Abelian integrals of the 1st kind. The same construction
was used in the works of Painlevé about integration of ordinary differential equa-
tions in finite terms [17–19]. We will use this construction for an investigation
of Problem 1.

7 Difference Scheme as Algebraic Correspondence

Each one-stage difference scheme approximating system (1) and preserving the
manifold V specifies an algebraic correspondence on the manifold V . This scheme
is explicit when and only when only a single point x̂ ∈ V corresponds to a general
point x ∈ V , i.e., when the algebraic correspondence has the type (n, 1) that is
rational correspondence.
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All the above considerations can be generalized for multistage schemes. In
the case of multistage schemes, the set of variables x, x̂, and Δt is completed with
additional variables and the number of equations is appropriately increased.

For example, in the s-stage Runge–Kutta method, the additional variables
k1, . . . , ks are interpreted as auxiliary variables of the integral curve slope. For
a transition from layer to layer, the slopes are first calculated from the system
of equations

ki = f (x + (ai1k1 + · · · + aisks)Δt) ,

and then
x̂ = x + (b1k1 + · · · + bsks)Δt

is calculated. The coefficients aij and bj of the scheme are chosen to ensure the
approximation of the initial system (1) with the maximal order. The approx-
imation conditions lead to algebraic equations for the coefficients, which are,
however, rich in rational solutions. Hence, finally the Runge–Kutta scheme with
any number of stages is described by a system of equations of the form

g(x, k, x̂,Δt) = 0,

the left-hand sides of which belong to a polynomial ring Q[x, k, x̂,Δt]. However,
practically they sometimes use non-rational coefficients, so it seems reasonable
not to exclude from consideration the case when the coefficients of the scheme
belong to the algebraic closure of Q [20,21].

From an algebraic point of view, auxiliary variables can be eliminated and
algebraic equations describing the transition from layer to layer can be obtained.
Therefore, multistage schemes can also be considered as algebraic correspon-
dences between the layers.

We would especially like to dwell on the dependence on Δt. The Euler,
Runge–Kutta, and even more exotic methods imply that the left-hand sides
of equations describing the transition from layer to layer are polynomials with
respect to x, x̂, and Δt. In specific calculations, the variable Δt is always given
a small numerical value, so there is no reason to limit consideration to this
assumption. Below we assume that the left-hand sides of the equations defining
the difference scheme are polynomials with respect to x and x̂, the coefficients of
which belong to the algebraic closure of Q[Δt] or, in short, are algebraic functions
of Δt.

Note 5. The assumption of a polynomial dependence on Δt apparently imposes
excess narrowing of the class of difference schemes, among which the solution of
Problem 1 should be sought. Suppose, for example, that the integral manifold is
a curve. In this case, the explicit scheme equation

x̂ = g(x,Δt)

for a fixed x and a variable Δt gives a rational parametrization. Therefore, the
required scheme obviously does not exist, if the integral curve is not unicursal.
In the case of integral manifolds of higher dimension, the existence of an explicit



On Explicit Difference Schemes for Autonomous Systems 353

difference scheme will immediately give a family of unicursal curves on the man-
ifold. This property is very rare and, therefore, we again will have to state that
the desired difference scheme does not exist.

8 Autonomous System on a Curve

In the case when the considered integral manifold V has dimension 1, the Prob-
lem 1 is solved on the basis of classical results from the theory of algebraic
correspondences between two curves [13, Sect. 65]. In this case, the system of
differential equations reduces to Abelian quadratures, but this does not make
this case trivial.

Example 5. The motion of a top fixed at the centre of gravity is described by
system (5) of three differential equations, which has two quadratic integrals (see
Example 4). Therefore, the integral curves in the space p, q, and r are elliptic
curves defined by two Eq. (6). On an integral curve, a system of three differential
equations reduces to quadrature, which describes the dependence of p, q, and r
on t. This dependence is described by elliptic functions. Moreover, this example
involves the whole theory of elliptic functions which is a compelling evidence in
favour of its nontriviality.

If a given integral curve V admits a rational parametrization, then, by
Lüroth’s theorem, a birational correspondence [15] can be established between
this curve and the straight line. Denote the coordinate of a point on the line
as u, then the connection between x ∈ V and u can be written using rational
functions: u = U(x) and x = X(u). Let x = x(t) be the solution of system
(1) belonging to the integral curve under consideration, then u = U(x(t)) as a
function of t is a solution of the first-order differential equation

u̇ =
∂U

∂x1
f1 + · · · +

∂U

∂xr
fr = H(u).

Let us write for this equation any explicit difference scheme, e.g., the Euler
scheme

û = u + H(u)Δt

and go back to the variables x = X(u). As a result, we get the explicit difference
scheme

x̂ = X(û) = X(u + H(u)Δt),

approximating the initial system. Thus, in the case when a given integral man-
ifold is a curve that allows rational parametrization, the difference scheme for
Problem 1 exists. This scheme is given by equations whose coefficients depend
on the parameter Δt polynomially (see Remark 5). Instead of the Euler scheme,
one can use any other explicit difference scheme, say, any of the explicit Runge–
Kutta schemes. Therefore, there are infinitely many such schemes.
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Proposition 1. Let the autonomous system (1) have an integral curve that
allows rational parametrization. It is always possible to approximate this sys-
tem with an explicit difference scheme that preserves exactly this integral curve.

We now proceed to the case when a given integral curve does not allow ratio-
nal parametrization. An explicit difference scheme that preserves the integral
curve V defines a correspondence of the type (n, 1) on this curve. Therefore, we
should substitute n̂ = 1 in the Zeuthen formula (10) and, therefore, η̂ = 0. At
the next step, the manifold itself does not change, so ρ̂ = ρ. Thus, the Zeuthen
formula gives

−η = 2(n − 1)(ρ − 1).

For n > 1 and ρ > 1, the right-hand side becomes negative, which contradicts
the very definition of the number η̂. Therefore, for ρ > 1, the number is n = 1
and the explicit scheme defines a birational correspondence. If such a scheme
really existed, then, by giving Δx different values, we would get infinitely many
birational transformations on the curve V . However, by virtue of the theorem,
first indicated, probably by Picard [17], the group of birational transformations
of the genus ρ > 1 on an algebraic curve is finite.

Proposition 2. Let the autonomous system (1) have an integral curve of the
genus ρ > 1. This system cannot be approximated by an explicit difference scheme
that retains exactly this integral curve.

It remains to consider two cases in which ρ = 0 and ρ = 1.
If ρ = 0, then, as is known, the curve V admits a rational parametrization,

therefore, the first case is described by Proposition 1.
Let us proceed to the case when the integral curve V is of genus 1. Assume

that there is an explicit scheme that approximates system (1) and preserves the
integral curve V of the genus 1 [15,16]. On this curve, there is a single Abelian
differential of the first kind up to a multiplicative constant. Since only one of
the variables x1, . . . xr is independent on the curve V , it can always be written
as H(x)dx1, where H is a rational function on V .

Let us fix an arbitrary point o on V and consider the integral

x̂∫

o

H(x) dx1.

The derivative of this integral with respect to x1 is a rational function on V ,
and the integral itself, with any choice of the upper limit, remains finite, and,
therefore, is an integral of the first kind. This means that there are two constants
α and β such that

x̂∫

o

H(x) dx1 = α

x∫

o

H(x) dx1 + β. (11)



On Explicit Difference Schemes for Autonomous Systems 355

These constants are independent of x, but may depend on Δt. If α really
depended on Δt, then it would be an algebraic function of Δt and, therefore,
would have singularities. This would allow such position x̂ for a fixed x that the
integral

x̂∫

o

H(x) dx1

would become arbitrarily large, which is impossible. For Δt = 0, ratio (11)
degenerates into

x∫

o

H(x) dx1 = α(0)

x∫

o

H(x) dx1 + β(0).

Therefore, α is identically equal to 1. This fact allows rewriting relation (11) in
the following way:

x̂∫

x

H(x) dx1 = β(Δt). (12)

Let us fix the value of x and give Δt a small value. To say that the scheme
approximates system (1) is the same as to write a decomposition of the form

x̂ = x + f(x)Δt + O(Δt2).

Substituting this expression into Eq. (12) we get

β = H(x)f1(x)Δt + O(Δt2).

Thus, on the integral curve, the following equality must hold:

H(x)f1(x) = const.

Let us summarize the proved above by the following proposition.

Proposition 3. Let the autonomous system (1) have an integral curve of the
genus ρ = 1. This system can be approximated by an explicit difference scheme
that preserves exactly this integral curve only in the case when the integral

∫
dx1

f1(x)

is an Abelian integral of the first kind on an integral curve. In this case, the
scheme sought in Problem 1 is described by the equation

x̂∫

x

dx1

f1
= Δt + O(Δt2). (13)
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Let us reverse the assertion of the proposition. Let the autonomous system
(1) have an integral curve V of the genus ρ = 1 and let the integral

∫
dx1

f1(x)

be an Abelian integral of the first kind on an integral curve.
We fix on V an arbitrary non-singular point o and next to it take the point

ô, which depends on Δt in such a way that

ô∫

o

dx1

f1
= Δt + O(Δt2). (14)

In order to find the point ô, it is sufficient to take the first of its coordinates
equal to

f1(o)Δt,

and determine the rest coordinates from the condition of belonging of the point ô
to the curve V . In this case, it is necessary to solve algebraic equations, therefore,
the coordinates of the point ô are algebraic functions of Δt. By Abel’s theorem,
the relation

x̂∫

x

dx1

f1
=

ô∫

o

dx1

f1

allows unique definition of x̂ as rational function of x. To find this function, we
need to construct a rational function on V that has two simple poles x and ô and
one known zero o. Since ô depends on Δt algebraically, x̂ is a rational function
of x, whose coefficients depend on Δt algebraically.

Consider a difference scheme, in which this function describes the transition
from layer to layer. From equation (13), it follows that

Δx

f1
= Δt + O(Δt2),

thus, the difference scheme approximates the first of the equations of system
(1) and exactly preserves the integral curve and, therefore, approximates all
other equations. Therefore, the difference scheme specified in this way is the one
required in Problem 1. From here we get the proposition inverse to Proposition 3.

Proposition 4. Let the autonomous system (1) have an integral curve of the
genus ρ = 1. This system can be approximated by an explicit difference scheme
that preserves this integral curve exactly, if the integral

∫
dx1

f1(x)

is an Abelian integral of the first kind on an integral curve.
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Note 6. Under the conditions of Proposition 4, system (1) has an integral curve
V , on which the dependence of x1 on t is described by quadrature

∫
dx1

f1(x)
= t + C.

Therefore, on the exact solution, the following relation is true:

x(t+Δt)∫

x(t)

dx1

f1
= Δt.

In other words, our difference scheme would give an exact solution if we could
take β = Δt in Eq. (12). Such a choice of β, however, is impossible, since the
equality

ô∫

o

dx1

f1
= Δt

would cause the dependence of the coordinates of ô on Δt in a transcendental
way. Thus, we would obtain a difference scheme whose equations would contain
Δt in a transcendental way.

We summarize the proved above as a theorem.

Theorem 1. Let the autonomous system (1) have an integral curve of the
genus ρ.

– If the genus is 0, then there is an infinite number of explicit difference schemes
that preserve this curve exactly.

– If the genus is 1, then such scheme exists if and only if
∫

dx1

f1

is an integral of the first kind on the curve V .
– If the genus is greater than 1, then such a scheme does not exist.

Example 6. The Jacobi elliptic functions are a solution of system (3) on the
integral curve

p2 + q2 = 1 and k2p2 + r2 = 1.

This curve is of genus 1, and the system itself on this curve can be written as a
quadrature ∫

dp

qr
= t + const

or ∫
dp√

(1 − p2)(1 − k2p2)
= t + const.
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Fig. 1. Plot of sn(t, 1
2
), calculated using an explicit conservative difference scheme

Jacobi also noted that the integral on the right remains finite for any choice
of the limits of integration, that is, according to the modern classification, it
is an Abelian integral of the first kind on the elliptic curve V . Therefore, by
Proposition 4, there is an explicit difference scheme that preserves this curve.
The transition from layer to layer is carried out according to the formula

(p̂,q̂,r̂)∫

(p,q,r)

dp

qr
= β(Δt)

Using the addition theorem for elliptic functions [22, Sect. 22.8], this relation
can be rewritten in algebraic form as

p̂ =
p cn λ dn β − sn β qr

1 − k2p2 sn2 β

q̂ =
q cn β − sn β dn β pr

1 − k2p2 sn2 β

and

r̂ =
r dn β − k2 sn β cn β pq

1 − k2p2 sn2 β
.

It remains to choose β so that the difference scheme approximates the original
differential equation, i.e.,

β = Δt + O(Δt2),

and that the equations describing the transition from layer to layer depend on
Δt algebraically. This can be achieved by taking

sn β = Δt, cn β =
√

1 − Δt2, dn β =
√

1 − k2Δt2.

Figure 1 presents a plot of the elliptical sine calculated using the standard means
of Sage (solid line) and according to the proposed explicit scheme. The perfect
coincidence of results is clearly seen, which is not surprising, since we have a
difference scheme that without any connection with the finite difference method
was used by Guderman to create tables of elliptic functions [23, Abh.1].
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Example 7. In the case of Euler–Poinsot (Example 4), the integral
∫

dp

qr

on an elliptic curve (6) is an integral of the first kind, therefore, by Proposition 4,
there is an explicit difference scheme that preserves exactly the integral curve.
The fact that among the tools for working with algebraic curves, there is no
one for the construction of the main function, hinders the compilation of this
scheme by means of Sage. It is convenient to carry out calculations by hand,
after making the change of variables, leading to Jacobi elliptic functions.

9 Conclusion

In this paper, an autonomous system of ordinary differential equations on an
algebraic manifold V was considered.

Explicit difference schemes are new and convenient for calculating approx-
imate solutions of this system, but they divert the solution from the integral
manifold. In mechanical problems, such schemes introduce parasitic numerical
effects, e.g., dissipation, into the mathematical model, or even lead to results
that cannot be interpreted geometrically.

Difference schemes that do not divert the solution from the manifold V are
called conservative. These schemes are remarkable in that they provide us with
a discrete model of a mechanical phenomenon, within which the fundamental
conservation laws are exactly fulfilled. This allows the use of such models not
only for quantitative, but also for qualitative research of mechanical phenomena.

Although the laws of classical mechanics are formulated for infinitely small
dt, in real problems, there is always a characteristic minimum time scale Δt.
Attempts to consider Newton’s equations as finite-difference ones are hampered
only by the fact that they lead to a non-conservative scheme. Having found a
conservative scheme, we get a discrete mathematical model, the status of which
is not lower than that of a continuous model. In this case, the choice of step
is determined by physical considerations, and not by the convergence of the
numerical method.

Unfortunately, conservative schemes are usually implicit and the transition
from layer to layer is very costly. Therefore, we formulated Problem 1 about
finding an explicit conservative difference scheme for a given system of differential
equations and gave this problem a geometric interpretation.

For the case of a manifold of dimension 1, we gave a complete solution to
this problem. This solution allows us to make several hypotheses regarding the
general case.

First, it turned out that there is a purely geometric obstacle to the existence
of explicit and simultaneously conservative schemes, namely, the genus of the
curve V . If the genus of the curve is greater than 1, then such a scheme does not
exist. In particular, for an autonomous system on a general curve whose order
is greater than 3, such a scheme does not exist (Proposition 2). This means that
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the attempts to find a universal method for constructing an explicit conservative
scheme for any system of differential equations are futile.

As a hypothesis, we note that an autonomous system on a manifold of a
general form must not allow explicit conservative schemes.

Second, it turned out that an explicit conservative scheme for a system on a
curve exists in two very dissimilar cases: if the genus of the integral curve is 1 and
if the genus is 0. In the first case (Proposition 3), the difference scheme specifies a
birational correspondence between the layers, and the autonomous system itself
must be integrated in elliptic functions. In the second case (Proposition 1), there
are infinitely many such schemes, but the case itself is not at all interesting,
since a rational change of variables can reduce the order of the system without
changing its form. In fact, this is the case of a system on affine space.

We assume that an autonomous system on a manifold admits an explicit
conservative difference scheme in two cases.

First, if this variety is Abelian and the system itself is integrated in Abelian
functions, an example of such a system is a top in the Kovalevskaya case (Exam-
ple 2), a double pendulum [24], the Garnier system [25] or the system considered
in our paper [26].

Second, if a rational replacement can reduce the original system to a system
of the same kind, but of a smaller order.

Since the theory of algebraic surfaces is already sufficiently developed, we
expect Problem 1 to be solved in the near future for the case of surfaces. On the
other hand, there is no good package to work with algebraic surfaces, thus, the
constructive solution of Problem 1 is a challenge for the computer algebra.
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fessées à Stockholm (septembre, octobre, novembre 1895) sur l’invitation de S. M.
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Abstract. The Berlekamp–Massey and Berlekamp–Massey–Sakata
algorithms compute a minimal polynomial or polynomial set of a linearly
recurring sequence or multi-dimensional array. In this paper some under-
lying properties of and connections between these two algorithms are
clarified theoretically: a unified flow chart for both algorithms is proposed
to reveal their connections; the polynomials these two algorithms main-
tain at each iteration are proved to be reciprocal when both algorithms
are applied to the same sequence; and the uniqueness of the choices of
polynomials from two critical polynomial sets in the Berlekamp–Massey–
Sakata algorithm is investigated.

Keywords: Berlekamp–Massey algorithm ·
Berlekamp–Massey–Sakata algorithm · Minimal polynomial ·
Reciprocal polynomial

1 Introduction

The Berlekamp–Massey (BM) algorithm from coding theory is to find the short-
est linear feedback shift register of an output sequence [1,9,10], and it can be
used to decode Reed–Solomon codes by finding the error-locator polynomial.
Mathematically the BM algoirthm is also an algorithm to compute the minimal
polynomial of a linearly recurring sequence over a field, with successful applica-
tion in solving sparse linear systems [17].

The Berlekamp–Massey–Sakata (BMS) algorithm, as one can find from its
name, is generalization of the BM algorithm to the multivariate case [14–16].
This algorithm, also from coding theory, is a decoding algorithm to find the
minimal polynomial set of the error locator ideal in algebraic geometry codes
[5,6,11,12].
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The BMS algorithm draws particular interest of the community of symbolic
computation due to the fact that mathematically the BMS algorithm computes
a minimal Gröbner basis of the polynomial ideal defined by a linearly recurring
array [5,13,15]. With this observation, the BMS algorithm has been applied to
computation of Gröbner bases: it is used in the sparse FGLM algorithm to change
the term orderings of Gröbner bases from the degree reverse lexicographic one
to the lexicographic one [7,8]; the scalar-FGLM algoirthm is proposed in [2,4]
to compute the Gröbner basis of the ideal defined by a multi-dimensional array,
solving the same problem as the BMS algorithm does, by using multi-Hankel
matrices. In particular, the BMS and scalar-FGLM algoirthms are compared in
details in [3].

In this paper we study the BM and BMS algorithms and clarify some detailed
connections and differences between these two algorithms. We first propose a
unified flow chart for both the BM and BMS algorithms by introducing some
notions of the latter algorithm to the former. We compare corresponding parts of
the two algorithms to justify such a flow chart. In particular, we show that a case
of the BMS algorithm is only meaningful when the array is multi-dimensional
because of the partial order and that the two cases in the BM algorithm indeed
correspond to one case in the BMS algorithm. Next we compare the BM and BMS
algorithms by applying them to the same sequence and prove that in this case
the polynomials they compute at each iteration are reciprocal. Then we study
the numbers of polynomials in two critical sets in the BMS algorithm, which
have been proved to be nonempty (see. e.g, [13, Lemma 37]) for the correctness
of the algorithm, and prove that in a particular case one set consists of only one
element and provide a counter-example of uniqueness of polynomials in the two
sets in the other cases.

The detailed study on the BM and BMS algorithms in this paper are helpful
for further understanding the BMS algorithm, which is essential at the current
early research stage of this algorithm from the algebraic viewpoint. In particu-
lar, by unifying the two algorithms in terms of their underlying languages and
a unified flow chart and revealing the relationships between the BM algorithm
and the degenerated BMS algorithm applied to sequences, we better justify that
the BMS algorithm is indeed multivariate generalization of the BM algorithm,
which seems not to be adequately investigated in the literatures [15,16] to our
best knowledge, though the name BMS algorithm has been widely acknowl-
edged. The observation that two critical polynomial sets in the BMS algorithm
may contain multiple polynomials indicates that the BMS algorithm may return
different minimal polynomial sets for one array, for any polynomial in these two
polynomial sets may be chosen for the construction. This accords with the fact
that the BMS algorithm, viewed as an algorithm for computing Gröbner bases,
only returns minimal Gröbner bases instead of reduced ones which are unique.

This paper is organized as follows. The notion and notations used in the
BM and BMS algorithms are recalled in Sect. 2 in a comparative way. Then in
Sects. 3, 4, and 5, we unify these two algorithms in one flow chart, compare them
by applying them to one sequence, and study the numbers of polynomials in two
critical sets for the update in the BMS algorithm respectively.
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2 Preliminaries

Let K be a field, and K[x1, . . . , xn] be the multivariate polynomial ring over
K with the variables x1, . . . , xn. We fix a variable ordering x1 < · · · < xn

throughout this paper. For simplicity, we write x for x1, . . . , xn and K[x]
for K[x1, . . . , xn]. With the one-one correspondence between a vector u =
(u1, . . . , un) ∈ Z

n
+ and a term xu = xu1

1 · · · xun
n ∈ K[x], where Z+ denotes

the set of non-negative integers, we do not distinguish these two representations
of a term in this paper.

Denote by T (x) the set of all the terms in K[x]. Next we define two orders
on T (x) which are frequently used in this paper.

(1) �: for any u = (u1, . . . , un), v = (v1, . . . , vn) ∈ T (x), define u � v if ui ≤ vi

for i = 1, . . . , n. Obviously this is a partial order defined by divisibility of
terms in T (x).

(2) <t: for any u = (u1, . . . , un), v = (v1, . . . , vn) ∈ T (x), define u <t v
if

∑n
i=1 ui <

∑n
i=1 vi or

∑n
i=1 ui =

∑n
i=1 vi but there exists an integer

j (1 ≤ j ≤ n) such that ui = vi (i = 1, . . . , j − 1) and uj > vj . Those who
are familiar with the theory of Gröbner bases will immediately recognize
this as the degree reverse lexicographic term order (which is a total order).
We will only use this term order in this paper.

Definition 1. A mapping s : Z+ → K is called a sequence over K. For a given
integer m ≥ 1, the restriction s|{0,1,...,m−1} is called a sequence of length m over
K, and it is often written as an ordered sequence [s(0), s(1), . . . , s(m − 1)].

Similarly, a mapping E : Z
n
+ → K is called an n-dimensional array over

K. For a given term u ∈ Z
n
+, denote Z

n
+(u) = {v ∈ Z

n
+ : v ≤t u}. Then the

restriction E|Zn
+(u) is called an n-dimensional array over K up to u, denoted

by Eu .

Example 1. A 2-dimensional array over F2 up to (2, 1) is illustrated in the fol-
lowing picture. Please note that with respect to <t, the terms smaller than (2, 1)
are (0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), and (3, 0) (Fig. 1).

0
0

1
1

2
0

3 4 x2

0

1

2

3

4
x1

1 1

0 1

0

Fig. 1. A 2-dimensional array over F2
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Definition 2. Let F =
∑d

i=0 cix
i be a univariate polynomial in K[x] and s =

[s0, s1, . . . , sm−1] be a sequence of length m over K. For an integer k (d ≤ k < m),
define F [s, k] :=

∑d
i=0 cisk−i. If k < d or d ≤ k and F [s, k] = 0, then F is said

to be valid at k for s in the BM sense.
Furthermore, if F is valid at i for s in the BM sense for i = 0, . . . , k, then F

is said to be valid up to k for s in the BM sense. We denote by V [s, k] the set of
polynomials in K[x] which are valid up to k for s in the BM sense. A polynomial
in V [s,m − 1] of the smallest degree is called a minimal polynomial of s in the
BM sense.

For an arbitrary univariate polynomial F ∈ K[x], we denote the degree of F
by deg(F ); for an arbitrary multivariate polynomial G ∈ K[x], we denote the
exponent of the greatest term of G with respect to <t by lead(G).

Definition 3. Let F =
∑

v∈Γ cvx
v ∈ K[x] with Γ a subset of Z

n
+, and Eu be

an n-dimensional array up to some term u ∈ Z
n
+. For a term r ∈ Z

n
+ (lead(F ) �

r ≤t u), define F [[Eu , r]] :=
∑

v∈Γ cvEu (v + r − lead(F )). If lead(F ) �� r or
lead(F ) � r and F [[Eu , r]] = 0, then F is said to be valid at r for Eu in the
BMS sense.

Furthermore, if F is valid at w for Eu in the BMS sense for all w such that
w ≤t r, then F is said to be valid up to r for Eu in the BMS sense. We denote
by V [[Eu , r]] the set of polynomials in K[x] which are valid up to r for Eu in the
BMS sense. Let F = {F1, . . . , Fs} be a polynomial set in K[x]. Then F is called
a minimal polynomial set of Eu in the BMS sense if the following conditions
hold:

(1) For each i = 1, . . . , s, Fi ∈ V [[Eu ,u]];
(2) There does not exist a polynomial G ∈ V [[Eu ,u]] such that lead(G) �

lead(Fi) for some Fi ∈ F .

Remark 1. If one applies the BMS algorithm to a sequence s, in which case the
partial order � and the term order <t coincide and the algorithm just degener-
ates to handle univariate polynomials, and compare it with the BM algorithm,
then one finds that the expression of F [s, k] is different from that of F [[s, k]]
in the sense that the coefficients of F are used in a reverse order. We have to
distinguish these two expressions and this is why we add the tedious words “in
the BM/BMS sense” in the above definitions.

Example 2. Let Eu be the 2-dimensional array up to u = (2, 1) in Example 1
and F = x2 + x1 + 1 ∈ F2[x1, x2]. Then

F [[Eu , (0, 2)]] =E[(0, 0) + (0, 2) − (0, 1)] + E[(1, 0) + (0, 2) − (0, 1)]
+ E[(0, 1) + (0, 2) − (0, 1)] = 0,

and thus F is valid at (0, 2) for Eu in the BMS sense. One can also check
that F [[Eu , (0, 1)]] = F [[Eu , (1, 1)]] = 0, and thus F is valid up to (0, 2) in the
BMS sense. Note that in the process above of checking validity of F at some
term, we omit those terms which are not � lead(F ) and thus valid naturally by
Definition 3.



366 C. Mou and X. Fan

With the terminologies above, we are now ready to describe the specifications
of the two algorithms of our interest in this paper: given a sequence s of length
m over K, the BM algorithm computes a minimal polynomial of s in the BM
sense; given an n-dimensional array Eu up to some term u ∈ Z

n
+ over K, the

BMS algorithm computes a minimal polynomial set of Eu in the BMS sense.

Definition 4. Let F be a zero-dimensional polynomial set in K[x]. Define

Δ(F) := {u ∈ Z
n
+ : lead(F ) �� u for all F ∈ F}.

A set Δ ⊂ Z
n
+ is called a delta set if for any u ∈ Δ, we have v ∈ Δ for all v � u.

Obviously Δ(F) above is a delta set.
Let Δ ⊂ Z

n
+ be a delta set. A term u ∈ Δ is called an interior corner of Δ

if there does not exist v ∈ Δ such that u � v, and a term w �∈ Δ is called an
exterior corner of Δ if there does not exist v �∈ Δ such that v � w. The set of
all the interior corners (exterior corners respectively) of a delta set Δ is denoted
by Int(Δ) (Ext(Δ) respectively).

By Definition 4, interior corners of Δ correspond to maximal elements in Δ
with respect to �, and the exterior corners are the minimal elements in T (x)\Δ.
See Fig. 2 below for illustrative delta set, interior corners, and exterior corners.
For a term v ∈ Z

n
+, we denote the preceding and next terms of v with respect

to <t by v− and v+ respectively.

x2

x1

Δ

Fig. 2. Illustrative delta set (Δ), interior corners (marked with �), and exterior corners
(marked with �)

Definition 5. Let Eu be an n-dimensional array up to some term u ∈ Z
n
+

and G ∈ K[x] be a polynomial in V [[Eu ,v−]] but not in V [[Eu ,v]]. Then the
span of G is defined to be span(G) := v − lead(G). In this case, we denote
δG := G[[Eu ,v]](�= 0). For a finite polynomial set G = {G1, . . . , Gr} ⊂ K[x], we
define

span(G) :=
r⋃

i=1

{v ∈ Z
n
+ : v � span(Gi)}.

One can check that span(G) for a polynomial set G is a delta set, and one
should pay particular attention to the definition of span(G) because it is different
from {span(G) : G ∈ G}.
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3 BM and BMS Algorithms in a Unified Flow Chart

Next we first reproduce the pseudo codes for the BM and BMS algorithms below.
The readers are referred to [6,10,13] for existing descriptions of these two algo-
rithms. In particular, Algorithm 2 below for the BMS algorithm is based on a
simplified version presented in [13].

Algorithm 1. Berlekamp–Massey Algorithm F := BM(s)
Input: a sequence s = [s0, s1, . . . , sm−1] of length m over K

Output: a minimal polynomial F of s in the BM sense
1 F := 1, G := 1, p := 1, b := 1;
2 for i = 0, . . . , m − 1 do
3 d := F [s, i];
4 if d = 0 then
5 p := p + 1; [Case 1]
6 next;

7 else
8 if 2 deg(F ) ≤ i then

9 T := F, F := F − dxpG
b

; [Case 2.1]
10 G := T, b := d, p := 1;

11 else

12 F := F − dxpG
b

, p := p + 1; [Case 2.2]

13 return F

The BM algorithm maintains two polynomials F and G to update them in
each new iteration when necessary, and at the end F is output as a minimal
polynomial of the input sequence in the BM sense. As shown in the descriptions
of the algorithm, we split Algorithm 1 into 3 cases: Case 1 corresponds to the
situation when F is valid at the current iteration and thus neither F nor G
changes, in Case 2.1 both F and G are updated, and in Case 2.2 only F is
updated. It is noted from Lines 9 and 12 of Algorithm 1 that in both Cases 2.1
and 2.2 the updates of F share the same expression.

The BMS algorithm maintains two polynomial sets F and G to update them
in each new iteration when necessary, and at the end F is output as a minimal
polynomial set of the input n-dimensional array in the BMS sense. In the itera-
tion handling a term v, for each r ∈ Ext(span(G+)), there will be a polynomial
F ∈ F+ such that lead(F ) = r (see the polynomials adjoined to F+ in Lines 7,
13, and 16 in Algorithm 2). As shown in the descriptions of the algorithm, we
also split Algorithm 2 into 3 cases. Case 1 corresponds to the situation when all
the polynomials in F are valid to u (namely N = ∅), and thus G+ = G and
span(G+) = span(G). In this case neither F nor G changes. In both of the remain-
ing Cases 2 and 3, F changes, and how a new polynomial F+ with lead(F+) = r
is constructed is dependent on the condition r � v. This is because in Case 2
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Algorithm 2. Berlekamp–Massey–Sakata Algorithm F := BMS(Eu )
Input: an n-dimensional array Eu over K up to u ∈ Z

n
+

Output: a minimal polynomial set F of Eu in the BMS sense
1 F := {1}, G := ∅;
2 for v = 0, . . . ,u do
3 N := {F ∈ F : F [[Eu , v]] �= 0};
4 G+ := G ∪ N , Δ := span(G+), F+ := ∅;
5 for r ∈ Ext(Δ) do
6 if ∃ F ∈ F \ N such that lead(F ) = r then
7 F+ := F+ ∪ {F}; [Case 1]
8 else
9 if r � v then

10 Find F ∈ N such that lead(F ) � r; [Case 2]
11 Find G ∈ G such that span(G) � v − r;
12 q := r − lead(F ), p := span(G) − v + r;

13 F+ := F+ ∪ {xqF − F [[Eu ,v ]]
δG

xpG};
14 else
15 Find F ∈ N such that lead(F ) � r; [Case 3]

16 F+ := F+ ∪ {xr−lead(F )F};

17 F := F+;
18 if Δ �= span(G) then
19 G := G+;

20 return F

the polynomial F+ is constructed with G ∈ G such that span(G) � v − r, and
here v−r only makes sense when r � v. In Case 3 when the condition fails, the
new polynomial F+ is constructed with only F .

