Metal Decoration of TiO₂ Nanotubes for Photocatalytic and Water Splitting Applications

Gisele Inês Selli, Maria Luisa Puga and Fernando Bonatto

Abstract TiO_2 materials, especially nanostructures, must not only be cost-effective, but they must also meet many other requirements: high photocatalytic activity, large active superficial area, chemical resistance, ease of manufacture, and fast synthesis route. However, it is commonly recurrent that TiO_2 nanostructures, nanoparticles or nanotubes, still have a high deficiency to collect a large part of the light spectrum. Nevertheless, anatase/rutile superficial defects, which increases considerably charge carrier recombination, can be circumvented by the addition of transition/noble metals, to intentionally increase the material photocatalytic properties and extend applications, in the field of H_2 generation.

Keywords $TiO_2 \cdot Photocatalysis \cdot H_2$ production \cdot Metal decoration

Abbreviations

AO7	Acid Orange 7
BET	Brunauer–Emmett–Teller
EDX	Energy Dispersive X-ray
FESEM	Field Emission Scanning Electron Microscopy
FT-IR	Fourier Transformer Infrared
MB	Methylene Blue
PO	Heterogeneous Photocatalytic Oxidation
TNT	Titanium dioxide Nanotubes

© Springer Nature Switzerland AG 2019

A. Kopp Alves (ed.), *Nanomaterials for Eco-friendly Applications*, Engineering Materials, https://doi.org/10.1007/978-3-030-26810-7_5

G. I. Selli (🖂) · M. L. Puga · F. Bonatto

Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil e-mail: gisele.selli@ufrgs.br

F. Bonatto e-mail: bonatto02@yahoo.com.br

1 Introduction

With the advent of industries that produce a large number of pollutants in effluents, including pharmaceuticals, textiles, and chemicals, the amount of pollutants has grown almost exponentially in the last 30 years according to the UN survey in 2018. For this reason, in the context of reducing the number of emerging pollutants in industrial effluents. In this idea, titanium dioxide has become a highly researched material with high potential for commercial and industrial applicability. However, one of the major drawbacks is the fact that the material has a gap within the UV light spectrum and is considered a high bandgap semiconductor, which restricts its applications. Although this characteristic represents a depreciation of the material, since this part of the spectrum is smaller when compared to the whole spectrum available, the fact that the TiO₂ is low cost, with high physical-chemical stability and easy to manufacture makes it an attractive material for photocatalytic applications.

To increase the industrial use and applicability of nanostructured TiO_2 , as a base element in the decomposition of pollutants, processes such as doping and decoration are widely used because of the ease of synthesis in conjunction with titanium dioxide. One of the most successful approaches is the use of transition and noble metals together with TiO_2 nanostructures. In addition to allowing access to a more significant portion of the available light spectrum, thereby increasing the photocatalytic activity, the presence of these metals still allows an improvement of yield and applicability in the decomposition of different chemical compounds present in effluents. This chapter presents a condensation of the primary metals used together with TiO_2 .

This chapter aims to show the latest advances in the application of photocatalytic processes for the decomposition of pollutants and H_2 production using metals such as Fe, Cu, Ag, and Au together with TiO₂ nanostructures for their simplicity of synthesis and low cost for direct application.

2 Iron-Doped TiO₂

Although having wide application potential, titanium dioxide nanotubes (TNTs) face a major drawback regarding their large band gap, an aspect that limits photoresponse almost exclusively to the ultraviolet region [1]. Modifying TiO₂ with other narrow bandgap materials is a widely recognized method to minimize such drawback, as it causes a red shift of the absorption edge to the visible light region [2–4]. Moreover, selective metal ion doping, especially iron in its Fe³⁺ form [5, 6], significantly broadens light response range and inhibits charge-carrier recombination as the ions act as charge traps for the photogenerated electron-hole pairs [7–11]. Several studies also pointed out to an enhanced photocatalytic activity for Fe-doped catalysts both under UV [11–13] and visible light irradiation [14–17]. As demonstrated by Yu et al. [18], such high performance of Fe³⁺/TiO₂ is attributed to the accumulation of photogen-

Fig. 1 Schematic diagram illustrating the possible photocatalytic mechanism of Fe^{3+}/TiO_2 , involving interfacial charge transfer (arrow 1) and multielectron reduction processes. The band gap excitation is indicated by arrow 2. Reprinted with permission [18]

erated holes in the valence band (VB) of TiO_2 and the catalytic reduction of oxygen by photoreduced Fe^{2+} species on TiO_2 surface (Fig. 1).

Regarding Fe/TNTs, Asiltürk et al. [19] found that Fe^{3+} doping may prevent particle agglomeration due to the formation of well-defined crystalline nanoparticles (NPs) with high surface area, two key aspects to improving photocatalytic performance [19]. Compared to undoped, electrochemically anodized TNTs, Fe^{3+} doped nanotubes have shown a six-fold increase on photocurrent density and a doubled degradation rate measurement [1]. Using the crystal structure of TiO₂ as a matrix for fixating Fe^{3+} NPs is also presented as an alternative to having them dispersed in an aqueous suspension, thus avoiding the detrimental nanoparticle aggregation where many particles are hidden from light absorption [5].

Fe₂O₃ has been pointed out as another strong candidate for being a low cost, nontoxic and highly stable form of iron oxide [20, 21]. Concerning morphology, aggregating Fe NPs in adequate amounts to TNTs does not affect the highly ordered nanotube construction, as demonstrated by Zhang et al. [1] in Fig. 2, where SEM images compare undoped two-step anodized TiO₂ NTs with Fe³⁺-doped TiO₂ NTs, also fabricated via a two-step anodization process. Xie et al. [22] reinforce this conclusion by successfully electrodepositing $ZnFe_2O_4$ nanoparticles within self-organized and highly ordered TiO₂ nanotube arrays while minimizing the clogging of the tube entrances (Fig. 3).

