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The book was initiated through a joint research focus on quantitative network 
science funded by the Center for Advanced Studies at the Ludwig-Maximilans-
University Munich (LMU) from 2015 to 2017. A group of researchers from dif-
ferent scientific fields launched the quantitative network science center at LMU 
which included different scientific disciplines that dealt with network data in the 
widest sense. A final workshop in October 2016 covered the selected fields of 
the center with its multiple perspectives on network science. Some of these fields 
are mirrored in this book. First, networks can be treated as a mathematical object 
which can be analyzed from different perspectives. Secondly, networks can be 
considered as data which need to be analyzed. This requires visualization tools as 
well as methods and models which allow to draw conclusions from the network 
data. Finally, a network itself can be considered as a model where the entities 
interact with each other based on the model structure. How is information trans-
mitted through the network? How does the network behave if shocks occur or if 
certain nodes fail? Such questions relate to transmission of diseases but also to 
investigation of systemic risk in financial networks. Sometimes the network struc-
ture itself is the focus of interest. If the links between edges are unknown, research 
questions can focus on finding the driving network structure. Such questions are 
central in genetic networks, where inference about the network structure is drawn 
from data. This also applies to extreme events in a network. And finally, networks 
are per se visualizations, since a network as object is just a matrix. The different 
aspects sketched above are tackled in the chapters of this book.

The editors would like to thank the Center for Advanced Studies at the 
Ludwig-Maximilans-University Munich for funding a research group in the field 
of network science. This has led to the above mentioned workshop and subse-
quent cross-discipline collaboration. We would also like to thank the European 
Cooperation in Science and Technology (COST action CA15109—COSTNET), 
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which supported some of the contributions in this book. Last, but most promi-
nently, we do however want to thank the authors of this volume for their contri-
butions and the hard work they put in it. Finally, tremendous credits need to go to 
Michael Lebacher, who read several chapters of the book carefully and provided 
extremely helpful remarks to the authors. Many thanks!

Munich 
March 2019

Francesca Biagini
Göran Kauermann

Thilo Meyer-Brandis
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Chapter 1
Introduction

Francesca Biagini, Göran Kauermann and Thilo Meyer-Brandis

Abstract Network Science is a term used for a wide field of methods all related to
analyzing networks and/or network data. This ranges from mathematical questions
to applied data analytic problems.We give a general overview of the different aspects
and refer to the chapters in this book.

Network science, the science of analyzing networks, has become increasingly impor-
tant. A network is a collection of actors (nodes), which are connected with each other
(through edges). Examples include genetic, social, and traffic networks, to name but
a few. Research questions are, among others, the dynamic behavior of the network,
the transmission of information through the network, or the network structure itself.
Networks are simple in structure and in principle one can even represent the network
as squared matrix, so that edges are numbers in the matrix. A friendship network
can for instance be written as matrix with entries 1 (for an existing edge) and 0
(otherwise). And while the structure of a network is simple, its analysis and mod-
eling can get rather complex. Moreover, if a network gets large, the behavior in the
network follows asymptotic rules, whose derivation is challenging. These aspects
become apparent with the increasing availability of network data. Today, we live in a
data-driven society in which information is measured, recorded, and stored in many
areas of daily life, and network data, available in nearly all of these areas, need to be
analyzed.

Network science and network data analysis is not confined to any single scientific
discipline but similar quantitative needs arise in diverse fields such as industry, engi-
neering, genetics, medicine, biology, economics, and social sciences, among many
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2 F. Biagini et al.

others. Network science is therefore strongly interdisciplinary and includes methods
and theories ranging from mathematical graph theory and statistical network models
to visualization techniques in computer science. The contributions in this bookmirror
this wide range and illustrate the different research questions being tackled. Network
science has attracted more and more interest since the 1960s and has grown signifi-
cantly in recent years. Networks provide an abstract way of describing relationships
and interaction between elements of complex and heterogeneous systems.

Since networks can be represented as graphs, network science is strongly influ-
enced by graph theoretical approaches. Even though networks can be applied to dif-
ferent fields, they nonetheless share the common structure that actors (nodes) build
up ties (edges) to other actors in the network. The complexity of network analyses
can grow rapidly. First, networks can be dynamic, i.e., the network structure changes
over time. Second, the nodes in the network can change or be heterogeneous. Third,
the links between the nodes can be complex andmultitude. In general, networks carry
complex interactions, and network models are essential for analyzing, visualizing,
and understanding activities in the network.

The aims of network analyses aremultifold, using theoretical, numerical, and data
analytic tools. One can, for example, investigate how a network behaves in extreme
cases, e.g., when the number of actors (nodes) is growing, by developing suitable
mathematical models. Numerical methods can be employed to find the shortest paths
between two actors in a network, while statistical methods may be used to model
time dependence and changing network structures. Networks itself occur in nearly
all fields. For example, the World Wide Web can be represented as a network whose
vertices are HTML documents, connected by the hyperlinks that point from one page
to another. On a different level, our nervous system forms a large network, whose
vertices are the neurons and nerve cells, which are connected by axons. Complex
networks are also considered in social and economic sciences. Here the vertices
represent (specific groups of) individuals or entities, and the edges describe social
or some other type of interaction between them. Yet another example of the use of
networks is in information visualization and visual analytics in order to discover
unexpected patterns in network data.

In fact, the field of network science is too broad to cover it comprehensively in a
single book. We therefore do not intend to give a full picture of network science but
to illuminate some aspects in the area which are current active research fields. The
contributions in the book provide an aerial view and by doing so the reader can see
the wide angle of network-related research.

Any analysis of networks should start by visualizing them. While networks are
mathematically clearly defined objects, which are either represented by a set of nodes
and a set of edges, or equivalently by an adjacency matrix, their visualization is in
no way unique or even simple. Chapter 2 presents the state of the art in this field. At
first sight, it does not appear to be difficult to visualize networks. Nodes are drawn
with circles and edges are drawn as links between them. While this is certainly true,
the question remains how to allocate the nodes and how to draw the edges when
visualizing the network. Network maps of underground trains can serve as a simple
example. They fulfill the purpose of easy readability but cannot serve as a map of a

http://dx.doi.org/10.1007/978-3-030-26814-5_2


1 Introduction 3

city. While we are all used to read such network graphs, we need to question what
is intended to be visualized and how can this be done if networks grow in size. The
hairball effect is one issue, and computation time is another constraint. An alternative
representation results through comprehending the network as a matrix and directly
visualizing the matrix. The second chapter of this book gives some ideas in this
direction by focusing on some network examples, which are represented in different
styles. This mirrors the complexity of the field but also shows some novel ideas.

If the network is considered as adjacency matrix, one may treat this quantity
as multivariate random variable. In other words, edges between the actors result
from a random process, which itself might be influenced by the network. This view
leads to statistical network data analysis which is portrayed in Chap. 3. The central
model in this field is the so-called exponential random graph model (ERGM), which
states that the network and its distribution are described by a number of quantities
calculated from the network. Such quantities, usually called statistics, are for instance
the number of edges, the number of the so-called two stars (or “V” constellation, i.e.,
three nodes connected in form of a “V”).While themodels are statistically appealing,
their estimation based on data is numerically demanding. A second strand of models
results by focusing on changes in a network. If the network is not considered as
static but dynamic in that edges may develop or disappear, one can consider this as
a stochastic process. In principle, one could comprehend the resulting data as a time
series of networks. Chapter 3 sketches the up-to-date statistical approaches in this
field and closes with a different statistical field using networks, namely graphical
models. The latter is picked up again in Chap. 6.

With the birth of Internet-based social networks, information on personal interac-
tion on a large-scale became available and the interest in developing mathematical
models that are able to capture and explain certain stylized features of large and
complex real-world networks has grown significantly. Among the most central phe-
nomena observed in large-scale real-world networks is the so-called small-world
phenomenon, which refers to the fact that despite the large network size most of the
nodes have a surprisingly small graph (hop count) distance in between them, and
the so-called scale-free nature of networks, meaning that the degree sequence has
polynomial decay. Chapter 4 focuses on two paradigms of random graph models that
have been thoroughly studied over recent years, the rank-one and the preferential
attachment paradigm. More precisely, it introduces certain random graph examples
that are archetypical for the rank-one and preferential attachment model classes and
illustrates how the above-mentioned phenomena are addressed and studied within
these types of model classes.

In an ever more connected world, the notion of systemic risk, which can be
described as the risk that a local shock to a system spreads to substantial parts of
the system due to contagion or infection effects, becomes a central concern. Exam-
ples include epidemic spreads of diseases, rumors spreading in social networks,
breakdowns of power grids, or the collapse of financial networks. One classical
contagion process studied in the framework of random graphs is the so-called boot-
strap percolation where a node gets infected as soon as a fixed number of neigh-
bors are infected. However, both the classical bootstrap percolation process and the

http://dx.doi.org/10.1007/978-3-030-26814-5_3
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homogeneous Erdös–Rényi graph do not account for the strong heterogeneity
observed in most real-world networks. Chapter 5 summarizes some recent results
on how a generalized bootstrap percolation process can be studied on inhomoge-
neous random graphs with the focus on measurement and management of systemic
risk caused by default contagion in financial networks. In addition to quantifying
the impact of a local shock, resilience criteria and sufficient capital requirements to
stabilize a given system are obtained in terms of network characteristics.

Chapter 6 deals with the question of how to model and analyze extreme risk that
evolves in some system according to certain network dependencies. Consider, for
example, the event of extreme rainfall on a specific location within a network of
rivers. This event will affect water levels at other parts of the system in a specific
way depending on the precise structure of the river network. In Chap. 6, Bayesian
networks associated with directed acyclic graphs are used to model this transmission
of extreme risk, where the conditional distribution of the state of a given node is
described in terms of the distribution of the states of its parental nodes, i.e., the nodes
in the networkpointing toward thegivennode. In this sense,Bayesiannetworkmodels
are closely related to vector autoregressivemodels. In case of extreme risk events, the
involved distributions are typically heavy-tailed and the conditional distributions can
be described by the so-calledmax-linear structural equations.Within this framework,
independence properties of the model and parameter estimation are discussed.

In genomics, language and tools from network science have been actively
employed to study complex genetic systems. Roughly speaking, nodes in a genetic
network are abstractly described as “genes,” and edges between the genes represent
some kind of “genetic interactions.” Since in genetic networks the (random) process
of interest typically lives on the nodes and not on the edges, the study of genetic net-
works mostly involves dynamical system models used to describe flows rather than
random graph models as described in Chaps. 4 and 5. Chapter 7 gives an overview of
three common types of models used in the study of genetic networks depending on
the genomic network data and experiment under consideration. More precisely, to
study the so-called mechanistic genomic networks of molecular interactions within
a single cell, a system of stochastic differential equations is proposed that takes into
account the underlying stochasticity of molecular interactions. To model the evolu-
tion of the so-called functional genomic networks where the focus is on systems on a
larger scale such as organs or other biological subsystems, systems of ordinary differ-
ential equations are more appropriate. Finally, vector autoregressive models show to
be useful as an alternative for large genomic systems, where systems of (stochastic)
differential equations might become unstable and computationally prohibitive.

The authors of the chapters come from different scientific areas, make use of
different methods, investigate different research questions, and apply different tools.
Still, they have one thing in common. They all consider networks and network data
and by doing so, the contributions in this book are apparently tied together. This
combination of different aspects of network science provides the intended aerial
view.

http://dx.doi.org/10.1007/978-3-030-26814-5_5
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Chapter 2
Network Visualization

Ulrik Brandes and Michael Sedlmair

Abstract Data visualization is the art and science of mapping data to graphical vari-
ables. In this context, networks give rise to unique difficulties because of inherent
dependencies among their elements. We provide a high-level overview of the main
challenges and common techniques to address them. They are illustrated with exam-
ples from two application domains, social networks and automotive engineering. The
chapter concludes with opportunities for future work in network visualization.

2.1 Introduction

Data visualization is the art and science of mapping data to graphical variables in a
way that facilitates the identification of individual values and aggregate patterns. The
main motives are data exploration for analysts and communication of information
toward a recipient. One should not underestimate, however, some of the more cir-
cumstantial aspects of visualization: decorative appeal, symbolism, and suggestive-
ness. Classics include Bertin (1983) and Tufte (1983); for recent research-oriented
overviews, see, for instance, Munzner (2014) and Grant (2018).

Networks, as a special form of data, pose unique challenges to visualization
because of inherent trade-offs and dependencies among the elements in a
graphical mapping. A network diagram of a subway system, for instance, should
facilitate travel planning so that finding stations and following lines takes prece-
dence over topographic accuracy. Since Harry Beck designed the first schematic
map of the entire London Underground network in 1933, it has become common to
restrict the slopes of lines which, in turn, also influence where stations can be placed.
While there are many aspects to schematic map design (Roberts 2012), we illustrate
in Fig. 2.1 the effect of network schematization on the representation of distances.
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(a) topographic (b) schematic

Fig. 2.1 A topographically accurate and a schematic version of the Washington Metro system. As
is common for metro maps, the schematic version exhibits restricted angles, an enlarged center,
and equidistant stations along arteries. The underlying grid indicates the distortion of actual spatial
relationships. (Adapted from Boettger et al. 2008. Published with permission of © IEEE 2008)

Layout problems become even more challenging when networks are large. In
addition to design criteria and visual clutter, for instance, computational complexity
of layout algorithms is a concern. Many other challenges beyond layout need to be
addressed, including multivariate information associated with nodes and links and
alternative representations such as adjacency matrices.

Altogether, this makes network visualization a highly interesting design problem
in which many trade-offs and interdependencies among aspects as diverse as tradi-
tions, aesthetics, and constraints, as well as computational issues need to be taken
into account.

Our contribution to this volume is split into two main parts. The first part, in
Sect. 2.2, provides a high-level overview of the main challenges associated with the
visualization of networks and a glimpse at some of the more common techniques to
address them. In Sect. 2.3, we look more concretely at the visualization of networks
from two different applications domains. The chapter concludes with opportunities
for future work in network visualization.

2.2 Principles

Adopting the notation used throughout this book, we define a (binary) networkwith n
nodes as a (binary) data matrix y ∈ {0, 1}n×n . More general situations are considered
briefly in Subsect. 2.2.4.

Network visualizations are commonly produced using techniques developed for
graphs. A graph representation G(y) = (V, E) of a network y consists of the set
V = {1, . . . , n} of vertices and the set E = {(i, j) ∈ V × V : yi j = 1} of (directed)
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Fig. 2.2 A network y and visualizations of the associated directed and undirected graphs
G(y) = (V, E) with different layouts and edge styles

edges. If y is symmetric and non-reflexive, i.e., yi j = y ji and yii = 0 for all 1 ≤
i, j ≤ n, the network can also be represented as an undirected graph in which the
edges are unordered pairs {i, j} ∈ E ⊆ (V

2

)
. Sometimes graphs are mixed, with both

directed and undirected edges.
Multiple formsof visualizationhavebeendevised for graphs. In thefirst subsection

below, we introduce the most typical and intuitive design, node-link diagrams, that
is exemplified in Fig. 2.2. It is by far the most frequently used, and since its spatial
arrangement hasmoredegrees of freedom than a statistical chart,webriefly review the
problemof layout in Subsect. 2.2.2. In Subsect. 2.2.3,we give special consideration to
large networks. This section endswith a discussion of the visualization ofmultivariate
network data and some ideas on alternative representations.

2.2.1 Standard Representation

The most common representation of graphs is the node-link diagram in which ver-
tices are represented by point-like features and edges by curves or line segments
connecting them. Examples are shown in Fig. 2.2 and alternatives are discussed in
Subsect. 2.2.5.

Node-link diagrams appear long before Euler’s seminal work on the bridges of
Königsberg, which is usually considered the beginning of graph theory but does
not contain any drawing of a graph. For centuries, point features and connecting
curves had already been used onmaps and for non-spatial relations, including ancient
board games, astrological and logical diagrams, ancestral relations, and geometric
figures. Kruja et al. (2001) give a short history of graph drawings, although many
more stunning examples such as the one shown in Fig. 2.3 exist.

Although the standard representation is intuitive, it is prone to a number of poten-
tial shortcomings. Experiments show that small angles and crossings of edges may
hinder reading (Purchase 2000;Ware et al. 2002); spatial proximity suggests cohesive
groups even when they are connected only loosely (McGrath et al. 1996), and, quite
obviously, identification of elements becomes difficult in the presence of overlap.
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Fig. 2.3 Diagram showing musical relationships in a twelfth-century copy of a manuscript of
Boëthius (c. 480–524). Source: St. Gallen, Kantonsbibliothek, Vadianische Sammlung, VadSlg
Ms. 296, f. 89r. Boethius, De arithmetica, De institutione musica, https://www.e-codices.ch/en/list/
one/vad/0296, under the CC BY-NC 4.0 license. Published with permission

2.2.2 Layout

The research field of graph drawing (Tamassia 2013) is concerned with geometric
representations of, and layout algorithms for, graphs and hypergraphs, whereas visu-
alization design, task appropriateness, and user interaction are more commonly stud-
ied in the areas of information visualization, visual analytics, and human–computer
interaction.

Spatial arrangement, or layout, is a non-trivial issue with any graphical repre-
sentation. Unlike statistical charts such as scatterplots, time series, or pie charts,
however, node-link diagrams usually do not come with given relative positions and
thus exhibit more degrees of freedom. This is a curse and a blessing, because on the
one hand, a layout can be adjusted to express additional information and increase
readability, and on the other hand, edges create complex dependencies turning both
into rather daunting tasks.

Readability criteria such as density distribution, size of angles, number and angles
of crossings, bends, area, symmetry, etc. are sometimes referred to as aesthetic cri-
teria, and their priorities may be influenced by the task at hand. In graph drawing,
layout algorithms take them into account as constraints or optimization objectives.

While specialized algorithms have been proposed for classes of graphs such as
trees and planar graphs, and for representation variants such as layered or orthog-
onal layouts, one group of layout algorithms clearly dominates the practical use
of algorithms for general undirected graphs. They are referred to as force-directed
algorithms (Brandes 2016; Kobourov 2013) because they are inspired by physical
analogies of mutually repelling nodes (for good distribution and overlap avoidance)

https://www.e-codices.ch/en/list/one/vad/0296
https://www.e-codices.ch/en/list/one/vad/0296
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and edges acting as springs between them (for uniform edge length and visually
recognizable group cohesion). As a by-product, symmetries can often be recognized
well, and the simulation of physical forces facilitates modes of interaction that feel
natural to users.

On the negative side, the simple, intuitive, and widely available implementations
are non-deterministic, sensitive to poor initialization, they often get stuck in local
minima fromwhich the iterative improvements strategy is unable to escape, and they
have difficulties with graphs of low diameter or large size as evidenced in Fig. 2.5.

The most robust and reliable variants are instances of multidimensional scaling
with the graph-theoretic distances as input and coordinates as output. Instead of a
force calculation determining an update step, minimization of a layout objective
function is attempted. For a two-dimensional layout p = (pi )i∈V ∈ R

n×2 with pi =
〈xi , yi 〉, are examples. the squared relative error of shortest-path distances dist(i, j)
in the underlying undirected graph represented by Euclidean distances ‖pi − p j‖ in
the layout is defined as

stress(p) =
∑

i, j∈V

1

dist(i, j)2
(‖pi − p j‖ − dist(i, j)

)2
.

Exact minimization is computationally intractable but with good initialization and
carefully designed iterative improvement procedures such as majorization (Gansner
et al. 2004; Wang et al. 2018), low-stress layouts can be obtained reliably and effi-
ciently (Brandes and Pich 2008). Approximate minimization for large graphs is
discussed in the next subsection.

Note that it is precisely the focus on distances that renders networks such as the
one depicted in Fig. 2.5 problematic. However, the stress objective can bemodified by
altering the notion of target distances dist(i, j), by varying the relative contribution
of dyads (i, j), or by building auxiliary graph structures that may include virtual
vertices and edges. We give an example in Fig. 2.6.

Other layout requirements may be expressed as constraints that restrict the space
of admissible layouts for instance by fixing vertices to certain areas or relative to
each other (Dwyer 2009). The approach is thus flexible and can be adapted to more
different application settings than one might initially suspect, including dynamic
graphs.

The relevance of the stress-minimization approach is reinforced by the fact that
other important approaches turn out to be special cases. Spectral layout, where coor-
dinates are determined from eigenvectors of the Laplacian matrix of a graph, and
barycentric layout, where some vertices are fixed and the others are placed in average
position of their neighbors, are examples.

A recent development are neighborhood embeddings, where distances are deter-
mined only locally and patched together. They appear to be especially suited to
highlight clustering structure (Maaten and Hinton 2008; Roweis and Saul 2000).
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2.2.3 Large Networks

With increasing size of a network, the problem of visualizing its graph changes until
it becomes qualitatively different.

An obvious challenge for layout algorithms is running time. Without special pre-
cautions, a single iteration of a force-directed algorithm that moves every vertex
only once already requires time linear in the size of the graph. Speed-up techniques
attempt to reduce the number of iterations using fast methods that get the larger
distances approximately right so that the iterative procedure does local adjustments
only. Multilevel methods obtain suitable initializations by recursively operating on
smaller graphs (Gajer and Kobourov 2002; Hachul and Jünger 2004; Hu 2006). Sim-
pler but no less effective is the use of approximate classical scaling (Brandes and Pich
2006) a spectral decomposition method that prioritizes larger distances and requires
near-linear running time. Additionally, the time spent in iterations can be reduced
by coarsening the stress function and thus eliminating redundancies (Ortmann et al.
2017), or by parallelizing algorithms for GPU computation (Wang et al. 2018).

Beyond runtime, display limitations are another concern. Even with sufficient res-
olution to display tens of thousands of line segments for edges, it may not be possible
for a human viewer to discern the details. Worse, the nature of the stress objective is
such that low variance in distances leads to largely uniform vertex distribution and
cluttered edges. This is sometimes referred to as the hairball problem of small-world
networks and one of the reasons Fig. 2.5 appears cluttered.

Compensation techniques include pre- and postprocessing during layout genera-
tion and level-of-detail rendering of a given layout. An example of a preprocessing
technique particularly suited for graphs with low variance in distances is the determi-
nation of a backbone, i.e., a subgraph induced by edges that are contained in regions
of relatively high local density (Nocaj et al. 2015). Absent many shortcut edges,
distances in such backbone structures are generally larger and more varied which
makes their layout easier.

Edge bundling is a technique that has been used in both, pre- and postprocessing.
In the most common variants (Gansner et al. 2011; Holten 2006), a given layout is
modified by bundling the middle segments of edges that would run close to parallel
anyway because they start and end in similar display regions.

Abstractions and simplifications can also be accomplished in graphical space,
for instance by adjusting the level of detail at which a graph with a given layout is
drawn (Zinsmaier et al. 2012). A more comprehensive overview is given by Landes-
berger et al. (2010).

2.2.4 Multivariate Networks

A network as defined above is a single variable representing relationships between
entities. In realistic data-analytic scenarios, it is unlikely to be the only variable.
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Often, there will be additional node-level attributes and multiple types of relations,
possibly on different sets of nodes. Even more dimensions are introduced if one or
more of the variables vary over time, which results in a dynamic network. Networks
made up of multiple relations are often referred to as multilayer networks (Kivelä
et al. 2014) and their visualization is discussed in Kerren et al. (2014).

As an example, consider the visual encoding of two node variables in coordinates.
Their quantitative, ordinal, or categorical values constrain the spatial layout, and in
the extreme case, node positions are fixed as in a scatterplot (Wattenberg 2006). Note
that choosing such a graphical mapping favors the nodal attribute data over network
structure which was the sole criterion in the layout algorithms above.

Many other ways of visually encoding multivariate networks exist. Often, addi-
tional graphical elements such as labels, colors, and glyphs for enriching nodes, line
thickness, shapes, and gradients for enriching links, or additional separating lines
and boundaries to compartmentalize information are added.

We give two examples ofmultivariate network visualizations. The first, in Fig. 2.6,
is the samenetworkof retweetingpoliticians shown inFig. 2.5 butwith additional data
(and a different layout as explained in Sect. 2.3.1 on social networks). The second,
in Fig. 2.7, shows a sequence of 15 networks (including the one from Fig. 2.4b) of
ranked friendships in a matrix representation.

The more variables to display, the greater the danger of overstuffing. It is thus
important to keep general visualization guidelines in mind. When using color to
group nodes into categories, it is, for instance, important to realize that a viewer will
only be able to distinguish six to twelve colors reliably.

(a) Metro system treated as a network
without geographical information
(cf. Fig. 2.1)

b) Social network of university students (three
best friends) (Newcomb 1961). See Fig. 2.7 for
full data

Fig. 2.4 Network visualization using a force-directed layout algorithm
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2.2.5 Other Representations

The standard representation in the form of node-link diagrams is not the only way
of visualizing networks. Straightforward variants include drawings with orthogonal
edges (as are common for circuit schematics) or other predetermined slopes (as in
metro maps). Implicit representation of edges appears, for instance, in inclusion
drawings of trees where vertices are represented as areas and these areas are placed
within other areas such that parent–child relationships can be inferred from area
inclusion.

Many other representations exist but are often feasible only for graphs that satisfy
structural properties such as acyclicity or planarity.

A common alternative that applies to general graphs is matrix representations
where rows and columns are indexed by the vertices and edges are represented in
matrix cells. A one-dimensional layout problem remains: the (joint) ordering of
rows and columns. This ordering is important as it relates to the recognizability
of structural features in the form of cell-arrangement patterns such as on- or off-
diagonal blocks (density within or between groups) and crosses (high-degree vertices
brokering between groups).

Just like graph layout algorithms, many ordering criteria and algorithms have
been considered (Behrisch et al. 2016). Most of the objectives are computationally
intractable (Díaz et al. 2002) giving rise to interesting computational challenges. An
example that includes additional aspects is given in Fig. 2.7.

A comparison between standard and matrix representations suggests that they
have complementary strengths andweaknesses (Ghoniem et al. 2004). Consequently,
there are approaches that transition between these representations at different res-
olution levels (Abello and Ham 2004) or combine them in a single representation
based on local density (Henry et al. 2007) or select paths (Shen and Ma 2007).
Attempts to alleviate some of the weaknesses include modifications adding cues at
the boundaries (Henry and Fekete 2007) and decomposing the rectangular area into
patches (Bae and Watson 2011; Dinkla et al. 2012). Matrix representations are also
particularly suited for certain forms of interaction such as resizing or folding rows
and columns (Elmqvist et al. 2010).

Finally, we only point out that hypergraphs, where edges are subsets of vertices
of any cardinality, can be represented as bipartite graphs in which both the origi-
nal vertices and edges are represented as vertices, and each vertex-edge incidence
is represented by an edge. While this representation allows to use common graph
visualization techniques, more specific representations such as Venn diagrams exist
as well.
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2.3 Practice

From a data visualization perspective, the graphical representation of a network
should be designed such that relevant information can be perceived with ease and
accuracy. Since data, information, and tasks differ across application domains, so
does appropriate visualization. Domain traditions and prior knowledge of recipients
require further adaptation.

We next discuss network visualization in two very different scenarios to illustrate
the breadth and depth of issues arising.