Comparing Algorithms 1 and 2, one can find several underlying differences
between them. These differences are clarified below first, and in fact they are
our motivations for the study in the sequel of this paper.

(1) In the BMS algorithm for handling n-dimensional arrays, there are indeed
two underlying orders of the terms in K[x], namely the partial order � and
the (total) term order <t as defined in Sect. 1. In the 1-dimensional case
which the BM algorithm is for, these two orders coincide as a total order:
xi < xj if and only if i < j for two integers i and j. This difference is most
influential on the condition r � v in Line 9 in Algorithm 2 for distinguishing
Cases 2 and 3. In fact, when the partial order in the n-dimensional case
degenerates to the sole total order in the 1-dimensional case, this condition
holds trivially for the BM algorithm. This observation indicates that Case
3 of the BMS algorithm only occurs in the n-dimensional case.

(2) As the n-dimensional generalization of the BM algorithm, what the BMS
algorithm maintains are multivariate polynomial sets F and G instead of
univariate polynomials F and G. From Lines 10 and 11 in Algorithm 2, one



On Berlekamp–Massey and Berlekamp–Massey–Sakata Algorithms 369

may ask whether the polynomials F and G are uniquely determined, as in
the trivial case for the BM algorithm where there is only one polynomial F
or G to choose. This is studied in Sect. 5.

(3) The new polynomial set F+ in the BMS algorithm is constructed according
to the elements in the set Ext(Δ), where Δ = span(G+). On the contrary,
the new polynomial in the BM algorithm is constructed according to the
currently handled term only. With this observation we are interested in how
the delta sets Δ(F ) in the BM algorithm and Δ = span(G+) in the BMS
algorithm change. This is partially studied below and in Sect. 4.

Lemma 1 ([10, Theorem 2]). Let s = [s0, . . . , sm−1] be a sequence of length
m over K and F ∈ K[x] be the polynomial in the BM algorithm applied to s
after handling i − 1, where i ≤ m − 1 is an integer. If F [s, i] �= 0, then for
the updated polynomial denoted by F+ after handling i, we have deg(F+) =
max(deg(F ), i + 1 − deg(F )).

Proposition 1. Let s = [s0, . . . , sm−1] be a sequence of length m over K and
F, F+ ∈ K[x] be the polynomials in the BM algorithm applied to s after handling
i − 1 and i respectively, where i ≤ m − 1 is an integer. Then Δ(F+) = Δ(F ) if
and only if 2 deg(F ) > i.

Proof. By Definition 4, we know that Δ(F ) = {0, 1, . . . ,deg(F ) − 1}, and thus
Δ(F+) = Δ(F ) if and only if deg(F+) = deg(F ).

(1) If 2 deg(F ) > i, then 2 deg(F ) ≥ i+1, and thus i+1−deg(F ) ≤ deg(F ).
By Lemma 1 we know that deg(F+) = max(deg(F ), i + 1 − deg(F )) = deg(F ).
(2) Otherwise, we have 2 deg(F ) < i + 1, and thus i + 1 − deg(F ) > deg(F ).
In this case deg(F+) = i + 1 − deg(F ) > deg(F ). This ends the proof of this
proposition. 
�

Corollary 1. Let s = [s0, . . . , sm−1] be a sequence of length m over K and
G,G+ ∈ K[x] be the polynomials in the BM algorithm applied to s after handling
i − 1 and i respectively. Then G+ = G if and only if Δ(F+) = Δ(F ).

Proof. This is straightforward with Proposition 1 and the observation that G
changes only in Case 2.1 of Algorithm 1. 
�

Comparing the updates of F in Lines 9 and 12 in Algorithm 1 and in Line 13
of Algorithm 2, we can find that they share a similar form. We claim that Case
2.1 and Case 2.2 in Algorithm 1 correspond to Case 2 in Algorithm 2, with
more reasons to come in the next section. With the connections and differences
clarified between the BM and BMS algorithms, we are able to have a unified flow
chart for both algorithm as in Fig. 3. It is worth mentioning that this unified flow
chart is almost the same as that for the BMS algorithm, with different cases of
the BM and BMS algorithms embedded. In this flow chart, for a set S, the
function pop(S) returns an element in S and then remove it from S.

In this unified flow chart for both the BM and BMS algorithms, we use
polynomial sets F and G to represent the polynomials or polynomial sets the
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start

v = 0, F := {1}, G :=

v ≤t u?

N := {F F : F is not valid at v}

G+ := G N , Δ := span(G+)

r := pop(Ext(Δ))

F F \ N , lead(F ) = r?

BM: Case 1

BMS: Case 1

r v?

BMS: Case 2

BM: Case 2.1

BM: Case 2.2

BMS: Case 3

Ext(Δ) = ?

v := v+

end

yes

no

noyes

yes no

yes

no

Fig. 3. One flow chart for both BM and BMS algorithms

BM or BMS algorithms maintain respectively. When it goes to the case of the
BM algorithm, F and G will only contain one polynomial each. We use the
n-dimensional term u to represent our last element in the sequence or array in
the unified flow chart, and the term v (v <t u) as the running handled element
at each iteration. When it goes to the case of the BM algorithm, the terms u
and v degenerate to m − 1 and i (i ≤ m − 1) for a sequence of length m.

The tests of whether the polynomial F or all the polynomials in F are valid
up to v in the BM or BMS algorithm is unified as whether N = ∅ or not.
Furthermore, Corollary 2 in Sect. 4 indicates that the delta set span(G+) is equal
to Δ(F ) when the unified algorithm degenerates to the case of the BM algorithm,
and thus the unification with Δ is justified.

The BMS algorithm needs to traverse all the exterior corners in Ext(Δ) but
in the case of the BM algorithm, Ext(Δ) contains a single element and thus
there is only one iteration in the loop. Kept in mind that F in the unified
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flow chart contains only one polynomial in the case of the BM algorithm, it is
straightforward that the test “∃F ∈ F \N , lead(F ) = r?” in the BMS algorithm
corrsponds to d = 0 in Line 4 in Algorithm 1 for the case of the BM algorithm.

When the test “∃F ∈ F \ N , lead(F ) = r” passes, the unified flow chart
falls to the left path. As discussed above, both Cases 1 in the BM and BMS
algorithms are for the situation when neither F nor G changes, and thus they
are classified in one step in the unified flow chart. When the test does not pass,
the unified flow chart falls to the right path. Then the test “r � v?” in the
unified flow chart corresponds to Line 9 in the BMS algorithm and is trivially
satisfied in the BM algorithm (therefore the BM algorithm always falls to the left
path after this test). This observation has been discussed above in this section.

It remains to justify the correspondence between Case 2 of the BMS algorithm
and Cases 2.1 and 2.2 in the BM algorithm. Theorem 1 and Proposition 2 in
Sect. 4 tell us that the BMS algorithm, when applied to a sequence, maintains
polynomials which are reciprocal to those polynomials maintained in the BM
algorithm applied to the same sequence, and this justifies the strong connections
between the update expressions in Line 13 in Case 2 of Algorithm 2 and Line 9
in Case 2.1 and Line 12 in Case 2.2 of Algorithm 1. Furthermore, as discussed
above, Cases 2.1 and 2.2 of the BM algorithm are distinguished by whether G
changes or not, and by Corollary 1 we see that G changes if and only if the delta
set changes. Then it is noted in Line 18 of Algorithm 2 that the same latter
condition, namely whether the delta set changes, holds if and only G changes,
and this shows that the BMS algorithm handles Cases 2.1 and 2.2 of the BM
algorithm in a unified way.

4 Comparing the BM and BMS Algorithms Applied
to a Sequence

In this section we study the behaviors of the BMS algorithm applied to a
sequence. In other words, we study what happens when this n-dimensional algo-
rithm degenerates into the 1-dimensional case.

We say that two univariate polynomials F and G in K[x] are reciprocal to
each other if F (x) = xdeg(F )G(1/x), and we denote the reciprocal polynomial of
F ∈ K[x] by F r.

Let s = [s0, . . . , sm−1] be a sequence of length m over K. Now apply both the
BM and BMS algorithms to s, and after handling sk for some k (0 ≤ k ≤ m−1),
denote the polynomials F and G in the BM algorithm by Fk and Gk, and the
polynomial sets F = {F} and G = {G} in the BMS algorithm by {F k} and
{Gk}. The main result of this section is that Fk and F k, as well as Gk and Gk,
are proved to be reciprocal.

To prove these relations, we have a lemma below first. Let s = [s0, . . . , sm−1]
be a sequence of length m over K such that s0 �= 0. For k = 1, . . . , m − 1, define
the following polynomial sets

V [s(k)] = {F ∈ K[x] : F ∈ V [s, k] and F (0) = 1},

V [[s(k)]] = {F ∈ K[x] : F ∈ V [[s, k]] and F is monic}.
(1)
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Lemma 2. Let s = [s0, . . . , sm−1] be a sequence of length m over K such that
s0 �= 0, and the polynomial sets V [s(k)] and V [[s(k)]] be defined as in (1) for
k = 1, . . . ,m−1. Then for any polynomial F ∈ V [s(k)], its reciprocal polynomial
F r is in V [[s(k)]], and vice versa.

Proof. Write F ∈ K[x] as F =
∑d

j=0 cjx
j and F r =

∑d
j=0 cjx

j . Since F and F r

are reciprocal, we have cj = cd−j for each j = 0, . . . , d. Then for each i = 1, . . . , k,
by definition we have

F r[[s, i]] =
d∑

j=0

cjsj+i−d =
d∑

j=0

cd−jsj+i−d =
d∑

j′=0

cj′si−j′ = F [s, i].

Now it is clear that when F ∈ V [s(k)], we have F r ∈ V [[s(k)]], and vice
versa. 
�

Theorem 1. Let s = [s0, . . . , sm−1] be a sequence of length m over K such that
s0 �= 0. Then Fk and F k are reciprocal for each k = 1, . . . , m − 1.

Proof. For each k = 1, . . . , m − 1, we can regard Fk and F k as the polynomials
returned by the BM and BMS algorithms applied to the truncated sequence
[s0, . . . , sk], namely Fk = BM([s0, . . . , sk]) and F k = BMS([s0, . . . , sk]). Then by
the specifications of the BM and BMS algorithms, we know that Fk and F k are
respectively polynomials in V [s(k)] and V [[s(k)]] of minimal degrees.

We first show that F k is the unique polynomial of minimal degree in V [[s(k)]].
Otherwise suppose that there exists a distinct polynomial F̃ ∈ V [[s(k)]] of the
same degree as F k. Then let F̃ ′ be the polynomial F k − F̃ divided by the
leading coefficient. Since both F k and F̃ in V [[s(k)]] are monic, we know that
the polynomial F̃ ′ constructed above is monic and of strictly smaller degree than
F k, and one can further check that F̃ ′ also belongs to V [[s(k)]]. This contradicts
with the fact that F k is of the minimal degree in V [[s(k)]].

Next we prove the equality F r
k = F k by showing that F r

k is a polynomial in
V [[s(k)]] of the minimal degree. By Lemma 2 we know that F r

k ∈ V [[s(k)]], and
clearly deg(F r

k ) = deg(Fk). Suppose now that F r
k is not of the minimal degree

in V [[s(k)]]. Then deg(F k) < deg(F r
k ) = deg(Fk), and thus deg(F

r

k) < deg(Fk).
By Lemma 2 we know that F

r

k ∈ V [s(k)], and this contradicts the fact that Fk is
of the minimal degree in V [s(k)]. Since F r

k ∈ V [[s(k)]] is of the minimal degree
and F k is the unique polynomial of minimal degree in V [[s(k)]], the equality
F r

k = F k follows. 
�

Remark 2. Note that the reciprocal relation does not hold for F0 and F 0 as
defined in Theorem 1. These two polynomials in the BM and BMS algorithms
are computed as follows. When handling s0, it is not hard to check that the BM
algorithm goes to Case 2.1 to have F0 = 1 − s0x and that the BMS algorithm
goes to Case 3 to have F 0 = x.

Corollary 2. Let s = [s0, . . . , sm−1] be a sequence of length m over K such that
s0 �= 0. Then Δ(Fk) = Δk, where Δk = span({Gk}).
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Proof. By Definition 4 and Theorem 1, Ext(Δ(Fk)) = deg(Fk) = deg(F k) =
Ext(Δk), and the conclusion follows. 
�

Proposition 2. Let s = [s0, . . . , sm−1] be a sequence of length m over K such
that s0 �= 0. Then Gk and Gk are reciprocal for each k = 1, . . . , m − 1.

Proof. For k = 0, . . . , m − 1, let Δk := span({Gk}). With Line 9 in Algorithm 1
and Corollary 1 we know that Gk = Fk−1 if Δ(Fk) changes and Gk = Gk−1

otherwise. With Line 18 in Algorithm 2, we know that Gk = F k−1 if Δk changes
and Gk = Gk−1 otherwise. Then Corollary 2 implies that Gk and Gk change at
the same time. With the reciprocal relation between Fk and F k in Theorem 1,
the conclusion follows. 
�

5 Updates in the BMS Algorithm

Let Eu be an n-dimensional array over K up to a term u ∈ Z
n
+. For a term

v <t u, let Fv− and Gv− be the polynomial sets F and G of the BMS algorithm
applied to Eu after handling v−, and N and Δ be constructed in Lines 3 and
4. Then for each r ∈ Ext(Δ), define

Nr := {F ∈ N : lead(F ) � r}, Gr := {G ∈ Gv− : span(G) � v + r}. (2)

By viewing Lines 9 and 16, the correctness of the BMS algorithm relies on the
fact that for each r, Nr �= ∅ and Gr �= ∅, which is, for example, proved in the
proof of [13, Lemma 37]. Next we investigate the number of polynomials in Gr

and prove that there is only one polynomial in Gr for each r ∈ Ext(Δ) in a
certain case.

Theorem 2. Let Eu be an n-dimensional array over K up to a term u ∈ Z
n
+.

For a term v ≤t u, let Δv and Δv− be the delta set in the BMS algorithm after
handling the term v and v− respectively, and Gr be as defined in (2). Then for
each r ∈ Ext(Δv ) \ Ext(Δv−) in Case 2 of Algorithm 2, we have #Gr = 1.

Proof. With the one-one correspondences between Gv− and {span(G) : G ∈ Gv−}
and between {span(G) : G ∈ Gv−} and Int(Δv−), it suffices to show that there
only exists one interior corner of Δv− which is � v + r.

Since r ∈ Ext(Δv ) but r �∈ Ext(Δv−), there exists a term w in both
Ext(Δv−) and Int(Δv ) (the term which transforms from an interior corner to an
exterior one after v is handled) and an integer i (1 ≤ i ≤ n) such that r = w+ei,
where

ei = (0, . . . , 0, 1︸︷︷︸
ith

, 0, . . . , 0).

Since w is in both Ext(Δv−) and Int(Δv ), we know that there exists a polynomial
F ∈ Fv− such that F is not valid at v (namely F ∈ Nv ), lead(F ) = w, and
span(F ) = w. This implies that r = w+ei = v−w+ei, and thus v−r = w−ei.

We claim that the ith component of w, denoted by wi, is not equal to 0.
Otherwise the ith component of w − ei is −1, and the condition span(G) �
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v+r = w−ei in (2) is equivalent to span(G) � w. Since w itself is in Ext(Δv−),
we know that there is no interior corner of Δv− which � w. This contradicts
with the non-emptiness of Gr proved in [13, Lem 37]. Now wi ≥ 1, and it is easy
to show that w − ei is on the border of Δv− (since (w − ei) + ei = w �∈ Δv−),
and thus there exists only one interior corner of Δv− which � w − ei. 
�

Next we show with the following example that the number of elements in Nr

and that of Gr are not necessarily 1 in the cases other than the one discussed in
Theorem 2. Let Eu be an n-dimensional array up to u = (0, 2) over a field K as
shown in Fig. 4. When the BMS algorithm is applied to Eu, the polynomial sets
F and G and the exterior corners of the delta sets are recorded in Table 1.

0
1

1
3

2
19

3 x2

0

1

2

3
x1

4 7

16

Fig. 4. A 2-dimensional array Eu up to u = (0, 2)

Table 1. BMS algorithm applied to Eu in Fig. 4

BMS algorithm

F := {1}, G := ∅

v Ev G Ext(Δ) F
(0,0) 1 {1} {(1, 0), (0, 1)} {x1, x2}
(1,0) 4 {1} {(1, 0), (0, 1)} {F1, x2}
(0,1) 3 {1} {(1, 0), (0, 1)} {F1, F2}
(2,0) 16 {1} {(1, 0), (0, 1)} {F1, F2}
(1,1) 7 {F1, F2} {(2, 0), (1, 1), (0, 2)} {F3, F4, F5}
(0,2) 19 {F1, F2} {(2, 0), (1, 1), (0, 2)} {F3, F4, F6}

The polynomials appearing in Table 1 are listed below.

F1 = x1 − 4, F2 = x2 − 3, F3 = x2
1 − 4x1,

F4 = x1x2 − 4x2 + 5 or x1x2 − 3x1 + 5, F5 = x2
2 − 3x2,

F6 = x2
2 − 3x2 + 2x1x2 − 6x1 or x2

2 + 2x1x2 − 11x2.

When the BMS algorithm handles v = (1, 1), we find that F1[[Eu ,v]] = −5 �=
0 and F2[[Eu ,v] = −5 �= 0, and thus N = {F1, F2} in Line 3 of Algorithm 2.
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For the exterior corner r = (1, 1) ∈ Ext(Δ), Algorithm 2 falls into Case 2 because
r = (1, 1) � (1, 1) = v, and one can check that lead(F1) � r and lead(F2) � r.
This shows that in general Nr defined in (2) does not necessarily contain only
one element.

Next consider the term v = (0, 2), we find that F3 and F4 are valid at v
but F5[[Eu ,v]] = 10 �= 0, and thus N = {F5}. Note that span(F5) = v −
lead(F5) = (0, 2) − (0, 2) = (0, 0), and thus Δ does not change at (0, 2). For
the exterior corner r = (0, 2) ∈ Ext(Δ), Algorithm 2 falls into Case 2 because
r = (0, 2) � (0, 2) = v, and one can check that span(F1) = (0, 1) � (0, 0) = v − r
and span(F2) = (0, 1) � (0, 0) = v − r. This shows that when Δ in the BMS
algorithm does not change, Gr defined in (2) does not necessarily contain only
one element, and thus the condition on r in Theorem 2 is necessary.

6 Concluding Remarks

In this paper we clarify some underlying connections and differences between
the BM and BMS algorithms. The main contributions of this paper lie in (1) the
unification of these two algorithms in terms of their underlying languages and a
unified flow chart, which is justified by proved theoretical results on these two
algorithms throughout Sects. 3 and 4, and (2) identification of some differences
between these two algorithms including Case 3 of the BMS algorithm, reversed
coefficient orders in the definitions of valid polynomials, and the non-uniqueness
of two critical polynomial sets in the BMS algorithm. These contributions are
expected to provide a better understanding on the BMS algorithm against the
BM one from an algebraic viewpoint.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their helpful suggestion which contribute to considerable improvement of this paper.
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bases of linear recursive multidimensional sequences. J. Symb. Comput. 83, 36–67
(2017)

3. Berthomieu, J., Faugère, J.C.: In-depth comparison of the Berlekamp-Massey-
Sakata and the scalar-FGLM algorithms: The adaptive variants. arXiv:1806.00978
(2018, preprint)

4. Berthomieu, J., Faugère, J.C.: A polynomial-division-based algorithm for comput-
ing linear recurrence relations. In: Proceedings of ISSAC 2018, pp. 79–86. ACM
Press (2018)

5. Bras-Amorós, M., O’Sullivan, M.: The correction capability of the Berlekamp-
Massey-Sakata algorithm with majority voting. Appl. Algebra Eng. Commun.
Comput. 17(5), 315–335 (2006)

http://arxiv.org/abs/1806.00978


376 C. Mou and X. Fan

6. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Springer Ver-
lag, New York (2005). https://doi.org/10.1007/b138611

7. Faugère, J.C., Mou, C.: Fast algorithm for change of ordering of zero-dimensional
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Abstract. In this paper, we suggest an implementation of elementary
version of Runge’s method for solving a family of diophantine equa-
tions of degree four. Moreover, the corresponding solving algorithm (in
its optimized version) is implemented in the computer algebra system
PARI/GP.

Keywords: Diophantine equations · Runge’s method ·
Computer algebra systems

1 Introduction

There is a wide class of diophantine equations in two variables

f(x, y) = 0 (1.1)

for which one can propose an effective solving method (that provides explicit
upper bounds for the size of integer solutions), the so-called Runge’s method.
A description of the standard version of Runge’s method can be found in the
well-known monographs [4] and [10] (for more detailed proof, see [3, Ch. 4]). The
original version (see old Runge’s paper [9] or a modern paper [12]) is more gen-
eral, below we give main theoretical result (so-called Runge’s theorem). Despite
the fact that Runge’s method has been known for more than 100 years, its imple-
mentation in computer algebra systems (CAS) is very limited. At the same time,
there is a small number of publications (see [6,8,11] and, especially, [1]) which
refer to algorithmic aspects of implementation of this method (at least for some
special cases) in CAS.

Assume that the polynomial f(x, y) ∈ Z[x, y] is irreducible over Q and let
d0 = max {m,n} where m = degx f(x, y) and n = degy f(x, y). If f(x, y) satisfies
Runge’s condition (see below), then the estimate

max {|x|, |y|} < (2d0)18d
7
0h12d6

0 (1.2)

holds for all integer solutions (x, y) of the Eq. (1.1) (see [12]). As usually, h
denotes the height of given polynomial. This general result shows that the trivial
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implementation (brute force in the mentioned bounds) makes no sense in terms
of the time required even in the case of d0 small enough.

Let

f(x, y) =
m∑

i=0

n∑

j=0

aijx
iyj (1.3)

be an irreducible polynomial in Z[x, y].

Runge’s theorem. Assume that the Eq. (1.1) has infinitely many solutions
(x, y) ∈ Z

2. Then each of the following conditions holds:
(a) ain = amj = 0 for all i > 0 and j > 0,
(b) aij = 0 for all pairs (i, j) satisfying ni + mj > mn,
(c) the leading part

fL(x, y) =
∑

ni+mj=mn

aijx
iyj

is a constant multiple of a power of an irreducible polynomial in Z[x, y],
(d) the algebraic function y = Ψ(x) defined by (1.1) has only one class of

conjugate Puiseux expansions.

We say that polynomial (1.3) satisfies Runge’s condition, if at least one of
the conditions (a), (b), (c) or (d) does not hold. Runge’s theorem can be refor-
mulated in the following equivalent form: if f(x, y) satisfies Runge’s condition,
then Eq. (1.1) has a finite set of integer solutions. In the literature, the following
simplified version of this theorem is widely known. Denote by fd(x, y) the leading
homogeneous part of polynomial (1.3), d = deg f(x, y).

Corollary. If fd(x, y) can be decomposed into a product of non-constant rel-
atively prime polynomials in Z[x, y], then Eq. (1.1) has a finite set of integer
solutions.

Below, the condition of Corollary will be called the standard Runge’s condi-
tion. Under standard Runge’s condition, in the case d = 3, a realistic (practically
working) solving algorithm was proposed in [6]. This algorithm is based on the
elementary version of Runge’s method for diophantine equations of degree d � 4
(see [5]). In the case d = 4, an algorithmic implementation of elementary version
of Runge’s method is obtained only in some particular cases (see [8] and more
recent paper [7]). It is necessary to refer to preprint [1] where it is proposed to
avoid “the use of Puiseux series and algebraic coefficients” which leads to “bad”
estimates (i.e., estimates of type (1.2)) for integer solutions.

The elementary version of Runge’s method for diophantine equations of small
degree is based on a convenient parametrization (by means of a special integer
parameter) which provides enumerating possible integer solutions. As a result,
the resolution of diophantine equation can be reduced to solving finitely many
equations in one variable (usually, of degree two) over the integers. This idea for
algorithmic implementation of Runge’s method was applied in [6,7].
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In our paper, we consider a family of diophantine Eq. (1.1) with the left-hand
side

f(x, y) = (a1x+ b1)y2 +(a2x
2 + b2x+ c2)y +Ax4 +Bx3 +Cx2 +Dx+E. (1.4)

By default we assume this polynomial to be irreducible in Z[x, y]. In general
case, both coefficients a1 and A are non-zero and Runge’s method can be applied
because the condition (a) of Runge’s theorem is violated.

In Sect. 2, we propose solving algorithm in the main case a1 = 1 and b1 = 0
(i.e., for Eq. (2.3), see below). This algorithm is inspired by Theorem 2.1. Tech-
nically, this algorithm differs from similar algorithms introduced in [6,7] since
it requires to resolve a number of equations in one variable of degree three.
This fact must be taken into account if we want to estimate correctly the com-
plexity of an algorithm. Therefore, we introduce an additional parameter (the
so-called weight coefficient) for correct estimation of computational complexity.
The weight coefficient depends on the CAS in which we plan to implement our
algorithm (PARI/GP, see [13]). Further, we optimize the proposed algorithm in
the same way as in [6]. The final result is represented in Theorem 2.2. At the
moment, we do not know any other implementations of algorithms for solving
diophantine equations of the specified type.

In Sect. 3, we give a few examples of estimating integer solutions to several
diophantine equations of small degree. In the case d = 4, the used method does
not allow the “reasonable” estimates (i.e., estimates which are close to realistic)
for integer solutions, therefore, we do not give any general theorems (we refer to
[6] where the reader can find relevant examples of such theorems).

In Sect. 4, we give some remarks on the obtained results. In particular, we
consider different ways to construct solving algorithm for Eq. (1.1) with f(x, y)
of the general form (1.4). Also, we discuss a further application of the elementary
version of Runge’s method for diophantine equations of degree four.

2 Solving Algorithm

We begin with the case a1 = 0 which is trivial in certain sense. In this case, we
can improve the well-known solving algorithm (see, e.g., [8]).

2.1 The Equation z2 = P (x)

In the case a1 = 0 and b1 �= 0, Eq. (1.1) with polynomial (1.4) can be reduced
to the equation

z2 = P (x) (2.1)

with the polynomial P (x) ∈ Z[x] which satisfies deg P (x) � 4. Runge’s method
works for Eq. (2.1) in the case when deg P (x) = 4 and the leading coefficient of
P (x) is a perfect square in Z (here, we can assume, without loss of generality,
that P (x) is monic). Otherwise, we need to refer to more complicated methods
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(see, for instance, [10]; of course, with the exception of the case deg P (x) � 2
which is well studied).

We now consider Eq. (2.1) with the polynomial

P (x) = x4 + ax3 + bx2 + cx + d.

A well-known algorithm for solving (2.1) with this P (x) was described in [8].
Below, we refer to this algorithm as the standard algorithm (or method). Here, we
propose the following alternative approach. First, we reduce Eq. (2.1) to a certain
cubic diophantine equation. Next, we resolve the corresponding cubic equation
using the technique from [6]. Sometimes, this approach is more effective than
the standard method (for details, see Sect. 4). We demonstrate this phenomenon
in the following example.

Example 2.1. Consider the equation

z2 = x4 + 8Hx3 − 12x2 + 4, (2.2)

where the coefficient H � 1 is supposed to be rather large. Note that Eq. (2.2)
was first mentioned in the short note [2]. This equation has a solution (x, z) ∈ Z

2

with
x = 4H3 − 2H

that is quite large with respect to H. At the same time, it was proved (see ibid)
that the upper bound for the integer solutions (x, z) of (2.1) is

|x| < 26h3

where h is the height of P (x). Thus, Eq. (2.2) with h = 8H has the biggest
solution (up to a constant factor) with respect to the upper bound mentioned
above. The direct computation shows that the standard solving algorithm (see
[8]) needs ≈ 64H3 operations of taking square root for the integers with the
maximal value O(H12), and it is unexpected that Eq. (2.2) can be solved faster.

Namely, for P (x) = x4 + 8Hx3 − 12x2 + 4, we determine

R(x) = x2 + 4Hx − 8H2 − 6 =
√

P (x) + O

(
1
x

)
, x → ∞.

Next, we introduce the new variable w = z − R(x) and rewrite (2.2) in the form
F (w, x) = 0 with the cubic polynomial

F (w, x) = (R(x) + w)2 − P (x) = 2wx2 + w2 + 8Hwx +
+ (−16H2 − 12)w + (−64H3 − 48H)x + 64H4 + 96H2 + 32.

Omitting technical details, we can formulate the final result as follows. The
solving algorithm from [6] which is optimized for the equation F (w, x) = 0 “by
hands” (i.e., analytically) requires only ≈ 96H2 operations of taking square root
for the integers with the maximal value O(H6). This may appear surprising,
especially because the height of F (w, x) is much larger than the height of P (x).
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It is easy to see that the right-hand side of (2.2) is a perfect square for

x ∈ {0,H, 4H3 − 2H}.

Therefore, Eq. (2.2) has at least 6 integer solutions (x, y). In Table 1, we repre-
sent a certain statistical information on the number of additional (non-trivial)
solutions for H taking values in the range 1 � H � 500.

Table 1. Distribution of the number of non-trivial solutions of Eq. (2.2) in the range
1 � H � 500.

#(x, z) #H

0 393

2 85

4 20

6 1

8 1

2.2 The Main Case

Suppose that a1 �= 0. In the case A = 0, we obtain a cubic diophantine equation
with the leading homogenous part x(Bx2 +a2xy +a1y

2) satisfying the standard
Runge’s condition. Thus, we can use the algorithmic implementation of elemen-
tary version of Runge’s method proposed in [6]. Therefore, we can suppose that
A �= 0.

For simplicity, here we consider in detail only the particular case a1 = 1,
b1 = 0 (the general case will be discussed briefly in Sect. 4). Then, the equation
can be written as

xy2 + (ax2 + bx + c)y + Ax4 + Bx3 + Cx2 + Dx + E = 0 (2.3)

(we use simplified notation for convenience). Also, we can suppose that c �= 0
(otherwise, the possible integer values of x must be in the set of divisors of E
which can be found). Assuming x �= 0, consider the number

l =
cy + E

x
.

Clearly, the value of l must be integer for all the solutions (x, y) ∈ Z
2 of Eq. (2.3)

with x �= 0. Dividing by x, we obtain

y2 + (ax + b)y + Ax3 + Bx2 + Cx + D + l = 0.

This equality implies the congruence

y2 + by + D + l ≡ 0 (mod x)
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in the ring Z of integers. Next, we have

c2(y2 + by + D) ≡ c2D + E2 − bcE (mod cy + E)

(here we mean the congruence in the polynomial ring Z[y]). Taking into account
that

cy + E ≡ 0 (mod x),

we arrive at another congruence

c2l + c2D + E2 − bcE ≡ 0 (mod x)

(both congruences are in the ring Z). Finally, we set

k =
c2l + c2D + E2 − bcE

x
=

c3y + (c2D + E2 − bcE)x + c2E

x2
.

If (x, y) is an arbitrary integer solution of Eq. (2.3) then the value of k must be
integer as well as the value of l. Thus, we obtain the following result.

Theorem 2.1. Let (x, y) ∈ Z
2 be a solution of Eq. (2.3) with x �= 0. Then, the

number

k =
c3y + (c2D + E2 − bcE)x + c2E

x2
(2.4)

is integer.

One can propose the following straightforward and shorter proof of Theorem
2.1 which can be obtained by computer algebra methods (i.e., using symbolic
computations in a computer algebra system). Using Eq. (2.3), we find the expres-
sion for the coefficient E:

E = −xy2 − (ax2 + bx + c)y − Ax4 − Bx3 − Cx2 − Dx.

