
Chapter 7
Introduction to Network Inference in
Genomics

Ernst C. Wit

Abstract The genome is the archetypical complex system: it is a finely tuned whole
whose many parts, such as DNA, RNA and proteins, interact at various levels to
execute intricate functions, such as repair, replication and adapting to the external
environment. One particularly effective way of conceptualizing this complex system
is by means of a network, in which the vertices describe the genomic components
and the edges describe their physical or functional interactions. With the advent of
modern high-throughput genomic measuring devices, such as microarrays, RNA-seq
and other next generation sequencing tools, it has become possible to measure the
vertices of the genomic system in real time. One central question is whether from
these measurements it is possible to reconstruct the edges of the genomic network.
This essay describes three modelling and inference strategies to answer this central
biological question.

7.1 Introduction

Networks have become an important paradigm to describe genomic systems: from
describing the physical, molecular interactions between proteins to the abstract
interactions between functional genetic units, the vocabulary of networks has been
adopted eagerly by biologists tasked with studying complex biological systems. For
example, Corominas et al. (2014) define the concept of spliceformnetworks for trans-
lating genetic knowledge into a better understanding of human diseases, whereas
Costanzo et al. (2016) argues that a global genetic interaction network highlights
the functional organization of a cell and provides a resource for predicting gene and
pathway function.

Within biostatistics, mathematical biology and, more recently, bioinformatics,
there have been a number of modelling and inference procedures proposed to capture
genetic networks. Traditionally, metabolic pathway analysis has been using ordinary
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differential equationmodels, or simplifications thereof, such as flux balance analyses
(Papoutsakis 1984). This involved typically small network representations of a num-
ber of intertwined genetic pathways. With the advent of high-throughput genomic
analysis, Boolean network representations of the transcription process became pop-
ular (Akutsu et al. 1999). More recently, stochastic differential equation models
(Purutçuoğlu and Wit 2008; Wilkinson 2006), graphical models (Vinciotti et al.
2016), Bayesian networks (Grzegorczyk and Husmeier 2011) and vector autoregres-
sive models (Abegaz and Wit 2013) have entered the scene.

In this chapter, we aim to introduce the reader to the way networks are being used
in the analysis of biological systems. In Sect. 7.2, we describe a number of ways on
how to think about various genomic systems as networks. In Sect. 7.3, we connect
those systems with mathematical network models and high-throughput genomic
data by showing what kinds of inference strategies are available for analysing those
processes.

7.2 What Are Genomic Networks?

The language of genomic networks can be used in various ways, although roughly
speaking biologists use “genes” as the nodes, connected by edges, which stands for
some type of “genetic interactions”. This may seem obvious, but the devil is in the
details and there are various ways in which this can be made precise. Below we will
consider a number of genomic networks, that each uses the concept of network in a
somewhat different way.

Mechanic genomic networks
First, and perhaps, themost basal form of a genomic network is themolecular interac-
tions between DNA, RNA and proteins. The interactions in this view are the physical
binding of proteins to each other and to DNA, whereby the molecular functionality
of the resulting molecule changes and leads to further downstream changes. This
cascade of molecular interactions is typically initiated by outside forces, such as
sunlight in the case of a circadian clock, the lack of water leading to a stress response
in plants or the intake of food leading to production of energy by our mitochondria.

Figure7.1 is an example of this first type of genomic network. It shows a sim-
plified version of the MAPK-Erk pathway, which is a chain of proteins that via
physical interactions carries the signal from a receptor on the surface of a cell to
the DNA in the nucleus. It is a ubiquitous pathway and appears in the cell of many
organisms. Malfunctioning of the MAPK-Erk pathway in humans has been linked
to uncontrolled cell growth, and therefore cancer (Downward 2003). Understanding
the activation, inhibition and feedback mechanisms in this network is, therefore, an
important goal, which has already led to various drug targets (Hilger et al. 2002).

This mechanistic view of a genomic network is highly localized. The interactions
described are individual binding events within a cell. Because of this, the event
boundary of the network is typically the cell wall.



7 Introduction to Network Inference in Genomics 101

Fig. 7.1 Representation of the single-cell dynamics of the MAPK-Erk Network

Functional genomic networks
In contrast to the mechanistic description of a genomic network is a functional
description. Although the nodes of this network can again be proteins or RNA, it is
not uncommon that the nodes in this network are abstractly described as “genes”.
Typically, the focus is on larger systems than a single cell, such as organs or other bio-
logical subsystems. Interactions do typically not refer to specificmechanistic binding
events, but rather to functional relationships. Often these networks are referred to as
gene regulatory networks.

Just like the mechanistic genomic networks, the functional genomic network is
most naturally interpreted as a dynamic process. However, whereas the changes in
themechanistic network are typically discrete, referring to a particular binding event,
the functional network is more naturally seen as continuous, also referred to as a flow
network.