2.3.1 Social Networks

When social phenomena are described as networks of social relations, the information
to be conveyed in their visualizations may be manifold, with different foci, different
aspects, and on different levels (Borgatti et al. 2018; Hennig et al. 2012). Thus,
an especially rich set of tasks and visualization techniques has evolved around the
concept of social networks (Brandes et al. 2013).

On the macrolevel, the interest is generally in characteristics of the social network
as a whole. Such characteristics may include whether the network consists of a dense
core and a loosely connected periphery or whether it is polycentric, whether there
are many shortcuts that accelerate diffusion or whether there are bottlenecks, and
whether subnetworks are organized hierarchically or whether the network is flat.

Certain characteristics that are commonly encountered in social networks require
adaptation of layout algorithms. Networks with low average distance are known as
small-world networks and an example was given in Fig. 2.5. The alternative layout
for the same network in Fig. 2.6 uses a preprocessing technique that ignores edges
potentially bridging different regions of the graph in the computation of shortest-
path distances (Nocaj et al. 2015). These are identified as edges not embedded in a
tightly knit neighborhood. Since the Twitter accounts are represented by rectangles
of varying size, an additional postprocessing step is applied to reduce node overlap
(van Garderen et al. 2017).

On the microlevel, the interest is in individual differences and special configura-
tions such as node centrality and the prevalence of substructures which are some-
times referred to as motifs. Network-analytic techniques focusing on characteristics
of nodes or links typically yield additional attribute data and therefore lead to mul-
tivariate network visualization problems.

It is thus typical for social networks that some data, such as party affiliation or the
number of retweets on an edge, is given, and other data, such as the invisibly used
status of being a backbone edge or the depicted number of retweeters, is derived
from the structure.
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(a) standard spring embedder (b) stress minimization

Fig. 2.5 Retweeting among 661 Twitter accounts of German politicians during the 2013 federal
elections. Data collected by Lietz, Wagner, Bleier, and Strohmaier at GESIS (Lietz et al. 2014).
Due to small distances, neither layout method does particularly well, although stress minimization
hints at variation in local cohesion. This network is redrawn in Fig. 2.6

Longitudinal social networks arise from multiple waves of observation and are
often representedusing smallmultiples or animation (Brandes et al. 2012).Adifferent
representation is shown in Fig. 2.7. Here, a group of 17 university students has been
asked repeatedly to rank their peers in order to understand the evolution of their
social relationships (Newcomb 1961).While Fig. 2.4b shows just one of the resulting
15 networks, with edges only for the top three nominations of each respondent,
the matrix representation in Fig. 2.7 shows, for every dyad, how the relationship
develops over time: a line segment extends to the left and right according to the rank
assigned to the column actor by the row actor and vice versa at a particular point
of observation. The higher the rank, the longer the line, and the more imbalanced
the two nominations, the more the line tilts toward the longer side. The 15 pairs of
observations are vertically aligned to ease identification of trends and outliers.

In the study of ego networks (Perry et al. 2018), actors are characterized by their
individual social environment. Instead of an ordered sequence of snapshots of an
evolving networks, these collections represent an ensemble of networks made up of
the same variables. For visual comparison, they can be arranged by similarity and
summarized in subgroups of ego networks or by composition (Brandes et al. 2008).

As these few aspects indicate, social networks pose a broad range of challenges
for network visualization both in terms of the richness of data and the analytic interest
taken in them.
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Fig. 2.6 Network of Fig. 2.5 with different layout and multivariate information. Nodes are colored
according to political party affiliation, and their width and height indicate the number of others they
retweet (outdegree) and have been retweeted by (indegree). Node labels are shown only for some
particularly involved accounts and are scaled according to activity level (sum of in- and outdegree).
Both thickness and darkness of lines indicate the number of retweets making up that particular
relationship. Width, height, and thickness are all proportional to the square root of the respective
quantity. The layout is determined by stress minimization of distances in a backbone structure
consisting of edges in dense regions and postprocessed to reduce node overlap

2.3.2 Overlay Networks for Automotive Engineers

In the second example, we describe a particular application in more detail. A net-
work analysis tool called RelEx (Sedlmair et al. 2012), which was built to support
automotive engineers in understanding in-car communication networks.

In-car communication networks describe the networks that connect the electronic
components of a car through the respective communication bus systems. The chal-
lenges of visualizing such networks are very different from those of analyzing social
networks. Instead of the node scalability issue in social networks, the main complex-
ity stems from the interplay of different network types that form an overlay network.
While there are only a few nodes (up to 100), the network is very dense, which makes
a matrix representation a viable design choice.
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Fig. 2.7 Evolution of a social network of co-habitating students known as Newcomb’s Fraternity
(Newcomb 1961). Mutual rankings over 15 waves of observation have been stacked from bottom to
top in each cell (Brandes ans Nick 2011, published with permission of © IEEE 2011). Length and
tilt of each line indicate how the two students involved ranked each other. Color on the diagonal
indicates the degree to which an individual is ranked above or below unbiased expectation. Rows
and columns have been ordered to keep strong relationships close, resulting in two diagonal blocks
that are relatively stable over time

Figure2.8 shows a screenshot of the RelEx tool. As there are many visual analysis
tools, RelEx uses multiple coordinated views. All views are interactively connected
by linking and brushing, that is, selecting nodes/edges in one view gets propagated
by highlighting the same nodes/edges in other views. On the top left, the physical
network is shown in an automotive-typical node-link diagram, which schematically
shows how all the components are wired up in the car. Abstractly, this network is an
undirected hypergraph with edges that connect multiple nodes at ones. The bottom
left shows the specific path a selected signal takes over this network. It is basically
a filtered version of the view above, which can be interactively set by the user.

The view we want to primarily focus on is the matrix view on the right side. The
matrix viewprovides an overviewover the logical network. The logical network spec-
ifies how signals (up to 10.000) are exchanged between the hardware components.
Abstractly, this network forms a directed multigraph, that is, it can have multiple
edges between nodes (i.e., two components can exchange multiple different signals).
We remember that the nodes in the matrix representation are now shown as the lines
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Fig. 2.8 Screenshot of theRelEx (RelationExplorer) tool (Sedlmair et al. 2012). The tool comprises
three main views: (top left) the physical network diagram, (bottom left) a filtered version of the
physical network showing a signal path of a selected signal, (right) a matrix view showing an
overview of the logical network

and columns. Within this grid, RelEx not only marks the edges, but additionally
encodes how many edges (signals) are exchanged between each pair of nodes. The
number of signals exchanged is encoded by the size of a box that is drawn onto
the matrix grid. With this box encoding important connections that exchange many
signals visually pop out. This visual “pop out” effect is further supported by adding
a black frame for the communication hotspots with more than 100 signals. We see
that many signal boxes exist, that is, the logical network is very dense. In a node-link
diagram, this characteristic would lead to extreme clutter making it almost impossi-
ble to perceive relevant information (the so-called hairball effect). Here, the matrix
view offers a viable alternative. Note also, that the matrix is not symmetric as signals
are usually unidirectional.

In addition, it supports tasks that might be harder to conduct with classical node-
link representations. For instance, the nodes in thefigurewere ordered based onwhich
hyperedge subsystem1 they are connected to. These different subsystems are visually
indicated as light blue background stripes in the matrix. Ordering the matrix in this
way allows to better understand how much communication happens within a certain
subsystem, and how much communications happens across different subsystems.
This can be simply done by eyeballing the intersection between these bus stripes.
The within communication is represented by the signal boxes that lie on the diagonal

1In automotive terminology, these are the bus systems that components are connected to, such as
the CAN, MOST, or FlexRay bus. These domain-specific details are not relevant for the discussion
here, and we hence simply refer to them as “subsystems.”
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intersections of stripes. For instance, the intersection rectangle at the top left, shown
as blue highlight in Fig. 2.8, reveals a lot of communication within subnet1. The
orange highlight at the bottom right shows a different communication pattern. While
there is also considerable communication within subnet2, this system also receives
(horizontally) and sends (vertically) many signals to other subsystems, as indicated
by the dotted lines in Fig. 2.8. This example is meant to illustrate the importance of
properly ordering matrix visualizations, so meaningful insights can be drawn from
this visual representation.

2.4 Challenges and Opportunities

As the requirements change with origin, structure, content, representation, and inter-
est, network visualization tasks abound and new challenges arise continuously. New
approaches to network analysis and applications of network science in other domains
inspire novel forms of network visualization.

Visualization tools therefore often combine tested and generic methods for layout
with flexible means for attribute mapping and interactive exploration. Still, as visu-
alization can be seen as the human lens to data, further research is needed to assess
which visualization designs are understood by targeted groups of recipients. Display
technologies, 3D printing, and augmented reality provide further opportunities to
explore networks.

An important challenge for users of network visualization systems is not to fall
for images of complexity and decorative beauty but to concentrate on the essential
purpose of network visualization, namely to facilitate exploration and hypothesis
formation as well as communication and the provision of evidence for conclusions.
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Chapter 3
A Statistician’s View of Network
Modeling

David R. Hunter

Abstract This introduction to statistical modeling of networks is aimed at an audi-
ence that possesses mathematical background at about the level of pre-calculus but
that may not be familiar with what statisticians do. After illustrating the concept of
statistical inference, the chapter discusses this concept in two main contexts where
network data are analyzed: First, when a network is observed, and the aim is to learn
about the process that may have formed it; and second, when the network itself is
the object of scientific inquiry because it is unobserved.

3.1 Introduction

The development of statistical models for networks has a history spanning many
decades, yet it is relatively recently that an explosion of interest in the study of
networks within the statistical community has taken place. This brief glimpse of
how statisticians view the modeling of networks is not intended to comprehensively
survey the vast and rapidly growing literature on the subject, nor to outline the
historical development of this work, but rather to introduce a reader who may have
little previous exposure to the field of statistics to the way in which statisticians
engage with the study of networks. While this discussion will not veer deeply into
technical details, it does presume a comfort with mathematical ideas and notation at
roughly the level of a pre-calculus course.

This chapter discusses the statistical paradigm itself in Sect. 3.2 and introduces
some notation in Sect. 3.3. Then, Sects. 3.4 and 3.5 present two fundamentally differ-
ent network modeling scenarios with which statisticians concern themselves. This
chapter is by no means meant to be an exhaustive survey of statistical network
modeling, and the fact that Sect. 3.4 is substantially longer than Sect. 3.5 merely
reflects my own particular areas of expertise rather than a bias in the statistical liter-
ature generally.
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3.2 Statistical Inference

Statistics is sometimes understood by the non-specialist as a collection of techniques
for summarizing data, or even as summaries of data themselves: I remember a call
I once received while working the phones as a graduate student in the University of
Michigan’s statistical consulting center in which the caller, after verifying that he had
in fact reached a statistician, askedwhether I could tell him the average annual rainfall
in the Amazon rainforest. Of course, summaries of large amounts of data, whether
visual or numeric, are very useful—yet perhaps unsurprisingly, such summaries are
merely means used by statisticians to achieve more nuanced ends, rather than the
ends themselves.

In its most basic formulation, the science of statistics consists of methods for
learning about a population from a sample. Sometimes, the population may be a well
defined, if difficult to enumerate, group of individuals—for instance, every citizen of
France over the age of eighteen. Other times, the population is conceptual, such as the
theoretical set of all possible flips of a fair coin.One interesting aspect of the statistical
study of networks, as we shall see, is that the definition of the population of interest
is not always immediately obvious from the context of a particular application.

Consider the game of craps, which involves rolling a pair of (presumably fair)
six-sided dice. With each roll, only the total number of dots shown is recorded, and
the game ends, after one or more rolls, with the result being either a win or a loss
for the player.1 It turns out that the probability of a win in a game of craps is exactly
244/495, which means the probability of a loss is 251/495.

Knowing that the probability, call it p, of winning a game of craps is 244/495, we
can invoke basic probability concepts to describe, say, the possible outcomes if we
play 100 consecutive games of craps. For instance, wemight let the variable X denote
the total number of wins in 100 consecutive games of craps. In this case, we call X
a random variable because it assigns a real number to each possible outcome of our
100-game experiment, and probability allows us to use the value of p to describe the
likelihood of the various possible values X could take. Notice in this simple example
that we tacitly accept, based on our physical knowledge of what happens when we
roll dice, that none of our 100 games of craps has any influence on any of the other
games. In probability parlance, we say that the games are therefore independent, and
the notion of probabilistic independence will come up multiple times in this chapter.

Statistics, on the other hand, is often described as “probability in reverse” because
in a statistical situation, we use observed data X to learn what we can about the pop-
ulation parameter p. That is, we conceive of an infinite population consisting of
all possible games of craps, from which we select a representative and indepen-
dent sample of size 100 simply by playing the game 100 times, then consider what
our observed proportion of wins tells us about the proportion, p, that exists in the

1More precisely: If the first roll is a 2, 3, or 12, the game ends immediately in a loss; if the first
roll is a 7 or 11, the game ends immediately in a win. In any other case, the result of the first roll is
called the “point,” and then the game changes starting at the second roll onward, with the “point”
resulting in a win, a 7 resulting in a loss, and any other roll resulting in merely another roll.
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population. In the case of craps, this may seem uninteresting, since we can already
calculate p fromfirst principles and an understanding of the properties of rolls of a fair
six-sided die. Yet in many situations, the parameters that summarize some property
of interest about a population are unknown, and the job of statistics is to learn about
them using data derived from a sample. This process of learning about a population
from a sample is called statistical inference, and it is the development of methods
for statistical inference—rather than amassing facts about Amazon rainfall—that is
the purview of academic statisticians.

3.3 Terminology and Notation

In this chapter, wewill use “network” and “graph” roughly interchangeably, and each
term may change its meaning slightly depending on the context. For instance, we
will not use the term “graph” merely in the strict mathematical sense of a set of pairs
of elements from a given vertex set. Sometimes, a graph might include not only a set
of ordered or unordered pairs of vertices, but also one or more variables measured on
each vertex. This is the sense in which “graph” is used, for example, by (Handcock
et al. 2017) in the software package for R (R Core Team 2018) that coined the phrase
“exponential-family random graph model.” By contrast, (Fellows and Handcock
2013) defined an “exponential-family random network model,” or ERNM. Yet for
our purposes, there is really no difference between graph and network; the differences
between ERGMand ERNMhave to dowith the respective forms of themodels rather
than the object of the modeling. In addition, the terms “vertex” and “node” will be
used interchangeably in this article.

As shown in Fig. 3.1, we will often use Y to denote a matrix giving the essential
structure of a network, or graph, with Yi j giving the state of the connection between
nodes i and j . In the case that the network is directed, the values of Yi j and Y ji

might be different; otherwise, we always have Yi j = Y ji and so we may restrict our

Fig. 3.1 A five-node
directed network consisting
of the seven ordered pairs
(1, 4), (2, 1), (2, 3), (3, 1),
(3, 2), (3, 4), and (5, 4) may
be expressed as a figure (left)
or as an adjacency matrix
(right)
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attention to the upper triangular entries Yi j where i ≤ j . In addition, we may or
may not omit the possibility of self-edges, i.e., cases in which Yii �= 0. By default,
we will assume that Yi j is equal to 0 or 1, so that the network is binary; yet in
some cases, we will consider weighted edges in which Yi j takes values other than
0 and 1.

3.4 Inference About Network Model Parameters
from Network Data

As (Kolaczyk 2017) eloquently states in a recent monograph about topics at the
frontier of statistics and network analysis, we concern ourselves in this chapter with
“data either of or from a system conceptualized as a network.”Within this section, the
data are not merely from the system but rather the network itself. That is, we observe
directly either the values of all Yi j—except perhaps for some missing values—or at
least some function of the Yi j . In addition, we may have additional measurements on
the nodes, or edges, or both. This section defines the idea of a statistical model and
discusses some of the many ways in which statisticians build models for data of this
type.

3.4.1 The Erdős-Rényi-Gilbert Model

Perhaps the simplest statistical model for a network is the one that is described by
(Gilbert 1959) as follows:

Let N points, numbered 1, 2, . . . , N , be given. There are N (N − 1)/2 lines which can be
drawn joining pairs of these points. Choosing a subset of these lines to draw, one obtains a
graph; there are 2N (N−1)/2 possible graphs in total. Pick one of these graphs by the following
random process. For all pairs of points make random choices, independent of each other,
whether or not to join the points of the pair by a line. Let the common probability of joining be
p. Equivalently, onemay erase lines, with common probability q = 1 − p from the complete
graph.

Aside from the use of “points” instead of “nodes” or “vertices” and the use of
“lines” instead of “edges” or “ties,” Gilbert’s description assigns a probability to
every possible network using easily recognizable language. Contemporaneouslywith
Gilbert’s paper, (Erdős and Rényi 1959) published a paper that studied some of the
asymptotic properties—that is, the properties as N tends to ∞—of the same model
as well as other similar models. For this reason, the model is often called the “Erdős-
Rényi model.” Here, however, I will append Gilbert’s name to the title.

First, let us discusswhatwemeanbya “statisticalmodel”: InGilbert’s explanation,
notice that each choice of p leads to a different way to assign probabilities to every
one of the 2N (N−1)/2 possible networks. Each such assignment is called a probability
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distribution on the set of possible networks, and a statistical model is nothing more
than a set of probability distributions. Associated with a model, we often have a
parameterization, which is a way to associate each probability distribution with a
real number or vector; in this case, the parameter is p and the association is implicit in
Gilbert’s description. When every distribution in a model is associated with a unique
parameter value or vector, we say that the parameterization is identifiable, which
is a necessary feature of any situation that will allow for statistical inference. (If a
particular data-generating distribution is associated with more than one parameter,
then no amount of information from datawill enable one to distinguish among certain
parameter values.)

In Gilbert’s description, just as in the craps example, if we know p then we
may describe the probabilities associated with any possible value of the (yet-to-be-
observed) network Y . But statistics is probability in reverse: We observe Y and the
goal is to learn about the value p that gave rise to it. Mathematically, all of the
information we may obtain about p from observing Y is contained in a single value
measured on Y , namely the number of lines, or edges, drawn. Let us label this statistic
s(Y ); using the convention that Yi j is equal to 0 or 1 for all i < j , we could write

s(Y ) =
n−1∑

i=1

n∑

j=i+1

Yi j .

Because s(Y ) conveys all the information about p contained in Y itself, we say that
s(Y ) is a sufficient statistic for this model.

Thinking of Y as a random, yet-to-be-observed network whose specific config-
uration will be determined according to the method described above by Gilbert,
let us denote by the lowercase letter y a particular configuration that could arise.
Then, s(y) is the number of edges in y, and the probabilities associated with all
network configurations y having identical s(y) values are the same: Each is equal
to ps(y)qN (N−1)/2−s(y), where we define q to be equal to 1 − p to simplify notation.
Rearranging slightly, we may write this statement as

Prp(Y = y) =
(
p

q

)s(y)

qN (N−1)/2,

where Prp(A) means the probability of an event A assuming that the parameter
takes value p. For mathematical convenience, let us define θ = log(p/q), the natural
logarithm of the odds p/q that any given edge exists. We may then write

Prθ (Y = y) = exp{θs(y)}qN (N−1)/2 = exp{θs(y)}
κ(θ)

, (3.1)

where we define κ(θ) as 1/qN (N−1)/2, recalling that q = 1 − p is a function of θ .
Importantly, κ(θ) does not depend on the sufficient statistic s(y). The model whose
parameterization is presented in (3.1) is called an exponential-family model because
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it expresses a probability distribution as proportional to the exponentiation of a
parameter θ times a statistic s. In general, an exponential-family model may take θ

and s to be vectors, and in this case, it is their dot product that is exponentiated.
In the case of the Erdős-Rényi-Gilbert model as expressed in (3.1), where s(y) is

the number of edges in y, despite all of the development in this section we are merely
in the same situation described in the craps example: We observe a certain number
s(y) of successes in an experiment consisting of N (N − 1)/2 trials, andwe are trying
to learn about the parameter p—or, equivalently, θ—representing the probability of
success in each trial. Indeed, just as in the craps example, an intuitively appealing
estimator of p is the proportion of observed successes. If we let yobs denote the
observed network, then the proportion of observed successes is 2s(yobs)/N (N − 1).

For example, in Fig. 3.2 we see a modified version of the network depicted in
Fig. 3.1, where the relationships between pairs of nodes are undirected instead of
directed. In this example, N = 5 since there are 5 nodes and s(yobs) = 6 since there
are 6 undirected edges observed in our network out of the (5 × 4)/2, or 10, possible
such edges. This gives a proportion of observed successes equal to 0.6. Another way
to state this is that our estimate of p, sometimes denoted by p̂ where the “hat” above
the parameter p shows that p̂ is a data-based estimate (pronounced “p-hat”) of the
parameter p. Furthermore, since θ is easily expressible as a function of p, namely
θ = log(p/[1 − p]), we may write the estimate of θ as log(0.6/0.4) in our example,
which equals 0.405 (remember, the logarithm here is the natural logarithm). In a
general problem involving the assumption that an Erdős-Rényi-Gilbert model gave
rise to an observed undirected network, we may express the estimate of θ as

θ̂ = log

(
2s(yobs)

N (N − 1) − 2s(yobs)

)
. (3.2)

In statistical inference, we are rarely content with merely an estimator of the
parameter of interest; we also want a sense of how precise that estimator is. After
all, any estimator is based on data, which are variable, so the estimator itself is
also variable. Often, the precision of an estimator is expressed as an estimate of

Fig. 3.2 A five-node
undirected network
consisting of the six
unordered pairs {1, 2}, {1, 3},
{1, 4}, {2, 3}, {3, 4}, and
{4, 5} may be expressed as a
figure (left) or as an
adjacency matrix (right) in
which only the
above-diagonal entries are
necessary since the matrix is
symmetric
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the standard deviation of the estimator itself, called the standard error. To describe
methods for estimating precision of an estimator would take the current article too
far afield. An interested reader could search for material on maximum likelihood
estimators—since θ̂ in our example is an example of anMLE—and how the precision
of MLEs is estimated.

On the other hand, one statistical question we will address, which is much more
complicated in the network context than in most traditional data collection frame-
works, is this: What is the sample size? Is it the number of nodes, N , or the number
of possible edges, N (N − 1)/2, or the number of networks that we observe, which
is often just 1? The answer to this question is important, since the aforementioned
method of maximum likelihood estimation is largely justified based on theoretical
results that describe the behavior of these estimates as the sample size tends to ∞, a
subject often referred to as large-sample, or asymptotic, statistics. In the case of the
Erdős-Rényi-Gilbert model, our estimator behaves as though the sample size is the
number of possible edges. In fact, this is true for many types of network models in
which the status of each node pair—whether or not it has an edge—is independent
of all other node pairs. However, in general answering this sample size question is
tricky, as we shall see in the next section.

3.4.2 A Generalization of Erdős-Rényi-Gilbert

It is not hard to extend the Erdős-Rényi-Gilbert model in multiple directions. One
such generalization is alluded to in the previous section: An exponential-family
model with d-dimensional parameter vector θ and d-dimensional sufficient statistic
s(y) takes the form

Prθ (Y = y) = exp{θ�s(y)}
κ(θ)

, (3.3)

where θ�s(y) = ∑
i θi si (y) is the usual dot product of the vectors θ and s(y), and

(3.3) is usually called an exponential-family random graph model (ERGM) in the
modern statistical literature. Special cases of (3.3) have a decades-long history, and
the general form of this model was originally called a p-star model by (Wasserman
and Pattison 1996) before the abbreviation “ERGM” became popular. For readers
interested in this history, several surveys exist, such as the article by (Goldenberg
et al. 2009) and the book-length treatment of network models by (Kolaczyk 2009).
Since the dimension d of s(y) can take any value wewish, it is possible to incorporate
into the model of (3.3) any set of sufficient statistics that we feel are relevant to the
probability of a particular network configuration.

There are myriad possibilities. For instance, suppose that we measure a variable
for every node that places each node into a category, such as gender. If one of the
d entries of s(y) is the number of edges that connect two nodes that belong to
the same category, then the θ associated with this statistic describes the propensity
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toward homophily on this variable—that is, the tendency for like individuals to
associate with one another—in the observed network. As another example, suppose
that another of the entries of s(y) is the number of two-paths contained in y, that
is, the number of pairs of (undirected) edges emanating from the same node. This
situation is depicted and explained in Fig. 3.3. A lengthy list of entries a researcher
might consider including in the s(y) vector is presented by (Morris et al. 2008).

In the special case of the model of (3.1), we saw that there is a simple expres-
sion for both the function κ(θ) and the estimator θ̂ . This estimator has the property
that it maximizes the value of Prθ (Y = yobs) as a function of θ ; it is thus, by def-
inition, a maximum likelihood estimator. Furthermore, for an exponential-family
model, the maximum likelihood estimator has the intuitively pleasing property that
it is the unique parameter value for which the expected value of the random vector
s(Y ) is exactly equal to the observed vector s(yobs). Unfortunately, however, (3.1)
with its corresponding closed-form expression for θ̂ in (3.2) is an unusual case; in
general, neither κ(θ) nor θ̂ may be expected to have a simple form. Indeed, θ̂ may
be exceedingly difficult to calculate in practice. We will not describe the difficulties
here; interested readers may refer to (Hummel et al. 2012) and the references therein
for a technical treatment of the details.

Statistical modeling of networks using ERGMs highlights a vexing issue for net-
work analysis generally in the statistical context, namely the question of what exactly
is the population from which we are sampling. Since individuals are the sampled
units in a statistical population, and since individuals often play the role of nodes
in a network context, it seems logical that we should view the population of indi-
viduals as providing the basis for our sample, and somehow we manage to observe
all of the relevant ties between pairs of individuals that happen to be selected for

Fig. 3.3 Here, each node is observed to belong to one of two categories, depicted as circles and
squares. Suppose that in (3.3) the s(y) vector has three entries: s1(y) is the number of edges in
y, s2(y) is the number of edges connecting matching nodes in y, and s3(y) is the number of two-
paths in y. From the figure, we see that s1(yobs) = 6 and s2(yobs) = 1 and s3(yobs) = 10. In this
particular 3-term ERGM, unlike in the simple Erdős-Rényi-Gilbert example, there are no easily
derivable closed-form expressions for the maximum likelihood estimators θ̂1, θ̂2, and θ̂3
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our sample. However, this formulation is problematic for several reasons. First, it
may not happen that network data arise in this way; instead, the particular nodes we
observe are in the sample precisely because they are part of a network of interest,
so these nodes might not be considered a representative sample from the population
of individuals (for instance, because our network framework tends to undersample
from the population of isolated nodes). Second, the Erdős-Rényi-Gilbert example
shows that even in the simplest of all network models, the sample size is clearly
N (N − 1)/2, not N . In other words, when our model assumes that the edges form
independently of one another, we obtain statistical power as though our population
consisted somehow of pairs of individuals, rather than the individuals themselves—
yet we clearly cannot sample an arbitrary set of N (N − 1)/2 such pairs from the
population, as we are constrained to exactly those pairs that arise from the N indi-
viduals that comprise our observed network.