Next, we plug it into the right-hand side of (2.4). After dividing the numerator
of the fraction in (2.4) by x2, we obtain the explicit (but rather large) expression
for k as a polynomial in the ring Z[x, y]. Hence, the value of k must be integer.
In order to illustrate this method, consider the equation

xy2 + (x2 + 1)y + x4 + 1 = 0

with the polynomial f(x, y) = xy2 + (x2 + 1)y + x4 + 1. We want to prove that
the number

k =
y + x + 1

x2

is integer for each solution (x, y) ∈ Z
2 with x �= 0. Indeed, using the method

described above we obtain

y + x + 1
x2

= xy4 + (2x2 + 2)y3 + (2x4 + x3 + 2x)y2 + (2x5 + 2x3 − 1)y + x7 − x2
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which can be viewed as an equality in the residue class ring of Z[x, y] modulo
f(x, y). Note that this representation can be simplified:

y + x + 1
x2

= y3 + (x − 1)y2 + (x3 − x − 1)y − x3 − x2.

Our further reasoning is based on the following idea. It is easy to check that
both explicit real solutions y = Ψi(x) (i = 1, 2) of Eq. (2.3) admit the estimate

Ψi(x) = O(|x|3/2), x → ∞.

Hence, we have

c3Ψi(x) + (c2D + E2 − bcE)x + c2E

x2
→ 0, x → ∞.

As a corollary, for any m � 1, there exists a number Q = Q(m) > 0 such that
∣∣∣∣
c3Ψi(x) + (c2D + E2 − bcE)x + c2E

x2

∣∣∣∣ < Q(m)

for any x satisfying |x| > m (of course, here we can use only those values of x
for which Ψi(x) are defined). Using this assertion, we can propose the following
algorithm for solving Eq. (2.3) over the integers.

Solving algorithm

1. Choose m � 1 and compute the number Q(m).
2. For all integers x satisfying |x| � m, solve Eq. (2.3) (as a quadratic equation

in y) over the integers.
3. For all integers k with |k| < Q(m), solve the system of equations

{
xy2 + (ax2 + bx + c)y + Ax4 + Bx3 + Cx2 + Dx + E = 0,
c3y + (c2D + E2 − bcE)x + c2E − kx2 = 0 (2.5)

over the integers.

Let us consider an example in order to illustrate the proposed method.

Example 2.2. We show in detail how the equation

x4 − x2y − xy2 − y2 + 1 = 0

can be solved over the integers (the resolution of this equation is outlined in [5]).
Substituting x − 1 for x, we get the equation

xy2 + (x2 − 2x + 1)y − x4 + 4x3 − 6x2 + 4x − 2 = 0 (2.6)

of the form (2.3). By Theorem 2.1, the number

k =
y + 4x − 2

x2
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must be integer for any solution (x, y) ∈ Z
2 with x �= 0. Eliminating y, we obtain

an explicit expression for k, namely:

k =
7x2 − 2x − 1 ± √

4x5 − 15x4 + 20x3 − 10x2 + 4x + 1
2x3

.

Thus, if x satisfies |x| > m then we certainly get |k| < Q(m) with

Q(m) =
7m2 + 2m + 1 +

√
4m5 + 15m4 + 20m3 + 10m2 + 4m + 1

2m3
.

Further, we can proceed in various ways.
(1) Firstly, we can determine m0 so that the number Q(m0) is close to 1

(which is due to the fact that Q(m) → 0 as m → ∞). This is reasonable since
when m = m0 we need to solve (mainly) only quadratic Eq. (2.3) in y over the
integers. For example, taking m0 = 8, we obtain Q(m0) < 1. Thus, it is necessary
to solve: (a) for x ∈ {0,±1, . . . ,±8}, Eq. (2.6) and, (b) for k = 0, system (2.5),
namely {

xy2 + (x2 − 2x + 1)y − x4 + 4x3 − 6x2 + 4x − 2 = 0,
y + 4x − 2 = 0.

It is easy to see that this system can be reduced to the (again) quadratic equation

x2 − 16x + 12 = 0.

Finally, we obtain that all the solutions of Eq. (2.6) are

(x, y) ∈ {(0, 2), (1,−1), (1, 1)}.

(2) Secondly, we can find m∗ such that the total number of equations needed
to resolve happens to be minimal (possibly, close to being minimal) when m =
m∗. For instance, we can take m∗ = 4 which provides Q(m∗) < 2. This is
somewhat better than using the previous tactics.

The first issue of the proposed method is the following: we need to determine
the number Q(m) as an explicit function of the so-called control parameter m.
This can be overcome by Lemma 2.1 (see below). The second issue can be for-
mulated as follows: how to choose the optimal value of m? More precisely, we
want to minimize the cost-function of the form

cost (m) = 2m + 2qQ(m), (2.7)

where the weight coefficient q > 1 can be determined by experiments in a given
CAS (in our case, PARI/GP). Here, for q, we take the ratio of the complexity of
resolution of quadratic equations and the complexity of resolution of algebraic
system of the form (2.5) (in both cases over the integers).

Now, consider system (2.5) in detail. Eliminating y, we obtain just a cubic
(with the exception of the case k = 0) equation with respect to x, namely

k2x3 + K1x
2 + K2x + K3 = 0. (2.8)
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Here, the coefficients Kj given as follows:

K1 = (−2c2D − 2E2 + 2bcE + ac3)k + c6A,
K2 = c2(−2E + bc)k + c6B + c4D2 + 2c2DE2 − 2bc3DE − ac5D +

+E4 − 2bcE3 − ac3E2 + b2c2E2 + abc4E,
K3 = c4k + c6C + 2c4DE − bc5D + 2c2E3 − 3bc3E2 + c4(b2 − ac)E.

(2.9)

Therefore, we need to determine how much harder is the problem of solving
cubic equations over the integers compared to that for quadratic equations. In
PARI/GP, we intend to solve both problems via the function nfroots which
provides, in particular, finding all rational roots of a univariate polynomial with
integer coefficients. Preliminary computer experiments with the quadratic and
cubic polynomials of moderate height (up to 1020) have shown that, for this
purpose, one can take q = 2. In Sect. 4, we discuss the method of choosing q in
detail.

Note that, although we can use the value m = m0 with Q(m0) close to 1 (the
motivation for this can be found in Example 2.2) in the algorithm, this can be
disadvantageous due to the fact that m0 may happen to be too large.

Example 2.3. Consider the equation

xy2 + (x2 + 1)y + x4 + H = 0 (2.10)

where the coefficient H is supposed to be rather large. The direct computation
of Q(m) based on Lemma 2.1 (see below) shows that the inequality

Q(m) >
|H|2
m

holds. Hence, if Q(m0) = 1 then m0 > |H|2. On the other hand, taking m∗ =
|H|, we get Q(m∗) ∼ |H| as H → ∞. Obviously, for Eq. (2.10), the proposed
algorithm with m = m∗ works faster than that with m = m0.

For every H, Eq. (2.10) has the trivial solution (x, y) = (0,−H). A statistical
information on the number of non-trivial solutions in the range 1 � H � 104 is
represented in Table 2.

For convenience purposes, let us introduce the notation:

Q1 = 2c2D + 2E2 − 2bcE − ac3,
Q2 = 2c2E − bc3,
Q3 = −c4,
Q4 = −4A,
Q5 = −4B + a2,

Q6 = −4C + 2ab,
Q7 = −4D + 2ac + b2,
Q8 = −4E + 2bc,
Q9 = c2.

(2.11)

The following technical result is necessary for an algorithmic implementation of
the described method.
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Table 2. Distribution of the number of non-trivial solutions of the Eq. (2.10) in the
range 1 � H � 104.

#(x, y) #H

0 9200

1 639

2 133

3 26

4 1

5 1

Lemma 2.1. For any m � 1, the number Q(m) can be defined as follows:

Q(m) =
1
2

3∑

i=1

|Qi|
mi

+
|c|3
2

(
6∑

i=1

|Qi+3|
mi

)1/2

, (2.12)

where the coefficients Q1, . . . , Q9 are given by (2.11).

Proof. The formulas (2.9) for the coefficients Kj show that Eq. (2.8) is quadratic
in k. Dividing by the leading coefficient x3 and resolving with respect to k, we
obtain

k =
1
2

3∑

i=1

Qi

xi
± c3

2

(
6∑

i=1

Qi+3

xi

)1/2

.

Obviously, the condition |x| > m implies the required estimate |k| < Q(m) with
Q(m) given by (2.12).

Unfortunately, the analytic expression for Q(m) provided by Lemma 2.1 is too
complicated to minimize the cost-function (2.7) by means of symbolic methods.
Therefore, we need to focus on the reasonable estimates for cost (m∗) where m∗

is a such value of m that it delivers the global minimum of cost (m). Further, the
proposed solving algorithm with m = m∗ will be called the optimized algorithm.
Denote by H the height of the left hand side of Eq. (2.3).

Theorem 2.2. For the optimized algorithm, the estimate

cost (m∗) � C1|c|4/3H (2.13)

holds. Here C1 > 0 is a constant which depends only on q.

Proof. Let m1 = 4|c|4/3H. Since

cost (m∗) � cost (m1) = 2m1 + 2qQ(m1) = 8|c|4/3H + 2qQ(m1),

it is sufficient to estimate the number Q(m1). We can perform this in a straight-
forward manner (i.e., by estimating each of the fractions |Qi|/mi, |Qi+3|/mi at
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m = m1 in the right-hand side of (2.12); also, we use the obvious inequality√
α1 + . . . + αn � √

α1 + . . . +
√

αn). The extremal case is the following:

|c|3
√

|Q4|
m1

� |c|3
√

4H

4|c|4/3H = |c|7/3 = |c|4/3 · |c| � |c|4/3H.

As a result, we arrive at the inequality Q(m1) � 2|c|4/3H. Thus,

cost (m1) � (8 + 4q)|c|4/3H,

and we can set C1 = 8 + 4q.

The estimate (2.13) of complexity of the optimized algorithm in some cases
occurs to be accurate (of course, up to a constant factor). For example, this is
true for Eq. (2.10) because m∗ 
 m1 
 H and cost (m∗) 
 H as H → ∞. On
the other hand, it happens that sometimes the general estimate (2.13) can be
improved.

Example 2.4. For the equation

xy2 + (Hx2 + 1)y + x4 + 1 = 0 (2.14)

we have m∗ 
 |H|1/2 and, consequently, cost (m∗) 
 |H|1/2 as H → ∞. Using
the optimized algorithm, we can check that for 1 � H � 105, Eq. (2.14) has no
solutions (x, y) �= (0,−1), with the exception of H = 2 and H = 8 (see Example
3.5 below).

In general, the minimization of the cost-function (2.7) can be performed by
a numerical method (for instance, we can use the well-known golden-section
search). The starting (and, probably, rough) approximation m∗ ≈ m1 proposed
in the proof of Theorem 2.2 can be used as follows. Let us introduce m2 = tm1

where a constant factor t > 1 will be determined later. Earlier, we showed that
the inequality Q(m1) � m1/2 holds. Hence, we have

cost (m2) = 2tm1 + 2qQ(m2) > 2tm1 = 2m1 + 2(t − 1)m1 �
� 2m1 + 4(t − 1)Q(m1) � 2m1 + 2qQ(m1) = cost (m1)

whenever 4(t−1) � 2q. Therefore, setting t = q/2+1, we localize m∗ in the inter-
val [1,m2]. It remains to apply a numerical search algorithm in the given interval.
Heuristically, this additional procedure of optimization has a small (negligible)
contribution to the total computational complexity.

3 Estimates for Integer Solutions

In this section, we give a few examples of explicit bounds for integer solutions
of diophantine equations of small degree satisfying Runge’s condition. Usually,
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these bounds are supposed to be used in order to find the solutions them-
selves, but the method (based on the elementary version of Runge’s method)
provides some estimates for solutions as an additional result (for more informa-
tion, see [6]).

We start with three examples of cubic diophantine equations in order to
demonstrate that the result entirely depends on the specifics of an equation.

Let H be a positive integer, C2, C3, etc. denote some positive absolute
constants.

Example 3.1. For all the solutions (x, y) of the equation

x(y2 − x2) = Hy + 1 (3.1)

in positive integers, we have the estimate

y � (H + 3)/2

(the elementary proof can be obtained via the technique proposed in [6]). The
upper bound is achieved for any odd H since the pair (x, y) = ((H + 1)/2, (H +
3)/3) satisfies (3.1).

Example 3.2. For all the solutions (x, y) of the equation

x(y2 − x2) = Hy (3.2)

in positive integers, we can propose the estimate

y � (H + 1)3/4

(the proof is also elementary, yet it requires some effort). The upper bound is
achieved for infinitely many H since the pair (x, y) = ((H + 1)1/4, (H + 1)3/4)
satisfies (3.2). This improves the expected estimate y < C2H (see Exercise 4.15
[3]).

Example 3.3. For all the solutions (x, y) of the equation

x(y2 − 2x2) = Hy

in integers, the estimate
|x| < C3H

3/2

holds (see [6] for further details). There are no proved results on the accuracy of
this estimate (apparently, it is achieved for infinitely many H).

For diophantine equations of degree four, the problem of estimating integer
solutions is much harder. In the case of (2.3), we can hope to obtain an estimate
for integer solutions (x, y) by rewriting the auxiliary Eq. (2.8) as

1 +
K1

k2x
+

K2

k2x2
+

K3

k2x3
= 0

and showing that |x| cannot be too large. However, this method leads to quite
rough estimates which are overvalued (not achieved in reality). In order to illus-
trate this fact, we consider the following three examples.



An Algorithm for Solving a Quartic Diophantine Equation 389

Example 3.4. For integer solutions (x, y) of Eq. (2.10), we have the estimate

|x| < C4H
2

which can be obtained by the above-mentioned technique. Using the optimized
algorithm, we can see that this estimate is unrealistic for 1 � H � 104. On the
other hand, for H = t3 + t2, the pair (x, y) = (−t2 − t,−t3 − t2) satisfies (2.10)
and for this solution, we have |x| ∼ H2/3 as H → ∞. The hypothetical estimate

|x| < C5H
2/3

for non-trivial integer solutions (x, y) �= (0,−H) is confirmed by computer exper-
iments. This estimate seems more realistic, but it is not clear how to prove it.

Example 3.5. Similarly, for integer solutions (x, y) of Eq. (2.14), we can give the
estimate

|x| < C5H.

At the same time, computer experiments (see Example 2.4) suggest the following
conjecture: Eq. (2.14) has integer solutions (x, y) �= (0,−1) if and only if H ∈
{2, 8}.

This conjecture is actually true, and we now outline the proof. Rewrite
Eq. (2.14) in the form

H = −xy2 + y + x4 + 1
x2y

.

From this, one can conclude that the number

l =
y + x4 + 1

xy

must be in Z. The last equality can be rewritten as

y =
x4 + 1
lx − 1

.

Since y ∈ Z, the number

d =
x2 + l2

lx − 1
(3.3)

is also in Z. Next, eliminating l, we get the equation

y2 − (dx2 − 2)y + x4 + 1 = 0

which implies

y =
dx2 − 2 ± xz

2
, z =

√
(d2 − 4)x2 − 4d � 0.

Since x �= 0, it follows that z ∈ Z. Finally, eliminating y, we obtain

2H = −d(x + 1) ∓ z +
2 ± z

x
.
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Since H ∈ Z, we have 2 ± z ≡ 0 (mod x) that yields

4d + 4 ≡ 0 (mod x). (3.4)

It remains to prove that congruence (3.4) and the condition z ∈ Z can be simul-
taneously held for finitely many pairs (x, d) at most. Thus, there are only finitely
many possible values of H. More precisely, in the case of an arbitrary integer H,
we conclude that

H ∈ {−14,−9,−5,−4,−2, 0, 2, 8}.

Using Pell’s equations, we can somewhat simplify the proof. Namely, we can use
the following well-known result: if a triple (x, l, d) of integers satisfies (3.3) then
d = 5 or d = −t where t is a perfect square.

Example 3.6. For integer solutions (x, y) of the equation

xy2 + (Hx + 1)y + x4 + 1 = 0, (3.5)

we have the same rough estimate as in Example 3.5. However, Eq. (3.5) unlike
Eq. (2.14) is solvable for infinitely many H. For instance, the triple

x = ±√
t(t2 − 1), y = −t4 + t2 − 1, H = t4 − t2 + 1 ± √

t(t3 − 2t)

satisfies (3.5) and |x| ∼ H5/8 as H → ∞.
Note that Eq. (3.5) can be studied in the same way as Eq. (2.14). The final

description of the set of all integer solutions (x, y,H) use the Chebyshev polyno-
mials of the second kind.

The last two examples may look artificial, but they vividly illustrate that, in
general, obtaining exact bounds for integer solutions can be very difficult.

4 Concluding Remarks

In conclusion, we comment on some obtained results and discuss further appli-
cations of the elementary version of Runge’s method.

In view of Example 2.1, it is worth discussing a strategy for solving Eq. (2.1).
The following seems to be reasonable. If the height of P (x) is determined by the
coefficient of x3 (i.e., the other coefficients are small compared to it) then it is
recommended to reduce the given equation to the corresponding cubic equation
(similarly to the case of Eq. (2.2)). Otherwise, we recommend to use the standard
method since this trick does not give a significant advantage (at least, the case
of one-parametric equations of the type (2.2) confirms this).

Now, let us get back to the general case. Given polynomial (1.4), we can
use the linear substitution a1x + b1 → x that reduces the problem to solving
Eq. (2.3). However, this may lead to a significant increase in the height of the
polynomial f(x, y) as well as in the case of cubic diophantine equations (see [6]).

It seems that a more successful way is to generalize the already available
solving algorithm for Eq. (2.3) (we mean that such generalization is based on
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the direct analogue of Theorem 2.1). The expected estimate for complexity of
the generalized algorithm (which is similar to estimate (2.13), see Theorem 2.2)
will be worse than that in the case of a1 = 1, b1 = 0.

For optimization of solving algorithm we need to choose the weight coefficient
q correctly. Now, we describe how to do this in the case when H (the height of
the left-hand side of (2.3)) is moderate enough (up to 105) and |c| � H. Let H̃
be the height of the left-hand side of (2.8). Due to (2.9) and Theorem 2.2, we
can assume H̃ ≈ H4 to be moderate (up to 1020). Then,

q =
time (quadratic,H,M)

time (cubic, H̃,M)
,

where time (·) is the running time for solving M = 106 randomly chosen equa-
tions of the given type. For H = 105 (and H̃ = 1020, respectively), using the
function nfroots for finding rational roots in PARI/GP CAS, we obtain q ≈ 2.
However, in the case c 
 H, we have H̃  H, so that we recommend to increase
q up to 6. In this case, the running time of the optimized algorithm will be
reasonable for H up to at least 102.

Clearly, the results of computer experiments represented in Tables 1 and 2
should be developed further. At the moment, the running time for obtaining
Table 2 is t1 ≈ 13.5 min and the similar table for the range 1 � H � 105 requires
t2 ≈ 100t1 min (by using the processor AMD Ryzen 7 2700x 3.7 GHs and 16gb
RAM). Obviously, the running time can be decreased by implementing a parallel
version of the proposed algorithm. Namely, the procedure of finding integer roots
of a collection of univariate polynomials can be distributed between CPU threads
that allows to use computer resources more efficiently, since PARI/GP CAS
supports parallel programming.

It seems that the elementary version of Runge’s method for d = 4 proposed
in [5] can be implemented in the same way—at least for the polynomial f(x, y)
with the leading homogenous part of the form

f4(x, y) = (a1x + b1y)(a2x
3 + b2x

2y + c2xy2 + d2y
3).

We expect considerably more technical aspects in such an implementation. In
particular, the corresponding auxiliary equation (as an analog of (2.8)) will be
more complicated, although we hope that this is not crucial.
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Abstract. Univariate polynomial root-finding has been studied for four
millennia and still remains the subject of intensive research. Hundreds
if not thousands of efficient algorithms for this task have been proposed
and analyzed. Two nearly optimal solution algorithms have been devised
in 1995 and 2016, based on recursive factorization of a polynomial and
subdivision iterations, respectively, but both of them are superseded in
practice by Ehrlich’s functional iterations. By combining factorization
techniques with Ehrlich’s and subdivision iterations we devise a vari-
ety of new root-finders. They match or supersede the known algorithms
in terms of their estimated complexity for root-finding on the complex
plane, in a disc, and in a line segment and promise to be practically
competitive.

Keywords: Polynomial root-finding · Deflation ·
Polynomial factorization · Functional iterations · Subdivision ·
Real root-finding

2000 Math. Subject Classification: 65H05· 26C10· 30C15

1 Introduction

1. The Problem and Three Known Efficient Algorithms. Univariate poly-
nomial root-finding has been the central problem of mathematics since Sumerian
times (see [1,2,33,34]) and still remains the subject of intensive research due
to applications to signal processing, control, financial mathematics, geometric
modeling, and computer algebra (see the books [28,30], a survey [19], the recent
papers [11,12,24,40,45,48], and the bibliography therein).

Hundreds if not thousands of efficient polynomial root-finders have been
proposed. The algorithm of [32] and [37], extending the previous progress in
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[15,31,50], first computes numerical factorization of a polynomial into the prod-
uct of its linear factors and then approximates the roots; it solves both tasks
in nearly optimal Boolean time – almost as fast as one can access the input
coefficients with the precision required for these tasks.1

Since 2000 the root-finder of the user’s choice has been the package MPSolve,2

implementing Ehrlich’s iterations of [18], also known from their rediscovery
by Aberth in 1973. In 2016, a distinct nearly optimal polynomial root-finder
appeared in [11,12], based on subdivision iterations. That algorithm promises
to compete with MPSolve for root-finding in a disc on the complex plain [24],
but less likely for the approximation of all roots of a polynomial unless our
innovations raise practical efficiency of subdivision to a much higher level.

2. New Hybrid Algorithms. We propose new hybrid root-finders seeking
synergistic combination of the known techniques.

We first recall that [32] and [37] factorize a polynomial by splitting it into
the product of two factors of comparable degrees and then recursively splitting
the factors in a similar way as long as their degree exceeds 1. This advanced
recursive construction turned out to be hard to implement, but its basic deflation
algorithm developed by Schönhage in [50], traced back to Delves and Lyness [15],
and hereafter referred to as DLS algorithm or DLS deflation can be handled
quite readily. Presently we devise new hybrid root-finders by incorporating the
DLS algorithm into Ehrlich’s and subdivision iterations. In both cases deflation
enables us to apply root-finding to smaller degree factors, possibly having fewer
root clusters rather than to the input polynomial.

We also enhance the efficiency of subdivision iterations by incorporating a
very fast and robust sub-algorithm of DLS deflation that computes the number
of roots in a disc as the sum of the 0th powers of all roots in that disc. This is
dramatic improvement of root counting in the papers [11,12], which listed root
counting algorithm as their main novelty compared to their predecessors.

We also propose an additional simplification of real root-finding based on
fast estimation of the distances of real roots from the origin.

Our hybrid root-finders are nearly optimal and can become the user’s choice.
Their implementation, testing and refinement are major challenges.

3. Some Extensions. Our hybrid algorithms can be readily extended to var-
ious functional iterations such as Newton’s and Weierstrass’s that approximate
all roots of a polynomial, but we also extend our approach to nearly optimal
root-finding in a disc and a line interval. In both cases non-costly removal of
1 Required precision and Boolean time are smaller by a factor of d, the degree of

the input polynomial, at the stage of numerical polynomial factorization, which has
various important applications to modern computations, besides root-finding, e.g., to
time series analysis, Wiener filtering, noise variance estimation, co-variance matrix
computation, and the study of multi-channel systems (see Wilson [59], Box and
Jenkins [7], Barnett [3], Demeure and Mullis [16] and [17], Van Dooren [56]).

2 Some competition came in 2001 from the package EigenSolve of [20], but the latest
version of MPSolve of [10] has combined the benefits of both packages.
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the external roots by means of deflation promises substantial advantage over
the customary solution of these tasks by means of application of MPSolve and
subdivision to the original polynomial of higher degree.

We hope that our work will motivate further efforts towards synergistic com-
bination of some efficient techniques well- and less- known for polynomial root-
finding (see, e.g., the little explored methods of [40] and [48]).

Devising practical and nearly optimal factorization algorithms is still a
research challenge because for that task both Ehrlich’s and subdivision itera-
tions are slower by at least a factor of d than [32] and [37].

4. Variations of Deflation. With Ehrlich’s iterations we can combine the
DLS deflation, but also two simpler algorithms (see Sect. 4.3). One of them only
involves shift and scaling of the variable and forward and inverse FFTs and
allows us to represent an input polynomial with a black box for its evaluation
rather than with coefficients. In [39] and [25] we alternatively combine Ehrlich’s
iterations with implicit deflation, which ensures preserving sparseness of an input
and avoiding coefficient growth.

With subdivision iterations we combine the DLS deflation, which is highly
efficient and relatively simple but has been too little (if at all) used by researchers
since [37]. It has been hidden in the long paper [50], within a realm of intricate
and advanced techniques for the theoretical estimation of asymptotic Boolean
complexity where extremely accurate polynomial factorization is required, but
some of these techniques can help enhance performance of the most popular
root-finders.

Now suppose that the root set of a factor is a strongly isolated cluster of w
roots of p having a small diameter. Such a cluster may appear in subdivision
process and then can be readily detected. In this special case we can perform
deflation at a low cost by means of shifting the origin into the cluster and then
reducing the resulting polynomial q(x) modulo xw+1 (see Sect. 5.4).

5. Organization of the Paper. We state four variations of the main root-
finding problem in Sect. 2 and deduce lower bounds on their Boolean complexity
in Sect. 3. We cover computation of a factor with root set in a fixed disc in
Sect. 5 and our hybrids of deflation with functional iterations in Sect. 4 and with
subdivision in Sect. 6. In Sect. 7 we devise a new nearly optimal polynomial
root-finder on a line segment. We refer the reader to [42, Appendix] for concise
exposition of factorization algorithms of [50] by Schönhage and [26] by Kirrinnis
(67 pages) and for some other auxiliary and complementary algorithms and
techniques for polynomial root-finding.

2 Four Fundamental Computational Problems

Problem 1. Univariate Polynomial Root-finding. Given a positive b and the
coefficients p0, p1, . . . , pd of a univariate polynomial p(x),

p(x) =
d∑

i=0

pix
i = pd

d∏

j=1

(x − xj), pd �= 0. (1)
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approximate all d roots3 x1, . . . , xd within the error bound 1/2b provided that
maxd

j=0 |xj | ≤ 1. We can ensure the latter customary assumption at a dominated
computational cost by first approximating the root radius r1 = maxd

j=1 |xj | and
then scaling the variable x (cf., e.g., [33]).

Before proceeding any further we recall some Basic Definitions.

– Hereafter we freely denote polynomials p(x), t(x) =
∑

i tix
i, u(x) =

∑
i uix

i

etc. by p, t, u etc. unless this can cause confusion.
– We use the norm |u| =

∑
i |ui| for u =

∑
i uix

i.
– du := deg(u) denotes the degree of a polynomial u; in particular dp = d.
– ε-cluster of roots of p is a root set lying in a disc of radius ε; in particular a

0-cluster of m roots of p is its root of multiplicity m.

Problem 2. Approximate Factorization of a Polynomial. Given a positive b′

and the coefficients p0, p1, . . . , pd of a polynomial p = p(x) of (1), compute 2d
complex numbers uj , vj for j = 1, . . . , d such that

|p −
d∏

j=1

(ujx − vj)| ≤ 2−b′ |p|. (2)

Problem 3. Polynomial root-finding in a disc. This is Problem 1 restricted to
root-finding in a disc on the complex plain for a polynomial p that has no roots
lying outside the disc but close to it.

Problem 4. Polynomial root-finding in a line segment. This is Problem 1
restricted to root-finding in a line segment for a polynomial p that has no roots
lying outside the segment but close to it.

The above concept “close” is quantified in Definition 1 in the case of Problem
3 and is extended to Problem 4 via its reduction to Problem 3 in Sect. 1.

Remark 1. It is not easy to optimize working precision for the solution of Prob-
lems 1–4 a priori, but we nearly optimize it by action, that is, by applying the
solution algorithms with recursively doubled or halved precision and monitoring
the results (see Sect. 4.2 and recall similar policies in [5,10,12,45]).

Remark 2. It is customary to reduce Problems 3 and 4 to root-finding in the
unit disc

D(0, 1) := {x : |x| < 1}
and unit segment

S[−1, 1] := {x : − 1 ≤ x ≤ 1}
by means of shifting and scaling the variable. Then the working precision and
Boolean cost grow but within the nearly optimal bounds.

3 We count m times a root of multiplicity m.
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3 Boolean Complexity: Lower Estimates and Nearly
Optimal Upper Bounds

Proposition 1. The solution of Problem 2 involves at least db′ bits of memory
and at least as many Boolean (bit-wise) operations.

Proof. The solution of Problem 2 is given by the 2d coefficients uj and vj of the
d linear factors ujx − vj of p for j = 1, . . . , d. Let uj = 1 and 1/2 < |vj | < 1 for
all j. Then each vj must be represented with b′ bits and hence all vj must be
represented with db′ bits in order to satisfy (2). A Boolean operation outputs a
single bit, and so we need at least db′ operations in order to output db′ bits.

Next we bound from below the Boolean complexity of Problems 1, 3 and 4.

Lemma 1. Let p(x) = (x − x1)mf(x) for a polynomial f(x) and a positive
integer m. Fix a positive b. Then the polynomial pj(x) = p(x) + 2(j−m)b(x −
x1)jf(x) has m − j roots x1 + ωi

m−j2
−b for i = 0, . . . ,m − j − 1 and ωm−j =

exp(2πi/(m−j)) denoting a primitive (m−j)th root of unity, such that ωm−j
m−j =

1, ωi
m−j �= 1 for 0 < i < m − j.

Proof. Observe that pj(x) = ((x − x1)m−j + 2(j−m)b)(x − x1)jf(x) and consider
the roots of the factor (x − x1)m−j + 2(j−m)b.

Corollary 1. Under the assumption of Lemma 1 write f := �log2 |f |� and g :=∑m−1
j=1 �log2 |gj |�. Then one must process at least

Bp =
(
d − m + 1 +

m − 1
2

)
mb − f − g (3)

bits of the coefficients of p and must perform at least Bp/2 Boolean operations
in order to approximate the m-multiple root x1 of p within 1/2b.

Proof. By virtue of Lemma 1 the perturbation of the coefficients p0,. . . ,pd−m of
p(x) by |f |/2mb turns the (m − j)-multiple root x1 of the factor (x − x1)m−j

of p(x) into m − j simple roots pj(x), all lying at the distance 1/2b from x1.
Therefore, one must access at least (d − m + 1)mb − f bits of the coefficients
p0, . . . , pd−m of p in order to approximate the root x1 within 1/2b.

Now represent the same polynomial p(x) as (x−x1)m−jgj(x) for gj(x) = (x−
x1)jf(x) and j = 1, . . . , m− 1. Apply Lemma 1 for m replaced by m− j and for
f(x) replaced by gj(x) and deduce that a perturbation of the coefficient pd−m+j

of p by |gj |/2(m−j)b turns the j-multiple root x1 of gj(x) = (x − x1)jf(x) into j
simple roots, all lying at the distance 1/2b from x1. Therefore, one must access at
least

∑m−1
j=1 ((m−j)b−g = m−1

2 mb−g bits of the coefficients pd−m+1, . . . , pd−1 in
order to approximate the root x1 within 1/2b Sum the bounds (d−m+1)mb−f
and m−1

2 mb − g and arrive at the bound (3) on the overall number Bp bits; at
least Bp/2 Boolean operations must be used in order to access these bits – at
least one operation per each pair of bits.
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Let us specify bound (3) in two cases. (i) If m = d, f(x) = 1, and |x1| ≤ 0.5/d,
then f = 0, |gj | ≤ 2 for all j, g ≤ d − 1, and

Bp ≥ (d + 1)db/2 − d + 1. (4)

(ii) If x1 is a simple root, well-isolated from the other roots of p,then substitute
m = 1 and g = 0 into Eq. (3), thus turning it into Bp = db − f for f(x) =
p(x)/(x − x1) such that |f | ≤ d|p|. This implies that

Bp ≥ (b − |p|)d.