Cong et al. [23] studied the performance of α -Fe₂O₃/TNTs composites for photoelectro-Fenton degradation using phenol, a compound usually found in wastewater discharged from a variety of industries [24, 25], as a model pollutant with an initial concentration of 10 mg/L. The α -Fe₂O₃/TNT complex was synthesized over anodized nanotubes by two different techniques, a dipping method in aqueous suspension of α -Fe₂O₃ NPs (fixed-Fe₂O₃ system 1) and an electrochemical deposition (fixed-Fe₂O₃ system 2), for which the electrodes fabricated via the second one pre-

Fig. 2 SEM images of: **a** TiO₂ NTs in the two-step anodization. **b** Fe^{3+}/TiO_2 NTs. Reprinted with permission [1]

Fig. 3 a Top-view and b side-view SEM images of the TiO_2 nanotube arrays. The inset shows the images of TNTs at high magnification. Reprinted with permission [22]

sented higher removal efficiency of phenol and stronger photoresponse under visible light irradiation due to the uniform fixation of Fe NPs on TNTs. To further investigate the role of α -Fe₂O₃ NPs, phenol degradation was also carried in a dispersed system, where α -Fe₂O₃ NPs were added into the aqueous phenol solution instead of being attached to TNT electrodes. Responses to three different Fenton-related processes, electro-Fenton, visible light photoelectro-Fenton, and UV-visible light photoelectro-Fenton, are depicted in Fig. 4. After a 60 min treatment, electrochemically deposited α -Fe₂O₃/TNT electrodes presented 100% phenol removal efficiency in the UV-visible light photoelectro-Fenton process, whereas the dispersed system required double the amount of time to reach similar rates. The increased performance of Fe₂O₃ modified TNTs could be linked to the fact that incorporating α -Fe₂O₃ NPs effectively suppressed the recombination of electron-hole pairs, thus allowing them to act as heterogeneous catalysts for phenol degradation [23].

 $ZnFe_2O_4$ appears as an opportunity to harvest most of the visible portion of the solar spectrum [26], also presenting an alternative to overcome the separation and recycling process of the powdered $ZnFe_2O_4$ and improving the energy conversion

Fig. 4 Phenol degradation in a dispersed system, b fixed-Fe₂O₃ system 1, and c fixed-Fe₂O₃ system 2. Reprinted with permission [23]

efficiency when aggregated to TiO_2 in a $ZnFe_2O_4/TNT$ composite [27]. Loading highly ordered TiO_2 nanotube arrays with $ZnFe_2O_4$ NPs enhances absorption in both UV and visible light regions promotes greater separation of photoinduced electronhole pairs and presents a more effective photoconversion capability than undoped TNTs [22, 27]. Moreover, Xie et al. [22] demonstrated that the photocurrent density of the composite $ZnFe_2O_4/TNT$ (Z-TNT) electrode was more than 5.5 times higher than that of the TNT electrode alone (Fig. 5), implying that $ZnFe_2O_4$ can be effectively used to sensitize TiO_2 nanotube array electrodes. Regarding its applicability, the synthesized electrode was found to possess excellent photoelectro-catalytic activity for degradation of 4-chlorophenol, a toxic and non-biodegradable pollutant present in wastewater of industrial activities [28, 29] under UV light illumination, presenting 100% efficiency with an applied potential bias of 0.8 V, 16% higher than the degradation efficiency measured for the unloaded TNT electrode [27].

Titanium nanotube composites are also attractive photocatalysts for photoelectrochemical (PEC) solar water splitting applications due to their high-efficiency energy conversion, good chemical stability, and corrosion resistance in aqueous envi-

Fig. 5 a Transient photocurrent responses of the TNTs and the Z-TNTs samples under the bias potential of 0.8 V versus SCE. Three $ZnFe_2O_4/TNT$ samples were analyzed, each containing a distinct concentration of $Fe(NO_3)_3$ and $Zn(NO_3)_2$: (1) 0.5 M and 0.25 M; (2) 1.0 M and 0.5 M; (3) 2.0 M and 1.0 M, respectively. Reprinted with permission [22]

ronments [30–33]. PEC splitting of water is an ideal, low-cost renewable method of hydrogen (H_2) production that integrates solar energy collection and water electrolysis in a single photocell [30, 34, 35]. Figure 6 presents the principle of photocatalytic water splitting reactions.

Moreover, H_2 has been considered an attractive energy carrier, achieving much higher conversion efficiency than the conventional fossil fuels, while offering a more sustainable [33], environmentally benign energy source with lesser emissions [36]. Unfortunately, large-scale application of most photocatalytic systems is restricted by the fact that noble metal-based co-catalysts are still the first option for achieving reasonable activity rates. Therefore, seeking cheap, earth-abundant and highperformance alternative materials is indispensable to achieve cost-effective, highly efficient water splitting process [32]. Momeni and Ghayeb [37] produced Fe/TNTs composites for water splitting applications with varying amounts of the iron source

Fig. 6 The general principle of photocatalytic water splitting reactions. Reprinted with permission [35]

potassium ferricyanide (K_3 Fe(CN)₆), for which the ideal concentration was found to be 9 mM. Compared to undoped TNTs, the samples exhibited a red-shift of absorption edge and a band gap decrease, as well as a dramatic increase in photocurrent at the ideal Fe concentration. Regarding composite efficiency, Fig. 7a illustrates that the amount of H₂ evolved on the 9 mM Fe/TNTs sample (named FeNTs-2), after 240 min was more than 6,5 times the one verified on the undoped TiO₂ sample (NTs), and the hydrogen production showed no obvious decay after 6 continuous runs of photocatalytic reaction, as seen in Fig. 7b, thus proving the recyclability of the system.