Finally, if our population is a set containing the nodes in our sampled network,
the very basis for statistical inference suggests that we should be able to learn about
properties of the whole population from the sample we have selected. In the ERGM
framework, the “properties” are the parameter values: We assume that if our model
is valid globally, then there are true parameters and that our sample helps us make
inference about these values. However, mathematically this is provably not what
happens in all cases; (Shalizi and Rinaldo 2013) outline some of these limitations in
a highly technical article.

One way around these issues is to redefine the population. Instead of sampling
from a population of nodes, we imagine the nodes in the network to be fixed, and we
sample a single observation from the theoretical population of all possible networks
on those nodes. Of course, in general not all networks on a given set of nodes are
equally likely, but it is precisely the purpose of the statistical model to define a
family of probability distributions on these networks. One possible distribution does
give equal probability to each possible network, namely the one in which θ = 0
in (3.1) or (3.3), but in general each θ parameter value gives either more or less
probability mass, depending on its sign, to networks for which the corresponding
s(y) statistic is higher assuming all other statistics remain constant. One implication
of this framework is that our sample size is the number of networks we observe,
which is generally just one! (We could conceivably observe multiple independent
networks on the same set of nodes, but this is rare.) Since many of the nice properties
of the statistical estimators we use are justified based on their asymptotic, or large-
sample, properties, this fact should give us pause. Yet it is also the case that a single
network observation can contain a great deal of information about the parameter
values—keep in mind the Erdős-Rényi-Gilbert example in which a single network
contains the information of a sample of size N (N − 1)/2—so our faith in techniques
such as maximum likelihood estimation is not misplaced.
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3.4.3 Network Models Involving Latent Variables

Quite often, data are only partially observed. This is frequently due to actual missing
data, that is, cases in which we try but fail to obtain measurements of a particular
variable. Yet sometimes unobserved, or latent, variables arise by design: For instance,
it is quite common in statistical analysis of data on educational testing to assume that
each question on an examination has some abstractly defined notion of “difficulty”
associatedwith it, andwe are only able to observe this difficulty indirectly through the
scores of numerous test-takers who are each exposed to some subset of questions.
In such cases, statisticians have developed methods for dealing with these latent
variables, whether or not the estimation of these variables is of particular interest.

One of the most common ways in which latent variables arise is in the context of
a statistical mixture model. Mixture models help us solve the so-called unsupervised
clustering problem of multivariate analysis that has myriad non-statistical solutions
as well: We observe data X1, . . . , XN that are often vector-valued (though they
may be scalar-valued), one observation for each of N individuals. We assume that
each individual is a member of one of K categories, but we do not observe the
categorymemberships. The unsupervised clustering problem is the problem of trying
to discover the category memberships using only the observed data.

In the context of network models, the classic example of a mixture model is the
so-called stochastic block model (Snijders und Nowicki 1997), in which every node
is assumed to belong to exactly one of K categories. Conditional on the category
memberships, we assume that every potential edge arises independently of the others
with a probability that is solely determined by the memberships of its two nodes. In
its most general form, this model defines a separate probability parameter governing
the formation of ties for each of the K (K + 1)/2 possible pairs of node-pair category
memberships. Sometimes, it is assumed that edgeswithin the same category aremore
likely than edges between categories; that is, pii > pi j whenever j �= i , where pi j
denotes the probability of an edge between two nodes in categories i and j .

Generally,mixturemodels are easily amenable to statistical analysis. For instance,
estimation of the parameters in amixturemodel, including a K -length vector for each
individual giving the respective probabilities ofmembership of that individual in each
of the K groups, is often accomplished by maximum likelihood estimation using a
computational technique called the EM algorithm. Yet the stochastic block model,
as is the case with so many statistical network models, foils standard approaches to
obtain maximum likelihood estimates. Even the EM algorithm in its usual form turns
out to be intractable for stochastic block models, so we must rely on approximation
methods for statistical estimation. We do not present any of these methods here, but
interested readers will find a relevant discussion in the survey article of (Hunter et al.
2012).

Oneway to characterize the stochastic blockmodel is that the connectivity of each
node depends on a particular characteristic for that node, where the characteristic can
take only a fixed number of values, namely the number of categories. If, instead of a
discrete value, each node is associated with a continuous latent value that determines
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its connectivity, then we have essentially the idea of the random-effects model. In
its most simplistic form, we might assume that the probability of an edge between
nodes i and j exists with probability whose log-odds is equal to αi + α j , where
all αi values are realizations from a continuous distribution whose parameters are
the object of our estimation. An extension of this basic idea to the case of directed
networks is discussed by (van Duijn et al. 2004).

In a more advanced version of this idea, suppose that each node is associated
with a point in k-dimensional space. This latent variable may be thought of as some
kind of position in social space that has some bearing on the network edges that are
formed between nodes beyond what we are able to explain using variables that we
can observe. Our statistical model then includes some way to incorporate “distance”
between two nodes in this latent space into the probability of an edge between them.
This “distance” might be Euclidean, as studied by (Handcock et al. 2007), or cosine
(dis)similarity, as in (Hoff et al. 2002).

Finally, we return to the idea of the first paragraph in this subsection, namely
that sometimes data are simply missing even when we expect that they should be
there. An adequate treatment of this subject, which is an area of statistical research
unto itself, is beyond the scope of this brief chapter. Yet it is at least necessary to
point out one of the most important aspects of any missing data analysis, which is
that an unobserved Yi j value is not equivalent to the case Yi j = 0, or the observed
absence of an edge. One convenient method for correctly dealing with missing data
is presented by (Handcock and Gile 2010), who introduce a second network, D,
with entries defined so that Di j = 1 if Yi j is observed, and Di j = 0 otherwise. They
even introduce a model for the D network, showing that the estimation of parameters
for the Y model is possible using techniques that are straightforward in principle as
long as the D network satisfies a technical condition called missing at random, or
MAR: In fact, MAR is not quite what it sounds like; the entries in D are allowed to
depend on the values of Y , both observed and unobserved. (If D is independent of
Y , then we say that the data are missing completely at random, or MCAR, which is
a stronger condition than MAR.) What MAR means is that all of the information in
Y about the pattern of missing data is contained in the observed set of Yi j values.
Letting Yobs and Ymis denote the observed and missing portions of the Y network, we
may equivalently say that MAR means that conditional on Yobs, D is independent of
Ymis, or

P(D = d | Yobs,Ymis) = P(D = d | Yobs)

for any possible value d that D could take. Though theMARcondition can be difficult
to check in practice, it is realistic in many applications to assume that when data are
missing, they are missing for reasons unrelated to the values that would have been
observed.
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3.4.4 Models for Time-Varying Networks

It is often the case that networks are observed over time, and the patterns of con-
nections between nodes change with time. One way a time-varying network dataset
could arise is when the same network is observed at multiple discrete time points.
Yet as noted in Subsect. 3.4.2, it is relatively rare to have data consisting of multiple
observations of a network on the same set of nodes. When such data are observed,
of course it is possible to apply any of the modeling methods described previously
to each time point separately; but to do so ignores the temporal structure inherent in
the dataset. As a simplistic approach to accounting for time evolution of the network,
one might augment the ERGM of (3.3) so that the left-hand side of that equation
is the probability that the network takes configuration y at time t + 1 given that at
the previous time step t it takes the configuration y′. The statistics upon which this
conditional probability might depend will presumably be measured on both y and
y′, and (3.3) becomes

Prθ (Y
(t+1) = y | Y (t) = y′) = exp{θ�s(y, y′)}

κ(θ)
. (3.4)

The modeling framework implied by (3.4) is essentially the approach taken by
(Hanneke et al. 2010) and, in a slightlymore complicated form, (Krivitsky andHand-
cock 2014), and it is sometimes referred to as aMarkovianmodel, which means that
random behavior of the system at time t + 1 depends on the past only through its
state at t (and not on any other past behavior).

As an alternative approach to network data observed atmultiple time points, some-
times called longitudinal network data, the stochastic actor-based models developed
by Tom Snijders and several of his collaborators (see, e.g., (Snijders 2017)) model
the individual behavior of each node in the network according to its propensity to
form ties with each of the other nodes, which is expressed as some function of statis-
tics, selected by the researcher, on the pair of nodes involved in the potential tie
in question and/or the network configuration immediately surrounding those nodes.
This actor-based model is assumed to proceed in continuous time, even if the data
are only observed at discrete time points. In particular, for any possible time t , the
time increment until the next event has a random distribution known as the expo-
nential distributionwith interesting mathematical properties that aid considerably in
the estimation of these models. Among these properties are the fact that taking the
minimum of a set of independent exponential random variables produces a random
variable whose distribution is once again exponential, and also the fact that an expo-
nentially distributed waiting time is memoryless in the sense that at all times, the
distribution of time remaining until an event occurs is the same regardless of how
long one has already waited. (If this latter property sounds paradoxical, consider the
simple experiment of flipping a coin until you see the first occurrence of “heads”:
The random properties of the number of flips required to attain this goal are exactly
the same whether we have already flipped the coin twice, or ten times, or not at all.
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An exponential distribution is merely the continuous-time analogue of this discrete
coin-flipping experiment.) Snijders’ well-established stochastic actor-based model,
which has a history spanning more than a decade, is implemented in the publicly
available RSiena package (Ripley et al. 2017) for R (R Core Team 2018).

While it is rare to observe a full network at multiple discrete time points, it is
increasingly common in the age of online social networks to observe data in which
each edge has a time stamp indicating when that edge was initiated or occurred.
Indeed, evennodes themselvesmay enter and/or exit the observable network at known
time points. In this context, wemaywish tomodel the instantaneous frequency or rate
of events, as a function of whatever measured covariates we deem to be relevant, as
this rate changes over time. To this end, researchers in statistics have recently begun
to apply a well-established class of models, referred to in various contexts as survival
models or reliability models or counting process models, to network datasets. I will
use the term “counting process” here. The basic mathematical idea is explained by
(Butts 2008), and to cite just one example of an application, (Perry and Wolfe 2013)
use counting processes to analyze a network of time-stamped email contacts among
a set of individuals in a company.

The central object of interest of counting process models is the rate of edge
formation, which will be denoted λi j (t) for the edge from i to j at time t . This rate
may be interpreted as follows: For small values of δ, the probability that an edge
will occur between nodes i and j in the time from t to t + δ is roughly δ × λi j (t).
The myriad methods within the field of survival analysis allow researchers to express
λi j (t) as a function of certain covariates in much the same way that an ERGM or
an actor-based model allows one to express the probability of an edge between two
nodes as a function of certain covariates. These functions, as well as the covariates
themselves, may or may not change over time.

3.4.5 A Few Words About Software

Any attempt to provide an extensive catalog of existing software for implementing
the statistical models presented here is doomed to be incomplete; there are simply
too many software packages available, and their number is ever-expanding as new
models and methods are developed. However, since this chapter is explicitly about a
statistician’s viewpoint, there are a couple potentially useful points to make here.

First, there is a large amount of software devoted to calculating various statistical
summaries of networks and producing graphical representations of networks. None
of this software is directly relevant to this chapter. As stated in Sect. 3.2, this chapter
seeks to distinguish between “statistics” used as a plural noun, that is, summaries of
data, and “statistics” as a scientific discipline, by which we usually mean statistical
inference. As for graphical representations, the algorithms used to render, say, an
adjacency matrix as a two-dimensional “dots and lines” figure by placing the dots in
such a way as to achieve a pleasing-looking diagram do not involve statistical models
and are therefore unrelated to the topic of this chapter.
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It is safe to say that the majority, though certainly not all, of the software writ-
ten these days that implements statistical inference is written for the R environment
(R Core Team 2018). A notable exception is the PNet software (Wang et al. 2006),
produced at the University of Melbourne, which implements estimation methods for
ERGMs and other statistical network models (http://www.melnet.org.au/pnet/). The
statnet suite of packages for R (Handcock et al. 2008) implements myriad different
statistical network models, including ERGMs, certain types of latent variable mod-
els, and certain types of time-varying network models; information on these pack-
ages is available at https://statnet.org/trac/wiki/StatnetComponents. Asmentioned in
Subsect. 3.4.4, the RSiena package for R (Ripley et al. 2017) implements a particu-
larly well-known class of time-varying network models, also known as longitudinal
network data models, among other statistical models for social networks; additional
information is at https://www.stats.ox.ac.uk/~snijders/siena/. One helpful feature of
an open-source software environment such as R is that it allows for the possibility
of independently developed yet interoperable packages. For instance, there are some
R packages, such as the Bergm package (Caimo and Friel 2014) that implements a
Bayesian estimation framework for ERGMs, that are built to depend on one or more
of the statnet packages even though they are not themselves officially part of the
statnet suite of packages. Finally, multiple stand-alone R packages implement cer-
tain specific statistical models for networks; to take just one example, the stochastic
block models of Subsect. 3.4.3 and their various extensions are implemented in the R
packages blockmodels (INRA and Leger 2015) and blockmodeling (Žiberna 2018).

3.5 Inference About Networks from Multivariate Data
on the Nodes

The notion that statistical analysis of networks involves “data either of or from a
system conceptualized as a network” (Kolaczyk 2017) does not necessarily imply
that the data are observations of the network itself. For instance, (Groendyke et al.
2012) consider a dataset consisting merely of dates of onset of and recovery from
measles for a group of children in a German town in 1861, estimating parameters
for a statistical model for a network of contacts among the children that could have
given rise to the outbreak.

Yet this section considers a different type of situation, in which the data are vector-
valued observations made on a set of n entities. If we let d denote the dimension of
the vectors, then d is the number of nodes (here, the sample size n is not relevant
to the network structure). Thus, the data consist of vectors X1, . . . , Xn , each with
d dimensions, and each dimension is associated with exactly one node. The edges
in this network are defined by the notion of conditional dependence: An edge Yi j
exists if and only if the corresponding node values are conditionally dependent given
the variables associated with all other nodes. This means that the value measured on
dimension i contains information about the value measured on dimension j even if

http://www.melnet.org.au/pnet/
https://statnet.org/trac/wiki/StatnetComponents
https://www.stats.ox.ac.uk/~snijders/siena/
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all information about j contained in all of the other dimensions is taken into account.
The goal of this type of work, then, is to try to determine the structure of the network
Y based solely on the d-dimensional observations from a sample of size n.

3.5.1 Learning Networks via Precision Matrices

Consider the example described in (Sachs et al. 2005), which studied a dataset involv-
ing multivariate measurements on more than eleven thousand human immune sys-
tem cells. In particular, a multiparameter flow cytometer simultaneously recorded
levels of eleven phosphoproteins and phospholipids, so that in this problem
d = 11—that is, our network consists of eleven nodes, with each node corresponding
to a particular protein or lipid.

Various cells had been perturbed with various molecular interventions, and the
overall goalwas to look for relationships between pairs of the 11 proteins as expressed
through their measurements in this large group of cells. In particular, we consider two
proteins (nodes) to be related if their expression levels are conditionally dependent,
which means that knowledge of the value of one of the levels provides some infor-
mation about the value of the other, even if we take into account all the information
contained in the other d − 2 expression levels. We want to learn about the entire
network of these two-variable relationships among the 11 nodes, since the existence
of such relationships could reveal scientifically important cellular signaling mecha-
nisms.

On the right side of Fig. 3.4, we see the directed network that was reported by
(Sachs et al. 2005). In this network, each node is labeled with the name of a particular
protein or lipid, and an arrow from one to another indicates that the expression level
of the first appears to affect the expression level of the second. This type of directed
network, which is frequently constrained so that it cannot include any set of edges
forming a circular loop—which makes it “acyclic”—is sometimes called a Bayesian
network. Such networks are described in more detail in Chap. 6 of this book.

Fig. 3.4 On the right is the Bayesian network estimated by (Sachs et al. 2005). On the left is one
of the undirected conditional dependence networks estimated by (Friedman et al. 2008)

http://dx.doi.org/10.1007/978-3-030-26814-5_6
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It is important to understand that directionality of links in a Bayesian network
cannot in general be established merely using the information contained in the obser-
vations themselves. Indeed, in (Sachs et al. 2005), the n × d dataset was combined
with additional biological information about how the cells had been perturbed and
what these perturbations implied regarding the possible direction of the arrow, if it
exists, between any given pair of nodes.

In this chapter, we consider only the data themselves, which means that direc-
tionality information is incomplete at best and so the goal is to learn the network
of undirected interrelationships among various pairs of nodes. This is exactly the
approach taken by (Friedman et al. 2008), who considered a subset of n = 7466 of
the original 11,672 eleven-dimensional observations. One of the undirected networks
inferred by those authors is depicted on the left side of Fig. 3.4.

Much of the statistical literature on estimating the conditional dependence net-
work Y based on d-dimensional multivariate observations X is based on the ele-
gant mathematical theory of the multivariate normal distribution. A comprehensive
discussion of the multivariate normal is far beyond the scope of this article, but in
brief, we will say that the random vector X has a multivariate normal distribution
with mean vector μ and covariance matrix � if the probability density function of
X may be expressed, for all possible d-dimensional values x , as

f (x) = 1

(2π)d/2
√
det�

exp

{
−1

2
(x − μ)��−1(x − μ)

}
. (3.5)

In (3.5), μ must be d-dimensional and � must be a symmetric d × d matrix that is
strictly positive definite (that is, all of the eigenvalues of � must be positive), which
implies among other things that � has a well-defined matrix inverse, �−1. This
inverse matrix is quite important, and we shall write 	 = �−1 and refer to 	 as the
precision matrix, or the concentration matrix, of the multivariate normal distribution
in (3.5).

This brief introduction to the multivariate normal distribution is relevant to con-
ditional dependency networks because of the following astonishing fact: If X has a
multivariate normal distribution with precision matrix 	, then the pairs of entries
of X that are conditionally dependent are precisely those pairs corresponding to
nonzero entries of 	. In other words, whenever data have a multivariate normal dis-
tribution, then the precision matrix may be viewed as an adjacency matrix for the
dependence network, at least as far as the positions of the zero and nonzero entries
are concerned. We close this chapter with a simple illustration of this phenomenon
using three-dimensional multivariate normal observations.

3.5.2 An Illustration of Conditional Independence

Here, we consider a multivariate normal example in a 3-dimensional setting, which
is the smallest nontrivial case. Observations X are generated from a multivariate
normal distribution having covariance and precision matrices
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⎞
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4

⎛

⎝
2 0 1
0 2 1
1 1 2

⎞

⎠ , (3.6)

respectively. Recall that for any i and j , the i th and j th entries of X are conditionally
independent given all the other entries if and only if	i j = 0. Thus, (3.6) leads to the
dependence network of Fig. 3.5.

To understand why conditional independence is often more interesting scientif-
ically than independence, consider that spurious correlations can often disappear
when we consider conditional independence. For example, we expect a strong posi-
tive correlation between monthly ice cream sales and monthly drowning deaths in a
coastal city in the northern United States. This correlation exists not because of any
causal relationship between drownings and ice cream, but rather because each vari-
able is also positively correlated with another variable, averagemonthly temperature:
Warmer months result in both more ice cream sales and more drownings, the latter
simply because more people swim in the warmer months. The key to this example
is the fact that for a fixed monthly temperature–that is, if we condition on monthly
temperature—there is no additional information about drownings contained in ice
cream sales. Therefore, if we number ice cream sales, drownings, and temperature
as variables 1, 2, and 3, respectively, we see that these variables have exactly the
conditional dependence relationships depicted in Fig. 3.5.

Figure3.6 displays values of X1 and X2 resulting from generating 10,000 obser-
vations from the 3-dimensional multivariate normal distribution centered at (0, 0, 0)
and with covariance given by (3.6). Since X1 and X2 are conditionally independent
given X3, we see their correlation essentially disappear when we look at subsets
of points for which X3 is roughly constant. On the other hand, the overall positive
correlation between X1 and X2 is evident when we observe all 10,000 points.

In a statistical analysis of these 10,000 data points, our goal might be to “learn the
network” of conditional independence relationships. This is exactly what the method
described by (Friedman et al. 2008) does, and it is this method that resulted in the
undirected network of Fig. 3.4. There are many other methods that accomplish this
goal in the growing statistical literature on this topic. Most, though not all, of this

Fig. 3.5 This 3-node dependency network and its adjacency matrix correspond to the precision
matrix 	 of (3.6). The off-diagonal entries of Y are nonzero exactly when the corresponding off-
diagonal entries of 	 are nonzero
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Fig. 3.6 Two-dimensional pairwise scatterplots of variables X1 and X2, which are generated specif-
ically to have a positive correlation but a zero conditional correlation. On the left, all 10,000 points
show that the sample correlation is close to the true value of 1/3. On the right, we see only the subset
of points for which X3 is close to zero—to be precise, they are the points for which |X3| < 0.05—
and the sample correlation basically disappears

work uses the convenient theory of the multivariate normal distribution as described
above. Interested readers may use the references in this article as starting points to
explore this literature further if they so choose.
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Chapter 4
The Rank-One and the Preferential
Attachment Paradigm

Steffen Dereich

Abstract Starting from the late 1990s, the analysis of complex networks has
attracted significant attentionwithin the scientific community.With the birth of social
networks, information became available on personal interaction on large scaleswhich
immediately raised the question about the nature of this interaction. Mathematically
one asks for models that have similar features as real-world complex networks. In
particular, one wants to understand the reasons for the prevalent artefacts of com-
plex networks. In this article, we review some classical models with a focus on two
paradigms, rank-one models and preferential attachment.

4.1 Introduction

Complex networks are omnipresent. They appear for instance as

• social networks (the interaction within a large group of individuals),
• the Internet (the routers connected by the physical edges),
• the World Wide Web (the Web sites with hyperlinks)
• contact/infection networks,
• power grids, and
• predator-prey networks.

Mathematically, one represents a network as a large directed or undirected graph.
A standard theoretical approach is to model a network by a sequence of random
graphs (Gn)n∈N and, in the following, Gn will denote a random (multi)graph with
[n] := {1, . . . , n} being the set of nodes unless stated otherwise. Further En will
denote the random set of edges of the graph Gn .

We give/recall two phenomena that can be observed in real-world networks and
that have played an important role in the theory on complex networks.
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The small world phenomenon refers to the fact that despite of the large size of a
networkmost of its constituents have a surprisingly small graph (hop-count) distance.
Travers and Milgram (1969) published in 1969 a study in which 296 individuals in
Omaha (Nebraska) were asked to send a postcard to a stockbroker in Boston via
a chain of friends, acquaintances, or relatives. 64 letters reached the target person
and the authors observed a chain length with in average 4.4 to 5.7 intermediaries
depending on the group that received the original postcard. The phenomenon was
further popularized by John Guare’s 1990 play “Six Degrees of Separation.” Recent
studies suggest that the distances in social networks are even smaller: The research
project (Backstrom et al. 2011) observed in 2011 that two randomly picked users of
Facebook are linked by an average of 3.74 intermediary friends only.

The second central phenomenon is the scale-free nature of networks meaning that
the relative number of vertices of a prescribed degree k decays like a polynomial in k.
For instance, Faloutsos et al. (1999) carried out an empirical analysis of the Internet
and observed that the relative number of vertices of degree k is well described by
a monomial k−τ with τ being a number between 2,15 and 2,2 depending on the
datasets used. In view of a complex network model (Gn)n∈N we call a distribution
μ = (μk)k∈N0 on N0 = N ∩ {0} with

lim
n→∞

1

n
#{m ∈ [n] : degGn

(m) = k} = μk, in probability, (4.1)

for all k ∈ N0, asymptotic degree distribution of the network (Gn)n∈N. If the asymp-
totic degree distribution μ satisfies

μk = k−τ+o(1) as k → ∞,

for a τ > 1, we say that (Gn) (and also μ) has power law exponent τ .
Complexnetworks havebeen the topic of several recent introductorymathematical

books such as the textbooks by Bollobás (2001), Chung and Lu (2006), Durrett
(2010), and van der Hofstad (2016). In this short note, we focus on two paradigms
of models that have been thoroughly studied in recent years, the rank-one and the
preferential attachment paradigm. The article intends to be an easy to read first
introduction into these two classes of networks.

4.2 Network Models

An abundance of network models has been designed and analyzed in previous years,
and we will focus on certain particular examples that are archetypical for larger
classes of models.
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4.2.1 The Rank-One Paradigm

The configuration model of Bollobás (2001) is the simplest model featuring heavy-
tailed degree distributions. We first introduce a configuration graph.

Definition 4.1 Let n ∈ N and d = (d(n)
k )k=1,...,n ∈ N

n
0 be such that

n∑

k=1

d(n)
k ∈ 2N0. (4.2)

A configuration graph Gn is generated by attaching to each node k = 1, . . . , n,
d(n)
k half-edges and by joining the half-edges uniformly at random, see Fig. 4.1 for
an illustration. Formally, a uniform pairing of the set

{(k, j) : k = 1, . . . , n, j = 1, . . . , d(n)
k }

is picked and the random multigraph Gn = ([n], En) is formed by assigning each
unordered pair 〈(k, j), (k ′, j ′)〉 an edge 〈k, k ′〉 in En . We denote the distribution of
the corresponding multigraph by CMn(d).

Next, we introduce the corresponding network model.

Definition 4.2
1. A configuration network model is a sequence (Gn)n∈N of configuration graphs

with [n] being the set of nodes of Gn , and we denote the respective degrees by
d(n)
k = degGn

(k) which is deterministic by definition.
2. If a configuration model (Gn) has asymptotic degree distribution μ with finite

pth moment (p ≥ 1) and

1

n

n∑

k=1

(
d(n)
k

)p →
∫

w p dμ(w),

then we call μ L p-asymptotic degree distribution of (Gn).

A closely related model is the Norros-Reittu model (Norros and Reittu 2006).

Fig. 4.1 A configuration graph. First half-edges are attached and then uniformly paired
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Definition 4.3 (The Norros-Reittu model) Let ν be a distribution on (0,∞). The
Norros-Reittu model with weight (or capacity) distribution ν is built in two steps:

1. The weights (wk)k∈N form a sequence of independent ν-distributed random vari-
ables and �n := ∑n

k=1 wk for n ∈ N.
2. Given (wk)k∈N, each random graph Gn (n ∈ N) is obtained by independently

placing for each unordered pair 〈i, j〉 of distinct vertices i, j ∈ [n] an edge 〈i, j〉
with probability

1 − e−wiw j/�n .

A sequence (Gn)n∈N of random graphs constructed in such a way is called Norros-
Reittu graph with weight distribution ν, briefly NR(ν)-model.

In the definition of the Norros-Reittu model, we do not say anything about the depen-
dencies for different graph sizes since this will not play any role in our considerations.
We note that the original definition in Norros and Reittu (2006) is based on a par-
ticular dynamic building rule and it allows multiple edges between the same pair of
vertices.

The configuration and Norros-Reittu model are closely related since at least on
an informal level in the configuration model

P(i
GCM

n↔ j) ∼ d(n)
i d(n)

j∑n
k=1 d

(n)
k

and in the Norros-Reittu model

P(i
GNR

n↔ j |(wk)k∈N) ∼ wiw j

�n
.

Here we write an ∼ bn if limn→∞ an/bn = 1 for two given sequences (an)n∈N and
(bn)n∈N of nonnegative reals. The quantity d(n)

j , resp. w j , gives each node a certain
weight and the likeliness to have a link between two vertices is approximately bilinear
in the two weights. This is the main common feature of rank-one network models.