Remark 3. Corollary 1 defines lower bounds on the Boolean complexity of Prob-
lems 1, 3, and 4 as long as an input polynomial p has an m-multiple root in the
complex plain, a disc, and a segment, respectively. One can extend all these
bounds to the case where a polynomial has an ε-cluster of m roots for a suffi-
ciently small positive ε rather than an m-multiple root.

The algorithm of [32] and [37] solves Problem 2 by using Õ(db′) bits and
Boolean operations.4 This Boolean cost bound is within a poly-logarithmic factor
from the information-theoretic lower bound db′ of Proposition 1. Based on [52,
Theorem 2.7] one can extend this estimate to the solution of Problems 1, 3 and
4 at a Boolean cost in Õ(d2b), which is also nearly optimal by virtue of (4), and
to nearly optimal solution of the problem of polynomial root isolation (see [42,
Corollaries D.1 and D.2]).

4 Ehrlich’s Iterations and Deflation

4.1 Ehrlich’s Iterations and Their Super-Linear Convergence

The papers [5] and [10] present two distinct versions of MPSolve based on two
distinct implementations of Ehrlich’s functional iterations.

[5] applies original Ehrlich’s iterations by updating current approximations
zi to all or selected roots xi as follows:

zi ← zi − Ep,i(zi), i = 1, . . . , d, (5)

Ep,i(x) = 0 if p(x) = 0;
1

Ep,i(x)
=

1
Np(x)

−
d∑

j=1,j �=i

1
x − zj

otherwise, (6)

Np(x) = p(x)/p′(x). (7)

4 Here and hereafter we write Õ(s) for O(s) defined up to a poly-logarithmic factor
in s.
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[10] modifies these iterations by replacing polynomial equation p(x) = 0 by
an equivalent rational secular equation5

S(x) :=
d∑

j=1

vj

x − zj
− 1 = 0 (8)

where zj ≈ xj and vj = p(zj)l(x)
x−zj

for l(x) =
∏d

j=1(x − zj) and j = 1, . . . , d.
Cubic convergence of these iterations simultaneously to all roots of a poly-

nomial has been proved locally, near the roots, but under some standard choices
of initial approximations very fast global convergence to all roots, right from
the start, has been consistently observed in all decades–long applications of the
iterations worldwide.

4.2 Precision Management

The condition number of a root defines computational precision sufficient in order
to ensure approximation within a fixed relative output error bound (see the rel-
evant estimates in [5] and [10]). The value of the condition is not known a priori,
however, and MPSolve adopts the following policy: at first apply Ehrlich’s iter-
ations with a fixed low precision (e.g., the IEEE double precision of 53 bits) and
then recursively double it until all roots are approximated within a selected error
tolerance. More precisely, MPSolve updates approximations only until they are
close enough in order to satisfy a fixed stopping criterion, verified at a low com-
putational cost. We call such roots tame and the remaining roots wild. MPSolve
stops applying Ehrlich’s iterations to a root when it is tamed but keep applying
them to the wilde roots – with recursive doubling of the working precision. When
a root is tamed this precision is optimal up to at most a factor of two. Recall
from [50] and [52, Section 2.7] that working precision does not need to exceed the
output precision b by more than a factor of d, and so at most O(log(db)) steps
of doubling precision are sufficient. This natural policy has been proposed and
elaborated upon in [5] and [10], greatly improving the efficiency of the previous
implementations of functional iterations for polynomial root-finding.

4.3 Ehrlich’s Iterations with Deflation

Suppose that MPsolve seeks w wild roots x1, . . . , xw of p and perform ITERp

Ehrlich’s iterations with a working precision b̄.This involves O(dw ITERp) arith-
metic operations performed at the Boolean cost O(dwμ(b̄) ITERp).

We propose a modification where we first (a) deflate p by computing its
factor f(x) =

∏w
j=1(x − xj) and then (b) apply to this factor ITERf Ehrlich’s

iterations, at both stages (a) and (b) using the same working precision b̄.

5 The paper [10] elaborates upon expression of Ehrlich’s iterations via secular equation,
shows significant numerical benefits of root-finding by using this expression, and
traces the previous study of this approach back to [6].
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At stage (b) the Boolean cost bound O(dwμ(b̄)) decreases by a factor of d/w
at the price of adding the cost of deflation at stage (a).6

Each of the three algorithms of the next subsection performs deflation at
a Boolean cost in O(dwμ(b̄)), favorably compared to the above cost bound
O(dwμ(b̄) ITERp). This comparison suggests that using deflation is competi-
tive in terms of the Boolean cost and becomes more favorable as ITERp grows.

Subsequent Ehrlich’s iterations may in turn tame part of the roots of the
polynomial f(x), and then we can deflate f(x). We can do this recursively,
computing a sequence of factors fi(x) for i = 1, 2, . . . , t where f1 = f and
fi+1 is a smaller degree factor of fi for all i.7 The algorithm would stay nearly
optimal overall if we perform deflation poly-logarithmic number of times t, e.g.,
if we delay deflation of the current factor until deg(fi+1) ≤ β deg(fi) for a fixed
constant8 β < 1 and for all i. In the following example computational cost
becomes too high if we perform deflation d − 1 times but stays nearly optimal if
we properly delay deflation.

Example 1. Let p =
∏d

j=1(x − 1 + 1/2j) for a large integer d. In this case the
roots 1 − 1/2j are stronger isolated and better conditioned for smaller j, and so
Ehrlich’s iterations may peel out one such root of p at a time. Then we would
d − 1 times approximate polynomials of the form pi := fi(x)

∏i
j=1(x − 1 + 1/2j)

for some polynomials fi(x), i = 1, . . . , d − 1. For each i the polynomial fi(x) is
a factor of p of degree d − i sharing a cluster of at least d − i roots with p, and
so approximation of such a factor involves at least b′

id/2 bits and at least b′
id/4

Boolean operations. Now consider just the polynomials fi for i = 1, . . . , 	d/2
.
Each of them shares a cluster of at least d/2 roots with the polynomial p, and
so we must choose b′

i ≥ bd/2 (see Corollary 1). Hence approximation of all these
factors requires at least order of bd3 bits and Boolean operations, but we can
decrease this large bound to nearly optimal level if we skip deflation at the ith
step unless deg(fi(x))/deg(fi+1(x)) ≥ γ for a fixed γ > 1, e.g., γ = 2.

4.4 Deflation Algorithms for Ehrlich’s Iterations

Recipe 1. Fix ρ ≥ 2maxw
j=1 |xj | and an integer q such that 2q−1 ≤ w < 2q,

write zj = ρ exp(2πi/2q) for j = 0, 1, . . . , 2q − 1, and compute (i) p(zj) for all j,
(ii) f(zj) = p(zj) − ∏d

g=w+1(zj − xg) for all j, and (iii) the coefficients of f(x).

6 Furthermore we may have ITERf <ITERp because of the decrease of the maximal
distance between a pair of roots and of the number and sizes of root clusters in the
transition from p to the polynomial f(x) of a smaller degree w.

7 [50] supplies estimates for the working precision in such a recursive process, which
ensure the bound 1/2b on the errors of the output approximations to the roots of p.

8 The wild roots are much less numerous than the tame roots in a typical partition of
a root set observed in Ehrlich’s, Weierstrass’s and other functional iterations that
simultaneously approximate all roots of p as well as in Newton’s iteration in [54].
Consequently the coefficient growth and the loss of sparseness are not dramatic in
the transition to the factors defined by the wild roots.
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Besides scaling the variable x, we perform (d−w)2q arithmetic operations at
stage (ii), �d/w� FFTs on 2q points at stage (i), and a single inverse FFT on 2q

points; overall we need O(dwμ(b̄)) Boolean operations [26,46]. This cost bound
can be verified for the following two recipes as well.

Recipe 2. Compute at first the values of the polynomial f(x) at scaled
roots of unity (as in Recipe 1), then the power sums of its roots, and finally its
coefficients, (cf. [50, Section 12] or [42, Appendices A and B]).

Recipe 3 [53]. Compute the power sums sk =
∑d

j=1 xk
j , k = 0, 1, . . . , of

the roots of p by applying Newton’s identities (cf., e.g., [36, Equations (2.5.4)
and (2.5.5)]). Then by subtracting the powers of all tame roots compute the
power sums of the roots of the polynomial f(x). Finally recover its coefficients
by applying Newton’s identities.

Recipe 3 involves the coefficients of p, while Recipes 1 and 2 as well as
Ehrlich’s, Weierstrass’s and Newton’s iterations can be applied to a polynomial
p given just by a subroutine for its evaluation, which is an advantage when, say,
the polynomial is presented in a compressed form or in Bernstein basis.

4.5 Extension to Other Functional Iterations

The recipes of doubling the working precision and consequently of partitioning
the roots into tame and wild ones and our recipes for deflation and its analysis
can be extended to Weierstrass’s [57], Werner’s [60], various other functional
iterations for simultaneous approximation of all roots of p [28, Chap. 4], and
Newton’s iterations applied to the approximation of all roots of p. E.g., Schleicher
and Stoll in [54] apply Newton’s iterations to the approximation of all roots of
a polynomial of degree d = 217 and arrive at w ≈ d/1000 wild roots.

4.6 Boolean Complexity of Problems 1–4 with and Without
MPSolve

Let us compare Boolean complexity of the solution of Problems 1–4 by using
MPSolve versus the algorithms of [11,32,37], and [12].

Empirically Ehrlich’s iterations in MPSolve have simpler structure and
smaller overhead in comparison with the algorithms of the latter papers, but
unlike them have only empirical support for being nearly optimal. Moreover
super-linear convergence of Ehrlich’s iterations has only been observed for simul-
taneous approximation of all roots, and so these iterations solve Problems 3 and
4 of root-finding in a disc and on a line interval about as fast and as slow as
Problem 1 of root-finding on the complex plain, while the nearly optimal cost of
root-finding by the algorithms of [11,32,37], and [12] decreases at least propor-
tionally to the number of roots in the input domain. As we have already said in
the introduction, MPSolve, [11] and [12] can solve Problem 2 of factorization of
p within the same Boolean cost bound as Problem 1, whereas the algorithm of
[32] and [37] solves Problem 2 faster by a factor of d, reaching a nearly optimal
Boolean cost bound.
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5 Approximation of a Factor of a Polynomial

In Sect. 4.4 we approximated a factor f(x) by first computing its values on a
fixed circle or the power sums of its roots. These computations were inexpensive
in applications to Ehrlich’s iterations and were readily combined with them. In
applications to subdivision iterations and to root-finding in the line interval the
power sum techniques of the DLS deflation also work but require more elabora-
tion. We begin that elaboration in this section, complete it in [42, Appendices
A and B], and apply it in Sects. 6 and 7.

5.1 Isolation of a Domain and Its Boundary

The following definition covers quite a general class of domains on the complex
plain, although in this paper we only apply it to the unit disc D(0, 1).

Definition 1. Isolation of a domain and its boundary. Let a domain D on the
complex plain allow its dilation from a fixed center. Then this domain has an
isolation ratio at least θ and is θ-isolated for a polynomial p and real θ > 1 if the
root set of p in the domain D is invariant in the θ-dilation of D. The boundary
of such a domain D has an isolation ratio at least θ and is θ-isolated if the root
set of p in D stays invariant in both θ- and 1/θ-dilation of the domain.

5.2 Approximation of a Factor with Root Set in an Isolated Disc

Problem 5: Approximation of a factor with the root set in an isolated disc.
INPUT: a polynomial p of (1), a complex number c, a positive number r,

and θ = 1+ g/ logh(d), a positive constant g and a real constant h such that the
disc D(c, r) = {z : |z − c| < r} on the complex plain is θ-isolated.

OUTPUT: the number w of roots of p in the disc D(c, r) and a monic factor
f of p whose root set is precisely the set of the roots of p that lie in that disc.

Dual Problem 5a of the approximation of a factor p/f whose root set lies
outside an isolated disc D is equivalent to Problem 5 of the approximation of
the factor of the reverse polynomial prev(x) := xdp(1/x) =

∑d
i=0 pd−ix

i with
root set in D. [Notice that prev(x) = p0

∏d
j=1(x − 1/xj) if p0 �= 0.] Accordingly

we can re-use the algorithms for Problem 5 in order to solve Problem 5a.
If we are given a factor f of p, we can also solve Problem 5a by means of any

of the algorithms of [4,43,44,51, Section 3], and [26] for approximate polynomial
division.

Alternatively (cf. Recipe 3 in Section 4.4) we can first compute (i) the sums
of the ith powers of the roots of p and f for i = 0, 1, . . . , d − w, by applying
Newton’s identities or the algorithm of [50, Section 12], then (ii) the sums of
the ith powers of the roots of the polynomial p/f for i = 0, 1, . . . , d − w, by
subtracting the d − w + 1 power sums of the roots of f from those of p, and
finally (iii) the coefficients of p/f , by applying either Newton’s identities or the
algorithm [50, Section 12].



Old and New Nearly Optimal Polynomial Root-Finders 403

5.3 DLS Deflation: Outline and Complexity

Here is a very brief outline of the DLS algorithm, elaborated upon in [42, Appen-
dices A and B] or [50, Section 12]. Given a polynomial p of degree d the DLS
algorithm approximates its factor having root set in a unit disc θ-isolated from
the other roots of p. The algorithm first computes 2q values of the factor at the
2qth roots of unity, ensuring error bound roughly d/θq, then the power sums of
its roots, and finally its coefficients.

The algorithm solves Problem 5 within the same asymptotic Boolean cost
bound, O(d log(d)μ(b̄′)), as in the special case of Sect. 4.4. [42, Corollary A.2]
enables extension of the solution and its complexity estimates to the approxi-
mation of a factor of p with a root set on the θ-isolated unit circle C(0, 1) for
θ = 1 + g/ logh(d), a positive constant g and a real constant h. At the Boolean
cost bound in O(d log(d)μ(b̄′)) this reduces Problem 3 for a polynomial p of
degree d to Problem 1 for a polynomial f of a degree df < d.

5.4 Deflation in the Case of an Isolated Cluster of a Small Number
of Roots

Suppose that all d roots of p lie in the unit disc D(0, 1) and that in a subdivision
iteration we observe that w roots of p form a cluster strongly isolated from the
other roots of p. Let a small disc D(c, r) cover the cluster,1 let q(x) = p(x− c) =∑d

j=0 qjx
j , let

f̃(x) =
w∑

j=0

qjx
j = q(x) mod xw+1 (9)

be the sum of the w + 1 trailing terms of the polynomial q(x), and consider this
sum an approximation of the factor f(x) of q(x) whose root set is made up of
the roots of p lying in the cluster, as this was proposed in [27, Section 3.2] for
real root-finding. Such disc D(c, r) can be found as a cost-free by-product of
subdivision iterations; then we obtain f̃(x) by means of shifting the variable x.

Let w � d, that is, let the cluster size w be small. Let is be also well-isolated
and estimate the norm |f̃ − f |. Write f :=

∑w
i=0 fix

i, g := q/f =
∑d−w

i=0 gix
i; let

fw = g0 = 1.Then

f̃(x) − f(x) = f(x)
w∑

j=1

gjx
j mod xw+1. (10)

Clearly f̃(x) = f(x) if c = 0 and f(x) = xw. Consider the special case where all
roots of f lie in a small r-neighborhood of 0 such that rw ≤ 1/2. Then we readily
verify that |f(x)−xw| ≤ |(x− r)w −xw| ≤ 2rw and |f̃(x)−xw| ≤ 2(d−w)wrw,
and so |f̃ − f | ≤ 2((d − w)w + 1)rw. This bound can be sufficient in some
applications where w is a small positive integer, although the bound is by far
not as strong as what we can obtain by applying the algorithms of [42, Part I of
the Appendix].
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A root-squaring iteration [21] lifts the isolation of the cluster or equivalently
squares the radius of the disc. We can apply such lifting recursively, although
limited number of times, within O(log(log(d))), because of numerical problems.
Having approximated the lifted roots in the cluster, we can recover the associated
roots of p by applying the descending process of [32] and [37], at dominated
overall Boolean cost at both lifting and descending stages.

6 Subdivision Iterations with Deflation

1. Background on Subdivision. Subdivision iterations extend the classical
bisection iterations from root-finding on a line to polynomial root-finding in the
complex plain. Under the name of Quad-tree Construction these iterative algo-
rithms have been studied in [22,23,49], and [35] and extensively used in Com-
putational Geometry. The algorithms have been introduced by Herman Weyl in
[58] and advanced in [22,23,49], and [35]; under the name of subdivision Becker
et al. modified them in [11] and [12].9 Let us briefly recall subdivision algorithms
for Problem 1; they are similar for Problem 3.

At the beginning of a subdivision (quad-tree) iteration all the d roots of
p are covered by at most 4d congruent suspect squares on the complex plain
that have horizontal and vertical edges, all of the same length. The iteration
outputs a similar cover of all d roots of p with a new set of at most 4d suspect
squares whose edge length is halved. Hence the centers of the suspect squares
approximate the root set with an error bound linearly converging to 0.

At every iteration suspect squares form connected components. Given s > 1
components, embed them into the minimal discs Di = D(ci, Ri), i = 1, . . . , s;
they become well-isolated from each other in O(log(d)) iterations. For i = 1, . . . , s
cover the root sets of p in the discs Di by the minimal discs D′

i = D(c′
i, R

′
i). For

some i the distances |ci −c′
i| may greatly exceed R′

i, and then linear convergence
of subdivision iterations to roots lying in the disc D′

i can be too slow in order
to support root-finding in nearly optimal Boolean time.

The algorithms of [11,35,49] and [12] yield super-linear convergence at those
stages. [49] and [35] apply Newton’s iterations, whose convergence to a disc D′

i

is quadratic right from the start if they begin in its θ-dilation D(c′
i, θR

′
i) and

if the disc D′
i is θ-isolated for a sufficiently large θ. Tilli in [55] proves that it

is sufficient if θ ≥ 3d − 3, which improves the earlier estimate θ ≥ 5d2 of [49].
[11] and [12] achieve super-linear convergence to the roots by applying Pellet’s
theorem for root-counting in a disc. This was the main algorithmic innovation
of [11] and [12] versus [49] and [35]; the papers [11] and [12] have also extended
to the complex plain the QIR iterations, proposed by Abbott for a line segment,
and then laboriously estimated the Boolean cost of the resulting algorithm.

2. Our Alternatives: Outline. We deviate from the algorithms of [11] and
[12] in two ways.

9 The algorithms of [11] and [12] are quite similar to one another.
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(i) We replace the counting algorithm of [11] and [12] with a distinct method,
which is faster, more robust, and can be applied where a polynomial p
is defined by a black box subroutine for its evaluation rather than by its
coefficients.

(ii) If the algorithm of [11] and [12] encounters an isolated component containing
df roots of p with sufficiently small df (we either monitor this explicitly or
detect by action), we cover that component with an isolated disc containing
these df roots and then approximate them by solving Problem 3.

3. Our Alternative Counting. We fix a sufficiently large integer q, let ω
denote a primitive qth root of unity, and approximate the number s of the roots
of p in the θ-isolated unit disc D(0, 1) = {x : |x| = 1} as follows:

s ≈ s∗ =
1
q

q−1∑

g=0

ωg p′(ωg)
p(ωg)

, ω = exp(2π
√−1/q). (11)

By virtue of [42, Theorem 12], extracted from [50], |s−s∗| < 1/2 if 2d+1 < θq.
For example, if θ = 2, then choosing any q ≥ 11 is sufficient where d = 1, 000
and choosing any q ≥ 21 is sufficient where d = 1, 000, 000.

We obtain s∗ of (11) by evaluating both p(x) and p′(x) at the qth roots of
unity (which means performing discrete Fourier transform at q points twice) and
in addition performing discrete Fourier transform at q points once again. We can
perform Fourier transforms by applying FFT if we choose q being the power of 2.

We can extend our recipe to any sufficiently well isolated disc D on com-
plex plain by means of shifting and scaling the variable x (see Remark 2), but
alternatively we can just evaluate p(x) and p′(x) at q equally spaced points on
the boundary circle of the disc D. Instead of two FFTs we can apply the so
called Horner’s algorithm 2q times or the algorithms of [29,38], or [41] for fast
multipoint polynomial evaluation.

4. Root-Finding in an Isolated dDisc (Problem 3). As soon as subdivision
defines a well-isolated disc D′

i containing a positive but reasonably small number
df of the roots of a polynomial p we approximate its factor f = f(x) having
degree df and having all its roots in that disc (cf. Sect. 4.3); then we approximate
all the df roots of the factor by applying the subdivision iterations or MPSolve.

By applying a subdivision algorithm to f rather than p, we approximate the
roots of f at the cost that decreases by at least the factor of d/w, because of the
decrease of the degree, but possibly more than that if we get rid of some root
clusters in the transition from p to f .

Empirically we may additionally benefit from shifting to MPSolve rather
than continuing subdivision iterations unless our simplification of subdivision
makes it competitive with or even superior to MPSolve.



406 V. Y. Pan

By applying the DLS algorithm we approximate the factor f within the same
asymptotic estimates for the Boolean cost as we deduced for deflation algorithms
of Sect. 4.3.10

Then again we can apply deflation of p repeatedly for a number of discs
D′

i and can recursively extend it to deflation of the computed factors f(x),
together with the policy of delaying the deflation until we decrease the number
of remaining roots below a fixed bound.11 The estimates of [42, Appendices C.2
and D] for the working precision in this deflation ensure the upper bound of 1/2b

on the errors of the output approximation to the roots.

7 Root-Finding on a Line Segment with Deflation

The algorithms of [11,27,32,37,45] and [12] solve Problem 4 in nearly opti-
mal Boolean time. Next we reduce Problem 4 on the unit segment S[−1, 1] =
{x : − 1 ≤ x ≤ 1} to the special case where all roots of p lie in that segment.
In this case the algorithms of [8,13], and [14] are also nearly optimal, but appli-
cation of MPSolve or [27], complemented with the policy of recursive doubling
of working precision, may have even better chances to become the method of
user’s choice, particularly if its efficiency is enhanced by incorporating the initial
approximation of the real roots by means of the simple algorithm of [47], which
we recall at the end of this section.

Next we approximate the factor of p(x) whose root set is precisely the set of
the roots of p restricted to the segment S[−1, 1]. The algorithm of [42, Appen-
dices A and B] can be applied for the deflation over any convex domain of the
complex plain (see [42, Remark 15]), but in the case of a disc its output approxi-
mation to the factor is much closer than for general convex domain (at the same
computational cost). Thus we obtain better output approximation by means of
reducing Problem 4 to Problem 3.

Towards this goal we first recall the two-to-one Zhukovsky function z = J(x),
which maps the unit circle C(0, 1) onto the unit segment S[−1, 1], and its one-
to-two inverse:

z = J(x) :=
1
2

(
x +

1
x

)
; x = J−1(z) := z ±

√
z2 − 1. (12)

Here x and z are complex variables. Now perform the following steps:

1. Compute the polynomial s(z) := xdp(x)p(1/x) of degree 2d by applying [9,
Algorithm 2.1], based on the evaluation of the polynomials p(x) and xdp(1/x)

10 The DLS algorithms (cf. [42, Appendices A and B]) approximates a factor f at
a nearly optimal Boolean cost if the disc D′

i is θ-isolated for isolation ratio θ =
1 + g/ logh(d), a positive constant g and a real constant h. Such an isolation ratio is
smaller than those required in [11,35,49] and [12] and thus can be ensured by means
of performing fewer subdivision steps.

11 Then again with such a delay we bound the overall cost of all deflation steps (cf.
Example 1), avoid coefficient growth and do not lose sparseness.
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at Chebyshev points and the interpolation to s(z) at roots of unity. Recall
that the set of the roots of p(x) lying in the segment S[−1, 1] is well-isolated
and observe (see Remark 5) that it is mapped in one-to-two mapping (12)
into a well-isolated set of the roots of s(z) lying on the unit circle C(0, 1).

2. Let g(z) denote the monic factor of the polynomial s(z) with the root set
made up of the roots of s(z) lying on the unit circle C(0, 1) and such that
deg(g(z)) = deg(f). By applying the algorithm of [50, Section 12] (cf. [42,
Corollary A.2]) approximate the power sums of the roots of the polynomial
g(z).

3. By applying Newton’s identities of the algorithm of [50, Section 13] (cf. [42,
Solution 2 of Appendix B]) approximate the coefficients of g(z).

4. Compute the polynomial h(x) := x2ag( 12 (x + 1
x )) of degree 4 deg(f) in x. Its

root set is made up of the roots of the polynomial p lying in the segment
S[−1, 1] and of their reciprocals; in the transition to h(x) the multiplicity of
the roots of p either grows 4-fold (for the roots 1 and −1 if they are the roots
of p ) or is doubled, for all other roots.

5. By applying the algorithm of [14] approximate all roots of the polynomial
h(x).

6. Among them identify and output deg(f) roots that lie in the segment S[−1, 1];
they are precisely the roots of p(x).

Remark 4. We can simplify stage 5 by replacing the polynomial h(x) with its
half-degree square root j(x) := xaf(x)f(1/x) at stage 5, but further study is
needed to find out whether and how much this could decrease the overall com-
putational cost.

Remark 5. Represent complex numbers as z := u + iv. Then Zhukovsky’s map
transforms a circle C(0, ρ) for ρ �= 1 into the ellipse E(0, ρ) whose points (u, v)
satisfy the following equation,

u2

s2
+

v2

t2
= 1 for s =

1
2

(
ρ +

1
ρ

)
, t =

1
2

(
ρ − 1

ρ

)
.

Consequently it transforms the annulus A(0, 1/θ, θ) into the domain bounded by
the ellipses E(0, 1/θ) and E(0, θ), so the circle C(0, 1) is θ-isolated if and only if
no roots of p lie in the latter domain.

We conclude this section with recalling an efficient algorithm of [47] for com-
puting crude initial approximations to real roots. Extensive tests in [47] showed
particular efficiency of this algorithm for the approximation of the real roots of
p that are sufficiently well-isolated from the other roots.

Theorem 1. See [50, Corollary 14.3]. Assume that we are given a polynomial
p = p(x) of (1) and a pair of real constants c > 0 and h. Write θ = 1 + c/dh

and rj := |xj | for j = 1, . . . , d. (rj are said to be the root radii for p.) Then,
within the Boolean cost bound OB(d2 log2(d)), one can compute approximations
r̃j to all root radii rj such that 1/θ ≤ r̃j/rj ≤ θ for j = 1, . . . , d, provided that
lg( 1

θ−1 ) = O(lg(d)), that is, |r̃j/rj − 1| ≤ c/dh.
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Apply the algorithm supporting this theorem and compute d narrow annuli
covering all roots of p. Their intersection with real line defines at most 2d small
segments that contain all real roots of p. Then we weed out the extraneous empty
segments containing no roots of p and obtain close approximations to all real
roots, in particular to those lying in the segment S[−1, 1]. See [47] for further
details.
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1 Introduction

Computer algebra systems have recently been actively used to construct sym-
bolic-numeric methods for approximate solution of computational problems of
mathematical physics [3–5], electrodynamics [1,2,6], mechanics [7–9], and fluid
simulations too [10–13].

Particularly efficient is the use of a computer algebra system in the applica-
tion of methods based on Galerkin and Kantorovich decompositions. Approxi-
mate solutions within the framework of these methods are represented as partial
sums of a series over some complete system of basis functions. Approximate
solutions are substituted into the problem under consideration and the resulting
relations are projected onto some finite-dimensional subspace of the function
space, resulting in the formulation of an approximate problem.

When computerising the methods of Galerkin and Kantorovich [14,15], it
becomes necessary to apply projection relations, including integrals (often from
rapidly oscillating functions) (see [3,4]). If the basic functions of the Galerkin and
Kantorovich methods are known in symbolic form (for example, polynomials,
trigonometric functions, etc.), then it is convenient to set up an approximate
problem in a computer algebra system.

In this paper, we have developed a symbolic-numeric implementation of the
four potential method [1] for computing the normal modes of a rectangular closed
waveguides in vector formulation using the Maple computer algebra system.

2 Preliminary Information: Four Potential Method

In the framework of the four potential method [1,2], a waveguide of constant
cross section S with ideally conducting walls is considered. The axis Oz with
unit vector ez is directed along the axis of the waveguide; the normal to the side
wall will be denoted by n, and the tangent vector perpendicular to both ez and
n by τ (Fig. 1).

In a closed waveguide, the components of the electromagnetic field Ez and
Hz are expressed in terms of E⊥ = (Ex, Ey)T and H⊥ = (Hx, Hy)T [16–18],
therefore, within the framework of the method, the electromagnetic field can
be represented as E⊥ = ∇ue + ∇′ve, H⊥ = ∇vh + ∇′uh, where ue,h and ve,h

are scalar functions that satisfy the Dirichlet and Neumann conditions at the
waveguide boundary. The Maxwell equations in this representation are reduced
to a system of differential equations for four potentials [1]:

⎧
⎨

⎩

∇′
(
∂zvh − 1

ik0μΔve

)
+ ik0ε∇′ve − ∇∂zuh + ik0ε∇ue = 0,

∇′
(
∂zue + 1

ik0εΔuh

)
− ik0μ∇′uh − ∇∂zve − ik0μ∇vh = 0,

(1)

where ε and μ are permittivity and permeability, k0 is the wavenumber, i is
the imaginary unit, ∇ = (∂/∂x, ∂/∂y)T

, ∇′ = (−∂/∂y, ∂/∂x)T . The boundary
conditions for the potentials are as follows [1]:

ue|∂S = uh|∂S = 0, ∇ve · n|∂S = ∇vh · n|∂S = 0. (2)
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Fig. 1. Waveguide of constant section S

The Dirichlet and Neumann boundary conditions (2) that are classical for
mathematical physics [19,20] often allow constructing an approximate solution
applying the Galerkin method with, e.g., the eigenfunctions of the Laplace oper-
ator with appropriate boundary conditions as the basis. In the case of a complex
cross section geometry, it is more convenient to construct an approximate solu-
tion by means of the finite element method [3,21–26]. However, in the case of
simple geometry that allows separation of variables, e.g., a rectangular cross
section, an approximate solution can be constructed using the Galerkin method.

To test the performance of the method, we will first consider waveguides of
square cross section with an arbitrary rectangular insert. In this case, we will
construct an approximate solution using the incomplete Galerkin method [27,28]
and then investigate the numerically obtained solutions.

3 Setting a Computational Problem

We first consider a waveguide homogeneous along the z-axis with square cross
section S = {x ∈ [0; 1], y ∈ [0; 1]}.