Evolutionary networks
There are other genomic processes that can be described as a network, for example,
how genes get passed on from generation to generation in the presence of genetic
variability and selection. Most studied organisms are diploid, i.e. organisms that
carry two copies of each gene. These copies can be the same, in which case we refer
to them as homozygous, or different, in which case we refer to them as heterozygous.
Mendel suggested that offspring receive a randomly selected version of each gene
from either parent. Clearly, if the genetic make-up for a particular gene of the parents
is the same and homozygous, then the offspring will be homozygous for that gene
too. However, for many genetic loci within all species there is genetic variation,
which means that offspring displays a “random” mosaic of the genetic make-up of
their parents. Various constellations of this mosaic may lead to genetic advantage or
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disadvantage for the organism. This will boost or suppress the presence of particular
genotype combinations, which can be detected as dependence, or in the language
of networks: an interaction, between pairs of genes. This network of evolutionary
“interactions” defines an evolutionary network.

7.3 Stochastic Models for Genomic Networks

Although the aim of this section is not to give a comprehensive overview of network
models in genomics, it does aim to provide an introduction to the type of models that
are suited to various types ofmodern genomic data. In fact,we argue that the sampling
scheme and design of a genomic experiment should match the type of model that is
used for analysing it. In this chapter, we outline three modelling strategies, that are
useful in various aspects of this enterprise. We start in Subsect. 7.3.1 with a system
of stochastic differential equations to describe single-cell interactions, which takes
into account the underlying stochasticity of genomic particle interactions. Often,
however, genomic data is collected at either a more agglomerated level or across a
number of cells that are destructively sampled. In those cases, temporal models are
more appropriately described by means of ordinary differential equations, described
in Subsect. 7.3.2.1. In large genomic systems, both SDE andODEdescriptions can be
unstable or computationally prohibitive. In such cases, vector autoregressive models,
described in Subsect. 7.3.2.2, are useful. All these models are inherently dynamic.
Nevertheless, the genotype is, at ordinary time-scales, a non-dynamic process, in
which case it is more appropriate to describe these genomic interactions by means of
a static network. This and other final considerations are described in Subsect. 7.3.3.

7.3.1 Modelling Mechanistic Genomic Networks

A cell is a natural unit of biology, whose state varies according to external influences
and to internal regulation. The process of carrying over a signal, i.e. information,
in the cell’s environment is regulated by various signal transduction pathways. This
signalling process is typically started by an external stimulus of the pathway leading
to a binding of the signal to a receptor, i.e. hormones or growth factors, and ends
by binding of a target protein. All cellular decisions such as cell proliferation, dif-
ferentiation, or apoptosis are directed by different levels of transductions (Hornberg
2005). Deregulation of a single “renegade” cell can lead to diseases such as cancers,
neurological disorders and developmental disorders (Macaulay et al. 2017).

Sequencing technologies now permit profiling the genome (Gawad et al. 2016),
epigenome (Schwartzman and Tanay 2015), transcriptome (Stegle et al. 2015), or
proteome (Wu and Singh 2012) of single cells sampled from heterogeneous cell
types and cellular states. This allows us to study biological processes, such as disease
development, at the cellular level. The technology is subject to measurement noise,
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butmore importantly, the single-cellular process itself contains intrinsic stochasticity:
the cellular system, characterized by its external environment and its internal protein
levels, started at the same state may develop in different ways, merely by chance.

It is our aim to describe on the one hand the structured interactions between
molecular particles and on the other hand the stochasticity involved in this process.
We do this by means of a collection of random reaction equations. A general single-
cellular, biochemical reaction can be defined as

k1Q1 + k2Q2 + . . . + kl Ql
θ−→ s1P1 + s2P2 + . . . + sp Pp, (7.1)

where the terms on the left side, denoted as Q, are called the reactants and the ones on
the right side, denoted as P , are named the products. The coefficients ki (i = 1, . . . , l)
and s j ( j = 1, . . . , p) represent the stoichiometric coefficients associatedwith the i th
reactant Qi and the j th product Pj , respectively. The quantity l refers the number of
required reactants and p stands for the number of resulting products. So the chemical
interpretation of this equation is that while molecules move around randomly in
a cellular environment k1 molecules of type Q1, k2 molecules of type Q2, etc.,
“collide” with each other and produce s1 molecules of type P1, s2 molecules of type
P2, etc. (Wilkinson 2006). Therefore under thermal equilibrium and fixed volume,
a biochemical reaction shows which species and in what proportions react together
and what they produce (Bower and Bolouri 2001).

For a set of r reactions and d species, accordingly, we can show the molecular
transfer from reactant to product species as a net change of V = S − K where V
is called the d × r dimensional net-effect matrix when S denotes the d × r dimen-
sional matrix of stoichiometry of products and K is the d × r dimensional matrix
of stoichiometry of reactants. A reaction corresponds to a directed edge between
the nodes (Q1, . . . , Ql) on the one hand and the nodes (P1, . . . , Pp) on the other.
The collection of r reactions, therefore, corresponds to a network with r directed
edges between the d species or nodes of the network. This set of reactions can also
contain uncertain, hypothesized reactions or even competing hypotheses, as shown
in Fig. 7.2. This network is a representation of the potential stoichiometry between
three proteins. The inference procedure with sufficient amount of data will eventu-
ally assign a zero reaction rate θ to reactions that are not part of the true underlying
system. For example, if the reaction rate θ1 associated with reaction 1 is inferred to
be zero, then the resulting network would only involve the two reactions that are part
of the second pathway. An over-parameterized system is, therefore, not a problem a
priori and could be a modelling strategy to learn not only the kinetic parameters of
the genomic system, but also the structure of the system.