4.2.2 The Preferential Attachment Paradigm

The configuration model can be tuned to arbitrary degree sequences. But it does not
provide insights about the prevalence of heavy-tailed degree distributions in real-
world networks. An influential article of Barabási and Albert (1999) argues that this
phenomenon is due to a rich-get-richer phenomenon in the network formation. As a
model for the World Wide Web, they propose a sequence of random graphs (Gn)n∈N
which is built dynamically: In each step a new node is added together with a new
edge emanating from the new node. The new edge connects randomly to one of the
old nodes with a preference for nodes with high degree. A first rigorous definition of
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the model is given in Bollobás et al. (2001). A preferential attachment model with
constant outdegreem = 1 is defined as a sequence of random (multi)graphs (Gn)n∈N
such that

1. G1 is the graph with one node 1 and one loop (an edge linking 1 with itself),
2. Gn+1 is obtained from Gn by adding the node n + 1 and by insertion of a new

edge emanating from n + 1 to a random node in {1, . . . , n + 1} with conditional
probability

P(n + 1 → k|Gn) = 1
2n+1 (degGn

(k) + 1l{k = n + 1}),

where degGn
(k) denotes the degree of k in the graphGn and {n + 1 → k} denotes

the event that the n + 1st node connects to k ∈ {1, . . . , n + 1}.
Note that every new vertex establishes exactly one new edge and we briefly
call (Gn)n∈N PA1-model. In the literature, various modifications and generaliza-
tions are analyzed. For instance, a network model (Ḡn)n∈N with fixed outdegree
m ∈ {2, 3, . . . } is obtained by taking a PA1-model (Gn)n∈N and forming Ḡn by iden-
tifying vertices (k − 1)m + 1, . . . , km in Gnm for all k = 1, . . . , n. We briefly call
(Ḡn) PAm-model, see also Bollobás et al. (2001) or Hofstad (2016) for further gen-
eralizations.

Amodel which can be adjusted to general asymptotic degree sequences is defined
in Dereich and Mörters (2009).

Definition 4.4 Let f : N0 → (0,∞) be a concave function with f (0) ≤ 1 and
f (1) − f (0) < 1, a so called attachment rule. A PA( f )-network is a sequence of
random directed graphs (Gn)n∈N formed according to the following rules:

1. G1 is the graph with the single node 1 and no edges.
2. GivenGn ,Gn+1 is formed fromGn by adding the node n + 1 and by independent

insertion of a directed edge n + 1 → k for each k = 1, . . . , n with probability

P(n + 1 → k|Gn) = f (indegGn
(k))

n
.

Here indegGn
(k) denotes the indegree of node k in the graph Gn . Note that the graph

is directed with all edges pointing from younger to older vertices.

The PA( f )-model has a limiting indegree distribution.

Theorem 4.1 Let f be an attachment rule and (Gn)n∈N a PA( f )-model. Then, (Gn)

has L1-asymptotic indegree distribution μ = (μk)k∈N0 given by

μk = 1

1 + f (k)

k−1∏

l=0

f (l)

1 + f (l)
,
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that means that for every k ∈ N0

lim
n→∞

1

n
#{ j ∈ [n] : indegGn

(k)} = μk, in probabili t y,

μ has finite first moment and

lim
n→∞

1

n
#En = lim

n→∞
1

n

n∑

k=1

indegGn
(k) =

∫
w dμ(w), in probabili t y.

For the classical variant of preferential attachment, such a statement goes back to
Bollobás et al. (2001) and this statement can be found in Dereich andMörters (2009)
[Thm. 1.1]. By concavity of the attachment rule, the limit

γ := lim
n→∞

f (n)

n

exists and as a consequence of the theorem the PA( f )-model has an indegree power
law exponent τ = 1 + 1

γ
that is

μk = k−(1+ 1
γ
)+o(1)

, as k → ∞.

4.3 The Network as Seen by a Typical Node

The structure of a large network is best understood by adopting the viewpoint of
a uniformly chosen node. For most complex network models, the local neighbor-
hood seen by a uniform node converges in the sense of Benjamini-Schramm to a
random graph and key properties of the complex network relate to properties of the
corresponding graph limit.

Benjamini-Schramm convergence
To introduce the concept of Benjamini-Schramm convergence (Benjamini and
Schramm 2001), we need some more notation. A rooted graph is a graph together
with a designated node, the root. For a rooted graph, say (g, o) with o denoting the
root, and R ∈ N, we writeNR(g, o) for the R-neighborhood of (g, o), i.e., the rooted
subgraph that is obtained from (g, o)

• by removing all nodes that cannot be reached from o by passing through less or
equal to R edges and

• by removing all edges that attach to a previously removed node.

Furtherwe say that two rootedgraphs are equivalent if relabeling the nodes transforms
one graph into the other and takes one root to the other.
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Definition 4.5 (Benjamini-Schramm convergence)
1. A sequence of rooted random graphs (Gn, ρn)n∈N (with arbitrary sets of nodes)

is said to locally converge to a rooted random graph (H, ρ) iff for every R ∈ N

and finite rooted graph (g, o)

lim
n→∞P

(
NR(Gn, ρn) is equiv. to (g, o)

) = P
(
NR(H, ρ) is equiv. to (g, o)

)
.

2. A sequence of nonempty finite random graphs (Gn)n∈N is said to locally converge
to a rooted random graph (H, ρ) iff for an independent uniform node ρn ofGn one
has local convergence (Gn, ρn) to (H, ρ). In that case, we call (H, ρ) idealized
neighborhood of the graph model (Gn)n∈N.

Remark 4.1 Roughly speaking, Benjamini-Schramm convergence means that the
probability that a neighborhood is equivalent to a particular pattern (formally a rooted
graph) (g, o) converges for every possible pattern and for every size of the neighbor-
hood.

To state the convergence results for the above models, we first need to define the cor-
responding random rooted graphs that appear as limit. For the configuration model,
the limit is a Galton-Watson tree with a modified offspring distribution of the root.

Letμ be a distribution onN0 with finite first moment. We consider the size biased
distribution reduced by one that is μ∗ = (μ∗

k)k∈N0

μ∗
k = (k + 1)μk+1∑∞

l=1 lμl
.

In the case whereμ = δ0, we setμ∗ = δ0. We denote by GWP∗(μ) a Galton-Watson
process in Ulam-Harris notation for which the root ρ = ε generates offspring with
distributionμ and all other vertices generate independentlyμ∗-distributed offspring.

To be precise, let N∗ := ⋃
�∈N0

N
� be the set of all finite words over N including

the empty word ε and let (Zw : w ∈ N
∗) be independent random variables with

Zε ∼ μ and Zw ∼ μ∗, for w ∈ N
∗\{ε}.

The random set of vertices V of aGWP∗(μ) is obtained by iteratively addingwords of
length 0, 1, . . . according to the following rule: the root ε is in V and a concatenation
w j of the word w ∈ N

∗ and the letter j ∈ N is in V if

w ∈ V and j ≤ Zw.

Furthermore, each w j ∈ V is linked by an undirected edge to w.

Theorem 4.2 A CM(d)-network (Gn)n∈N with L1-asymptotic degree distribution μ

has idealized neighborhood (GWP∗(μ), ε).
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The idealized neighborhood of the PA( f )-model
Next, we introduce the idealized neighborhood of the PA( f )-model for an arbitrary
attachment rule f . It is a multitype truncated branching random walk.

Let (Sn)n∈N0 be independent random variables with each Sn being Exp( f (n))-
distributed and let Π+ denote the simple, locally finite point process given by

Π+ =
∞∑

k=0

δS0+...+Sk .

It is the point process on (0,∞) with inter-arrival times (Sn)n∈N0 . The point process
Π+ has intensity measure

E[ f (Zt )] dt,

where Zt = Π+((0, t]) = ∑∞
k=0 1l{S0 + . . . + Sk ≤ t} (t ≥ 0) is the counting pro-

cess associated with the point process Π+. It is a pure birth Markov jump process
with birth rate equal to f . Further we denote by Π− the Poisson point process on
(−∞, 0) with intensity measure

et E[Z−t ] dt.

We now introduce the truncated multitype branching random walk TBRW( f ) on
(−∞, 0] with typespace {�} ∪ (0,∞). Its root is a node ρ with −Exp(1)-distributed
location X (ρ) and type T (ρ) = �. The next generation is formed by taking inde-
pendent copies of Π− and Π+ (also independent of ρ), say Πρ,− and Πρ,+, and by
placing for each point t ∈ Πρ,− ∪ Πρ,+ with X (ρ) + t ≤ 0 a node v (descendant)
with

X (v) = X (ρ) + t and T (v) =
{

�, if t > 0,

−t, if t < 0.

All descendants are connected by edges to their mother ρ. Generally, �-type vertices
give independently offspring according to the above rules. The corresponding rule
is illustrated in the first illustration of Fig. 4.2.

It remains to explain how vertices v with type τ := T (v) ∈ (0,∞) generate off-
spring. For such a node one takes an independent copy of Π−, say Π−,v together
with an independent point process Π+,v being distributed according to

L (Π+\{τ }|Π+({τ }) = 1).

Note that the latter term refers to the conditional probability of Π+\{τ } given that
Π+({τ }) = 1. The set of descendants is then formed as in the case of �-type vertices
and all its constituents are connected to their mother. The corresponding random
graph including the locations and types will be denoted by TBRW( f ).
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Fig. 4.2 Reproduction mechanism for the vertices of a TBRW( f ).

In the case that the attachment rule is affine, the distribution

L (Π+\{τ }|Π+({τ }) = 1)

does not depend on the choice of τ ∈ (0,∞) and it equals the distribution of

Π̄+ :=
∞∑

k=1

δS1+...+Sk .

Hence in that case, we deal with a two-type truncated branching random walk which
simplifies matters.

Theorem 4.3 APA( f )-model (Gn)n∈N has idealized neighborhood (TBRW( f ), ρ).

Although not being stated like that, Thm. 4.3 is a consequence of the analysis of
certain exploration schemes carried out in Dereich and Mörters (2013).

4.4 The Giant Component

At least on an informal level, the Benjamini-Schramm limit allows to deduce the
asymptotic size of the largest component.
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Theorem 4.4 Let (Gn)n∈N be a CM(d)-network with L1-asymptotic degree distri-
bution μ with μ0 + μ2 < 1. Let D, resp. D∗, denote μ and μ∗-distributed random
variables.

1. If E[D∗] > 1, then the GWP∗(μ)-process is with strictly positive probability
ζ > 0 infinite (survival probability) and one has

lim
n→∞

#C max
n

n
= ζ and lim

n→∞
#C 2nd

n

n
= 0, in probabili t y,

where C max
n and C 2nd

n denote the largest and second largest component of Gn.
2. If E[D∗] ≤ 1, then the GWP∗(μ)-process is almost surely finite and one has

lim
n→∞

#C max
n

n
= 0, in probabili t y.

In the first case, the largest component is called giant component. Originally a result
in that direction was derived by Molloy and Reed (1998) and the current version of
the theorem is borrowed from van der Hofstad (2016).

Remark 4.2 The survival probability can be represented with the help of the gener-
ating function of the distribution μ∗ that is

g(x) = E[xD∗ ] =
∞∑

k=0

μ∗
k x

k, x ∈ [0, 1].

The extinction probability of a Galton-Watson process with offspring distributionμ∗
is the smallest fixed point ξ of g and the asymptotic size ζ of the giant component
satisfies

ζ =
∞∑

k=1

μk(1 − ξ k).

Wenote that Thm. 4.4 holds similarly for theNorros-Reittumodel. Let (Gn)n∈N be
aNR(ν)-network for an integrable distribution ν. Here the Benjamini-Schramm limit
is a modified Galton-Watson process with the root generating offspring according to

μk = E
[wk

k! e
−w

]

and all other vertices generating offspring according to

μ∗
k = 1

E[w]E
[wk+1

k! e−w
]
,
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where w is a ν-distributed random variable. In particular, a giant component exists
if and only if E[w2] > E[w] since the first moment of μ∗ satisfies

∞∑

k=1

kμ∗
k = 1

E[w]
∞∑

k=1

E

[
w2 wk−1

(k − 1)!e
−w

]
= 1

E[w]E
[
w2

∞∑

k=1

wk−1

(k − 1)! e
−w

]
= E[w2]

E[w] .

The Norros-Reittu graph is a particular randomized inhomogeneous random graph
whose detailed analysis can be found in Bollobás et al. (2007).

Theorem 4.5 is analogously true for the preferential attachment model (Dereich
and Mörters 2013).

Theorem 4.5 Let (Gn)n∈N be a PA( f )-network for an attachment rule f and let ζ
denote the probability that TBRW( f ) is infinite. Then,

lim
n→∞

#C max
n

n
= ζ and lim

n→∞
#C 2nd

n

n
= 0, in probabili t y.

Remark 4.3 Analytically tractable expressions for the survival probability ζ are not
known for PA( f )- networks. However, one can characterize the cases in which a
giant component exists. Let �� denote the intensity measures of the point processes
Π+ ∪ Π− on R, i.e.,

��(dt) = (1l{t>0} E[ f (Zt )] + 1l{t<0} et E[ f (Z−t )]) dt.

Further let for τ ∈ [0,∞], �τ denote the intensity measure of the point process
with distribution L (Π− ∪ Π+\{τ }|Π+({τ }) = 1). (Note that the conditioning on
Π+({τ }) = 1 for τ = ∞ can be defined by taking limits.) We letS = {�} ∪ [0,∞]
and consider for α ∈ (0, 1) the operator

Aαg(τ ) =
∫

R

g(t)e−αt d�τ (t)

on the Banach spaceC(S ) of bounded and continuous functions. Then, the network
does not have a giant component if and only if there exists α ∈ (0, 1) such that Aα

is a well-defined operator from C(S ) into itself with spectral radius ρ(Aα) < 1.
In the casewhere f is affine, that is f (n) = γ n + β with γ ∈ [0, 1) andβ ∈ (0, 1]

we only need to distinguish two types, say � and r , and the intensities are explicit
namely

��(dt) = β(1l{t>0} eγ t + 1l{t<0} e(1−γ )t ) dt

and
�r (dt) = (1l{t>0} (β + γ ) eγ t + β1l{t<0} e(1−γ )t ) dt.



54 S. Dereich

Thus, Aα is a 2 × 2-matrix and one gets that the PA( f )-network has a giant compo-
nent if and only if β > 0 and

γ ≥ 1

2
or β >

( 12 − γ )2

1 − γ
.

For the details, we refer the reader to Dereich and Mörters (2013).

In the above theorems, we used the idealized neighborhoods to give representations
for the size of the giant component. We want to stress that although the Benjamini-
Schramm limits give good intuition about the characteristics of the network the proof
of the results typically require significantly stronger statements than Benjamini-
Schramm convergence. A common approach is to show that a stepwise exploration
of Gn starting from a uniformly chosen node is probabilistically not distinguishable
with the exploration of the idealized neighborhood for a certain number of steps
depending on the size of the network n. Also it is sometimes preferable to use
the particular structure of the model and to bypass the consideration of Benjamini-
Schramm limits.

4.5 Distances

In this section, we consider typical distances1 between two independent, uniformly
chosen nodes from the giant component. We focus on the ultrasmall regime where
typically distances scale like log log n in the network size n and on the boundary
case, the critical case. Roughly speaking, we consider the heavy-tailed case where
the distribution μ has infinite second moment. In the following, we denote by μ̄k =∑∞

m=k μm (k ∈ N0) the tail probabilities of μ.
For typical distances, an intriguing difference can be observed between the rank-

one and the preferential attachment paradigm in the ultrasmall regime: For the
preferential attachment paradigm, distances are typically twice as long as in a cor-
responding rank-one model. We first consider the Norros-Reittu model.

Theorem 4.6 Let (Gn)n∈N be a NR(ν)-model for an integrable distribution ν on
(0,∞). Suppose that there exists τ ∈ (2, 3) and c > 0 such that for ν-distributed
random variable w

P(w > u) = u1−τ (c + o(1)) as u → ∞.

Then, (Gn)n∈N has an asymptotic degree distribution μ with

μ̄k = (c + o(1)) k1−τ as k → ∞,

1In a graph, the distance between two nodes is the minimal number of edges a path has to cross to
go from one to the other node.
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and for two independent, uniformly chosen vertices V and W in the giant component
of Gn, we have

dGn (V,W ) = (2 + o(1))
log log n

log 1/(τ − 2)
, wi th high probabili t y.

Aproof of the result can be found inDereich et al. (2012) [Prop. 6]where the upper
bound of Norros and Reittu (2006) [Thm. 4.2] is complemented by an appropriate
lower bound. Thus, the typical distance grows as log log n with an additional multi-
plicative constant only depending on the power law exponent τ . Similar statements
hold for other rank-one models. In particular, in the configuration model a much
more elaborate study (Hofstad et al. 2007) derived a distributional limit theorem for
the appropriately scaled distance.

The corresponding statement for the distances in the preferential attachment net-
work is as follows.

Theorem 4.7 Let (Gn)n∈N be a PA( f )-model with the attachment rule f satisfying
γ := limn→∞ f (n)/n > 1/2. Then, (Gn) has asymptotic degree distribution μ with

μk = k−τ+o(1),

where τ = 1 + 1/γ , and for two independent, uniformly chosen vertices V and W
in the giant component of Gn, we have

dGn (V,W ) = (4 + o(1))
log log n

log 1/(τ − 2)
wi th high probabili t y.

The proof of the theorem can be found in Dereich et al. (2012) [Prop. 4]. We
should mention that the proof of the upper bound uses arguments from Dommers
et al. (2010) where a corresponding upper bound is derived for a different variant of
preferential attachment.

To understand the additional factor two in the preferential attachment paradigm,
we give a rough sketch of the proofs of the upper bounds. A visualization can be
found in Fig. 4.3.

In the proofs of the upper bounds, one shows existence of certain connecting
paths. Roughly speaking, one assigns every node to either one of (c + o(1)) log log n
shells or the bulk, where c = 1/ log 1/(τ − 2). The shells are chosen in such a way
that the innermost shell contains the vertices with highest weights in the Norros-
Reittu network and the oldest vertices in the preferential attachment network. The
weight/age decreases when moving from the innermost to the outermost shell. For
the Norros-Reittu network, one shows the following:

• A uniformly chosen node is with high probability element of the bulk. If it is in
the giant component, it has, with high probability, distance O(1) to the outermost
shell.
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Norros−Reittu networkPreferential attachment

Fig. 4.3 Illustration of the connecting paths used in the proofs of the upper bounds forNorros-Reittu
and preferential attachment.

• The first node found in the outermost shell features with high probability a link
to the next shell and so on, so that one finds with high probability a path of the
number of shells minus one leading from the outermost to the innermost shell.

• In the case that the above construction succeeds for two uniform vertices, the
distance between the corresponding two vertices in the innermost shell has distance
of order O(1), with high probability.

Hence, with high probability two uniformly chosen vertices have distance less than
or equal to (2c + o(1)) log log n.

For the preferential attachment model, the proof can be achieved following the
same steps with a slight modification. In the second step, one finds, with high prob-
ability, a bridge to the next shell which has one intermediary bulk node so that one
finally finds connecting paths between two independent uniformly chosen vertices
with length (4c + o(1)) log log n.

The classical preferential attachment model PAm has power law exponent τ = 3
which is the critical exponent. Bollobás and Riordan (2004) showed that two
randomly chosen nodes have graph distance (1 + o(1)) log n/ log log n, with high
probability. The same result holds for a variety of rank-one models such as the
Norros-Reittu and the configuration model, with asymptotic degree distribution

μ̄k = (c + o(1))k−2.

Hence, in that case the asymptotics of the two paradigms agree including the constant.
These results raise the question whether there is an intermediate regime between

the ultrasmall and critical regime in which the ratio between the typical distances
interpolates between one and two. Such a behaviour can be observed for degree
distributions μ with tail behavior

μ̄k = k−2(log k)2α+o(1), as k → ∞, (4.3)

where α > 0. The following results are taken from Dereich et al. (2017).
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Theorem 4.8 Let α > 0 and (Gn)n∈N denote the Norros-Reittu network with inde-
pendent identically distributed weights w = (w

(n)
k : n ∈ N, k = 1, . . . , n) satisfying

P(w
(n)
k ≥ u) = u−2(log u)2α+o(1), (4.4)

as u → ∞. Then, (4.3) is satisfied and for two independent, uniformly chosen nodes
U, V from the giant component C max

n of Gn, we have

dGn (U, V ) =
( 1

1 + 2α
+ o(1)

) log n

log log n
, wi th high probabili t y.

The corresponding statement for the preferential attachment model is as follows.

Theorem 4.9 Let (Gn)n∈N be the preferential attachment model obtained from an
attachment rule f satisfying

f (k) = 1

2
k + α

2

k

log k
+ o

( k

log k

)
, (4.5)

for some α > 0. Then, (4.3) is satisfied and for two independent, uniformly chosen
nodes U, V from the giant component C max

n ⊂ Gn, we have

dGn (U, V ) =
( 1

1 + α
+ o(1)

) log n

log log n
, wi th high probabili t y.

We note that in the parameter α > 0 the typical distance in the preferential attach-
ment model scales as 1+2α

1+α
times the distance in the corresponding Norros-Reittu

network and in the limit α → ∞ one obtains the additional factor 2. Unfortunately,
the proofs of these results do not provide intuition about the structural differences
that cause the additional factor.
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Chapter 5
Systemic Risk in Networks

Nils Detering, Thilo Meyer-Brandis, Konstantinos Panagiotou
and Daniel Ritter

Abstract Systemic risk, i.e., the risk that a local shock propagates throughout a
given system due to contagion effects, is of great importance in many fields of our
lives. In this summary article, we show how asymptotic methods for random graphs
can be used to understand and quantify systemic risk in networks. We define a notion
of resilient networks and present criteria that allow us to classify networks as resilient
or non-resilient. We further examine the question how networks can be strengthened
to ensure resilience. In particular, for financial systems we address the question of
sufficient capital requirements. We present the results in random graph models of
increasing complexity and relate them to classical results about the phase transition
in the Erdös-Rényi model. We illustrate the results by a small simulation study.

5.1 Introduction

One possible attempt to define Systemic Risk is that in case of an adverse local shock
(infection) to a system of interconnected entities, a substantial part of the system,
or even the whole system, finally becomes infected due to contagion effects. In an
evermore connected world, systemic risk is an increasing threat in many fields of
our life; examples include the epidemic spread of diseases, the collapse of financial
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networks, rumor spreading in social networks, computer viruses infecting servers,
or breakdowns of power grids. However, as, for example, the recent financial crisis
has demonstrated, traditional risk management strategies and techniques often only
inadequately account for systemic risk as they predominantly focus on the single
system entities and only insufficiently consider the whole system with its potentially
devastating contagion effects. It is thus of great interest to develop new quantitative
tools that can support the process of identifying, measuring, and managing systemic
risk. This problem has been addressed in a number of papers now and the literature is
still growing. One active line of research is the extension of the axiomatic approach
to monetary risk measures from financial mathematics, initiated in Artzner et al.
(1999), to systemic risk measures (Chen et al. 2013; Hoffmann et al. 2016, 2018;
Kromer et al. 2016; Biagini et al. 2019+; Armenti et al. 2018; Feinstein et al. 2017).
Another interesting analysis of systemic risk is based on an explicit modeling of
the underlying network of interacting entities and potential contagion effects (Amini
et al. 2015; Chong and Klüppelberg 2018; Eisenberg and Noe 2001; Gandy and
Veraart 2017; Kusnetsov and Veraart 2016; Weber and Weske 2017). For a further
overview of different methods and concepts to address systemic risk, the reader is
referred to the twomonographs Fouque and Langsam (2013) andHurd (2016). In this
chapter, we give an account of how such tools can be developed for large networks
in the framework of random graph models, which allows for an explicit modeling
both of the underlying network structure and of the contagion process propagating
systemic risk. This area of research has been initiated by the work Gai and Kapadia
(2010) and Amini et al. (2016) and further developed in Detering et al. (2015, 2016).

For a system with n entities (nodes) with labels in [n] := {1, . . . , n}, rather than
dealing with a specific deterministic network we consider a random graph model G
on a given probability space (Ω,F ,P), where for each scenario ω ∈ Ω the realized
network is represented by its adjacencymatrixG(ω) ∈ {0, 1}n×n .Wewant to exclude
self-loops from the graph and hence assume Gi,i = 0 almost surely for all i ∈ [n].
Further, ifwe consider undirectednetworks, thenGi, j (ω) = G j,i (ω) for all i, j ∈ [n].
If Gi, j (ω) = 1, then we say that (i, j) is an edge of G.

The motivation for choosing such a random graph framework is twofold. From
a modeling point of view, risk management deals with the uncertainty of adverse
effects at a future point in time. In many situations, however, not only the future
adverse shock is uncertain but also the specific network structure.While the statistical
characteristics (degree distribution, . . .) of the considerednetworkoften remain stable
over time, the specific configuration of edges may change. This uncertainty is then
represented by a suitable random graph model. Secondly, from a mathematical point
of view, the framework of random graphs allows for the application of the law of
large number effects when the network size gets large. This enables the analytic
derivation of asymptotic results that hold for all “typical” future realizations G(ω)

of large networks (more precisely, the results hold with high probability [w.h. p.],
that is with probability growing to 1 when n tends toward infinity). In this sense, our
systemic risk management results are robust with respect to the uncertainty about
the future network configuration and applicable to all “typical” networks that share
the same statistical characteristics.
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The random graph models we consider are characterized by the fact that each
possible edge e is included independently with some probability pe. Our models
differ in the way the marginal probabilities are actually specified: If all pe are equal,
then we call this the homogeneous setting. This is the classical Erdös-Rényi model.
We refer the reader to Bollobás (2001), Alon and Spencer (2016), and Janson et al.
(2011) for an excellent introduction to the model and its asymptotic properties.
All other cases are called heterogeneous, and the resulting model is often called
the inhomogeneous random graph in the literature. In the latter case, the actual
degree of heterogeneity has an important effect on several structural characteristics
of the resulting graphs (as, e.g., the distribution of the edges in the graph, or the
emergence of a core-periphery structure), and we will exploit this effect to capture
realistic situations. The recent monograph Hofstad (2016) gives an extensive intro-
duction to this heterogeneous model and its alternatives including the configuration
model.

In addition to the specification of a random graph model, we explicitly model the
contagion effects by which an initial local shock propagates throughout the system.
The contagion processes we consider in this chapter are generalizations of the so-
called bootstrap percolation process. The essential feature specifying the contagion
process is the assumption that each node i is equipped with a threshold value τi ∈ N

that represents the “strength” of node i to withstand contagion effects. Given a subset
I ⊂ [n] of initially “infected” nodes , the contagion process can then be described in
rounds where node i ∈ [n] gets infected as soon as τi of its neighbors are infected.
This contagion process then clearly ends after at most n − 1 rounds leading to the set
of eventually infected nodes triggered by the initially infected nodes I . The essential
risk indicator underlying our analysis of systemic risk is then the final infection
fraction

αn := number of finally infected nodes

n
(5.1)

given by the number of finally infected (or defaulted) nodes triggered by the set I of
initially infected nodes divided by the total number of nodes in the network.