Let the permittivity and permeability ε, μ do not change along the z-axis
on a certain segment a < z < b. We decompose the approximate solution in
a finite number of linearly independent functions satisfying the boundary con-
ditions (2). A suitable basis in this case is the basis

{
ϕj

}4N2−2

j=1
composed of

eigenfunctions of the Laplace operator with Dirichlet conditions and Neumann
conditions, namely [19] (Fig. 2):

{
ϕj

}N2−1

j=1
= (ψnm (x, y) , 0, 0, 0)T

,

{
ϕj

}2N2−1

j=N2 = (0, ψnm (x, y) , 0, 0)T
,

m, n = 0, . . . , N − 1,m + n > 0,

(3)
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Fig. 2. The geometry of a square waveguide with an arbitrary rectangular insert having
the width py and the height px

{
ϕj

}3N2−2

j=2N2 = (0, 0, φnm (x, y) , 0)T
,

{
ϕj

}4N2−2

j=3N2−1
= (0, 0, 0, φnm (x, y))T

,

m, n = 1, . . . , N,

(4)

where ψnm (x, y) = cos (πnx) cos (πmy), φnm (x, y) = sin (πnx) sin (πmy) are
eigenfunctions of the Neumann and Dirichlet problems for the two-dimensional
Laplace operator in the square S. An approximate solution of the system will
be constructed by analogy with the incomplete Galerkin method [27,28] in the
form of expansion

(vh, ve, ue, uh)T =
4N2−2∑

j=1

wj (z) ϕj (x, y). (5)

After substituting the approximate solution into the equations of the system
and applying the projection scheme of the Galerkin method, we arrive at a
system of ordinary differential equations for the vector of the desired coefficient
functions w = (w1, w2, . . . , w4N2−2)

T :

Bw′ + ik0Aw + (ik0)
−1

Cw = 0, (6)

where A, B, and C are square matrices, whose elements are double integrals over
the waveguide section S:

aij =
∫∫

S

ε (∇′ϕj2 + ∇ϕj3) · (∇′ϕi1 − ∇ϕi4) dxdy+

+
∫∫

S

μ (∇′ϕj4 + ∇ϕj1) · (∇′ϕi2 − ∇ϕi3) dxdy,

(7)
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bij =
∫∫

S

(∇′ϕj1 · ∇′ϕi1 + ∇′ϕj3 · ∇′ϕi3 + ∇ϕj2 · ∇ϕi2 + ∇ϕj4 · ∇ϕi4) dxdy, (8)

cij =
∫∫

S

(Δϕj2Δϕi1/μ − Δϕj4Δϕi3/ε) dxdy, (9)

where ϕjn, n = 1, . . . , 4 denote the nth component of the jth vector function
ϕj . The homogeneous system of ordinary differential Eq. (6) has solutions that
depend on z as eik0βz; such solutions are called normal waveguide modes. Sub-
stituting the form w (z) = ψeik0βz of the solution into Eq. (6) and cancelling
the nonzero factors, we arrive at the eigenvalue problem

Kψ = βψ, (10)

where the matrix K is expressed through the matrices A, B, and C as K =
B−1

(
A − k−2

0 C
)
. The eigenvalue problem (10) must then be solved numerically.

The desired eigenvalue β entering the exponent of the solution is called the
mode phase constant; it determines the mode propagation behaviour. Modes
with real β > 0 are waves traveling along the axis of the waveguide in the
positive direction, modes with β < 0 propagate in the negative direction. Modes
with real β are called propagating modes. Modes with imaginary β exponentially
decrease in one of the directions and are called evanescent modes.

4 Symbolic-Numeric Algorithm for the Approximate
Calculation of Normal Modes

4.1 Introductory Notes

The calculation of the elements of the matrices A, B, and C using the formu-
las (7)–(9) is associated with certain difficulties. The basis (3)–(4) chosen by us
consists of four-component vector functions, each of whose nonzero components
is an eigenfunction of the Dirichlet or Neumann problem for the Laplace operator
in the domain S = {x ∈ [0; 1], y ∈ [0; 1]}.

The complexity of the calculations in the framework of the proposed method
is easily illustrated by a simple example. Suppose we want to describe the modes
that are characterised by no more than five oscillations on each of the axes Ox
and Oy. In this case, for ψnm (x, y) = cos (πnx) cos (πmy) you must keep at least
n = 1, 5, m = 1, 5, i.e., at least 25 eigenfunctions. Moreover, since in the vector
basis (3)–(4), the functions are four-component, the basis will consist of 25×4 =
100 functions. In this case, the matrix K to be considered will have a dimension
of 100 × 100 (that is, consist of 104 elements). In more realistic calculations, the
dimension of the matrix K under study will be greater by an order of magnitude.
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Note also that the matrix K = B−1
(
A − k−2

0 C
)

is defined by three matrices
A, B, C and each of the elements of each of the three matrices is a double
integral over the cross section S of the waveguide (see (7)–(9)). Summarizing
the above considerations, only for calculating the matrix K it is necessary to
find at least 3 × 104 double integrals. Obviously, the numerical calculation of
such a number of integrals of oscillating functions with acceptable accuracy does
not allow even the formation of the matrix K in reasonable time. The study of
the method requires the calculation of the matrix K for a different number of
basis functions, generally speaking, for the largest possible one, with which the
calculation is performed during reasonable time.

4.2 Symbolic-Numeric Algorithm

The formulation of the computational problem (10) consists in calculating the
elements of the matrix K, for which it is first necessary to generate basic func-
tions

{
ϕj

}
using the built-in tools of the Maple system [29]. The details of

symbolic algorithm are presented in Appendix.
Numerical calculations consist in finding the eigenvalues and eigenvectors of

the matrix K using built-in Maple numerical tools. The eigenvalues βj of the
matrix K determine the phase constants for the normal modes of the waveguide
in question, and the eigenvectors ψj determine the coefficients of expansion of
the jth mode in the basis (3)–(4).

Numerical calculations are also implemented using Maple built-in numerical
methods (using LAPACK library [30,31] with QR factorization [32,33]). Eigenval-
ues and eigenvectors are calculated using the function Eigenvectors from the
LinearAlgebra library [29] with high accuracy that can be evaluated by Van
Loan formulas [34,35]. The described algorithm is implemented in Maple and
is available at https://bitbucket.org/AnastasiiaTyu/waveguide/downloads/.

The implemented algorithm is used to conduct numerical experiments aimed
at verifying the efficiency of the method and verification.

5 Numerical Calculation of Normal Modes in a Square
Waveguide with a Rectangular Insert

Consider a square-cross-section waveguide of unit width and height made from
a material with a dielectric constant ε1 = 2 with an insert having the width
px and the height py, made from a more optically dense material with ε2 = 3.
Let us calculate the eigenvalues (phase constants) and normal modes for the
configuration px = py = 0.5. In this case, the exact phase constants are not
known analytically.

As a result of the calculation with N = 12 (which corresponds to the dimen-
sion of the matrix M × M with M = 574), we obtained phase constants, the

https://bitbucket.org/AnastasiiaTyu/waveguide/downloads/
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first ten of which are given below:

β1 = 1.43296289171709,
β2 = 1.42946771606211,
β3 = 1.23553335397222,
β4 = 1.16064902183147,
β5 = 0.840564995190615,
β6 = 0.811608008252520,
β7 = 0.663953243441277,
β8 = 0.655779874680068,
β9 = 0.399854493680243,
β10 = 0.396923647592231.

(11)

Now let us consider the computed eigenfunctions corresponding to a few first
phase constants.

Fig. 3. Electromagnetic field components corresponding to β1 ≈ 1.4330

Figure 3 shows the level lines corresponding to the first mode of the waveg-
uide with the phase constant β1 ≈ 1.4330. � (Hy (x, y)) = Re (Hy (x, y)) and
� (Ex (x, y)) = Re (Ex (x, y)) are real parts of the components Hy and Ex. The
components of the electromagnetic field corresponding to the TE-mode, namely
Ey and Hx, are negligible in comparison with the components Hy, Ex shown in
Fig. 3 and, therefore, are not presented. From the type of components Hy and
Ex shown in the figure, it can be noted that the field for both components is
concentrated in the region corresponding to the insert of a more optically dense
material. Such behaviour is illustrated by the well-known optical principle of
radiation propagation in waveguides.
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Fig. 4. Electromagnetic field components corresponding to β2 ≈ 1.4294

Fig. 5. Electromagnetic field components corresponding to β3 ≈ 1.2355
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Let us now consider the second waveguide mode, which is characterized by
the phase constant β2 ≈ 1.4294.

Figure 4 shows the level lines corresponding to the second waveguide mode
with the phase constant β2 ≈ 1.4294. In this case, the field components Ey and
Hx , i.e., the components of the TE mode, are different from zero. The field
for this mode is also concentrated in the region corresponding to the insert of
a more optically dense material, which is to be expected. In addition, the field
component Ey exhibits small additional intensity peaks near the boundary of a
more optically dense insert material, which may be due to the presence of a jump
in the dielectric constant at the boundary. The next mode with β3 ≈ 1.2355 will
contain both the TE-mode and the TM-mode components different from the
identical zero.

In the mode considered now, the field is no longer localised inside the region
of a more optically dense material, now it is concentrated outside this region.
Such modes also exist in waveguides and, as a rule, when solving diffraction
problems, they account for much lower intensity than for modes whose field is
concentrated in the region corresponding to the insert of a more optically dense
material.

The obtained eigenfunctions, which determine the distribution of the waveg-
uide modes in the region corresponding to the cross section of the waveguide,
are in qualitative agreement with the physical concept of radiation propagation
in a waveguide (Fig. 5).

6 Numerical Analysis of Convergence of Eigenvalues
and Eigenfunctions

Let us now analyse the results obtained numerically. Let us consider one con-
figuration of a waveguide with ε1 = 2, ε2 = 3, px = py = 0.5, and calculate
the eigenvalues (phase constants) and eigenfunctions in such a waveguide with
different values of M (N) = 4N2 −2, where M is the number of expansion terms
of the approximate solution in the incomplete Galerkin method. We first con-
sider the convergence of eigenvalues. As a measure of convergence, we choose the
relative error

δM (βj) =

∣
∣
∣
∣
∣

β
M(N)
j − β

M(N+1)
j

β
M(N+1)
j

∣
∣
∣
∣
∣
, (12)

where β
M(N)
j and β

M(N+1)
j denote the jth eigenvalue obtained numerically

with M = 4N2 − 2 and M = 4(N + 1)2 − 2, respectively. Calculations
were carried out for N = 10, 12, 14, 16, 18, which corresponds to M =
398, 574, 782, 1022,1294. Below in Fig. 6, we illustrate the convergence for the
first four eigenvalues.

The relative error of the first eigenvalue is seen to decrease faster than the
others. The relative error in the specified range of Mvalues for the first four
eigenvalues is initially smaller than 10−2 (1%) and decreases to values of the
order of 5 · 10−5, and for the first eigenvalue, the relative error is even smaller,
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Fig. 6. Plots of relative error δM (βj) for j = 1, 2, 3, 4

of the order of 10−7. Thus, the convergence of eigenvalues takes place, and the
order of magnitude of the relative error indicates a sufficient accuracy of the
calculations.

Now let us proceed to consider the relative error convergence for the eigen-
function corresponding to β4. The first three eigenfunctions are typically calcu-
lated with higher accuracy, so for consistency, we will examine the convergence
for the relative error of the fourth eigenfunction.

As a measure of the convergence of the component, we take the relative error

δM (Ex) =

1∫

0

1∫

0

∣
∣
∣EM(N)

x − EM(N+1)
x

∣
∣
∣
2

dxdy, (13)

where E
M(N)
x denotes the component Ex

(
1∫

0

1∫

0

∣
∣
∣E

M(N)
x

∣
∣
∣
2

dxdy = 1
)

obtained

numerically and normalized to one with M = 4N2 − 2, and E
M(N+1)
x is the nor-

malized component Ex with M = 4(N + 1)2−2. For the remaining components,
the relative error is determined in a similar way (Fig. 7).

Fig. 7. Plots of the relative error δM (Hy) , δM (Ex) of the components of the TM mode
for the fourth mode

Considering the plots of the relative errors for the components of the TM
mode, one can note that in this case, the convergence is not monotonic, in



422 A. A. Tiutiunnik et al.

contrast to the error of the eigenvalues. The magnitude of the relative errors in
this case is of the order of 10−4.

The relative errors for the components of the TE mode also decrease in a
nonmonotonic manner. Their obtained numerical values are of the order of 10−5,
which is by an order of magnitude smaller than for the TM mode.

The calculated eigenvalues and eigenfunctions that determine the normal
modes of a square waveguide with a rectangular inset are in qualitative agree-
ment with the physical understanding of the behaviour of waveguide modes
propagating in a closed waveguide. Numerical estimates of the relative error also
confirm the numerical stability of the calculated values, which indirectly confirms
the adequacy of the results obtained.

To test the performance of the method, we also compare the numerical results
of our method with the results known analytically in a hollow waveguide model
(Fig. 8).

Fig. 8. Plots of the relative error δM (Ey) , δM (Hx) of the fourth TE mode components

7 Verification Method (Comparison with a Hollow
Waveguide)

Consider a hollow square waveguide with a unit width and height, i.e., a waveg-
uide without an insert (px = py = 0) with the permittivity ε1 = 1 and permeabil-
ity μ1 = 1. Let us calculate the eigenvalues βj using the four potential method,
which determines the phase constants of the corresponding normal modes of the
considered hollow waveguide. The spectral problem for a hollow waveguide is

K0ψ = βψ, (14)

where, K0 = B−1
(
A − k−2

0 C
)
, the elements of the matrix B are determined by

Eq. (8), and the elements of the matrices A and C are defined as
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a0
ij =

∫∫

S

(∇′ϕj2 + ∇ϕj3) · (∇′ϕi1 − ∇ϕi4) dxdy

+
∫∫

S

(∇′ϕj4 + ∇ϕj1) · (∇′ϕi2 − ∇ϕi3) dxdy,

c0ij =
∫∫

S

(Δϕj2Δϕi1 − Δϕj2Δϕi3) dxdy.

(15)

Taking into account the fact that the quantities ε1, μ1 are constants, in the
integrals of Eq. (15) the integrands are simplified, thus simplifying the structure
of matrices A and C.

Note that in the hollow waveguide, the structure of the matrices is simplified,
the matrix K0 has only two diagonals differing from the identical zero.

Next, we calculate the eigenvalues of the matrix K0 using the four poten-
tial method and compare the eigenvalues obtained as a result of a numeri-
cal calculation with the analytically known eigenvalues, expressed as β1,2 =
±

√
1 − π2/k2

0, β3,4 = ±
√

1 − 2π2/k2
0. The eigenvalues obtained in the frame-

work of the proposed method will be denoted β
M(N)
j , where the parameter

M (N) = 4N2 − 2 is the number of eigenfunctions to be held in the expan-
sion of the approximate solution. Next, we present the absolute and relative
errors for the calculated eigenvalues with N = 3, 4, 5, 6, 7, which correspond to
the dimensions M = 34, 62, 98, 142, 194 of the matrices:

∣
∣
∣β

M(N)
j − βj

∣
∣
∣ < 2.82 · 10−11,

∣
∣
∣β

M(N)
j − βj

∣
∣
∣ /

∣
∣βj

∣
∣ < 3.62 · 10−11,

j = 1, 2, 3, 4.

(16)

The error values obtained in (16) demonstrate the high accuracy of approx-
imate calculations of the eigenvalues βj that determine the phase constants of
the corresponding normal modes in a hollow waveguide.

8 Conclusion

The proposed approach, based on the introduction of potentials, allows adequate
description of the normal modes in closed waveguides having square cross section.

The symbolic-numeric implementation of the method allows reduction of the
number of calculations needed to find double integrals from rapidly oscillating
functions, due to the use of symbolic calculations. The use of the Maple computer
algebra system made it possible to perform calculations with matrices having
the dimension 1200×1200 in an acceptable computation time, making it possible
to investigate the convergence of the method.
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The validity of the four potential method within the frameworks of this
study was verified by qualitative and numerical analysis of the resulting eigen-
values and eigenfunctions, as well as by comparison with known results for closed
waveguides:

– for closed waveguides, the convergence of eigenvalues (phase constants of
waveguide modes) and eigenfunctions was investigated, the obtained orders
of the relative error are 5 · 10−5 for eigenvalues and 10−4 for eigenfunctions;

– in the example of a model structure (a hollow waveguide), for which the exact
eigenvalues are known in analytical form, the proposed method yields an error
of the order of 10−11;

– the qualitative behaviour of the waveguide modes in the considered closed
waveguides agrees with its physical understanding.

Appendix. Symbolic Algorithm

The integral expressions (7)–(9) contain three differential operators: the Laplace
operator Δ = ∂2/∂x2+∂2/∂y2 and two vector operators ∇ = (∂/∂x, ∂/∂y)T

,∇′

= (−∂/∂y, ∂/∂x)T , which we define in Maple:

D0 := proc (f)
return diff(f, x$2) + diff(f, y$2)
end proc;

D1 := proc (f)
return VectorCalculus[Gradient](f, [x, y])
end proc;

D2 := proc (f)
local v;
v := VectorCalculus[Gradient](f, [x, y]);
return Vector([-v[2], v[1]])
end proc;

Using the introduced operators, we consider the calculation of the matrix
elements of the matrix C. The matrix element cij is determined by the expression

cij = c
(
ϕi,ϕj

)
=

∫∫

S

(Δϕj2Δϕi1/μ − Δϕj4Δϕi3/ε) dxdy (17)

From Eq. (17) it is obvious that if ϕj2 = ϕj4 ≡ 0 or, e.g., ϕi1 = ϕi3 ≡ 0, then
cij = 0. Therefore, ignoring knowingly zero results and using the built-in tools
of Maple, one can calculate only non-zero blocks of the matrix.
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Here we calculate the integrands for non-zero blocks of the matrix:

vv1 := cos(Pi*iI1*x)*cos(Pi*jJ1*y);
vv2 := cos(Pi*iI2*x)*cos(Pi*jJ2*y);
uu1 := sin(Pi*iI1*x)*sin(Pi*jJ1*y);
uu2 := sin(Pi*iI2*x)*sin(Pi*jJ2*y);
Dvv := D0(vv1)*D0(vv2);
Duu := D0(uu1)*D0(uu2)

Particular attention is paid to the method of reducing the number of calcu-
lated integrals. In fact, the integrand (17) includes Δψnm and Δφn′m′ , where
ψnm (x, y) = cos (πnx) cos (πmy), φnm (x, y) = sin (πnx) sin (πmy). Using the
fact that the components of the basis functions ψnm and φnm are known in the
symbolic form, the integral (17) can be calculated once, keeping the subscripts
n,m, n′,m′ in symbolic form:

intDvv := int(Dvv, [x = 0 .. 1, y = 0 .. 1]);
intDuu1 := int(Duu, [x = 0 .. 1, y = 0 .. 1]);
intDuu2 := int(Duu, [x = (1-ppx)*(1/2) .. (1+ppx)*(1/2),
y = (1-ppy)*(1/2) .. (1+ppy)*(1/2)]);
intDuu3 := intDuu1/eps1+(1/eps2-1/eps1)*intDuu2

Further, the specific elements of nonzero blocks of matrices are calculated by
the replacing the symbols n,m, n′,m′ with specific numbers in the symbolically
calculated integrals:

cEPS3 := Matrix(n^2, n^2, (i, j)→ subs({iI1 =
indxU[i][1],

iI2 = indxU[j][1]+eps , jJ1 = indxU[i][2],
jJ2 = indxU[j][2]+ eps}, intDuu3 ));

cMU := Matrix(n^2-1, n^2-1, (i, j)→ subs({iI1 =
indxV[i][1],

iI2 = indxV[j][1]-eps , jJ1 = indxV[i][2],
jJ2 = indxV[j][2]+ eps}, intDvv ));

for i to n^2 do
for j to n^2 do

Cc[n^2+i-1, 3*n^2+j-2] := -cEPS3[i, j]
end do;

end do;
for i to n^2-1 do

for j to n^2-1 do
Cc[i, 2*n^2+j-1] := cMU[i, j]

end do;
end do;
Ccf := evalf(Cc);
return Ccf
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The calculation of B matrix elements is much simpler due to the orthogonal-
ity of the basis (3)–(4) used to decompose the approximate solution. Excluding
zero elements of the matrix B, we obtain a matrix with nonzero elements on the
main diagonal. As a result, it appears necessary to calculate only the diagonal
elements (Fig. 9):

vv := cos(Pi*iI*x)*cos(Pi*jJ*y);
vv01 := cos(Pi*jJ*y);
vv10 := cos(Pi*iI*x);
uu := sin(Pi*iI*x)*sin(Pi*jJ*y);

D2D2v := D2(vv).D2(vv);
D1D1v := D1(vv).D1(vv);
D2D2u := D2(uu).D2(uu);
D1D1u := D1(uu).D1(uu);

intD2D2v01 := int(D2(vv01).D2(vv01), [x = 0 .. 1, y = 0 .. 1]);
intD2D2v10 := int(D2(vv10).D2(vv10), [x = 0 .. 1, y = 0 .. 1]);
intD1D1v01 := int(D1(vv01).D1(vv01), [x = 0 .. 1, y = 0 .. 1]);
intD1D1v10 := int(D1(vv10).D1(vv10), [x = 0 .. 1, y = 0 .. 1]);

intD2D2v := int(D2D2v, [x = 0 .. 1, y = 0 .. 1]);
intD2D2u := int(D2D2u, [x = 0 .. 1, y = 0 .. 1]);
intD1D1v := int(D1D1v, [x = 0 .. 1, y = 0 .. 1]);
intD1D1u := int(D1D1u, [x = 0 .. 1, y = 0 .. 1])

(a) matrix C structure (b) matrix B structure

Fig. 9. Matrices C and B (M × M) structures for M = 62: black squares correspond
to non-zero elements of the matrix, and white squares correspond to the identical zero
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The structure of the matrix A is more difficult, since it contains significantly
greater number of nonzero blocks.

vv1 := cos(Pi*iI1*x)*cos(Pi*jJ1*y);
vv2 := cos(Pi*iI2*x)*cos(Pi*jJ2*y);
uu1 := sin(Pi*iI1*x)*sin(Pi*jJ1*y);
uu2 := sin(Pi*iI2*x)*sin(Pi*jJ2*y);

a12 := D2(vv1).D2(vv2);
a13 := D2(vv1).D1(uu2);
a21 := D1(vv1).D1(vv2);
a34 := -D2(uu1).D2(uu2);
a42 := -D1(uu1).D2(vv2);
a43 := -D1(uu1).D1(uu2)

However, the principle of calculation is similar to that already described, i.e.,
the integration is carried out once for a whole class of integrals containing ψnm

and φn′m′ in the integrand (Fig. 10).
After calculating the matrices A, B, and C, the matrix K is determined.

KN := BN.(AN-evalf(1.0/k0^2)*CN)

(a) matrix A structure (b) matrix K structure

Fig. 10. Matrices A and K (M × M) structures for M = 62: black squares correspond
to non-zero elements of the matrix, and white squares correspond to the identical zero

The described symbolic transformations aimed, firstly, at calculating only
non-zero blocks of matrices, secondly, at reducing the number of integrations,
made it possible to avoid multiple repetitions of the time-consuming procedure of
numerical integration, and immediately proceed to numerical calculations using
the Maple algorithm.



428 A. A. Tiutiunnik et al.

References

1. Malykh, M.D., Sevastianov, L.A., Tiutiunnik, A.A., Nikolaev, N.E.: On the repre-
sentation of electromagnetic fields in closed waveguides using four scalar potentials.
J. Electromagn. Waves Appl. 32(7), 886–898 (2018)

2. Divakov, D.V., Lovetskiy, K.P., Malykh, M.D., Tiutiunnik, A.A.: The application
of Helmholtz decomposition method to investigation of multicore fibers and their
application in next-generation communications systems. Commun. Comput. Inf.
Sci. 919, 469–480 (2018)

3. Gusev, A.A., et al.: Symbolic-numerical algorithms for solving the parametric
self-adjoint 2D elliptic boundary-value problem using high-accuracy finite element
method. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC
2017. LNCS, vol. 10490, pp. 151–166. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66320-3 12

4. Gusev, A.A., et al.: Symbolic-numerical algorithm for generating interpolation mul-
tivariate hermite polynomials of high-accuracy finite element method. In: Gerdt,
V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol.
10490, pp. 134–150. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66320-3 11

5. Shapeev, V.P., Vorozhtsov, E.V.: The method of collocations and least residuals
combining the integral form of collocation equations and the matching differen-
tial relations at the solution of pdes. In: Gerdt, V.P., Koepf, W., Seiler, W.M.,
Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 346–361. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66320-3 25

6. Sevastyanov, L.A., Sevastyanov, A.L., Tyutyunnik, A.A.: Analytical calculations in
maple to implement the method of adiabatic modes for modelling smoothly irreg-
ular integrated optical waveguide structures. In: Gerdt, V.P., Koepf, W., Seiler,
W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 419–431. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10515-4 30

7. Bertolazzi, E., Biral, F., Da Lio, M.: Symbolic-numeric efficient solution of optimal
control problems for multibody systems. J. Comput. Appl. Math. 185(2), 404–421
(2006)

8. Gutnik, S.A., Sarychev, V.A.: Symbolic-numerical methods of studying equilibrium
positions of a gyrostat satellite. Program. Comput. Softw. 40(3), 143–150 (2014)

9. Budzko, D.A., Prokopenya, A.N.: Symbolic-numerical analysis of Equilibrium solu-
tions in a restricted four-body problem. Program. Comput. Softw. 36(2), 68–74
(2010)

10. Shapeev, V.P., Vorozhtsov, E.V.: Symbolic-numerical optimization and realization
of the method of collocations and least residuals for solving the Navier-stokes
equations. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC
2016. LNCS, vol. 9890, pp. 473–488. Springer, Cham (2016)

11. Semin, L., Shapeev, V.: Constructing the numerical method for Navier-stokes equa-
tions using computer algebra system. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov,
E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 367–378. Springer, Berlin (2005)

12. Shapeev, V.P., Vorozhtsov, E.V.: CAS application to the construction of the collo-
cations and least residuals method for the solution of 3D Navier-stokes equations.
In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013.
LNCS, vol. 8136, pp. 381–392. Springer, Cham (2013)

https://doi.org/10.1007/978-3-319-66320-3_12
https://doi.org/10.1007/978-3-319-66320-3_12
https://doi.org/10.1007/978-3-319-66320-3_11
https://doi.org/10.1007/978-3-319-66320-3_11
https://doi.org/10.1007/978-3-319-66320-3_25
https://doi.org/10.1007/978-3-319-10515-4_30


Symbolic-Numeric Implementation of the Four Potential Method 429

13. Shapeev, V.P., Vorozhtsov, E.V.: Symbolic-numeric implementation of the method
of collocations and least squares for 3D Navier-stokes equations. In: Gerdt, V.P.,
Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp.
321–333. Springer, Heidelberg (2012)

14. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Wiley,
New York (1964)

15. Fletcher, C.A.J.: Computational Galerkin Methods. Springer-Verlag, Heidelberg
(1984)

16. Adams, M.J.: An Introduction to Optical Waveguides. Wiley, New York (1981)
17. Marcuse, D.: Light Transmission Optics. Van Nostrand, New York (1974)
18. Tamir, T.: Guided-Wave Optoelectronics. Springer-Verlag, Berlin (1990)
19. Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics.

Springer, Heidelberg (1985)
20. Hellwig, G.: Differential Operators of Mathematical Physics. Addison-Wesley, MA

(1967)
21. Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice Hall,

Englewood Cliffs (1982)
22. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North Holland Pub-

lishing Company, Amsterdam (1978)
23. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall,

Englewood Cliffs (1973)
24. Bogolyubov, A.N., Mukhartova, Yu.V., Gao, J., Bogolyubov, N.A.: Mathematical

modeling of plane chiral waveguide using mixed finite elements. In: Progress in
Electromagnetics Research Symposium, pp. 1216–1219 (2012)

25. Bogolyubov, A.N., Mukhartova, Y.V., Gao, T.: Calculation of a parallel-plate
waveguide with a chiral insert by the mixed finite element method. Math. Models
Compu. Simul. 5(5), 416–428 (2013)

26. Mukhartova, Y.V., Mongush, O.O., Bogolyubov, A.N.: Application of the finite-
element method for solving a spectral problem in a waveguide with piecewise con-
stant bi-isotropic filling. J. Commun. Technol. Electron. 62(1), 1–13 (2017)

27. Sveshnikov, A.G.: The basis for a method of calculating irregular waveguides. Com-
put. Math. Math. Phys. 3(1), 170–179 (1963)

28. Sveshnikov, A.G.: A substantiation of a method for computing the propagation of
electromagnetic oscillations in irregular waveguides. Comput. Math. Math. Phys.
3(2), 314–326 (1963)

29. Mathematics-based software and services for education, engineering, and research.
https://www.maplesoft.com/

30. Anderson, E., et al.: LAPACK Users’ Guide, 3rd edn. SIAM, Philadelphia (1999).
http://www.netlib.org/lapack/lug

31. LAPACK Users’ Guide Release. http://www.netlib.org/lapack/lug/node93.html
32. Bellman, R.: Introduction to Matrix Analysis. McGraw-Hill, New York (1960)
33. Kressner, D.: Numerical Methods for General and Structured Eigenvalue Problems.

Springer, Berlin (2006)
34. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Uni-

versity Press, Baltimore (1996)
35. Van Loan, C.: On estimating the condition of eigenvalues and eigenvectors. Linear

Algebra Appl. 88–89, 715–732 (1987)

https://www.maplesoft.com/
http://www.netlib.org/lapack/lug
http://www.netlib.org/lapack/lug/node93.html


A Divergence-Free Method for Solving
the Incompressible Navier–Stokes

Equations on Non-uniform Grids and Its
Symbolic-Numeric Implementation

Evgenii V. Vorozhtsov1(B) and Vasily P. Shapeev1,2

1 Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian
Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia

{vorozh,shapeev}@itam.nsc.ru
2 Novosibirsk National Research University, Novosibirsk 630090, Russia

Abstract. To increase the accuracy of computations by the method of
collocations and least squares (CLS) a generalization of this method is
proposed for the case of a non-uniform logically rectangular grid. The
main work formulas of the CLS method on non-uniform grid, including
the formulas implementing the prolongation operator on a non-uniform
grid at the use of a multigrid complex are obtained with the aid of the
computer algebra system (CAS) Mathematica. The proposed method has
been applied for the numerical solution of two-dimensional stationary
Navier–Stokes equations governing the laminar flows of viscous incom-
pressible fluids. On a smooth test solution, the application of a non-
uniform grid has enabled a 47-fold reduction of the solution error in
comparison with the uniform grid case. At the solution of the problem
involving singularities – the lid-driven cavity flow – the error of the solu-
tion obtained by the CLS method was reduced by the factors from 2.65
to 3.05 depending on the Reynolds number value.

Keywords: Non-uniform grids · Logically rectangular grids ·
Navier–Stokes equations · Krylov subspaces · Multigrid ·
Preconditioners · Method of collocations and least squares

1 Introduction

At present, finite difference methods, finite element methods, and finite volume
methods have gained widespread acceptance at the numerical solution of the
Navier–Stokes equations governing viscous incompressible fluid flows. One can
combine efficiently all these methods with spatial grids of various types, for
example, with structured curvilinear grids. The numerical solution of partial
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differential equations of fluid dynamics in physical regions with complex geometry
is the main goal of the application of curvilinear grids as well as of the grids
of other types. Such grids simplify the realization of boundary conditions on
curved boundaries [7,17]. Besides, their application enables one to increase the
numerical solution accuracy in spatial subregions near the boundaries in the cases
of large solution gradients at the expense of grid refinement near the boundaries.

In many applications, it is possible to transform the physical region with
curved boundaries with the aid of a one-to-one mapping x1 = φ1(ζ1, ζ2), x2 =
ϕ2(ζ1, ζ2) onto a rectangle or a square, where x1 and x2 are the original Cartesian
physical coordinates, ζ1 and ζ2 are the curvilinear coordinates. Such grids are
called logically rectangular [7]. In the present work, we restrict ourselves to the
case of logically rectangular grids. We also mention here such well-known types
of spatial grids as composite grids [17], structured grids [1], unstructured grids
[1,3], multi-block grids [17], and chimera grids [17].

The method of collocations and least squares (CLS) of the numerical solu-
tion of boundary-value problems for partial differential equations was developed
recently [6,12–16]. In these works, the CLS method was applied mainly on uni-
form rectangular grids.

The CLS method is a projection-grid method. The local approximate solution
of the differential problem is sought therein in each cell of difference grid in the
form of a linear combination of the basis elements of some functional space. The
space of polynomials is mainly used as the latter in view of certain convenience.
In the CLS method, the system of collocation equations was augmented by linear
matching conditions for the local solution in each cell with the local solutions
taken in all neighboring cells. As a result, an overdetermined SLAE was obtained.
As the subsequent studies [14] showed, this technique enables a considerable
reduction of the SLAE condition number. Its solution is sought in the CLS
method from the requirement of minimizing the residual functional of equations
of the problem on its numerical solution.