We collect the amount of d reactants and products at time t in the vector Ut .
They are put together in the same vector because products of one reaction are the
reactants of another. There is therefore no fundamental difference between reactants
and products. In the genomic context, they are typically proteins, protein complexes,
enzymes, RNA and DNA. The aim is to define a probabilistic model for the evolu-
tion of the temporal process {Ut }t . This is done by means of the master equation.
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Fig. 7.2 The stochastic
differential equation models
could include competing
hypotheses. The data would
eventually weed out the links
for which there is no
evidence

The master equation is defined as a differential equation for the process transition
probability and is written as:

dP(U; t)
dt

=
r∑

k=1

{hk(U − V·k, θ)P (U − V·k, t) − hk(U, θ)P (U, t)} . (7.2)

In other words, the probability of being in state Ut is positively related to the
tendency of the r available reactions to transit to state Ut and negatively related to
these same reactions to leave state Ut . The hazard hk is a deterministic function of
the state and the reaction rate θk . For example, the reaction

2H + O
θ−→ H2O,

in a volume with 5 hydrogen molecules H , 4 oxygen molecules and a rate of θ = 2
reactions per time unit would lead to a hazard h((5, 4), 2) = (5

2

)(4
1

)
2 = 80. Bymeans

of amultivariateTaylor expansion, it is possible to derive an equivalent and alternative
formulation of any master equation, named the Kramers–Moyal expansion (Van
Kampen 1981):

dP(U; t)
dt

=
∞∑

m=1

(−1)m

m!
N∑

j1,..., jm=1

dm

dUj1 , . . . , dUjm

[am(U, θ)P (U, t)], (7.3)

where am(U) arem-order symmetric tensors commonly called jumpmoments (Moyal
1949) or propagator moment functions (Gillespie 1992).

Various approximations to the process are possible. We can expand the distribu-
tion P(U, t) by a second-order Taylor expansion and use a Fokker–Planck approach
for the change of each state (Bower and Bolouri 2001; Van Kampen 1981). This
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stochastic expression is solved via Itô or Stratonovich integrals (Gillespie 1996;
Golightly and Wilkinson 2005; Risken 1984; Van Kampen 1981) to obtain the fol-
lowing diffusion approximation

dU (t) = μ(Ut , θ)dt + β
1
2 (Ut , θ)dW (t), (7.4)

where

μ(U, θ) = V ′h(U, θ),

β(U, θ) = V ′diag{h(U, θ)}V

are the drift and diffusion matrices, respectively, both explicitly depending on state
Ut = (Ut1, . . . ,Utd) at time t , the parameter vector θ = (θ1, θ2, . . . , θr )

′ and the net-
effect matrix V . The expression dW (t) represents the change of a Brownian motion
during the time interval dt and dU (t) shows the change in state U over time dt .
This is effectively a large volume approximation that follows from the central limit
theorem, whereby the reactions follow a Poisson process with rate h(U, θ) and the
states changes therefore have mean V ′h(U, θ) and variance V ′diag{h(U, θ)}V .

Due to the difficulties of inference of continuous-time multivariate diffusions, a
further discrete Euler–Maruyama approximation is possible,

�Ut = μ(Ut , θ)�t + β
1
2 (Ut , θ)�Wt (7.5)

where�Ut is the change of stateU over small time interval [t, t + �t] and�Wt is a
d-dimensional independent identically distributed Gaussian random vector �Wt ∼
N (0, I�t) (Eraker 2001).

Data
The genomic interactions described above form a continuous-time process {Ut }t of
gene activities on top of a genomic network. At best, we will be able to see snap-
shots Xt from this process. We will assume that we will have discrete observations
{Xt }t from a single-cell genomic system {Ut }t . For simplicity of presentation, we
assume that the observations are equally spaced at regular time intervals of steps
of size �t = 1. This is merely for notational simplicity and not important for the
inferential methods we use. There may be two types of missing values: first of all,
several substrates may not be observed. It is quite common that due to technological
limitations or experimental errors, it is not possible to measure the activity of all
genomic species of interest. Various experimental techniques, such as microarrays,
Chip-Seq analysis or mass-spectroscopy, have limitations to what they can measure.
Furthermore, as most current technologies are capable of only discrete snapshots,
the non-observed time points can also be considered missing.