When such a contagion process is studied on a random graph G, the final default
fraction αn(ω) is a random variable that depends on the realized network G(ω), and
the first main question is whether one can quantify the final default fraction. Asymp-
totically for large networks this question can be answered positively for the random
graphmodelswe consider, andwe show that the final default fraction is given by some
deterministic, analytic formula depending on the statistical network characteristics
and the contagion process in the limit in probability as n→∞. So roughly speaking,
when the network size n is large enough, the final default fraction can be computed
analytically and it will be the same for almost all network realizations G(ω) of the
random graph G (and in this sense is robust with respect to the uncertainty about the
future network structure).

Based on the analysis of the final default fraction, we then develop a quantitative
concept to asses the systemic riskiness of a network. More precisely, we present a
mathematical criterion formulated in terms of the network statistics that characterizes
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whether a network is resilient or non-resilient with respect to initial shocks. Roughly
speaking, a network is resilient, and thus acceptable from a systemic risk point of
view, if small shocks remain small, and it is non-resilient, and thus non-acceptable
from a systemic risk point of view, if any initial shock propagates to a substantial
part of the system, no matter how small the initial shock is. We will see that in terms
of this resilience criterion the systemic riskiness of a network heavily depends on
the topology of the graph. In particular, as long as the degree sequence possesses a
second moment only local effects determine whether a network is resilient or not and
the absence of the so-called contagious edges in the network guarantees resilience.
Here, an edge (i, j) is called contagious if the mere infection of node j leads to
the infection of node i (or vice versa). If, on the other hand, the degree sequence
has infinite second moment, a property that many real-world networks share, many
global effects contribute to the contagion process, and the absence of contagious
links no longer implies resilience.

Once a measure of systemic risk is introduced, the second important question
is how to manage systemic risk, i. e., how to design or control a system such that
it is acceptable from a systemic risk point of view. In our framework, we analyze
this question in the following sense: For a given graph structure, how does one have
to specify the threshold values τi , i ∈ [n], such that the network becomes resilient?
For example, in the context of financial networks, requirements on τi can be inter-
preted as capital requirements imposed on afinancial institution i ∈ [n]. Using above-
mentioned resilience criterion, it follows immediately that for networks with finite
second moment of the degree sequence the requirement τi ≥ 2, i ∈ [n], is sufficient
for resilience since this excludes contagious edges. For networks without finite sec-
ond moment of the degree sequence this management rule is insufficient for securing
a system andwewill see that highly connected nodes need to be equippedwith higher
threshold values. In particular, wewill characterize resilience/non-resilience in terms
of a specific functional form for the threshold values, where the threshold value τi for
node i can still basically be determined locally by only knowing the profile of node i .
This striking feature is possible due to averaging effects in large random graphs and
it is in contrast to other management (or allocation) rules obtained in deterministic
networks that for each node can only be specified in terms of the complete network
structure.

In the course of this chapter, we expose the program sketched above in gradually
increasing complexity of both the underlying random graph model and the conta-
gion process. In Sect. 5.2.1, we consider the homogeneous setting of the well-studied
Erdös-Rényi random graph and the classical bootstrap percolation process with con-
stant threshold values. In Sect. 5.2.2, to account for more realistic features of many
empirically observed networks, we extend the homogeneous setting to both hetero-
geneous random graphs and threshold values, which in particular allows for graphs
with infinite second moment degree sequences. Finally, in Sect. 5.2.3, we focus on
the modeling of financial networks where the contagion process is driven by capital
endowments and exposures of the financial institutions. This contagion process rep-
resents a further extension/generalization of the threshold-driven contagion process.
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The results of both Sects. 5.2.2 and 5.2.3 were originally derived in Detering et al.
(2015, 2016). It is the aim of this chapter to summarize this work and make our
results comprehensible to a broad audience of different backgrounds.

5.2 Models of Networks and Contagion Processes

In this section, we will describe various models of random networks and contagion
processes, accompanied by several results characterizing their qualitative behavior.
The presentation will be such that the complexity of both the considered networks
models, as well as the contagion process, increases gradually from a rather homoge-
neous setting to one that may resemble some realistic situations quite well.

Random Graph Models
Our random graph models have the following common characteristics. We assume
that a number n of nodes with labels in [n] := {1, . . . , n} is given. The set of possible
edges En consists then either of all unordered pairs {i, j}, where i �= j (“undirected
graph”) or all ordered pairs (i, j), where again i �= j (“directed graph”). The graphG
is specified by including each possible edge e independently with some probability
pe. Our models differ in the way the marginal probabilities (pe)e∈En are actually
specified: If all pe are equal, then we call this the homogeneous setting, and all other
cases are called heterogeneous. In the latter case the actual degree of heterogeneity
has an important effect on several structural characteristics of the resulting graphs (as,
e.g., the distribution of the edges in the graph, or the emergence of a core-periphery
structure), and we will exploit this effect to capture realistic situations.

Contagion Processes
The contagion processes that we consider here resemble and extend the well-studied
bootstrap percolation process, which has its origin in the physics literature (Chalupa
et al. 1979) . In the classical setting, a graph G is given and initially a subset I of the
nodes is declared infected. We will make the assumption that each node is initially
infected with some probability ε > 0, independently of all other nodes. The process
then consists of rounds, in which further nodes may get infected. Similar as with
the random graph also the infection rules that we study will become gradually more
complex to represent more realistic settings.We start with the simple rule 1BPwhere
a node becomes infected as soon as one of its neighbors becomes infected. More
complex rules we study then allow for variation in the nodes’ individual infection
thresholds (e.g., rBP stands for the rule in which each node has threshold r ) and the
impact of different edges. More concrete rules will be introduced later. In all cases,
we will be interested in the size of the set of eventually infected nodes. For each
finite graph size n, this is a random number which depends on the realized graph
configuration. However, due to averaging effects we will be able to compute the
(random) fraction of eventually infected nodes αn(ε) as in (5.1) as a deterministic
number α(ε) in the limit n→∞ under some mild regularity assumptions.
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Resilience to Contagion
For many applications, the spread of the initially infected set to the whole graph is
of central importance. In some cases, it may be favorable if a small fraction ε of
initially infected nodes spreads to a large fraction of the whole graph; in other cases,
such behavior would be rather worrisome. To capture these two different kinds of
possible behavior, we give the following definitions:

Definition 5.1 A network is said to be resilient if α(ε)→0 as ε→0.

Definition 5.2 Anetwork is said to be non-resilient if there exists some lower bound
α > 0 such that α(ε) > α for all ε > 0.

Definition 5.1 characterizes a network as being resilient (to small initial infections) if
the final fraction of infected nodes vanishes as the fraction of initially infected nodes
ε tends to 0. In this case, small local shocks cannot cause serious harm to the system
but they only impact their immediate neighborhood in the graph. On the other hand,
Def. 5.2 classifies networks as non-resilient if every howsoever small initial fraction
ε > 0 causes a positive fraction of at least α > 0 of eventual infections. In particular,
the amplification factor α(ε)/ε explodes as ε becomes small and the effects are not
locally confined anymore.

5.2.1 Homogeneous Setting

In this section, we study the homogeneous setting which comprises three assump-
tions. First, the graph is undirected, i. e., we have n nodes and the set of possible
edges is En := ([n]

2

) = {{i, j} : 1 ≤ i, j ≤ n, i �= j}. Second, for every e ∈ En we
assume that pe = p, that is, the probability that an edge is present is the same for
all edges. This is a classical and well-studied model of random graphs that was first
introduced in Gilbert (1959) and Erdős and Rényi (1960), and it has been investi-
gated in great detail since then; see Bollobás (2001) for an excellent introduction.
Our third and final assumption is that in the contagion process all nodes are initially
infected with the same probability ε and the infection thresholds are also equal to
some number r ∈ N, which means that any node becomes infected as soon as (at
least) r of its neighbors are infected. This infection process is well understood and
treated in detail in Janson et al. (2012) and all results in this section are either special
cases of results in Janson et al. (2012) or easily arise from them.

We shall use the standard notation Gn,p for a random graph with n nodes and
edge probability p as described in this section. For different choices of p, this graph
shows different characteristics and can range from a very sparse, loosely connected
graph to a very dense graph. In particular, note that the number e(Gn,p) of edges in
Gn,p follows a binomial distribution with parameters |En| = (n

2

)
and p. Thus, the

expected number of edges in Gn,p equals
(n
2

)
p, and their actual number is typically

close to this value. Here, we will focus especially on the case p = p(n) = c/n for
some c > 0, as then E(e(Gn,p)) = c

2 (n − 1) ∼ cn/2, a quantity that is linear in the
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number of nodes and thus most interesting for the applications that we have in mind.
See Fig. 5.1 for an illustration of such a network.

A well-known structural property of the random graph Gn,c/n that will become
quite handy later is that, as n→∞, the (random) degree deg(i) of each node i ∈ [n]
converges weakly to a Poisson distribution with parameter c. Furthermore, if one
considers the (random) empirical degree distribution

F̃n(k) := n−1
∑

i∈[n]
1l{deg(i) ≤ k}, k ∈ N0

then the following statement is true (see, e.g., Hofstad (2016) [Thm. 5.12]):

Lemma 5.1 As n→∞, F̃n converges to a Poisson distribution with parameter c.

After having introduced the underlying random graph model for this section, we
are now interested in analyzing the contagion mechanism. Recall that regarding the
contagionprocessweassume that eachnode is infected initiallywith someprobability
ε > 0 and independently of all other nodes. Nodes that are not initially infected shall
become so as soon as r ∈ N of their neighbors are infected, i. e. τi = r for all nodes
i ∈ [n] that are not infected initially. In the sequel, we distinguish the cases r = 1 and
r ≥ 2 for the infection threshold of each node. Our main focus will be to distinguish
between two fundamentally different behaviors:

r = 1: Observe that in this case a node gets infected as soon as any of its neighbors
is infected. In particular, if i is a node that was infected at the beginning of the
process, then eventually the whole connected component containing i will become
infected; hence, the behavior of the process is intimately related to the component
structure of Gn,p. Here, the famous result of Erdös and Rényi (see Alon and Spencer
(2016), for example) regarding a phase transition in the component structure comes
to help. Let us write L(Gn,p) for the random number of nodes in a largest connected
component of Gn,p.

Fig. 5.1 A typical
configuration for Gn,p with
n = 100, c = 4, and
p = c/n. Node sizes scale
with the corresponding
degree
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Theorem 5.1 Let c > 0 and p = c/n. Then, as n→∞,

• if c < 1, then there exists κ ∈ (0,∞) such that log−1(n)L(Gn,p)→κ in probability.
• if c > 1, then there exists λ ∈ (0,∞) such that n−1L(Gn,p)→λ in probability.

Afirst important consequence of this result is that if c > 1, then, no matter how small
ε > 0 is chosen, w.h. p. (i. e. with probability converging to 1 as n→∞) at least one
node in the largest component will be infected and in turn at least a fraction λ of the
nodes in the graph will eventually become infected. We hence derive the following
result:

Theorem 5.2 Consider the random graph model Gn,p with p = c/n and threshold
r = 1. If c > 1, then the system is non-resilient.

Regarding the case c < 1, it turns out that Gn,c/n is resilient according to Def. 5.1.
We do, however, need more information about the random graph than only the size
of its largest component in order to conclude this. Indeed, from a heuristic point of
view, the following consideration is helpful: Letα(ε) ∈ [ε, 1] be the (a priori possibly
random) fraction of eventually infected nodes. Each of the eventually infected nodes
is either infected from the beginning, which happens with probability ε, or otherwise
it must have at least one infected neighbor. We know that the degree of each node is
Poisson distributed with mean c in the limit n→∞. Since a fraction α(ε) of all nodes
is eventually infected, for each node i that becomes infected during the process (not
initially infected), the number of infected neighbors can be expected to be Poisson
distributed with parameter cα(ε). This heuristic argument yields the identity

α(ε) = ε + (1 − ε)P(Poi(cα(ε)) ≥ 1)

The fraction α(ε) should then be a fixed point of the function

fε(z) := ε + (1 − ε)P(Poi(cz) ≥ 1).

Since fε is continuous, fε(0) = ε > 0, and fε(1) ≤ ε + (1 − ε) = 1, there always
exists at least one fixed point of fε within (0, 1]. Further, since f ′′

ε (z) = −c2(1 −
ε)e−cz < 0 for all z ∈ [0,∞), there can only exist one solution ẑ to fε(z) = z. This
solution must hence coincide with the final fraction of infected nodes. Making this
heuristic argument rigorous (compare to Thm. 5.5), we derive the following result.

Theorem 5.3 Consider the random graph model Gn,p with p = c/n and threshold
r = 1. Let ẑ denote the unique fixed point of fε(z). Then, the fraction of eventually
infected nodes converges to α(ε) = ẑ in probability.

Regarding the case c < 1, note that as the initial infection probability ε→0, the
fixed point of fε(z) also converges to 0 since fε(z) ≤ ε + (1 − ε)cz and hence ẑ ≤
ε(1 − c)−1. See Fig. 5.2a for an illustration. This means that the final fraction of
infected nodes vanishes and the network is thus resilient according to Def. 5.1:

Theorem 5.4 Consider the random graph Gn,p with p = c/n and threshold r = 1.
If c < 1, then the system is resilient.
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Fig. 5.2 Plot of fε for ε ∈ {0.05, 0.1, 0.15, 0.2} and c = 0.5 (a), respectively, c = 1.5 (b). In black,
the diagonal h(z) = z

On the other hand, for the case that c > 1 the fixed point of fε is lower bounded for
all ε > 0 which is in line with Thm. 5.2, see Fig. 5.2b.
r ≥ 2: Also in this case the same heuristic reasoning as for r = 1 shows that

α(ε) = ε + (1 − ε)P(Poi(cα(ε)) ≥ r)

for the fraction α(ε) of eventually infected nodes. This time, however, it is possible
in general that the function

fε(z) := ε + (1 − ε)P(Poi(cz) ≥ r)

has one, two, or three different fixed points in (0, 1], depending on the values of c
and ε. We can still describe the final infection fraction by choosing the smallest fixed
point, but we require an additional condition: A fixed point ẑ of fε is called stable if
f ′
ε(ẑ) < 1. The following result is then a special case of Janson et al. (2012) [Thm.

5.2.]:

Theorem 5.5 Let ẑ be the smallest fixed point of fε(z) in (0, 1] and assume that it
is stable. Then, the fraction of eventually infected nodes converges to α(ε) = ẑ in
probability.

The theorem gives us a way to compute the final infection fraction for any given
c and ε. In order to derive a statement about resilience of the network, note that
P(Poi(cz) ≥ r) ≤ P(Poi(cz) ≥ 2) ≤ (cz)2/2 and hence fε(z) ≤ ε + (cz)2/2. Thus
the smallest fixed point ẑ of fε is upper bounded by (1 − √

1 − 2εc2)c−2 which tends
to 0 as ε→0. Regardless of c we then obtain the following statement.

Theorem 5.6 Consider the random graph model Gn,p with p = c/n. If r ≥ 2 (no
contagious links), then the system is resilient.

After having introduced our measure of systemic risk, we can now employ the
resilience criteria formulated in Thms. 5.4 and 5.6 to derive the following manage-
ment rules for the network thresholds to control systemic risk in the homogeneous
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random graph: In the case that c < 1, we do not need to impose any restrictions on
the thresholds τi , i ∈ [n]. For the case that c ≥ 1, it will be sufficient to require that
τi ≥ 2 for all i ∈ [n].

5.2.2 Getting Heterogeneous

As a matter of fact, only few networks are homogeneous enough to be well described
by an Erdös-Rényi random graph. Most networks exhibit a strong degree of hetero-
geneity. The aim in this section is to describe an enhanced random graph model that
overcomes this issue. Further, we change from the undirected random graph Gn,p

to a directed one since many real-world networks such as the network of interbank
lending are directed. The model we present here was proposed in Detering et al.
(2015) and is a directed version of the Chung-Lu inhomogeneous random graph
(Chung and Lu 2002, 2003). The results presented in this section are special cases
of results in Detering et al. (2015, 2016). Notable earlier works on the contagion
process rBP in an undirected inhomogeneous random graph can be found in Amini
et al. (2014) and Amini and Fountoulakis (2014).

We begin with a detailed description of the random graph model. We assign to
each node i ∈ [n] twoweights: an in-weightw−

i and an out-weightw+
i . The in-weight

describes the tendency of i to develop incoming edges (that is, edges pointing toward
i), whereas the out-weight describes the tendency of developing outgoing edges (that
is, edges pointing away from i). To formalize this, define for each possible edge
e = (i, j) going from node i ∈ [n] to i �= j ∈ [n] the edge probability pe by

pe := min{1, n−1w+
i w−

j }. (5.2)

We denote the resulting random graph byGn(w−,w+), wherew− := (w−
1 , . . . , w−

n )

and w+ := (w+
1 , . . . , w+

n ). The heterogeneity of the graph stems from assigning
different weights to different nodes. In order to make statements about the graph in
the limit n→∞, it is required that the graph grows in a somehow regular fashion.
In fact, we require that the fraction of nodes with weight level in any given interval
stabilizes. To make this more precise, define the empirical distribution function

Fn(x, y) := n−1
∑

i∈[n]
1l{w−

i ≤ x, w+
i ≤ y}.

and let (W−
n ,W+

n ) be a random vector distributed according to Fn . We shall assume
that (W−

n ,W+
n ) converges in distribution to some random vector (W−,W+), and that

furthermore E[W−
n ]→E[W−] =: λ− < ∞ and E[W+

n ]→E[W+] =: λ+ < ∞.
The random vector (W−,W+) serves as a limit object that is strongly associated

with the sequence of random graphs Gn(w−,w+) for n ∈ N. We will see that it fully
determines the degrees of its nodes and the outcome of the contagion process. As
for the homogeneous random graph Gn,p, also in the heterogeneous setting we can
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describe the degree of each node in the limit n→∞. This time, every node i ∈ [n] has
an in-degree deg−(i) and an out-degree deg+(i). As in the homogeneous setting, their
distribution is based on a Poisson distribution but also the weights w−

i and w+
i play

a role. More precisely, for large network sizes n it holds that deg−(i) ∼ Poi(w−
i λ+)

and deg+(i) ∼ Poi(w+
i λ−) . To reverse the logic, it can be shown that in- and out-

degree of each node function as maximum-likelihood estimators of its in- and out-
weight (up to normalizing factors) when we want to calibrate our model parameters
to some observed network structure. One can thus basically think of the weights in
our model as the realized degrees of each node. It is hence no surprise that also the
whole degree sequence is intimately related to the weight distribution. Consider the
(random) empirical degree distribution

F̃n(k, l) = n−1
∑

i∈[n]
1l{deg−(i) ≤ k, deg+(i) ≤ l}.

For a two-dimensional random vector (X,Y ) let Z = (Poi(X),Poi(Y )) denote a
two-dimensional mixed Poisson random vector with probability mass function given
by

P

(
Z =

(
k
j

))
= E

[
e−(X+Y ) X

kY j

k! j !
]

.

Then, the degrees in the network are described as follows:

Lemma 5.2 The (random) empirical in- and out-degree distributions over all nodes
converge to the distribution of the random vector (Poi(W−λ+),Poi(W+λ−)).

In particular, Gn(w−,w+) has much more flexibility in its degree distribution than
Gn,c/n . By choosing weightsW− andW+ with infinite variance, it is even possible to
describe networks whose degree distributions have unbounded second moment—a
feature that is often observed in real networks. See Fig. 5.3 for an illustration of the

(a) (b)

Fig. 5.3 Typical configurations forGn(w−,w+)with n = 100 and Pareto-distributed weights with
shape parameter a 3.5 (bounded second moment), respectively, b 2.5 (unbounded second moment).
For simplicity, the graphs are depicted undirected. Node sizes scale with the corresponding degree
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heterogeneity of Gn(w−,w+). Also compare with Fig. 5.1. All three figures show
graphs with exactly 200 edges but differ in the realized degree sequences due to the
different choices for the weight distributions.

For the description of the contagion process, note that in real networks not only
the network topology is very heterogeneous, but also the strengths of the different
nodes. In the previous section, we described the contagion process by rBP. However,
there might be nodes that can endure more defaults of their neighbors than others.
Therefore, we assign an individual threshold τi ∈ N ∪ {∞} to each node describing
the number of neighbors of i that need to become infected before i becomes infected
as well. For example, in a banking network, τi can be thought of as the capital
of some bank i . Let similarly as before (W−

n ,W+
n , Tn) be a random variable with

distribution equal to the empirical distribution of the weights and thresholds and
assume that also for the extended network, (W−

n ,W+
n , Tn) converges in distribution

to some random vector (W−,W+, T ). Similar as in the previous section, under these
mild assumptions it is then possible to determine the fraction of eventually infected
nodes by computing the smallest fixed point of a certain function. For ε > 0 let

fε(z) := εE[W+] + (1 − ε)E[W+
P(Poi(W−z) ≥ T )],

which is clearly a continuous function. Since fε(0) = ε and fε(E[W+]) ≤ E[W+],
therewill always exist at least one fixed point ẑ of fε within (0,E[W+]]. As beforewe
call such a fixed point stable if fε is continuously differentiable at ẑ with f ′

ε(ẑ) < 1.
Then, the following holds:

Theorem 5.7 Let ẑ be the smallest fixed point of fε and assume that it is stable.
Then, the fraction of eventually infected nodes converges in probability to

α(ε) = ε + (1 − ε)E[P(Poi(W− ẑ) ≥ T )].

For the sake of readability, we restrict ourselves to the typical case that ẑ is stable in
Thm. 5.7. For more general results, see Detering et al. (2015, 2016).

Having quantified the final infection fraction, we can then turn our attention to
investigating the resilience properties of the generalized heterogeneous networks.
These are intimately related to the behavior of f0(z) near z = 0. Assume that there is
some z0 > 0 such that f0(z) > z for all z ∈ (0, z0). Then, for each ε > 0 the smallest
fixed point ẑ of fε(z)will always be larger than z0 (see Fig. 5.4a) and the final fraction
of infected nodes in the graph will w.h. p. be larger than E[P(Poi(W−z0) ≥ T )]). In
particular, we derive the following theorem:

Theorem 5.8 Assume that there is z0 > 0 such that f0(z) > z for all z ∈ (0, z0).
Then, the system is non-resilient.

The assumption of this theorem is satisfied in particular if f0 has right derivative
larger than 1 at z = 0. The remaining cases, see also Fig. 5.4b for an illustration, are
covered by the following result:
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z0

(a) (b)

Fig. 5.4 Plot of the functions f0 (dashed) and fε (solid) for ε > 0, T = 2 and weightsW− = W+
Pareto distributed with shape parameter a 2.5 and b 3.5

Theorem 5.9 Assume that f0(z) is continuously differentiable from the right at
z = 0 with derivative f ′

0(0) < 1. Then, the system is resilient.

We again refer to Detering et al. (2015) for a version of Thm. 5.9 which makes
weaker but also more technical assumptions on f0.

Let us now discuss some consequences of Thms. 5.8 and 5.9 in more detail. Let us
make the technical assumption E[W−W+] < ∞. This is of course always satisfied
ifW−,W+ are independent, but it also captures many other cases in which there are
significant correlations between the in- and out-degrees of the nodes: A characteristic
setting is, for example, whenW− ≈ W+, and then the condition guarantees that both
W−,W+ have bounded second moment. Under the assumptionE[W−W+] < ∞we
get the explicit representation

f ′
0(z) = E[W−W+

P(Poi(W−z) = T − 1)]

and this is continuous for z ∈ [0,∞). Hence, Thms. 5.8 and 5.9 almost entirely
characterize resilience in this case. In particular, if T ≥ 2 almost surely, we get
f ′
0(0) = 0, and hence by Thm. 5.9, such networks are always resilient, which is

consistent with our findings in the previous section. This readily yields sufficient
requirements to make the system resilient.

However, note that the condition E[W−W+] < ∞ is typically not satisfied for
weights (i. e. degrees)with unbounded secondmomentwhich are frequently observed
for real networks, such as interbank networks. It is then the case that also networks
with T ≥ 2 (or also T ≥ r for any r ∈ N) almost surely can satisfy the condition
in Thm. 5.8 and are hence non-resilient. See Fig. 5.5a for simulations on networks
of finite size with weights W− = W+ according to a Pareto distribution with shape
parameter 2.5 (i. e. with finite first moment but infinite second moment) and con-
stant threshold T = 2. The final fraction of infected nodes concentrates around the
asymptotic lower bound of 92.7% and the networks are hence non-resilient (with
exception of only a few networks of very small size).

While the non-resilience property might be a favorable one in some applications
where a large coverage of the network is targeted, for many others, such as financial
networks, resilience is the desirable property. A characterization of resilient and
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Fig. 5.5 Scatter plot of the final infection fraction for 104 simulations of finite networks. Weights
w−
i = w+

i are drawn from a Pareto distribution with shape parameter 2.5 and initially 1% of all
nodes are infected. The thresholds are given by a τi = 2, respectively, b τi = max{2, αc(w

−
i )γc }.

In a, the red line marks the asymptotic lower bound on the final infection fraction of about 92.7%

non-resilient networks also in the case thatE[W−W+] = ∞ is hence of high interest.
The reason why T ≥ 2 is not sufficient for resilience anymore is that there exist very
strongly connected nodes in the network which either receive a lot of edges (have
high in-weight) and are hence very susceptible or send a lot of edges (have high out-
weight) and hence infect a large proportion of the network once they become infected.
Typically in networks there are nodes which have both high in-weight and high out-
weight which further increases the importance of their role in the infection process.
Exactly these nodes are the ones that have to be equipped with higher thresholds
when it comes to controlling systemic risk in the network.

Typically, as, for example, in the regulation of the financial sector, risk manage-
ment strategies intend to ensure the survival of some given node by focusing on the
risk exposures toward (i. e. infections from) other nodes and hence incoming links in
the network. In this spirit, we aim to state threshold requirements which depend on a
node’s in-weight. More precisely, we intend to characterize resilience/non-resilience
properties for heterogeneous networks where the thresholds τi are given by τ(w−

i )

for some non-decreasing integer-valued function τ : R→N. This then allows for
the management of systemic risk by deriving sufficient threshold requirements for
each particular node simply by observing (estimating) the respective in-weight and
plugging it into function τ .

We will see that the threshold requirements strongly depend on the tail of the
weight distributions. What is typically observed for degree (weight) distributions of
real networks is that they closely resemble Pareto distributions in their tail. We thus
assume in the following that the weight distributions are Pareto distributions and
refer to Detering et al. (2016) for results on more general weight distributions. That
is, there exist parameters β−, β+ > 2 (in order to ensure integrability of W− and
W+) and minimal weights w−

min and w+
min such that the weight densities are given by

fW± = (β± − 1)(w±
min)

β±−1w−β±
1l{w ≥ w±

min}.
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It will turn out that the quantities

γc := 2 + β− − 1

β+ − 1
− β− and αc := β+ − 1

β+ − 2
w+

min(w
−
min)

1−γc

play a central role in determining sufficient threshold requirements. It holds that
γc < 0 only if E[W−W+] < ∞. In this case, it is hence sufficient to require τi ≥ 2
for all i ∈ [n] as has been discussed above. For all other cases, we investigate systems
with τi ≈ α(w−

i )γ for certain constants α and γ .