It was proposed in [14] to use a version of the weighted method of least
squares, in which two weight parameters ξ and η were introduced. The parameter
ξ was introduced as a factor in the both sides of the momentum equations, and
the parameter η was introduced in the left- and right-hand sides of the matching
condition as a factor affecting only the velocity component normal to the cell
boundary. After that, the problem of minimizing the condition number as a
function of parameters ξ and η was posed and solved numerically in [14]. The
optimal values ξopt and ηopt of these parameters were found for each specific
problem to be solved. It has turned out that these values depend on the problem
under consideration, in particular, on the Reynolds number. The use of found
values ξopt and ηopt has enabled a successful solution of all those test problems,
which were considered in [14,15]. Thus, the condition number of a SLAE from
which the approximate solution of the problem is found is a key criterion of the
quality of the CLS method.

Because of the combination of the method of collocations with a “strong”
requirement of minimizing the functional of the discrete problem solution resid-
ual, its properties (smoothness, accuracy) are improved in comparison with the
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solutions obtained by a simple method of collocations. The CLS method indeed
possesses also other improved properties in comparison with the method of col-
locations and LSFEM: (i) this method ensures the exact satisfaction of the mass
conservation law owing to the use of a solenoidal basis; (ii) there is no problem
of the pressure coupling with the velocity vector because the pressure is calcu-
lated in the CLS method simultaneously with the velocity vector components.
Furthermore, the CLS method enables an efficient solution of the problems for
elliptic, parabolic, and hyperbolic PDEs on various adaptive grids with rectan-
gular and triangular cells with the use of graphs for their ordering in the process
of computation; the overview of corresponding works is available in [11,14].

To achieve a higher acceleration we consider in the given work a combined
application of three techniques for accelerating the iteration process of problem
solution: the preconditioner, the operation of prolongation on a multigrid com-
plex, which is a constituent part of the Fedorenko method [4], and the Krylov
method [8]. These techniques of the iteration process acceleration are employed
in practice both separately and in combination [14].

It was shown previously in [6] that it is possible to increase the accuracy of
the numerical solution obtained by the CLS method by using the polynomials of
higher degrees. In this connection, we apply in the present work a second-degree
polynomial also for the pressure approximation. In this case, there are 18 basis
functions in total in the chosen space. Since the coefficients are constant in the
continuity equation, it is easy to satisfy it at the expense of the choice of basis
polynomials. It is not difficult to find that to this end, they must satisfy three
linear relations. From the original 18 basis vectors, only 15 vectors will finally
remain independent. Their set can be termed a solenoidal basis because each
basis vector is divergence-free. Therefore, the continuity equation and, conse-
quently, the mass conservation law is satisfied by the numerical solution of the
problem in the entire computational region.

In the work [6], the solution of the lid-driven cavity problem was carried out
on a composite grid, which has enabled a significant increase of the numerical
accuracy. However, the implementation of the CLS method on a composite grid
is related to a significant complication of its program realization: it is necessary
to remember the way to each location of the grid fragmentation with the aid of
quadtrees. This needs an additional computer memory and increases the total
CPU time of the problem solution. It is easy to see that from the viewpoint of the
algorithmic complexity, the CLS method on a non-uniform logically rectangular
grid takes an intermediate position between the CLS method on a uniform grid
and the CLS method on a composite grid because the first method does not need
the application of quadtrees. In the available literature on the CLS method, there
are no works devoted to the questions of the investigation of the influence of the
application of a non-uniform logically rectangular grid in the CLS method on
the accuracy of the results obtained by this method. The given work just bridges
this gap.

The purpose of the investigations described in the given paper is an increase
in the accuracy and convergence rate of a new version of the CLS method for
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numerical computations of two-dimensional stationary laminar flows of viscous
incompressible fluids. To this end, the following new elements are proposed:
1◦. A new version of the CLS method—the CLS method on a logically rectan-
gular non-uniform grid.
2◦. The analytic investigation of the two-parameter preconditioner for the CLS
method on non-uniform grid for a more rapid determination of its optimal
parameters.
3◦. It is shown how one can realize the boundary condition at the channel outlet
in different versions of the CLS method without using the rows of external ficti-
tious cells. This substantial simplification of the boundary condition procedure
at the open outlet boundary is a fundamental advantage of the CLS method
over the finite difference and finite volume methods.

2 Description of the CLS Method for Numerical Solution
of the 2D Navier–Stokes Equations on Non-uniform
Grids

Consider a boundary-value problem for the system of stationary Navier–Stokes
equations

(V · ∇)V + ∇p =
1

Re
ΔV, (1)

divV = 0, (x1, x2) ∈ Ω, (2)
V

∣
∣
∂Ω

= g, (3)

which describe the flow of a viscous non-heat-conducting incompressible fluid in
the region Ω with the boundary ∂Ω. In Eq. (1), x1, x2 are the Cartesian spatial
coordinates, V = (v1(x1, x2), v2(x1, x2)) is the velocity vector; p = p(x1, x2) is
the pressure, Re is the Reynolds number, Δ = ∂2

∂x2
1
+ ∂2

∂x2
2
, (V·∇) = v1

∂
∂x1

+v2
∂

∂x2
.

The system of three Eqs. (1) and (2) is solved under the Dirichlet boundary
conditions (3), where g = g(x1, x2) = (g1, g2) is a given vector function. The
pressure is determined from (1) and (2) with the accuracy up to a constant.
We will choose this constant in the following in such a way that the following
condition is satisfied:

∫
Ω

p dx1dx2 = 0, (4)

which is valid in the absence of sources and sinks in the region Ω [6]. As the
solution region the rectangular region is considered in the present work:

Ω = {(x1, x2)| 0 ≤ x1 ≤ L, 0 ≤ x2 ≤ H}, (5)

where L > 0 and H > 0 are the given lengths of the sides of region (5) along the
axes x1 and x2, respectively. The quantity H was used at the solution of fluid
dynamics tasks as a reference length at the nondimensionalization of variables,
and it enters in a natural way the definition of the Reynolds number Re in (1).
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In the problem (1)–(4), region (5) is covered by a non-uniform grid. Denote
by (x1,i, x2,j) a node of this grid, where the quantities (x1,i) and (x2,j) satisfy
the following inequalities: 0 = x1,1 < x1,2 < . . . < x1,I+1 = L, 0 = x2,1 < x2,2 <
. . . < x2,J+1 = H. Introduce the cell Ωij of the numerical grid in the (x1, x2)
plane as the following set of points: Ωij = {(x1, x2)| x1,i ≤ x1 ≤ x1,i+1, x2,j ≤
x2 ≤ x2,j+1}, i = 1, . . . , I; j = 1, . . . , J .

By analogy with [15] let us introduce the local coordinates y1, y2 in each
cell Ωij by the following formulas: y1 = (x1 − x1c,i)/h1i, y2 = (x2 − x2c,j)/h2j ,
where (x1c,i, x2c,j) are the coordinates of the geometric center of the cell Ωij ,
h1i = 1

2 (x1,i+1 − x1,i), h2j = 1
2 (x2,j+1 − x2,j), i = 1, . . . , I; j = 1, . . . , J . that is

h1i, h2j are the halved sizes of the cell Ωij along the axes x1 and x2, respectively.
Consequently, the local coordinates vary in the interval ym ∈ [−1, 1], m = 1, 2.
Introduce the notations u(y1, y2) = (u1, u2) = V(h1iy1 + x1c,i, h2jy2 + x2c,j),
q(y1, y2) = p(h1iy1 + x1c,i, h2jy2 + x2c,j). As a result of this substitution of
variables, the Navier–Stokes equations take the following form:

r2ij
∂2u1

∂y2
1

+
∂2u1

∂y2
2

− Reh2j

(

riju1
∂u1

∂y1
+ u2

∂u1

∂y2
+ rij

∂q

∂y1

)

= 0, (6)

r2ij
∂2u2

∂y2
1

+
∂2u2

∂y2
2

− Reh2j

(

riju1
∂u2

∂y1
+ u2

∂u2

∂y2
+

∂q

∂y2

)

= 0, (7)

rij
∂u1

∂y1
+

∂u2

∂y2
= 0. (8)

In Eqs. (6)–(8), rij is the cell aspect ratio, rij = h2j

h1i
. The value of the quantity

rij is generally different for each cell Ωij of a non-uniform logically rectangular
grid. In the particular case of a square grid, rij = 1 ∀i, j.

One can see from (8) that it is necessary to introduce the quantity rij in
some vectors of the basis of 15 vectors to ensure the solenoidal property of the
basis. For the case of a square grid, the form of basis vectors ϕ1, . . . , ϕ15 was
presented previously in [15]. The needed changes in this basis for the case of a
non-uniform grid were found by the method of indeterminate coefficients. It has
turned out that it is sufficient to introduce the quantity rij only in the basis
vectors ϕ2, ϕ4, ϕ5. The final form of 15 basis vectors is presented in Table 1.

Let us perform the Newton linearization of Eqs. (6) and (7):

ξ

[

r2ij
∂2us+1

1

∂y2
1

+
∂2us+1

1

∂y2
2

− Reh2j

(

rij

(

us+1
1

∂us
1

∂y1
+ us

1

∂us+1
1

∂y1

)

+ us+1
2

∂us
1

∂y2

+ us
2

∂us+1
1

∂y2
+ rij

∂qs+1

∂y1

)]

= −ξ

(

us
1

∂us
1

∂y1
+ us

2

∂us
1

∂y2

)

, (9)

ξ

[

r2ij
∂2us+1

2

∂y2
1

+
∂2us+1

2

∂y2
2

− Reh2j

(

rij

(

us+1
1

∂us
2

∂y1
+ us

1

∂us+1
2

∂y1

)

+ us+1
2

∂us
2

∂y2

+ us
2

∂us+1
2

∂y2
+

∂qs+1

∂y2

)]

= −ξ

(

us
1

∂us
2

∂y1
+ us

2

∂us
2

∂y2

)

, (10)
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Table 1. The form of basis functions ϕl

l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ϕl 1 y1
rij

y2
y2
1

rij
−2 y1y2

rij
y2
2 0 0 0 0 0 0 0 0 0

0 −y2 0 −2y1y2 y2
2 0 1 y1 y2

1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 y1 y2 y2
1 y1y2 y2

2

where s is the number of the iteration over the nonlinearity, s = 0, 1, 2, . . .,
us
1, u

s
1, q

s is the known approximation to the solution at the sth iteration starting
from the chosen initial guess with index s = 0. Here, as in [14,15], the user-
specified parameter ξ has been introduced for controlling the magnitude of the
condition number of the overdetermined system of linear algebraic equations
(SLAE), which must be solved in each cell Ωij .

The approximate solution in each cell Ωi,j is sought in the form of a linear
combination of the basis vector functions ϕl:

(us
1, u

s
2, p

s)T =
15∑

l=1

bs
i,j,lϕl, (11)

where the superscript T denotes the transposition operation. In the given work,
the second-degree polynomials in variables y1, y2 are used for the approxima-
tion of both velocity components and pressure. There are eighteen basis func-
tions in total in the chosen space. Since the coefficients are constant in the
continuity equation, which has a simple form, it is easy to satisfy it at the
expense of the choice of basis polynomials ϕl. It is not difficult to find that it
is required to this end that they satisfy three linear relations. There will finally
remain only fifteen independent basis polynomials from the original eighteen
ones. They are presented in Table 1. One can term their set a solenoidal basis
because rij · (∂ϕl,1/∂y1) + ∂ϕl,2/∂y2 = 0, l = 1, . . . , 15. In such a basis, the
continuity equation is satisfied identically by the discrete problem solution in
each cell.

The CLS method differs significantly from other methods of solving the
boundary-value problems for differential equations in that the solution of the
discrete problem is determined by the solution of an overdetermined SLAE. It
is required here that the minimum of the residual functional of its equations is
reached on the pseudo solution of the corresponding SLAE. To write the discrete
problem equations, which determine the solution in the cell Ωi,j , we specify the
collocation points therein. In the given work, three versions of the specification
of the collocation point coordinates have been implemented. Although a non-
uniform grid is employed, in local variables, each cell represents a square with
the side length equal to 2. Therefore, in such a cell, the collocation points for
the different values of numbers Nc in each cell were specified in the same way as
in the case of uniform grid, see further details in [14,15].

Substituting (11) as well as the numerical values of the coordinates of each
collocation point in (9), (10) we obtain 2Nc collocation equations of the discrete
problem:
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15∑

m=1

a(1)
ν,m · bs+1

m = fs
ν , ν = 1, . . . , 2Nc . (12)

They are linear algebraic equations for the sought quantities bs+1
m .

Let us augment the system of equations of the approximate problem in the
Ωij cell by the conditions of matching with the solutions of the discrete problem,
which are taken in all cells adhering to the given cell. We write them at separate
points (matching points) on the sides of the Ωi,j cell, which are common with its
neighboring cells. In the given case, the matching conditions are the conditions of
a smooth conjugation of the discrete problem solution at matching points. Their
form on the non-uniform grid somewhat differs from the matching conditions on
the uniform grid. As an example, let us consider the face y1 = +1 of a cell. On
this face, the matching conditions are as follows:

h1i
∂[(u+)n]s+1

∂n + η[(u+)n]s+1 = h1,i+1
∂[(u−)n]∗

∂n + η[(u−)n]∗, (13)

h1i
∂[(u+)τ ]s+1

∂n + [(u+)τ ]s = h1,i+1
∂[(u−)τ ]∗

∂n + [(u−)τ ]∗, (14)
(q+)s+1 = (q−)∗. (15)

Here h1i
∂

∂n = n1
∂

∂y1
+ n2

rij

∂
∂y2

, n = (n1, n2) is the external normal to the side of
the cell Ωi,j , (·)n, (·)τ are the normal and tangent components of the velocity
vector with respect to the cell side, u+, u− are the limits of the function u as
its arguments tend to the matching point from inside and outside the Ωij cell.
The superscript * by the quantities in the right-hand sides of relations (13)–(15)
reflects the fact that in the right-hand sides, one employs either the quantities at
the sth iteration or the quantities at the (s + 1)th iteration, which have already
been computed by the moment of the use of the given matching conditions.

The user-specified parameter η has been introduced here as in [14,15] for
the purpose of controlling the magnitude of the condition number of a SLAE,
which must be solved in each cell Ωij . On the remaining three faces of the cell,
the matching conditions for the velocity vector components are written down
similarly, therefore, they are not presented here for the sake of brevity.

For the uniqueness of the pressure determination in the solution, we either
specify its value at a single point of the region or approximate condition (4) by
the formula

1
h1i

(

∫
Ωi,j

q dx1dx2

)

=
1

h1i

(

−I∗ + ∫
Ωi,j

q∗dx1dx2

)

. (16)

Here I∗ is the integral over the entire region, which is computed as a sum of
the integrals over each cell at the foregoing iteration, q∗ is the pressure in a cell
from the foregoing iteration.

Note that in conditions (13)–(14), in the form of the systems of equations
determining the solution pieces in two neighboring cells, the directions of external
normals to these cells on their common side are opposite. Therefore, in formulas
(13)–(14), the first items will enter with one sign for one of these cells, and in
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the neighboring cell, the sign will be opposite. Owing to this, Eqs. (13)–(14) do
not repeat in the total SLAE, which determines the numerical solution of the
global problem and involves all equations written for each cell.

The points at which Eqs. (13)–(15) are written are termed the matching
points. As in the case of collocation points, the number of matching points and
their location on each cell side may be different in different specific versions
of the method. Denote by Nm the number of matching points for the velocity
vector components on the sides of each cell. The coordinates of these points in
variables y1, y2 were specified in each cell of a non-uniform grid in the same way
as in the case of a uniform grid, see [14,15] for further details. Using the solution
representation (11), let us substitute the coordinates of matching points into
each of three matching conditions (13)–(15). We obtain 2Nm linear algebraic
equations for velocity components from the first two conditions.

After substituting representation (11) into (15) one obtains four linear alge-
braic (matching) equations with one condition on each of the four cell sides.

For the uniqueness of the pressure determination in the solution, we either
specify its value at a single point of the region (in the given work, at the vertex
of the cell Ω1,1) or use condition (16). In test solutions, the exact pressure value
at this point was taken. Thus, the matching conditions for the velocity vector
components and pressure yield 2Nm + 4 + δ1i δ1j linear algebraic equations in the
total for the unknown bi,j,l in each cell (i, j), where δj

i is the Kronecker symbol,
δj
i = 1 at i = j and δj

i = 0 at i �= j.
If the cell side coincides with the boundary of region Ω, then the bound-

ary conditions are written at the corresponding points instead of the matching
conditions for the discrete problem solution: um = gm, m = 1, 2.

Uniting the equations of collocations, matching, and the equations obtained
form the boundary conditions, if the cell Ωij is the boundary cell, we obtain in
each cell a SLAE of the form

Ai,j · Xs+1
i,j = f s,s+1

i,j , (17)

where Xs+1
i,j = (bs+1

i,j,1, . . . , b
s+1
i,j,15)

T . The solution of system (17) determines locally
in the given cell Ωi,j the solution of the global discrete problem as its piece
matched with neighboring pieces. The matrix Ai,j contains 2Nc +2Nm +4+δ1i δ1j
rows and 15 columns. In the versions studied in the present work, system (17)
is overdetermined.

All 100% of the coefficients of all equations of SLAE (17) were derived
on computer in Fortran form by using symbolic computations with the com-
puter algebra system (CAS) Mathematica [18]. At the obtaining of the final
form of the formulas for the coefficients of the equations, it is useful to perform
the simplifications of the arithmetic expressions of polynomial form to reduce
the number of the arithmetic operations needed for their numerical computa-
tion. To this end, we employed standard functions of the Mathematica system,
such as Simplify and FullSimplify for the simplification of complex symbolic
expressions arising at the symbolic stages of the construction of the formulas of
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the method. Their application enabled a two-three-fold reduction of the length
of polynomial expressions.

One global (s+1)th iteration meant that all the cells were considered sequen-
tially in the computational region Ω. In each cell, SLAE (17) was solved by
the orthogonal method (of Householder), and the values known at the solution
construction at the (s + 1)th iteration were taken in the right-hand sides of
Eqs. (13)–(15) as the u− and q− in a given cell.

3 Two-Parameter Preconditioner for the CLS Method

It is necessary to solve in each cell Ωij the SLAE of the form (17). Let us omit
in (17) the superscripts and subscripts for the sake of brevity:

AX = f . (18)

As was mentioned in Sect. 2, the matrix A has the size N × 15, where N > 15
that is the matrix A is rectangular. As is known, the condition number of a
rectangular matrix A is computed by the formula κ(A) =

√

κ(AT A), where the
superscript T by A denotes the transposition operation and it is assumed that
the matrix A1 = AT A is non-singular.

The condition number of the matrix gives an universal estimate of the relative
error of the solution of system (18). In the cases of applying the CLS method for
the numerical solution of nonlinear partial differential equations, the right-hand
side f includes the solution values from the foregoing iteration. These values
have the error O(hl

1i)+O(hl
2j), where l ≥ 1 is the accuracy order of the method

(it is assumed that rij = O(1)).
The standard condition number of a nonsingular matrix A1 is defined as

κ(A1) =‖ A1 ‖ · ‖ A−1
1 ‖, (19)

where ‖ · ‖ is a matrix norm. In this section, we investigate the preconditioner
depending on two parameters. The parameter ξ has been introduced above by
multiplying by ξ the both sides of the linearized Navier–Stokes equations, see
(9) and (10). The parameter η has been introduced in the matching condition
(13). These parameters are chosen by a numerical solution of the problem of
minimizing the quantity κ(A).

As a result of the substitution of collocation points in Eqs. (9) and (10) one
obtains 2Nc collocation equations.

The pressure enters the momentum Eqs. (6) and (7) only in the form of the
derivatives ∂q/∂y1 and ∂q/∂y2, therefore, the coefficient affecting b10 in matrix
Acol is equal to zero. As a result of this, the matrix Acol is singular. It was
shown in [14] that the inclusion in the matrix A of a row corresponding to
approximation (16) of the pressure integral reverts this matrix into a matrix of
the full rank.

Denote by Amat a matrix corresponding to the matching conditions (13),
(14), and (15). The entire matrix A of the overdetermined SLAE can then be
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written as A = (Ãcol,Amat)T . At the given numerical values of half-steps h1i

and h2j , the entries of the matrix A depend on ξ and η. Since the matrix A1

is symmetric, one can calculate its condition number in the Euclidean norm
by the formula κ(A1) = λmax/λmin, where λmax = max(|λ1|, . . . , |λ15|), λmin =
min(|λ1|, . . . , |λ15|), λ1, . . . , λ15 are the eigenvalues of the matrix A1. At the use
of these formulas, there is no need in computing the inverse matrix A−1

1 .
The characteristic equation corresponding to the CLS method under consid-

eration is a 15-degree algebraic equation. It is, therefore, impossible to obtain in
a closed analytic form the expressions for the eigenvalues of the corresponding
matrix A1. We nevertheless show in the following that it is possible to obtain
information about some properties of the matrix A1 and, consequently, about the
properties of the two-parameter preconditioner under consideration by studying
the analytic expressions for its entries. Let us write in analytic form these expres-
sions for the case of an internal cell (i, j). The matrix A1 is symmetric, therefore,
it is sufficient to present the expressions for the entries lying in the upper trian-
gular part of this matrix. The size of the matrix A1 is equal to mb × mb, where
mb = 15 for the version of the CLS method, which is considered here. The size of
the upper triangular part of the matrix A1 is equal to mb ·(mb +1)/2 so that this
matrix part contains 120 entries at mb = 15. Denote the entries of this matrix by
βi,j , i, j = 1, . . . , mb. It is assumed that the number of collocation points Nc = 8
in the cell, therefore, the total number of collocation equations is 2Nc = 16. In
addition, four rows have been included in the matrix A, which correspond to four
matching conditions for the pressure (at the center of each cell face, there is one
point for the matching condition) and 16 rows corresponding to the matching
conditions for the velocity vector components (which are set at two points on
each of the four faces). Finally, one more row accounts for the integral condition
for the pressure (16).

We present at first the expressions for those entries βi,j , which involve the
parameter η and/or the grid half-step h2j . The half-step h1i does not enter
these elements for the reason that it has been introduced by analogy with [6]
as a denominator in the both sides of equality (16), therefore, it is cancelled
mutually with this half-step entering the numerators in the both sides of (16).

βμ,ν = ξ2 ·
(

6∑

k=0

a10+k,μa11+k,ν +
9∑

k=1

ak,μak,ν

)

+ P (η, h2j , μ, ν), (20)

where

(μ, ν) = (1, 1), (1, 2), (1, 4), (1, 6), (2, 2), (2, 4), (2, 5), (2, 6), (2, 7), (2, 9),
(3, 3), (3, 5), (4, 4), (4, 6), (4, 8), (5, 5), (5, 7), (5, 9), (6, 6), (7, 7), (7, 9),
(8, 8), (9, 9), (11, 11), (12, 12), (13, 13), (15, 15),
P (η, h2j , μ, ν) = 4δ1μδ1ν + δ1μδ2ν · 4η + δ1μδ4ν · (1 + 4η2) + δ1μδ6ν · (12 + η2)

+ δ2μδ2ν · (10 + 8η2) + δ2μδ4ν · 12η − δ2μδ5ν · 12η + δ2μδ6ν · η − δ2μδ7ν · 4η

+ δ2μδ9ν · η + δ3μδ3ν · (16 + η2) − δ3μδ5ν · 2η + δ4μδ4ν ·
(

145
4

+ 8η2

)
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+ δ4μδ6ν · (3 + η2) − δ4μδ8ν · 2η + δ5μδ5ν ·
(

145
4

+ 8η2

)

+ δ6μδ6ν ·
(

η2

4
+ 36

)

+ δ7μδ7ν · (4 + 4η2)δ7μδ9ν · (12 + η2) + δ8μδ8ν · (16 + η2) + δ9μδ9ν ·
(

36 +
η2

4

)

+ 2δ11μ δ11ν + 4δ12μ δ12ν + δ13μ δ13ν

(

h2
2j

9
+ 2

)

+ δ15μ δ15ν

(

h2
2j

9
+ 4

)

.

One can write the remaining entries of the matrix A1 in the form

βi,j = ξ2 ·
2Nc∑

m=1

2Nc∑

p=1

am,i · ap,j , i, j = 1, . . . , mb. (21)

The quantities am,l, m = 1, . . . , 2Nc, l = 1, . . . , mb, which enter (20) and (21),
are the coefficients of the collocation equations obtained from Eqs. (9) and (10)
at the substitution of expansions (11) into them, of the values ξ = 1, and of the
values of local coordinates y1 and y2 of collocation points. According to (9) and
(10), these coefficients depend on the solution obtained at the foregoing iteration
and on the Reynolds number. An analysis of expressions (20) and (21) leads to
the following conclusions.

1. The parameter ξ enters the quantities βi,j only as a factor of the form ξ2. It
follows from here that the surface κ = κ(ξ, η) is symmetric with respect to the
η axis. This enables one to restrict oneself to the search for the optimal value of
the parameter ξ only in the half-plane ξ > 0.
2. The expressions involving the parameter η enter the elements βi,j as the addi-
tive items, and there are both the first and the second powers of this parameter.
It is, therefore, clear that the surface κ = κ(ξ, η) is neither even nor odd function
of the parameter η.
3. The half-step h2j enters the formulas for βi,j only additively and only as h2

2j .
In many fluid dynamics problems, the computational region sizes in the plane
of dimensionless spatial coordinates are usually the quantities of the order O(1).
Besides, one must use as a rule a grid, which has at least 10 cells in each spatial
direction to ensure an acceptable accuracy of the CLS method under consider-
ation. Therefore, the above half-step is less than unity in its magnitude, and
then h2

2j 
 1. At the same time, the remaining expressions entering βi,j are
the quantities of the order O(1). It follows from here that the condition number
weakly depends on the magnitude of half-steps at h2j < 1. We emphasize that
this conclusion is general and is independent of an applied problem. One can use
this circumstance efficiently at a search for optimal values of parameters ξ and η
ensuring the minimum of the condition number of the matrix A1: it is sufficient
to find these optimal values by using a numerical solution found by the CLS
method on a relatively crude grid. One can then use the optimal ξ and η in the
computations on grids having much smaller steps.

Because the entries of the matrix Ãcol depend on the solution obtained at
the foregoing iteration, it is necessary to carry out a further investigation of the
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condition number properties on a given grid at the solution of a specific problem.
The corresponding numerical experiments are described below in Sect. 6.

The search of the minimum of function κ(ξopt, ηopt) was carried out in [14]
by the method of uniform search with a variable step [9] for the case of a
CLS method with 12 basis vectors. The value κ(ξopt, ηopt) typically satisfied
the inequalities 3 < κ(ξopt, ηopt) < 10 at the point of its minimum. Besides, it
was found that the optimal values ξopt and ηopt depended weakly on the loca-
tion of a specific cell in the spatial grid, at least in the cases of those test and
benchmark problems, which were considered in [14]. It was shown further that
a reduction of Nc affects more significantly the value ξopt than the value ηopt.

4 Convergence Acceleration Algorithm Based
on Krylov’s Subspaces

To accelerate the convergence of the iterations used for the approximate solution
construction we have used in the new version of the CLS method, which is
discussed in the present paper, a new variant of the well-known method [8] based
on Krylov’s subspaces, which was previously presented in detail in [12,15]. We
present in the following a very brief description of the corresponding algorithm.
Let the SLAE have the form X = TX + f , where the vector X is the sought
solution, T is a square matrix, and f is a column vector. Let the matrix T have
a full rank, and let the following iteration process converge: Xn+1 = TXn +
f , n = 0, 1, . . ., in which Xn is the approximation for the solution at the
nth iteration. By the definition, r n = TX n + f − X n = X n+1 − X n is
the residual of equations X = TX + f , and it is not difficult to obtain the
following relation from the above formulas: r n+1 = T r n. Let us assume that
k + 1 iterations have been made starting from some initial guess X0 that is the
quantities X1, X2, . . ., Xk+1 and r 0, r 1, . . . , r k have been computed. The
value Xk+1 is then refined by the formula X∗k+1 = Xk+1+Y k+1. One employs

the correction of the form Y k+1 =
k∑

i=1

αi r i with indefinite coefficients α1, . . ., αk

that are found from the condition of the minimization of the residual functional
Φ(α1, . . . , αk) =‖ X ∗k+1 − TX ∗k+1 − f ‖22, which arises at the substitution of
X ∗k+1 into the system X = TX + f . Here ||u||2 is the Euclidean norm of the
vector u. The refined vector of the k + 1th approximation X ∗k+1 is used as the
initial approximation for further continuation of the sequence of iterations.

5 Convergence Acceleration with the Aid
of the Multigrid Algorithm

The main idea of multigrid is the selective damping of the error harmonics [4,12].
The questions of the realization of these algorithms on non-uniform logically
rectangular grids in the contexts of finite difference methods and finite volume
methods were discussed in detail in the works [3] and [1], respectively.
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In the CLS method, as in other methods, the number of iterations necessary
for reaching the given accuracy of the approximation to the solution depends
on the initial guess. As a technique for obtaining a good initial guess for the
iterations on the finest grid among the grids used in a multigrid complex we
have applied the prolongation operations along the ascending branch of the V-
cycle—the computations on a sequence of refining grids. The passage from a
coarser grid to a finer grid is made with the aid of the prolongation operators.
Let us illustrate the algorithm of the prolongation operation by the example of
the velocity component u1(y1, y2, b1, . . ., b15). Let h1i and h2j be the half-steps
of the coarse grid.

Step 1. Let X1 and X2 be the global coordinates of the coarse grid cell center.
We make the following substitutions into the polynomial expression for u1:

y1 = (x1 − X1)/h1i, y2 = (x2 − X2)/h2j . (22)

As a result, we obtain the polynomial

U1(x1, x2, b1, . . . , b15) = u1

(
x1−X1

h1i
, x2−X2

h2j
, b1, . . . , b15

)

. (23)

Step 2. Let (X̃1, X̃2) be the global coordinates of the center of any of the four
cells of the fine grid, which lie in the coarse grid cell. We make in (23) the
substitution x1 = X̃1 + ỹ1 · h

(f)
1,i2

, x2 = X̃2 + ỹ2 · h
(f)
2,j2

, where (i2, j2) are the

indices of a fine grid cell, h
(f)
1,i2

and h
(f)
2,j2

are the halved sizes of this cell along the
x1 and x2 axis, respectively. As a result, we obtain the second-degree polynomial
Ũ1 = P (ỹ1, ỹ2, b̃1, . . . , b̃15) in variables ỹ1, ỹ2 with coefficients b̃1, . . . , b̃15. After
the collection of terms of similar structure it turns out that the coordinates
X1,X2 and X̃1, X̃2 enter b̃l (l = 1, . . . , 15) only in the form of combinations
δx1 = (X1 − X̃1)/h1i, δx2 = (X2 − X̃2)/h2j . According to (22), the quantities
−δx1 = (X̃1 − X1)/h1i, −δx2 = (X̃2 − X2)/h2j are the local coordinates of the
fine grid cell center in the coarse grid cell.

Let us present the expressions for coefficients b̃j (j = 1, . . . , 15) of the solu-
tion representation in a fine grid cell with the half-steps h

(f)
1,i2

, h
(f)
2,j2

in terms
of the coefficients b1, . . . , b15 of the solution representation in a cell with the
half-steps h1i, h2j :

b̃1 = b1 − b3δx2 + b6δx
2
2 + δx1(−b2 + b4δx1 − 2b5δx2)/rij ,

b̃2 = σ1(T1 + b5δx2)/rij , b̃3 = σ2[b3 + 2(b5δx1/rij − b6δx2)],

b̃4 = σ2
1b4/rij , b̃5 = σ1σ2b5/rij , b̃6 = σ2

2b6,

b̃7 = b7 − δx1(b8 − b9δx1) + δx2T1, b̃8 = σ1(b8 − 2b9δx1 + 2b4δx2),
b̃9 = σ2

1b9, b̃10 = b10 − δx1T2 − δx2(b12 − b15δx2), b̃11 = σ1(T2 − b13δx1),
b̃12 = σ2(b12 − b14δx1 − 2b15δx2), b̃13 = σ2

1b13, b̃14 = σ1σ2b14, b̃15 = σ2
2b15,

where σ1 = h
(f)
1,i2

/h1i, σ2 = h
(f)
2,j2

/h2j , rij = h2j/h1i, T1 = b2 − 2b4δx1 + b5δx2,
T2 = b11−b13δx1−b14δx2. Note that the above expressions for b̃1, . . . , b̃15 coincide
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with the expressions presented in [15] in the particular case of a square grid (in
this case, rij = 1 ∀ i, j, σ1 = σ2 = 1/2).