3 Copper-Doped TiO₂

Exhibiting great potential for applications in the fields of solar energy conversion [38-40], photocatalytic hydrogen (H₂) production [32, 41, 42] and degradation of hazardous components [2, 43], earth-abundant and low-cost transitional metals such as cobalt (Co), nickel (Ni) and copper (Cu) [44, 45] have been successfully loaded on semiconductors in order to improve photocatalytic processes. According to Ran

et al. [32], applying such metals as cocatalysts promote charge separation due to the Schottky barrier formed at the metal/semiconductor interface.

Regarding solar water splitting, hydrogen not only is vital for many industrial processes but also is thought to be an attractive, clean energy vector when combined with efficient fuel cells. The overall photocatalytic water splitting reaction involves three major steps, those being light absorption by a semiconductor to generate electronhole pairs, charge separation and migration to the surface of the semiconductor and finally surface reactions for H₂ or O₂ evolution [32] (Fig. 8). However, solar photocatalytic water splitting is still a challenging promise for sustainable H₂ production, mostly because the ideally described use of platinum (Pt) as cocatalyst endures a series of limitations linked to its high-cost and relatively low availability [32, 41].

In this context arises an increasing interest in the aforementioned transition metals, especially Cu species, for the narrow band-gap characteristic of both CuO and Cu₂O extends the photoresponse of TiO₂ into the visible light region [2, 38–40, 43, 46], making them a sustainable candidate for TiO₂ doping to enhance hydrogen production [44, 47]. On that note, Xu et al. [48] reported that CuO-loaded TiO₂ exhibited a photocatalytic H₂ production rate in methanol aqueous solution about 3 times higher than that of some Pt/TiO₂ electrodes (18,500 μ mol h⁻¹ g⁻¹_{catalyst} to 6000 [49] and 6900 [50] μ mol h⁻¹ g⁻¹_{catalyst}, respectively). Furthermore, it was found that Cu-doping process does not influence the morphology of TiO₂ samples [43, 51], and different chemical states of Cu species, as well as their distribution ratio over

Fig. 8 Schematic illustration of photocatalytic water splitting over a semiconductor photocatalyst loaded with H_2^- and O_2^- evolution cocatalysts. Reprinted with permission [32]

 TiO_2 notably influence H₂ production activities, with Cu species aggregated to its surface promoting charge transfer more efficiently than those in TiO₂ lattice [42].

The stability of the system is also to be observed, for leaching of non-metals is one of the main reasons for catalyst deactivation in liquid media [41]. Gombac et al. [41] tested copper leaching during and after photocatalytic reactions carried with a Cu/TiO₂ electrode both under reducing and oxidizing conditions, those being argon flow and inert atmosphere and exposure to air, respectively. Results indicated that under reducing conditions Cu leaching is marginal and, if operative, can be minimized by UV irradiation. On the other hand, dramatic leaching is observed under oxidized conditions.

Coupling Cu NPs with self-organized, highly ordered TiO_2 nanotube arrays (Cu/TNTs) creates an even more efficient opportunity to harvest sunlight when compared to randomly oriented TiO_2 nanoparticles [2]. Cu/TNTs heterojunction also favors the separation of photogenerated electron-hole pairs, ultimately improving photoelectrical conversion ability under solar light irradiation [40, 43]. Hua et al. [43] confirmed such aspect by varying deposition time of Cu NPs over TNTs, for which the increase in deposition time also meant an increase in the transient photocurrent response (Fig. 9). Moreover, uniformly dispersed Cu NPs ensured the electron migration by forming a strong interaction with TNTs, thereby improving charge transfer and separation.

In the same study, Hua et al. [43] evaluated the catalytic efficiency of Cu/TNTs electrodes for degrading of diclofenac (DCF), a non-steroidal anti-inflammatory drug vastly researched for its endocrine disrupting and adverse effects and also one of the most frequently detected pharmaceuticals in municipal wastewater [52]. Among the

Fig. 9 Electrochemical impedance spectroscopy (EIS) spectra of Cu/TNTs electrodes, recorded at the open circuit potential under simulated solar light irradiation. The semicircle diameter of EIS, related to charge transfer resistance and separation efficiency at the contact interface between the electrode and electrolyte, was substantially decreased with increasing the deposition time, which could be attributed to Cu₂O and CuO improving the harvesting of visible light and reducing the transfer impedance of electrons. Reprinted with permission [43]

four processes tested, electrochemical (EC), direct photolysis (DP), photocatalysis (PC) and photoelectrocatalysis (PEC), the PEC process was found to be the most efficient with a DCF degradation efficiency of 71.9%, pointing to the important role played by an applied potential bias of 0.5 V in effectively separating electron-hole pairs and prolonging lifetime of the photogenerated charge carriers (Fig. 10).

Similar research utilizing the previously mentioned catalytic processes (EC, DP, PC, and PEC) was carried by Hou et al. [2] for 4-chlorophenol (4-CP) decomposition under UV light irradiation. As depicted in Fig. 11 the photocurrent density of the

Fig. 11 Variation of photocurrent density versus bias potential (vs. SCE) in 0.01 M Na₂SO₄ solution for the Cu₂O-loaded TiO₂ nanotube array electrode and TiO₂ nanotube array electrode under Xe lamp (400–600 nm, 33 mW cm⁻²) irradiation. Reprinted with permission [2]

Cu₂O/TNT electrode was measured to be more than 5 times the value for the nonloaded TNTs. Again, the PEC process utilizing a Cu₂O/TNT electrode was the fastest among the four alternatives, achieving nearly 100% of 4-CP degradation in 120 min, a value at least 20% higher than the one measured for the PEC process with a nonloaded TNT electrode (Fig. 12). Similarly, maximum photoconversion efficiency was observed at an applied bias of 0.1 V, corroborating the idea proposed by Hua et al. [43] that a potential bias inhibits the recombination of photogenerated electron-hole pairs.