Theorem 5.10 Let the weights W− and W+ be Pareto distributed with parameters
β−, β+ > 2 and w−

min, w
+
min > 0 and assume that τi = τ(w−

i ) for some function τ :
R→N\{1}. Then, the system is resilient, if one of the following holds:

1. γc < 0,
2. γc = 0 and lim infw→∞ τ(w) > αc + 1,
3. γc > 0 and lim infw→∞ w−γcτ(w) > αc.

Note that Thm. 5.10 only derives sufficient requirements tomake the system resilient.
In Detering et al. (2016), it is shown that these requirements are actually sharp in
the sense that networks become non-resilient for thresholds τi = τ(w−

i ) if τ satisfies
lim supw→∞ w−γcτ(w) < α̃c for a certain α̃c > 0 which depends on the dependence
structure between W− and W+. In the case that the weights are comonotone (nodes
with larger in-weights also have larger out-weights and vice versa), α̃c coincides with
αc from Thm. 5.10.

Moreover, Thm. 5.10 only ensures resilience in the limit n→∞ and ε→0. The
derived threshold requirements are, however, also applicable to reasonably sized
finite networks with positive initial infection probability. See, for example, Fig. 5.5b
for simulations on networks with sizes in [102, 104] and enforced threshold require-
ments τi = max{2, αc(w

−
i )γc} for all i ∈ [n]. The observed amplification is almost

negligible. It is hence possible to implement risk management strategies based
on Thm. 5.10 for real networks. Usually (if γc > 0) such strategies require larger
(more connected) nodes to ensure higher resistance (threshold). However, since
β−, β+ > 2, it holds that γc < 1 and the threshold function τ thus only needs to
increase sublinearly with the weight. Finally, it is an appealing feature of our for-
mula that for each node i the required threshold τi can be computed locally, i. e. only
using information about its own edges once αc and γc are known. This contrasts our
risk management strategies from other approaches, where always knowledge about
the entire system needed to be assumed.

5.2.3 A Weighted Contagion Process

In the previous sections, the contagion process was always based on counting the
number of infected neighbors. In the first step, a node became infected as soon as any
of its neighbors became infected. Later, we allowed for r ≥ 2 neighbors to default
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before a certain node became infected, and finally, we assigned to each node i ∈ [n]
an individual threshold value τi . For many applications, however, the mere counting
of infected neighbors is not enough, since rather the strength of the links to these
infected neighbors is the determining quantity. For instance, in an interbank network,
it is not the number of defaulted loans but rather their total amount that is relevant
for the infection process. In this section, we therefore enhance our previous model
once more to account for weighted edges.

In the specification of the random graph, we model the occurrence of edges as
before by (5.2). Additionally, we assign to each node j ∈ [n] a sequence of possible
exposures E1, j , . . . , En, j modeled by exchangeable R+-valued random variables,
meaning that the order of the exposures does not influence their joint distribution.
The random variable Ei, j shall then describe a possible exposure from node i to node
j . That is, we want to place it on an edge going from i to j if this edge is present
in the graph. The assumption that the exposure list consists of exchangeable random
variables is sensible for networks in which the strength of a link is determined by
the receiving edge rather than by the sending edge (note that the exposure lists can
significantly vary between different nodes j ∈ [n]).

In order to describe the contagionmechanism, we now assign to each node i ∈ [n]
anR+-valued parameter ci resembling the strength of i . Motivated by the application
to financial networks we will call ci the capital of i hereafter. Similarly as previously
we then describe the contagion process in the network as follows: At the beginning,
a fraction ε > 0 of all nodes is infected. Other nodes in the network become infected
as soon as their total exposure to infected nodes exceeds their capital. Note that our
previous model is incorporated in this new model simply by choosing integer-valued
capitals and Ei, j = 1 for all i �= j . In this case, the capitals ci had the interpretation
of threshold values. In analogy to the previousmodel, we therefore introduce for each
node i ∈ [n] a threshold value τi which shall count the number of neighbors that can
cause the infection of i . To bemore precise, τi shall be the smallest integer value such
that

∑
�≤τi

E�,i ≥ ci if such a value exists. If
∑n

�=1 E�,i < ci , we simply set τi = ∞.
Then, τi is a random variable and it only describes a hypothetical threshold value
since usually the nodes will not become infected in their natural order during the
infection process. We now assume that still in the limit when the network size n→∞
the thresholds are described by a random variable T . Then, due to exchangeability
of the exposure random variables and large network effect, we can restate Thm. 5.7
for this new model, where again

fε(z) := εE[W+] + (1 − ε)E[W+
P(Poi(W− ẑ) ≥ T )].

Theorem 5.11 Let ẑ be the smallest fixed point of fε and assume that it is stable.
Then, the fraction of eventually infected nodes converges in probability to

α(ε) = ε + (1 − ε)E[P(Poi(W− ẑ) ≥ T )].
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Also the results about non-resilience and resilience of the network generalize to the
more complex setting.

Theorem 5.12 Assume that there is z0 > 0 such that f0(z) > z for all z ∈ (0, z0).
Then, the system is non-resilient.

Theorem 5.13 Assume that f0(z) is continuously differentiable from the right at
z = 0 with derivative f ′

0(0) < 1. Then, the network is resilient.

Finally, under some rather mild assumptions on the exposure sequences such as
E[E j,i ] = μi for all j ∈ [n], we can also reformulate Thm. 5.10 for the new model
which equips us with a formula for sufficient capital requirements to secure a system.
See Detering et al. (2016) for a precise formulation of Thm. 5.14 and its assumptions.

Theorem 5.14 Let the weights W− and W+ be Pareto distributed with parameters
β−, β+ > 2 andw−

min, w
+
min > 0.Further assume that ci > max j∈[n] E j,i (the capital

is larger than the largest exposure) almost surely for all i ∈ [n]. Then, the following
holds:

1. If γc < 0, then the system is resilient.

If additionally, there exists a function τ : R→N such that the capitals satisfy
ci ≥ τ(w−

i )μi almost surely for all i ∈ [n], then the system is resilient if one of
the following holds:

1. γc = 0 and lim infw→∞ w−γ τ (w) > 0 for some γ > 0,
2. γc > 0 and lim infw→∞ w−γcτ(w) > αc.

In particular, in the usual case that γc > 0 (e.g., β−, β+ < 3) Thm. 5.14 ensures
resilience if each institution i holds capital larger than αc(w

−
i )γcμi (and not less

than its largest exposure). As before, this is a quantity that can be computed by
each institution individually simply by counting and averaging their exposures in the

Fig. 5.6 Scatter plot of the final infection fraction for 104 simulations of finite weighted networks.
Node-weights w−

i = w+
i are drawn from a Pareto distribution with shape parameter 2.5 as are

the edge-weights E j,i , and initially 1% of all nodes are infected. The capitals are given by a
ci = 1.001max j∈[n] E j,i , respectively, b ci = max{1.001max j∈[n] E j,i , αc(w

−
i )γcμi }. In a, the

red line marks the average final fraction over all 100 simulations for each network size
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system. The theorem hence provides us with an easy applicable risk management
policy to prevent networks from systemic risk. To test its applicability, we pursue
simulations similar to the ones from Figs. 5.5a and b but enrich the network with
Pareto-distributed exposures with shape parameter 2.5. As can be seen from Fig. 5.6a
it is not sufficient to only prohibit contagious links in the network in order tomake the
system resilient. The derived capital requirements from Thm. 5.14 on the other hand
ensure resilience of the system as can be seen from Fig. 5.6b. Note that the outcome
of the simulation is more volatile than for the threshold model from Subsect. 5.2.2
since also the exposure sizes carry a lot of randomness. Still our derived capital
requirements work very well to contain the infection.

References

Alon, N. & Spencer, J. H. (2016), The Probabilistic Method, 4th edn, Wiley Publishing.
Amini, H. & Fountoulakis, N. (2014), ‘Bootstrap percolation in power-law random graphs’, Journal
of Statistical Physics 155(1), 72–92. http://dx.doi.org/10.1007/s10955-014-0946-6
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Chapter 6
Bayesian Networks for Max-Linear
Models

Claudia Klüppelberg and Steffen Lauritzen

Abstract We study Bayesian networks based on max-linear structural equations as
introduced in Gissibl and Klüppelberg (2018) and provide a summary of their inde-
pendence properties. In particular, we emphasize that distributions for such networks
are generally not faithful to the independence model determined by their associated
directed acyclic graph. In addition, we consider some of the basic issues of estimation
and discuss generalizedmaximum likelihood estimation of the coefficients, using the
concept of a generalized likelihood ratio for non-dominated families as introduced
by Kiefer and Wolfowitz (1956). Finally, we argue that the structure of a minimal
network asymptotically can be identified completely from observational data.

6.1 Introduction

The type ofmodelwe are studying has beenmotivated by applications to risk analysis,
where extreme risks play an essential role and may propagate through a network.
For example, say, if an extreme rainfall happens on a specific location near a river
network, it may effect water levels at other parts of the network in an essentially
deterministic fashion. Similar phenomena occur in the analysis of risk for other
complex systems.

Specifically, the model presented in (6.1) below arose in the context of technical
risk analysis, more precisely, in an investigation of the “runway overrun” event
of airplane landing. Numerous variables contribute to this event and extraordinary
values of some variables lead invariably to a runway overrun (see Gissibl et al. 2017
for more details) naturally leading to questions about cause and effect of risky events.
Other potential examples for risk-related cause and effect relations include chemical
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pollution of rivers (Hoef et al. 2006), flooding in river networks (Asadi et al. 2015),
financial risk (Einmahl et al. 2018), and many others.

Statistical theory and applications of extreme value theory until the 1990s mainly
focused on i.i.d. data as, for instance, yearly maximal water levels to predict future
floodings or peaks over thresholds used to estimate the value-at-risk (Embrechts
et al. 1997). From this, both theory and applications moved on to multivariate data,
modelling risks like joint wind and wave extremes as well as extreme risks in finan-
cial portfolios (Beirlant et al. 2006). The investigation of extremes in time series
models has proved useful in financial and environmental risk analysis, and also in
telecommunication (Finkenstädt and Rootzén 2004). More recently, extreme space-
time models have been suggested and applied to environmental risk data (Buhl et al.
2016; Davis et al. 2013; Davison et al. 2012; Huser and Davison 2014).

The paper focuses on first steps reporting on the methodological development
associated with a specific class of network models. We begin with introducing our
leading example of a recursive max-linear model which is Example 2.1 of Gissibl
and Klüppelberg (2018):

Example 6.1 Consider the network in the figure below:

1

2

3

4

Each node i in the network represents a random variable Xi , and the joint distribu-
tion of X = (X1, X2, X3, X4) is determined by a system of max-linear structural
equations

X1 = Z1, X2 = max(c21X1, Z2), X3 = max(c31X1, Z3),

X4 = max(c42X2, c43X3, Z4),

where Z1, Z2, Z3, Z4 are independent positive random variables and the coefficients
c ji are all strictly positive.

The interpretation of a system like this is that each node in the network is subjected
to a random shock Zi and the effect from shocks of other nodes pointing to it, the
latter being attenuated or amplified by the coefficients c ji . To simplify notation
here and later we write a ∨ b for max(a, b). We can alternatively represent X =
(X1, X2, X3, X4) directly in terms of the noise variables as

X1 = Z1

X2 = c21X1 ∨ Z2 = c21Z1 ∨ Z2

X3 = c31X1 ∨ Z3 = c31Z1 ∨ Z3
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X4 = c42X2 ∨ c43X3 ∨ Z4

= c42(c21Z1 ∨ Z2) ∨ c43(c31Z1 ∨ Z3) ∨ Z4

= (c42c21 ∨ c43c31)Z1 ∨ c42Z2 ∨ c43Z3 ∨ Z4.

We may then summarize the above coefficients to the noise variables Z1, . . . , Z4 in
the matrix

B =

⎛
⎜⎜⎝

1 0 0 0
c21 1 0 0
c31 0 1 0

c42c21 ∨ c43c31 c42 c43 1

⎞
⎟⎟⎠ ,

In greater generality, we may write such a recursive max-linear model as

Xv =
∨

u∈pa(v)

cvu Xk ∨ cvvZv, v = 1, . . . , d, (6.1)

where pa(v) denotes parents of v in a directed acyclic graph (DAG) and Zv represent
independent noise variables. The present article is concerned with such models and
summarizes basic elements of Gissibl and Klüppelberg (2018) and Gissibl et al.
(2019).

In this setting, natural candidates for the noise distributions are extreme value dis-
tributions or distributions in their domains of attraction resulting in a corresponding
multivariate distribution with dependence structure given by the DAG (for details
and background on multivariate extreme value models, see, e.g., Haan and Ferreira
2006; Resnick 1987, 2007).

The paper is structured as follows. In Sect. 6.2, we establish the necessary termi-
nology (Subsect. 6.2.1) and introduce Bayesian networks (Subsect. 6.2.2), and basic
properties of conditional independence (Subsect. 6.2.3). In Subsect. 6.2.4 we estab-
lish basicMarkov properties of Bayesian networks. In Sect. 6.3, we study the specific
Markov properties of Bayesian networks given by max-linear structural equations as
in (6.1) and in Sect. 6.4 we study statistical properties of the models.

6.2 Preliminaries

6.2.1 Graph Terminology

A graph as we use it here is determined by a finite vertex set V , an edge set E , and a
map that to each edge e in E associates its endpoints u, v ∈ V . Our graphs are simple
so that there are no self-loops (edges with identical endpoints) and nomultiple edges.
Therefore, we can identify an edge e with its endpoints u, v so we can write e = uv.
An edge uv of a directed graph points from u to v and we write u → v. Then, u is a
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1 3

2 4

5

6

1 3

2 4

5

6

Fig. 6.1 ADAGD and its moral graphDm . InD , 3 has parents 1, 2 and 5 is a child of 3. The DAG
D is a polytree. The node 6 is a descendant of 1, and 2 is an ancestor of 5. The set {1, 2, 3, 5} is
ancestral in D . With the node numbering given, the DAG is well-ordered

parent of v and v is a child of u. The set of parents of v is denoted pa(v) and the set
of children of u is ch(u). If uv is an edge, we also say that u and v are adjacent and
write u ∼ v whether or not the edge is directed.

A walk ω from u to v of length n is a sequence of vertices ω = [u = u0, u1, . . . ,
un = v] so that ui−1 ∼ ui for all i = 1, . . . , n. A walk is a cycle if u = v. A path is a
walk with no repeated vertices. The walk is directed from u to v if ui−1 → ui for all
i . If all edges in a graph D = (V, E) are directed, D is a directed graph. A directed
graph is acyclic if it has no directed cycles. A DAG is a directed acyclic graph. A
DAG is a tree if every vertex has at most one parent and a polytree if there is at most
one path between two vertices u and v.

If there is a directed path from u to v in D , we say that u is an ancestor of v

and v a descendant of u and write u � v or v �u. The set of ancestors of v is
denoted an(v). A set A ⊆ V is said to be ancestral if an(v) ⊂ A for all v ∈ A, or,
alternatively, if pa(v) ⊂ A for all v ∈ A. For a subset A of V we let An(A) denote
the smallest ancestral set containing A.

We say that the vertex set V of a DAG D is well-ordered if V = {1, . . . , d} and
all edges in D point from low to high, i.e. if i j ∈ E =⇒ i < j . Then, the set of
predecessors of a vertex i is pr(i) = {1, . . . , i − 1}.

For a DAGD , we define itsmoral graphDm as the simple, undirected graph with
the same vertex set but with u and v adjacent in Dm if and only if either u ∼ v in D
or if u and v have a common child. For further general graph terminology, we refer
the reader to West (2001) but some of the concepts above are illustrated in Fig. 6.1.

6.2.2 Bayesian Networks

A real-valued Bayesian network associated with a given DAG D = (V, E) is deter-
mined by specifying random variables X = (Xv, v ∈ V ) and the conditional distri-
bution of each of these, given values of their parent variables; for example, as

P(Xv ≤ x | Xpa(v)) = F(x | xpa(v)).

Because there are no directed cycles in D , there is a unique joint distribution corre-
sponding to this specification.
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Alternatively, as in Example 6.1, we can specify these conditional distributions
through structural equationswhich describe the conditional distribution of Xv condi-
tionally on Xpa(v) = xpa(v) in a functional form.More precisely a system of equations
of the form

Xv = gv(Xpa(v), Zv), v ∈ V, (6.2)

where (Zv)v∈V are independent noise variables and gv suitable functions.
A system of structural equations as above is sometimes referred to as a data

generating mechanism, interpreting each equation as a way of generating random
variables with the desired conditional distribution.

An important instance of these models is linear structural equation modelswhere
the functions gv are linear and hence

Xv =
∑

u∈pa(v)

cvu Xu + cvvZv, v ∈ V, (6.3)

where cvu, u ∈ pa(v), cvv are structural coefficients, see, for example, Bollen (1989).
In general, a structural equation system need not be associated with a DAG, but if it
is, the equation system is said to be recursive.

If the distributions of Zv have heavy tails and all structural coefficients are non-
negative, the sum tends to be dominated by the largest term:

∑
u∈pa(v)

cvu Xu + cvvZv ≈
∨

u∈pa(v)

cvu Xu ∨ cvvZv

and hence for such cases, the max-linear variant in (6.4) is described in more detail
in Sect. 6.3 below.

6.2.3 Conditional Independence

The notion of conditional independence is at the heart of graphical models, including
Bayesian networks. For three random variables (X,Y, Z), we say that X is condition-
ally independent of Y given Z if the conditional distribution of X given (Y, Z) does
not depend on Y and we then write X⊥⊥Y | Z or X⊥⊥PY | Z if we wish to emphasize
the dependence on the joint distribution P of (X,Y, Z).

The notion of conditional independence has a number of important properties,
see, e.g., Dawid (1980) or Lauritzen (1996).

Proposition 6.1 Let (�, F, P) be a probability space and X, Y , Z, W random
variables on �. Then, the following properties hold.

(C1) If X⊥⊥Y | Z, then Y⊥⊥X | Z (symmetry);
(C2) If X⊥⊥Y | Z and W = φ(Y ), then X⊥⊥W | Z (reduction);
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(C3) If X⊥⊥(Y, Z) |W, then X⊥⊥Y | (Z ,W ) (weak union);
(C4) If X⊥⊥Z | Y and X⊥⊥W | (Y, Z), then X⊥⊥(Z ,W ) | Y (contraction);

It is occasionally important to abstract the notion of conditional independence away
from necessarily being concerned with probability measures. An (abstract) indepen-
dence model ⊥σ over V is a ternary relation over subsets of a finite set V . The
independence model is a semi-graphoid if the following holds for mutually disjoint
subsets A, B, C , D:

(S1) If A⊥σ B |C , then B⊥σ A |C (symmetry);
(S2) If A⊥σ (B ∪ D) |C , then A⊥σ B |C and A⊥σ D |C (decomposition);
(S3) If A⊥σ (B ∪ D) |C , then A⊥σ B | (C ∪ D) (weak union);
(S4) If A⊥σ B |C and A⊥σ D | (B ∪ C), then A⊥σ (B ∪ D) |C (contraction);

Further, the independence model is a graphoid if it also satisfies

(S5) If A⊥σ B | (C ∪ D) and A⊥σC | (B ∪ D), then A⊥σ (B ∪ C) | D (intersec-
tion).

We shall in particular be interested in distributions on product spaces X =
×v∈VXv where V is a finite set. For A ⊆ V , we write xA = (xv, v ∈ A) to denote a
generic element inXA = ×v∈AXv , and similarly XA = (Xv)v∈A.

If P is a probability distribution onX , we can now define an independencemodel
⊥⊥ by the relation

A⊥⊥B |C ⇐⇒ XA⊥⊥P XB | XC

and it follows fromProp. 6.1 that⊥⊥ is a semi-graphoid; in general⊥⊥ is not a graphoid
without further assumptions on P .

Another important independence model is determined by separation in an undi-
rected graph. More precisely, if G = (V, E) is an undirected graph we can define an
independence model ⊥G by letting A ⊥G B | S mean that all paths in G from A to
B intersect S. Then, it is easy to see that ⊥G is always a graphoid; indeed the term
graphoid refers to this fact.

For a directed graph, the relevant notion of separation is more subtle. A vertex u
is a collider on a path π if two arrowheads meet on the walk at u, i.e. if the following
situation occurs π = [· · · → u ← · · · ].

We say that a path π from u to v in a DAG D is connecting relative to S, if all
colliders on π are in the ancestral set An(S), and all non-colliders are outside S. A
path that is not connecting relative to S is said to be blocked by S. We then define an
independence model ⊥D relative to a directed graph D as follows:

Definition 6.1 For three disjoint subsets A, B, and S of the vertex set V of a graph
G = (V, E), we say that A and B are D-separated by S if all paths from A to B are
blocked by S and we then write A ⊥D B | S.
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Example 6.2 Consider the network in the figure below, only slightly more complex
than in Example 6.1:

1

2

3

4 5

We have 2 ⊥D 3 | 1 since the path 2 ← 1 → 3 is blocked as the non-collider 1 is
in S = {1} whereas the path 2 → 4 → 3 is blocked because the collider 4 is not an
ancestor of S = {1}; on the other hand it holds that ¬(2 ⊥D 3 | {1, 5}) since now the
second path is rendered active as the collider 4 is in An({1, 5}).
Note that this definition in a natural way extends that of ⊥G for an undirected graph,
as an undirected graph does not have colliders. The independence model ⊥D also
satisfies the graphoid axioms, see, e.g., Lauritzen and Sadeghi (2018).

There is an alternative method for checking D-separation in terms of standard
separation in a suitable undirected graph, associated with the query. More precisely
we say that A is m-separated from B by S and we write A ⊥m B | S if S separates A
from B in the moral graph (DAn(A∪B∪S))

m . We then have:

Proposition 6.2 Let A, B and S be disjoint subsets of the nodes of a directed acyclic
graph G . Then, A ⊥D B | S ⇐⇒ A ⊥m B | S.
For a proof, see Richardson (2003), amending an inaccuracy in Lauritzen et al.
(1990).

Example 6.3 To illustrate the alternative procedure, we again consider the network
in Example 6.2

If we wish to check whether 2 ⊥D 3 | 1 we consider the subgraph induced by the
ancestral set of {1, 2, 3} and moralize to obtain the graph to the left in the figure
below. Since 1 is a separator in this graph, we conclude that 2 ⊥D 3 | 1.

1

2

3

4 51

2

3

On the other hand, if the query is whether 2 ⊥D 3 | {1, 5} we have An({1, 5}) = V
and thus the relevant moral graph is given to the right in the figure above; in this
graph, 2 and 3 are not separated by {1, 5} so we conclude ¬(2 ⊥D 3 | {1, 5}).
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6.2.4 Markov Properties of Bayesian Networks

It follows directly from the construction of a Bayesian network that the joint distri-
bution P satisfies the well-ordered Markov property (O) w.r.t. D if for some well-
ordering of V , every variable is conditionally independent of its predecessors given
its parents

v⊥⊥pr(v) | pa(v)

for all v ∈ V = {1, . . . , d}.
We further say that P obeys the localMarkov property (L)w.r.t.D if every variable

is conditionally independent of its non-descendants, given its parents:

v⊥⊥(nd(v) \ pa(v)) | pa(v).

And, finally, P satisfies the global Markov property (G) w.r.t. D if

A ⊥D B |C =⇒ A⊥⊥B |C.

Example 6.4 Consider the network in the figure below:

1

2

3

4 6

5

The numbering of the nodes here constitute a well-ordering so, for example, (O)
implies 5⊥⊥{1, 3, 4} | 2,whereas the localMarkovproperty (L) implies 5⊥⊥{1, 3, 4, 6} | 2;
the global Markov property implies, for example, 5⊥⊥{1, 6} | 4.
In the case of undirected graphs, the local and global Markov properties are different
(Lauritzen 1996, Sect. 3.2), but here we have

Theorem 6.1 Let D be a directed acyclic graph with V = {1, . . . , d} well-ordered
and P a probability distribution on X = ×v∈VXv . Then, we have

(O) ⇐⇒ (L) ⇐⇒ (G).

In words, if P satisfies any of these Markov properties, it satisfies all of them.

Proof This fact is established in Lauritzen et al. (1990) [Corollary 2] for any semi-
graphoid independence model ⊥σ . ��
Note that in particular it is true that if P satisfies (O) w.r.t. one well-ordering, it
satisfies (O) w.r.t. all well-orderings.
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The global Markov property gives a sufficient condition for conditional inde-
pendence in terms of D-separation. Another central concept is that of faithfulness,
formally defined below

Definition 6.2 A probability distribution P onX = ×v∈VXv is said to be faithful
to a DAG D if

A ⊥D B |C ⇐⇒ A⊥⊥P B |C.

In other words, if D-separation is also necessary for conditional independence.

Generally, most probability distributions are faithful (Meek 1995), but we shall later
see that this is not the case for the special Bayesian networks we study here.

Finally, we need to emphasize that two different DAGs can define exactly the same
independence model. Consider two graphs D1 and D2 as well as their associated
independence models ⊥D1 and ⊥D2 . It may well happen that even though the graphs
are different, their independencemodels might be identical, see, for example, Fig. 6.2
below.

u v w u v w u v w u v w

Fig. 6.2 The three DAGs to the left of the figure are Markov equivalent; the only non-trivial
element of their independence models is u ⊥D w | v. The DAG to the right in the figure has a
different independence model, since there u ⊥D w

Here, all independence models are the same although the graphs are different.
This also means that any probability distribution P which satisfies the globalMarkov
property for any of them, automatically satisfies the global Markov property for all
of them. We formally define

Definition 6.3 Two DAGs D1 and D2 are Markov equivalent if and only if their
independence models coincide, i.e. if A ⊥D1 B |C ⇐⇒ A ⊥D2 B |C .

The following result was shown by Frydenberg (1990) and Verma and Pearl (1990)
and gives a necessary and sufficient condition for twoDAGs to beMarkov equivalent.

Theorem 6.2 Two directed acyclic graphs D1 = (V, E1) and D2 = (V, E2) are
Markov equivalent if and only if they have the same skeleton ske(D1) = ske(D2)

and the same unshielded colliders.

Here, the skeleton ske(D) of a DAGD is the undirected graph with u ∼ v in ske(D)

if u ∼ v in D , and an unshielded collider is a triple u → w ← v with u � v.

6.3 Recursive Max-Linear Structural Equation Models

We shall be interested in Bayesian networks defined through structural equation
systems (6.2) where the functions gv are max-linear, i.e. the additions in (6.3) are
replaced with the operation of forming the maximum.
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Henceforth, we assume that the vertex set of ourDAGD = (V, E) is well-ordered
so V = {1, . . . , d} and assume a data generatingmechanism specified via a recursive
max-linear structural equation model, which has representation

Xv =
∨

u∈pa(v)

cvu Xu ∨ cvvZv, v = 1, . . . , d, (6.4)

where Z1, . . . , Zd are independent and identically distributed with a continuous
distribution having support R+ = (0,∞), and cvu > 0, u ∈ pa(v), cvv are structural
coefficients in the equations or edge weights for the associated DAG D .