We present in the following a fragment of a program in the language of CAS
Mathematica, which finds the analytic expressions of coefficients b̃1, . . . , b̃5. The
remaining 10 coefficients are found in a similar way.

u1=b1 + (b2 y1)/rij + (b4 y1^2)/rij + b3 y2 - (2 b5 y1 y2)/rij + b6 y2^2;

rul = {y1 -> (x1 - xg1)/h1i, y2 -> (x2 - xg2)/h2j};

u1x1 = u1 /. rul; ry0 = {y1 -> 0, y2 -> 0};

rul2 = {x1 -> xn1 + y1*h1f, x2 -> xn2 + y2*h2f};

u1x2 = Expand[u1x1 /. rul2]; b1n = Simplify[u1x2 /. ry0];

rul9 = {xg1 -> xn1 + h1i*dx1, xg2 -> xn2 + h2j*dx2};

b1n = FullSimplify[Expand[b1n /. rul9]];

b2n = Simplify[Coefficient[u1x2, y1]]; b2n = b2n /. {y2 -> 0};

b2n = Expand[b2n /. rul9]; rul3 = {h1f -> rat1*h1i, h2f -> rat2*h2j};

b2n = Simplify[b2n /. h1f -> rat1*h1i];

b3n = Coefficient[u1x2, y2]; b3n = Expand[b3n /. rul9];

b3n = b3n /. y1 -> 0; b3n = b3n /. rul3;

b4n = Simplify[Coefficient[u1x2, y1^2]];

b4n = Expand[b4n /. rul9]; b4n = Simplify[b4n /. rul3];

b5n = Coefficient[u1x2, y1*y2];

b5n = -b5n/2; b5n = Simplify[b5n /. rul3];

Here b1n = b̃1, . . ., b5n = b̃5, dx1 = δx1, dx2 = δx2, (xn1, xn2) = (X̃1, X̃2),
(xg1, xg2) = (X1,X2), rat1 = σ1, rat2 = σ2, h1f = h

(f)
1,i2

, h2f = h
(f)
2,j2

.

6 Results of Numerical Experiments

6.1 Testing

Consider the following exact solution of the Navier–Stokes Eq. (1) [15]:

u1 =
−2(1 + x1)

(1 + x1)2 + (1 + x2)2
, u2 =

2(1 + x1)
(1 + x1)2 + (1 + x2)2

,

p = − 2
(1 + x1)2 + (1 + x2)2

, 0 ≤ x1, x2 ≤ 1. (24)

Note that the functions u1(x1, x2) and u2(x1, x2) describe the divergence-free
velocity field. Furthermore,

∫ 1

0

∫ 1

0

p dx1dx2 = 4G − π ln 2 − 2i

[

Li2

(

− i

2

)

− Li2

(
i

2

)]

≈ −0.46261314677281549872,

where i =
√−1, G is the Catalan’s constant [18], G ≈ 0.91596559417721901505,

Li2(z) is the polylogarithmic function. To ensure the satisfaction of Eq. (4) with
an error not exceeding the error of machine computations, the pressure p in (4)
was replaced with the quantity p̄ = p + 0.4626131467728155.
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The zero initial guess was set for quantities ui and p.
The non-uniform grid was generated in intervals 0 ≤ x1 ≤ L and 0 ≤ x2 ≤ H

by the algorithm presented in [17] and using the function sinh(·). Let us very
briefly describe the grid generation by the example of the grid in the interval 0 ≤
x1 ≤ L. Let δx1 be the uniform grid step in this interval that is δx1 = L/I. This
step is used as a reference step for specifying the grid step near the boundaries
of the computational region: x1,2 − x1,1 = cLδx1, x1,I+1 − x1,I = cRδx1. After
that, the abscissa x1,k of any grid node is calculated by a nonlinear mapping
x1,k = L · φ(k, cL, cR, σ), the form of φ(·) is given in [17]. The parameter σ
is found by the numerical solution of the following transcendental equation:
sinh(σ)/σ = (cLcR)−0.5. This equation was solved by the bisection method, the
tolerance for root finding was set to 10−14.

The step sizes near the boundaries x2 = 0 and x2 = H are set similarly:
x2,2−x2,1 = cbotδx2, x2,J+1−x2,J = ctopδx2, where δx2 = H/J . The quantities
cL, cR, cbot, and ctop are termed the stretching factors. If one sets ctop < 1, then
one obtains a non-uniform grid, which clusters near the boundary x2 = H.

The formulas for computing the root-mean-square errors of the numerical
solution obtained on a non-uniform grid are as follows:

δu(M) =

⎡

⎣
1

2HL

M∑

i=1

M∑

j=1

2∑

ν=1

(uν,i,j − uex
ν,i,j)

22h1i2h2j

⎤

⎦

1
2

,

δp(M) =

⎡

⎣
1

HL

M∑

i=1

M∑

j=1

(pi,j − pex
i,j)

22h1i2h2j

⎤

⎦

1
2

,

where M = I = J is the number of cells along each coordinate direction, uex
i,j

and pex
i,j are the velocity vector and the pressure according to the exact solution

(24). The quantities ui,j and pi,j denote the numerical solution obtained by the
CLS method described above.

We will compute the convergence orders νu and νp from the numerical solu-
tions for the velocity vector u and the pressure p by the formulas known in
numerical analysis [12,13]. Let bs

i,j,l, s = 0, 1, . . . be the value of the coefficient
bi,j,l in (11) at the sth iteration. The following condition was used for termination

of the iterations: δbs+1 < ε, where δbs+1 = maxi,j

(

max1≤l≤12

∣
∣
∣bs+1

i,j,l − bs
i,j,l

∣
∣
∣

)

,

and ε < h2 is a small positive quantity. We will call the quantity δbs+1 the
pseudo-error of the approximate solution.

Table 2 presents the results of numerical experiments, in which only two of
the above-described techniques for convergence acceleration were used: the two-
parameter preconditioner and the Krylov subspace method. The Reynolds num-
ber Re = 1000, L = H = 1 in (5). The satisfaction of the inequality δbn < 10−9

was the criterion for termination of the computations by the CLS method. Equa-
tion (16) was incorporated into the overdetermined SLAE (17). In the process
of iterations by the CLS method, the absolute value of integral (4) dropped
from the value of the order 10−3 to the value of the order 10−12 − 10−13 that is
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the value of the order of the machine roundoff errors at the computations with
double precision by the Fortran code. This can serve one of the criteria for the
correctness of the program implementation of the CLS method presented above.

Table 2. The errors δu, δp and their convergence orders νu and νp on a sequence of non-
uniform grids, Re =1000, L = H = 1, Nc = 8, c2top = 0.5, c2bot = 1.0, c1L = c1R = 1,
η = ηopt = 1.745

M δu δp νu νp

10 6.910E−05 1.267E−04

20 1.781E−05 3.454E−04 1.96 −1.45

40 4.817E−06 6.598E−04 1.89 −0.93

80 8.547E−07 4.880E−04 2.15 0.44

A comparison of Table 2 with a similar Table 2 from [15] leads to the following
conclusions. The error δu obtained at the use of a non-uniform grid is by 1–2
decimal orders less than in the uniform grid case. The error δp on relatively crude
grids of 102, 202, and 402 cells has dropped by one decimal order. However, it
has proved to be somewhat higher in comparison with the uniform grid case on
the non-uniform grid of 802 cells.

6.2 Lid-Driven Cavity Flow

A smooth test problem was used in the foregoing subsection for the verification
of the proposed version of the CLS method. For the control and verification of
the results of numerical experiments we have carried out here also a comparison
of typical quantities obtained in numerical experiments on the solution of the
benchmark problem of the lid-driven cavity flow. The results of its solution of
increasing accuracy are published by different researchers during the last thirty
years in detailed tables. The most accurate solutions of this problem available
at present [2,6,10] may be used for elucidating the accuracy of the new and
modified existing numerical methods for solving the Navier–Stokes equations.

In the 2D driven cavity problem, the computational region is the cavity, which
is a square (5) with side L = H = 1, the coordinate origin lies in its left lower
corner. The upper lid of the cavity moves with unit velocity in dimensionless
variables in the positive direction of the Ox1 axis. The other sides of cavity (5)
are at rest. The no-slip conditions are specified on all sides: v1 = 1, v2 = 0 at
x2 = 1 and vm = 0, m = 1, 2 on the remaining sides.

The lid-driven cavity flow has the singularities in the region upper corners.
Their influence on the numerical solution accuracy enhances with increasing
Reynolds number. Therefore, at high Reynolds numbers, it is necessary to apply
adaptive grids for obtaining a more accurate solution: the grids with finer cells
in the neighborhood of singularities.
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It has turned out that the most accurate result is obtained at Re = 100 when
the grid along the x1 axis is uniform, and along the x2 axis, it is clustered near
the upper boundary. The application of such a non-uniform grid has enabled
an increase in the accuracy of the numerical solution by the CLS method by
the factor of 3.05 in comparison with the case of a uniform grid with the same
number of cells (in both cases, the grid of 40 × 40 cells was used).

Fig. 1. Surface κ = κ(A(ξ, η)) obtained at Re = 1000, c1L = c1R = 0.4, c2bot = 1,
c2top = 0.35

The computations of the problem under consideration were carried out on
non-uniform grids also at Re = 1000. Because an increase in the Reynolds number
leads to a growth of the number of iterations needed for numerical solution
convergence, the importance of the application of optimal values ξopt and ηopt of
the parameters ξ, η entering the preconditioner described in Sect. 3 also increases.
In this connection, a search of the values ξopt and ηopt was implemented for Re
= 1000. To this end, 400 iterations were done by the CLS method on the grid of
100×100 cells. After that, the matrix Ai,j entering (17) was taken at i = j = 50
that is the cell was considered, which was located at the computational region
center. The surface κ = κ(ξ, η) was plotted, where κ is the condition number of
the matrix Ai,j according to (19). The values ξopt and ηopt, at which the function
κ(ξ, η) reached its minimum, were then found by the method of uniform search
with variable step. Figure 1 shows the form of surface κ = κ(ξ, η). It was found
that ξopt = ±7.20, ηopt = 1.60. The points (ξopt, ηopt, κ(ξopt, ηopt)) lie in Fig. 1
at the centers of two small cubes. One can see that the surface κ = κ(ξ, η) is
symmetric with respect to the η axis. This result was predicted in Sect. 3 with
the aid of the analytic investigation done by using a computer code written in
the language of CAS Mathematica.

Table 3 presents some results of the influence of the grid stretching factors
on the accuracy of the results obtained by the above-described CLS method.
The first row of the table corresponds to the case of the uniform grid of
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Table 3. Influence of the grid stretching factors c1L, c1R, c2bot, c2top on the accuracy
of results, Re = 1000, I = J = 160

c1L c1R c2bot c2top ‖ v1CLS − v1BP ‖∞

1 1 1 1 1.695E−02

1 1 1 0.35 9.740E−03

0.7 0.7 1 0.35 7.368E−03

0.4 0.4 1 0.4 6.398E−03

x1

x2

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2. Non-uniform computational
grid of 40×40 cells obtained at c1L =
c1R = 0.4, c2bot = 1, and c2top = 0.4

Fig. 3. Solution of the benchmark prob-
lem by the CLS method at Re = 1000:
the profile of the velocity component v1
along the centerline x1 = 0.5 (solid line);
(� � �) Botella and Peyret [2]

1602 square cells. The quantity ‖ v1CLS − v1BP ‖∞ was computed along the
cavity centerline x1 = 0.5 with the use of tabular data from the work [2] as the
benchmark data. In all computations summarized in Table 3, the same parame-
ters of the preconditioner were used: ξ = 0.1, η = 1.75.

One can see from Table 3 that the error ‖ v1CLS − v1BP ‖∞ is the least in the
case of grid stretching factors presented in the last row. The above error obtained
in the case of a uniform grid with the same number of cells exceeds by the factor
of 2.65 the error shown in the last row of the table. We have also carried out a
computation of the same fluid dynamics task by the CLS method on a uniform
grid of 3202 cells. In this case, ‖ v1CLS − v1BP ‖∞= 9.705E−03, which exceeds
by the factor of about 1.5 the error obtained in the case of a non-uniform grid
of 1602 cells with the grid stretching factors given in the last row of Table 3.

The result of the numerical solution by the CLS method of the square lid-
driven cavity problem on the non-uniform rectangular grid shown in Fig. 2 is
presented in Fig. 3 for the Reynolds number Re = 1000. We show in Fig. 2 only
the 40 × 40 grid, which is part of the multigrid sequence of grids 52 → 102 →
202 → 402 → 802 → 1602, to show more clearly the structure of the employed
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non-uniform grid. Solid line in Fig. 3 shows the numerical result obtained by the
above-described CLS method.

The application of non-uniform grids at the numerical solution of the lid-
driven cavity problem by the CLS method has enabled a lesser increase in the
numerical solution accuracy (by a factor of about three) than in the case of the
analytic test (24), and this is, of course, due to the presence of singularities in
the given problem.

The problem of the flow over a backward-facing step at Re = 800 is frequently
used for testing the computational algorithms of solving the Navier–Stokes equa-
tions [5]. The numerical algorithm for this task was developed similarly to the
algorithm for solving the lid-driven cavity flow: the same formulas were used,
which were generated with the aid of CAS Mathematica for computing the entries
of matrix A in each cell of non-uniform grid. The CLS method has proved to
be very efficient at the realization of the boundary condition at the open outlet
boundary of a channel: no rows of fictitious cells adhering to this boundary were
needed. This was achieved owing to the inclusion in the matrix A of a row corre-
sponding to the constancy of the volumetric flux in any cross section x1 = const,
including the outlet cross section.

7 Conclusion

An extension of the CLS method for the case of a non-uniform logically rect-
angular grid has been presented. As one can see from the work formulas of the
method, which have been presented above, this has led to some complication of
the CLS method as compared to the uniform grid case. On the smooth test solu-
tion (24), the application of a non-uniform grid has enabled a 47-fold reduction
of the solution error in comparison with the uniform grid case. In the case of a
problem with singularities, only a three-fold reduction of the solution error of
the CLS method has proved possible owing to the use of a non-uniform grid.

A large amount of symbolic computations, which arose at the derivation of
the basic formulas of the new version of the method, was done efficiently with
Mathematica. It is very important that the application of CAS has facilitated
greatly this work, reduced at all its stages the probability of errors usually intro-
duced by the mathematician at the development of a new algorithm and also
reduced the time needed for the development of new Fortran programs imple-
menting the numerical stages of the CLS method.

It is also to be noted that the CLS method suits very well for paralleliza-
tion. One can decompose the entire computational domain into any number of
subdomains along cell boundaries, which is equal to the number of available
processors. Each subdomain contains an approximately equal number of cells.
One can then carry out the global problem computation in parallel in each sub-
domain, and the interaction of subdomains with one another is realized at each
iteration from the requirement of the satisfaction of matching conditions on the
boundaries between them.
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Abstract. In this paper, we propose a novel efficient algorithm for cal-
culating winding numbers, aiming at counting the number of roots of a
given polynomial in a convex region on the complex plane. This algorithm
can be used for counting and exclusion tests in a subdivision algorithms
for polynomial root-finding, and would be especially useful in application
scenarios where high-precision polynomial coefficients are hard to obtain
but we succeed with counting already by using polynomial evaluation
with lower precision. We provide the pseudo code of the algorithm as
well as a proof of its correctness.

Keywords: Polynomial root-finding · Winding number

1 Introduction

Let

p(z) =
d∑

k=0

pkzk = pd

n∏

j=1

(z − zj), pd �= 0 (1)

be a polynomial of degree d with real or complex coefficients. Counting its roots
(with their multiplicity) in a fixed domain (such as an interior of a polygon or a
disc) is a fundamental problem with an important application to devising efficient
root-finders for p(z) on the complex plane, particularly subdivision algorithms,
proposed by Hermann Weyl in [10] and then extended and improved in [1–4,7,8] 1

and recently implemented in [6].
We propose a new algorithm for counting the roots in a fixed convex region on

the complex plane by expressing their number as the winding number computed
1 The authors of [3,4,7] called it Quadtree algorithm, and under that name it was

extensively used in computational geometry.
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along the boundary of the region, provided that the boundary was sufficiently
isolated from the roots of p(z).

Winding number algorithms have been proposed for counting roots in a disc
as parts of root-finding algorithms by Henrici and Gargantini in [4], then by
Henrici in [3] and by Renegar in [8]. Pan in [7] used root-radii algorithm by
Schönhage [9] for counting roots in a disc, and Becker et al. in [1,2] performed
counting based on Pellet’s theorem.

Our winding number computation shares some techniques with the algo-
rithms of [3] and [8], but there the algorithms have only devised in the special
case of a disc rather than an arbitrary convex compact region, and unlike these
papers we ensure numerical stability of our computation of the winding num-
ber. Another method using insertion technique, but not requiring isolation of the
input region has been proposed by Zapata and Martin in [11,12]. We evaluate an
input polynomial p(z) at some additional auxiliary points that we insert a priori
on the boundary of the input region. In this way we made our parametrization
is smooth on the associated sub-segments of the boundary curve.

Our proposed root-counting algorithm has the following computational
advantages:

– It does not involve polynomial coefficients: only polynomial evaluations are
required. This is especially useful when polynomial evaluations can be pro-
vided as a fast “black box”.

– Computational precision can be kept low: the algorithm outputs the winding
number correctly as long as polynomial evaluations are precise enough to
indicate correctly the quadrant of the complex plane in which the values of
the polynomial lies.

– Besides evaluating polynomials, only integer calculations are involved.

We present our algorithm in the next section and then continue the paper in
Sect. 3 by proving its correctness.

2 Winding Number Calculation via Sampling

Suppose that p(z) is a polynomial of Eq. (1), γ : [0, 1] → C is a simple convex
closed piecewise-smooth curve, and Γ is the region enclosed by γ. The winding
number ωp◦γ of a curve p◦γ is the number of counterclockwise turns that p(γ(t))
makes around the origin as t increases from 0 to 1. Namely,

ωp◦γ =
1
2π

∮

γ

p′(z)
p(z)

dz =
1
2π

∫ 1

0

p′(γ(t))γ′(t)
p(γ(t))

dt. (2)

Hereafter we write ω := ωp◦γ omitting the subscript p ◦ γ. It is well-known by
principle of argument, that if (p ◦ γ)(t) �= 0 for all t ∈ [0, 1], then the winding
number ω is a well-defined integer equals to the number of the roots of p(z)
inside the region bounded by Γ .

In this paper we aim at developing algorithm that calculates winding numbers
of p ◦ γ, where p is a univariate polynomial whose roots lie reasonably far from
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γ. In particular, such algorithm can be applied to circles, squares or polygons.
Before diving into the details of the algorithm, we should clarify the assumptions
about the curve γ : [0, 1] → C.

Assumptions on γ.

1. γ is the boundary of a connected region Γ on the complex plane. It is a convex
closed curve, i.e., γ(0) = γ(1).

2. There exists the continuous derivative γ′(t) except for t lying in a finite subset
T ⊂ [0, 1] (which is relatively small).

3. Furthermore the derivative γ′(t) is bounded by L from above, that is,

L = max
t∈[0,1]\T

|γ′(t)| (3)

4. γ is 1
3r-isolating the roots of polynomial p(z), meaning that the minimum

distance between a point on the curve γ and a root of p(z) is at least 1
3r

where r denotes the minimal distance between the origin and the curve p ◦ γ,
that is,

r = min
t∈[0,1]

|(p ◦ γ)(t)|. (4)

In particular (p ◦ γ)(t) �= 0 for all t ∈ [0, 1].

Remark 1. For a convex domain with a center (which covers a disc and an inte-
rior of a rectangle as particular cases) we can define its dilation with a coef-
ficient θ > 1. If the number of roots of p(z) in the domain is invariant in its
dilation with coefficients θ and 1/θ, then we call the domain θ-isolated. We can
square isolation coefficient θ by performing Dandelin’s root-squaring iteration
p(z) → (−1)d p(

√
z )p(−√

z ) (cf. [5]). s iterations

p0(z) = p(x), pj+1(z) = (−1)d pj(
√

x )pj(−
√

z ), j = 0, 1, . . . , s

change that coefficient into θ2
s

.

The core idea of our winding number algorithm is to compute the number
of turns of Γ around 0. We do it by computing polynomial in finite number
of points t0, ..., tN ∈ [0, 1]. More precisely we correctly compute the number of
roots in a given region if for every i the actual value p(γ(ti)) and the computed
value of p(x) at the point γ(ti) lie in the same quadrant on the complex plane,
labeled by the following integers m(p(γ(ti)).

Definition 1. Given polynomial p(z), closed curve γ : [0, 1] → C, and t ∈ [0, 1],
the quadrant label m((p ◦ γ)(t)) is defined as

m((p ◦ γ)(t)) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if Re((p ◦ γ)(t)) ≥ 0, Im((p ◦ γ)(t)) ≥ 0
1 if Re((p ◦ γ)(t)) < 0, Im((p ◦ γ)(t)) ≥ 0
2 if Re((p ◦ γ)(t)) < 0, Im((p ◦ γ)(t)) < 0
3 if Re((p ◦ γ)(t)) ≥ 0, Im((p ◦ γ)(t)) < 0

(5)
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We simplify the notation letting the integers m0, ...,mN denote the quadrant
labels for a sequence 0 = t0 < t1 < · · · < tN ≤ 1.

We are going to prove that the winding number increases by 1 (respectively,
decreases by 1) whenever a sub-sequence (m0, . . . ,ml) goes through all four
quadrants counterclockwise (respectively, clockwise).

1 → 2 → 3 → 3 → 0 → 1 is an example of a full counterclockwise cycle, and
3 → 2 → 1 → 2 → 1 → 0 → 3 is an example of a full clockwise cycle.

Notice that in the latter example the labels go counterclockwise at some
point (the 1 → 2 part), but do not complete a full counterclockwise cycle and
thus make no impact on the value of winding number.

To calculate the number of cycles in quadrant labels, we take the difference
of each quadrant label with its preceding label modulo 4. For example, the
difference between label 2 and its preceding label 1 is 2 − 1 ≡ 1(mod 4); the
difference between label 0 and its preceding label 3 is also 1, since 0 − 3 = −3 ≡
1(mod 4).

Notice that for a counterclockwise cycle, the overall sum of these differences
must equal 4 (as there must be 4 net increases in quadrant labels); for a clock-
wise cycle, the overall sum of the label differences must be -4 (as there must
be 4 net decreases in quadrant labels). As a result, if we construct sequence
m(0), . . . , m(N) where m(0) = m0 and m(k) for k = 1, . . . , N are chosen such
that m(k) − m(k − 1) ∈ {0, 1, 2, 3} and m(k) − m(k − 1) ≡ mk − mk−1(mod 4),
then (m(N) − m(0))/4 will be the number of counterclockwise cycles minus the
number of clockwise cycles.

In order to establish the link between winding number and the cycles of
quadrant labels, we need to eliminate two possibilities: (1) a full cycle of the
curve that does not correspond to a full cycle of quadrant labels (this may
happen if the sampled points are too far apart, for instance only three first-
quadrant points from a cycle are sampled, showing labels 0 → 0 → 0), and (2)
we cannot determine whether a full cycle of quadrant labels is a clockwise or
counterclockwise cycle (this may happen when two consecutive quadrant labels
differ by more than 1, e.g., if 0 → 2 → 0). Our winding number algorithm ensures
that the points are sampled properly so that neither bad scenario will occur, and
so the winding number can be calculated correctly as

ω =
m(N) − m(0)

4
. (6)

3 Correctness of the Winding Number Algorithm

In this section we prove that our algorithm indeed produces correct winding
number.

Theorem 1. For a degree-d univariate polynomial p(z), a parametrized curve
satisfying Assumption 1–5, and a sequence 0 = t0 < t1 < · · · < tN ≤ 1 such that
|ti − ti−1| ≤ πr

12dL for all i = 1, . . . , N + 1, tN+1 := t0, construct a sequence of
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Algorithm 1. The Winding Number Algorithm
Require: A polynomial p(z) =

∑d
k=0 pkxk, a region Γ with boundary parametrized

as a piece-wise smooth curve γ : [0, 1] → C, r > 0, L > 0.
Ensure: A positive integer ω such that if γ, r, L satisfy Assumption 1-4, then ω equals

to the winding number of p ◦ γ.
1: Sample N = � 12dL

πr
� + |T | points 0 ≤ t0 < t1 < · · · < tN ≤ 1 such that T ⊂ {ti :

0 ≤ i ≤ N} and ti − ti−1 ≤ πr
12dL

for all i = 1, . . . , N + 1, tN+1 := t0.
2: m0 ← the quadrant label of (p ◦ γ)(t0).
3: for i=1 to N do
4: mi ← the quadrant label of (p ◦ γ)(ti)
5: Choose m(i) such that {0, 1, 2, 3} 	 m(i) − m(i − 1) ≡ mi − mi−1(mod 4).
6: end for i
7: return m(N)−m(0)

4
.

integers m(0), . . . , m(N) such that m(0) = m0, m(i)−m(i−1) ∈ {0, 1, 2, 3}, and
m(i)−m(i− 1) ≡ mi −mi−1(mod 4) for i = 1, . . . , N , where mi is the quadrant
label of (p ◦ γ)(ti). Then the winding number ω of p(z) along curve γ is equal to

ω =
m(N) − m(0)

4
. (7)

Proof. On each segment [ti, ti−1], γ(t) is smooth. If a sequence of consecutive
labels m(i),m(i+1), . . . ,m(j) completes a counterclockwise cycle, then the sum
of differences must equal to 4, i.e.,

m(j) − m(i) =
j−1∑

k=i

(m(k + 1) − m(k)) = 4. (8)

Similarly, a sequence of labels representing a clockwise cycle must satisfy
m(j) − m(i) = −4. Thus the overall sum m(N)−m(0)

4 is equal to the number
of counterclockwise cycles minus the number of clockwise cycles. Given this
property, it suffices to show that for any i = 1, ..., N it holds that

1. It is impossible that the curve p ◦ γ can complete a full turn in [ti, ti+1], that
is,

1
2π

∫ ti

ti−1

p′(γ(t))γ′(t)
p(γ(t))

dt < 1 (9)

.
2. The quadrant labels mi differs from mi−1 by at most 1, that is,

|mi − mi−1| ≤ 1. (10)

Proof of claim 1. Recall that p(z) = pd

∏d
j=1(z − zj) and that

p′(z)
p(z)

=
d∑

j=1

1
z − zj

. (11)
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We will show that the integral in Eq. (9) is less than 2π. It follows that

∣∣
∫ ti

ti−1

p′(γ(t))γ′(t)
p(γ(t))

dt
∣∣ ≤

∫ ti

ti−1

∣∣p
′(γ(t))

p(γ(t))

∣∣|γ′(t)|dt

≤L

∫ ti

ti−1

d∑

j=1

∣∣ 1
γ(t) − zj

∣∣dt

≤L

∫ ti

ti−1

3d

r
dt

=
3dL

r
(ti − ti−1)

≤3dL

r
· πr

12dL

=
π

4
< 2π.

(12)

This verifies Eq. (9).
Proof of claim 2. If mi differs from mi−1 by more than one, then the path

(p ◦ γ)(t) would cross both the real axis and the imaginary axis as t increases
from ti−1 to ti. As a consequence, the argument of (p ◦ γ)(t) would change at
least by π/4. Since

arg((p ◦ γ)(t)) =
d∑

j=1

arg((γ(t) − zj), (13)

there exists at least one j such that arg(γ(ti)−zj) differs from arg(γ(ti−1)−zj) by
more than π/(4d). Next we will show that this is impossible, because according
to the choice of samples, γ(ti) is very close to γ(ti−1). On one hand,

|γ(ti) − γ(ti−1)| ≤ L|ti − ti−1| ≤ πr

12d
. (14)

On the other hand, both |γ(ti) − zj | and |γ(ti−1) − zj | are at least r/3
and their arguments differ by at least π/4d. Let θ1 = arg(γ(ti) − zj) and θ2 =
arg(γ(ti−1) − zj), θ1 �= θ2 then

|γ(ti) − γ(ti−1)| = |(γ(ti) − zj) − (γ(ti−1) − zj)|
≥ |r

3
eθ1i − r

3
eθ2i|

=
r

3
|e(θ1−θ2)i − 1|

>
r

3
· |θ1 − θ2||

≥ πr

12d
.

(15)

A contradiction proves the claim.
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Computation Complexity. The complexity of the algorithm is dominated
by the evaluations of the polynomial at N sampled points. Besides polynomial
evaluation, the algorithm only requires arithmetic of small integers (mostly less
than 8). The value of N is proportional to the Lipschitz bound L defined in
Assumption 3. Thus the speed of the algorithm is determined by how fast it can
obtain polynomial evaluations at sampled points. If the region is the unit disc
{z : |z| ≤ 1}, then we can evaluate p(x) at 2h equally-spaced points on the unit
boundary circle {z : |z| = 1} and by using FFT, would correctly compute the
number of roots of p(x) in the disc at a arithmetic cost in Õ(dL), which means
O(dL) up to poly-logarithmic factors in dL.

Acknowledgements. Our research has been supported by the NSF Grant
CCF–1563942, NSF Grant CCF-1733834, and the PSC CUNY Award 69813 00 48.
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Abstract. In this paper we first recall some rigorously proved results
related to the Heilbronn numbers and the corresponding optimal config-
urations of n = 5, 6, 7 points in squares, disks, and general convex bodies
K in the plane, n = 5, 6 points in triangles and a bundle of approximate
results obtained by numeric computation in the Introduction section.
And then in the second section we will present a proof to a conjecture
on the Heilbronn number for seven points in the triangle through solving
a group of non-linear optimization problems via symbolic computation.
In the third section we list three unsolved well-formed such non-linear
programming problems corresponding to Heilbronn configurations for
n = 8, 9 points in squares and 8 points in triangle, we expect they can
be solved by similar method we used in the Section two. In the final
section we mention two generalizations of the classic Heilbronn triangle
problem. The paper aims to provide a concise guide to further studies on
Heilbronn-type problems for small number of points in specific convex
bodies.

Keywords: Heilbronn number ·
Combinatorial geometry optimization · Symbolic computation

1 Introduction

The Heilbronn triangle problem is to ask how to distribute n points P1, P2, . . . ,
Pn into a given convex region K in the plane so that the smallest area of the(
n
3

)
triangles formed the n points is maximal H(K,n). It is easy to see that

the asymptotics of H(K,n) is not dependent on the exact shape of K. Hans
Heilbronn initially conjectured that

H(n) ∼ Constant · n−2.
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The best known result related to this conjecture is that

An−2 · log n ≤ H(n) ≤ Bn−8/7eC
√
log n,

where A,B,C are constants, proved and improved by Roth [20–24], Schmidt
[25], and Kómlos, Pintz and Szemerédi [17,18] from 1951 to 1980’s.

For a specified convex set K and integer n, the Heilbronn triangle problem
can be considered as non-linear global optimization searching for Heilbronn con-
figurations of finite points. Even for very simple regular convex sets like square,
triangle and disk, and for very small number n > 4, the problem for finding the
Heilbronn configurations and values are often very hard. We give a brief recall
to the known results proved in literatures [9,10,29–35] as follows.

1. When K is a square �, (the non-trivial) H(�, n) is known for n = 5, 6, 7,
that is,

H(�, 5) =
1

3
√

3
, H(�, 6) =

1
8
, H(�, 7) =

1
11.9247

.

All floating point values are given to 4 decimal places. The corresponding
optimal configurations are shown in Fig. 1. (See [30,31,33,35]).