Inference
There are various approaches possible for inference in such systems. The main issue
the methods need to deal with is that the rate of change of the process is typically
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faster than the observation rate, which leads to nonlinearities between the observation
times. Frequentist approaches typically rely on the conditional nonlinear first and
second moments of the process to propose a method of moments estimator for the
reaction rates. To define amethod ofmoment estimator via a generalized least squares
objective function that can beminimized in order to estimate the unknown parameters
vector θ :

θ̂ = arg min
θ

(X1:T − m(θ))′ W−1 (X1:T − m(θ)) s.t. θ ≥ 0r

where

X1:T =

⎡

⎢⎢⎢⎣

X1

X2
...

XT

⎤

⎥⎥⎥⎦ and m(θ) =

⎡

⎢⎢⎢⎣

m(1; θ)

m(2; θ)
...

m(T ; θ)

⎤

⎥⎥⎥⎦

are dT -dimensional column vectors with the observed cell-type count data and pre-
dicted mean evolutions, respectively. (Sotiropoulos and Kaznessis 2011) provide a
general schema to derive analytical expressions for jump moments for any Markov
process. Furthermore,

W =

⎡

⎢⎢⎢⎣

b(X0; θ) 0 . . . 0
0 b(X1; θ) . . . 0
...

...
. . .

...

0 0 . . . b(XT−1; θ)

⎤

⎥⎥⎥⎦ .

is a dT × dT block diagonal matrix, in which blocks correspond to expected
variance-covariance matrices and zeros reflect the independence among measure-
ments belonging to different time points.

An alternative way to deal with partially observed process is defining an aug-
mented state space in combination with Bayesian inference. By inserting intermedi-
ate, unobserved states, the process can be linearized in the augmented, latent space.
In a Bayesian approach to infer the kinetic parameters θ of the stochastic differential
equation, one can use MCMC inference for calculating the posterior of the Euler–
Maruyama system described in (7.5). Typically, Gibbs sampling can be difficult,
because of the above-described data sparsity. In principle, it is possible to augment
the data X with “missing” observations Z . A large number of augmented states
in the Bayesian method increases the precision of the Euler–Maruyama approxi-
mation, but deteriorates the mixing of the Markov chain. Additional details about
this problem and suggested solutions can be found in (Roberts and Stramer 2001)
and (Golightly and Wilkinson 2008). In order to deal with these types of missing-
ness, one can use aMetropolis-within-Gibbs step (Carlin and Louis 2000), whereby a
Metropolis-Hastings step is implemented at eachGibbs step of the update. Therefore,
the augmented process U = {Ut }Tt=1 is a combination of X and Z , i.e. U = (X, Z).
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This method has been applied to estimating the MAPK-Erk pathway, consisting
of 35 measured proteins and 16 unmeasured proteins across 77 time points that are
involved in 66 reactions. Part of the inferred system is shown in Fig. 7.1. (Purutçuoğlu
and Wit 2008) describe the biological interpretation of the results.

7.3.2 Modelling Functional Genomic Networks

Single-cell data, especially longitudinal single-cell data, are not very common. In
fact, more often time-course genomic data are measured across a collection of cells.
Moreover, not infrequently the measurements at different time points are on physi-
cally different samples. For example, various petri dishes with cells from some cell
line are treated at a nominal time zero, and at various time points, the various dishes,
one by one, are measured on the expression of their genomic constituents. As in
many cases sampling tends to be destructive, each petri dish can be only measured
once. This can be seen as cross-sectional sampling, where time is considered the
factor of interest.

7.3.2.1 Ordinary Differential Equation Models

In such cases, it is not sensible to consider the stochastic relatedness between the var-
ious time points. However, it can still be interesting to consider the average dynamic
behaviour of a genomic system. In fact, consider a simple reversible reaction,

A + B
θb,θ f←→ C,

where proteins A and B bind with forward rate θ f into protein complex C , and,
reversely, protein C breaks apart into constituents A and B with backward rate θb.
According to the Law of Mass Action (Érdi and Tóth 1989), the average change in
the amount of substrate A at time t0 is negative proportional to the number of times
forward reactions can happen, i.e. a × b, and positively proportional to the number
of times backward reactions can happen, i.e. c, where At = a, Bt = b and Ct = c.
This leads to the simple expression for the average change in A,

dmA(t, θ)

dt
= cθb − abθ f .

Similarly, for B and C we have,

dmB(t, θ)

dt
= cθb − abθ f ,

dmC(t, θ)

dt
= abθ f + cθb.
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However, whereas the Law of Mass Action suggests a linear increase in the produc-
tion rate of the product with an increase of the underlying substrate, in practice the
increase will saturate. One reason is that there is only a finite amount of enzymes
available, which are crucial auxiliary components in the genomic transcription sys-
tem. (Michaelis and Menten 1913) introduced an intermediate substrate–enzyme
complex, C = SE , in the transcriptional system,

S + E
θb,θ f1←→ C

θ f2←→ P + E .

Combining the assumption of a finite amount of enzyme, C + E = constant, with a
mass action equilibrium (θb + θ f2)Ct = θ f1 St Et , they derived the so-called nonlinear
Michaelis–Menten kinetics,

dmP(t, θ)

dt
= θ f2s

θb+θ f2
θ f1

+ s
.