Following Gissibl and Klüppelberg (2018) we say this is a recursive max-linear
model. Note that our use of indices for edge weights here is the opposite of that used
in Gissibl and Klüppelberg (2018).

For simplicity, we assume throughout the rest of the paper that cvv = 1 for all
v ∈ V . For a path π = [u = k0 → k1 → · · · → kn = v] of length n from u to v, we
define the quantities

dvu(π) :=
n−1∏
l=0

ckl+1kl and bvu :=
∨

π∈�uv

dvu(π), (6.5)

where �uv denotes all paths from u to v. In summary, we define

bvu =
∨

π∈�uv

dvu(π) for u ∈ an(v); bvv = cvv = 1; bvu = 0 for u ∈ V \ An(v),

(6.6)

where An(v) = an(v) ∪ {v} is the smallest ancestral set containing vertex v. We then
arrange these coefficients in themax-linear coefficient matrix B = (bvu)d×d and find

Xv =
∨

u∈An(v)

bvu Zu, v = 1, . . . , d. (6.7)

This equation represents X as a max-linear model as defined for instance in Wang
and Stoev (2011).

For two non-negative matrices F and G, where the number n of columns in F is
equal to the number of rows in G, we introduce the product � as

(F � G)vu =
( n∨

k=1

fvkgku
)
. (6.8)

If we collect the noise variables into the column vector Z = (Z1, . . . , Zd)
′, the rep-

resentation (6.7) of X can then be written as
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X = B � Z = ( d∨
u=1

bvu Z j , i = 1, . . . , d
) = ( ∨

u∈An(v)

bvu Z j , i = 1, . . . , d
)
.

Given the DAG D and the edge weights cik with cii = 1 for all i = 1, . . . , d,
the max-linear coefficient matrix B can be found by iterating the weighted adja-
cency matrix C = (cvu1lPa(v)(u))d×d of D using this matrix multiplication; here,
1lPa(v) denotes the indicator function of Pa(v) = pa(v) ∪ {v}):

B =
d−1∨
k=0

C�k = (I ∨ C)�(d−1), (6.9)

cf. Butkovič (2010) [Lemma 1.4.1]. For more details, see Gissibl and Klüppelberg
(2018) [Thm. 2.4].

By (6.6), the max-linear coefficient bvu of X is different from zero if and only if
u ∈ An(v). This information is contained in the reachability matrix R = (rvu)d×d of
D , which has entries

rvu :=
{
1, if there is a path from u to v, or if u = v,

0, otherwise.

If the vu-th entry of R is equal to one, then v is reachable from u. In the context of
a DAG D with its reachability matrix R and a recursive max-linear model X on D
with max-linear coefficient matrix B, it will be useful to keep the following in mind.

Remark 6.1 Let D be a DAG with reachability matrix R.

(i) The max-linear coefficient matrix B is a weighted reachability matrix ofD ; that
is, R = sgn(B).

(ii) Since V is assumed well-ordered, B and R are lower triangular matrices.

From (6.6) and (6.7), we conclude that a path π from u to v, whose weight dvu(π) is
strictly less than bvu , does not have any influence on Xi . For v ∈ V and u ∈ an(v)we
call a path π from u to v max-weighted, if bvu = dvu(π), and investigate its relevance
for the recursive max-linear model in further detail.

Firstly, we note that we can remove an edge from D which is not part of a max-
weighted path without changing the distribution of X . The DAG obtained in this
way is termed the minimum max-linear DAG D B . In the special case where D is a
polytree, all paths are necessarily max-weighted and we clearly have

Proposition 6.3 If D is a polytree, it holds that D B = D .

The following result describes exactly all DAGs and edge weights possible for a
given max-linear coefficient matrix. Recall that we have set cvv = 1.
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Theorem 6.3 (Gissibl and Klüppelberg 2018, Thm. 5.4)
Let X begivenbya recursivemax-linear structural equation systemwith coefficient

matrix B. Let further D B = (V, EB) be the minimum max-linear DAG of X and
paB(v) the parents of v in D B.

(a) D B is the DAG with the minimum number of edges such that X satisfies (6.4).
The weights in (6.4) are uniquely given by cvv = bvv and cvs = bvs for v ∈ V
and s ∈ paB(v).

(b) Every DAG with vertex set V that has at least the edges of D B and the same
reachability matrix as D B represents X in the sense of (6.4) with weights
satisfying

cvv = bvv, cvs = bvs for s ∈ paB(v), and cvs ∈ (0, bvs)

for s ∈ pa(v) \ paB(v).

There are no further DAGs and weights such that X has representation (6.4).

In general, recursive max-linear models are not faithful to their DAG, not even if
D = D B , see Remark 3.9 (ii) in Gissibl and Klüppelberg (2018). This is illustrated
in Example 6.5 below.

Example 6.5 The example has been given in Example 6.8 of Gissibl and
Klüppelberg (2018) and considers the same graph as Example 6.1.

We note that the paths [1 → 2], [1 → 3], [2 → 4], and [3 → 4] aremax-weighted
as they are the only directed paths between their endpoints. It therefore holds that
D B = D since they are the unique max-weighted paths. Still, the distribution deter-
mined by this recursive system is never faithful to D , as we shall see below.

Concerning the paths from node 1 to 4, we have three situations:

c42c21 = c43c31, c42c21 > c43c31, or c42c21 < c43c31.

In the first situation, both paths from 1 to 4, [1 → 2 → 4] and [1 → 3 → 4], are
max-weighted whereas in the other situations only one of them is.

If the path [1 → 2 → 4] is max-weighted, we can consider the subdag D̃ obtained
from D by removing the edge 1 → 3:

1

2

3

4

In other words, we are changing the edge weights by letting c̃31 = 0, keeping the
other edge weights unchanged. The new max-linear coefficient matrix becomes
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B̃ =

⎛
⎜⎜⎝

1 0 0 0
c21 1 0 0
0 0 1 0

c42c21 c42 c43 1

⎞
⎟⎟⎠

where we have exploited that cii = 1. The max-linear coefficient matrix for the
marginal distribution of (X1, X2, X4) is obtained by ignoring the third row and since
only entries in the third row have changed, we see that (X1, X2, X4) has the same
joint distribution in the model determined by D as it has in the model determined
by D̃ .

But as we clearly have 1 ⊥D̃ 4 | 2, we conclude that X1⊥⊥X4 | X2 in the model
determined by D̃ and hence also by D . But since ¬(1 ⊥D 4 | 2), the distribution is
not faithful to D .

If [1 → 3 → 4] is also max-weighted, the similar argument yields X1⊥⊥X4 |
X3, so the distribution is not faithful to D for any allocation of edge weights.

We note that Gissibl and Klüppelberg (2018) suggest in their Remark 3.9(i) that
additional conditional independence relations that are valid for a given DAG can
be revealed by considering a system of submodels determined by appropriate sub-
graphs, but here we refrain from giving a complete description of all valid conditional
independence relations.

6.4 Statistical Properties

The statistical theory of recursive max-linear models is challenging because standard
assumptions for smooth statistical models are not satisfied. For example, if we for a
given DAGD consider the familyP of distributions with coefficients adapted toD ,
this family is not dominated by anymeasure on the space of observations, so standard
likelihood theory does not apply. On the other hand, as we shall see, estimation
of coefficients and identification of the network structure for recursive max-linear
models can be made in a simple fashion and procedures are more efficient than usual
in that estimates of coefficients and structures converge at exponential rates to the
true values. Here, we shall give a summary of the most important findings in Gissibl
et al. (2019).

Throughout the following we consider a sample x = (X1 = x1, . . . , Xn = xn)
from a distribution P given by the recursive max-linear model (6.4).

6.4.1 Estimation of Coefficients

We first consider the situation where the DAG D = (V, E), and for the sake of
simplicity, we assume the distribution of noise variables Zv, v ∈ V, is
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completely known, the coefficients cvv are all equal to one, whereas the edge weights
C = {cvu, u ∈ pa(v), v ∈ V } are all strictly positive, but otherwise unknown. We let
C denote the set of all possible coefficients and PC denote the distribution of X
determined by the corresponding recursive model (6.4).

The family P = PC ,C ∈ C , is not dominated by any fixed σ -finite measure μ

on X , as the support of PC varies strongly with the coefficients; more precisely,
the distributions have disjoint atomic components. This is a disadvantage in the
sense that we cannot define a standard likelihood function; but, as we shall see, an
advantage since these atomic components help identifying PC from a given sample.
We illustrate this by a simple example.

Example 6.6 Consider the simple DAG 1 → 2 with just two nodes and a single
directed edge, and let c = c21 be the corresponding coefficient. We estimate c from
an atom.

Then, Pc has support on the cone given as x2 ≥ cx1 ≥ 0 and the line Ac = {x2 =
cx1} is an atom for Pc because Pc(Ac) = P(Z2 ≤ cX1) = P(Z2 ≤ cZ1) > 0.

Still, since then {c} is the only atom in Pc for Y = X2/X1, the samplewill for large
n with high probability have repeated values of Y and c will be the only value that is
repeated. In other words, ĉ = min{yν = xν

2/x
ν
1 , ν = 1, . . . , n} will be exactly equal

to the true parameter with high probability. A similar estimator has been considered
by Davis and Resnick (1989) in a time series framework.

Although most likelihood theory is concerned with dominated families, Kiefer and
Wolfowitz (1956) considered the non-dominated case. Their formulation has been
used rarely — an exception being Johansen (1978); see also Scholz (1980) and Gill
et al. (1989), for example. This formulation turns out to be exactly what we need to
discuss estimation of C in a formal way.

For two probability measures P and Q on a measurable space (X , E), we define
the generalized likelihood ratio ρx (P, Q) at the observation x as

ρx (P, Q) = dP

d(P + Q)
(x) (6.10)

where dP/d(P + Q) is the density of P w.r.t. P + Q; the density always exists
as, clearly, P(A) + Q(A) = 0 =⇒ P(A) = 0 so P is absolutely continuous w.r.t.
P + Q.

The idea here is that if ρx (P, Q) > ρx (Q, P), then P is a more likely explanation
of x than Q. We note in particular that if P and Q have densities f and g w.r.t. a
σ -finite measure μ, we have ρx (P, Q) = f (x)/{ f (x) + g(x)} so then ρx (P, Q) >

ρx (Q, P) if and only if f (x) > g(x). Hence, ρx extends the standard likelihood ratio
in a natural way.

Clearly, the generalized likelihood ratio suffers from the sameproblemas the usual
likelihood ratio: the densities are only defined almost surely, so can be changed on
P + Q-null sets; therefore, a version of dP/d(P + Q)must be chosen independently
of the observation x .
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Next we say that if P is a family of probability distributions, P̂ is a generalized
maximum likelihood estimate (GMLE) of P based on x ∈ supp(P̂) if

ρx (P̂, Q) ≥ ρx (Q, P̂) for all Q ∈ P ,

i.e. if P̂ explains x at least as well as any other member of P .

Example 6.7 We illustrate use of the generalized maximum likelihood ratio for the
model described in Example 6.6. To identify the density, we consider two values
c > c∗ where we have

ρx (c, c
∗) = dPc

d(Pc + Pc∗)
(x1, x2) =

⎧⎪⎨
⎪⎩

1/2 for x2 > cx1
1 for x2 = cx1
0 for x2 < cx1

and

ρx (c
∗, c) = dPc∗

d(Pc + Pc∗)
(x1, x2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/2 for x2 > cx1
0 for x2 = cx1
1 for cx1 > x2 ≥ c∗x1
0 for x2 < c∗x1.

If c = c∗, we may let

ρx (c, c) = ρx (c, c
∗) = ρx (c

∗, c) = 1

2
1l{x2≥cx1}.

Thus, if we consider a full sample, let ĉ = min{yν = xν
2/x

ν
1 , ν = 1, . . . , n} and

n+(c, x) = #{ν : yν > c}, we get:

ρx(ĉ, c) =
n∏

ν=1

ρxν (ĉ, c) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if c > ĉ and c ∈ {yν, ν = 1, . . . , n}
2−n+(c,x) if c > ĉ and c /∈ {yν, ν = 1, . . . , n}
2−n if c = ĉ

2−n+(ĉ,x) if c < ĉ,

whereas

ρx(c, ĉ) =
n∏

ν=1

ρxν (c, ĉ) =

⎧⎪⎨
⎪⎩

0 if c > ĉ

2−n if c = ĉ

0 if c < ĉ.

Clearly, ρx(ĉ, c) ≥ ρx(c, ĉ) showing that ĉ is the unique GMLE of c.
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Indeed, it holds in general for a recursive max-linear model that

ĉi j =
n∧

ν=1

xν
i

xν
j

, i ∈ V, j ∈ pa(i)

is a GMLE of the edge weights. We refer to Gissibl et al. (2019) for further details
but should point out that in the general case, the GMLE is not unique. Since the
distribution of X only depends on the edgeweights through themax-linear coefficient
matrix B, only B is uniquely estimable from a sample. We clearly have by (6.9) for
the GMLE that

B̂ = B(Ĉ) =
d−1∨
k=0

Ĉ�k = (I ∨ Ĉ)�(d−1).

An alternative estimate of the max-linear coefficient matrix is given as

b̃i j =
n∧

ν=1

xν
i

xν
j

, i ∈ V, j ∈ an(i).

Although this estimate is also sensible and asymptotically consistent, it is less effi-
cient than the GMLE as X ν

i /X
ν
j only attends its minimum value when all noise

variables on the path from j to i are smaller than bi j X ν
j for the same ν, whereas the

minima for the X ν
v/X

ν
u on the path from j to i can be attained for different νs.

6.4.2 Identification of Structure

General methods for identifying the structure of DAG D from a sample are often
based on an assumption of faithfulness, so that observed conditional independence
relations can be translated back to the structure of the DAG since then any observed
conditional independence must correspond to a separation in D , see, for example,
Spirtes et al. (2000). Also, as noted in Thm.6.2, two DAGs can be different but still
Markov equivalent and thus any method based on observed direct conditional inde-
pendence relations cannot distinguish between DAGs that are Markov equivalent.

As shown in Example 6.5, faithfulness is violated for max-linear Bayesian net-
works whenever D is not a polytree. However, as we shall see below, the minimal
DAG D B of a max-linear Bayesian network can still be completely recovered from
observations.

This fact conforms with recent developments where the recursive linear structural
equation systems have been shown to be completely identifiable if the errors follow
a non-Gaussian distribution (Shimizu et al. 2006) and it has been shown that the
faithfulness assumption can be considerablyweakened also in other situations (Peters
and Bühlmann 2014; Spirtes and Zhang 2014).
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To explain why the structure D B is identifiable, we consider the statistics

Yi j = Xi/X j , i, j ∈ V

and note that Yi j has support [bi j ,∞) and an atom in bi j if and only if j ∈ an(i).
Using this property, one can show that the following estimate B̌ eventually identifies
the max-linear coefficient matrix B.

b̌i j =
⎧⎨
⎩

n∧
ν=1

yν
i j if minimum value is attained at least twice in the sample,

0 otherwise.

Then,D B is identifiable from B; we refer the reader to Gissibl et al. (2019) for further
details.

6.5 Conclusion

We have reviewed basic elements of Bayesian networks based on recursive max-
linear structural equations and some of their statistical properties. We conclude this
article by pointing out some natural extensions of this work that we hope to address
in the future.

Firstly, it would be of interest to have a simple and complete description of all
independence properties which hold for a distribution determined by a recursive
max-linear equation system, i.e. a global Markov property for max-linear Bayesian
networks.

Secondly, it appears that a consequent use of algebraic theory ( Butkovič 2010),
based on the properties of the max-times semiring S = ([0,∞],∨, ·), would be able
to simplify the theory of these models.

Finally, we should emphasize that the models heuristically can be seen as limiting
cases of standard linear recursive models where error distributions have heavy tails,
and therefore, the maximal element of any sum will almost completely dominate the
sum; a rigorous study of this limiting process will enhance the understanding of this
class of models.
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Chapter 7
Introduction to Network Inference in
Genomics

Ernst C. Wit

Abstract The genome is the archetypical complex system: it is a finely tuned whole
whose many parts, such as DNA, RNA and proteins, interact at various levels to
execute intricate functions, such as repair, replication and adapting to the external
environment. One particularly effective way of conceptualizing this complex system
is by means of a network, in which the vertices describe the genomic components
and the edges describe their physical or functional interactions. With the advent of
modern high-throughput genomic measuring devices, such as microarrays, RNA-seq
and other next generation sequencing tools, it has become possible to measure the
vertices of the genomic system in real time. One central question is whether from
these measurements it is possible to reconstruct the edges of the genomic network.
This essay describes three modelling and inference strategies to answer this central
biological question.

7.1 Introduction

Networks have become an important paradigm to describe genomic systems: from
describing the physical, molecular interactions between proteins to the abstract
interactions between functional genetic units, the vocabulary of networks has been
adopted eagerly by biologists tasked with studying complex biological systems. For
example, Corominas et al. (2014) define the concept of spliceformnetworks for trans-
lating genetic knowledge into a better understanding of human diseases, whereas
Costanzo et al. (2016) argues that a global genetic interaction network highlights
the functional organization of a cell and provides a resource for predicting gene and
pathway function.

Within biostatistics, mathematical biology and, more recently, bioinformatics,
there have been a number of modelling and inference procedures proposed to capture
genetic networks. Traditionally, metabolic pathway analysis has been using ordinary
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differential equationmodels, or simplifications thereof, such as flux balance analyses
(Papoutsakis 1984). This involved typically small network representations of a num-
ber of intertwined genetic pathways. With the advent of high-throughput genomic
analysis, Boolean network representations of the transcription process became pop-
ular (Akutsu et al. 1999). More recently, stochastic differential equation models
(Purutçuoğlu and Wit 2008; Wilkinson 2006), graphical models (Vinciotti et al.
2016), Bayesian networks (Grzegorczyk and Husmeier 2011) and vector autoregres-
sive models (Abegaz and Wit 2013) have entered the scene.

In this chapter, we aim to introduce the reader to the way networks are being used
in the analysis of biological systems. In Sect. 7.2, we describe a number of ways on
how to think about various genomic systems as networks. In Sect. 7.3, we connect
those systems with mathematical network models and high-throughput genomic
data by showing what kinds of inference strategies are available for analysing those
processes.

7.2 What Are Genomic Networks?

The language of genomic networks can be used in various ways, although roughly
speaking biologists use “genes” as the nodes, connected by edges, which stands for
some type of “genetic interactions”. This may seem obvious, but the devil is in the
details and there are various ways in which this can be made precise. Below we will
consider a number of genomic networks, that each uses the concept of network in a
somewhat different way.

Mechanic genomic networks
First, and perhaps, themost basal form of a genomic network is themolecular interac-
tions between DNA, RNA and proteins. The interactions in this view are the physical
binding of proteins to each other and to DNA, whereby the molecular functionality
of the resulting molecule changes and leads to further downstream changes. This
cascade of molecular interactions is typically initiated by outside forces, such as
sunlight in the case of a circadian clock, the lack of water leading to a stress response
in plants or the intake of food leading to production of energy by our mitochondria.

Figure7.1 is an example of this first type of genomic network. It shows a sim-
plified version of the MAPK-Erk pathway, which is a chain of proteins that via
physical interactions carries the signal from a receptor on the surface of a cell to
the DNA in the nucleus. It is a ubiquitous pathway and appears in the cell of many
organisms. Malfunctioning of the MAPK-Erk pathway in humans has been linked
to uncontrolled cell growth, and therefore cancer (Downward 2003). Understanding
the activation, inhibition and feedback mechanisms in this network is, therefore, an
important goal, which has already led to various drug targets (Hilger et al. 2002).

This mechanistic view of a genomic network is highly localized. The interactions
described are individual binding events within a cell. Because of this, the event
boundary of the network is typically the cell wall.
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Fig. 7.1 Representation of the single-cell dynamics of the MAPK-Erk Network

Functional genomic networks
In contrast to the mechanistic description of a genomic network is a functional
description. Although the nodes of this network can again be proteins or RNA, it is
not uncommon that the nodes in this network are abstractly described as “genes”.
Typically, the focus is on larger systems than a single cell, such as organs or other bio-
logical subsystems. Interactions do typically not refer to specificmechanistic binding
events, but rather to functional relationships. Often these networks are referred to as
gene regulatory networks.

Just like the mechanistic genomic networks, the functional genomic network is
most naturally interpreted as a dynamic process. However, whereas the changes in
themechanistic network are typically discrete, referring to a particular binding event,
the functional network is more naturally seen as continuous, also referred to as a flow
network.

Evolutionary networks
There are other genomic processes that can be described as a network, for example,
how genes get passed on from generation to generation in the presence of genetic
variability and selection. Most studied organisms are diploid, i.e. organisms that
carry two copies of each gene. These copies can be the same, in which case we refer
to them as homozygous, or different, in which case we refer to them as heterozygous.
Mendel suggested that offspring receive a randomly selected version of each gene
from either parent. Clearly, if the genetic make-up for a particular gene of the parents
is the same and homozygous, then the offspring will be homozygous for that gene
too. However, for many genetic loci within all species there is genetic variation,
which means that offspring displays a “random” mosaic of the genetic make-up of
their parents. Various constellations of this mosaic may lead to genetic advantage or
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disadvantage for the organism. This will boost or suppress the presence of particular
genotype combinations, which can be detected as dependence, or in the language
of networks: an interaction, between pairs of genes. This network of evolutionary
“interactions” defines an evolutionary network.

7.3 Stochastic Models for Genomic Networks

Although the aim of this section is not to give a comprehensive overview of network
models in genomics, it does aim to provide an introduction to the type of models that
are suited to various types ofmodern genomic data. In fact,we argue that the sampling
scheme and design of a genomic experiment should match the type of model that is
used for analysing it. In this chapter, we outline three modelling strategies, that are
useful in various aspects of this enterprise. We start in Subsect. 7.3.1 with a system
of stochastic differential equations to describe single-cell interactions, which takes
into account the underlying stochasticity of genomic particle interactions. Often,
however, genomic data is collected at either a more agglomerated level or across a
number of cells that are destructively sampled. In those cases, temporal models are
more appropriately described by means of ordinary differential equations, described
in Subsect. 7.3.2.1. In large genomic systems, both SDE andODEdescriptions can be
unstable or computationally prohibitive. In such cases, vector autoregressive models,
described in Subsect. 7.3.2.2, are useful. All these models are inherently dynamic.
Nevertheless, the genotype is, at ordinary time-scales, a non-dynamic process, in
which case it is more appropriate to describe these genomic interactions by means of
a static network. This and other final considerations are described in Subsect. 7.3.3.

7.3.1 Modelling Mechanistic Genomic Networks

A cell is a natural unit of biology, whose state varies according to external influences
and to internal regulation. The process of carrying over a signal, i.e. information,
in the cell’s environment is regulated by various signal transduction pathways. This
signalling process is typically started by an external stimulus of the pathway leading
to a binding of the signal to a receptor, i.e. hormones or growth factors, and ends
by binding of a target protein. All cellular decisions such as cell proliferation, dif-
ferentiation, or apoptosis are directed by different levels of transductions (Hornberg
2005). Deregulation of a single “renegade” cell can lead to diseases such as cancers,
neurological disorders and developmental disorders (Macaulay et al. 2017).

Sequencing technologies now permit profiling the genome (Gawad et al. 2016),
epigenome (Schwartzman and Tanay 2015), transcriptome (Stegle et al. 2015), or
proteome (Wu and Singh 2012) of single cells sampled from heterogeneous cell
types and cellular states. This allows us to study biological processes, such as disease
development, at the cellular level. The technology is subject to measurement noise,
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butmore importantly, the single-cellular process itself contains intrinsic stochasticity:
the cellular system, characterized by its external environment and its internal protein
levels, started at the same state may develop in different ways, merely by chance.

It is our aim to describe on the one hand the structured interactions between
molecular particles and on the other hand the stochasticity involved in this process.
We do this by means of a collection of random reaction equations. A general single-
cellular, biochemical reaction can be defined as

k1Q1 + k2Q2 + . . . + kl Ql
θ−→ s1P1 + s2P2 + . . . + sp Pp, (7.1)

where the terms on the left side, denoted as Q, are called the reactants and the ones on
the right side, denoted as P , are named the products. The coefficients ki (i = 1, . . . , l)
and s j ( j = 1, . . . , p) represent the stoichiometric coefficients associatedwith the i th
reactant Qi and the j th product Pj , respectively. The quantity l refers the number of
required reactants and p stands for the number of resulting products. So the chemical
interpretation of this equation is that while molecules move around randomly in
a cellular environment k1 molecules of type Q1, k2 molecules of type Q2, etc.,
“collide” with each other and produce s1 molecules of type P1, s2 molecules of type
P2, etc. (Wilkinson 2006). Therefore under thermal equilibrium and fixed volume,
a biochemical reaction shows which species and in what proportions react together
and what they produce (Bower and Bolouri 2001).

For a set of r reactions and d species, accordingly, we can show the molecular
transfer from reactant to product species as a net change of V = S − K where V
is called the d × r dimensional net-effect matrix when S denotes the d × r dimen-
sional matrix of stoichiometry of products and K is the d × r dimensional matrix
of stoichiometry of reactants. A reaction corresponds to a directed edge between
the nodes (Q1, . . . , Ql) on the one hand and the nodes (P1, . . . , Pp) on the other.
The collection of r reactions, therefore, corresponds to a network with r directed
edges between the d species or nodes of the network. This set of reactions can also
contain uncertain, hypothesized reactions or even competing hypotheses, as shown
in Fig. 7.2. This network is a representation of the potential stoichiometry between
three proteins. The inference procedure with sufficient amount of data will eventu-
ally assign a zero reaction rate θ to reactions that are not part of the true underlying
system. For example, if the reaction rate θ1 associated with reaction 1 is inferred to
be zero, then the resulting network would only involve the two reactions that are part
of the second pathway. An over-parameterized system is, therefore, not a problem a
priori and could be a modelling strategy to learn not only the kinetic parameters of
the genomic system, but also the structure of the system.

We collect the amount of d reactants and products at time t in the vector Ut .
They are put together in the same vector because products of one reaction are the
reactants of another. There is therefore no fundamental difference between reactants
and products. In the genomic context, they are typically proteins, protein complexes,
enzymes, RNA and DNA. The aim is to define a probabilistic model for the evolu-
tion of the temporal process {Ut }t . This is done by means of the master equation.
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Fig. 7.2 The stochastic
differential equation models
could include competing
hypotheses. The data would
eventually weed out the links
for which there is no
evidence

The master equation is defined as a differential equation for the process transition
probability and is written as:

dP(U; t)
dt

=
r∑

k=1

{hk(U − V·k, θ)P (U − V·k, t) − hk(U, θ)P (U, t)} . (7.2)

In other words, the probability of being in state Ut is positively related to the
tendency of the r available reactions to transit to state Ut and negatively related to
these same reactions to leave state Ut . The hazard hk is a deterministic function of
the state and the reaction rate θk . For example, the reaction

2H + O
θ−→ H2O,

in a volume with 5 hydrogen molecules H , 4 oxygen molecules and a rate of θ = 2
reactions per time unit would lead to a hazard h((5, 4), 2) = (5

2

)(4
1

)
2 = 80. Bymeans

of amultivariateTaylor expansion, it is possible to derive an equivalent and alternative
formulation of any master equation, named the Kramers–Moyal expansion (Van
Kampen 1981):

dP(U; t)
dt

=
∞∑

m=1

(−1)m

m!
N∑

j1,..., jm=1

dm

dUj1 , . . . , dUjm

[am(U, θ)P (U, t)], (7.3)

where am(U) arem-order symmetric tensors commonly called jumpmoments (Moyal
1949) or propagator moment functions (Gillespie 1992).