2. When K is a triangle �, H(�, n) is known for n = 5, 6

H(�, 5) =
1

3 + 2
√

2
, H(�, 6) =

1
8
.

The corresponding optimal configurations are shown in Fig. 2. (See [30,32,
34]).

3. When K is a disc D, H(D,n) is known for n = 5, 6, 7. The corresponding
optimal configurations are maximal regular convex n-gons inscribed in the
disk. These results were proved mainly by small perturbation analysis to
the optimal configurations without complicated symbolic computation. And
published in Chinese journals ([33,34]) in the 1990’s. See [28] for numeric
results (corresponding to lower bounds of H(D,n)) for n ≤ 16. We encourage
readers to give a new proof to n ≤ 7. To our experience we feel optimistic to
see a symbolic-computation-based proof to n ≤ 9.

4. It is also known that for all convex set K,

H(K, 6) ≤ 1
6
, H(K, 9) ≤ 1

9

holds in general. The optimal configuration for H(K, 7) = 1/9 is shown in
Fig. 3. (For proofs see [9,10,29]).

Many works related to the lower bounds of the H(�, n) for n up to 22 have
been done by Goldberg [14], Comellas and Yebra [7], Cantrell [4], Beyleveld (see
[11]), Karpov [16], Pegg Jr [19] and Tal [27]. Figure 4 shows their conjectures on
the Heilbronn configurations for 8 ≤ n ≤ 12. Similar works also gave been done
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)a6-H()5-H(

Fig. 1. The Heilbronn configurations of n points in the square, n = 5, 6, 7. Note that
(H-5) is not an affine regular pentagon, (H-6b) is the greatest affine regular hexagon
contained in the square, but the positions of the vertices are not fixed in the edges.
H(�, 7) is the smallest positive real root of the cubic equation 1−14z+12z2+152z3 = 0.
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1/
4

3/
4 3/4
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4 1/4

1/4

)3()2()1(

Fig. 2. The Heilbronn configurations of n points in the triangle, n = 5, 6.
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aa

aa

a a

G
a = 

G
K

3
6

 is  the bary center  of the triangle, and
the optimial convex body     is a hexagon
(in gray).

Fig. 3. The optimal convex planar body that maximizes the Heilbronn value H(K, 7).

for K being triangles and disks by Friedman [12] and Cantrell [4]. The first few
lower bounds for H(�, n) are as follows.

H(�, 7) ≥ 7
72

, H(�, 8) ≥ 0.0677, H(�, 9) ≥ 43
784

,

H(�, 10) ≥ 0.0433, H(�, 11) ≥ 0.0360,

H(�, 12) ≥ 0.0310, H(�, 12) ≥ 0.0245.

More information can be found from web page [28].
For eight points in squares, the numeric result found by Comellas and Yebra

in [7] can be “rounded” to the exact form as follows: for any 8 points P1, P2, . . . ,
P8 in the square, the smallest area of the

(
8
3

)
= 56 triangles formed by the 8

points is less than or equal to 1/(3 + 3
√

13), and the equality holds if and only
if the configuration is congruent to the following 8 points

(0, 0), ( 1+
√
13

6 , 0), (1, 7−√
13

18 ), (1, 1),

( 5−√
13

6 , 1), (0, 11+
√
13

18 ), ( 5−√
13

6 , 7−√
13

9 ), ( 1+
√
13

6 , 2+
√
13

9 ),

as shown in the Fig. 5.

2 A Proof to Heilbronn Number for Seven Points
in Triangles

In 2009, Kahle [15] suggested a numeric searching method for finding the upper
bounds of H(�, n) (see Fig. 6). Using this method De Comité and Delahaya [8]
proved the following upper bound of Heilbronn’s value for 7 points in a triangle,

H(�, 7) ≤ 23
200

,
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Fig. 4. The best found Heilbronn configurations for n points in the square, found by
F. Comellas and J. Yebra (n = 8, 9, 10, 12), M. Goldberg (n = 11) and M. Beyleveld
(n = 13). Note that for n = 8, the configuration is invariant under a composition
of rotation and mirror reflection, where a = (1 +

√
13)/6, b = (7 − √

13)/18, c =
(2 +

√
13)/9. For n = 9, 10, the configurations are symmetric with the y = x. The

configuration for n = 9 is determined by a = 3/8 − √
65/40, b =

√
65/10, c = 7/16 +

3
√

65/80, d = 1/4 +
√

65/20. For n = 11, 13, the configurations are symmetric with
x = 1/2 and y = 1/2, with respectively. The configuration for n = 12 is full symmetry.
In configurations for n = 10, 12, the parameters are real roots of cubic equations. The
corresponding conjectures on H(�, n) are: H(�, 8) = 1/(3+3

√
13) = 0.0723, H(�, 9) =

7/(9
√

65 + 55) = 0.0548, H(�, 10) = 0.0465, H(�, 11) = 1/27, H(�, 12) = 0.0325 and
H(�, 13) = 0.0266.

and that the Heilbronn configuration formed by 7 points in a triangle is contained
in the 7-tuple of the small triangular regions shown in of the Fig. 7(a).
Though this upper bound is not very tight in the sense that H(K, 7) ≤ 1/9
holds for all convex set K, the information on the position of the seven small
triangular regions is helpful to transform the computing of H(�, 7) to a non-
linear optimization problems with quadratic constraints. We explain this in the
below. First we observed that a direct corollary of this result is that the convex
hull of the Heilbronn configuration of 7 points in the triangle is a hexagon, and
if P1, P2, . . . , P6, P7 form a Heilbronn configuration such that P1, P2, . . . , P6 are
the vertices of the convex hull, then P1, P2, . . . , P6 are contained in the edges of
the triangle. This is based on the fact that the seven small triangular regions
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Fig. 5. The Heilbronn configuration of eight points in the square, found by F. Comellas
and J. Yebra. The eight points are symmetry about one diagonal of the square. Two
points are connected by dash line if they form an edge of one smallest triangle. The
minimal triangle area is (

√
13 − 1)/36 = 0.0723 ∈ [ 1

14
, 1
13

], and among the 56 triangles,
there are 12 minimal ones.

)21=n()11=n()01=n(

)9=n()8=n()7=n(

Fig. 6. The best found Heilbronn configurations for n points in the triangle found by
D. Cantrell, n = 7, 8, . . . , 12. Note that configurations are 2π/3 rotationally symmetric
for n = 7, 8, horizontally symmetric for n = 11, and completely symmetric for n = 12.

contain neither vertex nor midpoint of the triangle, and that if any edge AB
satisfies the assumption

#(AB ∩ {P1, P2, . . . , P6}) ≤ 1,

and
{A,B, midpoint(AB)} ∩ {P1, P2, . . . , P6} = ∅,
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Fig. 7. Each of the seven small triangular regions contains one points of the Heilbronn
configuration in the triangle.

then we can construct a new triangle A1B1C containing P1, P2, . . . , P6, P7, as
shown in Fig. 7(b), which contradicts to the optimality of P1, P2, . . . , P7. There-
fore, we can assume that P1, P2 ∈ AB, P3, P4 ∈ BC, P5, P6 ∈ CA. Let

x0 := min{area(PiPjPk)|1 ≤ i < j < k ≤ 7, P1, P2, . . . , P7 ∈ �ABC}.

Here area(PiPjPk) is the oriented area of triangles. Thus we can prove the fol-
lowing assertions.

1. Among the
(
7
3

)
= 35 triangles formed by P1, P2, . . . , P7 there are at most 12

smallest triangles, i.e., area(PiPjPk) = x0 implies that

=⇒ (i, j, k) ∈
{
(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6), (5, 6, 1), (6, 1, 2);
(7, 2, 3), (7, 4, 5), (7, 6, 1), (7, 1, 4), (7, 2, 5), (7, 3, 6)

}

.

2. The following six triangles must be those of smallest area.

(i, j, k) ∈ {(7, 2, 3), (7, 4, 5), (7, 6, 1), (7, 1, 4), (7, 2, 5), (7, 3, 6)}
=⇒ area(PiPjPk) = x0.

3. There are at most three smallest triangles among
(
6
3

)
= 20 triangles formed

by P1, P2, . . . , P6.

min{area(P2P3P4), area(P4P5P6), area(P6P1P2)} ≥ 1/9 > x0.

The above inequality can been proved by estimating the interval computation
result for area(P2P3P4) and so on under assuption that P1, P2, . . . , P6 are con-
tained in the small triangular regions shown in the Fig. 7(a).



Heilbronn Configuration of Seven Points in Triangles 465

In the third step, we associate P1, P2, . . . , P7 to the following coordinates:

P1 = (x1, 0), P2 = (x2, 0), P3 = (x3, 1 − x3), P4 = (x4, 1 − x4),
P5 = (0, x5), P6 = (0, x6), P7 = (x7, x8).

Then we can construct 6 equality constraints corresponding to the set of the
smallest triangles,

f1 := −x7 + x7 x3 − x2 x8 + x2 − x2 x3 + x3 x8 − x0,

f2 := x7 − x7 x4 − x7 x5 − x4 x8 + x4 x5 − x0,

f3 := x7 x6 + x1 x8 − x1 x6 − x0,

f4 := x7 − x7 x4 + x1 x8 − x1 + x1 x4 − x4 x8 − x0,

f5 := −x7 x5 − x2 x8 + x2 x5 − x0,

f6 := −x7 + x7 x3 + x7 x6 + x3 x8 − x3 x6 − x0,

and construct 3 inequality constraints corresponding to the other three possible
smallest triangles P1P2P3, P3P4P5, P5P6P1,

f7 := −x1 + x1 x3 + x2 − x2 x3 − x0 ≥ 0,

f8 := x3 − x3 x5 − x4 + x4 x5 − x0 ≥ 0,

f9 := x1 (x5 − x6) − x0 ≥ 0.

Therefore, we have transformed the computing of H(�, 7) to the following non-
linear optimization problem with quadratic constraints.

max x0

s.t. f1 = 0, f2 = 0, . . . , f6 = 0,

f7 ≥ 0, f8 ≥ 0, f9 ≥ 0,

1
8 < x1 < 5

24 , 17
24 < x4, x6 < 19

24 ,

19
24 < x3, x5 < 7

8 , 5
24 < x2 < 7

24 ,

7
24 < x7, x8 < 3

8 ,

7
72 ≤ x0 < 1

9 .

Below we briefly describe the main process for solving the non-linear pro-
gramming related to the Heilbronn configuration of 7 points in triangles.
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The first step is to decompose the problem into several subproblems which
contain no constraints of the form fi ≥ 0.

max x0

s.t. f1 = 0, . . . , f6 = 0,

f7, f8, f9 ≥ 0,

H :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8 < x1 < 5

24 ,

19
24 < x3, x5 < 7

8 ,

5
24 < x2 < 7

24 ,

7
24 < x7, x8 < 3

8 ,

7
72 ≤ x0 < 1

9 .

−−−→

(1) :

max x0

s.t. f1 = 0, . . . , f6 = 0,

f7 > 0, f8 > 0, f9 > 0,

H.

(2) :

max x0

s.t. f1 = 0, . . . , f6 = 0,

f7 = 0, f8 > 0, f9 > 0,

H.

...

(7) :

max x0

s.t. f1 = 0, . . . , f6 = 0,

f7 > 0, f8 = 0, f9 = 0,

H.

(8) :

max x0

s.t. f1 = 0, . . . , f6 = 0,

f7 = 0, f8 = 0, f9 = 0,

H.

The second step is to solve each subproblem by Lagrangian multiplier with
symbolic computation. We refer the readers to [13] for a general introduction to
the Lagrangian multiplier method, and [26] for a detail description on solving
systems of polynomial equations in several unknowns. Here we show this for (1),
(2), (3), (7) and (8). Note that

f1 = 0, f2 = 0, . . . , f6 = 0
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in our problems form a linear equation system with respect to x1, x4, x5, x6, x7,
x8, thus we can obtain

x1 =
4x2

2x3
2 − 4x2

2x3 + x2
2 − 2x2 x3

2 + x2 x3 + 2x3 x0

4x2 x3
2 − 4x2 x3 + x2 − 2x3

2 + x3 + 2x0
,

x4 =
−2x2

2x3 + 4x2
2x3

2 − 4x2 x3
2 + 2x0 x2 + x2 x3 + x3

2

−2x2
2 + 4x2

2x3 + x2 − 4x2 x3 + x3 + 2x0
,

x5 = −−2x2
2 + 2x2

2x3 + x2 + x0 − x2 x3

2x2
2 − 2x2 x3 − x2 + x3

,

x6 = −2x2 x3
2 − 3x2 x3 + x2 + x0

(−1 + 2x3) (−x3 + x2)
,

x7 = x2 − 2x2 x3 + x3,

x8 = −−2x2 x3 + 2x2 x3
2 + x3 − x3

2 + x0

−x3 + x2

and represent f7, f8, f9 as

f7 = −x0

(−2x2 x3 + 2x0 − 4x3
2 − x2 + 3x3 + 4x2 x3

2
)

4x2 x3
2 − 4x2 x3 + x2 − 2x3

2 + x3 + 2x0
,

f8 = −
(
8x2

3x3 − 4x2
3 − 8x2

2x3 + 4x2
2 − x2 + 4x0 x2 + x3

)
x0

(2x2 − 1) (−2x2
2 + 4x2

2x3 + x2 − 4x2 x3 + x3 + 2x0)
,

f9 = −x0

(
16x2

2x3
3 − 32x2

2x3
2 + 20x2

2x3 − 4x2
2 − 10x2 x3

−4x0 x2 + 24x2 x3
2 + x2 + 8x0 x2 x3 − 16x2 x3

3 + 4x3
3

−4x3
2 + 2x0 − 8x3 x0 + x3

)
/(−1 + 2x3)/(2x2 − 1)

/
(
4x2 x3

2 − 4x2 x3 + x2 − 2x3
2 + x3 + 2x0

)
.

Thus the subproblem (1) can be transformed into the following one:

max x0

f7(x0, x2, x3) > 0, f8(x0, x2, x3) > 0, f9(x0, x2, x3) > 0,

H ′ =
{

7
72 ≤ x0 < 1

9 , 5
24 < x2 < 7

24 , 19
24 < x3 < 7

8 ,
}

.

The feasible set of this problem is a polyhedron formed by algebraic surfaces

f7 > 0, f8 > 0, f9 > 0

and the cube
7
72

≤ x0 <
1
9
,

5
24

< x2 <
7
24

,
19
24

< x3 <
7
8
,
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in R
3. It is clear that if this problem either has the optimal solution x0 = 7/72

or has no local maximum in the interior of its feasible set.
For subproblem (2), it is known that any local maximal point (x0, x2, x3) of

this problem satisfies
{
numer(f7) = 0,

∂L2

∂x0
= 0,

∂L2

∂x2
= 0,

∂L2

∂x3
= 0

}
,

where

numer(f7) = x0 · (−2x2 x3 + 2x0 − 4x3
2 − x2 + 3x3 + 4x2 x3

2),

and
L2 = x0 + a · numer(f7).

It is easy to see that this equation system can be transformed to the following
ascending form

1 − 2 a = 0,

1 + 2x3 − 4x3
2 = 0,

(2 − 8x3) x2 − 3 + 8x3 = 0,

−2x0 + x2 − 3x3 + 2x2 x3 + 4x3
2 − 4x2 x3

2 = 0

and verify that it has no zero in the cube

H ′ =
{

7
72

≤ x0 <
1
9
,

5
24

< x2 <
7
24

,
19
24

< x3 <
7
8
,

}
.

This also implies that under the constraints f8 > 0, f9 > 0 and H ′, the prob-
lem (2) also either has optimal solution x0 = 7/72 or has no stable point in the
interior of the feasible set.

For subproblem (7), any local maximal point (x0, x2, x3) in the interior of
the feasible set satisfies

{
numer(f8) = 0, numer(f9) = 0,

∂L7

∂x0
= 0,

∂L7

∂x2
= 0,

∂L7

∂x3
= 0

}
,

where

numer(f8) := x0 · (−8x2
3x3 + 4x2

3 + 8x2
2x3 − 4x2

2 + x2 − 4x0 x2 − x3)

numer(f9) := x0 · (−16x2
2x3

3 + 32x2
2x3

2 − 20x2
2x3 + 4x2

2 + 10x2 x3

+ 4x0 x2 − 24x2 x3
2 − x2 − 8x0 x2 x3 + 16x2 x3

3 − 4x3
3

+4x3
2 − 2x0 + 8x3 x0 − x3

)
,

and
L7 = x0 + a · numer(f8) + b · numer(f9).
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Therefore, any maximal point (x0, x2, x3) in the interior satisfies the following
univariate equation

q2 = resultant(numer(resultant(q1, h2, x0)), resultant(h3, h2, x0), x2)

= C1 · x3
2
(
6x3

2 − 6x3 + 1
) · (

32x3
5 − 64x3

4 + 40x3
3 − 16x3

2 + 8x3 − 1
)2

· (
512x3

5 − 1344x3
4 + 1312x3

3 − 664x3
2 + 188x3 − 23

) · (−1 + 2x3)
6 ;

according to the property of resultants, where C1 = 34359738368 and

h2 =
∂L7

∂x2
, h3 =

∂L7

∂x3
,

q1 = numer

(
subs

(
solve

(
{∂L7

∂x0
,
∂L7

∂x2
}, {a, b}

)
,
∂L7

∂x3

))
.

It is easy to verify that q2 has no real root in the interval (19/24, 7/8) by
computing sturm(q2, x3, 19/24, 21/24) with Maple. This proves that the sub-
problem has also no local maximal point in its feasible set.

For subproblem (8), we can transform the equation system

{numer(f7) = 0, numer(f8) = 0, numer(f9) = 0}

to the following two ascending chains:

(8a) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2x2 x3 − 2x0 + 4x3
2 + x2 − 3x3 − 4x2 x3

2 = 0,
(
8x3

2 − 10x3 + 3
)
x2 + 6x3 − 1 − 6x3

2 = 0,

− (6x3 − 5) (−1 + 2x3)
(
8x3

3 − 20x3
2 + 12x3 − 1

)
= 0,

(8b) :

⎧
⎨

⎩
2x2

3 − 3x2
2 + x2 + x0 = 0,

x2 − x3 = 0.

It is easy to see that (8a) has the unique zero point

x0 =
7
72

, x2 =
3
4
, x3 =

5
6

in the cube H ′ and (8b) has no real zero in H ′. This proves that the feasible set
of problem (8) contains only one point (7/72, 3/4, 5/6) and therefore x0 = 7/72
is its optimal solution.
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We applied the similar computation to the following remaining subproblems

(3) :

max x0

s.t. f1 = 0, . . . , f6 = 0,

f7 > 0, f8 = 0, f9 > 0,

H.

(4) :

max x0

s.t. f1 = 0, . . . , f6 = 0,

f7 = 0, f8 = 0, f9 > 0,

H.

(5) :

max x0

s.t. f1 = 0, . . . , f6 = 0,

f7 > 0, f8 > 0, f9 = 0,

H.

(6) :

max x0

s.t. f1 = 0, . . . , f6 = 0,

f7 = 0, f8 > 0, f9 = 0,

H.

We can see that all above 4 optimization problems have no stable points in the
interiors of the related feasible sets. Thus, x0 = 7/72 is the global maximal of
the original optimization problem

max x0

s.t. f1 = 0, . . . , f6 = 0,

f7 ≥ 0, f8 ≥ 0, f9 ≥ 0,

H.

This proves the following theorem.

Theorem 1. For any 7 points P1, P2, . . . , P7 in a triangle, the smallest area of
the

(
7
3

)
= 35 triangles formed by the 7 points is less than or equal to 7/72 of

the area of the triangle, and the equality holds if and only if the configuration is
congruent to the following 7 points

(1/6, 0), (3/4, 0), (5/6, 1/6), (1/4, 3/4),

(0, 5/6), (0, 1/4), (1/3, 1/3)

as shown in the Fig. 8 .

3 Three Unsolved Non-linear Programming Problems
Related to Heilbronn Configurations

In this section we list some advances on Heilbronn Configuration on H(�, 8)
and H(�, n) for n = 8, 9.

In [5], Chen et al. proved that the

0.067 789 < H(�, 8) < 0.067 816,
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the bary center of the triangle

1/6 7/12 1/4

1/6

7/12

1/41/6

7/12

1/4

Fig. 8. The Heilbronn configuration of seven points in a triangle, found by David
Cantrell. Two points are connected by dash line if they form an edge of one smallest
triangle (in gray). There are 9 smallest triangles among

(
7
3

)
= 35 triangles formed by

the seven points.

R1 = (1, 1, 32) R2 = (1, 1, 4)

R4 = (24, 9, 1)

R8 = (4, 29, 1)
R7 = (1, 28, 5)

R4 = (4, 10, 20)

R6 = (14, 13, 7)

R3 = (15, 3, 15)

BA

C

Fig. 9. The configuration formed by 8 small triangles R1, R2, . . . , R8 in a given triangle
ABC. The triangle ABC is divided into 32×32 small triangles of equal size by 31 lines
that parallel to AB, 31 lines parallel to BC, and 31 lines parallel to CA. Each small
triangle can be represented by (i, j, k) where 1 ≤ i, j, k ≤ 32 where i, j, k indicates the
small triangle is located on the i-th strip that parallels to AB counting from bottom to
top, the j-th strip that parallels to CA counting from left to right, ang the k-th strip
that parallels to AB counting from right to left.

and that the Heilbronn configuration contained in the eight small triangles
R1, R2, . . . , R8 is depicted in the Fig. 9. It is also proved that, assuming that
P1, P2, . . . , P8 is any Heilbronn configuration of 8 points in the triangle ABC
and Pi ∈ Ri(i = 1, 2, . . . , 8), then there are at most 11 triangles among all
PiPjPk (1 ≤ i < j < k ≤ 8) satisfies Area(PiPjPk) = minimal, here Area(·)
represents the un-oriented area of triangles. Namely, if (i, j, k) is not a member
of the following set
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T1 := {(1, 2, 3), (1, 3, 4), (1, 5, 6), (1, 5, 8), (2, 3, 5), (2, 4, 8),
(2, 6, 7), (3, 6, 8), (4, 5, 6), (5, 7, 8), (6, 7, 8)} .

Then PiPjPk is not a triangle of minimal area. It has proven that points P1, P2,
P4, P7, P8 must be contained in the edges of ABC to guarantee that the ABC
is also the minimal triangle covering the convex hull of P1, P2, . . . , P8.

Therefore, we can assume that

P1 = A = (0, 0), B = (1, 0), C = (0, 1), P2 = (x1, 0), P3 = (x2, x3),
P4 = (x4, 1 − x4), P5 = (x5, x6), P6 = (x7, x8), P7 = (0, x9), P8 = (x10, 1 − x10),

and hence transform the computing of H(�, 8) to a non-linear programming
problem as follows

max x,

s.t. 2area(PiPjPk) ≥ x, (i, j, k) ∈ T11,

2 Area(PiPjPk)| > 1/14, (i, j, k) �∈ T11,

7/8 ≤ x1 ≤ 29/32, 7/16 ≤ x2 ≤ 15/32, 1/16 ≤ x3 ≤ 3/32,

23/32 ≤ x4 ≤ 3/4, 3/32 ≤ x5 ≤ 1/8, 9/32 ≤ x6 ≤ 5/16,

3/8 ≤ x7, x8 ≤ 13/32, 27/32 ≤ x9 ≤ 7/8, 3/32 ≤ x10 ≤ 1/8,

1/15 < x < 1/14.

The second unsolved problem is related to the Heilbronn number of eight points
in the square. Let [0, 1]× [0, 1] be the unit square and k > 0 an integer. We shall
use notation [i, j, k] to represent the small square region

{
(x, y) | j

k
≤ x ≤ j + 1

k
,

i

k
≤ y ≤ i + 1

k

}
,

as shown in the Fig. 10. The following result has been proved in [36] by Zhenbing
Zeng using Maple with pure symbolic numeric computation years ago in attempt
to prove a stronger result

H(�, 8) = (
√

13 − 1)/36,

as indicated in the caption of Fig. 5. Since later Liangyu Chen showed in [6] that
together with GPGPU computation, the numeric computation method can be
extended to a more complicated case for nine points in the square, and that a
final proof to the stronger theorem had not been completed yet, the manuscript
is still kept unpublished.

Theorem 2. If P1, P2, . . . , P8 ∈ I = [0, 1]×[0, 1] form a Heilbronn configuration
in the unit square, then, up to a permutation,

P1, P2 ∈ [0, 1] × {0}, P8 ∈ [0, 1] × {1},

and area(Pi, Pj , Pk) ≥ (
√

13 − 1)/36 for all i, j, k with 1 ≤ i < j < k ≤ 8.
Further more, the following statements are true.
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[         ]

={(      ),
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 . . .

h

h
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Fig. 10. The small square regions in the unit square formed by k horizontal lines and
k vertical lines. Each of the obtained k × k small square is recorded by [i, j, k].

1. The points P1, P2, . . . , P8 have the same combinatorial type with the following
8 points

Q1 = (0, 0), Q2 = (3/4, 0), Q3 = (1, 3/16), Q4 = (1, 1),
Q5 = (1/4, 1), Q6 = (0, 13/16), Q7 = (1/4, 3/8), Q8 = (3/4, 5/8),

shown in Fig. 11(b), in particular, the convex hull of P1, P2,
. . . , P8 is a

hexagon.
2. Up to a permutation, P1, P2, . . . , P8 are contained in the following eight small

rectangle regions

U1 = [0, 0, 32], U2 = [0, 24, 32], U3 = [5, 31, 32] ∪ [6, 31, 32],
U4 = [31, 31, 32], U5 = [7, 31, 32], U6 = [0, 25, 32] ∪ [0, 26, 32],
U7 = [7, 11, 32] ∪ [7, 12, 32], U8 = [19, 24, 32] ∪ [20, 24, 32],

shown in Fig. 11(a).
3. Let

C3 = {(1, 2, 3), (1, 4, 7), (1, 4, 8), (1, 5, 7), (1, 7, 8), (2, 3, 8),
(2, 4, 8), (2, 6, 7), (3, 5, 8), (4, 5, 6), (4, 7, 8), (5, 6, 7)}.

Then under the permutation σ that makes Pσ(i) ∈ Ui(i = 1, 2, . . . , 8), the 56
triangles formed by P1, P2, . . . , P8 satisfy
(a) If (i, j, k) �∈ C3 then Area(Pi, Pj , Pk) > 1/13, and
(b) if PiPjPk is a triangle of the minimal area, then (i, j, k) ∈ C3.
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Q   = (0,0)1 Q   = (3/4,0)2

Q   = (1,3/16)3

Q   = (1,1)4
Q   = (1/4,1)5

Q   = (0,13/16)6
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Fig. 11. Eight small square regions U1, U2, . . . , U8 and the eight points Q1, Q2, . . . , Q8,
with Q1 = (0, 0), Q2 = (3/4, 0), Q3 = (1, 3/16), Q4 = (1, 1), Q5 = (1/4, 1), Q6 =
(0, 13/16), Q7 = (1/4, 3/8), Q8 = (3/4, 5/8) as indicated in the Theorem 2.

In view of the Theorem 2, the computing of H(�, 8) is also transformed to a
non-linear programming problem. It is easy to derive that if P1, P2, . . . , P8 is an
optimal configuration such that Pi ∈ Ui for 1 ≤ i ≤ 8, then P2, P3, P5,6 must be
contained in the edges of the square, otherwise the convex hull of P1, P2, . . . , P8

can be covered by a smaller parallelogram. Therefore, we may assume that

P1 = (x1, y1), P2 = (x2, 0), P3 = (1, y3), P4 = (x4, y4),
P5 = (x5, 1), P6 = (0, y6), P7 = (x7, y7), P8 = (x8, y8).

Notice that here we have 12 variables, each constrained in a small interval of
length 1/32, and the non-linear programming problem has 12 bi-linear polyno-
mial inequality constrains. For saving space we will not list the complete form
of the programming problem here.

The third unsolved problem is related to H(�, 9). Chen et al. proved in [6]
that the Heilbronn configuration of 9 points in the unit square is determined by
the following nine small squares

R1 =
[
13
80

,
14
80

]
×

[
0,

1
80

]
, R2 =

[
59
80

,
60
80

]
×

[
0,

1
80

]
, R3 =

[
0,

1
80

]
×

[
15
80

,
16
80

]
,

R4 =
[
79
80

, 1
]
×

[
20
80

,
21
80

]
, R5 =

[
52
80

,
53
80

]
×

[
27
80

,
28
80

]
, R6 =

[
0,

1
80

]
×

[
66
80

,
67
80

]
,

R7 =
[
79
80

, 1
]
×

[
66
80

,
67
80

]
, R8 =

[
13
80

,
14
80

]
×

[
79
80

, 1
]

, R9 =
[
64
80

,
65
80

]
×

[
79
80

, 1
]

,

as each contains exactly one points of the optimal configuration. It is also proved
that among the

(
9
3

)
= 84 triangles formed by the 9 points in the optimal



Heilbronn Configuration of Seven Points in Triangles 475

configuration, there are at most 12 minimal ones. If {P1, P2, . . . , P9} is a Heil-
bronn optimal configuration and Pi ∈ Ri for i = 1, 2, . . . , 9, then the possible
minimal triangle PiPjPk satisfies that

(i, j, k) ∈ {(1, 2, 3), (1, 6, 3), (1, 5, 7), (2, 4, 5), (2, 5, 8), (2, 5, 9),
(3, 4, 5), (3, 8, 6), (4, 6, 5), (4, 7, 9), (6, 9, 8), (7, 9, 8)} .

Assume that Pi = (xi, yi) for i = 1, 2, . . . , 9, then we also obtain a non-linear pro-
gramming problem for computing H(�, 9). See [6] for details of the constraints.
Figure 12 shows the optimal configuration.

R1 R2

R3

R4

R5

R6 R7

R8 R9

0.5

0.5

1

1

BA

CD

Fig. 12. The 9 small squares that contain the Heilbronn configuration of 9 points in
the unit squares. The edge length of each square is 1/80. To get better print effect, the
small squares has been enlarged to 161.8% of their real size.

As we have seen, the above three optimization problems are similar to the
non-linear programming problem associated to H(�, 7), the non-linear con-
straints are indeed bi-linear polynomials, roughly half variables can be expressed
as polynomial fractions of other variables. Same as in the last section, the simpli-
fied optimization can be divided to a finitely many (from hundreds to thousands)
subproblems, so that every constraint of each subproblem is either a polynomial
equation, or a strict polynomial inequality. Therefore, it could be possible to
apply the methods we used in the last section with appropriate parallel imple-
mentation to solve them in larger computers.

4 Two Generalizations of the Heilbronn Triangle Problem

One Heilbronn-like problem is for given integer n ≥ 3 and k ≥ 0 to find a
convex n-gon P1P2 . . . Pn of unit area and l extra points Pn+1, . . . , Pn+l in the
its interior to maximize the minimum

min{ Area(PiPjPk) | 1 ≤ i < j < k ≤ n + l}.
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An elegant result that is also easy to prove is that for n = 4, l = 2 the maximal
minimum is 1/8, which means, for any convex quadrilateral ABCD and any two
points E,F ∈ ABCD, there exists one triangle formed by ABCD so that its
area is less than or equal to 1/8 of the area of ABCD. It is clear that computer
algebra method could be very useful in the studies of this problem, say, for
n + l ≤ 9.

In particular, for l = 0, the above problem reduces to finding a convex n-gon
P1P2 . . . Pn of unit area so that min{Area(PiPi+1Pi+2), i = 1, 2, . . . , n} gets the
maximum. It is reasonable to conjecture that the affine regular polygons are the
optimal configuration. Nevertheless, this is only solved for n ≤ 9.

The second generalization of Heilbronn problem is to extend from the plane
to the three or higher dimensional spaces. We refer [1–3] for further investigation
on studies on approximate property. It is a very interesting problem to find points
P1P2 . . . Pn for small n on the unite sphere S2 of the three dimensional space,
so that the minimum of the areas of the spherical triangles is maximal.
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