 Cu_2O appears yet in structures other than NPs. As an example, Yang et al. [46] incorporated both Cu^0 NPs on the inner walls (Fig. 13a) and Cu_2O nanowires onto the top surface of TNTs (Fig. 13b) for p-nitrophenol (PNP) degradation, creating an intercrossed network with extended absorption in the visible light range without blocking the nanotubes (Fig. 13c).

Used for drug, fungicide and dye manufacturing, the priority pollutant is generally degraded by strong oxidants only, thus impeding purification of PNP-contaminated wastewater due to its stability to chemical and biological degradation [53, 54]. However, the authors proved that under solar light PNP can be effectively degraded by the Cu₂O/TNT p-n junction network without the addition of oxidants, at a rate 2.3 times higher than the unmodified TiO₂ NTs (1.97 μ g/min cm² versus 0.85 μ g/min cm², respectively).

Fig. 12 Variation of 4-CP concentrations by photoelectrocatalytic (PEC) technology with TiO₂ nanotube array electrode and Cu₂O-loaded TiO₂ nanotube array electrode under UV light illumination (I₀ = 1.4 mW cm⁻², 0.2 V vs. SCE bias potential applied). Reprinted with permission [2]

Fig. 13 SEM images of a Cu-loaded TiO₂ NTs and b Cu₂O ultrafine nanowires modified TiO₂ NTs. c UV-vis absorption spectra of TNTs (curve 1) and Cu₂O/TNTs (curve 2), demonstrating that the Cu₂O-modified TNTs have intense absorption in the visible light range. Reprinted with permission [46]

3.1 Silver/TiO₂ Nanostructures

The addition of nanostructured silver to titanium dioxide (Ag/TiO₂) has been thoroughly studied, mainly in terms of its photocatalytic properties [55–57]. Several studies [55, 58–60] demonstrate that silver is one of the most suitable materials for industrial application, due to the easy preparation and consequently low cost [58]. Because it is a noble metal, Ag presents characteristics that improve the photocatalytic activity of TiO₂ [61] as already mentioned (Fig. 14).

Amongst the main properties directly linked to the addition of silver to the surface is the facility to dispose of photogenerated electrons on the TiO_2 surface, directly attached to the silver fermi energy being just below the conduction band of TiO_2 , thus causing silver in this way function as a storage point of photogenerated load. Besides, the nanostructure of silver facilitates the photoabsorption process, due to the effects of SPR, which depend directly on the geometry and size of the nanostructures. Plasmon resonance effects can amplify the discharge effect for photoactive surfaces.

The Ag loaded TiO₂ (Ag/TiO₂), recently have been used in applications that aim pollutants and dyes degradation of wastewater. Seery [62] evaluated the rate of degradation of a model dye, rhodamine (R6G), and samples produced by different methods (irradiation and calcination) and the amount of silver doping. The author [62] relates that the degradation rate of the calcinated sample presented the most efficient catalytic properties (6–50% improvement in catalytic efficiency), that can be attributed to the silver is homogeneously dispersed throughout the material. The degradation rate of (R6G) oscillates among 0.06 min⁻¹ for TiO₂ to 0.34 min⁻¹ for 5 mol% Ag–TiO₂, which is attributed to the increasingly visible absorption capacity by Ag presence [62].

Concerning the pollutant materials, Li [63] explored the degradation of toluene with TiO₂ nanotube powder doped with Ag nanoparticles and compared the photocatalytic efficiency with commercial TiO₂ (P25, Degussa). The TiO₂ nanotubes were produced from Titanium foils with potenciostatic anodization method. The anodization was performed in a two-electrode configuration, where the Ti foil was used as a working electrode, and platinum foil as the counter electrode. The Ag-doped TiO₂ were prepared employing an incipient wetness impregnation method. The Ag/TiO₂ powder photocatalytic activity was measured through photo-oxidation of gaseous toluene. The results indicated that achieved efficiency for toluene degradation was 98% after 4 h reaction, under UV-light, these values were better than with pure TiO₂, Ag-doping P25 or P25 [63].

Another application that has been extensively studied using Ag/TiO_2 is water splitting, to generate gaseous H₂ as an alternative energy source. To enhance the process efficiency, Fan [64] produced highly ordered Fe³⁺-doped TiO₂ nanotube arrays (Fe/TiO₂ NTs), then Ag nanoparticles were assembled in Ag-Fe/TiO₂ NTs. The material assembly with iron was prepared by electrochemical anodic oxidation and the Ag was loaded by microwave-assisted chemical reduction. The author related that Ag-Fe/TiO₂ NTs showed higher UV-Vis light absorption and lower electron-hole recombination rate than pure TiO₂ (Fig. 15). The photocatalytic

Fig. 15 a SEM images of pure TiO₂ NTs and **b** Fe doped and Ag NPs loaded on TiO₂ NT. **c** Mechanism of H₂ production by water splitting over Ag–Fe/TiO₂ NTs applying UV and visible light irradiation. **d** Photoluminescence spectra of TiO₂ NTs under the excitation of 250 nm Fe/TiO₂ NTs, **e** Ag/TiO₂ NTs and **f** Ag–Fe/TiO₂ NTs. **g** H₂ production by water splitting by TiO₂ catalysts. (*Ag/TiO₂–Ag-doped TiO₂). Reprinted with permission [64]

activity indicated a higher efficiency by $0.2 \text{ mM Ag-}0.3 \text{ mM Fe/TiO}_2 \text{ NTs samples.}$ if compared with the pure TiO₂ catalyst. These results show the potential of photocatalytic material for energy and environment applications [64].