Fig. 7.3 shows the typical saturation effect of the Michaelis–Menten production rate.
This shows that for realistic descriptions of genomic interactions, we may have to
consider a wider class of functions beyond mass action kinetics.

For the purposes of this overview, we will focus on a class of nonlinear ODEs that
are linear in the rate parameters. Any of themodels satisfying the Law ofMass Action
satisfy also this requirement, but the class is larger than that and can accommodate
saturation effects. Consider the gene regulatory or signalling network, described by
a system of ordinary differential equations of the form

{
z′(t) = g(z(t))θ for t ∈ [0, T ],
z(0) = ξ ,

(7.6)

Fig. 7.3 Typical saturation
of the Michaelis–Menten
production rate for various
choices of the kinetic
parameters
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where x(t) takes values in R
d , with, possibly unknown, initial values ξ ∈ R

d , and
with the parameters of interest unknown θ ∈ R

p. We assume that g = (g1, . . . , gd)′
is a known function, whose components g j : Rd → R

p. In particular, we consider a
special case in which we want to model the change of each substrate by a saturating
function of all the other substrates, i.e.

{
z′
j (t) = ∑d

k=1 θk j log(zk(t) + 1),
z j (0) = ξ j

j = 1, . . . , d. (7.7)

This model defines a network between the d substrates in that if θ jk 	= 0, then sub-
strate k affects the change in substrate j . The logarithmic function is chosen to deal
with natural saturation effects. Moreover, by its very definition zk(t) ≥ 0 and the
leading Taylor term of log(z + 1) near zero is z, similar to the Michaelis–Menten
production term. The solution z(·, θ, ξ) implied by the ODE (7.7) — or more gen-
erally (7.6) — is assumed to be the mean of the observations taken from the system.
In particular, we assume that at time points ti ∈ [0, T ], i = 1, . . . , n, we observe

X j (ti ) = z j (ti , θ , ξ) + ε j (ti ), j = 1, . . . , d1; i = 1, . . . , n, (7.8)

where 0 ≤ t1 < · · · < tn = T < ∞ and εi (t j ) is the measurement error for xi at time
t j . The problem is to estimate θ , and thereby the underlying gene regulatory network,
from the data {X j (ti )}i j .
Inference of ODE networks
Inference of parameters in ODEs is not straightforward due to the possibly compu-
tationally prohibitive calculation of ODE solution z(·, θ, ξ) for lots of values of θ

and ξ . Regularization-based approaches, which make use of properties of differen-
tial operators, have been proposed to avoid numerical integration of the system of
differential equations (González et al. 2013, 2014; Steinke and Schölkopf 2008). In
most cases, the main computational bottleneck lies in the optimization of a nonlin-
ear objective function. Alternatively, the idea of smoothing can be used as a way to
avoid numerical integration of the system of differential equations and is referred
to as the collocation estimation method; for example, there are two-step methods
(Bellman and Roth 1971; Brunel 2008; Dattner and Klaassen 2013; Fang et al. 2011;
Gugushvili and Klaassen 2012; Gugushvili and Spreij 2012; Liang and Wu 2008;
Varah 1982) and generalized profiling methods (Ramsay et al.2007; Qi and Zhao
2010; Xun et al. 2011; Hooker et al. 2013).

The method we present here is a special case of generalized Tikhonov regular-
ization (Vujačić et al. 2016) and without penalization has been shown to be

√
n-

consistent (Vujačić et al. 2015). We consider estimators of the parameters θ and ξ

that are obtained by minimizing the integral equation derived from (7.6),

L(ξ, θ) =
∫ T

0

∣∣∣∣

∣∣∣∣z(t) − ξ −
∫ t

0
g(z(s)) ds θ

∣∣∣∣

∣∣∣∣
2

dt, (7.9)
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with respect to ξ and θ , where z(t) = (t; θ, ξ)will be replaced by a suitable estimator.
We divide the interval [0, T ] in �√n
 subintervals, so that in every interval, we
have at least �√n
 observations in it. Let Si = [ai−1, ai ) be the i th subinterval i =
1, . . . , �√n
 − 1 and S�√n
 = [a�√n
−1, a�√n
] and let S(t) denote the subinterval to
which t belongs. The piecewise constant window estimator of z is defined as

ẑ(t) = 1

|S(t)|
∑

t j∈S(t)

X (t j ), t ∈ S(t). (7.10)

This estimator ẑ(t) estimates z(t) as the mean of the observations that belong to
interval S(t). This allows us to estimate the inner integral in (7.9),

G(t) =
∫ t

0
g(ẑ(s))ds

=
i−1∑

m=1

g(ẑ(Sm))(am − am−1) + g(ẑ(Si ))(t − ai−1), where t ∈ Si .