Various approximations to the process are possible. We can expand the distribu-
tion P(U, t) by a second-order Taylor expansion and use a Fokker–Planck approach
for the change of each state (Bower and Bolouri 2001; Van Kampen 1981). This
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stochastic expression is solved via Itô or Stratonovich integrals (Gillespie 1996;
Golightly and Wilkinson 2005; Risken 1984; Van Kampen 1981) to obtain the fol-
lowing diffusion approximation

dU (t) = μ(Ut , θ)dt + β
1
2 (Ut , θ)dW (t), (7.4)

where

μ(U, θ) = V ′h(U, θ),

β(U, θ) = V ′diag{h(U, θ)}V

are the drift and diffusion matrices, respectively, both explicitly depending on state
Ut = (Ut1, . . . ,Utd) at time t , the parameter vector θ = (θ1, θ2, . . . , θr )

′ and the net-
effect matrix V . The expression dW (t) represents the change of a Brownian motion
during the time interval dt and dU (t) shows the change in state U over time dt .
This is effectively a large volume approximation that follows from the central limit
theorem, whereby the reactions follow a Poisson process with rate h(U, θ) and the
states changes therefore have mean V ′h(U, θ) and variance V ′diag{h(U, θ)}V .

Due to the difficulties of inference of continuous-time multivariate diffusions, a
further discrete Euler–Maruyama approximation is possible,

�Ut = μ(Ut , θ)�t + β
1
2 (Ut , θ)�Wt (7.5)

where�Ut is the change of stateU over small time interval [t, t + �t] and�Wt is a
d-dimensional independent identically distributed Gaussian random vector �Wt ∼
N (0, I�t) (Eraker 2001).

Data
The genomic interactions described above form a continuous-time process {Ut }t of
gene activities on top of a genomic network. At best, we will be able to see snap-
shots Xt from this process. We will assume that we will have discrete observations
{Xt }t from a single-cell genomic system {Ut }t . For simplicity of presentation, we
assume that the observations are equally spaced at regular time intervals of steps
of size �t = 1. This is merely for notational simplicity and not important for the
inferential methods we use. There may be two types of missing values: first of all,
several substrates may not be observed. It is quite common that due to technological
limitations or experimental errors, it is not possible to measure the activity of all
genomic species of interest. Various experimental techniques, such as microarrays,
Chip-Seq analysis or mass-spectroscopy, have limitations to what they can measure.
Furthermore, as most current technologies are capable of only discrete snapshots,
the non-observed time points can also be considered missing.

Inference
There are various approaches possible for inference in such systems. The main issue
the methods need to deal with is that the rate of change of the process is typically
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faster than the observation rate, which leads to nonlinearities between the observation
times. Frequentist approaches typically rely on the conditional nonlinear first and
second moments of the process to propose a method of moments estimator for the
reaction rates. To define amethod ofmoment estimator via a generalized least squares
objective function that can beminimized in order to estimate the unknown parameters
vector θ :

θ̂ = arg min
θ

(X1:T − m(θ))′ W−1 (X1:T − m(θ)) s.t. θ ≥ 0r

where

X1:T =

⎡

⎢⎢⎢⎣

X1

X2
...

XT

⎤

⎥⎥⎥⎦ and m(θ) =

⎡

⎢⎢⎢⎣

m(1; θ)

m(2; θ)
...

m(T ; θ)

⎤

⎥⎥⎥⎦

are dT -dimensional column vectors with the observed cell-type count data and pre-
dicted mean evolutions, respectively. (Sotiropoulos and Kaznessis 2011) provide a
general schema to derive analytical expressions for jump moments for any Markov
process. Furthermore,

W =

⎡

⎢⎢⎢⎣

b(X0; θ) 0 . . . 0
0 b(X1; θ) . . . 0
...

...
. . .

...

0 0 . . . b(XT−1; θ)

⎤

⎥⎥⎥⎦ .

is a dT × dT block diagonal matrix, in which blocks correspond to expected
variance-covariance matrices and zeros reflect the independence among measure-
ments belonging to different time points.

An alternative way to deal with partially observed process is defining an aug-
mented state space in combination with Bayesian inference. By inserting intermedi-
ate, unobserved states, the process can be linearized in the augmented, latent space.
In a Bayesian approach to infer the kinetic parameters θ of the stochastic differential
equation, one can use MCMC inference for calculating the posterior of the Euler–
Maruyama system described in (7.5). Typically, Gibbs sampling can be difficult,
because of the above-described data sparsity. In principle, it is possible to augment
the data X with “missing” observations Z . A large number of augmented states
in the Bayesian method increases the precision of the Euler–Maruyama approxi-
mation, but deteriorates the mixing of the Markov chain. Additional details about
this problem and suggested solutions can be found in (Roberts and Stramer 2001)
and (Golightly and Wilkinson 2008). In order to deal with these types of missing-
ness, one can use aMetropolis-within-Gibbs step (Carlin and Louis 2000), whereby a
Metropolis-Hastings step is implemented at eachGibbs step of the update. Therefore,
the augmented process U = {Ut }Tt=1 is a combination of X and Z , i.e. U = (X, Z).
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This method has been applied to estimating the MAPK-Erk pathway, consisting
of 35 measured proteins and 16 unmeasured proteins across 77 time points that are
involved in 66 reactions. Part of the inferred system is shown in Fig. 7.1. (Purutçuoğlu
and Wit 2008) describe the biological interpretation of the results.

7.3.2 Modelling Functional Genomic Networks

Single-cell data, especially longitudinal single-cell data, are not very common. In
fact, more often time-course genomic data are measured across a collection of cells.
Moreover, not infrequently the measurements at different time points are on physi-
cally different samples. For example, various petri dishes with cells from some cell
line are treated at a nominal time zero, and at various time points, the various dishes,
one by one, are measured on the expression of their genomic constituents. As in
many cases sampling tends to be destructive, each petri dish can be only measured
once. This can be seen as cross-sectional sampling, where time is considered the
factor of interest.

7.3.2.1 Ordinary Differential Equation Models

In such cases, it is not sensible to consider the stochastic relatedness between the var-
ious time points. However, it can still be interesting to consider the average dynamic
behaviour of a genomic system. In fact, consider a simple reversible reaction,

A + B
θb,θ f←→ C,

where proteins A and B bind with forward rate θ f into protein complex C , and,
reversely, protein C breaks apart into constituents A and B with backward rate θb.
According to the Law of Mass Action (Érdi and Tóth 1989), the average change in
the amount of substrate A at time t0 is negative proportional to the number of times
forward reactions can happen, i.e. a × b, and positively proportional to the number
of times backward reactions can happen, i.e. c, where At = a, Bt = b and Ct = c.
This leads to the simple expression for the average change in A,

dmA(t, θ)

dt
= cθb − abθ f .

Similarly, for B and C we have,

dmB(t, θ)

dt
= cθb − abθ f ,

dmC(t, θ)

dt
= abθ f + cθb.
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However, whereas the Law of Mass Action suggests a linear increase in the produc-
tion rate of the product with an increase of the underlying substrate, in practice the
increase will saturate. One reason is that there is only a finite amount of enzymes
available, which are crucial auxiliary components in the genomic transcription sys-
tem. (Michaelis and Menten 1913) introduced an intermediate substrate–enzyme
complex, C = SE , in the transcriptional system,

S + E
θb,θ f1←→ C

θ f2←→ P + E .

Combining the assumption of a finite amount of enzyme, C + E = constant, with a
mass action equilibrium (θb + θ f2)Ct = θ f1 St Et , they derived the so-called nonlinear
Michaelis–Menten kinetics,

dmP(t, θ)

dt
= θ f2s

θb+θ f2
θ f1

+ s
.

Fig. 7.3 shows the typical saturation effect of the Michaelis–Menten production rate.
This shows that for realistic descriptions of genomic interactions, we may have to
consider a wider class of functions beyond mass action kinetics.

For the purposes of this overview, we will focus on a class of nonlinear ODEs that
are linear in the rate parameters. Any of themodels satisfying the Law ofMass Action
satisfy also this requirement, but the class is larger than that and can accommodate
saturation effects. Consider the gene regulatory or signalling network, described by
a system of ordinary differential equations of the form

{
z′(t) = g(z(t))θ for t ∈ [0, T ],
z(0) = ξ ,

(7.6)

Fig. 7.3 Typical saturation
of the Michaelis–Menten
production rate for various
choices of the kinetic
parameters
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where x(t) takes values in R
d , with, possibly unknown, initial values ξ ∈ R

d , and
with the parameters of interest unknown θ ∈ R

p. We assume that g = (g1, . . . , gd)′
is a known function, whose components g j : Rd → R

p. In particular, we consider a
special case in which we want to model the change of each substrate by a saturating
function of all the other substrates, i.e.

{
z′
j (t) = ∑d

k=1 θk j log(zk(t) + 1),
z j (0) = ξ j

j = 1, . . . , d. (7.7)

This model defines a network between the d substrates in that if θ jk 	= 0, then sub-
strate k affects the change in substrate j . The logarithmic function is chosen to deal
with natural saturation effects. Moreover, by its very definition zk(t) ≥ 0 and the
leading Taylor term of log(z + 1) near zero is z, similar to the Michaelis–Menten
production term. The solution z(·, θ, ξ) implied by the ODE (7.7) — or more gen-
erally (7.6) — is assumed to be the mean of the observations taken from the system.
In particular, we assume that at time points ti ∈ [0, T ], i = 1, . . . , n, we observe

X j (ti ) = z j (ti , θ , ξ) + ε j (ti ), j = 1, . . . , d1; i = 1, . . . , n, (7.8)

where 0 ≤ t1 < · · · < tn = T < ∞ and εi (t j ) is the measurement error for xi at time
t j . The problem is to estimate θ , and thereby the underlying gene regulatory network,
from the data {X j (ti )}i j .
Inference of ODE networks
Inference of parameters in ODEs is not straightforward due to the possibly compu-
tationally prohibitive calculation of ODE solution z(·, θ, ξ) for lots of values of θ

and ξ . Regularization-based approaches, which make use of properties of differen-
tial operators, have been proposed to avoid numerical integration of the system of
differential equations (González et al. 2013, 2014; Steinke and Schölkopf 2008). In
most cases, the main computational bottleneck lies in the optimization of a nonlin-
ear objective function. Alternatively, the idea of smoothing can be used as a way to
avoid numerical integration of the system of differential equations and is referred
to as the collocation estimation method; for example, there are two-step methods
(Bellman and Roth 1971; Brunel 2008; Dattner and Klaassen 2013; Fang et al. 2011;
Gugushvili and Klaassen 2012; Gugushvili and Spreij 2012; Liang and Wu 2008;
Varah 1982) and generalized profiling methods (Ramsay et al.2007; Qi and Zhao
2010; Xun et al. 2011; Hooker et al. 2013).

The method we present here is a special case of generalized Tikhonov regular-
ization (Vujačić et al. 2016) and without penalization has been shown to be

√
n-

consistent (Vujačić et al. 2015). We consider estimators of the parameters θ and ξ

that are obtained by minimizing the integral equation derived from (7.6),

L(ξ, θ) =
∫ T

0

∣∣∣∣

∣∣∣∣z(t) − ξ −
∫ t

0
g(z(s)) ds θ

∣∣∣∣

∣∣∣∣
2

dt, (7.9)
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with respect to ξ and θ , where z(t) = (t; θ, ξ)will be replaced by a suitable estimator.
We divide the interval [0, T ] in �√n
 subintervals, so that in every interval, we
have at least �√n
 observations in it. Let Si = [ai−1, ai ) be the i th subinterval i =
1, . . . , �√n
 − 1 and S�√n
 = [a�√n
−1, a�√n
] and let S(t) denote the subinterval to
which t belongs. The piecewise constant window estimator of z is defined as

ẑ(t) = 1

|S(t)|
∑

t j∈S(t)

X (t j ), t ∈ S(t). (7.10)

This estimator ẑ(t) estimates z(t) as the mean of the observations that belong to
interval S(t). This allows us to estimate the inner integral in (7.9),

G(t) =
∫ t

0
g(ẑ(s))ds

=
i−1∑

m=1

g(ẑ(Sm))(am − am−1) + g(ẑ(Si ))(t − ai−1), where t ∈ Si .

Throughout the paper,we adhere to the convention that the sumsof the form
∑i−1

m=1 fm
are equal to zero for i = 1. Minimizing the criterion function (7.9) with respect to
ω = (ξ ; θ)′ yields explicit formulas for the estimators of the parameters. Indeed, the
objective function L can be written as a quadratic function of the parameters,

L(ω) = ω′
∫ T

0
F(t)′F(t)dtω − 2ω′

∫ T

0
F(t)′ ẑ(t)dt +

∫ T

0
‖ẑ(t)‖2dt,

where F(t) = (T Id;G(t)). The minimizer of this quadratic expression is given by

ω̂ =
( ∫ T

0
F(t)′F(t)dt

)−1
∫ T

0
F(t)′ ẑ(t)dt

which has an explicit form by means of finite sums as shown in (Vujačić et al. 2015).
It can be shown that this estimator is

√
n-consistent.

Example 7.1 Circadian clock in Arabidopsis
Consider the previously introduced, heavily parameterized ODE describing the

change of each substrate in the gene regulatory network by a slowly saturating func-
tion of all the other substrates, i.e.

{
z′
j (t) = ∑d

k=1 θk j log(zk(t) + 1),
z j (0) = ξ j

j = 1, . . . , d, (7.11)

or using some other production terms, such as g(z) = √
z or simply g(z) = z. This

relatively simple gene regulatory network contains d2 interaction parameters θ =
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{θk j }. Many of these parameters can be expected to be zero as only a few genes will
be responsible for activating other genes.

To enforce sparsity, we will add a L1 regularization term on the objective function
(7.9),

Lλ(θ, ξ) = L(θ, ξ) + λ||θ ||1.

The estimator of θ and ξ will depend on the tuning parameter λ. In fact, the path
estimator (ξ̂λ, θ̂λ) will correspond to the original lasso estimator β̂λ for a quadratic
problem (Tibshirani 1996),

β̂λ = argmin
β

(y − Xβ)′(y − Xβ) + λ||β||1,

whereby X ′X = ∫ T
0 F(t)′F(t)dt and X ′y = ∫ T

0 F(t)′ ẑ(t)dt , whereby the first d
parameters, corresponding to ξ , will not be penalized and always included in the
solution path.

We illustrate our proposed approach by applying it to a time-course gene expres-
sion dataset related to the study of circadian regulation in plants. The data used in
our study come from the EU project TiMet (FP7-245143, 2014), whose objective
is the elucidation of the interaction between circadian regulation and metabolism in
plants.

The data consist of transcription profiles for 9 core clock genes from the leafs of
various genetic variants of Arabidopsis thaliana. The plants were grown in 3 light
conditions: a diurnal cycle with 12-hour light and 12-hour darkness (12L/12D), an
extended night with full darkness for 24 hours, and an extended light with con-
stant light for 24 hours. Samples were taken every 2 hours to measure mRNA con-
centrations. In total, there are 51 measurements across time. The nine genes are
known to be involved in circadian regulation (Grzegorczyk et al. 2008; Aderhold
et al. 2014). They consist of two groups of genes: “Morning genes”, which are LHY,
CCA1, PRR9 and PRR5, whose expression peaks in the morning, and “Evening
genes”, including TOC1, ELF4, ELF3, GI and PRR3, whose expression peaks in the
evening. The expressions for all the genes are strictly positive.

Figure7.4 shows the resulting sparse ODE network inferred with three different
functions g, two of which deal explicitly with possible saturation effects, such as
g(x) = log(x + 1) and g(x) = √

x and the naive linear production function g(x) =
x . The results are quite robust, but suggest that it is worth considering possible
saturation effects.

7.3.2.2 Vector Autoregressive Models

Both SDE and ODE models are in principle generative models for the underlying
process of interest. Their aim is to describe the intrinsic relationship between the
genomic substrates, typically on the basis of the Law of Mass Action or extensions
thereof. Often, part of the model is inspired by biological knowledge. In this section,
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Fig. 7.4 Circadian clock network in Arabidopsis thaliana: red arrows represent suppression,
whereas black arrow suggests activation. The ODE network inference results are quite robust,
whether one considers a saturation model, whereby the effect on the production term depends on
g(z) = log(z + 1) or g(z) = √

z, or one that does not saturate, in which case g(z) = z. The yellow
genes are the morning genes, whereas the blue genes are the evening genes

we describe a method fundamentally aimed at a more exploratory approach of high-
dimensional genomic time series data. The idea is to explore potential temporal
interactions between substrates, without focusing on the details of the kinetics. For
this, wewill use vector autoregressivemodels (VARs), which have been studiedmore
in detail in the econometric literature (Dahlhaus and Eichler 2003). The details of
the method described in this section can be found in (Abegaz and Wit 2013).

Within a vector autoregressive model, the time-course gene–gene interactions
evolve according to Markovian dynamics, rather than an explicit functional form
as in the ODE approach. Specifically, within a VAR(1) model the vector of gene
expressions at time t relates only to those at time t − 1; extensions to a Markovian
lag dependence greater than 1 are straightforward. Let Xt be a d-dimensional ran-
dom vector associated with the expression of the d genes at time t . According to
the first-order Markov property, the joint probability density of X0, . . . , XT can be
decomposed as:

f (X0, . . . , XT ) = f (X0) f (X1 | X0) × · · · × f (XT | XT−1). (7.12)

We focus only on the conditional distributions in (7.12) and ignore the initial term
f (X0). Furthermore, we assume a time-homogeneous dynamic network structure for
the conditional distribution f (Xt | Xt−1) that can be approximated via a multivariate
Gaussian,

Xt | Xt−1 ∼ N (Γ Xt−1,Σ). (7.13)

This vector autoregressive process of order one can also be expressed as

Xt = Γ Xt−1 + εt , (7.14)

where εt ∼ N (0,Σ). The parameter elements in the matrices Γ and in the inverse of
Σ represent directed and undirected links in theMarkovian conditional independence
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graph, respectively. In particular, a nonzero element inΓ , sayΓi j 	= 0, corresponds to
a directed edge in the conditional independence graph between gene j at the previous
timepoint and gene i at the current one. This edge is given the nameGranger causality
and reflects a delayed interaction between two genes, which can be cautiously given a
semi-causal interpretation (Granger 1988). GivenΣ and the corresponding precision
matrixΘ = Σ−1 undirected edges relate to nonzero elements in the precision matrix
Θ . If Θi j 	= 0, then after adjusting for the past and present effects of other genes,
there is an instantaneous interaction, or dependence, between genes i and j . A cartoon
representation of the model formulation is given in Fig. 7.5.

Data
Suppose that we have n replications of a T time point longitudinal microarray study
across p genes. The data, then, can be summarized as an n × p × T array X =
(X1, . . . , Xn)

′
whose i th submatrix Xi has columns such that Xi.t = (Xi1t , . . . , Xipt )

′

which correspond to the expression levels of p genes measured at time t . That is,
Xi jt is the j th gene expression level at time t for the i th replicate.

Sparse VAR network inference
The inference aim is to reconstruct the dynamic and contemporaneous genomic net-
works. Time-course genomic data typically consist of hundreds or thousands of genes
measured on a comparatively small number of replications (typically 3) ofmicroarray
experiments across a few time steps (often not more than 10). The model formula-
tion in (7.14) is in a standard vector autoregressive form with correlated errors and
estimation approach for high-dimensional time-course genomic data is challenging.
(Abegaz and Wit 2013) proposes a penalized maximum likelihood estimation meth-
ods for the analysis of the high-dimensional time-course gene expression data. The

Fig. 7.5 The dynamic
network encoded in Γ shows
that gene 1 is an important
regulator. The instantaneous
network Θ shows a central
role of gene 2, but because
the genomic interaction
times are faster than the
sampling times δt , it is not
possible to say whether gene
2 regulates the other or the
other way around
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proposed approach provides sparse estimates of the autoregressive coefficient matrix
Γ and the precision matrix Θ in (7.14), which are used to reconstruct the genomic
network.

Under the Gaussian assumption described in (7.13), the conditional density of the
t th observation is given by

fc (Xt | Xt−1;Γ,Θ) = (2π)p/2|Θ|1/2 exp
[
−1

2
(Xt − Γ Xt−1)

′ Θ (Xt − Γ Xt−1)

]
.

Then the conditional log-likelihood for n replicates each at T time steps becomes

�(Γ,Θ) =
n∑

i=1

T∑

t=1

log fc
(
Xit | Xi,t−1;Γ,Θ

)

= −npT

2
log(2π) + nT

2
log |Θ| − nT

2
tr(SΓ Θ), (7.15)

where

SΓ = (1/nT )

n∑

i=1

T∑

t=1

(
Xit − Γ Xi,t−1

) (
Xit − Γ Xi,t−1

)′
.

We consider a penalized likelihood framework, where the objective function based
on (7.15) is defined as

�pen(Γ,Θ) = log |Θ| − tr(SΓ Θ) −
p∑

i 	= j

Pλ(
∣∣θi j

∣∣) −
p∑

i 	= j

Pρ(
∣∣γi j

∣∣), (7.16)

where θi j and γi j are the (i, j)-elements of the matrix Θ and Γ and λ and ρ are
the corresponding tuning parameters of the penalty functions Pλ(·) and Pρ(·) corre-
sponding toΘ and Γ . Various penalty functions have been proposed in the literature.
We consider the L1 penalty function, which is convex and given by

Pλ(θ) = λ|θ |, Pρ(γ ) = ρ|γ |. (7.17)

This leads to a desirable convex optimization problem. To obtain the L1 penalized
likelihood we substitute the penalty function in (7.17) into the objective function
(7.16). Then, the optimization problem that gives sparse estimates of Γ and Θ is the
solution of

(Θ̂, Γ̂ )λ,ρ = argmax
Θ,Γ

⎧
⎨

⎩log |Θ| − tr(SΓ Θ) − λ

p∑

i 	= j

∣∣θi j
∣∣ − ρ

p∑

i, j

∣∣γi j
∣∣

⎫
⎬

⎭ . (7.18)
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Model selection
Under the penalized maximum likelihood framework for time series chain graphi-
cal models, the sparsity of the estimated precision matrix Θ and the autoregressive
coefficient matrix Γ are controlled by the tuning parameters λ and ρ. The Bayesian
information criterion can be used for selecting parsimonious parameter representa-
tions (Yin and Li 2011). The BIC is defined as

BIC(λ, ρ) = −nT
{
log |Θ̂λ| − tr(SΓ̂ρ

Θ̂λ)
}

+ log(nT )(an/2 + bn + p), (7.19)

where p is the number of variables, an is the number of nonzero off-diagonal elements
of Θ̂λ and bn is the number of nonzero elements of Γ̂ρ . Thus, we select the values of
λ and ρ that minimizes the criterion in (7.19). Here the minimization of BIC(λ, ρ)

with respect to λ and ρ is achieved by a grid search.

Example 7.2 Mammary gland gene expression network
We illustrate the proposed approach on the analysis of mammary gland gene

expression time-course data from (Stein et al. 2004). In the mammary gland expres-
sion experiment, there are 12,488 probe sets representing approximately 8,600 genes.
These probe sets are measured over 54 arrays of 3 replicates on each of 18 time
points. We identified 30 genes that yield the best separation between the four devel-
opmental stages (virgin, pregnant, lactating, involution) using cluster analysis. We
implemented the sparse VAR procedure in the R package SparseTSCGM. We apply
the proposed VAR model to study the interaction between these crucial genes that
trigger the transitions to the main developmental events in the mammary gland of
mice. Fig. 7.6(a) shows the undirected links associated with Θ , related to instanta-
neous interactions among the genes and Fig. 7.6(b) displays the directed links that
indicate Granger causality relations among the genes.
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Fig. 7.6 Undirected (left) and directed (right) time series chain graphical model network inferred
from the mammary gland time-course expression data with a VAR(1) model
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7.3.3 Other Genomic Network Models

The models we have considered so far have all been dynamic network models. The
main reason is that these models capture the dynamic nature of the genetic process.
Depending on external stimuli and the internal state of a cell, The main reason
is that these models capture the dynamic nature of the genetic process: at each
moment the then relevant genes are transcribed, translated and broken down again
in an intricate, interdependent process. Nevertheless, the three models that we have
discussed are not the only ones that can be used. Some people might have noticed
that we did not explicitly deal with Bayesian network models. Although they are
closely related to vector autoregressive processes, the biostatistics and bioinformatics
literature has seen many fine examples of such models applied to gene regulatory
systems (Grzegorczyk and Husmeier 2011).

At the same time, there are also certain biological processes that can be modelled
very elegantly by means of static network models. Genome-wide association studies
(GWAS) are aimed at uncovering associations between genotype and phenotype. At
the same time, certain genotype combinations might be evolutionary very advanta-
geous or, more likely, detrimental. That is why such GWAS data can also be used
to study epistasis by inferring the conditional independence graph: if there is no
epistasis, the conditional independence graph will show the chromosomal backbone,
whereas, if there is some epistasis, then we will find additional links between regions
of the genome that are possibly on different chromosomes. Figure7.7 shows such an
example in Arabidopsis thaliana, which has been found by means of L1 penalized
Gaussian copula graphical modelling (Behrouzi and Wit 2017).

Fig. 7.7 Epistatic effects in
a genotype study involving
an Arabidopsis thaliana
recombinant inbred line. The
sparse Gaussian copula
graphical model clearly
shows the chromosomal
backbone in the conditional
dependency graph as a result
of the meiosis process
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7.4 Discussion

In this chapter, we have looked at modelling dynamic biological networks. Unlike in
social networks, this typically does not involve random graph models. The reason is
that the biological phenomena of interest, such as gene transcription, pertain to the
nodes of the network, rather than the edges. In other words, the random process of
interest lives on the vertices of the graph. For this reason, the network models we
have considered in this chapter are more closely connected to engineering networks
used to describe flows.

Although networks have become an important modelling paradigm in genomics,
there is currently no single network model to describe all the genomic interaction
structures. In fact, it will be unlikely that there will ever be one. As the underlying
generative model in biology is extremely complicated, we will always rely on conve-
nient parameterizations to answer specific questions that arise in system biology. We
have considered three types of models, namely stochastic differential equation mod-
els, ordinary differential equation models and vector autoregressive models and each
of these modelling frameworks was selected depending on the underlying sampling
design (“Are the measurements from a single cell or average over many cells?”) and
on the question of interest (“Do we want to describe the kinetics of the interactions
or get an idea of the overall interaction structure of the genome?”). As George Box is
said to have once said “all models are wrong, but some are useful” (Wit et al. 2012),
and very useful indeed.
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