3.2 Gold

Gold is another noble metal that possesses singular electronic properties. Several researchers [65–67] relates that the presence of gold (Au) in nanoparticle form, or combined with other noble metals in TiO_2 supports, will improve the photocatalytic degradation of pollutants. In this regard, reports [68, 69], relate researches about the photocatalytic oxidation of pesticides and phenolic compounds applying TiO_2 , furthermore, reviewed concerning the organic dyes degradation in effluents.

Sanabrina [66] has investigated the performance of Au and platinum (Pt) nanoparticles, and Au–Pt alloy on anodic TiO_2 nanotubes (TiO_2 NTs) for photocatalytic degradation. The materials were produced with a different method, that is, metal decoration intrinsically and extrinsically. The intrinsical decoration was obtained using a noble metal-containing titanium alloy for anodic tube growth, as the extrinsic decoration was realized by physical vapor deposition (PVD) method of the Ag and Pt on pure titania tubes (Fig. 16).

The results showed enhancement for decomposition of the model pollutant acid orange 7 (AO7) when the Au–Pt intrinsic decoration was evaluated, which can be attributed to the synergistic effect of both noble metals. This effect of Au-Pt intrinsic decoration has revealed to be a better option than the use of pure elements loaded on TiO_2 NTs. Sanabrina [66] relates the overall effect is due to the facilitated oxygen reduction reaction, which leads to higher production of reactive oxygen species on the conduction band, which provide an enhanced pollutant degradation rate [66].

Beyond the photocatalysis application, it is possible to cite the H_2 production using TiO₂ nanotubes (TiO₂ NTs) doped with Au. Choi [67] produced Au NP-decorated TiO₂ nanotube arrays (TNTs) to apply as photoelectrochemical (PEC) water splitting electrodes for H_2 production. To synthesize the TNTs, the author made use of a simple and low-cost method with two-step anodization process, and finally the deposition of a thin film of Au nanoparticles (Fig. 17) [67].

The TiO₂ NTs prepared using the two-step anodization process showed better photocurrent stability and efficiency. Furthermore, the Au presence on TNT array increases the photocurrent value in 67.2% to 1.02 mA/cm². The PEC process water splitting was enhanced and stabilized for charge separation and transport due to reduced cracking after second anodization and the annealing process [67].

Based on the context presented in this chapter, it is important to cite Paramasivam [70], that compared the photocatalytic activity of Au and Ag nanoparticles loaded TiO_2 nanotubes and the activity of the unloaded TiO_2 substrates. Paramasivam relates an enhancement of photocatalytic activity with TiO_2 nanotubular structures compared with a compact TiO_2 surface, which possesses higher performance due to SPR enhancement properties due to the presence of Au and Ag.

Fig. 16 a Representation of TiO_2 NTs intrinsically decorated by direct anodization of alloy (left) and extrinsically decorated by sputtering and dewetting a noble metal on the top of the NTs anodically growth on Ti foil (right); **b** top section of the NTs on TiAuPt alloy; **c** top section of the TiO₂ NTs with 1 nm of Au dewetted and **d** cross-section of the NTs on TiAuPt alloy with magnifications in the top, middle and bottom part identified by different colors black, blue and red. Reprinted with permission [66]

Fig. 17 SEM images of Au NP-decorated 2 nd anodized TNT arrays **a** top-view and **b** cross sectional view. **c** EDX analysis of Au NP-decorated 2 and anodized TNT arrays (TNT–Au NP-decorated TiO₂ nanotube). Reprinted with permission [67]

4 Conclusions

In summary, modifying TiO_2 with semiconductor materials, distinctly Fe and Cu ions, creates additional energy levels near the valence and conduction bands of TiO_2 , thus minimizing the limitations associated with its large band gap via trapping of both electrons and holes. Consequently, it is highly recommended to dope TiO_2 with either Fe or Cu ions to obtain superior photocatalytic activity [6, 71]. Furthermore, the nanotubes loaded with Ag provide a doubled degradation when compared with pure nanotubes. The improvement of photocatalytic activity using Ag- TiO_2 can be explained considering the deposition method, which a thermal treatment step is recommended as an activation step, otherwise the addition of this metal may lead to decreased activity compared to pure TiO_2 NTs. Finally, the presence of the noble metal establish the formation of locally Schottky junctions with a high potential gradient, compared with TiO_2 /electrolyte interface, established by Schottky barrier, which enables better charge tranfer between the materials. In view of the aforementioned results, it is possible to state that the addition of metallic structures, like Fe, Cu, Ag and Au, to TiO_2 NTs have a great potential to be used in photocatalytic reactions and water-splitting applications.