Throughout the paper,we adhere to the convention that the sumsof the form
∑i−1

m=1 fm
are equal to zero for i = 1. Minimizing the criterion function (7.9) with respect to
ω = (ξ ; θ)′ yields explicit formulas for the estimators of the parameters. Indeed, the
objective function L can be written as a quadratic function of the parameters,

L(ω) = ω′
∫ T

0
F(t)′F(t)dtω − 2ω′

∫ T

0
F(t)′ ẑ(t)dt +

∫ T

0
‖ẑ(t)‖2dt,

where F(t) = (T Id;G(t)). The minimizer of this quadratic expression is given by

ω̂ =
( ∫ T

0
F(t)′F(t)dt

)−1
∫ T

0
F(t)′ ẑ(t)dt

which has an explicit form by means of finite sums as shown in (Vujačić et al. 2015).
It can be shown that this estimator is

√
n-consistent.

Example 7.1 Circadian clock in Arabidopsis
Consider the previously introduced, heavily parameterized ODE describing the

change of each substrate in the gene regulatory network by a slowly saturating func-
tion of all the other substrates, i.e.

{
z′
j (t) = ∑d

k=1 θk j log(zk(t) + 1),
z j (0) = ξ j

j = 1, . . . , d, (7.11)

or using some other production terms, such as g(z) = √
z or simply g(z) = z. This

relatively simple gene regulatory network contains d2 interaction parameters θ =
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{θk j }. Many of these parameters can be expected to be zero as only a few genes will
be responsible for activating other genes.

To enforce sparsity, we will add a L1 regularization term on the objective function
(7.9),

Lλ(θ, ξ) = L(θ, ξ) + λ||θ ||1.

The estimator of θ and ξ will depend on the tuning parameter λ. In fact, the path
estimator (ξ̂λ, θ̂λ) will correspond to the original lasso estimator β̂λ for a quadratic
problem (Tibshirani 1996),

β̂λ = argmin
β

(y − Xβ)′(y − Xβ) + λ||β||1,

whereby X ′X = ∫ T
0 F(t)′F(t)dt and X ′y = ∫ T

0 F(t)′ ẑ(t)dt , whereby the first d
parameters, corresponding to ξ , will not be penalized and always included in the
solution path.

We illustrate our proposed approach by applying it to a time-course gene expres-
sion dataset related to the study of circadian regulation in plants. The data used in
our study come from the EU project TiMet (FP7-245143, 2014), whose objective
is the elucidation of the interaction between circadian regulation and metabolism in
plants.

The data consist of transcription profiles for 9 core clock genes from the leafs of
various genetic variants of Arabidopsis thaliana. The plants were grown in 3 light
conditions: a diurnal cycle with 12-hour light and 12-hour darkness (12L/12D), an
extended night with full darkness for 24 hours, and an extended light with con-
stant light for 24 hours. Samples were taken every 2 hours to measure mRNA con-
centrations. In total, there are 51 measurements across time. The nine genes are
known to be involved in circadian regulation (Grzegorczyk et al. 2008; Aderhold
et al. 2014). They consist of two groups of genes: “Morning genes”, which are LHY,
CCA1, PRR9 and PRR5, whose expression peaks in the morning, and “Evening
genes”, including TOC1, ELF4, ELF3, GI and PRR3, whose expression peaks in the
evening. The expressions for all the genes are strictly positive.

Figure7.4 shows the resulting sparse ODE network inferred with three different
functions g, two of which deal explicitly with possible saturation effects, such as
g(x) = log(x + 1) and g(x) = √

x and the naive linear production function g(x) =
x . The results are quite robust, but suggest that it is worth considering possible
saturation effects.

7.3.2.2 Vector Autoregressive Models

Both SDE and ODE models are in principle generative models for the underlying
process of interest. Their aim is to describe the intrinsic relationship between the
genomic substrates, typically on the basis of the Law of Mass Action or extensions
thereof. Often, part of the model is inspired by biological knowledge. In this section,



112 E. C. Wit

LHY

TOC1

CCA1

ELF4
ELF3

GI

PRR9

NI

PRR3
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Fig. 7.4 Circadian clock network in Arabidopsis thaliana: red arrows represent suppression,
whereas black arrow suggests activation. The ODE network inference results are quite robust,
whether one considers a saturation model, whereby the effect on the production term depends on
g(z) = log(z + 1) or g(z) = √

z, or one that does not saturate, in which case g(z) = z. The yellow
genes are the morning genes, whereas the blue genes are the evening genes

we describe a method fundamentally aimed at a more exploratory approach of high-
dimensional genomic time series data. The idea is to explore potential temporal
interactions between substrates, without focusing on the details of the kinetics. For
this, wewill use vector autoregressivemodels (VARs), which have been studiedmore
in detail in the econometric literature (Dahlhaus and Eichler 2003). The details of
the method described in this section can be found in (Abegaz and Wit 2013).

Within a vector autoregressive model, the time-course gene–gene interactions
evolve according to Markovian dynamics, rather than an explicit functional form
as in the ODE approach. Specifically, within a VAR(1) model the vector of gene
expressions at time t relates only to those at time t − 1; extensions to a Markovian
lag dependence greater than 1 are straightforward. Let Xt be a d-dimensional ran-
dom vector associated with the expression of the d genes at time t . According to
the first-order Markov property, the joint probability density of X0, . . . , XT can be
decomposed as:

f (X0, . . . , XT ) = f (X0) f (X1 | X0) × · · · × f (XT | XT−1). (7.12)

We focus only on the conditional distributions in (7.12) and ignore the initial term
f (X0). Furthermore, we assume a time-homogeneous dynamic network structure for
the conditional distribution f (Xt | Xt−1) that can be approximated via a multivariate
Gaussian,

Xt | Xt−1 ∼ N (Γ Xt−1,Σ). (7.13)

This vector autoregressive process of order one can also be expressed as

Xt = Γ Xt−1 + εt , (7.14)

where εt ∼ N (0,Σ). The parameter elements in the matrices Γ and in the inverse of
Σ represent directed and undirected links in theMarkovian conditional independence
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graph, respectively. In particular, a nonzero element inΓ , sayΓi j 	= 0, corresponds to
a directed edge in the conditional independence graph between gene j at the previous
timepoint and gene i at the current one. This edge is given the nameGranger causality
and reflects a delayed interaction between two genes, which can be cautiously given a
semi-causal interpretation (Granger 1988). GivenΣ and the corresponding precision
matrixΘ = Σ−1 undirected edges relate to nonzero elements in the precision matrix
Θ . If Θi j 	= 0, then after adjusting for the past and present effects of other genes,
there is an instantaneous interaction, or dependence, between genes i and j . A cartoon
representation of the model formulation is given in Fig. 7.5.

Data
Suppose that we have n replications of a T time point longitudinal microarray study
across p genes. The data, then, can be summarized as an n × p × T array X =
(X1, . . . , Xn)

′
whose i th submatrix Xi has columns such that Xi.t = (Xi1t , . . . , Xipt )

′

which correspond to the expression levels of p genes measured at time t . That is,
Xi jt is the j th gene expression level at time t for the i th replicate.

Sparse VAR network inference
The inference aim is to reconstruct the dynamic and contemporaneous genomic net-
works. Time-course genomic data typically consist of hundreds or thousands of genes
measured on a comparatively small number of replications (typically 3) ofmicroarray
experiments across a few time steps (often not more than 10). The model formula-
tion in (7.14) is in a standard vector autoregressive form with correlated errors and
estimation approach for high-dimensional time-course genomic data is challenging.
(Abegaz and Wit 2013) proposes a penalized maximum likelihood estimation meth-
ods for the analysis of the high-dimensional time-course gene expression data. The

Fig. 7.5 The dynamic
network encoded in Γ shows
that gene 1 is an important
regulator. The instantaneous
network Θ shows a central
role of gene 2, but because
the genomic interaction
times are faster than the
sampling times δt , it is not
possible to say whether gene
2 regulates the other or the
other way around
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proposed approach provides sparse estimates of the autoregressive coefficient matrix
Γ and the precision matrix Θ in (7.14), which are used to reconstruct the genomic
network.

Under the Gaussian assumption described in (7.13), the conditional density of the
t th observation is given by

fc (Xt | Xt−1;Γ,Θ) = (2π)p/2|Θ|1/2 exp
[
−1

2
(Xt − Γ Xt−1)

′ Θ (Xt − Γ Xt−1)

]
.

Then the conditional log-likelihood for n replicates each at T time steps becomes

�(Γ,Θ) =
n∑

i=1

T∑

t=1

log fc
(
Xit | Xi,t−1;Γ,Θ

)

= −npT

2
log(2π) + nT

2
log |Θ| − nT

2
tr(SΓ Θ), (7.15)

where

SΓ = (1/nT )

n∑

i=1

T∑

t=1

(
Xit − Γ Xi,t−1

) (
Xit − Γ Xi,t−1

)′
.

We consider a penalized likelihood framework, where the objective function based
on (7.15) is defined as

�pen(Γ,Θ) = log |Θ| − tr(SΓ Θ) −
p∑

i 	= j

Pλ(
∣∣θi j

∣∣) −
p∑

i 	= j

Pρ(
∣∣γi j

∣∣), (7.16)

where θi j and γi j are the (i, j)-elements of the matrix Θ and Γ and λ and ρ are
the corresponding tuning parameters of the penalty functions Pλ(·) and Pρ(·) corre-
sponding toΘ and Γ . Various penalty functions have been proposed in the literature.
We consider the L1 penalty function, which is convex and given by

Pλ(θ) = λ|θ |, Pρ(γ ) = ρ|γ |. (7.17)

This leads to a desirable convex optimization problem. To obtain the L1 penalized
likelihood we substitute the penalty function in (7.17) into the objective function
(7.16). Then, the optimization problem that gives sparse estimates of Γ and Θ is the
solution of