References

- Zhang Y, Gu D, Zhu L, Wang B (2017) Highly ordered Fe³⁺/TiO₂ nanotube arrays for efficient photocatalytic degradation of nitrobenzene. Appl Surf Sci 420:896–904. https://doi.org/10. 1016/j.apsusc.2017.05.213
- Hou Y, Li X, Zou X, Quan X, Chen G (2009) Photoeletrocatalytic activity of a Cu₂O-loaded self-organized highly oriented TiO₂ nanotube array electrode for 4-chlorophenol degradation. Environ Sci Technol 43:858–863. https://doi.org/10.1021/es802420u
- Baker DR, Kamat PV (2009) Photosensitization of TiO₂ nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv Funct Mater 19:805–811. https:// doi.org/10.1002/adfm.200801173
- Teh CM, Mohamed AR (2011) Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions. J Alloys Compd 509:1648–1660. https://doi.org/10.1016/j.jallcom.2010.10.181
- Ambrus Z, Balázs N, Alapi T, Wittmann G, Sipos P, Dombi A, Mogyorósi K (2008) Synthesis structure and photocatalytic properties of Fe(III)-doped TiO₂ prepared from TiCl₃. Appl Catal B Environ 81:27–37. https://doi.org/10.1016/j.apcatb.2007.11.041
- Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO₂: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679. https://doi.org/10.1021/j100102a038
- Kraeutler B, Bard AJ (1978) Heterogeneous photocatalytic decomposition of saturated carboxylic acids on titanium dioxide powder. Decarboxylative route to alkanes. J Am Chem Soc 100:5985–5992. https://doi.org/10.1021/ja00487a001
- Bard AJ (1979) Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photochem 10:59–75. https://doi.org/10.1016/0047-2670(79)80037-4
- Papp J, Soled S, Dwight K, Wold A (1994) Surface acidity and photocatalytic activity of and photocatalysts. Chem Mater 6:496–500. https://doi.org/10.1021/cm00040a026
- Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96. https://doi.org/10.1021/cr00033a004
- Zhang ZB, Wang CC, Zakaria R, Ying JY (1998) Role of particle size in nanocrystalline TiO₂based photocatalysts. J Phys Chem Biol 102:10871–10878. https://doi.org/10.1021/jp982948+
- Wang CY, Bahnemann DW, Dohrmann JK (2000) A novel preparation of iron-doped TiO₂ nanoparticles with enhanced photocatalytic activity. Chem Commun 0:1539–1540. https://doi. org/10.1039/b002988m
- Adán C, Bahamonde A, Fernández-García M, Martínez-Arias A (2007) Photocatalytic degradation of ethidium bromide over titania in aqueous solutions. Appl Catal B Environ 72:11–17. https://doi.org/10.1016/j.apcatb.2006.09.018
- Serpone N, Lawless D, Disdier J, Herrmann JM (1994) Spectroscopic, photoconductivity, and photocatalytic studies of TiO₂ colloids: naked and with the lattice doped with Cr³⁺, Fe³⁺, and V⁵⁺ cations. Langmuir 10:643–652. https://doi.org/10.1021/la00015a010
- Zhu J, Zheng W, He B, Zhang J, Anpo M (2004) Characterization of Fe–TiO₂ photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J Mol Catal A Chem 216:35–43. https://doi.org/10.1016/j.molcata. 2004.01.008
- Zhu J, Chen F, Zhang J, Chen H, Anpo M (2006) Fe³⁺–TiO₂ photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization. J Photochem Photobiol A Chem 180:196–204. https://doi.org/10.1016/j.jphotochem.2005.10.017

- Wang XH, Li JG, Kamiyama H, Moriyoshi Y, Ishigaki T (2006) Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over Iron(III)-doped TiO₂ nanopowders under UV and visible light irradiation. J Phys Chem B 110:6804–6809. https:// doi.org/10.1021/jp060082z
- Yu H, Irie H, Shimodaira Y, Hosogi Y, Kuroda Y, Miyauchi M, Hashimoto K (2010) An efficient visible-light-sensitive Fe(III)-grafted TiO₂ photocatalyst. J Phys Chem C 114:16481–16487. https://doi.org/10.1021/jp1071956
- Asiltürk M, Sayilkan F, Arpaç E (2009) Effect of Fe³⁺ ion doping to TiO₂ on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation. J Photochem Photobiol A Chem 203:64–71. https://doi.org/10.1016/j.jphotochem.2008.12.021
- Frandsen C, Bahl CRH, Lebech B, Lefmann K, Kuhn LT, Keller L, Andersen NH, Zimmermann MV, Johnson E, Klausen SN, Mørup S (2005) Oriented attachment and exchange coupling of α–Fe₂O₃ nanoparticles. Phys Rev B Condens Matter Mater Phys 72:214406. https://doi.org/ 10.1103/physrevb.72.214406
- Spray RL, McDonald KJ, Choi KS (2011) Enhancing photoresponse of nanoparticulate α-Fe₂O₃ electrodes by surface composition tuning. J Phys Chem C 115:3497–3506. https://doi. org/10.1021/jp1093433
- Xie S, Ouyang K, Lao Y, He P, Wang Q (2017) Heterostructured ZnFe₂O₄/TiO₂ nanotube arrays with remarkable visible-light photoelectrocatalytic performance and stability. J Colloid Interface Sci 493:198–205. https://doi.org/10.1016/J.JCIS.2017.01.023
- Cong Y, Li Z, Zhang Y, Wang Q, Xu Q (2012) Synthesis of α-Fe₂O₃/TiO₂ nanotube arrays for photoelectro-Fenton degradation of phenol. Chem Eng J 191:356–363. https://doi.org/10. 1016/j.cej.2012.03.031
- 24. Yang X, Zou R, Huo F, Cai D, Xiao D (2009) Preparation and characterization of Ti/SnO₂–Sb₂O₃–Nb₂O₅/PbO₂ thin film as electrode material for the degradation of phenol. J Hazard Mater 164:367–373. https://doi.org/10.1016/j.jhazmat.2008.08.010
- Li XY, Cui YH, Feng YJ, Xie ZM, Gu JD (2005) Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res 39:1972–1981. https://doi.org/10.1016/j.watres.2005.02.021
- Shihong X, Daolun F, Wenfeng S (2009) Preparations and photocatalytic properties of visiblelight-active zinc ferrite-doped TiO₂ photocatalyst. J Phys Chem C 113:2463–2467. https://doi. org/10.1021/jp806704y
- Hou Y, Li XY, Zhao QD, Quan X, Chen GH (2010) Electrochemical method for synthesis of a ZnFe₂O₄/TiO₂ composite nanotube array modified electrode with enhanced photoelectrochemical activity. Adv Funct Mater 20:2165–2174. https://doi.org/10.1002/adfm.200902390
- Theurich J, Lindner M, Bahnemann DW (1996) Photocatalytic degradation of 4-Chlorophenol in aerated aqueous titanium dioxide suspensions: a kinetic and mechanistic study. Langmuir 12:6368–6376. https://doi.org/10.1021/la960228t
- Venkatachalam N, Palanichamy M, Murugesan V (2007) Sol-gel preparation and characterization of alkaline earth metal doped nano TiO₂: efficient photocatalytic degradation of 4chlorophenol. J Mol Catal A Chem 273:177–185. https://doi.org/10.1016/j.molcata.2007.03. 077
- Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. https://doi.org/10.1038/238037a0
- Momeni MM, Ghayeb Y, Davarzadeh M (2015) Single-step electrochemical anodization for synthesis of hierarchical WO₃-TiO₂ nanotube arrays on titanium foil as a good photoanode for water splitting with visible light. J Electroanal Chem 739:149–155. https://doi.org/10.1016/j. jelechem.2014.12.030
- Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ (2014) Earth-abundant cocatalysts for semiconductorbased photocatalytic water splitting. Chem Soc Rev 43:7787–7812. https://doi.org/10.1039/ c3cs60425j
- Ahmad H, Kamarudin SK, Minggu LJ, Kassim M (2015) Hydrogen from photo-catalytic water splitting process: a review. Renew Sustain Energy Rev 43:599–610. https://doi.org/10.1016/j. rser.2014.10.101

- Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344. https://doi.org/10.1038/ 35104607
- Jang JS, Kim HG, Lee JS (2012) Heterojunction semiconductors: a strategy to develop efficient photocatalytic materials for visible light water splitting. Catal Today 185:270–277. https://doi. org/10.1016/j.cattod.2011.07.008
- Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev 10:248–268. https://doi.org/10.1016/ j.rser.2004.09.002
- Momeni MM, Ghayeb Y (2015) Fabrication, characterization and photoelectrochemical behavior of Fe–TiO₂ nanotubes composite photoanodes for solar water splitting. J Electroanal Chem 751:43–48. https://doi.org/10.1016/j.jelechem.2015.05.035
- Siripala W, Ivanovskaya A, Jaramillo TF, Baeck SH, McFarland EW (2003) A Cu₂O/TiO₂ heterojunction thin film cathode for photoelectrocatalysis. Sol Energy Mater Sol Cells 77:229–237. https://doi.org/10.1016/S0927-0248(02)00343-4
- Lu C, Qi L, Yang J, Wang X, Zhang D, Xie J, Ma J (2005) One-pot synthesis of octahedral Cu₂O nanocages via a catalytic solution route. Adv Mater 17:2562–2567. https://doi.org/10. 1002/adma.200501128
- 40. Wang J, Ji G, Liu Y, Gondal MA, Chang X (2014) Cu₂O/TiO₂ heterostructure nanotube arrays prepared by an electrodeposition method exhibiting enhanced photocatalytic activity for CO₂ reduction to methanol. Catal Commun 46:17–21. https://doi.org/10.1016/j.catcom.2013.11. 011
- Gombac V, Sordelli L, Montini T, Delgado JJ, Adamski A, Adami G, Cargnello M, Bernai S, Fornasiero P (2010) CuO_x – TiO₂ photocatalysts for H₂ production from ethanol and glycerol solutions. J Phys Chem A 114:3916–3925. https://doi.org/10.1021/jp907242q
- 42. Xu S, Ng J, Zhang X, Bai H, Sun DD (2010) Fabrication and comparison of highly efficient Cu incorporated TiO₂ photocatalyst for hydrogen generation from water. Int J Hydrogen Energy 35:5254–5261. https://doi.org/10.1016/j.ijhydene.2010.02.129
- 43. Hua Z, Dai Z, Bai X, Ye Z, Wang P, Gu H, Huang X (2016) Copper nanoparticles sensitized TiO₂ nanotube arrays electrode with enhanced photoelectrocatalytic activity for diclofenac degradation. Chem Eng J 283:514–523. https://doi.org/10.1016/j.cej.2015.07.072
- Wu NL, Lee MS (2004) Enhanced TiO₂ photocatalysis by Cu in hydrogen production from aqueous methanol solution. Int J Hydrogen Energy 29:1601–1605. https://doi.org/10.1016/j. ijhydene.2004.02.013
- Foo WJ, Zhang C, Ho GW (2013) Non-noble metal Cu-loaded TiO₂ for enhanced photocatalytic H₂ production. Nanoscale. 5:759–764. https://doi.org/10.1039/c2nr33004k
- 46. Yang L, Luo S, Li Y, Xiao Y, Kang Q, Cai Q (2010) High efficient photocatalytic degradation of p-Nitrophenol on a unique Cu₂O/TiO₂ p-n heterojunction network catalyst. Environ Sci Technol 44:7641–7646. https://doi.org/10.1021/es101711k
- 47. Sakata Y, Yamamoto T, Okazaki T, Imamura H, Tsuchiya S (1998) Generation of visible light response on the photocatalyst of a copper ion containing TiO₂. Chem Lett 27:1253–1254. https://doi.org/10.1246/cl.1998.1253
- Xu S, Sun DD (2009) Significant improvement of photocatalytic hydrogen generation rate over TiO₂ with deposited CuO. Int J Hydrogen Energy 34:6096–6104. https://doi.org/10.1016/ j.ijhydene.2009.05.119
- Yi H, Peng T, Ke D, Ke D, Zan L, Yan C (2008) Photocatalytic H₂ production from methanol aqueous solution over titania nanoparticles with mesostructures. Int J Hydrogen Energy 33:672–678. https://doi.org/10.1016/J.IJHYDENE.2007.10.034
- Sreethawong T, Puangpetch T, Chavadej S, Yoshikawa S (2007) Quantifying influence of operational parameters on photocatalytic H₂ evolution over Pt-loaded nanocrystalline mesoporous TiO₂ prepared by single-step sol-gel process with surfactant template. J Power Sources 165:861–869. https://doi.org/10.1016/J.JPOWSOUR.2006.12.050
- Momeni MM, Ghayeb Y, Ghonchegi Z (2015) Fabrication and characterization of copper doped TiO₂ nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceram Int 41:8735–8741. https://doi.org/10.1016/j.ceramint.2015.03.094