(Θ̂, Γ̂ )λ,ρ = argmax
Θ,Γ

⎧
⎨

⎩log |Θ| − tr(SΓ Θ) − λ

p∑

i 	= j

∣∣θi j
∣∣ − ρ

p∑

i, j

∣∣γi j
∣∣

⎫
⎬

⎭ . (7.18)
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Model selection
Under the penalized maximum likelihood framework for time series chain graphi-
cal models, the sparsity of the estimated precision matrix Θ and the autoregressive
coefficient matrix Γ are controlled by the tuning parameters λ and ρ. The Bayesian
information criterion can be used for selecting parsimonious parameter representa-
tions (Yin and Li 2011). The BIC is defined as

BIC(λ, ρ) = −nT
{
log |Θ̂λ| − tr(SΓ̂ρ

Θ̂λ)
}

+ log(nT )(an/2 + bn + p), (7.19)

where p is the number of variables, an is the number of nonzero off-diagonal elements
of Θ̂λ and bn is the number of nonzero elements of Γ̂ρ . Thus, we select the values of
λ and ρ that minimizes the criterion in (7.19). Here the minimization of BIC(λ, ρ)

with respect to λ and ρ is achieved by a grid search.

Example 7.2 Mammary gland gene expression network
We illustrate the proposed approach on the analysis of mammary gland gene

expression time-course data from (Stein et al. 2004). In the mammary gland expres-
sion experiment, there are 12,488 probe sets representing approximately 8,600 genes.
These probe sets are measured over 54 arrays of 3 replicates on each of 18 time
points. We identified 30 genes that yield the best separation between the four devel-
opmental stages (virgin, pregnant, lactating, involution) using cluster analysis. We
implemented the sparse VAR procedure in the R package SparseTSCGM. We apply
the proposed VAR model to study the interaction between these crucial genes that
trigger the transitions to the main developmental events in the mammary gland of
mice. Fig. 7.6(a) shows the undirected links associated with Θ , related to instanta-
neous interactions among the genes and Fig. 7.6(b) displays the directed links that
indicate Granger causality relations among the genes.
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Fig. 7.6 Undirected (left) and directed (right) time series chain graphical model network inferred
from the mammary gland time-course expression data with a VAR(1) model
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7.3.3 Other Genomic Network Models

The models we have considered so far have all been dynamic network models. The
main reason is that these models capture the dynamic nature of the genetic process.
Depending on external stimuli and the internal state of a cell, The main reason
is that these models capture the dynamic nature of the genetic process: at each
moment the then relevant genes are transcribed, translated and broken down again
in an intricate, interdependent process. Nevertheless, the three models that we have
discussed are not the only ones that can be used. Some people might have noticed
that we did not explicitly deal with Bayesian network models. Although they are
closely related to vector autoregressive processes, the biostatistics and bioinformatics
literature has seen many fine examples of such models applied to gene regulatory
systems (Grzegorczyk and Husmeier 2011).

At the same time, there are also certain biological processes that can be modelled
very elegantly by means of static network models. Genome-wide association studies
(GWAS) are aimed at uncovering associations between genotype and phenotype. At
the same time, certain genotype combinations might be evolutionary very advanta-
geous or, more likely, detrimental. That is why such GWAS data can also be used
to study epistasis by inferring the conditional independence graph: if there is no
epistasis, the conditional independence graph will show the chromosomal backbone,
whereas, if there is some epistasis, then we will find additional links between regions
of the genome that are possibly on different chromosomes. Figure7.7 shows such an
example in Arabidopsis thaliana, which has been found by means of L1 penalized
Gaussian copula graphical modelling (Behrouzi and Wit 2017).

Fig. 7.7 Epistatic effects in
a genotype study involving
an Arabidopsis thaliana
recombinant inbred line. The
sparse Gaussian copula
graphical model clearly
shows the chromosomal
backbone in the conditional
dependency graph as a result
of the meiosis process
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7.4 Discussion

In this chapter, we have looked at modelling dynamic biological networks. Unlike in
social networks, this typically does not involve random graph models. The reason is
that the biological phenomena of interest, such as gene transcription, pertain to the
nodes of the network, rather than the edges. In other words, the random process of
interest lives on the vertices of the graph. For this reason, the network models we
have considered in this chapter are more closely connected to engineering networks
used to describe flows.

Although networks have become an important modelling paradigm in genomics,
there is currently no single network model to describe all the genomic interaction
structures. In fact, it will be unlikely that there will ever be one. As the underlying
generative model in biology is extremely complicated, we will always rely on conve-
nient parameterizations to answer specific questions that arise in system biology. We
have considered three types of models, namely stochastic differential equation mod-
els, ordinary differential equation models and vector autoregressive models and each
of these modelling frameworks was selected depending on the underlying sampling
design (“Are the measurements from a single cell or average over many cells?”) and
on the question of interest (“Do we want to describe the kinetics of the interactions
or get an idea of the overall interaction structure of the genome?”). As George Box is
said to have once said “all models are wrong, but some are useful” (Wit et al. 2012),
and very useful indeed.
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