- Hartmann J, Bartels P, Mau U, Witter M, Tümpling WV, Hofmann J, Nietzschmann E (2008) Degradation of the drug diclofenac in water by sonolysis in presence of catalysts. Chemosphere 70:453–461. https://doi.org/10.1016/j.chemosphere.2007.06.063
- Yi S, Zhuang WQ, Wu B, Tay STL, Tay JH (2006) Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor. Environ Sci Technol 40:2396–2401. https://doi.org/10. 1021/es0517771
- Labana S, Pandey G, Paul D, Sharma NK, Basu A, Jain RK (2005) Pot and field studies on bioremediation of p-Nitrophenol contaminated soil using arthrobacter protophormiae RKJ100. Environ Sci Technol 39:3330–3337. https://doi.org/10.1021/es0489801
- Daghrir R, Drogui P, Robert D (2013) Modified TiO₂ for environmental photocatalytic applications: a review. Ind Eng Chem Res 52:3581–3599. https://doi.org/10.1021/ie303468t
- 56. He C, Yu Y, Hu X (2002) Influence of silver doping on the photocatalytic activity of titania films. Appl Surf Sci 200:239–247. https://doi.org/10.1016/s0169-4332(02)00927-3
- Hajjaji A, Elabidi M, Trabelsi K, Assadi AA, Bessais B, Rtimi S (2018) Bacterial adhesion and inactivation on Ag decorated TiO₂-nanotubes under visible light: effect of the nanotubes geometry on the photocatalytic activity. Colloids Surf B Biointer 170:92–98. https://doi.org/ 10.1016/j.colsurfb.2018.06.005
- Sun L, Li J, Wang C, Li S, Lai Y, Chen H, Lin C (2009) Ultrasound aided photochemical synthesis of Ag loaded TiO₂ nanotube arrays to enhance photocatalytic activity. J Hazard Mater 171:1045–1050. https://doi.org/10.1016/j.jhazmat.2009.06.115
- Roy P, Berger S, Schmuki P (2011) TiO₂ nanotubes: synthesis and applications. Angew Chemie Int Ed 50:2904–2939. https://doi.org/10.1002/anie.201001374
- Zhang J, Li S, Ding H, Li Q, Wang B, Wang X, Wang H (2014) Transfer and assembly of large-area TiO₂ nanotube arrays onto conductive glass for dye sensitized solar cells. J Power Sources 247:807–812. https://doi.org/10.1016/J.JPOWSOUR.2013.08.124
- Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC (2015) Visible-light activation of TiO₂ photocatalysts: advances in theory and experiments. J Photochem Photobiol C Photochem Rev 25:1–29. https://doi.org/10.1016/j.jphotochemrev.2015.08.003
- Seery M, George R, Pillai S, Floris P (2007) Silver doped titanium dioxide nanomaterials for enhanced visible-light photocatalysis. J Photochem Photobiol A 189:258–263. https://doi.org/ 10.1016/j.jphotochem.2007.02.010
- 63. Li X, Zou X, Qu Z, Zhao Q, Wang L (2011) Photocatalytic degradation of gaseous toluene over Ag-doping TiO₂ nanotube powder prepared by anodization coupled with impregnation method. Chemosphere 83:674–679. https://doi.org/10.1016/j.chemosphere.2011.02.043
- 64. Fan X, Fan J, Hu X, Liu E, Kang L, Tang C, Ma Y, Wu H, Li Y (2014) Preparation and characterization of Ag deposited and Fe doped TiO₂ nanotube arrays for photocatalytic hydrogen production by water splitting. Ceram Int 40:15907–15917. https://doi.org/10.1016/j.ceramint. 2014.07.119
- 65. Zhang G, Miao H, Hu X, Mu J, Liu X, Han T, Fan J, Liu E, Yin Y, Wan J (2017) A facile strategy to fabricate Au/TiO₂ nanotubes photoelectrode with excellent photoelectrocatalytic properties. Appl Surf Sci 391:345–352. https://doi.org/10.1016/j.apsusc.2016.03.042
- 66. Sanabria-Arenas BE, Mazare A, Yoo J, Nguyen NT, Hejazi S, Bian H, Diamanti MV, Pedeferri MP, Schmuki P (2018) Intrinsic AuPt-alloy particles decorated on TiO₂ nanotubes provide enhanced photocatalytic degradation. Electrochim Acta 292:865–870. https://doi.org/10.1016/j.electacta.2018.09.206
- Choi J-Y, Hoon Sung Y, Choi H-J, Doo Kim Y, Huh D, Lee H (2017) Fabrication of Au nanoparticle-decorated TiO₂ nanotube arrays for stable photoelectrochemical water splitting by two-step anodization. Ceram Int 43:14063–14067. https://doi.org/10.1016/j.ceramint.2017. 07.141
- Ahmed S, Rasul MG, Brown R, Hashib MA (2011) Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manage 92:311–330. https://doi.org/10.1016/j.jenvman.2010.08.028

- 69. Ayati A, Ahmadpour A, Bamoharram FF, Tanhaei B, Mänttäri M, Sillanpää M (2014) A review on catalytic applications of Au/TiO₂ nanoparticles in the removal of water pollutant. Chemosphere 107:163–174. https://doi.org/10.1016/j.chemosphere.2014.01.040
- Paramasivam I, Macak JM, Schmuki P (2007) Photocatalytic activity of TiO₂ nanotube layers loaded with Ag and Au nanoparticles. Electrochem Commun 10:71–75. https://doi.org/10. 1016/j.elecom.2007.11.001
- 71. Litter MI (1999) Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl Catal B Environ 23:89–114. https://doi.org/10.1016/S0926-3373(99)00069-7